Resume

The paper proposes a novel system, OurTunes: a collaborative playlist system designed to produce fair music
playlists for groups while minimizing required input and ensuring smooth transitions.

Each user can join an OurTunes session with their own Spotify playlists, allowing users to align their preferences
with the social context. OurTunes analyzes each playlist, plotting all songs in a high-dimensional feature space
based on metadata such as Mood and Genre supplied by Cyanite.ai. Using this data, similar music is grouped closely,
ensuring smooth transitions. The playlist is then built iteratively, starting with clustering all songs using k-means
to find potential starting points. Each subsequent song is chosen from the k nearest neighbors using a k-d tree,
with selection probabilities weighted to favor currently underrepresented users (i.e., those whose songs have been
chosen less often). This dynamic weighting ensures Fairness.

To give users more control of the sound, OurTunes includes a “Wish song” feature: users may request a desired track
from the entire Spotify catalog at any time. As new Wish songs are added, an ordered sequence of Wish songs to be
played is determined, first moving towards the biggest cluster of Wish songs and then the shortest path through the
remaining Wish songs. Between Wish song fulfillments, the system weighs songs closer to the next Wish song
higher, ensuring that all Wishes can be accommodated. Users can also view how the Genres will change as the
playlist progresses in the app.

In extensive simulations using 35 real “party” playlists (group sizes 2-35, 1,000 runs each), OurTunes outperformed
both Round robin and Shuffle on Cumulative Distance (sum of all distances between songs) and Satisfaction
(average distance of each chosen song by OurTunes to users’ closest song), while achieving better Fairness for
larger groups. A real-world user study with seven participants in a three-hour party setting complemented these
findings: participants reported feeling heard without excessive interaction, experienced smooth genre and mood
continuity (predominantly electronic dance/energetic), and valued the Wish song feature for its balance of control
and automation, while also requesting the ability for either more Wish songs or more insight into when their Wish
songs would be played.

OurTunes demonstrates that combining clustering, traversal to nearby songs, and user-weighting can produce
socially satisfying, low-effort group playlists. Future work will refine smaller implementation issues, promote
minority tastes or wishes to enhance Fairness further, and explore how different group sizes and how well each
user knows one another can affect the requirements for this collaborative playlist system.

OurTunes: Improving Collaborative Consensus Playlist Making

Christian Sendergaard Thor
cthor20@student.aau.dk
Aalborg Universitet
Aalborg, Denmark

Daniel Dencker Jepsen
djepse20@student.aau.dk
Aalborg Universitet
Aalborg, Denmark

Lucas Bjern Tranum
Itranu20@student.aau.dk
Aalborg Universitet
Aalborg, Denmark

Your selected Wish song

Playlist 1
- Song A
- Song B

Playlist 2
- Song 1
- Song 2

AN
p

Upcoming Genres
a
rapHipHop
pop
rnb

electronicDance

Figure 1: A path through the OurTunes song space, derived from multiple playlists. The OurTunes app is shown to the right.

Abstract

Collaborative playlist creation in group settings often involves chal-
lenges in balancing individual preferences and achieving group
consensus. Most existing systems rely heavily on user interaction
or fail to fairly represent all participants, making the process cum-
bersome and suboptimal. In this paper, we propose OurTunes, a
system that generates group playlists by leveraging individual pref-
erences and implicit consensus mechanisms. OurTunes clusters
songs using k-means to generate potential starting points in the
feature space alongside using k-nearest neighbors (KNN) to tra-
verse the feature space based on the users. The system incorporates
weighting techniques to ensure fair representation across partici-
pants while maintaining variety and cohesion.

Quantitative experiments have been used to evaluate the system
on metrics such as Fairness, Cumulative distance, and Satisfaction,
demonstrating improvements compared to Shuffle and Round robin
algorithms. These findings indicate that OurTunes can facilitate col-
laborative playlist creation with reduced manual input, improved
group satisfaction compared to the two aforementioned algorithms,
and better Fairness compared to Shuffle. A user test was also con-
ducted that showed positive results but with points to optimize for
future iterations.

Keywords

Music, Group Recommendation, Playlist, Collaborative playlist

1 Introduction

Collaborative playlists/sessions have become increasingly popu-
lar over the years, and the driving factor here seems to be both
social and practical in purpose[19]. One of the primary examples
of a collaborative playlist/session is listening to music at a party.
Creating party playlists is a task that many partake in, either as a
group or as an individual. Companies like Spotify have created fea-
tures to alleviate some problems with making playlists as a group.
Features such as collaborative playlists and Spotify Jam[25] help
group participants interact with each other through music sharing.
However, this requires explicit choices made by users, which can be
cumbersome[19]. Furthermore, as user preferences change a lot in
group contexts, it can be hard to make a satisfying playlist. These
collaborative sessions often end with only a few people contributing
to the playlist, leaving many preferences from other people off the
table. Lastly, listening to self-chosen music positively affects people,
so the more they can exert their preferences in a group setting,
the better the listening experience[14]. To alleviate some of these
downsides, systems have been implemented that provide users with

the ability to vote on preferred songs and, through that, have ex-
plicit consensus on the playlist[29][17]. However, this comes at a
cost, as users must constantly micro-manage and vote to have their
preferences heard.

However, there are ways to circumvent explicit consensus. One
way is to read a crowd, for example, using visual or auditory analy-
sis, whether they are satisfied[22][21]. However, this kind of data
is hard to capture and contextualize. Many music recommenda-
tion systems use other data such as music metadata[26][1]. Music
metadata is used to recommend new songs to users through mood
or more tangible information such as artists and genre. The rec-
ommendations can be based on some pathing through a similarity
space or some designated area in that space[26]. The problem with
recommendation systems is that they are mostly tailored only to the
individual user at this moment. Therefore, the recommendations
are highly individual and cannot be used in a group setting in a
valid way[16].

This paper aims to achieve a fair and satisfying group consensus
based on individual preferences with minimum input. Our solution
allows users to submit playlists of their choice as a basis for individ-
ual preferences, which creates a big dataset of possible songs from
the users. As a side effect, users can also choose a playlist that fits
into the context of the session, so it fits the session, i.e., choosing a
party playlist if they are attending a party. OurTunes then chooses a
path through this space using weighting techniques to ensure that
the music type does not change too much from song to song and
that the distribution of played songs is fair. OurTunes also chooses
songs with similar sound profiles that users agree on more often
rather than taking songs that only represent a minority of a session.
We used our own quantitative metrics to quantify whether our
algorithm is meaningfully better at a glance in picking more closely
related music while being more fair to all participants. Lastly, a
user test was also conducted for the system, in which participants
would participate in a real party setting using their own playlists,
experiencing the system in real-time and influencing the path taken
through the song space by stating Wishes in a mobile app. Initial
feedback suggests that our method has strong potential to create
fair and enjoyable playlists for medium-sized groups of acquain-
tances. OurTunes was positively received by the test participants;
however, there was room for improvement, namely, in how fair the
system was, to increase the social aspect even further.

2 Related Works

Early work related to collaborative music listening started with
Flytrap[8] and r-MUSIC[29] in 2002 and 2004, respectively. These
present two avenues for facilitating collaborative music sessions.
Flytrap does it entirely implicitly, whereas r-MUSIC is completely
explicit. Flytrap collects data from user listening patterns using
genre and artists as their focal point and then suggests songs simi-
lar in genre to the last one played that provide the most satisfaction.
They derive satisfaction by having an agent for each user that votes
on their behalf on songs based on the data collected and then, using
the probability distribution of the votes, select a song. Meanwhile,
r-MUSIC takes the other path, where they let the users suggest

Christian Sendergaard Thor, Daniel Dencker Jepsen, and Lucas Bjern Tranum

songs, and then they vote on the songs suggested that they want
to hear. R-MUSIC has some complexity in how the weights of the
votes work, where users who suggest less liked songs, measured
by how many other users vote on their songs, have a low weight
and vice versa.

The Smart Party[13][12] presents a collaborative music listening
experience, where different rooms play different music according
to the music preferences of the users in that specific room. While
only tested in simulations, the results showed that grouping people
with shared tastes improved satisfaction and fairness. However, this
requires multiple rooms with individual speakers, each requiring
a dedicated router and a special handheld device for each guest’s
preferences, creating a theoretically personalized experience but
an impractical setup for the host.

Systems that focus on music exploration by visualizing users’
music have also been created[3]. One such system is proposed by
Beatrix et al., 2015[26]. Their proposed system visualizes songs on
a map for the user by fetching a set of features such as mood, genre,
style, and vocals. Then, employ dimensionality reduction on these
features using T-SNE[27]. The dimensionality-reduced set of songs
is then visualized in a 2D map, which shows how closely related
songs are in their features and, by extension, in their sound. They
found that users generally preferred to stay in similar areas rather
than move through the space in a path. This indicates that users
prefer songs that are similar to each other rather than taking an
exploratory approach to music types when listening by themselves.

Another system that deals with collaborative music sessions is
SRMAC(28]. This system uses genres and audio features fetched
from Spotify to create group-based playlists. For genres, a graph
is created based on all the different artists present on the user’s
playlists, and their respective genres are created. Then, based on
how often a link between an artist and a specific genre is repeated,
the weight of that genre will be higher. All other features were
weighted depending on the context; for example, the danceability
feature is weighed higher in "party" contexts. All these respective
weighted features are then used to query Spotify’s recommendation
API to find songs that fit these weights. Their results indicated a
potential issue with the familiarity of the songs being relatively low,
which could be a positive or a negative depending on the purpose
of the session. Lastly, they tested a feature where users could set the
desired values of the Spotify features. Here, the general feedback
was more positive, as it gave users greater control over the system.

In the Moodplay paper[2], a system is proposed to create a list of
artists’ recommendations based on the similarity of users’ moods
to specific artists. An algorithm proposed in this paper is a trail-
based algorithm. This algorithm works by calculating the mood
distance, which is based on metadata, and gives a set of weighted
moods for each of the respective artists. Here, this mood distance
is then weighted by users’ previous trail marks, where each trail
mark is generated depending on which artist the user chooses to
listen to next. The users then choose which artist to listen to next.
As a result, this algorithm will create a dynamic path through the
mood space, from one mood to another. In the evaluation of this

OurTunes: Improving Collaborative Consensus Playlist Making

specific algorithm, users generally preferred navigating their music
collection more freely in the mood space than using the trail-based
algorithm. While the algorithm is implicit, the system as a whole is
more explicit as it requires the user to choose the next artist after
each time.

Another way to facilitate collaborative music sessions is using
user ratings[11]. A paper that employed this found great success in
the hit rate of their algorithm in their simulation study. However,
as this requires explicit knowledge of liked and disliked songs, it is
time-consuming to use and rare to have a user base that generally
rates their music a lot. This paper also used a large dataset consist-
ing of 20000 users, and these were clustered into groups, which
consisted of 1500 users on average, which is far more than what
this paper aims to cater to.

Lastly, some systems attempt to determine group preferences
and play music based on these preferences[8][7]. However, these
systems purely utilize the users’ listening history to find similar
music. While this can represent a user’s music preferences quite
well, it does not necessarily capture that user’s preference in all
social contexts that can involve music. Reflektor by Bauer et al.,
2018 highlights how social contexts influence the chosen music, e.g.,
users picking jazz music for a card game night[4]. User opinions
also change depending on whether they are in a group context com-
pared to alone [16]. We aim to have users create playlists instead,
allowing users to state their preferences in a way that aligns with
their interpretation of the social context.

To end this section, we examine how people experience and
partake in collaborative playlists. One paper did a survey where
they tried to illuminate this, followed by interviews with a select
few of the survey participants [19]. The researchers used a collabo-
rative playlist framework for collaborative playlists to divide them
into 3 categories: Practical, social, and cognitive purpose[20][15].
Firstly, practical purpose means that the collaborative playlist was
constructed to serve some practical function, i.e., to a specific party
like a school dance. Secondly, social purpose means sharing mu-
sic and connecting with other users; thirdly, cognitive purpose is
to experience new music. They reported that the purpose of the
collaborative playlist for the participants was primarily practical
and social. The reason a collaborative playlist was a participant’s
favorite showed the same pattern.

Regarding the favorite collaborative playlists of the participants,
the participants said that Recommended by streaming/Al was se-
verely less represented compared to other music content descriptors.
The reason why it was lower than other content descriptors like
Is/Feels personalized was that it did not fulfill the social purpose
enough. The researchers surmised that the personal feeling con-
veyed by the songs chosen by other participants in collaborative
playlists can help facilitate successful curation. Lastly, the interview
of the participants illuminated some key factors in collaborative
playlist curation. One of the reasons why creating a successful
collaborative playlist is cumbersome is the inertia of creating one;
it takes much work to get it off the ground. Many of them fail,
according to participants, because of the initial work that needs to

be done, coupled with the fact that only a few in a collaborative
playlist actually participate in the curation. This was echoed by the
survey, which showed that the action of contribute was often lower
than the actions of Listen/play alone and Listen/play with others,
especially if the participant was a non-initiator of the collaborative
playlist. Therefore, many preferences are just left off the table when
it comes to curation, and users simply listen instead of contributing
to the curation, i.e., social loafing and the free-rider problem.

3 Initial Data Exploration and the OurTunes
Algorithm

There are multiple problems that we try to solve when making
collaborative sessions or collaborative playlists. One of them is that
starting a collaborative playlist takes much effort, which So Yeon
Park and Blair Kaneshiro (2021) described as inertia[19]. Overcom-
ing the workload problem to get the playlist off the ground seems
to be an essential part that systems like r-MUSIC[29] or something
like Spotify Jam suffer from, as it requires a fair amount of input.
The other problem is how personable the playlist is. As seen in
the survey[19], people prefer music that fits the content descriptor
of Is/Feels Personal, as people appreciate the effort of personally
chosen songs, compared to the content descriptor of Recommended
by streaming/Al which was underperforming compared to most
content descriptors. Therefore, a system that uses Al to recommend
new music based on those preferences might also not be the solu-
tion we are looking for. People mostly create collaborative playlists
based on the social and practical purposes, and the cognitive pur-
pose seems to be a minor incentive to create collaborative playlists.

We want to create a system that solves the inertia problem while
creating something personal. We want to support users in doing
collaborative playlists or sessions faster while providing a more
personal feel in the output and requiring minimal input from the
user. To expedite this, we want to utilize the users’ preferences
much faster than something like r-MUSIC. There are ample prefer-
ences in people’s personally constructed playlists that could benefit
our system. This could give us a more personalized output com-
pared to other systems, and people can also utilize the practical
purpose of collaborating. For example, if one wants to have a party,
the users can choose a playlist that fits into this context, therefore
creating a collective party playlist. While the system does not ex-
plicitly try to derive contexts from the music, the users can choose
a playlist that fits the context of the session, i.e., apply the practi-
cal purpose of collaborative music sharing. Most music streaming
platform users often have personal playlists, and the Spotify user
base is very vast[24]. First and foremost, we want our system to
work with Spotify to have good user coverage. All of the above
entails that the music in our system will be more personalized, and
users can choose a playlist that fits into the context of the session.
Coupled with the fact that the only input our system needs is a
personal playlist, it should prove to be easy and fast, alleviating the
inertia problem. Furthermore, as in many of the studies we have
looked at, users like a degree of control. One study[28] found that
the user experience increased after allowing them to exert their
preferences on top of the Core algorithm manually. To this end, we
implemented an easy-to-use feature, where a user can Wish for a

song, and from that song, the system can, over time, move towards
this song specifically, giving our pathing algorithm a direction. This
should help users guide the experience and tailor it more to their
wants.

To make our system a reality, we need data on the songs users
want to play to make a path through the space of users’ collective
playlists. We chose Cyanite[9] as the source of music data, as it uti-
lizes Spotify’s song previews to analyze the songs and is therefore
continually updated with new data and provides us with extensive
data from the queried songs. Combining all participant playlists
into a single multidimensional space represents the Core of the
OurTunes algorithm. From this, the algorithm finds a path through
this space that aims to play songs with similar features while also
ensuring that something is played from every participant’s playlist.

3.1 Music Data

Cyanite contains many different types of metadata. We use 6 of the
features from this metadata that Cyanite provides. Below are the 6
chosen features:

BPM
Arousal/Valence
Energy level
Genre

Mood

The Cyanite metadata contains a mix of numerical and categor-
ical data. Most of the numerical features have a value between 0
and 1. However, one of the problems with the metadata is that the
values are not normalized. For example, BPM is just the numerical
value of BPM; hence, it has a much higher value than the other
metadata, which are in the range of 0-1. Therefore, we normalize
BPM to impact our algorithm equally to the other metadata. As
there is no maximum value for BPM, we normalize it based on the
current iteration’s maximum. For example, if we have 100 songs and
the max tempo of the set of songs is 165 BPM, then we normalize
based on 165 BPM as the maximum value. Arousal/Valence is nor-
malized similarly. These values are between -1 and 1, and we simply
add 1 to both and then normalize based on the max value, which is 2.

Energy level is a categorical value constituted by the values Vari-
able, Low, Medium, and High. These are simply converted into a
corresponding numerical value. The values are converted into 0 for
Variable, 0.33 for Low, 0.66 for Medium, and 1 for High. This way,
it fits into our system with the other numerical values. We could
have used one-hot encoding, but we found from previous experi-
mentation that it segregated the data too much into the different
categorical values.

Genre and Mood both consist of sub-metadata. We can take
Genre as an example. Genre is divided into 15 Genres, each with
its own value for a given song. The values are in the range of 0
and 1. A song can, for example, have 0.5 for the Genre pop and
0.7 for the Genre rapHiphop, which suggests that that particular
song contains elements of both genres. This provides us with good
coverage, as the songs are not segregated too much, as songs can

Christian Sendergaard Thor, Daniel Dencker Jepsen, and Lucas Bjern Tranum

be represented in multiple Genres.

As discussed previously, other papers have worked with visual-
ization of music and playlist creation based on proximity between
songs. Based on our testing, Cyanite metadata can also be used for
this purpose. We established this using dimensionality reduction
(T-SNE) to make the data points viewable in a 2D space, creating
two color-coded visualizations of each song’s highest Genre and
Mood. This can be observed in Figure 2 on the next page.

For the Genre song space, we see the most dominant Genres
being rapHipHop, pop, and electronicDance with many other gen-
res sprinkled in between. In Figure 2(a), we see pop being placed
approximately in the middle of rapHipHop and electronicDance
neighborhoods, which makes sense as pop usually is influenced
by these two genres. For the Mood song space, seen in Figure 2(b),
we primarily see energetic, sexy, happy, and uplifting as the most
dominant Moods. The songs visualized are all derived from party
playlists, so these labels fit well within that context.

We can see two sets of two songs in the local area in the left part
of each song space. The zoom-in of this can be seen in Figure 2(d).
The two sets consist of two different songs with almost the same
values. This is because they are two versions of the same song, in
this case, the normal version and a radio edit. This indicates that
songs that are approximately the same have approximately the
same feature set. Furthermore, songs from the same artist appear
close to each other, as the four songs highlighted are all from the
artist Daft Punk. This shows that songs close to each other resemble
each other. This, coupled with the fact that users prefer clustering
compared to an exploratory path throughout the music space, is
the basis of our Core algorithm[26].

Although the T-SNE reduction shows that similar songs are near
one another, we still needed a distance measure that describes
how far or close the songs are. This is because we are working
with relatively high dimensionality, in which T-SNE only preserved
local areas and not the global structure of the space. We chose the
Manhattan distance as our chosen distance measurement, as the
Manhattan distance performs better in a high-dimensional space
compared to something like Euclidean distance[10].

3.2 Core Algorithm

With the OurTunes feature space established, we can now dive
deeper into how this space is used to generate a playlist for a group.
The first task is to find a starting point/song in the space. Using
K-Means to find clusters gives us multiple potential starting points
with different vibes. We then find the centroid for each cluster
and pick the song closest to the centroid, which will be one of the
potential starting points of our playlist. The system randomly picks
one of these potential starting points as the first song.

OurTunes: Improving Collaborative Consensus Playlist Making

(a) OurTunes song space color coded to primary Genre.

Color Genre Mood
m ambient aggressive
u blues calm
classical chilled
m electronicDance dark
folkCountry energetic
m funkSoul epic
jazz happy
u latin romantic
metal sad
pop scary
u rapHipHop sexy
reggae ethereal
m rnb uplifting
u rock
singerSongwriter

(c) Color coding table. Genre and Mood values are
independent.

) y
w |One More Time (Radio Edit)

)

N\,
N\,

|One More Time|

[Get Lucky (Radio Edit)] L

~.

(d) Zoomed-in inset of OurTunes song space. Left half color is primary Genre and right
half color is primary Mood.

-
e

Figure 2: Scatterplot from 5000 songs in the OurTunes feature space based on Cyanite data, dimensionally reduced using T-SNE.
A zoomed-in inset shows two pairs of songs of nearly identical songs (the radio and non-radio version) by the same artist (Daft

Punk) in close proximity to each other.

For each song to be added, the system uses k-nearest neighbors
(KNN) to find several close songs, depending on the number of
participants, and then randomly selects one of the retrieved can-
didate songs. OurTunes tracks how much each user has "won" a
round, i.e., their song was chosen. We then take the inverse of
these values to construct our user weights to increase the chance
that users with low win count win subsequent rounds. This weight
is then multiplied by the candidate songs’ distributed chance to
encourage our algorithm to choose songs from users that have
not been heard recently. This improves the fairness of the system
and non-deterministic playlists. To speed up the querying of the
nearest neighbors, we store all the data in a k-d tree[5]. The overall
pseudocode for our Core algorithm can be seen in Algorithm 1.

Algorithm 1 OurTunesCoreAlgorithm

Require: audioFeatures
Require: startPoint
Require: k
Require: numSongs > 0
playList « set(startPoint)
songs « []
while len(songs) < numSongs do
songsWithWeights «—
Query k songs with weights
total «— sumWeights(songsWithWeights)
randVal <« rand(0, total)
weightAccum «— 0
chosenSong «—
weighted random choice of songsWithWeights
end while
songs.Insert(ChosenSong)

> querySize
> Playlist size

3.3 Wish Songs

Another important feature of OurTunes is the ability for users to
impact the path the system takes through the song space by choos-
ing specific Wish songs to move to a specific part of the song space.
On a high level, this is done by finding the shortest path through
currently chosen Wish songs (a traveling salesman problem). Our-
Tunes then finds the sub-paths between these Wish songs using a
modified version of the Core algorithm.

In more detail, the system first determines the order in which
the Wish songs should be played. As mentioned, we order Wish
songs based on the shortest path, but we also want to ensure that
if many users agree on what type of music they want to hear, then
these Wish songs are prioritized. We do this by clustering Wish
songs to see if we have any similar Wish songs and then prioritize
the biggest cluster. We use K-Means to cluster where the number
of clusters to find is determined using the Kneedle algorithm[23],
an algorithm based on the elbow method that finds the optimal
number of clusters. We did not want a minority cluster to be more
prioritized, so we set a minimum value for the share of the cluster. If
a cluster has less than 33% of the amount users in the session, then
these clusters are not prioritized, and we simply find the shortest
path through all the Wish songs. If there is a cluster with more
than a 33% share, then this cluster will be the first stop in the Wish
song path. The Wish songs inside a cluster are ordered based on the
shortest path that visits all clustered Wish songs. For the remaining
Wish songs outside the cluster, OurTunes finds the shortest path
after visiting the clustered Wish songs.

Once the sequence of Wish songs has been determined, the sys-
tem begins moving towards those Wish songs. Overall, the Wish
algorithm works similarly to the Core algorithm. We query songs
based on a dynamic query range, then filter out songs that do not
decrease the distance to the Wish song we are moving towards,
ensuring directionality. On top of this, we include a new weight,
which gives a higher weight to songs that decrease the distance
to the Wish song we are moving towards. This weight is calcu-
lated by taking the normalized ratio of a given song’s distance
and the maximum distance raised to a rather large exponent. This
way, we value and choose songs closer to the current Wish song in
the queue more often, allowing OurTunes to get to the Wish song
quickly. As mentioned, the query range is dynamic, which means
it increases or decreases depending on the number of Wish songs,
as a higher share of Wish songs is seen as an indication that users
are dissatisfied with the current songs being played. Lastly, Our-
tunes always chooses the Wish song if it is inside the queried songs.

When all Wish songs have been visited, the system returns to
using the Core algorithm as described in Algorithm 1; that is, it
returns to having no directionality and just choosing songs in the
current area. The complete pseudocode for the Wish song part of
the algorithm can be seen in Algorithm 2. This implementation
of the Wish song algorithm currently has some issues that were
missed during initial development. One issue was that the number
of queried songs scaled faster than intended. It also has weighting
issues that make it choose songs further away than intended. Lastly,

Christian Sendergaard Thor, Daniel Dencker Jepsen, and Lucas Bjern Tranum

the Wish songs of the participants were, in some cases, removed
before being played. A more in-depth explanation of the above-
mentioned issues and their implications will be covered in Section
6.1.

Algorithm 2 Determine sequence of Wish songs

Require: Wishsongs
Require: startPoint
Require: numSongs
Require: threshold > 0,
Require: SongCounts
1: totalSongPath « set(startPoint)
2: cluster « Select cluster with highest share above threshold
3. if cluster # nil then
4 songs < Shortest path through cluster Wish songs
5: totalSongPath.Add(songs)
6: end if
7: if |totalSongPath| < numSongs then
8 songs < Shortest path through non cluster Wish songs
9 totalSongPath.Add(songs)
10: end if
11: if |totalSongPath| < numSongs then
12: extras < Use Core Algorithm to query remaining songs
missing
13: totalSongPath.Add(extras)
14: end if
15: return totalSongPath

3.4 The OurTunes app

To properly conduct a user test for OurTunes, we need a way for
participants to interact with the system. The overall goal of the app
is to complement the minimal interaction aspect of the algorithm
by making all interactions simple and easy to use.

We developed the app in Flutter for both Android and iOS,
wherein users can join a party with their own playlists and choose
Wish songs. Bluetooth Low Energy (BLE) was utilized to make
each participant’s phone advertise the party to nearby devices. The
purpose of this is twofold: allowing users to quickly join an Our-
Tunes party nearby without requiring the host to share a link with
the participants or show a QR code, along with checking whether
any participants have left the session if they cannot be scanned
anymore. This enabled us to scan for nearby devices from the host
device and remove them from the party if not scanned for a longer
period, freeing both the participant and the party host from manu-
ally removing inactive people from the party. Playlists could also
be added to the app by sharing a playlist from Spotify to our app,
using the built-in smartphone share functionality. Screenshots of
the app from the participants’ perspective can be seen in Figure 3.

When participating in a party, the app is comprised of two
screens. The first screen shows the currently playing song, along
with its cover, and also displays the upcoming song. For the host,
there is also a play/pause button. The second screen shows a user’s
currently selected Wish song with a search bar above, allowing

OurTunes: Improving Collaborative Consensus Playlist Making

users to search Spotify’s entire library of songs. Wish songs are not
restricted to existing songs in users’ playlists. Below the selected
Wish song is the Genre Breakdown, which shows the upcoming
genres with gradients. These gradients are the main Genres for
each of the next 10 potentially upcoming songs. The more solid
the gradient, the more that particular Genre was represented in
that song. The Genre data are taken directly from the same data
used by the algorithm and serve as an approximation of how the
upcoming songs sound. We deemed that users would have an easier
time differentiating songs based on Genre rather than Mood, as
something like a happy song does not convey much information.
The relevant genres to show were determined by the sum of each
Genre for the 10 songs and filtering out low values. This would
allow Genres to appear despite only being relevant in a single song.
Withholding the concrete names of the next 10 songs was a delib-
erate choice, as these songs can change considerably if someone
changes their Wish song. We wanted to avoid the experience where
users would see an upcoming song they liked, and the next time
they would check, it could have been removed because the path
through the space got changed. Lastly, the app was designed to run
in the background and allowed reconnections to the party in case
the app was closed. Rejoining a party would not reset the user’s
chosen playlist or their selected Wish song.

4 Measuring Recommendations

To effectively recommend music to a group, defining what makes
a good recommendation in a group context is essential. Here, we
draw inspiration from another study in which they use the metrics
of Satisfaction and Fairness to evaluate the recommendations of
their proposed system[12]. The Cumulative distance traveled will
also be measured to get a sense of how much the algorithms jump
in total.

Our system defines the Satisfaction metric as the distance be-
tween any chosen song by OurTunes and the closest song for each
user. The farther the distance, the higher the Satisfaction metric,
meaning a user’s song is farther away. This means a low Satisfac-
tion value is better than a high Satisfaction value. This builds from
our assumption that users prefer songs closely related in audio
features and enables us to score each song chosen by our algorithm.
It should be noted that Satisfaction only applies to the simulation
study of the system. As such, it does not represent how users feel
about the played songs. Such evaluation will be done in our user
test in Section 6.

The Cumulative distance measure indicates whether the path
taken through the space is composed of small or large jumps. A high
Cumulative distance means that the jumps taken in the path are
generally higher compared to a low Cumulative distance. This also
captures a scenario in which the Satisfaction metric fails, wherein
the system could perform a long jump through the space but still
end up with all users’ songs being in close proximity. This metric
tells us whether we achieve the attribute of smooth changes in
music we aim to achieve.

OurTunes Playlists <

Join Party Enter Party ID

Party 5420

SLA
italobrothers

(a) Frontpage of OurTunes (b) Joining a nearby OurTunes party

Party 5420

Now Playing:
So Much In Love
D.0.D
Otis

) | JAY-Z, Kan

rapHipHop

pop
rnb

electronicDance

(c) Currently playing song view (d) Selected Wish song and overall gen-
res of the next 10 potentially upcoming
songs. Users can search the entire Spo-
tify catalog for a Wish song.

Figure 3: The OurTunes app.

Lastly, we define Fairness as the distribution of chosen songs.
The more evenly songs are chosen between all users, the more fair
our algorithm is. Here, we use the Gini coefficient[6]. The Gini
coeflicient, in general, is based on the concept of Lorenzo curves,
which is the curve generated by the cumulative proportion function.
We consider this to be an important metric because, as described in

the survey study[19], the social purpose mentioned in the study is
more pronounced for successful collaborative playlists.

The Gini coefficient is the area between the Lorenzo curve and
the cumulative proportion function for the even distribution. It
ranges between 0 and 1, where 0 indicates a completely even distri-
bution, while 1 is the opposite. This measurement describes whether
the generated playlists evenly represent users. As described here,
the Fairness metric only applies to our simulation study. Real users
might find a playlist entirely fair, regardless of the Gini coefficient.

5 Experiments

To evaluate the OurTunes algorithm described in Section 3, we
have decided to perform a simulation study based on the metrics
described in Section 4. We are conducting these experiments to gain
insight into how the OurTunes algorithm compares to Round robin,
which chooses one song one by one from each user, and Shuffle,
which just continuously picks a random song.

5.1 Data Collection for Experiments

To conduct these experiments, we first needed a set of baseline
playlists for our simulation study. To do this, we set the following
list of criteria for finding the different playlists for our test data:

(1) The overall context of a playlist should be "party". Some
examples of genres for such a context could be pop, hip-hop,
dance, rock-pop, and rock-indie.

(2) The playlists must contain songs from more than 8 different
artists.

(3) Only one playlist per individual user

(4) Playlist has to be made by individuals, i.e., not created by
Spotify or other organizations/artists

(5) All playlists must originate from Denmark.

(6) The playlists are discovered by querying Spotify playlists
with the search term "fest" (The Danish word for party) and
"dakkedak" (A word that describes highly rhythmic music
with a high degree of bass[18], i.e., party music).

These criteria have been chosen to ensure that the playlists have a
wide variety within and between each other but are not too far apart
from the test context and that the playlist authors’ nationalities
are the same, as that is how this system will most likely be used.
The playlists are used to determine whether OurTunes creates a
playlist with lower Cumulative distance, better Satisfaction, and
better Fairness. In total, we found 35 different playlists using the
above-mentioned criteria, which varied from a total length of 58 to
794 songs, which provides a reasonable base.

5.2 Procedure for experiments

Two other algorithms have been tested against the OurTunes algo-
rithm to evaluate our algorithm in the experiments. We need points
of comparison to see whether OurTunes performs better or worse
than other algorithms. We decided to use the following algorithms
for the experiment:

e Round robin: Create a playlist of 100 songs by repeatedly
going through all individuals and choosing a random song
from their playlist.

Christian Sendergaard Thor, Daniel Dencker Jepsen, and Lucas Bjern Tranum

o Shuffle: Choose 100 songs randomly from all users to gen-
erate a playlist based on existing playlists.

e OurTunes: Creating a playlist of 100 songs using the Our-
Tunes algorithm

We chose 100 songs as the sample size because the average
length of a song was 3.18 minutes in our dataset. We deemed that a
reasonable playlist for a party is around 5 hours, which is around
100 songs of playtime. Furthermore, we chose to test the algorithms
on several test cases. As we have 35 playlists, we elected to run
our experiment with 2, 5, 7, 10, 20, and 35 playlists to see whether
the algorithms were better at some specific sample sizes. We ran
1000 iterations for each test case to lower the influence of potential
outliers. The specific playlists chosen for each iteration are also
random, apart from the test case for 35 users, as that is the total
dataset size.

5.3 Results of Experiments

Now that we have established the data we used for our simulation
test, the results of the respective experiments will be presented. It
is important to reiterate that these results are based on simulation
studies. Therefore, these results should not be seen as definitive re-
sults but instead as preliminary results that indicate whether or not
this algorithm has any merit for further testing. Furthermore, these
tests are conducted purely using the Core algorithm of OurTunes
in Section 3.2 and do not include any simulation of participants
picking Wish songs. All results are accompanied by a graph show-
ing the mean of the results, along with error bars visualizing the
standard deviation.

5.3.1 Experiment for the Cumulative Distance Metric. For the Cu-
mulative distance experiment, as mentioned in Section 4, we mea-
sure the Cumulative distance traveled for the 3 aforementioned
algorithms. The experiment results can be seen in Figure 4.

500

Distance
(SR [EEN
o L=
8 &8 & 8

! ! ! !

o
I

2 5 7 10 20 35
Number of participants

mm shuffle Round robin BB OurTunes

Figure 4: Cumulative distances over 1000 iterations for
playlist length of 100. Lower is better.

While all methods have a large spread of Cumulative distances
from the mean, we can see that the OurTunes mean is consistently
much lower across all group sizes. The upper deviation of OurTunes
is almost equal to the lower deviation of both Shuffle and Round
robin. This shows that OurTunes only considers the nearest neigh-
bors for any given song. The mean value for OurTunes also slightly
decreases with increasing group sizes, as the song space is more

OurTunes: Improving Collaborative Consensus Playlist Making

Distance

2 5 7 10 20 35
Number of participants

mm shuffle Round robin B OurTunes

Figure 5: Satisfaction of 1000 iterations per user from current
song to user’s closest song. Lower is better.

dense, and therefore, the nearest neighbors will be closer to the
query point. Shuffle and Round robin perform almost identically,
as they both choose random points in the space without regard to
the distances from the current to the next song chosen.

5.3.2 Experiment for the Satisfaction Metric. This experiment aimed
to determine the average distance for each user from the chosen
song of an algorithm to the users’ closest song for 100 songs.

Figure 5 shows that the median Satisfaction of OurTunes is over-
all lower across all group sizes, albeit only by roughly ~ 0.2. It is
difficult to assess how large this difference is, as it is highly depen-
dent on the song space for that simulation. In a dense song space,
where most of the songs are very similar, overall distances would
naturally be smaller than that of a more sparse song space. One
would need to capture the dissimilarity of the included playlists to
determine how large the difference is.

Regardless of the impact, it still shows that OurTunes performs
better on average in all cases to some degree. The smallest gap
is seen for the smaller group sizes, most notably for 2 users. The
problem arises when 2 users have too dissimilar playlists. Currently,
OurTunes may continue playing only one user’s songs as only their
songs are inside the KNN search of OurTunes. This points to further
optimization when the number of participants is lower. As our
project aims toward larger group sizes, we see this as a good result
for our initial experiments. For larger party/group sizes, we see
better Satisfaction compared to the other algorithms. OurTunes
generally stays in more dense areas of the song space for longer
periods, leading to songs being closer to each other.

5.3.3 Experiment for the Fairness Metric. For the Fairness experi-
ment, as mentioned in Section 4, we will look at the Gini coefficient,
which measures the inequality of the distribution of songs added
in proportion to the number of users counted so far. The results
can be seen in Figure 6, where it was tested on the aforementioned
3 algorithms.

Overall, the OurTunes Fairness mean is much lower than Shuffle
in all cases but falls behind Round robin for smaller group sizes.
Furthermore, the deviation is much larger around the mean in all
cases for OurTunes. While one might believe that Round robin

0.30

0.254 E
0.204 |
015 - { ¥

0101 Y I It B O B

Gini Coefficient

2 5 7 10 20 35
Number of participants

mm shuffle Round robin B OurTunes

Figure 6: Gini coeflicients of 1000 iterations for the distribu-
tion of the proportion of songs added by each user. Lower is
better.

represents the theoretically fairest system, it does not account for
songs existing in multiple playlists. This effect is minimal on smaller
group sizes, as even a single song being only on two playlists would
represent a majority of the group. The theoretically most fair sys-
tem would need to keep track of how many times a song has been
played from each user, which is precisely a part of what OurTunes
does.

Despite this, OurTunes still has a much larger deviation around
the mean in all cases. We believe there is room for improvement,
but the spread is also a natural consequence of not accommodat-
ing a minority preference. Certain combinations of playlists in our
simulated sessions resulted in some playlists having very different
feature sets compared to the majority, causing very few songs to
be played from this minority. This can greatly affect the Gini coef-
ficient, causing the large deviation seen in our results across the
board.

This issue also showcases how our Satisfaction and Fairness
metrics are connected. While we could make OurTunes much more
"fair" by simply finding the nearest track for each user and picking
among them, this would affect the Satisfaction metric as songs from
a minority could be much further away, decreasing the Satisfac-
tion for each user. We went with a middle-ground approach that
attempts to strike a balance between improved Satisfaction and
Fairness for larger group sizes. It remains to be discovered in the
user test which metrics users value more.

6 User Test

We wanted to test the OurTunes system in a real party setting to fol-
low up on our simulation experiments. To do this, we set up a user
test of 7 participants. The participants are all friends of the authors,
ranging from 24-27 years of age, and consisted of 5 males and 2
females. Before the test, participants were asked to create a playlist
for a party containing music they would like to hear. There were no
requirements for the length of the playlist, but we recommended
between 10 and 200 songs. The total song space consisted of 587
songs, including duplicates, with the shortest playlist consisting of
35 songs and the longest playlist consisting of 180 songs.

On the day of the test, participants were only instructed on how
to download the app and add their playlist. The authors hosted
the OurTunes session using a specialized "host mode" of the app,
wherein the host did not influence the system in any way. As such,
all music played was only picked from the participants’ playlists and
Wish songs. The test was held on a three-day trip to a vacation home
on the first day of the trip. The test started after dinner, although
technical difficulties led us to restart the session. The full session
where we tested OurTunes started approximately at 20:45 local
time. The test lasted approximately 3 hours and 16 minutes, with
54 songs played. It ended with a semi-structured group interview
that covered the functionality of OurTunes and their experience
using it. The interview was recorded, transcribed, and coded to
find overarching opinions describing usage and feelings regarding
OurTunes. We also logged all the songs played and the Wish songs
and playlists added so we could do a data-oriented analysis of the
session.

6.1 Data Analysis

To get an overview of how the user test session went, we examined
it from a data-oriented perspective: we looked at the paths taken,
the distribution of participants, and the change in Mood, Genre, and
BPM over the course of the party. To get a handle on the smoothness
of the transitions, we will also look at the distance jumped for each
transition in the user test.

6.1.1 Transitions and Composition of the User Test Session. Firstly,
to get insights into the overall composition of the session and the
transitions made between the songs in the session, we elected to
look at Genre, Mood, and BPM features from Cyanite.

To understand the overall composition of the Genre and Mood
features present in the song space, we calculated the share of Genres
and Moods in the session. We used the highest Genre and Mood
features and the second highest above a threshold of 0.2. This was
done to account for Cyanite’s data, which usually have high values
in multiple features, and to ensure that if a song was exclusive to a
certain Mood or Genre, the secondary values would not be counted.
The distribution of these can be seen in Table 1.

Genre Mood
Genre Share (%) Mood Share (%)
electronicDance 49.13 energetic 63.62
pop 34.31 uplifting 36.21
rock 15.86 happy 33.79
rapHipHop 15.00 aggressive 18.28
rnb 9.13 sexy 14.83

Table 1: Genre and Mood composition for song space (includ-

ing all Wish songs and not-played songs)

We also visualized how the OurTunes algorithm changed be-
tween different Genres over time by plotting the primary and sec-
ondary Genres for the songs played in the session in Figure 7. In
general, we see that the songs played consist mainly of the Genres
electronicDance(~ 50.0%), pop(~ 31.48%), rapHipHop(~ 29.62%)
and rock(~ 12.96%). Here, ~ 44% of the songs had no secondary

10

Christian Sendergaard Thor, Daniel Dencker Jepsen, and Lucas Bjern Tranum

Genre when accounting for the threshold. This indicates that a high
degree of the songs played were associated with only one specific
Genre.

Overall, the Genre composition for songs played correlates well
with the overall composition of the song space seen in Table 1.
The Genre rapHipHop slightly deviates from the overall compo-
sition by being overrepresented in songs played compared to the
total song space. To investigate this, we queried the 60 closest
songs of each song played in the session and looked at the Genre
distribution to get a general idea of the areas around the path
OurTunes took in the session. Here, the Genres electronicDance
(~ 60.04%), pop(~ 28.81%), rapHipHop(~ 20.59%), rnb(~ 10.13%)
and Rock(~ 8.94%) were the Genres most represented. This shows
that rapHipHop and rnb songs were more represented in the sur-
rounding space of the path than in the total song space.

For the overall Mood of the session, we, similarly to the Genre
analysis, looked at the primary and secondary Moods of the dif-
ferent songs, which can also be seen in Figure 7. We can see that
the represented Moods of the songs in the session were mainly
energetic(~ 90.74%), uplifting(~ 53.70%), aggressive(~ 22.22%) and
happy(~ 18.51%). The Moods energetic and uplifting were overrep-
resented compared to the song space composition in Table 1. We
found the main reason for this to be that the Wish songs requested
(played and not-played) had mostly the energetic(~ 66.66%) and
uplifting(~ 39.39%) Mood. Wish songs had a much higher chance
of being chosen than normal songs, and OurTunes chooses closely
related songs, which naturally influences the overall result.

Genre Mood
15t ond 15t ond

1 rock metal energetic aggressive
2 electronicDance rapHipHop energetic aggressive
3 pop rock energetic uplifting

4 electronicDance pop energetic happy

5 pop rapHipHop energetic uplifting

6 electronicDance rapHipHop energetic uplifting

7 electronicDance pop energetic uplifting

Table 2: Most and second most represented genres and moods
for each participant playlists.

To get an overview of how the Genres and Moods of the songs
played matched up with the participants’ playlists, we found the
most and second most represented Genres and Moods for the songs
for each participant’s playlist. These can be seen in Table 2. The
table shows that all participants, except participant 1, had electron-
icDance or pop as their primary Genre, while, for the Mood, all
participants had energetic as their primary Mood. This indicates a
relatively homogeneous Genre and Mood composition, with only
one participant deviating from the norm. The Mood and Genre
of the participants’ playlists generally align well with the Moods
and Genres of the songs played. We see this from the fact that the

OurTunes: Improving Collaborative Consensus Playlist Making

rock - e -
mb
rapHipHop
pop

metal |-

Genres

electronicDance [

ambient |

uplifting P —
sexy r
happy
epic r

Moods

energetic
dark

aggressive

Song

Figure 7: Genre (top) and Mood (bottom) for each played song. Thick lines indicate primary feature and thin lines indicate

secondary feature if present(over a value of 0.2).

most played Genres were electronicDance, pop, and rapHipHop,
which are more represented in Table 2. The same follows for Mood
as energetic and uplifting were the most prevalent moods in the
played songs and the aforementioned table.

180
160
140
120

& 100

80
60

40

20 30 40 50
Song

Figure 8: BPM for all songs played at the party

To get an idea of the played songs’ tempo, we will look at the
BPM range, which can be seen in Figure 8. Here, we found that
the BPM range was mainly between 80 — 140, with many above
100. This correlates well with the primary Genre(eletronicDance)
and Mood(energetic). The only notable outlier was song number 35,
which had a BPM, according to Cyanite of ~ 30. When we looked
up the concrete song, we found that the actual BPM was much
higher. This indicates that the features retrieved from Cyanite do
not always accurately describe a given song, which could lead to

11

less smooth transitions from a user’s perspective.

Now, to gain insight into how far the transitions leaped between
songs for the OurTunes user test, we compared the individual jump
distances between each song for the median run of Shuffle and the
OurTunes user test. Here, this is plotted in Figure 9.

—— OurTunes (User Test)
—— Shuffle

Distance

30

20
Song

Figure 9: Distance of transition jumps for OurTunes user test
session and a median iteration of Shuffle.

We can see that the OurTunes algorithm generally makes shorter
jumps between each song, with only a few exceptions. These few
exceptions are primarily due to OurTunes moving towards a Wish
song in a more sparse region of the space, increasing the jump’s
distance.

6.1.2 Distribution of participants. Now that we have covered the
overall composition of the space, we will look at how the songs were

distributed between the participants. The concrete song counts for
each participant, including Wish songs and songs on their playlist,
can be viewed in Table 3.

Track Statistics
Participant Song Count Playlist Size
Participant 1 5 69
Participant 2 9 66
Participant 3 8 99
Participant 4 13 179
Participant 5 10 95
Participant 6 4 35
Participant 7 6 37

Table 3: Distribution of songs played and playlist sizes per
participant.

The table shows that the user test session had a fairly even dis-
tribution, with a calculated Gini coefficient of ~ 0.2078. However,
we found that some participants had a clear difference in their win
count. For participants with a low win count, the primary reasons
were that they had either a low share of songs in the song space
or mostly had songs in their playlist that did not align with the
primary or secondary Genre of the total song space, as was the case
for participant 1. The only participant with a higher win count was
mainly because they had many songs in the song space, and many
of their songs were the most heard Genre, i.e., electronicDance.

During the session, participants requested a total of 27 unique
Wish songs (33 with duplicate/overlapping requests). A total of 17
Wish songs were played, equal to roughly half.

Picking songs that overlap between users can help improve
Fairness, as it is a fairer choice than picking single-user songs,
so it should be an obvious choice to pick these when possible. The
playlists in the user test session had minimal overlap in songs, with
only 14 songs present in multiple playlists, which is 2.4% of the total
song space. Of these 14 overlapping songs, only one was played
during the session, which is 1.9% of the songs played. We can only
surmise that either the participants with these overlapping songs
already had a high win count or the overlapping songs were not
near the path that OurTunes took.

6.1.3 Exploration of Song Space. Using different dimensionality
reduction techniques, we tried to explore the concrete path taken
in the user test session. The implementation issues mentioned in
Section 3.3 came to light during this exploration. Here, this resulted
in a more disorganized path being taken for the user test session.

Firstly, the current implementation can, in some instances, after
a Wish song has been added, still have that Wish song as part of the
potential candidates for choosing the next song. This leads to all
weights being 0, due to our current implementation of the weight
calculation described in Section 3.3. Consequently, because of an

12

Christian Sendergaard Thor, Daniel Dencker Jepsen, and Lucas Bjern Tranum

unfortunate fallback value, the song farthest away is chosen.

Secondly, there are cases where, after a new Wish song is set,
some of the previous Wish songs that have not been heard are
removed. This behavior can be seen in Figure 10.

[Wish Song from participant 6] .

J

Song 27 S
Wish song set (participant'5). oo
Removes Wish song from participant 6 |- ,

Figure 10: Path showcasing a Wish song sat at song 27, re-
moving the Wish song from Participant 6. The Grey dotted
arrow shows one possible path a correct version could have
taken.

Despite the potential severity of these flaws, it only had a minor
effect on the result. We fixed the issues and ran multiple simula-
tions with the same playlists and Wish songs in the same order to
approximate the potential impact of these issues. Our findings show
that most participants chose Wish songs that were already close
to the song currently playing. This resulted in the total number of
Wish songs played being, at most, 3 songs more than was the case
for the user test session. The Cumulative distance was also lower
for the fixed version, indicating that the system performed smaller
jumps. There were no meaningful differences in the Fairness and
Satisfaction metrics.

Song 38
Wish song set (participant 3)

[Song 39 RN

Wish song played (participant 1) /' ¢
Wish song set (participant 4) 9

. Song'37

. o < . | Wish song set (participant 1)]
i Song 41| - s R

.-“*\ °
T N | Song 40
| Wish song played (participant 3)

Song 42
Wish song played (participant 4)

Figure 11: Wish song path close to the end of the party, where
Participant 1,3 and 4 got their Wish songs heard. We see that
both participant 1 and 3 picked a Wish song close to the
currently playing song.

In most cases, the system operated as expected. We will now
look at one case and see what it can tell us about how that sub-path

OurTunes: Improving Collaborative Consensus Playlist Making

progressed. A section of the sub-path taken during the session can
be seen in Figure 11. This part of the path was close to the end of
the session, wherein Participants 1, 3, and 4, respectively, put on
Wish songs, which were all heard.

Here, we can draw a couple of interesting insights. Firstly, in the
case of participants 1 and 3, their Wish song was played as the next
possible song, which is an indication that they picked Wish songs
close to the song that is currently playing. We saw this theme of
users selecting Wish songs that were close to the already playing
songs throughout the session. Afterward, Participant 4 put on their
Wish song while song 39 played. Here, the algorithm takes a clear
leap toward the Wished song for each transition.

6.2 Interview

The interview lasted 1 hour and 10 minutes. The general consensus
on the system was positive, with minor grievances about the Genre
Breakdown, the Wish song feature, and the song choices. In the
subsections below, we will delve further into these grievances and
into the parts where the system excels and/or works as intended.

6.2.1 General experience. As mentioned above, the system was
generally perceived positively. This came to light throughout the
interview when we talked about the song choices and the app’s
different features. All participants felt like they got their songs
heard from time to time, which they all felt was a great feeling. This
can be seen from quotes such as:

e "That was one of my songs, which was something a little
different(genre wise). Maybe a little rock-ish. I think that was
pretty nice"

o I think, that I experienced, that some of my songs from the
playlist(participant’s playlist), got played here and there...
sprinkled in between... I think that was actually kind of nice
to see"

It was not only that OurTunes played their songs, but also the
fact that they felt their songs were not pushed away or overlooked,
as seen here: ".. So I actually do not feel like the choices and the songs
I had on my playlist got pushed to the side or overlooked". People,
therefore, seemed happy in the sense that they got their songs heard
and that they were not overlooked.

Unprompted, the participants also began to compare our system
with Spotify Jam. In particular, people echoed that it felt better
than using the much-used Spotify Jam session feature on Spotify
specifically, as participants’ songs were often way down in the
queue or could get skipped by other actors at a party. This can be
seen in the following quotes:

o 'Twas surprised by how quickly my songs got added when
I added them to the Wish list because normally, when I use
Spotify Jam session, a lot of other people have already added
thousands of songs before me to the queue. Then you just get
de-prioritized"

e "..ButIactually do not feel that the choices and songs I had on
my playlist got pushed away or overlooked. I actually think,
on the contrary, that they got seen(the participant’s songs)
compared to if it was a Jam on Spotify we created"

13

o "Typically if you are at a party and people are just putting
songs in the queue constantly(Spotify Jam) then your song
never gets played, because somebody has put the same song
in queue 5 times"

One participant followed up on these statements by saying:
"When participant x put something they knew everyone liked, com-
pared to Spotify Jam, then the algorithm knew that it was something
everyone liked, then it(OurTunes) prioritized it. So it came on, and
everyone liked it. I would categorize that as a success".

Overall, participants generally had a very positive view of the
system because of how they got represented and not overlooked
compared to other popular systems, such as the aforementioned
Spotify Jam session. As one of the participants remarked "I would
say, it is a lot better than the alternative”, it seems that the system at
least outperformed other types of popular ways to create a party
listening session.

6.2.2 Bias of the system. This was a contentious point for a lot of
the participants. A lot of the participants felt that we were mainly
in the same Genres all the time, as can be seen in quotes such
as "..because in the start we heard a lot of rock, which was maybe
a smaller mutual genre between what people had in their playlists.
After that, it changed between electronic, hip hop rap, electronic, hip
hop rap, electronic, electronic, electronic. Where I was maybe one of
them that was electronic and rap(people with that kind of music)".
Generally, it seemed like people perceived that a lot of the music
played was electronicDance but also understood that it was what
many of the participants added to the collective session, as seen
in Section 6.1, which was why that Genre was more pronounced.
Despite this they still felt like they got their songs heard, they just
wished for more diversity from time to time as seen in the following
quotes:

o "I would maybe have wanted that those who had genres that
differed from the rest of us used the Wish functionality more,
that they felt that their voice also mattered because then
I think we would have gotten more variation than we did
tonight"

o "I think that could be cool also just to try to... to make the
music even more varied"

However, a participant did share the opinion that the song
choices had variety, but the variety mostly came inside the main
Genres of the session illustrated in the following quote: "...where
there was this variation even though it was inside the same musical
genre it was still different artists, which still made it a new experience".

6.2.3 Choice of music. As mentioned, our system aims to pick
songs that are close to the song that was just heard. Through that,
we expect songs to be similar from the previously heard song to
the next. The participants did mostly find this to be the case with a
few outliers as seen through the following quotes:

o "I did not think we had any abrupt changes. I think we had
some changes, but it has been fine... But I think that it has
been very fair"

o "Yeah, well, I as well did not notice that there has been some-
where where we went from whatever kind of genre that was
the most noisiest to a genre that was the least noisiest... So I

did not feel at any point that I have been caught off guard by
the changes that happened between songs or genres"

o "Yeah, I think that sometimes the algorithm could not... could
not have done it better because some of the songs we had were
really high in tempo. There was a lot of tempo in them. How
do you change from that? You cannot really succeed in that"

However, a participant said that OurTunes could possibly have
done a better job if it had considered the setting of the party: "The
algorithm did not really consider different factors such as the noise
level of the media player. That could perhaps indicate that people did
not want to hear songs with high tempos. Or maybe the speech noise
level of the party, like the noise level of the speech in the room where
the media player is". This could be a possible point of improvement
for a later iteration of OurTunes, but it presents a lot of new prob-
lems in making such a system.

Another point that some of the participants felt would be a great
addition to the system was to consider the song’s language. Partici-
pants said that they wanted to hear more Danish music and tried to
put on Wish songs that were Danish, but currently, OurTunes does
not consider a song’s language. This was shown through answers
such as "The algorithm did not at all take into account the language.
I would have liked that. Like, for example, if everyone had something
Danish on their playlist then it knew (OurTunes) it was a common
denominator for what we all wanted to hear at some point at least...
I think everyone can nod in agreement to that. I see some nodding
heads out there". This was not a major contention for most of the
participants. This was mostly echoed by 3 participants, who might
seemingly have wanted Danish music to be more represented as its
own category by our system.

One participant felt that it was anxiety-inducing to have some
of their songs played, as they were weird in style and placed at a
wrong point of the party(right in the beginning). These songs were
not weird in the sense of their Cyanite features, but instead in the
sense of lyrics, which our system does not account for, and hence,
our system did not take this into account when choosing these
songs. The confusion and feelings from the participants seemed to
stem from their perceived understanding of the system as seen in
this quote: "The point is that I thought that it(OurTunes) would take
everyone’s playlists and then construct a new playlist based on all
the participants’ genres. That was how I got it explained by another
participant”. We have never discussed how the system works with
any of the participants, so we can only assume here that some
participants had an idea of how it worked and continued to share
this perceived notion of our system with other participants. Another
possibility for this unforeseen feeling from the participant might
also stem from how the system starts. Currently, as explained in
Section 3.2, our system performs clustering and then chooses the
closest song to the centroid. The cluster chosen by our system
is done randomly, and a possible optimization here could be to
give the users more power over where to start the music-listening
experience.

6.2.4 Opinions about the features. For this section, we mainly fo-
cus on the two features that participants can interact and use to

Christian Sendergaard Thor, Daniel Dencker Jepsen, and Lucas Bjern Tranum

make their choices, i.e., the Wish song feature and the Genre Break-
down. These features were generally positively received, but they
also had some downsides we can delve into.

As for the Wish song feature, most participants ended up using
it. They used the feature much more than we expected them. All
participants did, however, say that it granted them a degree of
control over the system, as seen in the following quotes:

o "AsIsaid earlier, I felt that many of the songs I put on got rep-
resented after like two songs, so I kind of felt that the playlist
was varied, but it was still me and x(references another par-
ticipant) that kind of controlled the playlist"

o "I requested a song, and it came in the span of 4 songs"

o "I definitely think that I had a lot of control over what music
got played as long as it was in the main genres that got played
often tonight”

o "Okay, when there was a specific song, then I Wished for it.
And it came. I would not say in the span of 2 songs. I would
say 5-6-7 songs. That was completely fine"

However, this is not the whole picture. Some participants felt
that it did not grant them enough control as their songs never got
heard, which is seen in the following quotes:

o "I tried putting some different music on compared to what
was played. It(Genre Breakdown) said a lot of eletronicDance,
and then I thought, I want to hear some jazz. The jazz never
got played, but that was probably because I was the only one
that put it on, so I changed my Wish from jazz to something
eletronicDance, and then my song came on 7 minutes later"

o '[tried putting on "For Pengene" as my Wish song, but it never
came, so I ended up changing it to some hip hop and then it
got played right after”

The participants did not get all their Wishes fulfilled, especially
if they did not coincide with the general consensus, but this might
be a preferred behavior from the participants. If the song does not
fit the current consensus of the rest of the participants, should that
overrule what the rest of them want, or should it urge the partici-
pant to change their Wish to something that aligns more with the
rest of the participants? This is an open-ended question that does
not have a straightforward answer.

The participants voiced some possible points of optimizations
that might help participants in making choices based on the current
context:

o "It could be nice if there was a way to say, hey now there is
some sort of new direction, is there anyone that wants to jump
on that? I think that could be cool”

o "I do not know if this is overcomplicating things, but the Wish
feature is actually pretty good, but I do not know if it might
be a bit too primitive. I do not know if you could make it so
you have 3 Wish songs, and you somehow could weigh those
songs differently?”

One participant suggested maybe having some indicator of how
likely a Wish song was to be played: "but if you had some sort of
indicator, what was most likely to be played, based on our playlists".
There are many possible variations, and we will delve deeper into

OurTunes: Improving Collaborative Consensus Playlist Making

these in Section 8 later in the paper.

As for the Genre Breakdown, some participants felt it was some-
what hard to decipher:

o "I thought that it was hard to read"
o "The diagram for the genres was borderline unreadable in the
start”

One of the reasons was a visual bug that happened to one partici-
pant we found out about after the session, but the other participants
did not like the diagram. One of them echoed that "I do not know
if those fade colors should be combined into one line or that they
should not fade at all". It seems that one participant probably thinks
of Genres in binary. Either it is a Genre, or it is not that Genre.
This could be alleviated in possible future iterations, which we will
discuss in Section 8. Despite this, most of them got the idea behind
it after a while, and most of them used the diagram to some extent:

o "It had a direct effect on what I chose to recommend”

e "I noticed that at one point where there were 100% pop elec-
tronic and therefore I tried putting some rock on in the form
of "My Chemical Romance""

o "Tused it to get an overview over what kind of genres that got
put together based on the choices we all made, but also to see
when those choices would be represented”

All in all, the features saw great use, but both had some caveats
that need fixing, especially the Genre Breakdown. The Wish song
feature functions as intended based on what we implemented, but
it may have been too stringent based on the participants’ feedback.
Either that or provide new functionality that can help users make
better decisions to exert control over the system. The Genre Break-
down’s learning curve was too steep and hard to grasp quickly.
It took some time before the participant understood it, which is
definitely something to improve. This could be done by simplifying
it even further, as it seemed too detailed to understand its meaning
with little effort.

7 Discussion

Our project was largely a success based on our research, as test
participants stated that it felt better compared to usual collabora-
tive music sessions like Spotify Jam. We aimed to find a middle
ground between a personally curated playlist and easy set-up in a
group setting using our proprietary algorithm, which uses Cyan-
ite’s metadata, while aiming for as little manual input from users
as possible yet still giving them a degree of control. We elected
not to pick all the Cyanite features as some of the features were
segregating the data too much and did not provide anything mean-
ingful for our algorithm. An example of this is the Voice feature.
This feature consists of 3 predictive labels between 0-1 that predict
if the audio was female, male, or mostly instrumental. Here, we
found that this feature segregated the space into these 3 distinctive
labels. This led to a larger segregation in the song space than we
liked, so we removed it. Another example is the Character feature.
This feature consisted of 16 different predictive labels between 0-1
concerning the character of a given song. Although this feature did
not segregate the song space too much, it appeared to affect the
song space similar to the Mood feature described in Section 3 and

15

was therefore not used.

We also found that the features needed normalization, so they
did not impact our algorithm too much, and each feature had a bal-
anced impact. After choosing appropriate features and normalizing
them, we saw that songs close to each other also resembled each
other. However, our chosen data did not catch all the minutiae of
the songs, as seen in Section 6.2. The participants wanted a way to
suggest or get more songs in a specific language, such as Danish.
This is currently not a variable in our system; however, we do not
think this will be beneficial as it will segregate our data too much
because of how OurTunes works, similar to something like the
Voice feature mentioned above.

As mentioned in Section 3.2, our algorithm picks a random clus-
ter as its starting point. This was shown to be potentially problem-
atic, as some test participants did not like the random starting point,
which sometimes does not fit the context of the start of the session.
This is a hard point to capture, as we cannot know the context of a
session beforehand. If we were to implement a way to circumvent
this problem, it would come at the cost of more user interaction
and, therefore, increase the inertia, i.e., the problem of starting a
collaborative session. There could be ways to alleviate this starting
point problem in future iterations, which we will discuss in Section
8.

Furthermore, our playlist algorithm did seem to encounter some
problems when it came to querying songs in the multidimensional
song space. We did not consider the number of songs users have
in their playlists. This did not prove problematic in our simulation
test but did come to light in our user test. The system is decently
good at choosing songs from different people. However, test par-
ticipants with larger playlists had a higher frequency in how often
their songs were chosen. The more songs a user has, the bigger the
chance they have to be more represented in query range selection
compared to someone with fewer songs in their playlists. As we do
not currently have some way of counteracting this interaction, it
leads to users with larger playlists being more presented, especially
if people have more varying tastes, as in our user test. This relates
to the aforementioned problem of OurTunes not being fair/social
enough. This is one of the optimization points that we will outline
in more detail in Section 8.

We based our system on choosing closely related songs and op-
timized the system around that; however, the relationship between
the Satisfaction and Fairness metrics does not seem straightforward.
As described in one study[26], users preferred music in clusters;
however, this evidently relates only to single-user systems. We saw
in our interview that participants would have liked it to represent
users more equally, i.e., they wanted a more social experience. The
Satisfaction metric is apparently not as important regarding col-
lective playlists or sessions, as the social purpose outweighs this
metric. Therefore, Fairness correlates better with a good experi-
ence, both in the sense that participants expressed positive feelings
when their songs were chosen and wanted to hear more of other
participants’ songs. This is, of course, a give-and-take relationship
as the participants agreed that minority preferences should not be

able to influence the system too much to something where nobody
has a similar song, i.e., low Satisfaction.

For our data analysis in Section 6.1, most of the main takeaways
aligned well with what the participants stated in the interview in
Section 6.2. From a purely data-oriented perspective, all partici-
pants had songs from both their primary Genres and Moods heard,
which aligned well with the participants’ experience, where they all
felt that they got some of their songs heard. The data aligned well
with the participants’ overall experience: most transitions between
songs were not too abrupt, and the Genres coincided nicely with
participant perception of the heard Genres.

Another point revealed by the data is that some participants
were less represented in the user test than others. This was, as
mentioned previously, either due to them having a smaller number
of songs in common with the majority or having a smaller playlist
than other participants. However, this is not necessarily a problem,
as one can easily imagine a scenario in which playing these songs
would lead to none of the other participants having a similar song,
thus leading to a less satisfying experience. This ties into the above
paragraph, where the participants say they want to hear a higher
share of different participants’ songs but that there should still be a
limit on how much they diverge from the other participants.

As for our interview in Section 6.2, one participant suggested
deriving more context of the party through either the noise level of
conversation or the noise level of the played music; this presents
a couple of challenges. First, when it comes to the noise level of
the conversations, we could implement a way to record the noise
through the host’s microphone on their device and then analyze
this to get a better sense of the current context of the session. We
feel that this is an overstep over what the app should do, as an app
that records a whole session seems like an invasion of privacy, and
we, therefore, are not aiming to implement such a feature. This
also overlaps with OurTunes’ use of personal playlists instead of
using profiles from the users, as users have more control over what
they are bringing to the party. This also allows users to align their
music preferences with the social context. Secondly, as for the noise
level of the played music, there are possible avenues to pursue
here. However, the problem lies in that we could look at the sound
level of the host device, but some devices have their own inputs
to change the sound level. From our understanding, this is very
dependent on the specific Bluetooth speaker. Therefore, a possible
feature that leverages the sound level of the party can only be used
with devices with these functionalities. We are therefore electing
not to pursue this avenue, first and foremost, as we deem other
optimization points more important.

Regarding existing systems, our algorithm, as it currently stands,
contributes to the research space of playlist-making in several ar-
eas. First and foremost, while individual playlist-making and gen-
eral music discovery have seen some work[26][3], collaborative
playlist-making systems have seen relatively sparse research. How-
ever, there are some examples. One such system is SRMAC[28],
which explores the creation of collaborative playlists through the

16

Christian Sendergaard Thor, Daniel Dencker Jepsen, and Lucas Bjern Tranum

user-chosen context and their already existing preferences regard-
ing genres. This system does not investigate the aspect of creating
a smooth transition between song types, ensuring Fairness, and
was not compared against other methods, such as Round robin and
Shuffle. As described in that paper, the users preferred to have a
bigger degree of control than what the initial test system had.

We succeeded in ensuring smooth transitions, as outlined in the
user test interview and the data analysis in Section 6 compared
to other systems. However, we saw the same problem as SRMAC
with insufficient control. Although we gave users a degree of con-
trol, the interview participants also expressed wanting even more
control. This is a difficult balance to strike, as the system should
not take too much time out of the hands of the users. As the par-
ticipants expressed, it was also nice that they could leave it alone
and use it when they wanted to, but they wanted more control
and information to make better and more informed decisions. The
participants suggested having the possibility of having more than
one Wish song. We do not deem this to be in line with one of the
intended goals of OurTunes, as we wanted to make a system that
lowers interactions with the system. It was also suggested that
more information be provided for users to utilize. This way, we
could possibly alleviate this problem with the feeling of not having
enough control, as each choice they make could be more meaning-
ful, and therefore provide more control through one action instead
of just giving them more actions to exert control with. Depending
on how it is implemented, this could also align well with the social
purpose. Possible solutions to increasing meaningful information
will be discussed in Section 8.

Furthermore, some work has been done on more explicit con-
sensus on collaborative playlist making, such as r-MUSIC[29]. This
system introduces a voting system where users can vote on songs
on a shared public playlist. Although this creates a very explicit
consensus-based way of making collaborative playlists, our system
focuses more on doing it implicitly with smooth transitions, for
which our findings in the simulation studies show preliminary suc-
cess. Furthermore, we also succeeded in requiring less input while
still providing them with meaningful control, though, as outlined,
they did not feel this was enough.

7.1 Limitations

First and foremost, there were some bugs in the implementation,
which are outlined in Section 3.3. As we mentioned in Section 6.1,
these bugs, while unfortunate, did not seem to have a major effect
on either the Fairness or Satisfaction metric. Only the distance be-
tween songs and total number of Wish songs played were affected.
Therefore, most of the main findings would likely have been the
same without the bugs.

We also see that the song space matters quite a bit for the Our-
Tunes algorithm’s performance with respect to both the simulation
metrics and distribution of users at a party. One such example is that
of Participant 1 in the user test session. In this case, this participant
got fewer of their songs heard because their playlist had a different

OurTunes: Improving Collaborative Consensus Playlist Making

Genre and Mood composition than the rest of the participants. In
general, this means that the main findings can very well change
depending on how divergent the different participants’ songs are.

Furthermore, the song space is only as good as the feature vari-
ables from Cyanite. Sometimes, as shown in Section 6.1, these values
are not entirely accurate. We saw this with a song from the user
test that had a much lower BPM than intended. This is further
limited by Cyanite only analyzing the 30-second preview of each
song from Spotify, which might be a section of the song that sounds
very different from the rest.

The user test was also limited in the number of participants. Here,
the main findings of this section could very well change if different
participants were tested, more specifically how well the participants
know one-another, along with their individual song preferences
either being more overlapping or more diverging. Lastly, all of the
participants were acquaintances with the authors, which might
have led to some bias in the feedback given.

8 Future Works

OurTunes represents a small step towards a modern, easy, and ad
hoc collaborative music listening experience with minimal inter-
action needed. Nevertheless, there is still much to be discovered
that OurTunes does not cover. A natural first step would be to fix
the implementation issues as highlighted earlier, and while the
incorrect weights and reset of users’ Wish songs are clear cases,
the query range is more nuanced. Although it did not function
according to our specifications, participants seemingly preferred
the more varied songs rather than being stuck in the same space
for too long. The exact ranges are to be determined, but something
that represents a somewhat diverse selection yet is still in close
proximity to a given song seems optimal.

The social aspect of OurTunes is also something that should be
explored further. Based on our user test, users did want to listen to
other participants’ music, which overall suggests that Fairness is a
more important metric than distances between songs. In particular,
the participants wished to see other people’s Wish Song, which
we also believe would be a good improvement, as we would like
the participants to coordinate their song selection. This would also
help more extreme outliers have the possibility of being heard if
there is an overall consensus.

- Participants also requested more options to make their Wish
song choices more informed, either through more control with mul-
tiple Wish songs or more information about how far out their Wish
songs were. One possibility is allowing users to set multiple Wish
songs that are far apart to increase the odds of visiting outliers
and enhance the social experience further. Another option is to
show how likely their Wish song is to be played or how far away
each song is in the search result for Wish songs. Both are poten-
tial options, but we lean towards the latter as it still ensures low
interactability, so users do not spend too much time tinkering with
the system. Furthermore, based on our user test, participants ended
up using Wish Songs a lot more than anticipated, and allowing

17

users to have multiple Wishes could transform the system back to
a normal queue.

To further increase the Fairness of the system, we also want to
add the ability to select which song to start from. The system al-
ready picks out multiple potential starting points but only picks one
at random. A possible solution could be to give users the ability to
pick from these starting points with a simple consensus vote while
still keeping the ability to have the system pick one if so desired.
However, this will be at the cost of inertia and more interactability,
and we will have to see if users deem this worthwhile.

The Genre Breakdown of the upcoming songs was more confus-
ing for participants than we had hoped. During the design phase,
we tested different visualization methods, such as only showing a
single Genre and a pie chart, but we settled on the gradients of up-
coming Genres. Users eventually learned how it worked, but many
preferred something more easily readable at a glance. While we do
not have any concrete ideas for how this could look, we believe
an ideal solution still involves withholding the specific songs from
users, as this adds more excitement when one’s own song appears
and hides the potential disappointment of seeing one’s own song
far down the queue.

Lastly, our user test only included participants who knew each
other. While we believe such a scenario would be the most common
use case for OurTunes, it could also be used if none of the par-
ticipants knew each other. Therefore, conducting a user test with
nonacquaintances under the same conditions could be beneficial
in illuminating even more minutiae in the space of collaborative
playlist making. We hypothesize that participants would react dif-
ferently and/or have different requirements than sessions consisting
of acquaintances. Most notably, parties consisting of nonacquain-
tances might not care as much about listening to other participants’
music, as demonstrated by one of our test participants describing
how someone using Spotify Jam would queue five of their own
songs.

9 Conclusion

The OurTunes algorithm introduces a novel way to create collab-
orative playlists implicitly with a degree of manual control that
emphasizes smooth transitions and fairness with respect to the
distribution of songs per user. Our preliminary findings in the sim-
ulation study show improvements compared to other algorithms
with improvements in our Satisfaction and Cumulative distance
metrics. Fairness results were mixed and showed improvements
with larger group sizes. As for our interview, we saw that the par-
ticipants preferred OurTunes over other systems like Spotify Jam;
however, they wanted more control and better representation of the
other participants. Overall, we made strides towards better collabo-
rative playlist making by lowering the inertia and increasing the
social purpose compared to other low inertia systems like SRMAC,
but with points that can be improved to increase the social purpose
further.

10

Acknowledgements

We would like to thank Henning Pohl for his valuable feedback and
guidance during this project, as well as all the participants in our
pilot and user test for their feedback. We would also like to thank
Mali Michelsen for designing the logo and icon used for the mobile
application.

References

(1]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

Alo Allik, Florian Thalmann, and Mark Sandler. 2018. MusicLynx: Exploring
Music Through Artist Similarity Graphs. In Companion Proceedings of the The
Web Conference 2018 (Lyon, France) (WWW ’18). International World Wide Web
Conferences Steering Committee, Republic and Canton of Geneva, CHE, 167-170.
https://doi.org/10.1145/3184558.3186970

Ivana Andjelkovic, Denis Parra, and John O’Donovan. 2019. Moodplay: Inter-
active music recommendation based on Artists’ mood similarity. International
Journal of Human-Computer Studies 121 (2019), 142-159. https://doi.org/10.1016/
j-ijhcs.2018.04.004 Advances in Computer-Human Interaction for Recommender
Systems.

Maureen S. Y. Aw, Chung Sion Lim, and Andy W. H. Khong. 2013. SmartD]: An
interactive music player for music discovery by similarity comparison. In 2013
Asia-Pacific Signal and Information Processing Association Annual Summit and
Conference. 1-5. https://doi.org/10.1109/APSIPA.2013.6694280

Jared S. Bauer, Aubury L. Jellenek, and Julie A. Kientz. 2018. Reflektor: An Explo-
ration of Collaborative Music Playlist Creation for Social Context. In Proceedings
of the 2018 ACM Conference on Supporting Groupwork. ACM, New York, NY, USA,
27-38.

Jon Louis Bentley. 1975. Multidimensional binary search trees used for associative
searching. Commun. ACM 18, 9 (Sept. 1975), 509-517. https://doi.org/10.1145/
361002.361007

Michael T. Catalano, Tanya L. Leise, and Thomas J. Pfaff. 2009. Measuring
Resource Inequality: The Gini Coefficient. Numeracy 2, 2 (2009). https://doi.org/
10.5038/1936-4660.2.2.4

Shih-Han Chen, Sok-Ian Sou, and Hsun-Ping Hsieh. 2024. Top-N music recom-
mendation framework for precision and novelty under diversity group size and
similarity. Journal of intelligent information systems 62, 1 (2024), 1-26.

Andrew Crossen, Jay Budzik, and Kristian J. Hammond. 2002. Flytrap: intelligent
group music recommendation. In Proceedings of the 7th International Conference
on Intelligent User Interfaces (San Francisco, California, USA) (IUI '02). Association
for Computing Machinery, New York, NY, USA, 184-185. https://doi.org/10.
1145/502716.502748

Cyanite. 2024. The Power of Automatic Music Tagging with AL https://cyanite.
ai/2023/10/03/the-power-of-automatic-tagging-with-ai/

D. 2001. On the Surprising Behavior of Distance Metrics in High Dimensional
Spaces. In Proceedings of the 8th International Conference on Database Theory
(ICDT °01). Springer-Verlag, Berlin, Heidelberg, 420-434.

Pedro Dias and Jodo Magalhéaes. 2013. Music recommendations for groups of
users. In Proceedings of the 2013 ACM International Workshop on Immersive Media
Experiences (Barcelona, Spain) (ImmersiveMe ’13). Association for Computing
Machinery, New York, NY, USA, 21-24. https://doi.org/10.1145/2512142.2512151
Kevin Eustice, Amir Mohsen Jourabchi, Jason Stoops, and Peter Reiher. 2008.
Improving User Satisfaction in a Ubiquitous Computing Application. In 2008
IEEE International Conference on Wireless and Mobile Computing, Networking and
Communications. 496-501. https://doi.org/10.1109/WiMob.2008.106

Kevin Eustice, V. Ramakrishna, Nam Nguyen, and Peter Reiher. 2008. The
Smart Party: A Personalized Location-Aware Multimedia Experience. In 2008
5th IEEE Consumer Communications and Networking Conference. 873-877. https:
//doi.org/10.1109/ccnc08.2007.204

Jenny M. Groarke and Michael J. Hogan. 2019. Listening to self-chosen music
regulates induced negative affect for both younger and older adults. PLOS ONE
14, 6 (06 2019), 1-19. https://doi.org/10.1371/journal.pone.0218017

Sang-Won Lee. 2021. Lost in Co-curation: Uncomfortable Interactions and the
Role of Communication in Collaborative Music Playlists. Proceedings of the
ACM on Human-Computer Interaction 5 (04 2021), 1-24. https://doi.org/10.1145/
3449137

Zsolt Mezei and Carsten Eickhoff. 2017. Evaluating Music Recommender Systems
for Groups. arXiv:1707.09790 [cs.Al] https://arxiv.org/abs/1707.09790

Kenton O’Hara, Matthew Lipson, Marcel Jansen, Axel Unger, Huw Jeffries, and Pe-
ter Macer. 2004. Jukola: democratic music choice in a public space. In Proceedings
of the 5th Conference on Designing Interactive Systems: Processes, Practices, Methods,
and Techniques (Cambridge, MA, USA) (DIS '04). Association for Computing Ma-
chinery, New York, NY, USA, 145-154. https://doi.org/10.1145/1013115.1013136
Den Danske Ordbog. 2025. Dictonary defintion of DakkeDak. https://ordnet.
dk/ddo/ordbog?query=dakke-dak

18

[19

[20]

[21]

&
&

[29]

Christian Sendergaard Thor, Daniel Dencker Jepsen, and Lucas Bjern Tranum

So Yeon Park and Blair Kaneshiro. 2021. Social Music Curation That Works: In-
sights from Successful Collaborative Playlists. Proc. ACM Hum.-Comput. Interact.
5, CSCW1, Article 117 (April 2021), 27 pages. https://doi.org/10.1145/3449191
So Yeon Park, Audrey Laplante, Jin Ha Lee, and Blair Kaneshiro. 2019. Tunes
Together: Perception and Experience of Collaborative Playlists. In Proceedings of
the 20th International Society for Music Information Retrieval Conference, ISMIR
2019, Delft, The Netherlands, November 4-8, 2019, Arthur Flexer, Geoffroy Peeters,
Julian Urbano, and Anja Volk (Eds.). 723-730. http://archives.ismir.net/ismir2019/
paper/000088.pdf

Hamidreza Rabiee, Javad Haddadnia, Hossein Mousavi, Moin Nabi, Vittorio
Murino, and Nicu Sebe. 2016. Emotion-Based Crowd Representation for Abnor-
mality Detection. (2016).

David A. Robb, Stefano Padilla, Britta Kalkreuter, and Mike J. Chantler. 2015.
Moodsource: Enabling Perceptual and Emotional Feedback from Crowds. In
Proceedings of the 18th ACM Conference Companion on Computer Supported
Cooperative Work & Social Computing (Vancouver, BC, Canada) (CSCW’15 Com-
panion). Association for Computing Machinery, New York, NY, USA, 21-24.
https://doi.org/10.1145/2685553.2702676

Ville Satopaa, Jeannie Albrecht, David Irwin, and Barath Raghavan. 2011. Finding
a Kneedle in a Haystack: Detecting Knee Points in System Behavior. 166 — 171.
https://doi.org/10.1109/ICDCSW.2011.20

Shubham Sing. 2024. Spotify Users Statistics 2025 - Subscribers Demographic &
More. https://www.demandsage.com/spotify-stats/

Spotify. 2024. Jam. https://support.spotify.com/us/article/jam/

Beatrix Vad, Daniel Boland, John Williamson, Roderick Murray-Smith, and Pe-
ter Berg Steffensen. 2015. Design and Evaluation of a Probabilistic Music Projec-
tion Interface. In Proceedings of the 16th International Society for Music Information
Retrieval Conference. 134-140.

Laurens van der Maaten and Geoffrey Hinton. 2008. Viualizing data using t-SNE.
Journal of Machine Learning Research 9 (11 2008), 2579-2605.

Joéo G. Bracaioli Vitorio and Carlos N. Silla. 2023. Music Recommendation System
for Shared Environments. In 2023 30th International Conference on Systems, Signals
and Image Processing (IWSSIP). 1-5. https://doi.org/10.1109/TWSSIP58668.2023.
10180270

U. Wolz, M. Massimi, and E. Tarn. 2004. r-MUSIC, a collaborative music D] for
ad hoc networks. In Proceedings of the Fourth International Conference onWeb
Delivering of Music, 2004. EDELMUSIC 2004. 144-150. https://doi.org/10.1109/
WDM.2004.1358111

https://doi.org/10.1145/3184558.3186970
https://doi.org/10.1016/j.ijhcs.2018.04.004
https://doi.org/10.1016/j.ijhcs.2018.04.004
https://doi.org/10.1109/APSIPA.2013.6694280
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.5038/1936-4660.2.2.4
https://doi.org/10.5038/1936-4660.2.2.4
https://doi.org/10.1145/502716.502748
https://doi.org/10.1145/502716.502748
https://cyanite.ai/2023/10/03/the-power-of-automatic-tagging-with-ai/
https://cyanite.ai/2023/10/03/the-power-of-automatic-tagging-with-ai/
https://doi.org/10.1145/2512142.2512151
https://doi.org/10.1109/WiMob.2008.106
https://doi.org/10.1109/ccnc08.2007.204
https://doi.org/10.1109/ccnc08.2007.204
https://doi.org/10.1371/journal.pone.0218017
https://doi.org/10.1145/3449137
https://doi.org/10.1145/3449137
https://arxiv.org/abs/1707.09790
https://arxiv.org/abs/1707.09790
https://doi.org/10.1145/1013115.1013136
https://ordnet.dk/ddo/ordbog?query=dakke-dak
https://ordnet.dk/ddo/ordbog?query=dakke-dak
https://doi.org/10.1145/3449191
http://archives.ismir.net/ismir2019/paper/000088.pdf
http://archives.ismir.net/ismir2019/paper/000088.pdf
https://doi.org/10.1145/2685553.2702676
https://doi.org/10.1109/ICDCSW.2011.20
https://www.demandsage.com/spotify-stats/
https://support.spotify.com/us/article/jam/
https://doi.org/10.1109/IWSSIP58668.2023.10180270
https://doi.org/10.1109/IWSSIP58668.2023.10180270
https://doi.org/10.1109/WDM.2004.1358111
https://doi.org/10.1109/WDM.2004.1358111

	Abstract
	1 Introduction
	2 Related Works
	3 Initial Data Exploration and the OurTunes Algorithm
	3.1 Music Data
	3.2 Core Algorithm
	3.3 Wish Songs
	3.4 The OurTunes app

	4 Measuring Recommendations
	5 Experiments
	5.1 Data Collection for Experiments
	5.2 Procedure for experiments
	5.3 Results of Experiments

	6 User Test
	6.1 Data Analysis
	6.2 Interview

	7 Discussion
	7.1 Limitations

	8 Future Works
	9 Conclusion
	10 Acknowledgements
	References

