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1 | Introduction

As it is explained by Boudt et al. (2023), the ability to accurately estimate the covaria-
tion between asset returns has a great importance in several fields within finance. These
fields include, for instance, asset pricing, portfolio optimization, risk management, and
index tracking. Consequently, as the availability of high-frequency data has become more
common, the literature on covariation estimation has expanded significantly. However, as
explained by Christensen et al. (2010), high-frequency data is prone to have microstructure
noise, which induces autocorrelation in the returns and, thus, bias into the covariation esti-
mates. Efforts to mitigate this effect have, among others, been made by Jacod et al. (2009)
and Podolskij and Vetter (2009), who uses pre-averaging. Expanding their approach to a
multivariate setting poses, however, a new problem, which is that of asynchronicity. As
noted by Epps (1979), asynchronicity of high-frequency data tends to yield covariation esti-
mates that are biased towards zero. Christensen et al. (2010) mitigate microstructure noise
and asynchronicity by constructing a pre-averaged version of the estimator proposed by
Hayashi and Yoshida (2005). This estimator does not discard observations, as is typically
done with estimators that rely on synchronization procedures, however, it is not guaranteed
to yield positive semidefinite estimates. On the other hand, Boudt et al. (2016) propose
an estimator that exploits Cholesky decomposition to yield positive semidefinite estimates,
but this estimator relies on refresh-time sampling for synchronizing observations.

In this thesis, we investigate the benefit of using ETF basket-adjusted covariance estimation
for improving the covariation estimate of some pre-estimator. This is a novel method
proposed by Boudt et al. (2023), which exploits the high-frequency availability of ETF-
prices to improve covariation estimates. In their article, they take basis in the pre-averaged
Hayashi-Yoshida estimator as the pre-estimator, however, in this thesis, we apply their
method on the positive semidefinite estimator proposed by Boudt et al. (2016). We will
conduct an investigation of the method through a simulation study and an empirical study,
taking basis in stock-price data for components of the S&P 500 with index tracking as the
use case. The problem can thus be boiled down into the following problem formulation:

Does the ETF basket-adjusted covariance estimator pose a benefit, when comparing its index
tracking performance with that of the Cholskey-based estimator of Boudt et al. (2016)? How
do the estimators compare in a simulation study, and in a setting based on real S&P 500
stock-price data?

The thesis is structured as follows. In Chapter 2, a framework for constructing index
tracking funds is introduced. In Chapter 3, we present the BAC- and the mrcCholCov •-
estimator for covariation estimation, along with the results of a simulation study comparing
the index tracking performance of the two estimators. Chapter 4 contains the results of
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an empirical evaluation of the index tracking performance for the two estimators. In
Chapter 5, we discuss the obtained results and the methods, used in this thesis. Finally,
Chapter 6 concludes with a summary of the findings.
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2 | Index Tracking

When deciding how to invest, one will have to choose a strategy, and there are generally
two approaches to choose from. These are active management and passive management.
As described by Chen (2025), active management strategies relies on trying to gain a
positive return by actively selling and buying assets on the basis of, for instance, technical
analyses and forecasting. Passive investment strategies do not rely on forecasting, and are
typically based on diversification. A passive investor will usually choose to either buy and
hold or to do index tracking, of which the latter has gained a lot of popularity in recent
decades. Cornuejols and Tütüncü (2007) point out the following three reasons for why
index tracking has risen in popularity.

• Market efficiency: Under the assumption of the Efficient-market hypothesis (EMH),
it is theoretically impossible to consistently obtain better returns than the market
returns relative to the risk. It is therefore optimal to invest into a market tracking
index.

• Empirical evidence: Studies generally show that active investment portfolios do
not beat passive investment portfolios. See for instance Armour et al. (2024), which
show that only 42% of active strategies beat their passive counterparts in 2024. There
is, however, an ongoing discussion on whether the EMH holds in practice as there
are evidence suggesting that the market can be beat, see Downey (2024).

• Costs: The performance of actively managed funds may be reduced by fees such as
transaction or trading costs, and salaries for analysts and traders. These costs are
avoided in passively managed index funds.

For pure index tracking one would have to buy all assets in the same proportions as in
the index. Hence, tracking an index like the Standard and Poor’s 500 (S&P 500) would
involve buying all 500 different stocks in the index, which may be inconvenient, since the
price of such a portfolio would be very expensive.1 It is therefore ideal to find a subset of
the target index consisting of q stocks such that q is smaller than the d stocks of the target
index, and such that a portfolio of these q stocks closely replicates the returns of the target
index. The construction of an index tracking fund involves two steps. First, an algorithm
picks the optimal subset of stocks to represent the index. Next, an algorithm determines
the optimal proportions of wealth to be invested into each position. Figure 2.1 illustrates
this procedure.

1At the time of writing (18/03/2025 15:18 UCT+1) such a portfolio would cost around 1 497 000.00$,
see sp500_price.R.

3
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Figure 2.1: The procedure of creating an index fund. First, a subset of q assets from the
list of d assets in the index is picked. Then the appropriate proportions of investments into
each of the q assets are selected.

In the following section we will delve into the procedure of selecting an appropriate subset
of assets to track the index with.

2.1 Selecting a subset of stocks to use for index tracking

We will follow the approach described by Cornuejols and Tütüncü (2007). Suppose that
we want to select q stocks for an index fund that tracks a population of d > q stocks. For
each pair of stocks, we define a similarity index, denoted ρij for the pair of stocks i and j,
such that ρij ≤ 1 for all i, j = 1, 2, . . . , d, and i = j ⇒ ρij = 1. Specifically, ρij is larger
for pairs of similar stocks than for pairs of less similar stocks. In this project, we will use
the estimated correlation between the returns of each stock price process as the similarity
index.2 Let y := (y1, y2, . . . , yd)

⊤, where

yj :=

{
1, if stock j was selected for the index fund,
0, otherwise

for j = 1, 2, . . . , d. Furthermore, define the matrix x ∈ {0, 1}d×d with typical element xij
given by

xij :=

{
1, if stock j is the stock in the index fund that is most similar to stock i,
0, otherwise,

for i, j = 1, 2, . . . , d. To find the optimal set of stocks for the index fund, we should
maximize the similarity between the stocks in the index fund, and the stocks in the target
index. We can formulate this into the following maximization problem.

(M)

z := max
x,y

d∑
i=1

d∑
j=1

ρijxij,

2However not done in this project, it may be beneficial to use the absolute value of the estimated
correlation instead, as a correlation close to −1 is, nevertheless, also a strong correlation.
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S.t.
d∑

j=1

yj = q,

d∑
j=1

xij = 1, for i = 1, 2, . . . , d

xij ≤ yj, for i = 1, 2, . . . , d; j = 1, 2, . . . , d

xij, yj ∈ {0, 1} , for i = 1, 2, . . . , d; j = 1, 2, . . . , d.

This is an integer programming problem, however obtaining a solution can be computa-
tionally heavy. Suppose for instance that we wanted to track the S&P 500 with an index
fund consisting of 10 stocks. There would be

(
500
10

)
≈ 2.46× 1020 ways of selecting y, such

that
500∑
j=1

yj = 10,

and additionally we would have 250 000 constraints of xij ≤ yj, hence, searching through all
possible solutions would be significantly time consuming. We will therefore instead obtain
a heuristic solution to (M) by following the proposed method of Cornuejols et al. (1977).
In this article, they propose a solution to a variant of the Facility Location Problem (See
chapter 2 of da Gama and Wang (2024)), which relies on a Lagrangian relaxation to turn
an integer programming problem into a continuous problem. This is useful, since (M) is a
similar variant of the Facility Location Problem, hence, their solution can be used to find
optimal subsets of stocks for an index fund. Rewriting (M) as proposed by Cornuejols
et al. (1977) yields the following maximization problem.

(M ′)

L(u) := max
x,y

d∑
i=1

d∑
j=1

ρijxij +
d∑

i=1

ui

1−
d∑

j=1

xij

 ,

S.t.
d∑

j=1

yj = q,

xij ≤ yj, for i = 1, 2, . . . , d; j = 1, 2, . . . , d

xij, yj ∈ {0, 1} , for i = 1, 2, . . . , d; j = 1, 2, . . . , d.

Where u = (u1, u2, . . . , ud)
⊤ is any vector in Rd. The intuition behind reexpressing (M)

as (M ′) is that the restriction of
∑d

j=1 xij = 1 for i = 1, 2, . . . , d, has been written into
the objective function, such that solutions are instead penalized for not satisfying the
restriction. In other words, a solution to (M ′) does not have to satisfy

∑d
j=1 xij = 1, but

deviations from the restriction are still penalized. As a consequence of this, a solution to
(M ′) is not necessarily a solution to (M), but according to the following proposition, we
can use (M ′) to estimate an upper bound to z.
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Proposition 2.1.1.
Let u ∈ Rd, let z be given as in (M), and let L(u) be given as in (M ′). Then L(u) ≥ z.

Proof. We will prove Proposition 2.1.1 by contradiction, hence, let u ∈ Rd be given,
and assume that z and L(u) have been obtained such that L(u) < z. Let the pairs
(x, y), (x′, y′) ∈ Rd×d × Rd be the pairs that are obtained by solving the maximization
problems (M) and (M ′) respectively. The pair (x, y) also satisfies the restrictions in (M ′),
but plugging x into the objective function of (M ′) yields z, which means that (x, y) is a
better solution to (M ′) than (x′, y′). This is a contradiction, and we can conlcude that
Proposition 2.1.1 holds. ■

When finding an optimal subset of stocks for an index fund, we are only interested in y,
since it specifies which stocks to include in the index fund. The following proposition states
that L(u) can be calculated without needing to solve for x.

Proposition 2.1.2.
Let u ∈ Rd, let Cj :=

∑d
i=1(ρij − ui)

+ for j = 1, 2, . . . , d, where

(ρij − ui)
+ := max

{
0, ρij − ui

}
.

Then

L(u) = max
y

d∑
j=1

Cjyj +
d∑

i=1

ui,

S.t.
d∑

j=1

yj = q,

yj ∈ {0, 1} , for j = 1, 2, . . . , d.

Proof. We will prove Proposition 2.1.2 directly, and we will omit explicitly writing the
constraints of (M ′), but they are still implicitly present. Let u ∈ Rd be given, and consider
the following reexpression of L(u)

L(u) = max
x,y

d∑
i=1

d∑
j=1

ρijxij +
d∑

i=1

ui

1−
d∑

j=1

xij


= max

x,y

d∑
i=1

d∑
j=1

(ρij − ui)xij +
d∑

i=1

ui

6
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= max
x,y

d∑
i=1

d∑
j=1

(ρij − ui)
+xij +

d∑
i=1

ui.

The last equality comes from considering that when ρij−ui < 0, we obtain a better solution
by letting xij = 0 rather than xij = 1.We could maximize by setting all entries in x to 1,
but since xij ≤ yj, we can substitute xij with yj, hence

max
x,y

d∑
i=1

d∑
j=1

(ρij − ui)
+xij +

d∑
i=1

ui = max
y

d∑
i=1

d∑
j=1

(ρij − ui)
+yj +

d∑
i=1

ui.

Finally, by turning the summation order around, we obtain

max
y

d∑
i=1

d∑
j=1

(ρij − ui)
+yj +

d∑
i=1

ui = max
y

d∑
j=1

d∑
i=1

(ρij − ui)
+yj +

d∑
i=1

ui

= max
y

d∑
j=1

yj

d∑
i=1

(ρij − ui)
+ +

d∑
i=1

ui

= max
y

d∑
j=1

Cjyj +
d∑

i=1

ui,

which was to be demonstrated. ■

Using Proposition 2.1.2 we see that we can quickly find solutions y and calculate L(u) for
any given u ∈ Rd by setting yj = 1 for the q largest values of Cj. In addition, we can also
determine xij by setting xij = yj, when ρij − ui > 0, and xij = 0 otherwise.

As stated in Proposition 2.1.1, we can use L(u) as an upper bound for z. To improve this
bound we are interested in approximating

z := min
u

L(u). (2.1)

Since (M ′) is a relaxation of one of the constraints in (M) the solution pair (x, y) that
solves (M ′) is not necessarily an optimal solution to (M) nor is it necessarily feasible,
however, we can still use the solution to obtain a lower bound for z. To do this, we specify
an (M) feasible version of x in the following way

x∗ij :=

{
1, if j = argmaxj ρijyj,

0, otherwise.
(2.2)

We define this lower bound in the following way

z :=
d∑

i=1

d∑
j=1

ρijx
∗
ij.

7
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When z = z we know that the obtained solution (x∗, y), where x∗ has typical element
x∗ij, is an optimal solution to (M) according to Theorem 6.3 of Andréasson et al. (2020).
Otherwise the solution will be suboptimal in (M), however y can still be regarded as a
heuristic solution. In the following subsection, we will cover, how to approximate z and
obtain a heuristic solution to (M).

2.1.1 Approximating the least upper bound of (M)

In this section, we will investigate how to approximate z. Recall that z was defined by
(2.1) and recall as well that

L(u) = max
y

d∑
j=1

Cjyj +
d∑

i=1

ui,

for any u ∈ Rd according to Proposition 2.1.2. Since (ρij−ui)+ is convex with respect to ui
we have that all Cj are convex, hence the term

∑d
j=1Cjyj must be convex. Additionally,

the term
∑d

i=1 ui is convex as well, hence L(u) is convex. However, (ρij − ui)
+ is not

differentiable in ui = ρij, when ρij ̸= 0, and L(u) is therefore not differentiable in all points
of Rd unless ρij = 0 for all i, j = 1, 2, . . . , d. Thus, we cannot rely on gradient descent to
approximate z. Instead we use the subgradient optimization method, which is described
by Andréasson et al. (2020). Subgradients are defined in the following way.

Definition 2.1.3. (Subgradient)
Let f : Rd → R be a convex function. A vetor g ∈ Rd is said to be a subgradient of f
at x ∈ Rd if

f(y) ≥ f(x) + g⊤(y − x), y ∈ Rd.

The set of subgradients for f at x is called the subdifferential of f at x, and it is
denoted ∂f(x).

Subgradient optimization can be used to obtain solutions for optimization problems, where
we seek to minimize a convex function subject to a non-empty, closed, and convex subset
of Rd. The algorithm is defined in the following way.

Algorithm 2.1.4. (Subgradient optimization)
Let f : Rd → R be a convex function, and let X ⊆ Rd be a non-empty, closed, and con-
vex subset. The subgradient optimization algorithm follows the following procedure:

1. Pick x0 ∈ X,

2. For k = 0, 1, . . .:

8
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3. Generate gk ∈ ∂f(xk), and xk+1 = xk − αkgk.

4. If ∥xk+1 − xk∥ < ε for some ε > 0 sufficiently close to 0:

5. Stop.

The step length sequence (αk)k∈N0
is some chosen sequence where αk > 0 for k ∈ N0,

lim
k→∞

αk = 0, and
∑∞

k=0 αk = ∞.

Andréasson et al. (2020) proposes to pick sequences (αk)k∈N0
that satisfy the additional

criteria
∑

k∈N0
α2
k < ∞ for faster convergence, and they also prove that Algorithm 2.1.4

converges towards the global minimum, when it exists. An implementation of the sub-
gradient optimization method can be found in this project’s Github repo in the file
subgradient_optimization.R. For the step length sequence we have used αk := β

(k+1)

for β > 0 as is suggested by Andréasson et al. (2020).

In summary, we can apply subgradient optimization to (2.1) to obtain an approximation
of z and a heuristic solution (x∗, y) for (M). Furthermore, we can assess, whether or not
we obtained the optimal solution by checking if |z− z| < ε for an ε ≥ 0 sufficiently close to
0. Finally, the solution y will specify which stocks to put into our index fund. In the next
section, we will investigate how to select appropriate weights for each stock in an index
fund.

2.2 Selecting weights for stocks in an index fund

In the former section, we investigated how to select a subset of stocks from an index in
order to construct an index fund. In this section, we will cover how to determine the
proportions of wealth to invest into each stock in the index fund. Fastrich et al. (2014)
proposes the following optimization problem for determining both the weights and which
set of stocks to use for tracking,

argmin
α

TE(α; Ω) :=
√

Var[rb − rp] =
√

(wb − α)⊤Ω(wb − α),

S.t.
∑
i∈J

αi = 1,

0 ≤ αi ≤ 1, for i = 1, 2, . . . , d,

|J | ≤ q.

where α,wb ∈ Rd are the weights of investment into each stock for the tracking portfolio and
the benchmark index respectively, rp, rb ∈ R are the tracking portfolio and the benchmark
returns respectively, Ω ∈ Rd×d represents the covariance matrix for the d stocks in the index,
J :=

{
i ∈ {1, 2, . . . , d} | αi > 0

}
, and |J | denotes the cardinality of J . The objective

9
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function TE is called the tracking error, and is defined as the standard deviation of the
excess returns between the tracking portfolio and the index. The constraint of |J | ≤ q
ensures that only q stocks are picked for the index fund, but since we already picked q
stocks for tracking in the former section, we can omit this constraint, and use the q × q
submatrix of Ω with the chosen stocks. In addition, since we are only assessing the weights
for the q stocks, we can reduce the dimension of α to q, and the dimension of Ω to q × q.
In the empirical implementation of this project, we will follow the approach of Boudt
et al. (2023). They introduce the use of ETF log-prices for an ETF that tracks the same
index that we wish to track with the index fund. They suggest to include the stock-ETF
covaration and ETF-variance in Ω in order to improve the estimate of α. Hence,

Ω :=

[
ωE ω⊤

EK

ωEK Σ

]
,

where ωE is the integrated variance of the ETF, ωEK is the q-dimensional vector containing
the stock-ETF covariation, and the q× q-matrix Σ is an estimate of the stock covariation.
As a consequence of this, the dimension of Ω will be (q + 1) × (q + 1), and α will be
(q + 1)-dimensional. We will, however, constrain the entry associated with the ETF, that
is the first entry in α, to be zero, such that no investments are done into the ETF. Boudt
et al. (2023) also propose to use a variant of the tracking error that is given by

TE(α; Ω) := (1− α)⊤Ω(1− α).

The explanation for using this tracking error is that for the minimization problem of finding
α, the weights wb are irrelevant, since they are constant and will be differentiated out in
the first order conditions. We may therefore replace wb with a representation of an equal-
weighted portfolio, which is the the vector given by

1 :=
[
1 1 . . . 1

]⊤
.

In summary, the optimization problem that yields the optimal proportions of investments
into each asset is given by

argmin
α

TE(α; Ω) := (1− α)⊤Ω(1− α),

S.t.
q+1∑
i=1

αi = 1,

0 ≤ αi ≤ 1, for i = 1, 2, . . . , q + 1,

α1 = 0,

From the first order conditions, it is obtained that the optimal solution for α is given by

α(Ω) =

[
0

Σ−1ωEK

]
. (2.3)

10
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See Section A.4 for an argumnt for this result. To obtain α(Ω) at some given point in time
t, we will use an estimate of Ωt denoted

Ω̂t :=

[
ω̂E,t ω̂⊤

EK,t

ω̂EK,t Σ̂t

]
.

To evaluate the performance of the index fund, we will insert α(Ω̂t) into the tracking error
and calculate TE(α(Ω̂t); Ω̂t). In the following chapter, we will delve into the estimation of
Ω.

11
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3 | Integrated Covariance Estimation

In this section, we will cover methods for estimating the integrated covariance for a d-
dimensional Brownian semimartingale that represents the log-price processes of d assets.
We will take basis in the same theoretical setup that is used by Christensen et al. (2010) and
Boudt et al. (2016). Let (Ω0,F0, (F0

t )t≥0, P
0) be a filtered probability space satisfying the

usual conditions, let the d-dimensional log-price process, X, be defined on the probability
space, let it be (F0

t )t≥0-adapted, and assume that it is a solution to the following SDE,

Xt = X0 +

∫ t

0

µudu+

∫ t

0

σudWu, t ≥ 0, (3.1)

where the d-dimensional drift process µ = (µt)t≥0 is predictable and locally bounded, the
d× d covolatility matrix σ = (σt)t≥0 is adapted and càdlàg, and the d-dimensional process
W = (Wt)t≥0 is a Brownian motion. In this model, the indiviual log-price processes are
Itô semimartingales of the form

X i
t = X i

0 +

∫ t

0

µi
udu+

d∑
j=1

∫ t

0

σij
u dW

j
u , t ≥ 0,

where µi = (µi
t)t≥0 is the ith entry process in µ, and σij = (σij

t )t≥0 is the ijth entry process
in σ. The integrated covariance is also called the quadratic variation, and we define it in
the following way. Let P = {0 = t0 < t1 < . . . < tn = t} be a partition of the interval [0, t]
for any t ≥ 0, and let

|P| := sup
i

|ti − ti−1|.

The quadratic variation process of X is defined as the process ⟨X⟩t that satisfies

⟨X⟩t := P 0 lim
|P|→0

n∑
i=1

(Xti −Xti−1
)(Xti −Xti−1

)⊤, t ≥ 0.

Since X is a semimartingale, the quadratic variation process is equal to the quadratic
variation process of the local martingale component of X which is given by

Mt =

∫ t

0

σudWu, t ≥ 0.

Which has the quadratic variation process

⟨M⟩t =
∫ t

0

Σudu,

12
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where Σt := σtσ
⊤
t . We will also assume that X is only observed in the time interval [0, 1],

and we are, thus, interested in estimating

Σ :=

∫ 1

0

Σudu.

In this context, it is clear, why quadratic variation is also called the integrated covari-
ance. In this thesis, we will use the terms integrated covariance and covariation to denote
Σ. There are generally two elements that interfere with the estimation of the integrated
covariance, and we will extend our model to incorporate both. These are

• Market microstructure noise,

• Asynchronous trading.

Market microstructure noise are perturbations of the observed log-price processes. Ac-
cording to Zhou (1996), microstructure noise produces autocorrelation in high-frequency
return data, which causes bias in the integrated covariance estimates. In the context of
our model, it means that instead of observing the log-price process X, we are observing
the noisy process Y , given by

Yt := Xt + εt, t ∈ [0, 1],

where (εt)t∈[0,1] is a d-dimensional i.i.d zero mean process that is independent from X.
Assume that (εt)t∈[0,1] is defined and adapted in the filtered probability space

(Ω1,F1, (F1
t )t∈[0,1], P

1),

satisfying the usual conditions, where Ω1 := R[0,1], and F1 is the Borel-σ-algebra generated
by Ω1. The probability measure P 1 is defined by P 1 := ⊗t∈[0,1]P

1
t , where P 1

t := Q, and Q
is a probability measure on R. Finally, let Ω := Ω0 × Ω1, let F := F0 ⊗F1, let

Ft :=
⋂
s>t

F0
s ⊗F1

s , t ∈ [0, 1],

and let P := P 0⊗P 1. Then we can define Y on the filtered probability space (Ω,F , (Ft)t∈[0,1],
P ).

Asynchronicity in the trading of assets involves observing log-prices of the assets at different
times and different frequencies, and it is mainly caused by differences in the liquidity of
each asset. As shown by Epps (1979), sampling asynchronous data at a high frequency
can impose a bias towards zero for covariation estimates, hence asynchronicity is therefore
problematic. Let ni be the number of observations for the log-price process Y i in the time
interval [0, 1], then we have n :=

∑d
i=1 ni observations in total. The set of observation

times for Y i will be denoted by

Ti :=
{
0 ≤ ti1 < ti2 < . . . < tini

≤ 1
}
.

13
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To obtain useful integrated covariance estimates, we will use a method that is both robust
to microstructure noise and asynchronicity. We will use the estimator proposed by Boudt
et al. (2016), because it yields a positive semidefinite estimate. To account for microstruc-
ture noise, we will utilize the modulated realized covariance (MRC) approach described by
Christensen et al. (2010), hence, we are using the mrcCholCov • estimator of Boudt et al.
(2016). The mrcCholCov • estimator mitigates asynchronicity by doing refresh-time sam-
pling, which will be described later. To improve the integrated covariance estimate we will
use the method of ETF basket-adjusting proposed by Boudt et al. (2023). They propose a
method of improving a pre-estimate of the integrated covariance of a set of log-price pro-
cesses by exploiting the high frequency availability of ETF prices. In the following section
we will cover the mrcCholCov •.

3.1 The mrcCholCov estimator

The mrcCholCov • estimator of Boudt et al. (2016) is based on Cholesky factorization of
the integrated covariance matrix, that is, it exploits that Σ = HGH⊤, where H is a lower
triangular matrix with ones in the diagonal and G is a diagonal matrix. We can, thus,
estimate H and G, and calculate Σ, which ensures positive semidefiniteness, and since
the entries of H and G can be calculated sequentially, it allows for efficient use of the
log-price observations. This is because, when doing refresh-time sampling the number
of observations that we have left will be determined by the least liquid asset, hence, by
calculating the estimates for the most liquid assets first and the least liquid assets last we
maximize the number of observations used for estimation. To rank the assets by liquidity,
Boudt et al. (2016) proposes to use the squared duration criterion, which means sorting
the assets by

∑ni−1
j=1 (∆i

j)
2, where ∆i

j := tij+1 − tij. They show that this approach yields
more observations after synchronization than sorting by the number of observations.

Refresh-time sampling is a way to synchronize observations by picking each refresh-time,
such that all assets have been traded at least once since the last refresh-time. Suppose we
want to generate a refresh-time grid of a subset of the assets S ⊆ {1, 2, . . . , d}. The first
refresh time is defined by

τS1 := max
{
ti1 | i ∈ S

}
.

Let N i(t) be the counting process defined by

N i(t) := #
{
τ ∈ Ti | τ ≤ t

}
,

then the succeeding refresh-times are defined by

τSj+1 := max
{
t1N1(τj)+1, t

2
N2(τj)+1, . . . , t

d
Nd(τj)+1

}
,

14
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for j > 1.1 The set of refresh-times will be denoted

T S :=
{
0 = τS0 < τS1 < . . . < τSNS ≤ 1

}
,

where N S is the number of refresh-times. The returns of the grid will be denoted2

rj(T S) := YτSj − YτSj−1
, for j = 1, 2, . . . ,N S,

and the durations will be denoted

∆j(T S) := τSj − τSj−1.

Let H and G be specified by

H :=


1 0 · · · 0
h21 1 · · · 0
...

... . . . ...
hd1 hd2 · · · 1

 , and G :=


g11 0 · · · 0
0 g22 · · · 0
...

... . . . ...
0 0 · · · gdd

 .
Define the factor fj(T ) := H−1rj(T ) for j = 1, 2, . . . , N , where

T := {0 = t0 < t1 < t2 < . . . < tN = 1} ,

is some partition of [0, 1]. Rewriting yields rj(T ) = Hfj(T ), and since H is a lower
triangular matrix, we obtain that each entry in rj(T ) is a function of the entries in fj(T )
with a lower index, i.e, f 1

j (T ) = r1j (T ), and for k = 2, . . . , d,

rkj (T ) =
k∑

i=1

hkif
i
j(T ),

where hkk := 1. In addition fk
j (T ) ∼ N(0,∆j(T )gkk), where ∆j(T ) := tj − tj−1. It is

therefore proposed by Boudt et al. (2016) to estimate gkk as the integrated variance of
fk(T ), and hkl can be estimated as the realized beta between rkj (T ) and fk

j (T ). Hence, to
estimate gkk and hkl we will rely on the bias-corrected modulated realized covariance esti-
mator of Christensen et al. (2010), which utilizes pre-averaging to mitigate microstructure
noise.3

The following algorithm describes the mrcCholCov • estimator.

1For an implementation of refresh-time sampling see refresh-time_sampler.R.
2In practice we will not necessarily have observations for all processes at exactly τSj , thus we will

instead use last known price.
3See Section A.1 for an explanation of this estimator.
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Algorithm 1 (mrcCholCov•)
1: Sort log-price processes from most liquid to least according to the squared duration

criterion.
2: Set f 1

j (T1) = r1j (T1), and obtain estimate ĝ11 of g11 as the integrated variance of f 1(T1).
3: Let S = {1, 2} and construct the refresh-time grid T S.
4: Obtain the estimate ĥ21 of h21 as the realized beta of r2j (T S) and f 1

j (T S).
5: Then estimate ĝ22 as the integrated variance of f 2(T S) using f 2

j (T S) = r2j (T S) −
ĥ21f

1
j (T S).

6: Construct refresh-time grid T S with S = {1, 3}.
7: Estimate ĥ31 as the realized beta of r3j (T S) on f 1

j (T S).
8: Obtain a new refresh-time grid T S with S = {1, 2, 3}.
9: Compute f 2

j (T S) = r2j (T S)− ĥ21f
1
j (T S).

10: Estimate ĥ32 as the realized beta of r3j (T S) on f 2
j (T S).

11: Estimate ĝ33 as the integrated variance of f 3
j (T S) = r3j (T S)− ĥ32f

2
j (T S)− ĥ31f

1
j (T S).

12: for k = 4, . . . , d do
13: for l = 1, 2, . . . , (k − 1) do
14: Construct refresh-time grid T S with S = {1, 2, . . . , l, k}.
15: Calculate the factors fm

j (T S) = rmj −
∑m−1

n=1 ĥmnf
n
j (T S) for m = 1, 2, . . . , l.

16: Estimate ĥkl as the realized beta of rkj (T S) on f l
j(T S).

17: end for
18: Estimate ĝkk using fk

j (T S) = rkj (T S)−
∑k−1

n=1 ĥknf
n
j (T S).

19: end for
20: Estimate the diagonal entries of Σ using all available observations, and construct cor-

rection matrix D̂, such that we end up with the final estimate Σ̂ = D̂1/2ĤĜĤ⊤D̂−1/2.

Algorithm 1 describes how the mrcCholCov •-estimator works. It is robust to asynchronicity
because of refresh-time sampling, and it is robust to microstructure noise because it uses the
MRC estimator of Christensen et al. (2010), which uses pre-averaging. In the next section,
we will investigate the procedure of adjusting the estimate provided by mrcCholCov • using
stock-ETF covariation. An implementation of the mrcCholCov • estimator is available in
the Github repo by in the file mrcCholCov.R.

3.2 ETF basket-adjusted covariance estimation

In the former section we covered the mrcCholCov •-estimator for the integrated covariation
of a set of stock price processes. That estimator relies on refresh-time sampling to synchro-
nize observations, however in the case of very illiquid stocks, many observations will be
discarded, and as a consequence covariance estimates will be imprecise. Boudt et al. (2023)
proposes to exploit the availability of high-frequency price data for ETFs that track the
index in question to obtain a better estimate of the integrated covariance. They present a
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way of estimating an adjustment matrix that can be added to a pre-estimate of the inte-
grated covariance to improve the accuracy. The following definition is adapted from Boudt
et al. (2023) and it specifies the basket-adjusted covariance estimator (BAC-estimator).

Definition 3.2.1. (The BAC-estimator)
Let the d× d-matrix Σ denote a pre-estimator of the integrated covariance of d stocks,
let the d-dimensional vector β denote the stock-ETF covariation for each asset, and
let β∆ be a given or estimated target. Then the BAC-estimator is given by

Σ
BAC

:= Σ−∆
BAC

,

where ∆
BAC is a d× d adjustment-matrix defined by

vec(∆BAC
) := L(β − β∆),

and

L :=

(
Id2 −

1

2
Q

)
W

⊤

Id
 d∑

k=1

n−1
k

nk∑
m=1

(
wtkm−1

)2− WQW
⊤

2


−1

,

W
k
:=

(
0⊤(k−1)d,

1

n1

n1∑
m=1

w1
t1m−1

, . . . ,
1

nd

nd∑
m=1

wd
tdm−1

, 0⊤(d−k)d

)
,

for k = 1, 2, . . . , d, where W k is the kth row of the d× d2-matrix W ,

wk
tkm

:= aktkm exp

 1

ln

ln−1∑
j=0

Y k
tkm+j

 , (3.2)

for some given sequence ln ↑ ∞, the process at := (a1t , a
2
t , . . . , a

d
t ) is an adapted càdlàg

step function describing the amounts invested into each share, and finally, the rows of
the d2 × d2-matrix Q is for i, j = 1, 2, . . . , d given by

Q(i−1)d+j := (0⊤(i−1)d+j−1, 1, 0
⊤
(d−i+1)d−j) + (0⊤(j−1)d+i−1,−1, 0⊤(d−j+1)d−i),

for i ̸= j, and 0⊤d2 otherwise.

In this project, we use the mrcCholCov •-estimator as the pre-estimator Σ. We will denote
the observed log-price process of the ETF by Y d+1, and assume that there is a latent
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log-price process Xd+1, which is given by

Xd+1
t = log

 d∑
k=1

akt exp(X
k
t )

 ,

where the process at := (a1t , a
2
t , . . . , a

d
t ) is given as in Definition 3.2.1. Boudt et al. (2023)

derive that the covariation between the lth asset and the ETF is given by

βl =
d∑

k=1

∫ 1

0

wk
sΣ

kl
s ds,

where Σkl
t is the spot covariation between assets k and l, and wl

t := alt exp(X
l
t). An estimator

of βl is given by

β
l
:=

d∑
k=1

[nk/kn]−1∑
m=0

wk
tkmkn

Σ̂kl
tkmkn

(
tk(m+1)kn − tkmkn

)
,

where kn ∈ N is some local estimation window, wk
tkm

is given as in (3.2), and Σ̂kl
t is an

estimate of the spot covariation based on the pre-estimator. Let Σt denote the pre-estimate
of the integrated covariance up to time t ∈ [0, 1], then the spot covariance is estimated by

Σ̂kl
t :=

nk

kn

(
Σ

kl

t+kn/nk
− Σ

kl

t

)
, (3.3)

for t ∈ (0, 1 − kn/nk], and for 1 − kn/nk < t ≤ 1 set Σ̂kl
t = Σ̂kl

1−kn/nk
. In the following

section, we will showcase the finite sample performance of the BAC-estimator compared
to the vanilla mrcCholCov •-estimator through a series of simulation experiments. For an
implementation of the BAC-estimator see BACestimator.R.

3.3 Simulation study

In this section, we present the results of a simulation study that compares the performance
of the basket-adjusted mrcCholCov • to the performance of the vanilla mrcCholCov •. These
simulations take basis in datasets of simulated finance data, and we will therefore start
by covering, how this data is produced. We will follow the setup proposed by Barndorff-
Nielsen et al. (2011). In essence, we want to simulate the log-price processes of d stocks, and
one ETF with the following stochastic volatility model. Let the kth latent stock log-price
process be given by the following continuous Itô semimartingale,

dXk
t = µkdt+ dV k

t + dF k
t ,

where

dV k
t := ρkσk

t dB
k
t ,
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Bk is a standard Brownian motion independent from Bi for any i ̸= k, and

dF k
t :=

√
1−

(
ρk
)2
σk
t dWt,

where W is a standard Brownian motion independent from Bk for any k = 1, 2, . . . , d.
The process F k is, thus, driven by the Brownian motion W , which is common among all
processes for k = 1, 2, . . . , d, hence, the term F k is also called the common term. Let σk

t

be given by

σk
t := exp(β0 + β1g

k
t ),

where gkt is a process assumed to satisfy the Langevin equation

dgkt := αkgkt dt+ dBk
t .

We sample the initial values of gk according to gk0 ∼ N(0, (−2αk)−1), which imposes sta-
tionarity on gk. In this project, we will use the same values for the parameters as are
suggested by Barndorff-Nielsen et al. (2011), which are

(µk, βk
0 , β

k
1 , α

k, ρk) = (0.03,−5/16, 1/8,−1/40,−0.3). (3.4)

As a consequence of this setup, we have that

E

[∫ 1

0

(
σk
s

)2
ds

]
= 1. (3.5)

The covariation between two simulated log-price processes, say Xk and Xj, is the covari-
ation between their continuous martingale components, which are given by

Mk
t := ρk

∫ t

0

σk
sdB

k
s +

√
1−

(
ρk
)2 ∫ t

0

σk
sdWs, and

M j
t := ρj

∫ t

0

σj
sdB

j
s +

√
1− (ρj)2

∫ t

0

σj
sdWs.

Using the bilinearity of covariation, we obtain that

⟨Mk,M j⟩t = (ρk)2
∫ t

0

(σk
s )

2ds · 1{k=j} +

√(
1−

(
ρk
)2)(

1− (ρj)2
)∫ t

0

σk
sσ

j
sds.

Noise is simulated in the following way

Uk
t | σ,X i.i.d.∼ N(0, ω2), where ω2 := ξ2

√√√√ 1

nk

nk∑
i=1

(
σk
t

)4 i

nk

,
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and the noise-to-signal ratio is given by ξ2 = 0.001. The observed log-price processes are
generated by Y k

t := Xk
t + Uk

t . The ETF log-price process is generated by

Xd+1
t = log

 d∑
k=1

ak exp
(
Xk

t

) , (3.6)

where the d-dimensional vector a, denoting the proportions of wealth invested into each
asset, is sampled according to

a ∼ Dir
(
1

d
,
1

d
, . . . ,

1

d

)
︸ ︷︷ ︸

d

,

which is the Dirichlet distribution. Finally, the noise for the observed ETF log-price process
is sampled according to

Ud+1
t | Xd+1 i.i.d.∼ N

(
0, ξ2

(
σIV
ETF

)2)
,

where
(
σIV
ETF

)2 is the integrated variance of the unobserved ETF log-price process. The
observed ETF log-price process is thus given by Y d+1

t = Xd+1
t + Ud+1

t . The observations
are assumed to arrive according to a Poisson process with intensity parameter λk for
k = 1, 2, . . . , d + 1. That is, for a simulated trading day, the expected number of trades
for asset k is λk. To generate sample paths of the log-price processes, we use the Euler-
Maruyama scheme. For an implementation of the synthetic finance data generation process
see simulateFinanceData.R. The adjustment matrix of the BAC-estimator relies on the
information imposed by having high-frequency data available for ETF baskets. In the
following subsection, we will present the results of a sensitivy analysis of the relationship
between the ETF-liquidity and the compared performance of the BAC-estimator relative
to the performance of the vanilla mrcCholCov •-estimator.

3.3.1 The performance sensitivity relative to the ETF-liquidity

In this subsection, we will show the results of a sensitivity analysis of the relationship be-
tween the ETF liquidity and the performance of the BAC-estimator with the mrcCholCov •

estimator as the pre-estimator versus the vanilla mrcCholCov •-estimator. We simulate data
according to the scheme presented in the former section, and we will take basis in the pa-
rameters specified by (3.4). For the arrival intensities for the log-price observations, we will
use the same approach as Boudt et al. (2023). We simulate data with minute resolution,
which means that we have a maximum of 6.5 · 60 = 390 observations per day. Let the
intensity for asset k = 1 be given by λ1 = 40, let λd = 390 for asset k = d, and let

λk = λ1 + exp

(
ν
k − d

d− 1

)
(λd − λ1), (3.7)
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for k = 1, 2, . . . , d. The parameter ν determines the steepness of the distribution of stock
liquidities. For ν close to 0 the distribution of liquidities is more equally distributed, while
higher values of ν causes a steeper growth in stock liquidities. Figure 3.1 demonstrates
the distribution of stock liquidities for different values of ν. For this sensitivity analysis,
we use the value ν = 10, which yields a set of stocks with low liquidity and a few high
liquidity stocks. This is also the value of ν that is used in the simulation study by Boudt
et al. (2023). We will let the liquidity of the ETF, λd+1, vary from 50 to 390 in steplengths
of 10. For each value of λd+1, we conduct 1000 simulations, and estimate the rate at which
the BAC-estimator had a better tracking error than the vanilla mrcCholCov •-estimator,
with

G(λd+1) :=
1

1000

1000∑
i=1

1{
TE(α(Ω̂BAC

t );Ω̂BAC
t )<TE(α(Ω̂CholCov

t );Ω̂CholCov
t )

}. (3.8)

The standard deviation of G is estimated as the standard deviation of a Bernoulli distri-
bution, which is

σ̂G =

√
G(λt+1)(1−G(λt+1))

1000
.

The results of the sensitivity analysis is illustrated in Figure 3.2. The blue lines illustrate
the estimates of G, and the red dashed lines indicate the confidence intervals. None of the
plots indicate a significant relationship between the ETF liquidity and the performance
of the BAC-estimator with respect to the mrcCholCov •-estimator. This is also supported
by Table 3.1, which shows that there is no statistical relationship between G and λd+1.
The idea behind the BAC-estimator is to use the high-frequency availability of ETF-prices
to improve the pre-estimator, hence, the expected behavior should be that the higher the
ETF liquidity the better the performance of the BAC-estimator relative to the vanilla
mrcCholCov •. An explanation for the lack of this behavior in this experiment could lie
in the way that the ETF prices are simulated. We simulate the ETF prices according to
(3.6), and we generate observation times according a Poisson process with intensity λd+1.
When we have an observation time for the ETF we simply calculate the ETF prices with
the most recent observations of the stocks before that time. This excludes any supply
and demand-effects that would be imposed on the ETF prices in a real market, hence, the
information that the adjustment-matrix in the BAC-estimator yields, is not necessarily as
profound as it would be in a real market scenario. The black dashed lines in Figure 3.2
indicates the mean of the estimates, G, across all ETF liquidity values. They show that on
average for d = 10 the rate at which the BAC-estimator is better than the mrcCholCov • is
≈ 0.61 and for d = 20, and d = 30 the rate is on average ≈ 0.5, which also conforms with
the intercept estimates shown in Table 3.1. A rate of 0.5 likely indicates that the BAC-
estimator performs similarly to the vanilla mrcCholCov • for d = 20 and d = 30. However,
the BAC-estimator was better on average 61% of times for d = 10. This behavior of having
lower relative BAC-performance may be caused by the lack of information that the ETF
prices relay, since the prices are simulated, and it may also be caused by the smaller cor-
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(a) Liquidity distribution for ν = 1. (b) Liquidity distribution for ν = 5.

(c) Liquidity distribution for ν = 10. (d) Liquidity distribution for ν = 15.

Figure 3.1: Distribution of the liquidity according to (3.7) with varying values of ν.

relation factor each individual stock will have on the ETF price, when there are more
stocks present. These sources of error are likely less present in a scenario with real market
data. We will continue our simulation study with a sensitivity analysis of the relationship
between the parameter ν and the Monte Carlo estimate G.
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(a) Results for d = 10 simulated stocks. Mean value is ≈ 0.6055.

(b) Results for d = 20 simulated stocks. Mean value is ≈ 0.5141.

(c) Results for d = 30 simulated stocks. Mean value is ≈ 0.4991.

Figure 3.2: Results of running a sensitivity analysis of the relationship between the ETF-
liquidity and the compared performance between the BAC-estimator and the mrcCholCov •-
estimator. The blue lines are the Monte Carlo estimates of G, the red dashed lines are the
confidence intervals, and the horizontal black dashed lines are the overall mean values of
the G.
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d = 10
Estimate Std. Error t-value p-value

α 0.6121 0.0062 98.4010 < 0.001
β 0.0000 0.0000 −1.1680 0.2510

d = 20
Estimate Std. Error t-value p-value

α 0.5105 0.0078 65.2680 < 0.001
β 0.0000 0.0000 0.5030 0.6180

d = 30
Estimate Std. Error t-value p-value

α 0.5101 0.0073 70.0850 < 0.001
β -0.0001 0.0000 −1.6690 0.1050

Table 3.1: Summary of the linear regression G(λd+1) = α + βλd+1 using the Monte Carlo
estimates of the sensitivity analysis.

3.3.2 Sensitivity analysis of ν

In this section, we present the results of a sensitivity analysis of the relationship between
ν and the Monte Carlo estimate of the rate at which the BAC-estimator is better than the
mrcCholCov •-estimator. This is done with a similar approach as in the former subsection,
but with a fixed value for the ETF liquidity. We let ν vary from 1 to 15 with step lengths
of 1, and for each value of ν we run 1000 simulations and calculate the rate G according to
(3.8). All simulations are run with d = 10, and we do this for ETF liquidities 50, 220, and
390. The results are shown in Figure 3.3. The plots generally show that for higher values
of ν the better average performance of the BAC-estimator relative to the mrcCholCov •-
estimator. This relationship is also supported by Table 3.2, which suggests that there is a
statistical relationship between ν and G.4 The improved relative performance of the BAC-
estimator for high values of ν may be explained by the fact that high values of ν imply fewer
simulated stocks with high liquidity and more stocks with low liquidity. As a consequence
of the low liquidity there are less observations available for the mrcCholCov •-estimator,
however the availability of ETF-prices even at low frequency aids to improve the integrated
covariance estimates using the BAC-estimator. Likewise, for low values of ν the decreased
relative performance of the BAC-estimator, is likely caused by having more liquid stocks,
which decreases the contribution of the ETF-prices to the intergrated covariance estimate.
In the next section, we will investigate, how well the BAC-estimator performs compared
to the mrcCholCov •-estimator when tracking with subsets of stocks.

4A logistic regression was also fitted, but it suggested only insignificant estimates. This is likely caused
by the narrow range of G. See Section A.2 for a summary of the logistic regression.

24



Integrated Covariance Estimation Aalborg University

(a) Results based on an ETF liquidity of 50.

(b) Results based on an ETF liquidity of 220.

(c) Results based on an ETF liquidity of 390.

Figure 3.3: Results of a sensitivity analysis investigating the relationship between the
parameter ν and the rate G. The blue lines illustrate the Monte Carlo estimates G, the
red dashed lines are confidence intervals, and the black dashed lines are linear regression
fits to the Monte Carlo estimates.
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ETF liquidity of 50
Estimate Std. Error t-value p-value

α 0.3424 0.0270 12.6990 < 0.001
β 0.0242 0.0030 8.1750 < 0.001

ETF liquidity of 220
Estimate Std. Error t-value p-value

α 0.3938 0.0160 24.5500 < 0.001
β 0.0185 0.0018 10.5100 < 0.001

ETF liquidity of 390
Estimate Std. Error t-value p-value

α 0.3885 0.0184 21.0660 < 0.001
β 0.0191 0.0020 9.4040 < 0.001

Table 3.2: Summary of the linear regression G(λd+1) = α + βν using the Monte Carlo
estimates of the sensitivity analysis.

3.3.3 Tracking with subsets of stocks

Until now, we have used the entire set of component stocks for tracking and assess the
performance of the BAC-estimator relative to the mrcCholCov •-estimator. In this section,
we use the method of selecting an appropriate subset of stocks for index tracking, which
was described in Section 2.1. The pipeline for each simulation consists of simulating a
finance dataset, obtaining the integrated covariance estimates using the BAC-estimator
and the mrcCholCov •-estimator, then finding an appropriate subset of stocks to include
in the index fund using the method explained in Section 2.1, calculating the respective
tracking errors, and finally comparing the tracking errors. This pipeline is also illustrated
in Figure 3.4.

Figure 3.4: Pipeline for a single simulation run. First a dataset of finance data is simulated,
then the BAC- and mrcCholCov •-estimates are obtained. Using these integrated covariance
estimates, appropriate subsets of stocks are found, and their covariation matrices are used
to calculate the tracking errors.
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For the simulations, we let d = 10, fix ν = 10, and let the ETF-liquidity be fixed at
λd+1 = 390. We let the number of stocks included in the subset, q, vary from 1 to 10 with
steplengths of 1. Because of computational limitations, we only run 100 simulations per q
rather than 1000, which was used in the former analyses. This yields standard deviations
that are larger by a factor of

√
10 ≈ 3.16 compared to the former analyses. The results of

this simulation study can be seen in Figure 3.5.

Figure 3.5: Results of a sensitivity analysis of the relationship between the relative BAC-
performance and the number of stocks used for tracking. Blue represent the Monte Carlo
estimates G, red dashed lines represent 95%-confidence intervals, and the black dashed line
shows a linear regression of G on q.

Figure 3.5 shows that overall the BAC-estimator performs better than the mrcCholCov •-
estimator, and the black dashed lines also suggest that there is a slightly increasing trend
in the relative performance as q increases. Table 3.3 supports the claim that the BAC-
estimator is better than the mrcCholCov •-estimator across all values of q, however, the
slightly increasing relative performance relative to q is not statistically significant.

Estimate Std. Error t-value p-value
α 0.5562 0.0401 13.8800 < 0.001
β 0.0072 0.0065 1.1190 0.2960

Table 3.3: Summary of the linear regression G(λd+1) = α + βq using the Monte Carlo
estimates of the sensitivity analysis.

SinceG is the rate at which the BAC-estimator was better than the mrcCholCov •-estimator,
the results do not specify the overall performance of the two integrated covariance esti-
mators, however the overall tracking performance likely still improves significantly as q
increases. Therefore, it makes sense that there may not be an overall improvement in the
rate G, when q increases. In the next subsection, we will summarize the conclusions of the
entire simulation study.
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3.3.4 Summary of results

In the simulation study, we investigated the following three relationships:

• The relationship between the rate G and the ETF-liquidity with d = 10, 20, and 30.

• The relationship between the rate G and the distribution of the stock liquidities
through the parameter ν all with d = 10 and ETF liquidity levels of 50, 220, and 390.

• The relationship between the rate G and the number of stocks included in the index
fund.

We found that the ETF-liquidity did not seem to have a strong impact on the rate G,
however there was an overall improvement with having fewer simulated stocks, that is
d = 10, rather than d = 20 or 30. This might be caused by limitations in the simulation
of the ETF log-prices. In practice, the adjustment-matrix of the BAC-estimator is likely
more profound, since it conveys information from for instance supply-demand and other
market-related effects. We continued the simulation study with d = 10, and investigated
the sensitivity of the relationship between the rate G and the parameter ν with ν varying
from 1 to 15, and for ETF-liquidities of 50, 220, and 390. The results suggested that the
rate G significantly improved for high values of ν. An explanation for this could be that
for high values of ν, there are few low liquidity stocks, which results in few observations
for covariation estimation. The inclusion of ETF log-prices through the BAC-estimator
may therefore yield a significant improvement in the integrated covariance estimate. In the
final simulation analysis, we found that the BAC-estimator consistently performed better
than the mrcCholCov •-estimator.

In conclusion, we found that the BAC-estimator often has lower tracking errors than the
mrcCholCov •-estimator, especially in the presence of low-liquidity stocks. In the next
chapter, we investigate the tracking performance on real-world data.
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4 | Empirical study

In this section, the framework for estimating integrated covariance and index tracking is
evaluated using real market data. We will in particular take basis in the S&P 500 index
and a selection of 55 stocks from the index. For the ETF, used in the BAC-estimator, we
utilize the SPY , since it is highly liquid and based on pure index tracking. We initiate this
chapter with a section describing the data that we use.

4.1 Data description

In this project, we take basis in the S&P 500, however because of computational limitations
we will not conduct this empirical study with all component stocks. Instead, we pick 5
stocks from each of the 11 Global Industry Classification Standard (GICS) sectors that
make up the S&P 500 index. Each sector represents its own index, and the 5 highest
weighted stocks from each sector are chosen. Information about the stock weights within
each sector index is available from ssga.com. We have added a complete overview of
which stocks we picked from which sectors, as well as a short description of each sector in
Section A.3. All data is retrieved from polygon.io through R. For each of the 55 stocks,
their market capital are retrieved for the 1st of April 2024, and for each trading day in the
period from the 1st of April 2024 to the 30th of June 2024 the volume adjusted log-prices are
retrieved with a minute resolution. In this time interval, we retrieved data for 63 trading
days. The market capital is used to assess the weights in the index, since the weights of
the S&P 500 is determined by

ai :=
market cap for asset i

sum of market caps for all stocks in S&P 500
.

Recall that the weight processes for each stock are needed in order to estimate the invested
wealth processes, (3.2), used in the BAC-estimator. We have chosen to only use data in
the time interval from the 1st of April 2024 to the 30th of June 2024, since the S&P 500 is
rebalanced every quarter (Hayes (2025)). As a consequence of this, we can let the càdlàg
step function, at, of Definition 3.2.1 be constant.1

Figure 4.1 suggests that there are outliers present in the raw data. Furthermore, the
data also contains observations outside the 9:30 EST to 16:00 EST time window for which
the NYSE is open. We therefore use the following data cleaning procedures proposed by
Barndorff-Nielsen et al. (2009):

1To obtain the data, use dataRequest.R and specify location of stock_symbols.csv in WD. Script can
be run using a free polygon.io key.
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(a) Raw price data for the SPY on the 1st of
April 2024.

(b) Raw price data for the TSLA on the 2nd of
April 2024.

Figure 4.1: Figures (a) and (b) suggest that there are outliers present in the raw data
downloaded from polygon.io.

• P1: Delete entries with a time stamp outside of the 9:30 to 16:00 window when the
exchange is open.

• P2: Delete entries with a bid, ask or transaction price equal to zero.

• Q4: Delete entries for which the mid-quote deviated by more than 10 mean absolute
deviations from a rolling centred median (excluding the observation under consider-
ation) of 50 observations (25 observations before and 25 after).

• T3: If multiple transactions have the same time stamp use the median price. (In
this project, we use the volume weighted average instead of the median).2

Barndorff-Nielsen et al. (2009) suggest a few more steps in the data cleaning procedure,
but these are not included in this project, since we are not retrieving bid-ask-spread or
letter codes. Figure 4.2 shows how many observations we have on average for each of the 63
trading days in the time interval after cleaning. The maximum liquidity is 390 trades per
day, since we obtain the data with minute resolution, and we see that most of the stocks
have above 300 trades per day on average. Only three assets fall below the 300 trades per
day on average, and the least traded asset is BKNG with an average of 115 trades per day.
If we sort the assets by their squared duration, and conduct refresh time-sampling with
first the most liquid asset, then the most liquid and the next most liquid asset, and so on,

2The data cleaning procedures are implemented in dataCleaning.R.
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Figure 4.2: Average observation count per day for the SPY and all the selected stocks.

Figure 4.3: Average observation count after refresh time sampling relative to the number
of included stocks. Dashed lines indicate the 95%-confidence interval.

we obtain Figure 4.3. It shows how many observations are available, when we estimate
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the entries of the Cholesky-decomposition sequentially in the mrcCholCov •-estimator. The
number of observations decreases steadily as more assets are included in the refresh time-
sampling, and from 50 to 56 assets, it rapidly decreases towards 100 observations. In
summary, we have obtained the price data for a subset of the S&P 500, cleaned it, and
assessed the liquidity. In the next section, we evaluate the tracking performance based on
the mrcCholColv •- and the BAC-estimator.

4.2 Tracking performance of the CholCov and the BAC

In this section, we present an evaluation of the tracking performances of the BAC-estimator
and mrcCholCov •-estimator. To obtain the results, we follow the procedure outlined in
Figure 3.4 for each trading day, but instead of generating data in the first step, we use
the cleaned data of the 55 stocks. This yields tracking errors for index tracking based on
the BAC-estimator and the mrcCholCov •-estimator for each day, and this experiment is
conducted for q = 10, 20, and 30. That is, we evaluate the tracking performance using
first a subset consisting of 10 of the 55 selected stocks, next a subset of 20 of the selected
stocks, and finally a subset consisting of 30 of the selected stocks. Figure 4.4, Figure 4.5,
and Figure 4.6 show the results of running this procedure.

(a) (b)

Figure 4.4: Plot (a) illustrates the distribution of the tracking errors for the BAC-estimator
and the mrcCholCov •-estimator across all 63 trading days. Plot (b) shows the log-tracking
errors for each day in the data retrieving window. (q = 10)
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(a) (b)

Figure 4.5: Plot (a) illustrates the distribution of the tracking errors for the BAC-estimator
and the mrcCholCov •-estimator across all 63 trading days. Plot (b) shows the log-tracking
errors for each day in the data retrieving window. (q = 20)

In each figure, we have included boxplots that show the distribution of tracking errors for
index tracking using either the BAC-estimator or the mrcCholCov •-estimator, and a line
plot that shows the log-tracking errors for each trading day, likewise for index tracking
using either of the two estimators. For q = 10 the boxplots show that the quantiles for
the tracking errors are slightly higher, when using the BAC-estimator rather than when
the mrcCholCov •-estimator is used, however, the median is sligthly lower for the BAC-
estimator. For q = 20 the quantiles are more similar, however, the upper quartile and
the maximum are largest for the mrcCholCov •-estimator, suggesting that index tracking
based on the BAC-estimator is the better choice. For q = 30 all quantiles are lower for
the BAC-tracking error than for the mrcCholCov •-tracking error. All in all, the results
suggest that the BAC-estimator tracks better than the mrcCholCov •-estimator, however,
the difference is mostly profound for q > 10.

Figure 4.7, Figure 4.8, and Figure 4.9 show the ratio of which each of the sectors are
represented in the tracking portfolios. Both estimators tend to prioritize Communication
Services and Consumer Staples for q = 10. Additionally, Consumer Discretionary and
Energy stocks are prioritized along with Communication Services and Consumer Staples
for q = 20. For q = 30 Communication, Consumer Disc., Consumer Staples, Energy,
Financials, and Health Care stocks are prioritized. It generally appears that Information
Technology stocks are prioritized slightly higher when tracking with the BAC-estimator
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(a) (b)

Figure 4.6: Plot (a) illustrates the distribution of the tracking errors for the BAC-estimator
and the mrcCholCov •-estimator across all 63 trading days. Plot (b) shows the log-tracking
errors for each day in the data retrieving window. (q = 30)

than with the mrcCholCov •-estimator. This means that the BAC-adjusment increases the
overall covariation between tech-stocks and all other stocks, which may be due to illiquidity
of the tech-related stocks. However, Figure 4.2 shows that the five tech stocks, AAPL, MSFT,
NVDA, AVGO, and CRM each have more than 300 observations per day on average. Another
explanation may instead be that a significant amount of observations are discarded for
these stocks after the refresh-time sampling procedure. This can happen if trades comes
in clusters rather than being evenly distributed across time, causing the mrcCholCov •-
estimator to yield inaccurate estimates.

The method described in Section 2.1 for picking which stocks to go into the index fund, tries
to pick the set of stocks that maximizes the correlation with all stocks in the index. Hence,
if some sectors generally have a higher correlation across all the stocks in the index, the
stocks of these sectors will be prioritized to stocks of other sectors. This may explain why
some sectors are often and equally represented, while other sectors are almost never used. In
addition, a source of error in the portfolio selection may stem from the subgradient descent
algorithm not getting sufficiently close to the correct solution before terminating due to a
limit of 200 iterations. This limit was determined because of computational limitations,
however, a higher iteration limit may yield other results. Also, the method of selecting the
stocks is based on maximizing correlation, however, this means that hypothetically stocks
with a correlation of 0 with all other stocks are more likely to be included in the index
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(a) (b)

Figure 4.7: Rate at which the sectors are picked for the index fund portfolio positions,
when q = 10 stocks are used for tracking.

(a) (b)

Figure 4.8: Rate at which the sectors are picked for the index fund portfolio positions,
when q = 20 stocks are used for tracking.
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(a) (b)

Figure 4.9: Rate at which the sectors are picked for the index fund portfolio positions,
when q = 30 stocks are used for tracking.

fund than stocks with a correlation close to −1. This may not be optimal, since a correlation
close to −1 is a strong negative correlation, and could contribute more to the tracking
performance than the uncorrelated stock, which would contribute only with noise. The
results may therefore be improved by maximizing the absolute value of the correlations
rather than just using the raw correlation estimates.
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5 | Discussion

This thesis can be divided into two parts. The first part revolves around the methodology
of index tracking and covariation estimation, and the second part showcases the methods
covered in the first part through a simulation study and an investigation based on real
data. The central aim is to compare the BAC-estimator to the mrcCholCov •-estimator
with index tracking as a use case.

Index tracking, as it is proposed by Fastrich et al. (2014), is done by finding the appropriate
set of weights that minimizes the tracking error and has constrained the number of strictly
positive weight entries. The approach of this thesis is to separate this minimization problem
into two parts, where the first part finds an optimal subset of stocks to use for tracking, and
the second part finds the optimal set of weights due to a closed form formula. This allows
the use of subgradient descent to efficiently construct optimal index funds. A downside
to this approach is, however, that the subgradient descent converges slowly compared to
regular gradient descent. Finding appropriate subsets for index fund creation is therefore
computationally heavy with this approach. Further investigation could look into the use
of integer programming methods such as, for instance, the branch-and-bound algorithm.

The covariation estimation takes basis in the mrcCholCov •-estimator and the basket-
adjusted covariance estimator using the mrcCholCov •-estimator as the pre-estimator. This
framework is robust to both market microstructure noise and asynchronicity, as the mrc-
CholCov •-estimator uses pre-averaging and refresh-time sampling. The refresh-time sam-
pling procedure does discard some observations, but due to the sequential estimation of
the covariation, the number of observations can be optimized by queueing the stock-price
processes from most to least liquid. Instability was encountered in the estimation of spot
covariation, (3.3), for t close to 0, however, this may be mitigated by using higher frequency
data, than what is used in this thesis.

The simulation study investigates several relationships. First, we look into the relationship
between the ETF-liquidity and the rate at which the BAC-estimator is better than the
mrcCholCov •-estimator. No significant relationship is found, however, this may be due to
limitations in the data simulation. In this project the ETF prices are generated at points
in time, according to a Poisson process, as a weighted sum of the simulated component
stock prices. However, if the stocks do not have simulated prices for the exact observation
times of the ETF, the most recent simulated stock price is used instead. As a consequence
of this, the ETF prices are entirely based on known stock prices, hence, the simulated ETF
prices may likely not contribute with much information. A reasonable way to mitigate this
would be to simulate all component stocks for each minute, then calculate the ETF prices
for each minute, and then finally filter out observations for all processes, such that we end
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up with the daily expected number of observations for each stock.

The simulation study also looks into the relationship between the distribution of stock
liquidity and the performance of the BAC-estimator and the mrcCholCov •-estimator. For
small ν the liquidity is evenly distributed and generally higher, while for high values of ν
many stocks will have low liquidity and only few will have a high liquidity. The simulation
results show that the BAC-estimator performs better than the mrcCholCov •-estimator at
an increasingly higher rate as ν increases. This behavior is expected, since a high value for
ν implies many stocks with low liquidity and few stocks with high liquidity, and, hence, the
ETF-adjustment will yield more information relative to if all stocks had a high liquidity.
This suggests that the benefit of using the BAC-estimator rather than the pre-estimator
in the real world is much greater in cases with many low liquidity stocks and few high
liquidity stocks.

It is also found that the rate at which the BAC-based tracking error is lower than the
mrcCholCov •-based tracking does not show a significant dependence on the number of
stocks included in the index fund. This suggests that it is equally beneficial to use the
BAC-estimator rather than the mrcCholCov •-estimator regardless of the number of stocks
picked for index tracking. This result does, however, not reveal the objective performance
of the estimators for each level of q. The overall tracking performance is likely highly related
to q, hence the result could be improved by looking at the distribution of tracking errors
for both estimators for each level of q. This would reveal to which degree the BAC-based
tracking would be better than the mrcCholCov •-based tracking.

Finally, the results of the empirical study relies only on a subset of the components of
the S&P 500 due to computational limitations. The performance of the BAC-estimator
and the mrcCholCov •-estimator are tested in index tracking scenarios, where the index
fund is constructed from 10, 20, and 30 stocks. The results show that in all cases the
BAC-based tracking performs better than mrcCholCov •-based tracking, but the effect is
mostly significant for q > 10. The two estimators also seemed to disagree about the
importance of including Information Technology stocks into the index fund, as the BAC-
based index tracking portfolio tended to include tech stocks at a slightly higher rate than
the mrcCholCov •-based index fund. This suggests that the mrcCholCov •-estimator may
underestimate the covariation for tech-related stocks.

The window in time for which data is retrieved spans one quarter, such that the index is not
rebalanced within the trading window. This could easily be mitigated for data windows
spanning more than a quarter by simply retrieving the market caps for the stocks each
quarter and taking the new weights into account. More data would yield more reliable
results. Another limitation to the approach of this thesis is that the subgradient descent
algorithm is limited to a maximum of 200 iterations. For q = 30 the algorithm has a
significantly lower likelihood of reaching the optimal solutions than for q = 10 or q = 20.
For further investigation, an increased maximum iteration count is likely to yield more
accurate results.
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6 | Conclusion

The purpose of this thesis was to assess whether the BAC-estimator posed an improvement
relative to its pre-estimator, when using the mrcCholCov •-estimator as the pre-estimator.
The use case for this project was index tracking, and the tracking performance was used
to evaluate the estimators.

A framework for constructing index funds was created in two parts. The first part was an
algorithm for choosing which of the component stocks of the index to go into the index
fund. This part relied on maximizing the correlation between the index stocks and the
index fund stocks. The second part was a solution to a minimization problem in which the
optimal set of weights for the index was calculated. The covariation estimates of the stock-
price processes, for which the BAC-estimator and the mrcCholCov •-estimator were used,
were needed for running the framework. Hence, the estimators were introduced following
the specification of the framework.

A simulation study delved into the comparative performance between BAC-based tracking
and mrcCholCov •-based tracking. In general the BAC-based tracking seemed to outper-
form the mrcCholCov •-based tracking, but in particular the following relationships where
investigated.

• It was found that the liquidity of the ETF did not pose a significant effect on the
relative tracking performance of the BAC-estimator and the mrcCholCov •-estimator.
However, this relationship was likely due to the simulation scheme used for generat-
ing the ETF prices, and the conclusion may have been different if a more realistic
simulation scheme was adopted for the ETF prices.

• The BAC-based tracking had a significantly greater performance compared to the
mrcCholCov •-based tracking as the distribution parameter ν increased. This finding
suggests that the BAC-estimator may yield significantly better results in scenarios,
where the component stocks of the index have low or uneven liquidity.

• For different sizes of tracking portfolios, that is, different values for q, the relative
performance between the BAC-based tracking and the mrcCholCov •-based tracking
stayed constant.

An empirical analysis compared the tracking performance for the two estimators for track-
ing portfolio sizes of q = 10, 20, and 30. Stock-price processes were retrieved for the five
largest weighted S&P 500 stocks within each of the 11 GICS sectors for a total of 55 stocks,
and the time interval spanned from the 1st of April 2024 to the 30th of June 2024. The
overall result was that the BAC-based tracking performance was better than the mrcChol-

39



Conclusion Aalborg University

Cov •-based tracking, however the improvement was mostly profound for q > 10.

Further investigation could improve on the results of this thesis by applying an improved
simulation scheme, higher frequency data, and more computationally intensive reruns of
the analyses. Investigations could also delve into the use of for instance branch-and-bound
or other optimization algorithms for improving the framework for index fund creation.

In summary, this thesis provides results which suggest that the BAC-estimator offers
a significant improvement in index tracking performance relative to the mrcCholCov •-
estimator.
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A | Appendix

A.1 The MRC-estimator

In this section, we will cover the modulated realized covariance estimator described by
Christensen et al. (2010). Their estimator utilizes pre-averaging, which is a method for
modifying a process in order to mitigate noise - in our case, microstructure noise. Let
V := (Vt)t≥0 be any d-dimensional process, and define the difference process in the following
way, ∆n

i V := Vi/n − V(i−1)/n for i = 1, 2, . . . , n, assuming that we have observations of V in
the time interval [0, 1] at times t = 0, 1

n
, 2
n
, . . . , 1. Hence, we have n+ 1 observations of V .

The pre-average of V is given by

V
n

i :=
kn−1∑
j=1

g

(
j

kn

)
∆n

i+jV, for i = 0, 1, . . . , n− kn + 1,

where kn is the window of averaging satisfying

kn√
n
= θ + o(n−1/4), (A.1)

and the weight function g : [0, 1] → R is continuous, piecewise continuously differentiable,
has a piecewise Lipschitz continuous first derivative, g(0) = g(1) = 0, and∫ 1

0

g2(s)ds > 0.

Let the following two constants ψ1 and ψ2 be given by

ψ1 :=

∫ 1

0

g′(u)2du, and ψ2 :=

∫ 1

0

g(u)2du,

Then the modulated realized covariance estimator is given by

MRC[V ]′n :=

(
n

n− kn + 2

)(
1

ψ2kn

) n−kn+1∑
i=0

V
n

i

(
V

n

i

)⊤
.

The following theorem of Christensen et al. (2010) states, however, that this estimator is
inconsistent.
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Theorem A.1.1. (Inconsistency of the MRC-estimator)
Let Y = (Yt)t≥0 be a noisy log-price process as defined in Chapter 3, let ε = (εt)t≥0

be the associated noise process with E[|εj|4] <∞ for all j = 1, 2, . . . , d, and let (kn, θ)
satisfy (A.1). Then

MRC[Y ]′n
P→
∫ 1

0

Σsds+
ψ1

θ2ψ2

Ψ, as n→ ∞, (A.2)

where Ψ := E[εtε⊤t ], and Σs is the spot covariation of Y at time s.

Proof. Omitted, but it can be found in the appendix of Christensen et al. (2010). ■

To obtain a consistent estimate of the integrated covariance we need to estimate the bias.
We obtain estimates of ψ1 and ψ2 by Riemann approximation, hence

ψkn
1 := kn

kn∑
i=1

(
g

(
i

kn

)
− g

(
i− 1

kn

))2

, and ψkn
2 :=

1

kn

kn−1∑
i=1

g2
(
i

kn

)
.

For the estimate of Ψ Christensen et al. (2010) use the following estimator

Ψ̂n :=
1

2n

n∑
i=1

∆n
i Y (∆n

i Y )⊤ .

They state, however, that this estimator has the following finite sample property

2nΨ̂n = 2nΨ+

∫ 1

0

Σsds+ oP (n
−1),

where E[op(n−1)] = 0. As a consequence of this, we have for finite n that the bias-adjusted
version version of (A.2) estimates

MRC[Y ]′n −
ψkn
1

θ2ψkn
2

Ψ̂n ≈

(
1− ψkn

1

θ2ψkn
2

· 1

2n

)∫ 1

0

Σsds.

Therefore, for finite samples we will use the following rescaled bias-adjusted MRC-estimator,

MRC[Y ]n :=

(
1− ψkn

1

θ2ψkn
2

· 1

2n

)−1(
MRC[Y ]′n −

ψkn
1

θ2ψkn
2

Ψ̂n

)
.

Because of the bias-correction, the estimator MRC[Y ]n is not necessarily positive semidefi-
nite. There are several solutions to this. Christensen et al. (2010) proposes to choose θ in a
way that ensures positive semidefiniteness with the trade-off of having slower convergence.
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For this project, we have made an implementation that utilizes the approach described
by Fan et al. (2012) for dealing with non-positive semidefiniteness. They conduct a sin-
gular value decomposition of the covariation matrix estimate, replace negative eigenvalues
in the diagonal matrix with 0, and multiply back in order to obtain a positive semidefi-
nite covariation matrix. The implementation can be found in the Github-repo in the file
Pre-averaged_Bias-adjusted_MRC(Christensen et al 2010).R. For the weight func-
tion g we use the proposed weight function of Podolskij and Vetter (2009), which is given
by

g(x) := min(x, 1− x),

and for kn and θ, we use the kn =
√
n and θ = 1 as is done by Christensen et al. (2010).

A.2 Logistic regression results

In this section, we present the results of fitting a logisitc regression between ν and G in
Subsection 3.3.2, where ν is the independent variable, and G is the dependent variable.
The results are shown in the following table.

ETF liquidity of 50
Estimate Std. Error t-value p-value

α −0.6491 1.1158 −0.5820 0.5610
β 0.1002 0.1249 0.8020 0.4220

ETF liquidity of 220
Estimate Std. Error t-value p-value

α −0.4336 1.1014 −0.3940 0.6940
β 0.0759 0.1228 0.6180 0.5370

ETF liquidity of 390
Estimate Std. Error t-value p-value

α −0.4554 1.1025 −0.4130 0.6800
β 0.0781 0.1230 0.6350 0.5250

Table A.1: Summary of the logistic regression logit
(
G(λd+1)

)
= α + βν using the Monte

Carlo estimates of the sensitivity analysis in Subsection 3.3.2.

A.3 Selected sector stocks

In this section, we present an overview of the selected sector stocks used in the empirical
study of this project. The overview can be seen in Table A.3. A short description for each
of the GICS sectors is also given below. All information is available from ssga.com.
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GICS Sector Ticker Name
Communication Services META Meta Platforms Inc Class A
Communication Services GOOGL Alphabet Inc. Class A
Communication Services NFLX Netflix Inc.
Communication Services GOOG Alphabet Inc. Class C
Communication Services TTWO Take- Two Interactive Software
Consumer Staples COST Costco Wholesale Corporation
Consumer Staples WMT Walmart Inc.
Consumer Staples PG Procter & Gamble Company
Consumer Staples KO Coca-Cola Company
Consumer Staples PM Philip Morris International Inc.
Consumer Discretionary AMZN Amazon.com Inc.
Consumer Discretionary TSLA Tesla Inc.
Consumer Discretionary HD Home Depot Inc.
Consumer Discretionary MCD McDonald’s Corporation
Consumer Discretionary BKNG Booking Holdings Inc.
Energy XOM Exxon Mobil Corporation
Energy CVX Chevron Coroporation
Energy COP ConocoPhillips
Energy WMB Williams Companies Inc.
Energy EOG EOG Resources Inc.
Financials BRK.B Berkshire Hathaway Inc. Class
Financials JPM JPMorgan Chase & Co.
Financials V Visa Inc. Class A
Financials MA Mastercard Incorporated Class A
Financials BAC Bank of America Corp
Health Care LLY Eli Lilly and Company
Health Care UNH UnitedHealth Group Incorporated
Health Care JNJ Johnson & Johnson
Health Care ABBV AbbVie Inc.
Health Care ABT Abbott Laboratories
Industrials GE GE Aerospace
Industrials RTX RTX Corporation
Industrials UBER Uber Techonologies Inc.
Industrials CAT Caterpillar Inc.
Industrials HON Honeywell Internation Inc.
Materials LIN Linde plc
Materials SHW Sherwin-Williams Company
Materials NEM Newmont Corporation
Materials ECL Ecolab Inc.
Materials APD Air Products and Chemicals Inc.
Real Estate AMT American Tower Corporation
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Real Estate PLD Prologis Inc.
Real Estate WELL Welltower Inc.
Real Estate EQIX Equinix Inc.
Real Estate DLR Digital Realty Trust Inc.
Information Technology AAPL Apple Inc.
Information Technology MSFT Microsoft Corporation
Information Technology NVDA NVIDIA Corporation
Information Technology AVGO Broadcom Inc.
Information Technology CRM Salesforce Inc.
Utilities NEE NextEra Energy Inc.
Utilities SO Southern Company
Utilities DUK Duke Energy Corporation
Utilities CEG Constellation Energy Corporation
Utilities AEP American Electric Power Company Inc.

Table A.2: Overview of which stocks were selected for the empirical study. The five highest
weighted stocks from each SPDR sector index of the S&P 500 was selected.

Here is a plot illustrating the distribution of market capital for each of the 55 selected
stocks. A list with the market capital for all 55 companies is retrievable from

• MarketCapsSP500_Sectors_2024-04-01.csv.

Figure A.1: Distribution of market capital for each selected sector stock on the 1st of April
2024.
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Here is a list with short descriptions for each of the GICS sectors.

• Communication Services: Consists of companies from industries, such as: diver-
sified telecommunication services, wireless telecommunication services, media, enter-
tainment, and interactive media and services.

• Consumer Staples: Includes companies dealing with consumer staples distribution
and retail, household products, food products, beverages, tobacco, and personal care
products.

• Consumer Discretionary: Comprises of companies within the industries of spe-
cialty retail, broadline retail, hotels, restaurants and leisure, textiles, apparel and
luxury goods, household durables, automobiles, automobile components, distribu-
tors, leisure products, and diversified consumer services.

• Energy: Includes companies from the following industries: oil, gas and consumable
fuels, and energy equipment and services.

• Financials: Consists of firms from the industries: financial services, insurance,
banks, capital markets, mortgage real estate investment trusts, and consumer fi-
nance.

• Health Care: Includes companies from the industries: pharmaceuticals, health
care equipment and supplies, health care providers and services, biotechnology, life
sciences tools and services, and health care technology.

• Industrials: Includes companies within: aerospace and defense, industrial con-
golmerates, marine transportation, transportation infrastructure, machinery, ground
transportation, air freight and logistics, commercial services and supplies, professional
services, electrical equipment, construction and engineering, trading companies and
distributors, passenger airlines, and building products.

• Materials: Comprises of companies from the following industries: chemicals, metals
and mining, paper and forest products, containers and packaging, and construction
materials.

• Real Estate: Consists of companies dealing with the following industries: real estate
management and development and REITs, excluding mortgage REITs.

• Information Technology: Includes companies from the following industries: tech-
nology hardware, storage, and peripherals, software, communications equipment,
semiconductors and semiconductor equipment, IT services, and electronic equipment,
instruments and components.

• Utilities: Comprises of companies dealing with electric utilities, water utilities,
multi-utilities, independent power and renewable electricity producers, and gas util-
ities.
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A.4 Derivation of a solution by the first order conditions

In this section, we will derive (2.3) based on the first order conditions. Suppose we have
an ETF that tracks the index that we want to track and d component stocks to choose
from. Let α ∈ Rd denote the weights of investment into each component stock in the
portfolio used for tracking. Consider the portfolio consisting of 1 share of the ETF and
short positions of the component stocks, i.e.

w =

[
1
−α

]
.

Letting R = [rb r
⊤]⊤ denote the return vector, where rb is the return of the ETF/bench-

mark index, and r ∈ Rd is the vector of returns for all the component stocks in the ETF,
the returns of w are given by

w⊤R =
[
1 −α⊤

] [rb
r

]
= rb − α⊤r = rb − rp,

where rp is the return of the tracking portfolio. Since the returns of w corresponds to the
excess returns between the benchmark and the tracking portfolio, the tracking error of the
tracking portfolio is the portfolio standard deviation of w, hence

TE(α; Ω) =
√
V (w) =

√[
1 −α⊤

]
Ω
[
1 −α⊤

]⊤
,

where V (w) is the portfolio variance of w. The solution α is the same regardless if we are
using

√
V (w) or V (w) as the objective function for minimizing tracking error, hence, we

will use the latter. By the first order condition, we have for i = 1, 2, . . . , d that

∂

∂αi

V (w) = 0.

We will reexpress the left hand side:

∂

∂αi

V (w) =
∂

∂αi

[
1 −α⊤

]
Ω
[
1 −α⊤

]⊤
=

∂

∂αi

[
1 −α⊤

] [ ωE ω⊤
EK

ωEK Σ

] [
1 −α⊤

]⊤
=

∂

∂αi

(
ωE − ω⊤

EKα− α⊤ωEK + α⊤Σα
)

=
∂

∂αi

α⊤Σα− 2
∂

∂αi

ω⊤
EKα

=
∂

∂αi

d∑
j=1

d∑
k=1

Σj,kαjαk − 2
∂

∂αi

d∑
j=1

ωEK,jαj
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= 2
d∑

j=1

Σi,jαj − 2ωEK,i.

Thus for i = 1, 2, . . . , d we have that

2
d∑

j=1

Σi,jαj − 2ωEK,i = 0 ⇔
d∑

j=1

Σi,jαj = ωEK,i,

which expressed in vector form yields that

Σα = ωEK ⇔ α = Σ−1ωEK ,

which was to be demonstrated.
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