Summary of Master Thesis

This thesis investigates how intelligent control strategies combining Model Pre-
dictive Control (MPC) and Reinforcement Learning (RL) can be used to optimize
the operation of Wastewater Treatment Plants (WWTPs). The motivation stems
from the high energy consumption associated with these facilities, especially dur-
ing biological treatment stages that require intensive aeration. Traditional control
mechanisms, such as fixed-setpoint PID-controllers or manual tuning by operators,
are often suboptimal in such dynamic and complex environments. With growing
emphasis on sustainability and operational efficiency, particularly under the frame-
work of the United Nations Sustainable Development Goals, the need for more
adaptive and intelligent control solutions has become increasingly important.

The project builds upon a previous study focused on the Modified Ludzack-
Ettinger (MLE) process but transitions to the Benchmark Simulation Model no. 1
(BSM1), which offers a standardized framework for assessing wastewater treatment
control strategies. BSM1 incorporates a five-tank activated sludge reactor followed
by a settling tank and simulates the biological, chemical, and physical processes
central to modern WWTPs. It is designed to support the evaluation of new control
techniques under various weather and inflow conditions.

The proposed intelligent control framework integrates several components. A
high-fidelity digital twin of the BSM1 plant is implemented in the WEST simulation
environment developed by DHI. This model captures the detailed internal dynam-
ics of the plant. A simplified version of the plant is modeled in UPPAAL, which
is used together with UPPAAL Stratego to apply reinforcement learning methods
for synthesizing near-optimal control strategies. These strategies are coordinated
through a tool called STOMPC, which implements the MPC logic, bridging the
digital twin in WEST and the optimizer in UPPAAL Stratego. While the design
also envisions an inflow prediction model and dynamic parameter estimation to
better emulate real-world variability, these parts were not implemented due to the
scope of the project.

Simulations were performed using realistic influent data under three scenarios:
dry weather, rainy periods, and storm conditions. The MPC-RL pipeline demon-
strated potential in reducing energy usage from aeration, while maintaining or
improving effluent quality. This was achieved by dynamically adjusting key oper-
ational setpoints of the PI-controllers for the internal recirculation rate and oxygen
transfer coefficients in the aerobic tanks. The evaluation of control strategies was
based on effluent quality (EQ), a metric aggregating the weighted concentration

of pollutants in the outflow, as defined in the BSM1 framework and the energy
consumption of the system.

Despite promising results, several challenges are also highlighted that must be
overcome for real-world implementation. These include the need for fast simu-
lation environments to support reinforcement learning, reliable state estimation
in the presence of partial observability and noisy measurements, and predictive
models for influent characteristics. Accurate, continuously updated parameter es-
timation is also crucial for maintaining the fidelity of the digital twin over time.

In conclusion, the thesis provides a proof-of-concept for how MPC combined
with reinforcement learning can enable more intelligent and adaptive control of
WWTPs. By replacing static control strategies with learned, dynamic strategies, it
is possible to improve both energy efficiency and environmental outcomes. While
the results are constrained by simplified assumptions and an offline simulation
environment, the framework developed lays the groundwork for future extensions
and real-world testing in collaboration with industrial partners like DHI.

Intelligent Control of Wastewater
Treatment using Model Predictive
Control & Reinforcement Learning

- A Master Thesis Project -

Project Report
DAT10

Aalborg University
Computer Science

Computer Science
Aalborg University
http://www.aau.dk

AALBORG UNIVERSITY
STUDENT REPORT

Title: Abstract:
Intelligent Control of Wastewater Treat-
ment using Model Predictive Control &
Reinforcement Learning

This thesis explores the use of Model
Predictive Control (MPC) combined
with Reinforcement Learning (RL) to

Theme: optimize wastewater treatment plant
Computer Science, Experiments, |(WWTP) operations, aiming to re-
Wastewater Treatment duce energy consumption/cost and

improve effluent quality. The report
Project Period: proposes a realistic implementation
Spring Semester 2025 pipeline using a high-fidelity digital

twin in WEST (by DHI) and a low-
Project Group: fidelity optimizer in UPPAAL Strat-
cs-25-sv-10-04 ego, connected via the STOMPC MPC

interface. Experiments under dry, rain,
and storm weather scenarios show that
MPC can improve both energy usage
and effluent quality simultaneously.
For dry weather conditions, MPC re-
duced energy consumption by up to
24% depending on the scenario.

Participant(s):
Christoffer Brejnholm Koch
Lise Bech Gehlert

Malthe Peter Hgjen Jorgensen

Supervisor(s):
Kim Guldstrand Larsen

Page Numbers: 92

Date of Completion:
June 13, 2025

The content of this report is freely available, but publication (with reference) may only be pursued due to
agreement with the author.

http://www.aau.dk

Contents

Preface

1 Introduction

2 Case Study

3 Theoretical Background
3.1 WWTPoverview i
3.2 Benchmark Simulation Modelno. 1
321 Motivation o o
322 PlantLayout.
323 BSMI1 Dynamics
324 PlantControllers
325 Basecontrol
326 Control evaluation
3.2.7 Weather scenarios

ii

vi

Contents

3.3 BSMI1 & MLE differences e

3.4 Model Predictive Control

4 Related Work
41 BSM1 and MPC e

42 Combining MPC & Reinforcement Learning

5 Problem Statement

6 Tools
6.1 WEST & Tornado API
6.1.1 BSM1 modeled in WEST
6.1.2 Simulationin WEST
6.1.3 Resultsin WEST
6.14 Tornado APL.
6.2 UPPAAL
621 UPPAALCore. i i
6.22 UPPAALSMC
6.23 UPPAAL Stratego

6.3 STOMPC

7 Implementation

71 Pipeline.

iii

25

27

30

30

31

32

34

34

34

36

36

37

38

38

39

44

47

49

Contents

72 Modeling
72.1 Update_Discrete

7.2.2 Activated Sludge Tanks

723 Municipality Model
724 PlController
725 Controller
726 Costfunction
727 Model Correctness and Speed
7.3 MPC Implementation.

7.3.1 TornadoExperiment class
7.3.2 BSM1_MPCsetup Class . .

7.3.3 MPC_Experiment Class .

8 Experiments

81 Setup
82 Results
821 Dry Scenario
8.2.2 Rain Scenario
8.2.3 Storm Scenario

8.24 Optimizing energy cost

9 Discussion

iv

60

61

62

64

64

65

66

69

69

72

72

75

77

79

81

Contents

10 Future Work

11 Conclusion

Bibliography

A Control Handels

84

86

88

91

Preface

This report is written by the computer science group “cs-25-sv-10-04". It is a master
thesis project conducted from the 1st of February 2025 to the 13th of June 2025 at
Aalborg University. The project is a collaboration with Dansk Hydraulisk Institut
(DHI), focusing on optimizing wastewater treatment plants with regard to energy
consumption/cost and effluent quality using MPC.

The group would like to thank the project supervisor, Kim G. Larsen, as well as

Christopher Eugen Gaszynski, Enrico Ulisse Remigi and Trine Dalkvist from DHI
for their continued cooperation and assistance throughout the project.

Aalborg University, June 13, 2025

LI C Kodn

ise B&¢h Gehlert Christoffer Brejnholm Koch
<lg¢hle20@student.aau.dk> <ckoch20@student.aau.dk>

Malthe Peter Hojen Jordensen

<mphj20@student.aau.dk>

vi

Christoffer Koch

Christoffer Koch

Christoffer Koch

Christoffer Koch

Christoffer Koch

Christoffer Koch

Christoffer Koch

Christoffer Koch

Christoffer Koch

Christoffer Koch

Chapter 1

Introduction

Wastewater treatment plants (WWTPs) implement physical, biological and chem-
ical processes in order to remove pollutants from wastewater. They are crucial in
preserving aquatic environments, preventing waterborne diseases, and indirectly
preserving the quality of drinking water. While WWTPs are a necessity, some of
these processes are very energy intensive. In fact, it is estimated that around 4% of
the world’s total energy consumption lies in the water sector, where a quarter of
that energy consumption is from WWTPs [1].

The importance of WWTPs in environmental sustainability and the huge en-
ergy use makes WWTPs an enticing focus for optimizations. In fact, this is also
a part of the United Nations Sustainable Development Goals. Specifically, this re-
gards the sixth goal called "Clean Water and Sanitation", which aims to improve
water quality and optimize use of water resources [2].

In the WWTP industry, these complex processes are often controlled by humans
or PID controllers with fixed setpoints. As WWTPs are very dynamic and complex
environments, the optimal control strategy of a plant is continuously changing,
putting into question the effectiveness of manual human or fixed control.

It is important to note that this report is a continuation of the work done in
a previous report [3]. As such, it is disclosed in each section, if the section has
been fully or partially been carried over from the previous report, as much of the
theoretical material has not changed. The previous report was also a collaboration
with DHI, considering the exact same case study as the one in this report. In the
previous report, a WWTP sub-plant, called the Modified Ludzack-Ettinger (MLE)

process, was modeled in the modeling and analysis tool UPPAAL. Hereafter, a
variety of fixed setpoints were tested to explore the effect of changing setpoints
on the outgoing water quality and energy consumption. This essentially laid the
foundation for exploring the effect of implementing a model predictive control
(MPC) setup for intelligent control of WWTPs, which is the goal of this report.

A major change in the approach from the last report to this report is the re-
placement of the MLE plant with the Benchmark Simulation Model no. 1 (BSM1)
plant. BSM1 was chosen because it is a standardized model, designed specifically
for testing various control strategies. BSM1 provides standardized influent data
and established methods for evaluating control strategies [4]. Further justification
for selecting the BSM1 plant can be found in section 3.2.1 and a description of the
differences between the two plants can be found in 3.3. In this report, we propose
a pipeline for intelligent control of the BSM1 plant. It is an MPC and digital twin
setup, with several components:

* Digital twin (WEST) - This is the high fidelity virtual version of the actual
plant, designed and modeled in WEST (tools provided by DHI, modeled by
group). The state of the digital twin is updated with very low frequency to
reflect the real plant.

* Optimizer (UPPAAL) - This consists of a low-fidelity model of the plant in
UPPAAL. UPPAAL also provides built-in reinforcement learning techniques
using UPPAAL Stratego. As such, the optimizer is used to compute near-
optimal control strategies using reinforcement learning.

¢ MPC (STOMPC) - The STOMPC tool is used to implement the MPC scheme.
It acts as an interface between the digital twin in WEST and the UPPAAL
optimizer. It relays the plant state from the digital twin to the optimizer, and
relays back the computed intelligent control strategy to be used.

¢ Inflow prediction model - This is a model that provides the optimizer with
predictions on the characteristics of the incoming wastewater. This enables
the optimizer to compute control strategies that not only are immediately
effective, but also effective regarding the future state of the system.

* Hourly electricity prices - The optimizer is fed hourly energy prices to enable
optimization of energy consumption timing.

* Periodic parameter estimation - The accurate simulation of a real plant largely
relies on the accuracy of the model parameters. These model parameters can
vary over time, depending on the weather, season and many other factors. As

such, periodic parameter estimation is needed to ensure accurate simulation,
in turn increasing the likelihood of computing effective control strategies.

All the listed components are essential for intelligent control of a WWTP using
MPC. However, due to the project’s scope, only a subset was implemented.

First, we modeled the BSM1 plant as a high-fidelity digital twin in WEST. Ad-
ditionally, we created a low-fidelity BSM1 model in UPPAAL to leverage UPPAAL
Stratego and reinforcement learning within the MPC setup. The MPC scheme was
implemented using STOMPC, integrating UPPAAL Stratego with WEST.

We did not build an inflow prediction model but assumed its existence in our
setup. Similarly, we did not develop a parameter estimation model and instead
treated ASM1 model parameters as constant and accurate. Consequently, the real
plant was excluded, as we assumed the digital twin to be fully precise at all times.

Using our BSM1 plant model and MPC implementations, we demonstrate po-
tential reductions in energy consumption and enhancements in effluent quality
under our assumptions.

Chapter 2

Case Study

This section has been carried over from the previous report [3], as this report is a
continuation of the work done in the previous report. Thus, the case study remains
the same.

This project is carried out in collaboration with the company Dansk Hydraulisk
Institut, also known as DHI'. DHI is an international consulting and research or-
ganization that specializes in the aquatic environment. DHI aims to develop and
construct models for a sustainable future for water treatment in various aspects.
Their main focus in research is how water can be managed and shared, adapted to
climate changes, how solutions can be implemented, and how water quality can be
improved. From the research, DHI tries to create new tools and techniques used to
preserve, handle, and protect water-related ecosystems. Their main technology is
their MIKE software portfolio [5], which focuses on water modeling software that
delivers exceptional precision in simulations.

A particular water-related ecosystem is that of wastewater treatment and wastew-
ater treatment plants (WWTPs). As a part of MIKE, DHI offers wastewater treat-
ment process modeling, through their software tool called WEST. With this tool,
one can model and simulate various WWTP processes through mathematical mod-
els, experimenting with different setups to improve effluent quality, energy con-
sumption, and cost efficiency. Section 3 will elaborate on the purpose and func-
tionality of WWTPs.

WEST is a mechanistic/deterministic modeling tool, and it is very efficient in

Ihttps://www.dhigroup.com

https://www.dhigroup.com

designing and simulating WWTPs and associated processes. WWTPs contain a
variety of sensors, blowers, valves, gates, and other mechanical equipment, that
can be controlled to optimize the water treatment process. A common control
strategy is to use PID-controllers with specified target values or setpoints. These
setpoints can then be changed manually by a WWTP operator. However, WWTPs
are operating in extremely dynamic environments, which means that the optimal
control strategy for the plant is continuously changing.

To this end, DHI proposes a case study, for the application of Model Predic-
tive Control (MPC) to automatically find optimal control strategies that optimize
WWTP energy use, effluent quality and other key points of interest. These con-
trol strategies can be tested on the mechanistic model (WEST), to see how a plant
responds to the changes. The exact phrasing of their proposed case study is:

Mechanistic/Deterministic models, such as WEST, are strong tools for simu-
lating wastewater treatment plants. This includes the biological, chemical, and
physical processes throughout the plant. Wastewater treatment plants are ex-
tremely dynamic environments, and as such, the optimal control strategy for
the plant is continuously changing. The plants contain a variety of sensors,
blowers, valves, gates, and other mechanical equipment that is used to opti-
mise the treatment process. A common strateqy is to use controller-based logic
throughout the plant, such as PIDs, set with target values or setpoints to con-
trol and optimise the processes.

This topic will investigate if data-driven models can be used to perform model
predictive control (MPC) using the mechanistic model as the virtual treatment
plant, testing how the plant will respond to controller settings changes, which
can then be relayed to the physical treatment plant for optimal control.

Chapter 3

Theoretical Background

The following chapter lays the theoretical foundation needed to understand the
different components of this report and the work done in the report.

3.1 WWTP overview

The following section 3.1 is from the previous report [3], with a few modifications
to better explain and illustrate the general concept and purpose of Wastewater
Treatment Plants.

Wastewater Treatment Plants (WWTPs) serve the purpose of cleaning polluted
water to a state where it is less harmful to the environment when it is reintroduced
into the natural water cycle of the surrounding area. The extent to which water is
polluted depends on the concentration of different pollutants found in the water,
as well as the intended use of the water. That is, water is polluted if the concen-
tration of pollutants makes the water unfit for specific use cases, such as drinking,
swimming, or fishing. There exist different forms of pollutants in wastewater.

One such pollutant is organic material, such as, protein, fat, carbohydrates and
other organic chemicals. In wastewater, organic material is measured by biochem-
ical oxygen demand (BOD). BOD is the amount of oxygen required by microor-
ganism to decompose the organic material. The higher the BOD, the more organic
material exist in the wastewater. Organic material/BOD is one of the most im-
portant pollutants to remove during the wastewater treatment processes, as it can

3.1. WWTP overview 7

deplete the amount of dissolved oxygen in water, harming aquatic ecosystems.

Another important pollutant are suspended solaids. This refers to small parti-
cles that do not dissolve in water, typically decayed plant material, algae, and other
particulates. In relation to wastewater treatment, these are referred to as Total Sus-
pended Solids (TSS). It is important to minimize the amount of TSS in the WWTP
effluent, as it can cause water to look visibly impure and can cause taste and odor
problems [6].

Lastly, plant nutrients are also considered pollutant material. Particularly, do-
mestic wastewater contains compounds of nitrogen and phosphorus, which are
basic compounds for plant growth. Here, the problem arises as excessive levels of
nitrogen and phosphorus can cause rapid algae growth in rivers and lakes, causing
damage to aquatic life and accelerating the natural aging of lakes [7].

An overview of the different pollutants can be seen in Figure 3.1 below.

Pollutants

Organic Material Plant Nutrients Suspended Solids

/ N\

Nitrogen Phosphorus

Figure 3.1: Overview of wastewater pollutants categorized into organic material, plant nutrients, and
suspended solids [3].

Pipes direct water
to treatment
center

Primary Secondary
treatment stage treatment stage

(=1=1=]=]
4 Final Filtered into
treatment river
stage

Screening stage Qoog

sources 0
|_,[//Q|\\5 EE

Figure 3.2: A depiction of a general WWTP setup. The icons on the left are examples of different
influent sources. Figure inspired from [8].

3.1. WWTP overview 8

Wastewater

In Figure 3.2, the water entering
the “Treatment center” is known as
wastewater, or influent. This type

of water can originate from various |, algae and other particulates

sources, including domestic use in BOD: Biochemical oxygen demand
households and public facilities, indus- TSS: Total Suspended Solid

trial processes, and from stormwater
or melted snow that enters the sys-
tem through infiltration. All of these

Biochemical Terms
Organic material: Protein, fat, carbohy-
drates and other organic chemicals
Suspended solids: Decayed plant mate-

Plant nutrients: Nitrogen and phospho-
rus

sources contribute to the wastewater
that is carried through sewer and runoff collection networks before arriving at the
WWTP. For domestic wastewater specifically, it typically comes from activities as
taking a shower, washing hands or dishes in the sink, flushing toilets, and any sim-
ilar water usage that leads to the sewer system. Wastewater is generally described
in terms of three main characteristics: physical, biological, and chemical [9], each
of which is addressed in a specific stage of the WWTP process.

Pretreatment

This stage is also called the screening stage. It is a mechanical removal pro-
cess, which larger objects are removed from the wastewater such as excrement,
sticks, grease, sand, and wipes. Anything large enough that it could damage
pipes/pumps and other mechanical equipment.

Primary Treatment

The primary treatment focuses on the physical constituents and uses physical/me-
chanical processes to remove lingering solids too small for the pretreatment to
catch. This can be done through screening, sedimentation, filtration and more.

Secondary Treatment

Secondary treatment focuses on the biological constituents and uses bacteria to
change colloidal or dissolved biodegradable organic substances to gasses that can
escape out through the air, or to biological cell tissues that will settle to the bottom
or can be removed using different methods.

Tertiary treatment

This stage also known as the final stage. The Tertiary treatment is a more rigorous
last step some WWTDPs take to remove harmful microbiological bacteria masses
still present in the wastewater. This could for example be exposing the wastewater
to UV-light (the sun) to kill the bacteria.

3.2. Benchmark Simulation Model no. 1 9

The focus of this report is on the secondary treatment stage, where the water
goes through a biological pollutant removal process. The specific setup is moti-
vated and described in detail in the following section.

3.2 Benchmark Simulation Model no. 1

This section will first motivate the decision to adopt the BSM1 framework. Next,
the layout of the BSM1 plant is explained in detail, followed by a description of
the biological dynamics of the plant. Afterwards, the mathematical description of
a Pl-controller is presented, alongside the base control strategy for the BSM1 plant.
Lastly, the section will look at how one evaluates the performance of a control
strategy in BSM1 and then the different influent scenarios are presented.

3.2.1 Motivation

There are many factors contributing to the complexity of modeling and optimizing
wastewater treatment plants, including the variability of the influent, the com-
plexity of biological processes, the large number of variables involved, and the
evaluation criteria, which are influenced by regulatory requirements and restric-
tions. Benchmark Simulation Model no. 1 (BSM1) standardizes the plant layout,
simulation model, influent data, different weather scenarios, test procedures, and
evaluation criteria. BSM1 provides standardized methods for assessing control
strategies, ensuring consistency in evaluation [4].

The activated sludge reactor featured in BSM1 is among the most common ap-
proaches for achieving biological nitrogen removal in contemporary wastewater
treatment plants (WWTPs). By introducing oxygen into the system, the reactor not
only facilitates the reduction of nitrogen in the treated water but also significantly
lowers the concentration of organic matter, measured as biochemical oxygen de-
mand (BOD). These combined effects are critical for minimizing the environmental
footprint of effluent discharge.

Despite its effectiveness, the activated sludge process comes with a major limi-
tation: high energy demands. Maintaining the required levels of dissolved oxygen
during the aerobic treatment phase relies heavily on aeration—a process that is
notably energy intensive. In fact, aeration alone can account for over 50% of a
WWTP’s total energy usage [10]. This makes the process a key focus for energy

3.2. Benchmark Simulation Model no. 1 10

optimization efforts, prompting ongoing exploration into how aeration can be min-
imized without compromising the removal efficiency of nitrogen and organic pol-
lutants.

In conclusion, BSM1 provides a mutual framework for comparing the perfor-
mance of different control strategies. This paper will thus adopt the framework in
order to more appropriately assess the performance of an MPC setup, as proposed
in the case study.

3.2.2 Plant Layout

As seen in Figure 3.3, the BSM1 plant consists of a five-tank activated sludge reac-
tor, followed by the settling tank. The reactor is designed to facilitate nitrogen re-
moval through a combination of nitrification and pre-denitrification processes. The
first two tanks operate under anoxic (oxygen free) conditions, while the remaining
three tanks are aerobic (oxygen rich). The settling tank ensures the separation of
biomass from the treated effluent. Lastly there is an internal recycler, transferring
nitrate from the last aerobic tank to the first anoxic tank. Controlling parts of the
plant are two PI-controllers, one changing the amount of flow to recycle back from
tank 5 into tank 1, based on the amount of nitrate in tank 2. The other PI-controller
reads the amount of dissolved oxygen in tank 5 and uses the reading to adjust
how much oxygen the aerator needs to pump into tank 5, depending on some
predefined oxygen concentration setpoint.

Influent — = Water flow kLa = Oxygen Transfer Coefficient

Wastewater | ----- #» = Information flow DO = Dissolved Oxygen IPI Controller
Effluent /
: A Settler overflow
Activated Sludge Reactor 240kLa/d 240kLa/d da DO Q_setting_out—>

\ v |

Qinfluent L L

Q_im—¥ Tank 1 (Anoxic) — Tank 2 (Anoxic) | Tank 3 (Aerobic)—pTank 4 (Aerobic)—p Tank 5 (Aerobic)

Q’semmg;m Settling Tank

Q_aerobic_recycle
‘ Q_settling_under

: Internal
------ Nitrate - - - - |P| Controllerf- - - - - - - -~ - Internal Recycle Rate===============-~
Recycler
< Q_|

Q_WAS—»

Figure 3.3: Layout for the default BSM1 plant

The two anoxic tanks each have a volume capacity of 1,000 m>. They are non-
aerated, meaning that no oxygen is actively supplied to these tanks, supporting

3.2. Benchmark Simulation Model no. 1 11

the denitrification process. At the start of the process, wastewater enters the first
anoxic tank. In these tanks, heterotrophic bacteria convert nitrate NO; into ni-
trogen gas N using organic material as an energy source. This process prevents
nitrate pollution in the discharged effluent. The nitrate required for denitrification
is supplied through the internal recycling (Q_aerobic_recycle), which transports
nitrate-rich water from the last aerobic tank (tank 5) back to the first anoxic tank
(tank 1).

Following the anoxic tanks, the wastewater moves through three aerobic tanks,
where nitrification occurs. Here, ammonium NH;" is oxidized into nitrate NO; by
autotrophic nitrifying bacteria, such as:

¢ Nitrosomonas, which converts ammonium N HI into nitrite NO, .

* Nitrobacter, which converts nitrite NO, into nitrate NO; .

After the biological treatment, the treated wastewater from the last aerobic tank,
which has not been recycled, flows into the settler, which separates solids (biomass)
from the treated water. The purpose of this is to maintain biomass in the tanks,
because this is critical for optimal nitrification and denitrification. In the model, the
settler is represented as a non-reactive, 10-layer vertical tank with a total volume
of 6,000 m3, a surface area of 1,500 m?, and a total height of 4m. The inflow to the
settler (Qsettling in) enters at the sixth layer from the bottom, designated as the feed
layer.

The settler simulates key physical processes including gravity-driven settling,
sludge thickening, and counterflow separation of clarified water and sludge. As
the solids settle downward through the tank, clarified water rises and exits from
the top as treated effluent (Qsettling out)- The settling dynamics are modeled using
a one-dimensional flux model that incorporates hindered settling, compression
settling, and dispersion [4]. An in depth description of the mathematical model of
the settler is not included in this report, as it is not necessary to understand the
primary objectives of the report. However, if interested in a full explanation, we
refer to the previous report [3].

To maintain appropriate biomass levels in the biological reactor, two flows are
extracted from the settler:

* Waste Activated Sludge (WAS), denoted Qwas: Excess sludge is removed
from the bottom of the settler to control the solids’ retention time (SRT) and
prevent overgrowth of biomass.

3.2. Benchmark Simulation Model no. 1 12

* Return Activated Sludge (RAS), denoted Qras: A portion of the settled
biomass is returned to the beginning of the biological process to maintain a
high concentration of active microorganisms, thus sustaining effective deni-
trification and nitrification.

3.2.3 BSM1 Dynamics

The following section 3.2.3 is taken from the previous report [3], but has been
modified to fit within this report.

BSM1 uses the Activated Sludge Model No. 1 (ASM1) to describe how the
concentrations of the compounds in each of the activated sludge tanks evolve and
change over time. Both anoxic tanks and the aerobic tanks are activated sludge
tanks in the BSM1 plant. ASM1 describes the different biological processes and
how they influence the different dynamics of the concentration of compounds in
the anoxic and aerobic tanks. ASM1 assumes that the temperature in the tanks is
constant. As the name ASM1 suggests there are successors to ASM1 that model
more biological processes that are not accounted for in ASM1. For the scope of
this project the ASM1 is sufficient as it effectively captures the basic dynamics of a
WWTP.

The ASM family of models represents a progression in activated sludge mod-
eling, each building upon the previous version to enhance the representation of
biological wastewater treatment processes. ASMI laid the foundation, focusing
on carbon and nitrogen removal. ASM2 introduced phosphorus dynamics, ex-
panding the model’s scope to include biological phosphorus removal. ASM2D fur-
ther refined this by incorporating additional denitrification processes. ASM3 took
a different approach, modifying microbial decay mechanisms and adjusting how
growth and storage compounds are handled, leading to a more realistic simulation
of sludge behavior [11].

Model Compounds

The carbon material that is in ASM1 is divided into biodegradable chemical oxygen
demand (COD), non-biodegradable COD and biomass. The substances which are
soluble are denoted (S) and particulate compounds denoted (X). The biodegrad-
able COD is further divided into readily biodegradable substrate (Ss), which rep-
resent the simple soluble molecules that are readily absorbed by organisms. Slowly

3.2. Benchmark Simulation Model no. 1

13

biodegradable substrate (Xs), these compounds are assumed to be made up from

particulate organic molecules, and requi

re breakdown of enzymatic, prior to the

absorption process. Likewise, the non-biodegradable COD are divided into soluble

(S1) and particulate material (Xr) but are

seen as unaffected by the biological sys-

tem. Lastly, the active biomass, which is divided into following types of organisms:
heterotrophic biomass (Xpp) and autotrophic biomass (Xp4). (Xp) is included for
inert particulate products, stemming from the biomass decay. Figure 3.4 shows the
relations of the compounds just mentioned [12].

Total

CoD

Y

|

Y

Biodegradable Nonbi

COoD

COoD

odeg. Biomass

—

Readily Slowly
Biodegradable Biodegradable
Substrate (Sg) Substrate (Xg)

l__

Heterotrophic
Biomass

(Xgn)

Autotrophic
biomass (Xga)

—

3

Soluble
(S)

Particulate
(X1 & Xp)

Figure 3.4: A tree of the carbon material

In ASM1 there is also nitrogenous
material in the wastewater, also known
as the total Kjeldahl nitrogen (TKN),
which is the sum of all the nitrogen
bound in the water. The nitrogen
bound compounds are ammonia ni-
trogen (Snp), organically bound nitro-
gen, and active mass nitrogen, which
is biomass that is assumed to be nitro-
gen. Organically bound nitrogen is di-
vided into soluble and particulate frac-
tions, where both are further divided
into non-biodegradable and biodegrad-
able organic nitrogen. Only soluble

and their relation to each other in ASM1

Biochemical Terms
Biodegradable: Able to be broken down
by bacteria or other organisms
Substrate: A material or substance used
in for enzymatic reactions
Heterotrophic: Organisms that have to
eat/consume food/material for nutrition
Autotrophic: Organisms that can
produce their own food/material for
nutrition from energy sources from the
environment

3.2. Benchmark Simulation Model no. 1 14

and particulate biodegradable organic nitrogen is given a variable name here, those
being (Snyp) and (Xnp) respectively. There is also nitrate nitrogen (Syo) as part of
the nitrogenous material. Figure 3.5 shows these relations of the nitrogenous ma-
terials. Lastly, in the model, we have the alkalinity (Sarx) and dissolved oxygen
concentration (Sp) being expressed as negative COD [12]. An overview of the
compounds mentioned are listed in table 3.1.

Total Kjeldahl
Nitrogen
(TKN)
) 4 ¢ \ 4
A . Organically .
mmonia bound Active mass Nitrate (Syo)

nitrogen (Syy) nitrogen nitrogen NO
Soluble Particulate
organic organic

) 4 Y \ 4) 4

X Biodegradable Biodegradable .

Non Biodeg. Nitrogen Nitrogen Non Biodeg.
Nitrogen (Snp) (Xnp) Nitrogen

Figure 3.5: A tree of the nitrogenous material and their relation to each other in ASM1

Definition Notation
Readily biodegradable substrate Sg
Slowly biodegradable substrate Xs
Soluble inert organic matter Si
Particulate inert organic matter X1
Heterotrophic biomass XBH
Autotrophic biomass XB.A
Particulate products arising from biomass decay | Xp
NH;r and NH3; ammonia nitrogen SNH
Soluble biodegradable organic nitrogen SnD
Particulate biodegradable organic nitrogen XND
Nitrate and nitrite nitrogen SNoO
Alkalinity S ALK
Oxygen So

Table 3.1: List of ASM1 concentration (8/m*) variables.

In ASM1, each compound is measured as a concentration in a given tank. Be-

3.2. Benchmark Simulation Model no. 1 15

low is a list of all the differential equations for the compounds that explains their
dynamics over time. Each differential equation reflects a weighted sum of different
biological processes, which are weighted by how much those processes impact the
compound. All the processes are explained in section 3.2.3. Looking at the first
equation which is for readily biodegradable substrate (Ss), we can see that three
different processes impact its dynamics, AerGrowthHetero, AnGrowthHetero and
HydrolOfEntrOrg, as well as the weights for each process being T' T and 1 re-
spectively. The weights and the processes contain constants wh1ch can be seen in
table 3.2, containing what the parameter is, the symbol used for it and the value of
it at 20°C.

-1 -1
dSs =——AerGrowthHetero + — AnGrowthHetero + HydrolO f EntrOrg
dt Yy Y
dSo = —(1—Yn) AerGrowthHetero + MAerGrowthAuto—i—

dt YH Ya
kLa(SO saturation — SO)

1-Yy
dSvo _ = ()AnGrowthHetero + L AerGrowth Auto

dt 286Yy Y4
dSnp
TR AmmonO fSolOrgN + HydrolO fEntrOrgN
dSny . .
T — ixgAerGrowthHetero + (—ixg AnGrowthHetero)+

(—ixg — Y1A> AerGrowthAuto + AmmonO fSolOrgN

ds —1 1-Y
d";LK = ;ZB AerGrowthHetero + (14286HYH lfj) AnGrowthHetero-+

IxB 1
<< ST YA) AerGrowthAuto> + ﬁAmmonOfSolOrgN

dil(fH =AerGrowthHetero + AnGrowthHetero — DecayO f Hetero
diff‘ =AerGrowthAuto — DecayO f Auto
dd)ip =fp - DecayOf Hetero + fp - DecayOf Auto
dd)is =(1— fp)DecayOfHetero + (1 — fp)DecayOf Auto — HydrolO f EntrOrg
ddStS =(ixg — fp - ixp)DecayOf Hetero + (ixg — fp - ixp)DecayOf Auto—

HydrolOfEntrOrgN

3.2. Benchmark Simulation Model no. 1

16

Parameter Symbol Value
Heterotrophic yield Yy 0.67
Autotrophic yield Y 0.24
Fraction of biomass yielding particulate products fr 0.24
Mass N/mass COD in biomass ixB 0.08
Mass N/mass COD in products from biomass ixP 0.06
Heterotrophic maximum specific growth rate UH 0.002778
Heterotrophic decay rate by 0.000208
Half-saturation coefficient (hsc) for heterotrophs Ks 10.0
Oxygen hsc for heterotrophs Kon 0.2
Nitrate hsc for denitrifying heterotrophs Kno 0.50
Autotrophic maximum specific growth rate UA 0.000347
Autotrophic decay rate ba 0.000035
Oxygen hsc for autotrophs Koa 0.40
Nitrate hsc for denitrifying autotrophs KnH 1.0
Correction factor for anoxic growth of heterotrophs | 7, 0.80
Ammonification rate kg 0.000035
Maximum specific hydrolysis rate ki, 0.002083
Hsc for hydrolysis of slowly biodegradable substrate | Kx 0.10
Correction factor for anoxic hydrolysis ny 0.80
Maximum oxygen saturation S0 saturation | 8.0
Oxygen transfer coefficient kLa varies

Table 3.2: Parameters for the ASM1 model and their value at 20°C

ASM1 Biological Processes

In the ASM1 model there are 8 biological processes described and the equations
to calculate them use the parameters in table 3.2 [12]. The processes are listed

below with a short explanation of what the processes are. Each process also has an
definition for it describing how much of that process occurs given the concentration

of the compounds from section 3.2.3 in a tank:

1. Aerobic growth of heterotrophic biomass

With oxygen present, a fraction of available readily biodegradable substrate
(Ss) is consumed for growth of heterotrophic biomass and dissolved oxygen

(50) is also consumed.

Ss

So

AerGrowthHetero déf HH -

Ks+Ss Kow+So

XBH

3.2. Benchmark Simulation Model no. 1 17

2. Anoxic growth of heterotrophic biomass
With no oxygen present, heterotrophic organisms will use nitrate (Syo) and
readily biodegradable substrate (Sg) to produce heterotrophic biomass and
nitrogen gas.

S5 Kom Swno
Ks+Ss Kog+So Kyo+ Sno

d
AnGrowthHetero Lf UH ‘ng - XpH
3. Aerobic growth of autotrophic biomass
Ammonia (Syy) is oxidized to nitrate via nitrification, which results in the
production of autotrophic biomass and leads to an increased demand for
dissolved oxygen (Sp).

SNH So

def
AerGrowthAuto = . . .
KA KNH + Syn Koa + So

Xpa

4. Decay of heterotrophic biomass
Heterotrophic biomass (Xpp) dies at a certain rate and part of it becomes non-
biodegradable substrate (Xp) and the other part becomes slowly biodegrad-
able substrate (Xgs).

DecayO f Hetero “ by - XgH

5. Decay of autotrophic biomass
Same as decay of heterotrophic biomass but for autotrophic biomass (Xg4).

DecayOf Auto e ba-Xpa

6. Ammonification of soluble organic nitrogen
Biodegradable soluble organic nitrogen (Syp) is converted to ammonia.

AmmonOfSolOrgN e ki Snp - XBH

7. Hydrolysis of entrapped organics
Slowly biodegradable substrate (Xg) is broken down and becomes readily
biodegradable substrate (Sg).
def

X
HydrolOfEntrOrg = ky, - X _i/p);:/ﬂx ' (3
X BH

I Kow Sno) X
Kon + So Kon +So Kno + Sno

8. Hydrolysis of entrapped organic nitrogen
Biodegradable particulate organic nitrogen (Xyp) is broken down to soluble
organic nitrogen

e X
HydrolOfEntrOrgNd:f (kh. S/Xen < So Kon

+npy
Kx+Xs/Xsn \Kon +So " Kou+So

Sno) ‘XBH> XND
Kno + Sno Xs

3.2. Benchmark Simulation Model no. 1 18

3.2.4 Plant Controllers

As seen in Figure 3.3, there are two PI (Proportional-Integral) controllers. PI-
controllers are a variant of PID controllers, which leaves out the derivative term.
PID controllers respond to the error of a system e(t) = PV; — SP, where PV, is a
process variable at time ¢t and SP is the set point, which is the value you want the
PI-controller to guide the process variable towards. Each letter serves a particular
purpose. The proportional term K,e(t) is used to amplify the present error. The
control signal is greater the larger the error is. The integral term K; fot e(t)dr is
an accumulation of past error. If an error goes uncorrected over time then the inte-
gral term would increase, resulting in a larger control signal. The derivative term
Ky dg(:) can be seen as an indication future error. The errors rate of change indi-
cates how large the control signal should be [13]. The coefficients for the integral
and derivative term are defined in proportion to the coefficient of the proportional
term:

K
Ki = =2 and K; = K, Ty
T;
The full equation for a PI-controller can be seen in equation (3.1) and is just a sum
of the two different terms.

u(t) =K, <e(t) +]1,1 /Ote(’t) dT) (3.1)

One of the controllers for the BSM1 plant looks at the concentration of nitrate in
tank 2, and based on the setpoint changes how much of the flow coming out of tank
5 is recycled. The other controller senses the concentration of dissolved oxygen in
tank 5 then controls how much the aeration devices should add, in simulations it
is setting the oxygen transfer coefficient kLa.

In [4] there are also other controllable actions suggested, also listed in appendix
A. In this paper we have tried four controls from this list, those being controlling
the recycling as mentioned above and controlling the kLa in tank 3, 4 and 5.

Energy usage of aeration

As mentioned in 3.2.1, the aeration process energy usage is great. A differential
equation is used to model the energy usage of the aeration devices. Equation (3.2)
has the differential equation where OTRE is the oxygen transfer rate per energy
inputted, with oxygen transfer rate being the amount of oxygen gas that passes

3.2. Benchmark Simulation Model no. 1 19

through the water over a given period, So_ssturation is the maximum oxygen satura-
tion possible in water at a certain temperature and pressure, kLa;(t) is the oxygen
transfer coefficient from the aeration device in tank i at time t and V; is the volume

of tank 1.
5

dE
—aeration — N"(1/OTRE)So,_ saturation - kLai(t) - Vi (3.2)
i=1

3.2.5 Base control

In BSM1, a basic control strategy is implemented to assess plant performance.
In the base control strategy, the first two aerobic tanks maintain stable oxygen
concentrations to support microbial activity, with a fixed oxygen transfer coefficient
of kLa = 10h~! = 240d~!, meaning that oxygen is continuously supplied at a
constant rate. Unlike the two first aerobic tanks, the last aerobic tank actively
controls the dissolved oxygen (DO) concentration, maintaining it at 2% using a
PlI-controller.

The internal recycle flow rate is actively controlled by a PI-controller with a ni-
trate concentration setpoint of 1%, to optimize denitrification efficiency. The flow
rate of internal recirculation Q_aerobic_recycle is constrained within the range of 0
to 5 times the influent flow rate Q_municipality_out to ensure process stability [4].

A full list of all controllable components in the BSM1 plant can be seen be-
low [4].

Internal flow recirculation rate (Q_aerobic_recycle)
* Return sludge flow rate (Q_RAS)
¢ Wastage flow rate (Q_WAS)

* Anoxic/aerobic volume — all five biological reactors are equipped with both
aerators and mechanical mixing devices; i.e., in a discrete fashion, the vol-
umes for anoxic and aerobic behavior can be modified;

* Aeration intensity individually for each reactor

¢ External carbon source flow rate for each activated sludge tank, where the
carbon source is considered to consist of readily biodegradable substrate, i.e.,
CODE(j;

3.2. Benchmark Simulation Model no. 1 20

¢ Influent distribution by use of step feed (fractions of the influent flow to each
of the five biological reactors

¢ Distribution of internal flow recirculation (fractions of the internal recircula-
tion flow to each of the five biological reactors

¢ Distribution of return sludge flow (fractions of the return sludge flow to each
of the five biological reactors

3.2.6 Control evaluation

The following section will describe how the quality of a particular control strategy
is evaluated in the BSM1 framework. A control strategy can for example be the
base control strategy presented previously in section 3.2.5. New control strategies
can be created by utilizing the available control handles from the list in section
3.2.5.

There a multiple factors that contribute to the overall quality of a control strat-
egy. However, the most prominent and simple measurement is effluent quality
(EQ). This report will mostly rely on EQ for the evaluation of different control
strategies. The following description of the EQ function has been carried over
from the previous report [3].

The function can be seen in (3.3) and it defines a differential equation for cal-
culating the weighted amount of pollutant in the plant effluent. The weights and
their value can be seen in table 3.3. These are included as different compounds
have different effects on the quality of the receiving water.

dEQ
dt
+Wno - Snoe + Waops - BODs) - Qsettling,out

= (WSS -55., + Wcop - COD, + WNKj . SNKj,e (3.3)

Weight Wss | Weop | Wnkj | Wrno | Weops
Value (g pollution unit - g~!) | 2 1 30 10 2

Table 3.3: W; values

In equation (3.3) the summation of the five weighted factors, is multiplied by
m3

the water flow Qsettring out (5;7;), to get the total weighted pollutant mass flow, EQ.

3.2. Benchmark Simulation Model no. 1 21

For clarity, in each equation: (3.4), (3.5), (3.6), (3.7), the ,e subscript means the
compound concentration of the plant effluent. The factor with the largest weight
is Kjeldahl Nitrogen (Syk;.), which can be seen in equation (3.4). This accounts for
all nitrogenous material in the water, except for Sy, which is separately weighted.
The nitrogen compounds in Kjeldahl Nitrogen, belong to the Plant Nutrients pol-
lutant group, as seen in Figure 3.1 in section 3.1.

SNKje = SNH,e + SNDe + XNDe + ixB (XBHe + Xxae) +ixp (Xpe + X1e) (3.4)

Equation (3.5) considers the compounds that are part of the Suspended Solids
pollutant group and lastly, equations (3.6) and (3.7) consider biological oxygen
demand and chemical oxygen demand, which are part of the Organic Material
pollutant group. In equation (3.6) fp is the fraction of biomass yielding particulate
products, previously presented in table 3.2.

55, =0.75- (Xse + X1 + XBH,e + XBAe + Xpe) (3.5)
BODs, =025 (Sse+ Xse + (1 — fp) - (XBH,e + XBAe)) (3.6)
COD, = Ss + Sie + Xse + Xie + XpHe + XBA,e + Xppe (3.7)

In table 3.4 below, the concentration limits for the different pollutants in the
effluent can be seen. In the BSM1 framework, these limits are not treated as safety
properties, and the base control strategy presented in section 3.2.5 exceeds these
limits frequently. How exactly such effluent limits are governed differs from coun-
try to country and region to region. According to DHI, in Denmark, the govern-
ment implements these effluent limits as strict safety properties where the specific
pollutant limits differ from WWTP to WWTP. However, in Denmark, despite com-
plying with these limits, the WWTPs are taxed based on the amount of pollutants
in the effluent [14]. Here, Ny is equal to Snoe + Ssnkje-

Variable Value
Ntot < 18 g N - 1'1’173
COD <100 g COD - m3
SNH <4 g N-m-3
SS <30gSS- m3
BODs < 10 g BOD - m~3

Table 3.4: Effluent pollutant limits [4]

3.2. Benchmark Simulation Model no. 1 22

3.2.7 Weather scenarios

The influent data is provided by [4]. The time is given in days, the flow rate is
expressed in cubic meters per day (m3.d~!), and the concentration is expressed
in grams per cubic meter (g.m3). Within the BSM1 framework, three different
weather scenarios are presented: Dry weather, storm weather, and rain weather.
Each scenario contains two weeks of dynamic weather data, and are downloaded
from (http:/ /www.benchmarkWWTP.org/).

Dry Weather

The influent data for the dry weather scenario consists of two weeks of dynamic
dry weather.

35000

30000 -
< 25000
5
2 20000
2
S 15000
H
2 10000 -

5000 |

0 ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 0 12 14
Time (days)

140 350
120 300
E 100 E 250 | H
2 s 2 \ —Xbh
- = |z A\ J -
E ——Snh E 7“ H
£ ® — snd £ 1%
8 3 100 Xnd
c 40 1 M c B
o (o
8 - Jlhaaa bl § ol |
O VS NV PN N N Y e . MMMMMA MMM MM
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Time (days) Time (days)

Figure 3.6: Dry Weather influent

Figure 3.6 illustrates the influent characteristics under a dry weather scenario.
This influent emulates wastewater in steady, dry conditions. The x-axis represents
time, spanning a period of 14 days.

3.2. Benchmark Simulation Model no. 1 23

In the top diagram, the y-axis shows the flow rate in units of (g.m3 A7 1. The
average flow rate is approximately 18, 446m3/ day, with clear diurnal fluctuations
that reflect typical residential and industrial wastewater generation patterns.

In the bottom diagrams, the y-axes represent the concentration of various com-

pounds in units of g - m°.

The left diagram shows the compound’s readily biodegradable substrate (Sg),
ammonium (Syy) and soluble biodegradable organic nitrogen (Syp), with a clear
fluctuating pattern each day.

The right diagram shows the compounds heterotrophic biomass (Xgp), slowly
biodegradable substrate (Xs), particulate inert organic matter (X;), and particulate
biodegradable organic nitrogen (Xyp), which also remains relatively stable over
time. Here we do see some variations on the weekends.

Storm Weather

The influent data for the storm weather scenario consists of one week of dynamic
dry weather followed by a second week that includes two storm events imposing
on the dry conditions.

3.2. Benchmark Simulation Model no. 1 24

70000 -
60000
< 50000 -
°
E 40000 -
2
T 30000 -
3
i 20000 -
10000 -
0 ‘ : ; ; ;
0 2 4 6 8 10 12 14
Time (days)
140 450
& 120 | 7 400 ‘
: 350 |
E 100 £ —
2 s 2 300 | — Xbh
5 80 _ssh S 250 | \J V, Xs
£ ©) Em ‘ \‘ V\ \’ h Xi
g (=—Snd| £ 150 | “ Xnd
g 40 | 8 [——Xnq|
5 S 100 -
O 20 S 5| lu\««
OW\}«\J«M«WMW 0 J\‘-\)\—\J«AM“M_/\,‘N J“\MMM
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Time (days) Time (days)

Figure 3.7: Storm Weather influent

Figure 3.7 illustrates the influent characteristics under a storm weather scenario.
Here we have the same three diagrams as the dry weather, with notable spikes in
the flow rate and X;, and Xgp, and dips in Sg, Syg and Syp during the storm
event.

Rain Weather

The influent data for the rain weather scenario consists of dynamic dry weather
during the first week, while the second week features a prolonged rain event.

3.3. BSM1 & MLE differences 25

60000 -

50000 -

= ’h
T

10000 -|

Flowrate (m3.d-1)

0

0 2 4 6 8 10 12 14
Time (days)

=
>
(=)
[
a
o

-
N
(=)

=
=]
=3

A

Wi, i
v

150‘ ‘\\\““‘

—Ss
—Snh
| —Snd

zno-‘wﬂw w

Ulf e

“: Xs
Xi

Concentration (g.m-3)
[-2] =3
o o
==
-
=
-

Concentration (g.m-3)

\
T
Xnd
40 100 | 1‘“ \ﬂ
20 4 50 |
I T N N N N VWL WS N NN, . J‘“J\“J\‘J‘*J“mw”‘ M M‘w A%
(] 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Time (days) Time (days)

Figure 3.8: Rain Weather influent

Figure 3.8 illustrates the influent characteristics under a rainy weather scenario.
Here we have the same three diagrams as the dry weather, with notable increase
of flow rate and dips of all the compound concentrations during the rain event in
the second week, due to increased flow of water.

3.3 BSM1 & MLE differences

As mentioned in the introduction, this report is a continuation of the previous
report, that had a focus on the Modified Ludzack-Ettinger (MLE) process. MLE
and BSM1 share a common foundation in biological nitrogen removal but differ in
complexity, implementation, and purpose. These similarities and differences can
be seen when comparing the layout of the plants of BSM1 plant in Figure 3.3 and
MLE plant in Figure 3.9. MLE serves as a widely applied process design in opera-
tional wastewater treatment plants (WWTPs), whereas BSM1 is a simulation model

and a framework designed to research and evaluate different controls strategies for
optimization.

3.3. BSM1 & MLE differences 26

Influent

Wastewater PI Controller|
Effluent /

7y Settler overflow

Activated Sludge Reactor Q_settling_out—»

Q_influent v ‘ H

Q_in» Tank 1 (Anoxic) —{ Tank 2 (Aerobic)

KLa DO

Q_setling 0 Setling Tank

Q_aerobic_recycle

Q_settling_under

Internal
Recycler
Q_WAS—>
< Qi

Figure 3.9: Layout of an MLE plant

Both the MLE and BSM plants are based on the principle of pre-denitrification,
where nitrate produced during aerobic treatment is recycled back to an anoxic
zone. The process, as illustrated in both Figures, starts in an anoxic tank where
denitrification occurs, followed by an aerobic tank (or sequence of tanks) facilitat-
ing nitrification. The nitrate formed in the aerobic section is recycled to the anoxic
section to be converted into nitrogen gas by heterotrophic bacteria. In both systems,
a settling tank follows the biological treatment to separate solids from treated ef-
fluent. Additionally, the Figures depict sludge recycle and sludge removal lines.
Returned activated sludge (RAS) helps sustain microbial populations, while waste
activated sludge (WAS) removal regulates solids retention time.

Despite these shared design principles, Figure 3.3 illustrates BSM1’s increased
complexity relative to the simplified layout of MLE in Figure 3.9. BSM1 implements
a more detailed structure by dividing the biological reactor into five sequential
tanks: the first two (Tank 1 and Tank 2) are anoxic, while the last three (Tanks 3 to
5) are aerobic. Each aerobic tank features an oxygen transfer capacity of 240 kLa/d,
with a PI-controller regulating dissolved oxygen levels dynamically in tank 5. In
contrast, the MLE plant (Figure 3.9) consolidates the anoxic and aerobic processes
into single tanks, with aeration managed via a PI-controller in the aerobic tank.

The internal nitrate recycle loop—essential to pre-denitrification—is present in
both diagrams. In an MLE plant, it is a simple loop transferring flow from the
aerobic to the anoxic tank. This is the same for the BSM1 plant from Tank 5 to
Tank 1 with the addition that the amount recycled is controlled by a PI-controller.

3.4. Model Predictive Control 27

3.4 Model Predictive Control

Model Predictive Control (MPC) is a way to create advanced control strategies for
a dynamic system in a changing environment. In MPC, there is the real system
and a model of the system. The model is used to predict where the real system is
headed, and this allows for testing how actions taken in the real system could affect
the future. By having an optimization criterion the best actions can be estimated,
also known a strategy.

Definition 3.4.1 (Deterministic Strategy) Let S € R denote the state space of a sys-
tem, and A the set of possible actions. A (deterministic) strategy o is a function

cg:S— A

that maps each state s € S to an action o (s) € A.

The model of the system need not be an highly precise estimate of the real
system to be useful. The model might deviate from the real system due to a number
of factors such as relying on forecasts, systems containing stochastic behavior or
approximations of real behavior. The model will be less like the real system over
time due to the accumulation of such factors, and therefore only the first action
of a learned strategy is applied for a given control period P. A new strategy is
then learned from the state of the real system after applying the action, and the
procedure is repeated [15]. This behavior can be seen in Figure 3.10a, where the
predicted dashed line extends from the real systems solid blue line state. The
solid green line is the actions that have been taken, and the dashed green line is
the future actions given by the strategy calculated when in the predicted states.
But as time progresses on Figure 3.10b the solid line deviates from the previously
predicted trajectory and a new dotted blue line prediction is made, and the strategy
is recalculated and thus changes to fit the new prediction.

This cycle is shown in Figure 3.11 with three parts to it. At time t = k, the
initial state x(k) is passed from the MPC controller to the optimizer (OPT), which
calculates an optimal strategy U;‘(k) that is returned to the MPC controller. The
MPC controller then passes the action o7, (x(k)) to the environment (ENV). The
environment uses the action and after P time the new state x(k + P) passed back
to the MPC controller and the cycle begins again.

The framework does not rely on a specific method for optimizing, and any
method that can create a strategy can be used. This makes the framework very
flexible. When calculating a strategy the optimizer predicts to a horizon H which

3.4. Model Predictive Control 28

k-1P k k+#1P Kk+2P Kk+3P Kk+4P k45P k-1P k k+1P k+2P k+3P k+4P k+5P
(alt=k (bit=k+ 1P

Figure 3.10: Model Predictive Control: Figure (a) shows the systems trajectory at time ¢ = k with
a control Period P and a horizon H. The blue line represents the trajectory of the system’s state,
with the solid portion indicating the past trajectory and the dashed portion indicating the predicted
future trajectory. Below, the green line depicts the sequence of control actions, where the solid portion
corresponds to past control actions and the dashed portion to the future control actions. Figure (b)
illustrates the system’s trajectory at time ¢t = k + P. A dotted line is added for both the system’s
state and the control actions, representing the updated predicted future trajectory. The Figures and
caption is from our previous report [3].

(k) Ty (x(K))
NN

OPT MPC ENV

\x@/\/

x(k+ P)

Figure 3.11: MPC framework

is a multiple of P. Both P and H are targets for optimization, where finding good
values for them can improve the optimizer in both speed and performance. Look-
ing too far ahead in a prediction might lead to learning strategies on wildly inac-
curate scenarios, but it could also be good if there is a future weather forecast that
needs actions early to prepare for it.

One thing Figure 3.11 does not account for is the time it takes to calculate a
good strategy. The Figure assumes that it is instant, but in reality it can take quite
a while. Since we need an action once every P time, the P is also the maximum
time we have to calculate a strategy. So in order to have a strategy ready one could

K+ 6P

3.4. Model Predictive Control 29

start calculating strategy for time k, one period early at time k — P and therefore
use the previous state x(k — P). This means learning on not the most up-to-date
state.

A type of optimizer that works well with MPC is reinforcement learning. Re-
inforcement learning is a type of machine learning where a agent tries different
actions in an environment and evaluating the outcome based on a cost or reward
function. Doing so it can learn which actions provide the most benefit. Not just
in the short run but also over a longer period. There is a balance in rewarding
immediate beneficial actions and long term beneficial actions.

Chapter 4

Related Work

This section will explore related work on control of WWTP processes using MPC,
as well as, literature surrounding the combination of MPC and Reinforcement
learning.

41 BSM1 and MPC

In the field of WWTP optimization, a study [16] utilizing the BSM1 benchmark
proposed the application of Model Predictive Control (MPC). The study focuses
on developing a systematic tuning procedure for MPC to optimize internal recy-
cling flow and air flow rate by adjusting the oxygen transfer coefficient. The goal
is to control effluent quality while minimizing operational costs. The paper eval-
uates MPC performance under different tuning strategies, analyzing their impact
through various simulations. The results highlight the advantages of MPC over
traditional control methods, particularly in reducing overshoot and response time.
Both our report and the study apply advanced MPC to the BSM1 benchmark, using
it as the control mechanism for WWTP operations. However, while the [16] study
relies on fine-tuning MPC parameters through systematic adjustments to achieve
optimal setpoints. We propose integrating reinforcement learning (RL) to enhance
control adaptability. This approach enables the system to learn and improve perfor-
mance dynamically, rather than depending solely on predefined tuning methods.
Additionally, our study incorporates real-time energy prices to further optimize
operational costs.

30

4.2. Combining MPC & Reinforcement Learning 31

In the discovery of related works, no study has been found that combines MPC
and reinforcement learning to integrate intelligent control in the BSM1 plant.

4.2 Combining MPC & Reinforcement Learning

The following section on combining MPC and reinforcement learning has been
retained from the previous report [3], as these studies remain relevant.

As explored in the previous section, no work in the literature was found that
uses reinforcement learning with MPC to optimize BSM1 processes. In order to
showcase the efficiency and potential of combining MPC and reinforcement learn-
ing, this section will present a few examples in current literature that uses MPC
with reinforcement learning, applied to a problem setup that is similar to that of
this project. Firstly, the general problem setup consists of a dynamical system. In
relation to MLE, this is the set of biological and physical dynamics that explain
how essential compounds evolve over time, in both the anoxic tank, the aerobic
tank and the clarifier. The second component of the general problem setup is an
optimization problem that involves a quality parameter, a cost parameter, or both.
For MLE, there is both a quality parameter (Effluent quality) and a cost parameter
(Energy consumption).

Goorden et al. [17] utilizes MPC and reinforcement learning through the UP-
PAAL tool suite [18, 19, 20] to optimize water discharge quality from storm water
detention ponds and avoid stream erosion. UPPAAL was used to model the dy-
namical system (flow of water) and the extension UPPAAL Stratego was used to
find near-optimal control strategies for the outflow regulation. The optimization
parameter was here to maximize the water level in the pond, and thus maximiz-
ing particle sedimentation, while satisfying a safety constraint of no overflow. The
result of applying MPC with reinforcement learning was a 95% overflow duration
reduction and a 29% pollutant sedimentation improvement compared to traditional
static control.

Hasrat et al. [21] also utilizes MPC and reinforcement learning through the UP-
PAAL tool suite. They use automatic model identification to model the thermody-
namics of a house and its rooms. They then use UPPAAL Stratego to synthesize
near-optimal control strategies for the control of a domestic floor-heating setup, op-
timizing for both comfort and energy cost, by looking at hourly energy prices and
weather forecasts. Utilizing MPC and reinforcement learning, they save up to 33%
energy cost, while maintaining the same comfort level as a traditional controller.

Chapter 5

Problem Statement

Wastewater treatment plants are necessary to remove harmful pollutants from in-
coming wastewater, before it is released into surrounding water bodies. However,
in the biological removal stage, a significant amount of energy is used to blow oxy-
gen into the biological reactors. The amount of oxygen input is often controlled
by fixed setpoints which are altered manually by humans. Such manual control
may be inefficient, creating the possibility of improving energy consumption and
quality of the outgoing water (effluent) through intelligent control using MPC and
reinforcement learning.

In related works, we explored previous studies that were successful in com-
bining MPC and reinforcement for intelligent control of various real-life systems.
As these studies utilized UPPAAL and UPPAAL Stratego, this project will also
employ UPPAAL for intelligent control of the BSM1 plant. While this project’s
setup resembles those in Goorden et al. [17] and Hasrat et al. [21], the BSM1 plant
involves a significantly more complex dynamical system than those addressed in
the referenced studies.

With this motivation, we construct the following problem statement, and below
it, a set of associated challenges.

Can MPC and reinforcement learning be used to reduce energy con-
sumption/cost and improve effluent quality of the BSM1 plant?

32

33

Challenges

» Simulation efficiency - As reinforcement learning is a simulation-based method,
it is important that simulation of a given system is quick and efficient. This
proposes a challenge as WWTP models are very complex, where even the
relatively simple ASM1 model consists of 13 differential equations for each
activated sludge tank in the model. It is therefore important that work be put
into optimizing simulation speed, to increase the likelihood of computing
effective control strategies in acceptable time.

* Partial observability & Measurement noise - In an MPC setup, you would typi-
cally receive periodic information from sensors in the real world system, to
update the true state of the system model. In BSM1, this could be information
about the concentration of compounds in the different activated sludge tanks.
However, in most real WWTPs such sensors do not exist, are too expensive
to invest in or are sensitive to noise. Instead, manual tests are performed,
but with a very low frequency, if even at all. For an MPC setup to work
efficiently, the true state of the system needs to be updated every period, but
here this is not accessible.

* Parameter estimation - The simulation accuracy of a WWTP model is largely
determined by the correctness of the parameters used to calculate the bio-
logical, chemical, and physical behaviors of the system. That is, the closer
the simulation parameters are to the actual real world parameters, the more
accurately the system can be simulated in an MPC setup. However, these
parameters change dynamically over time, which means they have to be con-
stantly updated for accurate simulation of the system.

* Inflow characteristics prediction model - The characteristics of the wastewater
going into the WWTP are unknown beforehand. As such, a model that can
predict the future characteristics of the incoming wastewater is desired to
assist the reinforcement learning algorithm in finding control strategies that
are effective, not only for the current state of the system, but also the future
state of the system.

Resolving these challenges is necessary to realistically implement such an MPC
setup on a real WWTP. As such, in this paper, we propose a pipeline that addresses
each of these challenges in the MPC setup. A description of the pipeline can be
found in section 7.1.

Chapter 6

Tools

6.1 WEST & Tornado API

The following section 6.1 is from the previous report [3], and has been adapted to
tit the BSM1 plant layout.

WEST by DHI is a software tool designed for modeling and simulating wastew-
ater treatment plants (WWTPs). WEST serves as a digital platform for exploring,
designing, and optimizing the biological and chemical processes within WWTPs.

WEST enables users to refine plant design, operations, and automation. The tool
supports the creation of performance indicators under dynamic simulation condi-
tions and allows for experimental queries.

One of WEST’s competence is its ability to create virtual replicas of real systems,

providing a testing ground to evaluate, compare, and validate real-world processes
by simulating various operational strategies and configurations.

6.1.1 BSM1 modeled in WEST

Figure 6.1 below provides an overview of the BMS1 process as modeled in WEST.
At the leftmost part of the process, we see the "municipality,” which represents the
source of the wastewater. In this simulation, the incoming inflow from a munici-

34

https://www.dhigroup.com/technologies/mikepoweredbydhi/west

6.1. WEST & Tornado API 35

pality, containing organic matter, nutrients, and solids, is defined using a file with
detailed information.

v
m v v v
CC——p—stmp>————D >—p >

Municipality_1

Figure 6.1: A screenshot of the graphic BSM1 model in WEST.

The entire incoming flow is directed to the first anoxic tank 1 (ASU_1 in the
Figure), a reactor where denitrification takes place. This process involves reduction
of nitrates (NO3-) to nitrogen gas (N2). Removing nitrogen compounds from the
wastewater. All the blue lines represent flow.

After the removal of nitrogen in the Anoxic Tanks, the flow is sent to the Aer-
ated Tanks, which is responsible for nitrification and organic matter removal. The
aeration PI-controller supplies oxygen to the tank.

From the last aerated tank (ASU_5), a portion of the flow is recirculated back to
ASU_1 through internal recirculation. This recirculated water brings nitrate from
the Aerated Tank back to the Anoxic Tank, to further remove nitrate from the
system.

After internal recirculation, the flow continues to the settling tank, also called the
Clarifier, where the separation of solids (sludge) from treated water occurs. The
treated water (effluent) exits through the outlet ("out"), while solids settle at the
bottom of the tank as sludge.

Part of the settled sludge is recycled back to the beginning of the process. Any
excess sludge is removed as waste sludge.

The BSM1 dynamics described in 3.2.3 are similarly defined in WEST. These
are found in a tool called the "Model Editor". Here one can also find all impor-
tant parameters and constants for the modeling of BMS1, as well as, code for the
functionality of different components, such as splitters and aeration control.

6.1. WEST & Tornado API 36

6.1.2 Simulation in WEST

The Figure 6.2 provides an overview of the WEST simulation tool. It displays the
control center, where simulations can be run to analyze the model. The dynamic
setting is used for simulating the model using a dynamic inflow dataset.

Control Center n X
Steady State | Dynamic
Start Current Stop LImit
4 d||o 0 10000 min -

O

Figure 6.2: The Control Center in WEST to configure simulations of the model.

One can change the unit of the simulation and the duration of the simulation,
as well as, the start and stopping point of the simulation.

6.1.3 Results in WEST

In the below Figure 6.3, the result of the specific variables in the simulation can
be seen. We can see that it is possible to plot all variables in the model through
the graph tools in WEST. This result showcases how the inflow to the anoxic tank
(light blue line) changes over the given time frame, and how the internal recycling
inflow (the orange line) changes in the given time frame. Lastly, variables can be
checked and unchecked to be visible and hidden from in the graph.

6.1. WEST & Tornado API 37

% - < = Sheet 4 x|t Influent - licipality 1 |

pPoIg

Plot

FNEFNET NN
BV R o»

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

InternRecycle.Outflow1(S_NO) .InternRecycle.Outflow2(S_NO) ~ JInternRecycle.Inflow(S_NO)
AnoxicTank.Inflow(S_NO)

Figure 6.3: An example of plotting different variables in the BMS1 process during simulation.

6.1.4 Tornado API

WEST also have an API called Tornado, which can be used to programmatically
control much of the functionality of WEST. Such as initializing variables, running
simulations, changing variables mid-simulation and retrieve the results of simu-
lations. Not much documentation was provided for Tornado, making it hard to
work with going only off of function signatures. Tornado is available as a .NET
DLL, allowing for it to be imported into python using a library such as pythonnet.
Tornado is built around handling buffer files. The buffer files are huge .XML files
which hold the entire state of an “experiment”, which is what a project in WEST is
called. Some useful methods in the Tornado are:

* Tornado.ExpLoad(path: string): loads the initial state of an experiment
from a given path as a string, and returns an experiment dynExp object.

® dynExp.ExpSetInitialValue(variable: string, value: float): Setsthe
initial value for one of the variables in the experiment, useful for applying
actions from a strategy.

6.2. UPPAAL 38

® dynExp.Run(): runs a simulation based on the values set for the start and
stop times. These can be set in WEST control center as shown in Figure 6.2.

Due to limited documentation, we did run into some problems. For example,
we needed to set the start and stop times of the experiments. None of the functions
we tried in the API seemed to do what we wanted, but as mentioned huge . XML
buffer files make up the experiment, and as such we could just change those values
directly in the .XML file.

6.2 UPPAAL

UPPAAL is a tool used for modeling, simulation, and verification of real-time sys-
tems. UPPAAL utilizes constraints and interactions between transitions and sub-
processes to define timed automata. It provides a framework for model checking,
verification, and simulation, enabling testing of the implemented model and learn-
ing of strategies using reinforcement learning.

6.2.1 UPPAAL Core

The classic version of UPPAAL is the most fundamental. It is based on timed
automata. Figure 6.4 shows a simple example of a UPPAAL model. This model
imagines a simple train line with 4 locations, the depot and three different stops
, forming a loop. We consider the case with six trains operating on the same
train line. A parameter is given to each train shown in the top of the Figure, so
that each train has a unique id, which in this example a integer in the range 1 to
N = 6 inclusive. The type id_t is defined by typedef int[1,N] id_t;. Each of
the locations has a name associated with it, and an invariant in purple (x <= 2id
) which must hold true for a train to be in that location. x is a variable which
is of type clock. Clocks are a type which automatically increases in value over
time. Between locations there can be transitions. The transition between depot and
stopl has a guard in green (x >= id) which must hold true for a train to travel
from depot to stopl. When the transition is taken, the model can execute update
code, which in this case is the two statements in blue. Firstly, x=0 simply resets
the clock x back to zero, and secondly the variable depot_count is decremented by
one. In fact, depot_count gives at any point in time the number of trains which are
at the depot location.

https://uppaal.org/

6.2. UPPAAL 39

Name: | Train Parameters: |id_t id

X =id
x=0,
X < 1d%2 depot_count -= 1 X < 1dx2
depot@ Ostopl
X =1id X = id
XZBI x=0
depot_count += 1
< s
% \sig;% Y Ox < id%2
X = 1id stop2
x=0

Figure 6.4: Simple UPPAAL train model example

UPPAAL supports automatic model checking of queries that specify relevant
properties of a given system. Model checking of queries can be used to verify
and validate the correctness of the model using a symbolic model checker. These
queries express properties such as reachability, absence of deadlocks, and system
properties like safety, liveness, and "leads to" conditions. For the train example we
could ask if it is possible for the depot to have no trains with the query:

E<> depot_count ==

which evaluates to true. Here E<> P is a query that evaluates to true if eventually
there is a reachable state which satisfies the predicate P [22]. The query:

E<> forall (id:id_t) Train(id).stop2

uses a forall statement to see if it is possible to reach a state where all trains are at
stop2 at the same time. Checking the query does evaluate to true, but depending
on the type of state space search order used, it can take over a minute to check
with a breadth first search or 0.2 seconds with a random depth first search.

6.2.2 UPPAAL SMC

An extension of the core UPPAAL tool is UPPAAL SMC (Statistical Model Check-
ing), which enhances the verification capabilities of the original version. While the
core UPPAAL relies on exhaustive state space exploration, UPPAAL SMC intro-
duces probabilistic analysis, enabling systems to be modeled and analyzed statis-
tically, including stochastic behaviors.

6.2. UPPAAL 40

UPPAAL SMC supports the estimation of probabilities and the verification of
model properties under uncertainty via an extended query language similar to that
of the core version. It allows users to formulate probabilistic queries to estimate
the likelihood of certain predicates being true and to simulate variable trajectories
within the model. Figure 6.5 shows three examples of queries. The first query is
a simulate query which, which simulates the model for an amount of time units
specified and has a list of expressions which it keeps track of. Afterwards you can
show a plot of the values of the expression. The result of the example simulate
query can be seen in Figure 6.6. The second and third query in Figure 6.5 are
probability queries, where you specify a bound on the time to simulate a run, an
optional amount of runs and a predicate. The query:

Pr[<= 20] (<> depot_count >= 4 && t >= 5)

estimates that within 20 time units there is a 60% £ 5% chance that there are at
least 4 trains in the depot at some point after 5 time units. The other query:

Pr[<= 500; 500] (<> forall (id:id_t) Train(id).stop2)

shows that over 500 runs that are simulated for 500 time units, there is a 16% =+ 3%
chance that at some point all the trains are in the stop2 location.

simuvlate[£ 28] {depot_count} o
Prl= 20](< depot_count 2 4 & t 2 5) 0.406249 £ D.0491512 (95% CI) o 0
Prl= 500; 508](< forall (id : id_t) Train(id).stop2) 0.166017 + 0.0334058 (95% CI) o o

Figure 6.5: UPPAAL SMC queries for train example

Simulations (1)

6.0
55
50 |
45
40
35

value

30
25

: T L

08

oo =
o 1 2 3 4 5 5] 7 g g 10 1 12 13 14 15 16 17 18 18 20

time

depot_count

Figure 6.6: Result from running query simulate[<= 20] {depot_count} on the train example

6.2. UPPAAL 41

For WWTP, we need more than just time. We need concentration levels of
various compounds—and descriptions in terms of differential equations as to how
these evolve. So we need general continuous variables and not just clocks as in
timed automata.

Fortunately, UPPAAL supports statistical model checking of Hybrid Automata.
A key feature is the inclusion of hybrid clocks, in contrast to the core version
that only supports static clocks. Hybrid clocks have variable rates, meaning they
can update at a user-defined rate per time unit. This functionality is enabled by
incorporating differential equations, where the clock rate is specified in the location
invariants using Lagrangian derivative notation.

Example: Two Tank model

An example of a system that can be modeled as a Hybrid automaton is the two
tank system as introduced in [23]—and it can be seen in Figure 6.7a. The system
consists of two tanks, each with their own water level x; and x,, two controllable
gates, Q; and Q». The Q; adds inflow into the first tank if opened, and Q drain
the second tank if opened. There is also a constant inflow into the first tank Qp, and
a drainage Q4 from tank 1 to 2 which depends on x;. Finally, there is a drainage
Qg from tank 2. The behavior of x; is given by:

dxq —x1 —2 if gate 1is closed
— = (6.1)
dt —x1+3 if gate 1 is opened
Likewise, the behavior of x; is given by:
drx; Jx if gate 2 is closed 62)
dt |x—x—4 if gate 2 is opened '

The UPPAAL model for two tank model consists of two parts, the controller
and tanks. The controller as seen in Figure 6.7b decides the action of which gates
to open and close. Every P time units it picks a new action to do. The goal is to
try and keep the water level in the tanks between 1 and 10. The guards are what
limit which actions that are enabled. The tanks shown in Figure 6.7c shows three
differential equations, one for each of the water levels in the tanks, and one for
the cost function we want UPPAAL to optimize. The variables for the model are
shown in Listing 6.1 and the functions for the differential equations shown in 6.2.
X1_change and X2_change are simple implementations of equation (6.1) and (6.2).

6.2. UPPAAL 42

The calc_cost function simply incurs a cost of 10, if the level of the tanks are not
between 1 and 10.

x =z P &&
X1<10 & X1=21 &&
X2<10 & X221

x=0
Q Q
! 0 ((Xx>P 8& X1 > 10 X>P &8 X2 > 10)
x=0, x=0,
X, L gatel = 0 O gate2 = 1)
(x=P 8& X1 < 1 f<p X2P8&X2<1)
x=0, = x=0,
gatel = 1 gate2 = 0
g J
(b) Controller in the two tank model
Qa
s O
Q, Qg

(a) Two tank model

(c) Tanks and cost in the two tank model

Figure 6.7: Overview of the two tank model

Now that we understand the model, let’s try evaluating some queries on it.
Figure 6.8 shows two queries. The first simulates for H time units and keeps track
of the value of the variables in the brackets, results of which can be seen in Figure
6.9. The second query is an estimation query, that estimates the maximum value of
the variable cost after H time units over 100 runs. It estimates that the maximum
cost is ~ 45. The strategy does a good job at keeping the cost low. Maybe it can
be improved, but it might be hard to see how, and this is where UPPAAL Stratego
comes into play.

6.2. UPPAAL 43

Overview
simulate [< H] {X1, X2, gatel, gate2} u @
E [< H; 100] (max: cost) 45.0636 + 0.00348907 (95% CI) @

Figure 6.8: Simulation and Estimations queries for the two tank model

simulate [<= H] {X1, X2, gate1, gate2}

value
-

a 1 2 3 4 5 & 7 8 9 0 n 1213 14 15 16 17 18 19 20
time

—Xxi1 X2 gatel — gate2

Figure 6.9: Plot of the result of query simulate [<= H] simulate [<= H] {X1, X2, gatel,
gate2}

6.2. UPPAAL 44

I double X1_change (){
2 if (gatel){
3 return -X1 + 3.0;

| }
5 else {
6 return -X1 - 2.0;
7 }
1 clock t; 8 F
2 clock x; 9
3 int gatel = 0; 10 double X2_change (){
4 int gate2 = 0; 1 if (gate2){
5 12 return X1 - X2 - 4.0;
6 hybrid clock X1 = 2.0; 13 }
7 hybrid clock X2 = 2.0; 14 else {
8 hybrid clock cost = 0.0; 15 return X1;
9 16 T
10 const int P = 1; 17 ¥
11 const int H = P * 20; 18
12 19 double calc_cost (){
. . . 20 if (X1 <=1 || X1 >= 10 ||
Listing 6.1: two tank model variables N %2 <= 1 || X2 >= 10)4
22 return 10.0;
23 }
24 return 0.0;

Listing 6.2: two tank model functions

6.2.3 UPPAAL Stratego

UPPAAL Stratego includes features that enable the learning of strategies for mod-
els of systems, which can be defined as Hybrid Markov Decision Processes. There
are two types of strategies:

1. Safety strategies, sometimes called a shield, which ensure that actions taken
never lead to a property being violated whenever possible. This means the
model avoids violating safety properties and prevents reaching undesirable
states.

2. Optimization strategies, which focus on maximizing or minimizing a given
optimization criterion.

UPPAAL Stratego employs reinforcement learning to derive a strategy that op-

6.2. UPPAAL 45

timizes a specified objective. To learn an optimal strategy using reinforcement
learning, the following query syntax is used:

strategy Name = minE(Cost) [Bound] { ExprListl } -> { ExprList2 }:<> Goal

where:
* Name is an identifier used in other queries.

* minE(Cost) specifies that the expected value of the expression Cost should be
minimized. maxE(Reward) is also available to maximize an expected reward
instead.

* Goal defines a goal state, once a run ends up in a goal state, the run termi-
nates.

* ExprListl and ExprList2 are again lists of comma-separated expressions
that limit what part of the system is used to learn a strategy. ExprListi
specifies the discrete state expressions and ExprList2 the continuous state
expressions, thus having partial observability. These lists can be omitted to
specify that the entire system should be observed.

6.2. UPPAAL 46

Example: Two Tank model continued

Now, let’s utilize UPPAAL Stratego to
find a better strategy for the two tank
model than the one used in section 6.2.2.
To use UPPAAL Stratego we will need a
new "controller", where a learned strat- gate?2 ’
egy can decide the actions to take. Con- X 0

troller is in quotes here because without
a strategy to choose the actions it does
not do much. This controller is shown
in Figure 6.10. In UPPAAL Stratego a
dashed line means that it is uncontrol-
lable by a strategy and instead a part
of the stochastic environment, whereasa [W - _ - _ _ _ = @
solid line means it is controllable. The no- x =P

tation i:int[0, 1] means that UPPAAL X<P

will create a transition for each value in

the given range, so all permutations of Figure 6.10: New two tank "controller"
open and closed of gate one and two will

be made.

gatel

I
.

With new control options made, we can try evaluating some queries on the model.
Figure 6.11 shows the results of all the queries. Firstly in Figure 6.11a, we have
two queries where no strategy is used, meaning that whenever there is a choice to
make, it is picked randomly from a uniform distribution over the available options.
The first simulates for H time units and keeps track of the value of the variables
in the brackets, results of which can be seen in Figure 6.11b. The second query is
an estimation query, that estimates the maximum value of the variable cost after
H time units over 100 runs, yielding a maximum cost of ~ 181. The next query
learns the strategy named opt by minimizing the estimated value of cost. It learns
from runs that are H time units long. Once the strategy is trained, the same two
queries are repeated—but this time, the choices are derived from the strategy opt
instead of being random. As shown in Figure 6.11c, the behavior of the strategy
is intentional, and the estimated maximum value from the second query is ~ 18
using the strategy, which is lower than both the random strategy, and the manually
made strategy from Figure 6.7b. The strategy appears to have learned an effective
approach.

6.3. STOMPC

Overview

simulate [= H] {X1, X2,
E[= H; 100] (max: cost)
strategy opt = minElcost) [£H]

gatel, gateZ}

po= (T

simulate [= H] {X1, X2, gatel, gate2} under opt

E [= H; 100] (max: cost) under opt

[
181.411 + 3.4887& (95% CI) M

(a) Two tank queries

simulate [<= H] {X1, X2, gate1, gate2}

valug
L I S N T)

0 1 2 3 4 5 & 7 8 © 10 11 12 12 14 16 1@ 17 18 1@ 20
fime
X1 X2

gata1 gate2

(b) Simulation query using random strategy

value

10

0o

ol
= 18,1323 &
simulate [<= H] {X1, X2, gate1, gate2} under opt
//’H]
RUNNASASRERARSATRER

0 1 2 2 4 5 8 7 8 © 10 11 12 13 14 15 16 17 18 10 20
time

X1 X2 gatel — gate2

(c) Simulation query using opt strategy

Figure 6.11: UPPAAL Stratego two trank results

6.3 STOMPC

Strategoutil is a python library that facilitates functionality to interface with UP-
PAAL Stratego via python. STOMPC is built into Strategoutil and allows to easily
create MPC functionality with either UPPAAL as both the model and real system,
or UPPAAL as the model and an external simulator as the real system [24].

STOMPC implements the class MPCsetup which has most of the functionality to
run UPPAAL as a model and simulator. The only things you need to provide is to:

The initial state

file

A UPPAAL model

The learning parameters for verifyta (UPPAAL command line utility)

Implement the create_query_file method to create a fitting UPPAAL *.q

To run MPC using an external simulator, a class which inherits MPCsetup is
needed, and the method run_external_simulator needs to be implemented on

https://github.com/DEIS-Tools/strategoutil

6.3. STOMPC 48

the class. This function takes the action found by the optimizer and needs to inter-
face with the simulator—which in our case is the TORNADO API—and relays the
action to it. The latest true state of the system is then returned from the simulator
and then the method, so that for the next iteration the MPC loop, UPPAAL can
use the new values. This is shown in Figure 6.12 and also shows where STOMPC
tits in between UPPAAL Stratego and WEST. Figure 6.12 also shows that the opti-
mizer can use extra external information for the optimization, in our case, inflow
prediction data and the future energy prices.

nflow Prediction
Data +
Energy Prices

True system state ‘(Optimizer
L (Stratego)

Synthezised control strategy

MPC Setup
(STOM PC) Control strategy for [P}, Pi+H]

y

el -]

Digital Twin (WEST) <

New parameters
+

real plant state

True system state

Figure 6.12: How STOMPC interfaces between UPPAAL Stratego and WEST

Some changes were needed to STOMPC for it to work like we needed which were:

¢ Windows support

¢ Allow array indexes to be watched

To allow STOMPC to run on Windows operating system, a change was needed to
a regular expression used to parse values from a list outputted by a UPPAAL sim-
ulate query. The regular expression only matches on newline escape characters \n,
but due to backwards compatibility, Windows also has a carriage return character
\r which needs to be accounted for in the regular expression and is matched with
an optional operator \r?.

For allowing STOMPC to support inserting and watching values in an array. This
was not possible due to square brackets—used for indexing arrays—having a syn-
tactical meaning and as such needs to be escaped first before being used in the
regular expression.

Chapter 7

Implementation

This chapter first describes the pipeline mentioned in chapter 5. Next, the UP-
PAAL model of the BSM1 plant described in section 3.2 will be explained in detail.
Lastly, the implementation of STOMPC and the code written for interfacing be-
tween WEST and UPPAAL is presented.

7.1 Pipeline

In this paper we propose a pipeline for intelligent control of the BSM1 plant using
MPC and reinforcement learning, and a digital twin.

49

7.1.

Pipeline 50

nflow Prediction
Data +
Energy Prices

True system state ‘(Optimizer
L (Stratego)

\4Synthezised control strategy
MPC Setup
(STOM PC) Control strategy for [P;, P;+H]
/
K
¥
New parameters
Digital Twin (WEST SR
True system state g () real plant state

Figure 7.1: The MPC and digital twin pipeline.

Digital twin (WEST) - This is the high fidelity virtual version of the actual
plant, modeled in WEST. The state of the digital twin is updated to reflect
the real plant. Because measurements of different compounds in a WWTP
tank are manual, slow, and expensive, these measurements are very rarely
conducted. This means that the state of the digital twin will be updated to
the real state of the plant quite infrequently. However, with good parameter
estimation, we predict simulation accuracy to be adequate for MPC.

Optimizer (UPPAAL) - This consists of a low fidelity model of the plant in
UPPAAL. UPPAAL also provides built in reinforcement learning techniques
using UPPAAL Stratego. As such, the optimizer is used for computing near-
optimal control strategies using reinforcement learning, which are then re-
layed back to STOMPC.

MPC (STOMPC) - The tool STOMPC is used to implement the MPC scheme.
It acts as an interface between the digital twin in WEST and the UPPAAL
optimizer. It relays the plant state from the digital twin to the optimizer, and
relays back the computed intelligent control strategy to be used.

Inflow prediction model - This is a model that provides the optimizer with
predictions on the characteristics of the incoming wastewater. This enables
the optimizer to compute control strategies that not only are immediately
effective, but also effective regarding the future state of the system.

Hourly electricity prices - The optimizer is fed hourly energy prices to enable
optimization of energy consumption timing. Using this, the algorithm could
learn to ramp up aeration when energy is cheap, to preemptively build up

7.2. Modeling 51

the biomass in the tanks, which is then useful later when energy prices are
higher.

e Periodic parameter estimation - The accurate simulation of a real plant largely
relies on the accuracy of the ASM1 model parameters. The model parame-
ters can vary over time, depending on the weather, season and many other
factors. As such, periodic parameter estimation is needed to ensure accurate
simulation, in turn increasing the likelihood of computing effective control
strategies.

Although we deem all the components in the list above to be necessary for in-
telligent control of a WWTP using MPC, only a subset were actually implemented
due to the scope of this project. First, we have modeled the BSM1 plant as a
high fidelity digital twin in WEST. Similarly, we have modeled a low fidelity BSM1
plant in UPPAAL to utilize UPPAAL Stratego and reinforcement learning in the
MPC setup. We have implemented the MPC scheme using STOMPC, interfacing
UPPAAL Stratego and WEST.

We have not built an inflow prediction model, but instead assumed that such
a model exists in our setup. We have not implemented a parameter estimation
model, but instead assume the ASM1 model parameters to be constant and correct.
As such, the real plant has also been excluded as we essentially assume the digital
twin to be absolutely accurate at all times.

7.2 Modeling

As a reference, below we insert the Figure from section 3.2 of the BSM1 plant.

7.2. Modeling 52

Influent — = Water flow kLa = Oxygen Transfer Coefficient
Wastewater | ----- # = Information flow DO = Dissolved Oxygen P Controller
Effluent /
! A Settler overflow
Activated Sludge Reactor 240KLa/d 240KkLa/d kta Do) Q_settling_out—>
ofuen \ \ v |

Q_settling_in

Q_im#» Tank 1 (Anoxic) —» Tank 2 (Anoxic) ——{ Tank 3 (Aerobic)—p Tank 4 (Aerobic)— Tank 5 (Aerobic) Settling Tank

Q_aerobic_recycle

‘ Q_settling_under

3 Internal
------ Nitrate- - - - - %Pl Controllerf - ---- - - - - Intemal Recycle Rate~ === ========-=-=~
Recycler
Q_RA

<

Q_WAS—>

Figure 7.2: Layout for the default BSM1 plant

7.2.1 Update_Discrete

Below in Figure 7.3 is presented the Update_Discrete template in UPPAAL, which
implements the settling tank model and the water flow logic.

updateSettler(),
updateFlows(),
X =0

P L N

Figure 7.3: Modeling of the Waterflow

As shown in Figure 7.3, the settling tank and the water flow are modeled using
a single location in the UPPAAL template. This location contains an invariant
x < P, which ensures that the system remains in the state until clock x reaches P.
The dashed transition with guard x == P represents a cyclic update that when the
clock x reaches P, the system performs a transition where the clock is reset (x = 0),
and the update functions updateSettler() and updateFlows() are called. These
functions calculate the water and sludge flows as well as update the component
concentrations in the settler after one period P.

7.2. Modeling 53

Waterflow

The following section has largely been carried over from the last report [3], as not
much has changed in the modeling of the flows.

The flow is, as mentioned, updated using the updateFlows shown in listing
7.1. Qin can be calculated as the sum of the incoming flows Qi fiuent + Qras +
Querovic,recycte- From the last aerobic tank the amount recycled is limited by the
recycler PI action variable u,, and anything above u, flows to the settling tank,
giving us:

Qaerobic,recycle = min(Qin/ ur)
and
Qsettling,in = Qin - Qaerobic,recycle

Qsettling,under 15 the flow which exits under the settling tank. This is limited using
underyqy where the rest of the flow goes to Qsettring,out, giving us:

Qsettling,under = nmin (Qsettling,in: undermax)

and
Qsettling,out = Qsettling,in - Qsettling,under

Lastly a bit of the flow is separated to be further processed as waste activated
sludge (WAS). Again we have a limiting desired maximum WAS,,;x and the rest of
the flow is the return activated sludge (RAS), which completes the cycle, giving us:

Qwas = min(Qsettling,underr WAS uax)
and

Qras 1= Qsettling,under — Qwas

updateFlows is also where we calculate the RAS proportion:

Qras : .
RASPVUPOTtiOVl = Qsettling,undw lf Qsettlzng,under 75 0
0 otherwise

w N

7.2. Modeling 54

const double recycle_max = 38.42916; // m3/min
const double under_max = 13.077083; // m3/min
const double WAS_max = 0.26736111; // m3/min

void updateFlows () {
Q_influent = read_double(TID, row_index, H20);
Q_in = Q_influent + Q_aerobic_recycle + Q_RAS;
Q_aerobic_recycle = fmin(Q_in, u_r);
Q_settling_in = Q_in - Q_aerobic_recycle;
Q_settling_under = fmin(Q_settling_in, under_max);
Q_settling_out = Q_settling_in - Q_settling_under;
Q_WAS = fmin(Q_settling_under , WAS_max);
Q_RAS = Q_settling_under - Q_WAS;

RAS_proportion = Q_settling_under != 0.0 ? Q_RAS/Q_settling_under
0.0;
X
Listing 7.1: Code snippet from the updateFlows function
Settling tank

The updateSettler() function from Figure 7.3 implements the separation of the
solids and soluble compounds.

Afterward, dissolved and particulate components are distributed to either the
effluent (the treated water) or the underflow (sludge) using two functions. For dis-
solved substances, the flow is applied directly, while for particulate substances, a
fraction is used based on sludge concentration and flow to ensure realistic distri-
bution.

For a more in depth description of the settling tank model, we refer to the
previous report [3, p. 56-58], as the model used in the previous report has not
undergone any changes.

7.2.2 Activated Sludge Tanks

The model represents a time-controlled process for updating five Activated Sludge
Tanks (ASTs) in a wastewater treatment plant. The anoxic and aerobic tanks share
the same construction and are therefore modeled together. The dynamics are im-
plemented in C code and utilized in UPPAAL using the built-in external code
functionality. The dynamics follow the ASM1 model as described in section 3.2.3.

7.2. Modeling 55

group_SO0_timer = SO_step &&
group_S_timer == groupS_step &&
group_X_timer == groupX_step
group_SO_timer = 0O,
update_group(1)

group_S_timer = groupS_step && = ______

group_X_timer == groupX_step - \\ ,/ .

group_SO_timer = 0, RN J gPoup_SO_Flmer < SO_step &&
group_S_timer = 0, ! ;i:é: gPoup_S_t}meP < groupS_step 8&&
update_group(2) l,//:’ N group_X_timer < groupX_step

group_X_timer = groupX_step
group_SO0_timer = 0,
group_S_timer = O,
group_X_timer = 0O,
update_group(3)

Figure 7.4: Modeling of discretely updating the compound concentrations in the AST’s.

The model 7.4 introduces three distinct transitions, each corresponding to a
specific category of compounds. The 13 compounds are grouped based on the
numerical step-size each compound require for stable and accurate simulation [25].
Each group is updated independently according to its assigned step size.

These transitions are governed by the three clocks: group_SO_timer,
group_S_timer, and group_X_timer. Each timer is associated with a compound
group, and transitions occur only when the corresponding timing conditions are
met. These conditions enforce controlled updates, preventing any group from
being updated too frequently and thereby exceeding its allowed step size.

The state machine in the model uses these timers to determine which group to
update, and the groups are defined with update_group (x) where x is a placeholder
for group 1, 2 and 3. Group 1 consists of compounds {S_O, S_NO}, with a step
size of 0.5 (minute). Group 2 consists of compounds {S_I, S_S, S_ZNH, S_ND,
S_ALK}, with a step size of 1.0 (minute). Group 3 consists of compounds {X_S,
X_BH, X_I, X_BA, X_P, X_ND}, with a step size of 10.0 (minutes). A group is
updated only when its timer reaches the defined threshold. When this happens,
the corresponding update function is called. If none of the thresholds are reached,
the model remains in a waiting state.

The update_group(int group) function performs the internal computations for
updating the five ASTs. It calculates the inflow into each unit based on the incom-
ing influent, recycled activated sludge (RAS), and aeration contributions. Each
AST receives inflow from the preceding tank, and oxygen (Sp) is transferred into

7.2. Modeling 56

tank 3, tank 4 and tank 5.

It is important to note that while many of the other UPPAAL templates are
similar to the last report [3], a lot of work has been dedicated to refine and optimize
the code of the activated sludge tanks template.

In the last report, we experienced several issues with the UPPAAL integral
solver Runge-Kutta. It was therefore decided to rewrite the code, to perform sim-
ple manual integration of the compound differential equations. First off, this solved
the issue of reaching negative concentrations for rapidly evolving compounds like
oxygen (S_O). Secondly, it allowed for costume fixed step-sizes for different com-
pounds. For example, oxygen (S_O) and nitrate (S_NO) are fast evolving com-
pounds, so to achieve sufficient accuracy and avoid negative concentrations for
these two compounds, the step-size needs to be appropriately small. On the other
hand, any X compound is slow evolving, so step-size of these compounds can be
significantly larger than oxygen and nitrate. The grouping of different compounds
to different step-sizes significantly reduced the amount of calculations when sim-
ulating, and resulted in a ~ 9x simulation speed improvement, compared to the
models presented in the last report.

In addition to this, when calculating the compound differential equations, many
compounds dependent on the same processes in the ASM1 model. For example,
to calculate how the oxygen concentration (S_O) evolves over time, one needs to
compute the rate of process 1 (Aerobic Heterotrophic Growth). However, the com-
pounds’ substrate (S_S) and heterotrophic bacteria (X_BA), also need to compute
the rate of process 1. In the old model, process 1 was thus computed 3 times,
instead of just once. By optimizing the reuse of computed process results and
eliminating redundant calculations, resulted in a factor two speed-up in simula-
tion time.

7.2.3 Municipality Model

This template is designed to retrieve all inflow data from a CSV file, implementing
the inflow to the BSM1 plant. Each row in the CSV file represents the inflow for one
minute, with compound inflow values given in % and water inflow in m’”—; The
inflow data is based on the BSM1 framework, which simulates weather conditions
as described in section 3.2.7. The dataset spans a two-week period. To simulate
steady-state inflow conditions, the model continuously reads the first row of the

CSV file.

7.2. Modeling 57

municipality_x=S
do_increase(),

municipality_x=0

municipality_x<S

Figure 7.5: Modeling of Municipality

The model shown in Figure 7.5 consists of a single location. It features a lo-
cal clock, municipality_x, with an invariant that triggers the transition function
do_increase() every S time units. The do_increase() function advances the
pointer to the next row in the CSV file, retrieving the corresponding inflow data
for the next time step.

To emulate the existence of a prediction model as described in section 7.1, we
apply stochastic uncertainty to the influent data, that approximates a realistic or
worse error of such a prediction model. By doing so, UPPAAL Stratego will learn a
control strategy that is effective in all different influent scenarios. This uncertainty
is calculated in line 14 of listing 7.2, and is an accumulative error controlled by the
two constants alpha and std_error. alpha controls how smoothly the error behaves,
a higher alpha will result in slower error fluctuations, where a lower value will
result in more random behavior. std_error controls the magnitude of uncertainty
at each step.

7.2. Modeling 58

1 const double alpha = 0.99;
2 const double std_error = 0.05;

3

4 double smooth_error () {

5 double ran_err = random_percent () ;

6 double prev_error = error;

7 return alpha * prev_error + std_error * ran_err;

s

9

10 void do_increase (){

11 if (ROWS !'= row_index + 1){

12 double rand = random_percent () ;

13 row_index += 1;

14 error = smooth_error();

15 for (i : int[0,num_compounds-1]) {

16 double value = read_double(TID, row_index, 1i);

17 influent_comp[i] = random_influent ? value*(l+error)
value;

18 }

19 3

Listing 7.2: Code snippet from the Municipality template

To showcase how this looks when simulating, an example of the inflow of a
random compound can be seen in Figure 7.6 below, shown in black, alongside the
same compound inflow after uncertainty has been added in red.

7.2. Modeling 59

Stochastic error example

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000
x-axis

Stochastic eror data — Real data

Figure 7.6: Compound inflow of some compound before and after uncertainty has been added.

When running several simulations with this accumulative error, we observe un-
certainty of anywhere from 0-60%. In [26] they evaluate multiple different models
for predicting the characteristics of influent. These model errors range, but are
typically between 5-20%.

7.2.4 PI-Controller

The AerationPI template implements the PI-controller logic for the aeration of aer-
obic tanks in the BSM1 model, as well as reading current energy prices from a
CSYV file to calculate the cost of the aeration energy. The automaton regulates the
oxygen levels in tank 5 using a Proportional-Integral (PI) controller. Furthermore,
the model controls updating the energy cost data at regular time intervals. The
implementation uses the PID controller theory in section 3.2.5 and the template
modeled in UPPAAL can be seen in Figure 7.7.

7.2. Modeling 60

energy_cost_x = energy_cost_period
energy_cost_x=0,
energy_cost_row_index += 1

u_,a' = -u_a + u_pi() 8&
integ_e_a' = calc_integral() &&
energy_cost_x < energy_cost_period

Figure 7.7: The AerationPI template

The model 7.7 consist of a single location with continuous behavior. Within
this location, there are two differential equations defined in the invariants. The
control signal u_a evolves according to the expression u_a’ = —u_a+ u_pi(), which
gradually drives u_a toward the value computed by the PI-controller. integ_e_a’ =
calc_integral() accumulates the error over time between the desired and actual
oxygen concentrations. Lastly, energy_cost_x < energy_cost_period ensures that
the system remains in the current location until a predefined amount of time has
passed. The clock energy_cost_x keeps track of time and triggers an update when
it reaches the value energy_cost_period.

There is another template that implements the PI-controller of the internal re-
cycling rate. Since its approach is the same as that of the AerationPI template, we
do not show it here.

7.2.5 Controller

The last UPPAAL template in the model is the Controller template, which can be
seen in Figure 7.8 below. The idea here is that this automaton primarily is in the
Wait location, but periodically is forced to make a control decision, whenever PC
time has passed. The template defines the available control options for the model,
which consists of an array of oxygen concentration setpoints for the Pl-controller
controlling aeration in tank 5.

7.2. Modeling 61

mode = i,
Y_S_a = setpoints_al[mode],
Xx =0

Wait
x < PC

Figure 7.8: The Controller template

Note that the initial location is also an urgent location, meaning that no time
can pass in this location. This ensures that a control decision is made immediately.

7.2.6 Cost function

In order for a optimization strategy to be learned a cost function is needed to
evaluate the states explored in order to find the ones that minimize the cost. There
are two factors that the cost function should take into account. The effluent quality
(EQ) mentioned in section 3.2.6 and energy consumption from aeration Egration
mentioned in section 3.2.4. A weighting is added to the cost function such that
one factor can be prioritized over the other. With two weights Wgg and W,, such
that Wgg + Wy, = 1, one can try many different weightings to find one that fits
ones needs. A problem arises though because the domain of EQ and E,ation are
different, meaning that a weight of Wgg = W,, = 0.5 is not a equal priority for
both factors. Therefore a normalization factor vy is applied to Egeration- This yields
the differential equation shown in (7.1)

dcost
dt

= WEQEQ + VowEaeration (71)

When energy is cheap it could be wise to use more of it for the same overall energy
cost. Therefore the current energy price Cg can be multiplied to the energy usage,
yielding Equation (7.2).

dcost
dt

= WEQEQ + VowEaemtionCE (7'2)

7.2. Modeling 62

Energy Prices

The energy cost data are obtained from the Energy Data Service [27]. The site pro-
vides Elspot prices for day-ahead spot prices in Denmark (DK) and neighboring
countries. The spot price (in DKK) is calculated based on the spot price (in EUR)
and the euro exchange rate from Danmarks Nationalbank. The data collected in-
cludes the hour and date for each entry in DK, along with the corresponding spot
price (in DKK). While the spot prices on the website are given in DKK/MWh, they
have been converted to DKK/kWh in the dataset. The dataset covers a period of
two weeks starting from the 20th of January, 2025. The variation in Elspot prices
over the dataset period is illustrated in Figure 7.9.

Energy prices

44

4.2
40
38

38
3.4
a2
3.0

=28

ERL]

2.4

2o ‘l

rice (DKK/

18
18

1.4

12 U\ ﬂh Ill I I
UV g el
: WS o

0.0
[+] 2,000 4,000 8.000 8.000 10,000 12,000 14,000 16,000 18,000 20.00C

Time (minutes)

Figure 7.9: energy prices over a two week period starting from the 20th of January, 2025

7.2.7 Model Correctness and Speed

To validate that the UPPAAL model works correctly, some simulations were run on
both it and the model in WEST with the same initial state. Variations for the step
sizes for group-SO, group-S and group-X as described in section 7.2.2, were tested
to find an good compromise between speed and accuracy. The result of the WEST
simulation serve as the reference point for validation. The effluent of the UPPAAL
simulations are then compared to that of the WEST simulation using a metric called
Mean Absolute Percentage Error (MAPE). MAPE is sensitive to relative errors and
the equation for calculating MAPE can be seen in equation (7.3) [28].

7.2. Modeling 63

o1 vy — il
MAPE(y,) = ;m 100 (7.3)

The results in Figure 7.10 display five points, each labeled with a triple repre-
senting the step sizes for group-SO, group-S, and group-X, respectively. The step
sizes (0.5, 1.0, 10.0) complete the simulation in less than half the time of the step
sizes (0.1, 0.2, 2.0), with only a minor increase in the MAPE score. However, further
increasing the step sizes significantly raises the MAPE score, as seen with (1.0, 2.0,
20.0), while providing only a marginal reduction in simulation time. Consequently,
the red dot (0.5, 1.0, 10.0) was selected as the optimal step size configuration for
further use.

Simulation Time vs MAPE for Different Step Sizes
@!1.0.2.0,200)

6.8 1

6.6

6.4

6.2

MAPE

6.0

@(0.7,1.4,14.0)

3-8 1 @(0510, 100

5.6 @ (02,04, 40)

@ (01,02 20)

T T T T
2.0 2.5 3.0 3.5 4.0 45 5.0 55
Simulation Time (s)

Figure 7.10: Trade off between simulation time and MAPE score of the UPPAAL BSM1 plant model
compared to the BSM1 plant in WEST. Each point represents a variation in step sizes for group-SO,
group-S, and group-X. The red dot indicates the selected step sizes for further use.

One important observation is that the MAPE scores for the compounds Sg and
Sy are more than twice those of the other model compounds, which contributes
to an overall increase in the MAPE score. However, this is not a major concern,
as when using MPC, the true state is periodically updated, preventing continued
deviation.

7.3. MPC Implementation 64

7.3 MPC Implementation

For this project there are three main things we need to be able to do in order to run
MPC with many different hyperparameters.

* Pass actions to and simulate the WEST BSM1 plant using the TORNADO
API, returning a time series of data from the simulation.

* Run STOMPC to bridge between learning strategies in UPPAAL and apply-
ing them in TORNADO APIL.

¢ Conduct highly parallel MPC experiments with many different permutations
of hyperparameters.

To achieve this, three Python classes were created, TornadoExperiment (),
BSM1_MPCsetup (MPCsetup) (which inherits the base MPCsetup() class from Strate-
goutil) and MPC_Experiment.

7.3.1 TornadoExperiment class

This class manages all interactions with the TORNADO API. Upon initialization,
it sets the necessary environment variables for the API to function correctly. This
includes executing a file called "vcvars64.bat" which is a part of Microsoft Build
Tools and defining paths to various folders required by the TORNADO API. The
class is made such that you only need to call the run method after initialization.
The signature of the method is:

def run(self, start, sim_time, controller_config)

Where the parameters are:

* self, Provides access to the TornadoExperiment class instance (Python’s stan-
dard practice).

¢ start, Controls the time at which the simulation should start.
¢ sim_time, How long to simulate for.

* controller_config, A dictionary with set points for PI-controllers.

7.3. MPC Implementation 65

Before an experiment file from WEST can be executed using the TORNADO
API, it must first be simulated in WEST. This simulation generates a file called
"Dynamic.ObjEval.Exp.xml", which contains the initial state of the experiment.

To preserve this initial state, the file is copied so that simulations run through
the TornadoExperiment class do not overwrite it, allowing it to be reused multiple
times. This copying occurs only if the start parameter is set to zero. If the start
time is nonzero, an experiment is already in progress, and the copied file is used
instead.

After running the simulation via the TORNADO API, a time series containing
a subset of the experiment’s variables is returned.

7.3.2 BSM1_MPCsetup Class

As mentioned in section 6.3 the responsibility of MPCsetup class and those that
inherit from it, is to facilitate interaction between UPPAAL and an external sim-
ulator, which is the TORNADO API for us. When the class is initialized an in-
stance of the TornadoExperiment class is also initialized and stored in the property
self.experiment. Also mentioned in section 6.3 is the need to implement the
method create_query_file, which results a UPPAAL query file containing two
queries, the first being derived from the f-string:

f"strategy opt = minE({cost}) [<={horizon}] {PO_var_string}: <>(t=={finall})"

Which creates a strategy that learns to minimize the value of the cost function over
runs that are H long. It is also incorporates partial observability as describe in
section 6.2.3. The second query is given by the python f-string:

f"simulate [<= {period}+1] {{ {self.var_names_as_string()} }} under opt"

This query simulates the system for P + 1 time units. Since an action is applied
every P time units, at P 4+ 1, UPPAAL has just executed an action, allowing it to be
captured in the simulation results and parsed. The call to
self.get_var_names_as_string() ensures that all relevant variables are included
in the simulation query.

The main loop for MPC is contained within the MPCsetup.run method, which
consists of three major steps:

1. Learning a strategy using either the initial state or the state from a previous
iteration, then extracting the best action from the result.

7.3. MPC Implementation 66

2. Simulating the WEST model using the extracted action via the
TornadoExperiment class.

3. Updating the state based on the results of the TORNADO simulation so it
can be used in the next iteration.

To enable STOMPC to run the external simulator, the following method is im-
plemented:

def run_external_simulator(self, chosen_action, control_period, step)

where the parameters are:

* self: Provides access to the BSM_MPCsetup class instance (Python’s standard
practice).

* chosen_action: The action extracted from the strategy.
* control_period: The length of a period P.

¢ step: The number of MPC iterations completed.

The TornadoExperiment .run method, described in section 7.3.1, is used to per-
form the simulation via the TORNADO API The simulation output is appended to
a results file for future analysis, and the last row of the simulation data is returned
from run_external_simulator.

7.3.3 MPC_Experiment Class

This class provides a method to generate multiple permutations of experiment
hyperparameters and run MPC for each in parallel. Since each MPC experiment is
independent, parallel execution is straightforward. The hyperparameters available
and used in this project are shown in Table 7.1.

These hyperparameters are given as lists, allowing multiple options for a single
hyperparameter. The Cartesian product is used to generate all possible experi-
ment variable lists. A hash can be generated for each list of experiment variables.
Any part of the code that generates or copies files uses the hash to create unique
filenames.

7.3. MPC Implementation

67

Hyperparameter Default value Description
Period 90 (90 minutes) Length of the control period P
Horizon 720 (12 hours) Length of the horizon H

Actions (Aeration)

{0.0,0.5,1.5,3.0,5.0}

The action space available
in RL. These are the PI-
controller oxygen concentra-
tion setpoints.

Actions (Recycling)

{05,1.0,2.0,3.0}

The action space available in
RL, for the setup that includes
recycling control.

Cost Function Weight 0.5 Rather to prioritize EQ or En-
ergy cost in the cost function
Partially Observable Empty String String containing the variables

Variables

to observe

UPPAAL Model "BSM1_STOMPC.xml" | List containing different names
of UPPAAL models

good-runs 200 UPPAAL Stratego learning pa-
rameter

total-runs 500 UPPAAL Stratego learning pa-
rameter

runs-pr-state 200 UPPAAL Stratego learning pa-
rameter

eval-runs 200 UPPAAL Stratego learning pa-

rameter

Table 7.1: Available experiment hyperparameters and their default value

7.3. MPC Implementation 68

The MPC_Experiment class implements def run(self, exp_ID), where self
follows Python’s standard practice of referencing the instance, and exp_ID is an ex-
periment hash. This method starts an experiment by instantiating a BSM1_MPCsetup
class and calling its run method with all experiment hyperparameters associated
with the experiment hash.

If an interruption occurs during an MPC experiment run, a built-in function-
ality checks whether a corresponding results file exists. If the time column of
the last row in the time series does not match the total expected experiment
duration, the experiment can resume from the most recent iteration. When the
MPC_Experiment.run method is called, it first performs this results file check to
determine whether the experiment should restart from the beginning or resume
from its last completed iteration.

Interruptions may arise from various sources, such as a code exception, an UP-
PAAL error, a TORNADO API failure, or other unforeseen issues, such as Windows
updating.

Chapter 8

Experiments

Various experiments were conducted to evaluate the effectiveness of using MPC
to control the BSM1 plant. Section 8.1 outlines the different BSM1 plant variations
and the hyperparameters applied in the experiments. In sections 8.2.1, 8.2.2, and
8.2.3, the focus is on energy consumption, where the cost function balances energy
use and effluent quality. In section 8.2.4, the focus shifts to energy cost, with the
cost function balancing energy cost and effluent quality. Energy cost is computed
using the hourly energy data presented in section 7.2.6.

8.1 Setup

The experiments include five variations of the BSM1 plant setups: one using a
fixed control strategy, while the remaining four employ MPC and reinforcement
learning to synthesize near-optimal control strategies. These strategies adjust one
or more Pl-controller setpoints for aeration, internal recycling, or both. The five
BSM1 plant setups are:

¢ Fixed control - In this setup, a PI-controllers are added to control aeration in
tanks 3, 4, and 5. Each PI-controller follows the same constant oxygen concen-
tration setpoint throughout the experiment. This setup serves as a baseline
for comparing traditional control methods to intelligent control using MPC.

¢ 1tank AC - This setup follows the BSM1 base control configuration described
in section 3.2.5. However, instead of maintaining a fixed aeration setpoint of

69

8.1. Setup 70

2.0 in tank 5, the PI-controller’s setpoint is dynamically adjusted using MPC
and UPPAAL Stratego.

¢ 3 tank AC - This setup builds upon 1 tank AC by additionally assigning PI-
controllers for aeration control to tanks 3 and 4. However, all three aeration
PI-controllers share a single oxygen concentration setpoint, which continues
to be adjusted dynamically by MPC and UPPAAL Stratego.

¢ 3 tank AC and RC - This setup builds upon 3 tank AC by additionally manip-
ulating the setpoint of the PI-controller that regulates internal recycling flow.
Like before, MPC and UPPAAL Stratego are used to dynamically adjust the
setpoints.

¢ Individual and combined AC - This setup explores the concept of closely
interconnecting denitrification and nitrification by allowing MPC to assign a
shared setpoint to tanks 3 and 5, while tank 4 receives a separate setpoint. In
theory, tanks 3 and 5 would maintain higher oxygen concentration levels, fos-
tering aerobic environments, while tank 4 would operate at a lower setpoint,
creating an anoxic environment. The rapid switching between aerobic and
anoxic conditions is expected to enhance the efficiency of the denitrification
and nitrification processes.

The following describes the experiment setup for the energy consumption ex-
periments in sections 8.2.1, 8.2.2, and 8.2.3. Each setup presented above is run for
one week under each weather scenario (dry, rain, and storm), starting from the
second week in the file. The second-week start is necessary because the rain and
storm weather does not start until the start of the second week. To compare the
performance of the different setups, each setup will also be run with four differ-
ent weighting pairs of energy consumption and effluent quality (EQ). The set of
weights for energy consumption are {0.2, 0.4, 0.6, 0.8}, and vice versa for weights on
effluent quality. These variations generate four Pareto curves, visually illustrating
the trade-off between energy consumption and effluent quality, aiding in perfor-
mance comparison across setups. Additionally, a Pareto curve for traditional fixed
control of the BSM1 plant is included to benchmark MPC performance.

Hyperparameter Finding

Using MPC and UPPAAL Stratego, there are several hyperparameters that can be
manipulated to fine-tune learning and optimize performance. The selected hyper-
parameters and their values are presented in Table 8.1 below. Note that this is

8.1. Setup 71

almost the same table as in section 7.3.2, but is presented here to clearly define the
experimental hyperparameters.

Hyperparameter Default value Description

P 90 (90 minutes) Length of the control period P
H 720 (12 hours) Length of the horizon H
Actions (Aeration) {0.0,0.5,1.5,3.0,5.0} | The action space available

in RL. These are the PI-
controller oxygen concentra-
tion setpoints.

Actions (Recycling) {0.5,1.0,2.0,3.0} The action space available in
RL, for the setup that includes
recycling control.

Partially Observable | All (Full observability) | Variables in the model that

Variables Stratego can observe during
learning

good-runs 200 Number of good runs for each
learning iteration

total-runs 500 Number of total runs to at-
tempt for learning

runs-pr-state 200 Number of good runs stored
per discrete state

eval-runs 200 Number of runs used for eval-
uation of strategies

alpha 0.99 Controls the smoothness of

influent uncertainty error—
higher values slow fluctua-
tions, lower values increase
randomness.

std_error 0.05 Determines the magnitude of
the influent uncertainty at each
step.

Table 8.1: Available MPC and RL hyperparameters and their default value chosen for the experi-
ments.

The four hyperparameters—good-runs, total-runs, runs-pr-state, and eval-runs—
constitute what is referred to as the reinforcement learning budget. A larger budget
allocates more computational resources to discovering an effective control strategy,
consequently increasing the time required to synthesize a strategy for the given
period.

8.2. Results 72

As noted in section 7.2.3, the specific combination of alpha and std_error from
the table introduces significant uncertainty in the influent, reaching up to 60%
error.

To determine the above hyperparameter values, we conducted coarse initial
tuning, focusing on one hyperparameter at a time and testing different values
to observe their impact on learning over a short duration. From running MPC
with differing amount of observable variables we found that full observability per-
formed the best. Which is surprising considering that less variables should in
principle allow the partitioning algorithm—that UPPAAL Stratego uses—to find
more optimal strategies. Having less variables means having a smaller state space
to explore and therefore be more likely to find good partitions.

8.2 Results

This section presents the experiment results, following the approach outlined in
the previous section, for each weather scenario.

8.2.1 Dry Scenario

The results of the dry weather experiment are shown in Figure 8.1. In general, all
four setups that utilize MPC for intelligent control outperform the fixed control
approach, represented by the black curve. Additionally, there appears to be a
consistent trend where higher setpoints in the fixed control setup correlate with
greater potential improvements in effluent quality and energy consumption.

8.2. Results 73

Dry weather scenario

4.0 -

37500 T = Fixed control

) —— 1tank AC
— 3 tank AC

35000 1 —— 3tank AC and RC
555' Individual and combined AC
X 32500 1
&
= 3.0
2 30000 1 .
£
=
g
S 27500 1
)
=
T 25000 - 20
w

22500 15

20000 g

T T T T T T T
41000 42000 43000 44000 45000 46000 47000
Effluent quality (kg pollution)

Figure 8.1: The accumulated energy consumption and effluent quality over a week of the dry weather
file for the four different setups. They are plotted against the fixed control results in black. Each
fixed control data point is labeled with the given fixed oxygen concentration PI-controller setpoint.
The results are presented as Pareto curves, balancing between a focus on energy consumption or a
focus on effluent quality (EQ).

The 1 tank AC setup is limited to manipulate the aeration of the last tank in
the BSM1 setup, which might explain the relatively small Pareto curve. There is
not a lot of room for influencing the energy use and thus the effluent quality of
the BSM1 plant in this setup. It still shows an improvement to fixed control in
higher aeration setpoints, while the performance drops off and, if following the
trend, actually drops below the performance of fixed control in the lower aeration
setpoints.

The 3 tank AC and RC looks to be the best performing setup, for higher aera-
tion setpoints, utilizing the additional control of the internal recycling rate in the
BSM1 plant. Comparing it to fixed control with a setpoint of 3.0, it achieves an
energy consumption reduction of 24% while keeping the same effluent quality.
Additionally, it achieves a 5% improvement in effluent quality, at the same energy
consumption as fixed control with setpoint 3.0. At a fixed control setpoint of 2.0,
which is a very common oxygen concentration setpoint in the industry, the results
are an 8% relative energy consumption reduction and a 4% relative effluent quality
improvement.

8.2. Results 74

Fixed setpoint | Violation time (min)
1.0 6200 (12.3%) EQ weight | Violation time (min)
1.5 4253 (8.4%) 0.2 5955 (11.8%)
2.0 3776 (7.5%) 0.4 3428 (6.8%)
3.0 4070 (8.1%) 0.6 2608 (5.2%)
5.0 5338 (10.6%) 0.8 2853 (5.7%)
(a) Effluent limit violation time at different fixed (b) Effluent limit violation time at different EQ
control setpoints. weights for the 3 tank AC and RC setup.

Table 8.2: Comparison of effluent limit violation times between fixed control and the 3 tank AC and
RC setup during the dry weather scenario. The violation time is the total violation time summed
over all different pollutant groups for which there exists an effluent limit. Note that because this
is a summation over all pollutant groups, some violation times may exceed the number of minutes
in a week (10080). The percentage value, refers to the percentage of time the limits were violated
out of the collective maximum violation time for all five pollutant groups. The collective maximum
violation time is 10080 - 5, since each pollutant group could potentially violate the limits for the entire
duration of the week. The effluent limits of the different pollutant groups can be seen in section 3.2.6.

In Table 8.2 above, it can be seen that there is a general relationship between the
prioritization weight on effluent quality and the total effluent limit violation time.
Although it is difficult to make a direct comparison between a fixed control setpoint
and an EQ weighting used in the reinforcement learning cost function, the two
tables give an intuition on the benefits of intelligent control using MPC on violation
times. Note that the effluent violation limits are not included as a component in
the cost function used in reinforcement learning. Instead, the numbers are a result
of an improved effluent quality when applying intelligent control using MPC and
reinforcement learning.

For both MPC control and fixed control, a point is reached where more oxygen
input negatively impacts the violation time. This makes sense, as too much oxy-
gen will overproduce nitrate and Kjeldahl nitrogen, which are then in danger of
exceeding their effluent limits.

8.2. Results 75

Influent VS controller behaviour

2500 o

2000 4

gram/minute)
d

H
o
=]
=3

Oxygen setpoint

S_S Influent (

-
o
=]
=1
==

500 4

T T T T v T
] 2000 4000 6000 8000 10000
Time (minutes)

Figure 8.2: A graph showcasing how the 3 tank AC setup with an energy consumption weight of 0.4,
reacts to changes in influent. Here, the S_S compound is used, but the influent trend is the same for
all compounds, so S_S sufficiently represents the influent trends.

In Figure 8.2 above, it can be seen how the 3 tank AC setup reacts to changes
in influent. In general there is a clear pattern in the influent, where influent spikes
during the morning when people wake up, varies throughout the day, and then
falls to a minimum during the night. Interestingly, it can be seen how the oxygen
concentration setpoint for the PI-controllers of the 3 tanks roughly follows the
peaks and valleys of the influent. This makes sense, as the more influent you have
coming in, the more oxygen you need to treat it. This also means that aeration can
be significantly reduced during the night, where influent is reduced. The 3 tank AC
setup showcased above is with a weight of 0.4 on energy consumption. This means
that it is slightly leaning towards prioritizing effluent quality. This could explain
why on some days, the oxygen setpoint does not spike to 5.0 when the influent
spikes.

8.2.2 Rain Scenario

The results of the rainy weather experiment are shown in Figure 8.3. Much like the
results of the dry weather scenario, MPC is generally more effective when allowed
to use more energy. However, in the rain scenario, performance for all setups are
worse than fixed control, for aeration setpoints below 3.0.

8.2. Results 76

Rain weather scenario

400007 ’ - Fixed control
= 1 tank AC
=— 3 tank AC

35000 = 3 tank AC and RC

§ Individual and combined AC
=
[=
R
2 30000
E
=S
I
=
o
o
)
D 25000
o
=
w
20000

T T T T T T T T T
64000 66000 ©8000 7OOOO 72000 74000 76000 73000 80000
Effluent quality (kg pollution)

Figure 8.3: The accumulated energy consumption and effluent quality over a week of the rain
weather file for the four different setups. They are plotted against the fixed control results in black.
Each fixed control data point is labeled with the given fixed oxygen concentration PI-controller set-
point. The results are presented as Pareto curves, balancing between a focus on energy consumption
or a focus on effluent quality (EQ).

Despite the worsened performance at lower setpoints in the rain scenario, the
3 tank AC and RC setup still manages to improve energy consumption by 6% at
the same effluent quality as fixed control with setpoint 3.0. It also achieves a
2% improvement in effluent quality at the same energy consumption. Especially
during rain periods, when the retention time of the compounds fall because of the
increase in flow rate, it is important to recycle more, so the water can be properly
cleaned. This could be a reason that the added intelligent control of the internal
recycler improves overall performance during the rain scenario.

The Individual and combined AC setup performs worse across almost all setpoints
during the rain scenario. It is possible that the additional switching between deni-
trification and nitrification is doing more harm than good to the effluent quality of
the plant.

8.2. Results 77

Fixed setpoint | Violation time (min)
1.0 11941 (23.7%) EQ weight | Violation time (min)
1.5 10058 (20.0%) 0.2 11335 (22.5%)
2.0 9341 (18.5%) 0.4 9253 (18.4%)
3.0 8759 (17.4%) 0.6 7956 (15.8%)
5.0 8862 (17.6%) 0.8 8198 (16.3%)
(a) Effluent limit violation time at different fixed (b) Effluent limit violation time at different EQ
control setpoints. weights for the 3 tank AC and RC setup.

Table 8.3: Comparison of effluent limit violation times between fixed control and the 3 tank AC and
RC setup during the rain weather scenario. The violation time is the total violation time summed
over all different pollutant groups for which there exists an effluent limit. Note that because this is a
summation, some violation times may exceed the number of minutes in a week (10080). The percent-
age value, refers to the percentage of time the limits were violated out of the collective maximum
violation time for all five pollutant groups. The collective maximum violation time is 10080 - 5, since
each pollutant group could potentially violate the limits for the entire duration of the week. The
effluent limits of the different pollutant groups can be seen in section 3.2.6.

In the two tables in Table 8.3, the total effluent violation time can be seen for
tfixed and MPC control of the rain scenario. Evidently, there is significantly more
pollutant in the incoming wastewater, compared to the dry scenario. Despite this,
the same conclusion about the oxygen input and violation time can be made as for
the dry weather scenario in the previous section. Additionally, intelligent control
using MPC again generally improved on the total effluent violation time.

8.2.3 Storm Scenario

The following graph in Figure 8.4 presents the results of the storm scenario ex-
periment. Generally, it closely resembles the results of the rain scenario from the
previous section, although slightly improved performance across the four setups.

8.2. Results 78

Storm weather scenario

0 h
— Fixed control
= 1 tank AC
40000 4 —— 3tank AC

= 3 tank AC and RC

§ Individual and combined AC

= 35000

=

2

=1

o

E

2

2 30000 A

(=]

(%)

=

=

w

=

W 25000

20000 -

T T T T T T
52000 54000 56000 58000 60000 62000
Effluent quality (kg pollution)

Figure 8.4: The accumulated energy consumption and effluent quality over a week of the storm
weather file for the four different setups. They are plotted against the fixed control results in black.
Each fixed control data point is labeled with the given fixed oxygen concentration PI-controller set-
point. The results are presented as Pareto curves, balancing between a focus on energy consumption
or a focus on effluent quality (EQ).

Looking at the 3 tank AC and RC setup, it reduces energy consumption by 15%
compared to fixed control using a setpoint of 3.0, at the same effluent quality. At
the same time, it improves effluent quality by 3% at the same energy consumption.

8.2. Results 79

Fixed setpoint | Violation time (min)
1.0 8915 (17.7%) EQ weight | Violation time (min)
1.5 7143 (14.2%) 0.2 7919 (15.7%)
2.0 6139 (12.2%) 0.4 5823 (11.5%)
3.0 6203 (12.3%) 0.6 5155 (10.2%)
5.0 6439 (12.5%) 0.8 5062 (10.0%)
(a) Effluent limit violation time at different fixed (b) Effluent limit violation time at different EQ
control setpoints. weights for the 3 tank AC and RC setup.

Table 8.4: Comparison of effluent limit violation times between fixed control and the 3 tank AC and
RC setup during the storm weather scenario. The violation time is the total violation time summed
over all different pollutant groups for which there exists an effluent limit. Note that because this
is a summation over all pollutant groups, some violation times may exceed the number of minutes
in a week (10080). The percentage value, refers to the percentage of time the limits were violated
out of the collective maximum violation time for all five pollutant groups. The collective maximum
violation time is 10080 - 5, since each pollutant group could potentially violate the limits for the entire
duration of the week. The effluent limits of the different pollutant groups can be seen in section 3.2.6.

As shown in Table 8.4, we observe similar overall improvements in effluent
limit violation time. Here, the improvements are also better than the rain scenario.

8.2.4 Optimizing energy cost

In the following experiment, the cost function has been adapted to minimize the
specific timely cost of energy (DKK) instead of the amount of energy (kWh). Ad-
ditionally, the influent uncertainty has been regulated, such that std_error is now
0.02 instead of 0.05, as it was in the previous experiments. This creates error of
up to 20%, instead of 60%, which is significantly more realistic. Lastly, the 1 tank
AC setup has been excluded, and instead the other setups have included a bigger
variety of energy cost/effluent quality weights. Other than these factors, the vi-
sualization of the results are still exactly the same as for the energy consumption
experiments, and they can be seen in Figure 8.5 below.

8.2. Results 80

Dry weather scenario (Cost)

4.0 X
1' = Fixed control
33000 4 = 3 tank AC
—— 3 tank AC and RC
Individual and combined AC

20000 4
<
A
=]
= 18000 -
o
[¥)
=
2
T 16000 -
w

14000 -

12000 - 1o

T T T T T T T T
19500 20000 20500 21000 21500 22000 22500 23000
Effluent quality (kg pollution)

Figure 8.5: The accumulated energy cost and effluent quality over three days of the dry weather
file for three different setups. They are plotted against the fixed control results in black. Each fixed
control data point is labeled with the given fixed oxygen concentration PI-controller setpoint. The
results are presented as Pareto curves, balancing between a focus on energy cost or a focus on effluent

quality (EQ).

In the experiment we see an improvement in the performance of the 3 tank AC
and RC setup at lower setpoints, when comparing to the first energy consumption
experiment. This might be explained by the lower error used in this experiment.
However, the trend is still the same overall, where there are bigger performance
improvements at higher energy usage. Specifically, the 3 tank AC and RC setup
reduces energy cost by 21% at the same effluent quality as fixed control with a
setpoint of 3.0. In the same manner, it improves effluent quality by 5%. At a
fixed control setpoint of 2.0, the energy cost reduction is 8% and effluent quality
improvement is 4%.

Chapter 9

Discussion

Inflow uncertainty

As mentioned in section 7.1, we assume to be in possession of a model that can
predict the characteristics of the wastewater coming into a WWTP. We replicate
the error of such a model, by applying an accumulative error to the influent, as
presented in section 7.2.3. In the experiments, alpha and std_error are 0.99 and
0.05 respectively, resulting in up to 60% error or uncertainty on the influent during
reinforcement learning. This error is much too large, considering the normal range
of 5-20% error for such influent characteristics prediction models in the literature.
This could explain some of the poor results for lower setpoints in the experiments.
Due to time constraints, the power consumption focused experiments could not be
re-run with a lower, more appropriate influent error.

With that said, in the last experiment with cost, when the error was reduced
significantly, only small improvements at lower oxygen setpoints were seen. An-
other possible explanation could be that the aeration action space does not enough
possible setpoints. Setpoints 2.0 and 1.0 are not part of the action space, so possibly
a more fine-grained action space could help performance at lower setpoints.

Lastly, there could simply be a natural inclination to there being less room for
improvement when prioritizing energy. When looking at figure 8.2 in the first ex-
periment, we see that MPC is learning to increase aeration during the day, and
decrease it during the night to save energy. So during the day, it is using more
aeration to build up the biomass (bacteria) in the tanks, so that during the night,

81

82

it can lower aeration, thereby slightly decreasing the biomass, which over time
will simply maintain or slightly increase the biomass. Biomass is very important
for treating the wastewater. If the amount of biomass is not sufficient, the treat-
ment becomes much less effective. So, what could be happening for low aeration
setpoints, is that because there is more focus on energy, there is only room for
maintaining the biomass during the day, where at night, the amount of biomass
falls or is simply maintained, because there is not enough incoming waste. This
means that the MPC setup can no longer utilize lowering aeration at night, be-
cause this would do too much harm to the biomass and in turn the effluent quality.
All in all, this significantly shrinks the potential for improvement using intelligent
control when prioritizing energy more, which might explain what we are seeing in
the experiments.

Effluent quality improvements

In the experiment results, we observe effluent quality improvements when com-
paring against fixed control of the BSM1 plant. These improvements are around
2%-5% improvement in the total amount of pollutants accumulated in the effluent,
depending on the setup and weather scenario. It is not intuitive whether such im-
provements are meaningful. It may depend on the scenario of a given WWTP. If
one considers a WWTP that struggle to meet effluent pollution limits, these smaller
improvements may help clear the limits, or at least reduce the time in which they
are violated. As mentioned in section 3.2.6, in Denmark you are taxed on all pollu-
tants in the WWTP effluent. So depending on the size of the taxations, improving
effluent quality by a few percent, may outweigh the price you have to pay for the
extra aeration energy.

Effluent pollutant limits

In the experiment results we included tables for comparison of effluent pollutant
limit violations between fixed control and intelligent control using MPC. In section
3.2.6 it was mentioned that these pollutant limits are not treated as strict safety
properties in the BSM1 framework, but this can change from country to country.
Safety property or not, the effluent limits are an important control performance
evaluation criteria, and as such should ideally have been included in the reinforce-
ment learning cost function alongside energy and effluent quality. Because the
WWTP dynamical system model is quite complex and the pipeline presented in
7.1 has several components, it was omitted to keep the experiments relatively sim-

83

ple. The plan was to add it at a later point, but in the end it was not implemented
due to time constraints.

In addition to pollutant limits, the BSM1 framework provides several other
metrics for measuring the performance of a control strategy. These are things like
sludge production to be exposed and the total sludge production. However, these
were not prioritized for the same reasons as explained above.

Hyperparameter fine-tuning

As mentioned in section 8.1 we have only performed coarse tuning of the hyperpa-
rameters presented in the section. Instead of thoroughly experimenting with and
tuning each hyperparameter, the experiments focused on different ways of control-
ling the BSM1 plant, using the four different setups presented in the section. This
decision was discussed with DHI, who found experimenting with different setups
more interesting. As such, the MPC and reinforcement learning performance in
the experiments may be suboptimal, leaving a desire for further experimentation
and tuning.

Chapter 10

Future Work

The following will present suggestions to future work in relation to this project.

Automatic Conversion

To improve the efficiency of optimization and experimentation with WWTPs, fu-
ture work could focus on automating the conversion of WEST models into mod-
ular UPPAAL models. This would be beneficial not only by reducing the time
spent manually designing equivalent models, but also by supporting the practical
implementation of such systems. This would mean that many different variations
of a plant layout could easily be made and be experimented on with the methods
utilized in this report.

Shielding

As shown in the experiments, the effluent limits provided by the BSM1 framework
are violated, even for the best performing setup.

A potential solution to this limitation is the use of shields. Shields can be
applied both during the learning phase and during deployment. A shield is a
non-deterministic strategy that, given a current state, returns all actions that en-
sure adherence to safety properties. Within these safety-preserving constraints,
the controller can optimize efficiency and performance. This approach enables the

84

85

learning of a strategy that is as close to optimal as possible, while still guaranteeing
safety.

For example, in the context of a WWTP, a shielded controller would aim to min-
imize energy usage without ever exceeding the permissible effluent concentration
limits. It is uncertain whether it is always possible to remain below the limits.

Hyperparameter Fine-tuning

The hyperparameters chosen for the experiments may not represent the most op-
timal configuration. Conducting more rigorous testing and fine-tuning these pa-
rameters could significantly enhance both the efficiency and overall performance
of the BSM1 plant. By systematically evaluating a broader range of hyperparam-
eter settings, it may be possible to identify configurations that improve stability,
reduce operational costs, and optimize resource utilization. A deeper exploration
of these variables could ultimately lead to a more effective and reliable system.

Use Effluent Pollutant Tax

In Denmark, there is a tax on different effluent groups based on the amount of kilo-
grams released. For example, in 2025, total nitrogen Nj,; is taxed at 33.39DKK/kg
[14]. Based on this, the cost function could be adjusted from considering effluent
quality and energy cost to focusing on pollutant tax and energy cost. This approach
eliminates the need to balance two distinct objectives, as both factors are expressed
in monetary terms and can be directly integrated into a unified cost function. As
a result, reductions in effluent quality would only occur when financially advan-
tageous, which could lead to an unintended consequence—if economic incentives
do not strongly favor pollutant reduction, overall effluent quality may deteriorate,
potentially harming environmental and public health.

Chapter 11

Conclusion

This report presents the modeling of the BSM1 plant and the synthesis of control
strategies to enhance effluent quality and optimize energy consumption. This was
achieved using an MPC setup, where the BSM1 plant modeled in UPPAAL was
utilized to learn control strategies, while the BSM1 plant modeled in DHI’s WEST
software was used as the real plant to apply these strategies and obtain the true
state of the system.

The experiments involved five different setups of the BSM1 plant. One setup
employed fixed control without MPC—used as a baseline for comparison—while
the remaining four all integrated MPC, each controlling different components within
the BSM1 plant. The experiments were conducted under three distinct weather sce-
narios provided by the BSM1 framework [4].

The experiments demonstrated that the 3 tank AC and RC setup outperformed
the baseline fixed control at higher aeration setpoints. In the dry weather scenario, it
achieved a 24% reduction in energy consumption while maintaining the same efflu-
ent quality compared to a fixed setpoint of 3.0. When the cost function weighting
prioritized effluent quality, the 3 tank AC and RC setup was able to deliver a 5% im-
provement in effluent quality while using the same amount of energy as the fixed
control. Performance across all setups declined in other weather scenarios, but the
3 tank AC and RC configuration still outperformed the fixed control when compar-
ing high aeration setpoints. At lower fixed setpoints the performance of MPC was
often comparative to fixed control or worse, across the different weather scenarios.

Another way to assess the improvement in effluent quality of the 3 tank AC

86

87

and RC setup is by examining the duration of effluent limit violations. The 3 tank
AC and RC setup demonstrates lower violation time compared to the fixed control,
especially when the weighting prioritizes effluent quality.

When switching the cost function to focus on energy cost instead of energy
consumption, for the 3 tank AC and RC setup, an energy cost improvement of 21%
was observed at the same effluent quality as fixed control with a setpoint of 3.0.

Can MPC and reinforcement learning be used to reduce energy con-
sumption/cost and improve effluent quality of the BSM1 plant?

When looking at the problem statement above, we have shown through the
experiments that MPC and reinforcement learning can be used to improve both
energy consumption/cost and effluent quality of the BSM1 plant. Additionally,
we have proposed a digital twin MPC+RL pipeline in section 7.1 that address the
practical implementation challenges presented in chapter 5.

Bibliography

[1] International Energy Agency (IEA). World Energy Outlook 2016. IEA, Paris,
2016. Licence: CC BY 4.0. 1

[2] United Nations. The 17 sustainable development goals. https://sdgs.un.
org/goals, n.d. [Online; accessed: 2025-01-10]. 1

[3] Jorgensen MPH, Gehlert LB, Koch CB, and Gebauer H. Enhancing ef-
fluent quality and energy efficiency of the modified ludzack-ettinger
process: A model predictive control approach. https://kbdk-aub.primo.
exlibrisgroup.com/permalink/45KBDK_AUB/a7me0f/alma9921967369105762,
2025. 1,4,6,7,11,12, 20, 28, 31, 34, 53, 54, 56

[4] Jens Alex, Lorenzo Benedetti, Jb Copp, Krist Gernaey, Ulf Jeppsson, Ingmar
Nopens, Marie-Noelle Pons, Leiv Rieger, Christian Rosen, and J-P Steyer.
Benchmark simulation model no. 1 (bsm1l). Report by the INA Taskgroup on
Benchmarking of Control Strategies for WWTPs, 01 2008. 2, 9, 11, 18, 19, 21, 22,
86, 91, 92

[5] DHI. Mike powered by dhi | water modelling software. https://www.
dhigroup.com/technologies/mikepoweredbydhi, 3 2024. [Online; accessed
2024-12-29]. 4

[6] wpadmin. How to remove suspended solids from water? — etch2o. https:
//www.etch2o0.com/how-to-remove-suspended-solids-from-water/, 2 2023.

[Online; accessed 2024-12-22]. 7

[7] Archis Ambulkar and Jerry A. Nathanson. Wastewater treatment - pollutants,
contamination, purification | britannica. https://www.britannica.com/
technology/wastewater-treatment/Sources-of-water-pollution, 1 2010.

[Online; accessed 2024-12-22]. 7

88

https://sdgs.un.org/goals
https://sdgs.un.org/goals
https://kbdk-aub.primo.exlibrisgroup.com/permalink/45KBDK_AUB/a7me0f/alma9921967369105762
https://kbdk-aub.primo.exlibrisgroup.com/permalink/45KBDK_AUB/a7me0f/alma9921967369105762
https://www.dhigroup.com/technologies/mikepoweredbydhi
https://www.dhigroup.com/technologies/mikepoweredbydhi
https://www.etch2o.com/how-to-remove-suspended-solids-from-water/
https://www.etch2o.com/how-to-remove-suspended-solids-from-water/
https://www.britannica.com/technology/wastewater-treatment/Sources-of-water-pollution
https://www.britannica.com/technology/wastewater-treatment/Sources-of-water-pollution

Bibliography 89

(8]

[9]

[11]

[12]

[13]
[14]

[15]

[16]

Avijit Mallik and Md. Arman Arefin. Clean water: Design of an efficient and
feasible water treatment plant for rural south-bengal. Journal of Mechanical
Engineering Research and Developments, 41:156-167, 04 2018. 7

Metcalf & Eddy Inc., George Tchobanoglous, H. Stensel, Ryujiro Tsuchihashi,
and Franklin Burton. Wastewater Engineering: Treatment and Resource Recovery.
McGraw-Hill Education, New York, 5th edition, 2013. 8

George Crawford and Julian Sandino. Energy Efficiency in Wastewater Treat-
ment in North America: A Compendium of Best Practices and Case Studies of Novel
Approaches. Water Environment Research Foundation (WERF) and IWA Pub-
lishing, London, United Kingdom, Alexandria, USA, 2010. 9

Mogens Henze, Willi Gujer, Takashi Mino, and Mark Loosdrecht. Activated
Sludge Models ASM1, ASM2, ASM2D, ASM3, volume 5. 01 2000. 12

Ulf Jeppsson. Modelling aspects of wastewater treatment processes. 11 2012.
13,14, 16

Robert Paz. The design of the pid controller. 01 2001. 18

Skatteministeriet. Spildevandsafgiftsloven. https://skm.dk/
tal-og-metode/satser/satser-og-beloebsgraenser-i-lovgivningen/
spildevandsafgiftsloven. [Online; accessed 2025-06-04]. 21, 85

James B. Rawlings, David Q. Mayne, and Moritz M. Diehl. Model Predictive
Control: Theory, Computation, and Design. Nob Hill Publishing, Madison, WI,
2nd edition, 2017. 27

M. Francisco, Pastora I. Vega, and Silvana Revollar. Model predictive control
of bsml benchmark of wastewater treatment process: A tuning procedure,
2011. 30

Martijn A. Goorden, Kim G. Larsen, Jesper E. Nielsen, Thomas D. Nielsen,
Weizhu Qian, Michael R. Rasmussen, Jifi Srba, and Guohan Zhao. Optimal
control strategies for stormwater detention ponds. Nonlinear Analysis: Hybrid
Systems, 53:101504, 2024. 31, 32

Gerd Behrmann, Agnes Cougnard, Alexandre David, Emmanuel Fleury,
Kim G. Larsen, and Didier Lime. Uppaal-tiga: Time for playing games! In
Werner Damm and Holger Hermanns, editors, Computer Aided Verification,
pages 121-125, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. 31

Peter Bulychev, Alexandre David, Kim Guldstrand Larsen, Marius Mikucio-
nis, Danny Poulsen, Axel Legay, and Zheng Wang. Uppaal-smc: Statistical
model checking for priced timed automata. EPTCS, 85, 07 2012. 31

https://skm.dk/tal-og-metode/satser/satser-og-beloebsgraenser-i-lovgivningen/spildevandsafgiftsloven
https://skm.dk/tal-og-metode/satser/satser-og-beloebsgraenser-i-lovgivningen/spildevandsafgiftsloven
https://skm.dk/tal-og-metode/satser/satser-og-beloebsgraenser-i-lovgivningen/spildevandsafgiftsloven

Bibliography 90

[20] Alexandre David, Peter Gjel Jensen, Kim Guldstrand Larsen, Marius Miku¢io-
nis, and Jakob Haahr Taankvist. Uppaal stratego. In Christel Baier and Cesare
Tinelli, editors, Tools and Algorithms for the Construction and Analysis of Systems,
pages 206-211, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg. 31

[21] Imran Riaz Hasrat, Peter Gjeol Jensen, Kim Guldstrand Larsen, and Jif{ Srba.
End-to-end heat-pump control using continuous time stochastic modelling
and uppaal stratego. In Yamine Ait-Ameur and Florin Craciun, editors, The-
oretical Aspects of Software Engineering, pages 363-380, Cham, 2022. Springer
International Publishing. 31, 32

[22] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on
uppaal. https://homes.cs.aau.dk/ adavid/RTSS05/UPPAAL-tutorial.pdf,
25/10-05. 39

[23] Ian Hiskens. Stability of limit cycles in hybrid systems. page 6 pp., 02 2001.
41

[24] Martijn A. Goorden, Peter G. Jensen, Kim G. Larsen, Mihhail Samusev, Jifi
Srba, and Guohan Zhao. Stompc: Stochastic model-predictive control with up-
paal stratego. In Ahmed Bouajjani, Lukd$ Holik, and Zhilin Wu, editors,
Automated Technology for Verification and Analysis, pages 327-333, Cham, 2022.
Springer International Publishing. 47

[25] Mogens Henze, Leslie Grady Jr, W Gujer, G. Marais, and T Matsuo. Activated
sludge model no 1. Wat Sci Technol, 29, 01 1987. 55

[26] Markéta Andreides, Petr Dolejs, and Jan Bartdcek. The prediction of wwtp
influent characteristics: Good practices and challenges. Journal of Water Process
Engineering, 49:103009, 2022. 59

[27] EnergyDataService. Elspot prices. https://energidataservice.dk/
tso-electricity/Elspotprices. [Online; accessed 2025-06-05]. 62

[28] scikit learn.org. 3.4. metrics and scoring: quantifying the quality of predictions
— scikit-learn 1.6.0 documentation. https://scikit-learn.org/stable/
modules/model_evaluation.html#mean-absolute-percentage-error. [On-

line; accessed 2024-12-29]. 62

https://homes.cs.aau.dk/~adavid/RTSS05/UPPAAL-tutorial.pdf
https://energidataservice.dk/tso-electricity/Elspotprices
https://energidataservice.dk/tso-electricity/Elspotprices
https://scikit-learn.org/stable/modules/model_evaluation.html#mean-absolute-percentage-error
https://scikit-learn.org/stable/modules/model_evaluation.html#mean-absolute-percentage-error

Appendix A

Control Handels

This appendix includes the table from [4] mentioned in section 3.2.4. The names of
the controls have been changed to fit Figure 3.3.

91

92

Minimum

Maximum

Control handle Comments
value value
Q_aerobic_recycle | 0 92230
(m3.d—1)
QrAS (m3.d—1) 0 36892
QwAS (m3.d—1) 0 1844.6
kLal (d=1) 0 360 Tank 1
kLa2 (d~1) 0 360 Tank 2
kLa3 (d71) 0 360 Tank 3
kLa4 (d—1) 0 360 Tank 4
kLa5 (d~1) 0 360 Tank 5
Tank 1
grct (m3.d-1) 0 5 ggrgo; jource conc. 400,000 ¢
in case of low biomass in the tank
Tank 2
gecz (m>.d™) 0 5 Otherwise same as above
Tank 3
qECs (m®.d ™) 0 > Otherwise same as above
Tank 4
qECs (m®.d 1) 0 > Otherwise same as above
Tank 5
qecs (m*.d ™) 0 5 Otherwise same as above
Part of the influent flow rate dis-
tributed to each biological reactor
fa infuent1 0 1 Note: the sum of all five must al-
fQinftuentas ways equal one
fQ_influentS/
fQ_influent4/
fQ_influentS
Part of the internal recirculation
flow rate distributed to each bio-
fQ_aerobic_recyclels 0 1 logical reactor
fQ_aerovic_recycle2s Note: the sum of all five must al-
f Q_aerobic_recycle3s ways equal one
f Q_aerobic_recycledr
f Q_aerobic_recycle5
Part of the sludge return flow rate
distributed to each biological reac-
fo_rast, fo ras2, | 0 1 tor

fo rAs3, fQ RAS4s
fo rass

Note: the sum of all five must al-
ways equal one

Table A.1: Available control handles and their limitations [4].

