
Analyzing DTLS security in Tamarin
- A master’s thesis -

Project Report

cs-25-ds-10-10

Aalborg University
Computer Science

Computer Science
Aalborg University

http://www.aau.dk

Title:
Analyzing DTLS security in Tamarin

Theme:
Modeling security protocols

Project Period:
Spring Semester 2025

Project Group:
cs-25-ds-10-10

Participant(s):
Signe Kirstine Rusbjerg
Tobias Møller

Supervisor(s):
Tobias Worm Bøgedal
René Rydhof Hansen
Danny Bøgsted Poulsen

Page Numbers: 63

Date of Completion:
June 12, 2025

Abstract:

This report focuses on the 1.3 version of
the DTLS protocol. Within the report, we
model three parts of the DTLS protocol, to
test the security of the protocol. These mod-
els are analyzed using the Tamarin Prover
tool, where several security aspects are val-
idated and verified. The report also pro-
poses an idea to translate models created in
Tamarin to the UPPAAL tool, in order to
prove parts that might be hard in Tamarin.

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement with

the author.

http://www.aau.dk

Summary

In this Master’s thesis, we verify the security of the DTLS 1.3 security protocol. The case
was interesting, as DTLS 1.3 has been out for three years, yet almost no-one has publicly
upgraded from the previous 1.2 version, even though DTLS 1.2 has proven security flaws.
To prove the security of the protocol, we analyzed three models using the Tamarin Prover
tool. The first model contains a full handshake, that establishes a connection between two
first time peers, with the use of an additional cookie exchange. The second model is a
handshake done by peers that have communicated earlier, and thus have a "Pre-Shared
Key" that significantly shortens the handshake. The final model is of the record layer,
which provides the encoding of a given message. All three models are based upon RFC
9147, which is the specification of DTLS 1.3, and RFC 8446, which is the specification of
the TLS 1.3 protocol. The TLS specification is used, as the DTLS specification refers to it
when there is no changes. The specification also contains some security requirements that
must be upheld, and as such, these are the basis of the security analysis. However, we also
evaluate DTLS against the CIAA tetrad. This tetrad focuses on Confidentiality, Integrity,
Authenticity, and Availability. While all four are desired for a protocol like this, one must
strike a balance between the four. In the report, the first three are analyzed using the
Tamarin Prover tool, but the final property of availability, was not viable within the tool.
This then led to a new idea to provide full insight into DTLS 1.3. In earlier work done by
the group, the tool UPPAAL was used to model DTLS and analyze availability and power
consumption. Thus, if we could develop a method to translate the Tamarin model into a
UPPAAL model, we could check availability in a tool more suited for it. While a tool to
do this automatically was not developed for this report, we propose a general method that
should be able to work as a base for a translation between Tamarin and UPPAAL.

ii

Contents

1 Introduction 1

1.1 Related Work . 2

1.2 Paper structure . 3

2 Secure communication 4

2.1 Security promises of Datagram Transport Layer Security 6

2.1.1 Authentication: Handshake security properties 6

2.1.2 Confidentiality and intergrity: Record layer security properties 8

2.1.3 Availability: Denial-of-Service security properties 9

3 Datagram Transport Layer Security 11

3.1 Handshakes and key exchanges . 12

3.1.1 Full handshake . 12

3.1.2 Pre-shared keys . 14

3.1.3 Key update . 15

3.2 General message structure . 15

iii

Contents iv

3.2.1 DTLS handshake messages . 17

3.2.2 DTLS handshake header . 18

3.2.3 DTLS record headers . 20

4 Modeling the protocol 22

4.1 Tamarin Prover . 22

4.1.1 Threat Model . 25

4.2 Datagram Transport Layer Security Model . 25

4.2.1 Modeling: Handshake message . 26

4.2.2 Modeling: Handshake header . 28

4.2.3 Modeling: Record layer . 29

4.2.4 Modeling: Additional behavior . 31

4.2.5 Modeling: UDP . 32

4.3 Model validation . 32

4.4 Security properties . 34

4.4.1 Handshake properties . 34

4.4.2 Record properties . 37

5 Analysis and results 40

5.1 Debug lemmas . 41

5.2 Combating memory issues . 41

5.3 Record layer model restrictions . 43

Contents v

5.4 Results . 44

6 UPPAAL translation 46

6.1 Tamarin syntax and semantics . 47

6.1.1 Tamarin variables translated to UPPAAL 47

6.1.2 Tamarin facts translated to UPPAAL . 48

6.1.3 Pattern matching . 49

6.2 Translation for a restricted Tamarin model . 50

6.2.1 Tamarin symbolic variables into UPPAAL variables 50

6.2.2 Tamarin rules into UPPAAL processes 51

6.2.3 Tamarin facts in UPPAAL . 52

6.2.4 Pattern matching for equality checks 53

6.2.5 Implementing cost . 54

6.2.6 Adversary behavior in UPPAAL . 54

6.3 Further development . 54

7 Discussion 56

8 Conclusion 60

8.1 Future work . 61

Bibliography 62

A Structs of DTLS a

Contents vi

A.1 ClientHello . a

A.2 HelloRetryRequest . b

A.3 Second ClientHello . c

A.4 ServerHello . c

A.5 EncryptedExtensions . d

A.6 CertificateRequest . d

A.7 Certificate . e

A.8 CertificateVerify . f

A.9 Finished . g

A.10 Ack . g

B Validation Lemmas i

B.1 Authentication . i

B.2 Cookie exchange . k

B.3 Finished Handshake . l

B.4 Order . m

C UPPAAL Translation ideas o

Preface

Aalborg University June 12, 2025

This report was written by the computer science group "cs-25-ds-10-10" in the period from
the 1st of February to the 13th of June 2025

The group would like to thank the supervisors René Rydhof Hansen, Tobias Worm Bøgedal
and Danny Bøgsted Poulsen for their help and guidance through the project.

Signe Kirstine Rusbjerg
<srusb20@student.aau.dk>

Tobias Møller
<tmalle20@student.aau.dk>

vii

Chapter 1

Introduction

The Datagram Transport Layer Security (DTLS) protocol has seen a lot of use in the world
of Internet of Things (IoT). IoT devices have become commonplace in the modern world,
spanning across many aspects of technology. Everything from private housing to large
factories and power plants, utilize these small devices connected to the internet. Because
of this abundance, it serves as a fine target for malicious actors. This is where many choose
to utilize the DTLS protocol, as it claims to essentially provide the same amount of security
as the widely used Transport Layer Security (TLS) protocol while being optimized to use
considerably less power than TLS.

As of this paper, the newest version of DTLS is DTLS 1.3. Within this report, DTLS refers to
DTLS 1.3 unless directly specified otherwise. The RFC [1] was published in April of 2022,
approximately 4 years after its TLS counterpart TLS 1.3. In the three years since DTLS 1.3,
almost no users have upgraded to this version [2]. This could be due to several things,
like DTLS largely being used in hardware, making it more expensive to update. DTLS
does however also see usage in VPN software, but even in this software based solution,
only ExpressVPN has publicly adopted DTLS 1.3. In comparison, 47.3% of TLS users had
updated to TLS 1.3 within a similar three year timespan according to Qualys SSL Labs [2].
One could wonder why TLS has significantly more users updating to the newest version.

This difference could stem from the earlier work done for each of the protocols. TLS 1.3
is supported by many libraries, and has had modeling work done on many aspects of
the protocol, even ahead of the official release. With DTLS 1.3, the earlier work is limited
to the library WolfSSL, and a paper focusing on availability and power consumption by
modeling DTLS 1.3 in UPPAAL [3].

1

1.1. Related Work 2

Within this report, we will model a segment of the DTLS protocol; a full handshake, a
handshake using Pre-Shared Keys (PSK) and the record layer. We believe that this segment,
presented in chapter 3, could produce an reasonable implementation suitable for an IoT
device. We aim to verify all security claims of DTLS as per the specifications, but also
discuss how these claims relate to the four CIAA properties;

• Confidentiality

• Integrity

• Authentication

• Availability

To create this model, the group has decided to use the Tamarin Prover security protocol
verification tool, as it contains features that other competitors do not. Tamarin was chosen,
as it allows for infinite instances of servers and clients. Similar work for TLS 1.3 also used
Tamarin, and it has thus already proved it’s potential as a tool for this task [4] [5].

The model is created using the specifications, similarly to the work done on TLS [4].
Modeling the specifications give us insight into the correctness of the template provided
to protocol developers. This work will ensure that the documentation available is correct,
which should positively effect future implementations.

1.1 Related Work

To the best of our knowledge, there is no existing work done for DTLS 1.3. However, both
TLS 1.3 and DTLS 1.2 have papers that introduce models in Tamarin [4, 6].

As DTLS is built to achieve TLS security guarantees but over UDP, the security properties
of DTLS 1.3 will mirror the security properties of TLS 1.3, although DTLS 1.3 has the addi-
tional property of protecting against further attacks such as DoS. There are however some
major changes when it comes to modeling DTLS. The most obvious ones are the needs
to handle unreliability and retransmission. These requirements result in some changes
to every part of the communication, which means that an exploration of DTLS 1.3 is still
prudent.

The paper on DTLS 1.2 ([6]) is now outdated, and there has been some major changes in
the upgrade to DTLS 1.3. The biggest change between the versions, lies in the changes

1.2. Paper structure 3

within the handshake, which has been overhauled to shorten the exchange. The DTLS 1.2
paper does not exclusively focus on DTLS, and thus it has chosen to abstract away from
some of the specifics. Within the paper, DTLS is only mentioned in the context of CoAP
[6].

While both of these papers exist, we do not believe that it takes away from the importance
and relevance of this paper.

1.2 Paper structure

DTLS promises a selection of security properties, which is presented and explained in
chapter 2, along with the general security concerns of IoT devices. Chapter 3 then presents
the selected segment of DTLS, with handshake examples and message structures.

Chapter 4 presents a Tamarin model featuring a segment of the DTLS 1.3 handshake,
alongside session resumption using Previously Shared Keys(PSK) and the Record Layer.
The model’s security is then analyzed and verified using the Tamarin Prover’s security
protocol verification tool in chapter 5. Chapter 6 will provide an idea of how to transform
the tamarin models to UPPAAL to prove the availability property. Finally, chapter 7 and 8
will reflect and conclude on the work done in the report.

Chapter 2

Secure communication

The need for strict security in IoT may in some cases be overlooked, since its importance
is not immediately apparent [7]. Say a consumer owns some smart lights, which they can
control from their phones. At first glance, whether or not a stranger knows that the light
is on, seems insignificant. However, this information could be used by a thief to gauge
whether or not the consumer is home, and if a break-in is possible. The question ensues;
what security do we want from IoT devices?

For a running example, take the scenario in figure 2.1, with a consumer, Alice, communi-
cating with an IoT device. To increase the severity of the situation, imagine that the IoT
device is a home security camera, sending recordings from inside and outside the home.
Alice can request the recordings at any point via the internet, which is controlled by a
malicious user, Mallory.

Figure 2.1: Communication with IoT on a unsafe network. Running example.

4

5

Confidentiality is desired since the recordings may contain sensitive information, that Alice
wishes to keep a secret. Confidentiality can be achieved by correctly using cryptography
to encrypt the data before it is sent, but confidentiality may also be broken with the use of
side-channels. In the smart light example, confidentiality can be broken by analyzing the
network traffic. In order to protect against this, the use of instant-message denial has been
explored in other materials.

Authentication would also be valuable, since we only want the IoT device to send data to
authenticated users. In the example, the IoT device should only send data to Alice, how-
ever if Mallory successfully impersonates Alice, the IoT device would send the potentially
sensitive data to Mallory. This is not desirable, and such authentication is also needed.

Within authentication, each party has their own unique identity. This identity can be
compared to real world examples like drivers license or passports, and is how a party can
prove to be who they claim to be. A commonly used identity for secure communications
is verified certificates issued by a trusted entity.

Integrity is especially desired in the case of security cameras, since we want to ensure that
the recording has not been modified. If Mallory was able to change the content of the
recording while it was being transferred from the IoT device to Alice, she would be able to
delete evidence of a potential break in. Integrity gives Alice the trust that the recordings
she sees are the actual recordings made by the security camera.

Availability is also a desired trait, since an unavailable device can be considered useless. A
consumer should have access to the IoT device without unnecessary delay, and Mallory
should not be able to excessively halt the communication. With the case of low-power
devices, Mallory should also not be able to unnecessarily drain the battery of the device
[3].

These four properties make the CIAA tetrad, which is commonly used to define desired
security properties in communication over the internet. These properties however are
not trivially upheld, and some mechanisms may uphold one property while negatively
affecting another. Examples of conflicting properties is availability versus the rest. If
the IoT device was not available, all other properties would be trivially upheld. More
complex cases could be integrity versus confidentiality. Confidentiality negatively affects
the integrity of the data, since it is only available to a select group of people, thereby
making its integrity harder to verify.

DTLS is an example of a protocol, attempting to uphold all four properties to varying
degrees. The following section 2.1 will examine all security promises made by DTLS and
to what degree they uphold the CIAA tetrad.

2.1. Security promises of Datagram Transport Layer Security 6

2.1 Security promises of Datagram Transport Layer Security

DTLS divide its security promises into three aspects. The three aspects cannot strictly be
divided into either of the four properties of CIAA, however they may focus on one aspect
more than others.

• Authentication is provided from the DTLS handshake, which is an Authenticated Key
Exchange (AKE) protocol. The AKE aims to exchange authenticated keys in a secure
manner, thus providing authentication to the connection.

• Confidentiality and integrity is promised with the DTLS record layer protocol, which
is defined as all communication after a successful handshake. Confidentiality is
however only partly upheld, which is expanded upon in section 2.1.2. The record
layer also enjoys authentication as a byproduct of the AKE.

• The entire DTLS protocol struggles with availability, suffering from the unreliability
of UDP. There exists quite a few attacks against the DTLS protocol, which utilize the
weaknesses of UDP. This is explained in further detail in section 2.1.3.

Passive and active attacks

As DTLS is used on the open internet, it is subjected to potential attacks, aiming to break
some of the CIAA properties. DTLS generally aims to protect against an active attacker,
with some exceptions, where protection is only guaranteed against passive attackers. An
active attacker has complete control over the network, and may interfere with communi-
cation as they seem fit. Examples of interference could be something as simple as reading
and/or modifying the packets, but they can also go a step further and completely block
access for legitimate connections, using a Denial-of-Service attack. This attacker is quite
strong in comparison to a passive attacker like an "eavesdropper". An eavesdropper at-
tempts to steals the data as it is transmitted by "listening along" to a connection.

2.1.1 Authentication: Handshake security properties

The DTLS handshake provides one-party and mutual-party authentication. The speci-
fications produce a list of eight security properties, that a successful handshake should
provide the session:

2.1. Security promises of Datagram Transport Layer Security 7

• H1: Establishing the same session keys

• H2: Secrecy of the session keys

• H3: Peer authentication

• H4: Uniqueness of the session keys

• H5: Downgrade protection*

• H6: Forward secret with respect to long-term keys

• H7: Key Compromise Impersonation (KCI) resistance*

• H8: Protection of endpoint identities*

Properties marked with a * are not directly modeled. Section 4.4 about the modeling of security
properties, will argue why some properties have been omitted.

These properties collectively define what successful handshake should provide, however
a baseline for what a successful handshake entails is not specifically given. This paper
regards the baseline for a successfully completed handshake as; a communication accepted
by two uncorrupted parties, with matching communication history and session keys[8] [9].

Properties (H1) and (H2) follows from definition 1.1 and 1.2 in [8] respectively, and expand
upon the definition of a successful handshake. The first property (H1) states that for a
handshake to be successful, it must output the same session key. The second property
(H2) states that the keys must be secret to any outsider, and there must be a negligible
chance chance of guessing the key.

Property (H3) claims that when a client connects to a chosen server, then the identity of the
peer should match the identity of the intended server. Additionally in the cases where the
client is authenticated, the server should similarly be able to match the peers identity to
the client.

The protocol is not restricted to just the handshake of a single run, and as such other
properties are desired when expanding the view to multiple runs.

The fourth property (H4) develops on the relation between two distinct handshakes. It states
that two distinct handshakes should produce distinct and unrelated session keys, and
those individual session keys should also be distinct and independent.

The fifth property (H5) takes the versatility of servers providing multiple cryptographic
functions, as well as earlier versions of DTLS into account. The property (H5) ensures the

2.1. Security promises of Datagram Transport Layer Security 8

quality of a connection by providing protection against downgrading. When a handshake
is complete, both parties should have the same cryptographic parameters, and these pa-
rameters should be the same as if no attacker was present. This prevents an attacker from
deliberately downgrading the connection to a less secure version.

The next three properties (H6-H8) all regard security properties after a breach. The sixth
property (H6) considers Forward Secrecy (FS) with respect to long-term keys. FS is a
common and desired property, however one should take care not to confuse it with its
similarly named counterpart; Perfect Forward Secrecy (PFS). FS refers to the ability to
keep a prior sessions confidential in the case of a breach of long-term identity keys [9].
PFS has the additional property that even if a session key is compromised, prior sessions
will not be compromised.

The property (H6) is specifically with respect to the long-term signature keys and the long-
term external/resumption pre-shared keys, where a new key was generated during the
handshake (PSK with (EC)DHE). It does not cover the loss of pre-shared keys used without
the DHE key-exchange.

The seventh property (H7) regards key compromise impersonation, and ensures that the
compromise of long-term secrets should not allow an adversary to impersonate other ac-
tors that are communicating with the compromised actor.

The eighth and final property (H8) provides protection to the endpoints identities. It states
that a server’s identity should be protected against a passive attacker, where the client’s
identity should be protected against both a passive and an active attacker. The server
will not be able to enjoy protection against an active attacker, since one side of a mutual
authentication always has to go first, which for the case of DTLS is the server.

2.1.2 Confidentiality and intergrity: Record layer security properties

DTLS’s security properties differentiate from TLS when it comes to their record layers,
since DTLS does not provide order protection/non-replayability.

The record layer is reliant on the handshake protocol producing strong traffic secrets. If
this is the case and the keys are used no more than advised, the DTLS record layer will
provide the following properties:

• R1: Confidentiality

• R2: Integrity

2.1. Security promises of Datagram Transport Layer Security 9

• R3: Length concealment

• R4: Forward secrecy after key change

The first property (R1) is limited to the concealment of plaintext. This showcases DTLS’s
limited sense of confidentiality, since as explained in the beginning of chapter 2, confiden-
tiality entails much more.

The second property (R2) ensures that an adversary has not modified the contents of a mes-
sage while it is in transit between the sender and receiver. This is generally enforced with
the usage of a Message Authentication Code (MAC) or the expanded Hash-based Message
Authentication Code (HMAC), as both of these provide integrity authentication.

The third property (R3) mitigates one potential side-channel by providing length conceal-
ment. Returning to the light switch example, the length of the package is quite prudent,
as one might try to conceal the lack of traffic by sending smaller dummy messages. This
could however lead to the adversary noticing the change in package size, and they could
therefore still notice the anomaly.

The fourth property (R4) provides forward secrecy to the likes of what is explained in section
2.1.1. Using the earlier example of a security camera, a potential breach of a future con-
nection does not allow the adversary to gain any meaningful information about an earlier
session they might have eavesdropped upon. Forward secrecy will allow for these stipu-
lations, given that the connection was secure when the old recordings were exchanged.

Forward secrecy only holds when old session keys are deleted, but when it comes to
DTLS, there is an extra piece that needs to be accounted for. DTLS keeps a grace period
where old session keys are still accepted even though they are marked to be deleted.
This grace period is in place as DTLS does not promise in-order transmission, and some
messages could still be in transit. The challenges of defining such a grace period can then
be seen, since the longer the grace period, the less chance of delayed messages not being
decryptable, and the higher the chance of the session being compromised.

2.1.3 Availability: Denial-of-Service security properties

When it concerns Denial-of-service (DoS) attacks on DTLS, there are two main concerns to
be aware of:

• D1: Attackers can initiate a large amount of handshakes in order to drain the server’s

2.1. Security promises of Datagram Transport Layer Security 10

resources. In the worst scenario, this attack will drain the power of a battery-driven
server, or outright crash servers with a more consistent power supply.

• D2: Attackers can use the server as an amplifier, by sending a spoofed request from a
compromised victim, which could lead the server to flood the victim with responses
to the handshake. The worst case here is similar to the case in D1, but here the victim
machine gets hit instead of the server.

Availability is not modeled in the Tamarin model, however the report will end with a proof of concept
(chapter 6), of a method to translate Tamarin models into UPPAAL models. As seen in previous
work [10], an UPPAAL model can be used to verify availability.

Both of these concerns are addressed by the stateless cookie exchange. This cookie ex-
change functions as a prelude to the proper handshake, by forcing both the client and the
server to communicate using small packages (see section 3.1 for an example). Only after
this exchange will the server see the client as a valid communication partner, and will thus
begin using more resources to start the communication. This cookie exchange forces the
attacker to be able to receive the cookie, and therefore, the attacker cannot use the spoofed
method of requesting.

While the cookie exchange helps, it does not stop an attacker from gathering several cook-
ies from different endpoints, which they can then use to flood the server. To counteract
this, the secret value should be changed often, but a grace period of the older secret value
should be considered due to the unreliability of UDP.

To combat D1, the server should as a general rule, limit their data sent to three times the
amount of data received until the client is verified as valid. By enacting this rule, the server
will never allocate an extreme amount of data, as the ClientHello message is quite small
already.

The effectiveness of these DoS mitigation techniques were tested in an earlier paper using
power consumption as a metric [3].

Chapter 3

Datagram Transport Layer Security

After looking at the security properties of DTLS, it is necessary to look at the structure of
DTLS and how it works. DTLS is a security protocol that utilizes an Authenticated Key
Exchange (AKE) protocol called the DTLS handshake, to exchange secure and authenti-
cated keys between two endpoints. These keys are then used to perform safe and secure
communication between the two endpoints for a period of time.

As mentioned in chapter 1, this report focuses on a segment of the DTLS protocol. This
includes two different handshake options, a full DTLS handshake, as well as a handshake
using Previously Shared Keys (PSK). Additionally, it includes the record layer, which con-
sists of application data exchanges, as well as a key update that can happen after a valid
handshake. Keys become less secure the more times they are used, and if the same key is
used over a long period of time, then the odds of it being leaked increase. Modeling a key
update and its effect on the security would be necessary in a realistic implementation.

This chapter will first explain the two handshake options and the key update, before
looking at the structure of the handshake messages, and their headers. The handshakes
and key update are explained using flight diagrams, and the message and header structure
are presented as pseudo-code similar to c-structs. The structs will later be used in section
4.2, to explain how the model was created to mimic the structs from the specifications
closely.

11

3.1. Handshakes and key exchanges 12

3.1 Handshakes and key exchanges

Before going in depth with the proper handshake, we would like to present a major issue
when using Datagram transport protocols, and how DTLS solves said issue:

Issue 1; Datagram transport protocols are susceptible to abusive behavior effecting DoS
attacks against nonparticipants [1].

Solution 1; DTLS adds a return-routability check, with the strongly advised inclusion of a
cookie exchange. The cookie exchange forces a client to show commitment to the connec-
tion before the server invests a large amount of space and computation power into said
connection. The cookie exchange also prevents the server from becoming an amplifier in it-
self, since UDP forgery is very easy, and a server may unknowingly flood a nonparticipant
with large amount of data [1].

3.1.1 Full handshake

Figure 3.1 shows how a DTLS handshake can look, between two first time peers. The
handshake consists of three round trips, with a round trip being one sent message and
one response.

[1] The client initiates the handshake with a ClientHello message. The message contains
some metadata and a Diffie Hellman keyshare.

[2] The server will respond with a HelloRetryRequest. This is the start of the previously
mentioned cookie exchange, as the message contains a cookie.

[3] The client will resend the ClientHello, now with the received cookie attached, finishing
the cookie exchange.

[4] Since the client now has shown a commitment to the handshake, the server will con-
tinue the handshake. The server sends a server hello, which will also contain a Diffie
Hellman keyshare.

With its own keyshare and the one received from the client, the server can generate the
traffic key. This is used to encrypt the next few messages.

3.1. Handshakes and key exchanges 13

Client Server

[1] ClientHello + KeyShare

HelloRetryRequest + Cookie [2]

[3] ClientHello + Cookie & KeyShare

ServerHello + KeyShare [4]
{EncryptedExtensions} [5]

{CertificateRequest*} [6]
{Certificate} [7]

{CertificateVerify} [8]
{Finished} [9]

[10] {Certificate*}
[11] {CertificateVerify*}
[12]{Finished}

[ACK] [13]

[Application Data]

Figure 3.1: Full DTLS 1.3 handshake [1].
{} denotes encryption made with the traffic key and
[] denotes encryption made with session key.
* denotes optional or situational messages, and + de-
notes extensions.

[5] The server also sends any additional ex-
tensions, encrypted with the key.

[6] The server may choose to request a cer-
tificate from the client, in order to verify the
client. This message is optional and may be
omitted.

[7] The server will send a message with their
Certificate, for the client to verify with the
following CertificateVerify message.

[8] CertificateVerify contains the certificate
linked with the history of the handshake,
signed with the servers private key.

[9] The server also sends the Finished mes-
sage, containing the entire history of the
handshake, linked with the final key.

[10]-[11] The client will authenticate the
server with the received Certificate and Cer-
tificateVerify message. The client may then
respond with its own Certificate and Cer-
tificateVerify if client authentication was re-
quested.

[12] The client will also create its own Fin-
ished message, and will ensure that the
trace of messages matches the finished mes-
sage received from the server. Only if these
are identical will the handshake continue.

The server may receive the Certificate and CertificateVerify messages, and would use them
to authenticate the client.

[13] The server also receives the Finished message from the client. The server will ensure
that the received Finished message is identical to its own Finished message, and will
conclude the handshake with an ACK message.

3.1. Handshakes and key exchanges 14

The ACK message contains the record number of all records sent in the handshake. This
is the final message that concludes the handshake.

3.1.2 Pre-shared keys

DTLS may also utilize a PSK, to simplify consecutive handshakes. Figure 3.2 shows how
a handshake could look, when the two endpoints have previously completed a handshake
and shared keys. Both the cookie exchange and the authentication step is skipped. Since
the client has previously shown commitment, the cookie exchange is not necessary. The
server is also indirectly authenticated by the PSK, so there is not a need to exchange
certificates.

By utilizing PSK a lot of power and traffic is saved. This is the case since an entire round
trip is saved, and the need for authentication is indirectly handled by the PSK.

Client Server

[1a] ClientHello
+ pre_shared_key
+ psk_key_exchange_modes
+ key_share*

ServerHello [2a]
+ pre_shared_key

+ key_share*
{EncryptedExtensions} [3a]

{Finished} [4a]

[5a] {Finished}

[ACK] [6a]
[Application Data*]

[Application Data]

Figure 3.2: DTLS 1.3 handshake with PSK [1].
{} denotes encryption made with the traffic key and
[] denotes encryption made with session key.
* denotes optional or situational messages, and + de-
notes extensions.

[1a] The ClientHello message in the PSK
handshake includes the pre-shared key ex-
tension. This extension includes an id for
the server to identify the key that should be
used. The client may also include an op-
tional key share.

[2a] The ServerHello also has to provide the
same PSK id. The server will also provide a
key share if one was received.

[3a] While the certificate is skipped, the
server still may provide the EncryptedEx-
tensions.

[4a]-[6a] From here, the handshake is similar
to the full handshake, as the server finishes,
the client finishes, and the server finally ac-
knowledges. Along this part of the hand-
shake, the client and server can optionally
begin the exchange of application data.

3.2. General message structure 15

3.1.3 Key update

A session key will be less and less secure the longer and more it is used. The key must be
updated during the transmission of data, and DTLS provides a method to do exactly this.
Figure 3.3 shows how such a series of flights may look. The square brackets are marked
with a number 1 or 2. This symbolizes different epochs, so when the number changes
from 1 to 2, it means the key has been updated.

Client Server

[1b] [Application data]1

[2b] [Key update]1

+ update_requested

[Application data]1 [3b]
[ACK]1[4b]

[5b] [Application data]2

[Key update]1 [6b]

[7b] [ACK]2

[8b] [Application Data]2

Figure 3.3: DTLS 1.3 handshake with PSK [1]. The "+"
symbolize extensions to the previous message, and
the numbers 1 and 2 denote different epochs.

[1b] The client sends some application data
with key 1.

[2b] The client later requests a key update,
with the update_requested extension. The
extension symbolizes the fact that the client
is initiating the key update.

[3b-4b] The server sends some application
data, and acknowledges the received key
update, both with key 1.

[5b] The client now sends application data
with key 2, since it has received the ac-
knowledgment for the key update.

[6b] At this point the server also sends a key
update. This key update does NOT have the
update_requested extension, since the client
already has updated their key.

[7b] The client responds with an acknowl-
edgment to the received key update.

[8b] The server can now send application
data with key 2.

3.2 General message structure

A single DTLS handshake-message consists of three parts; the handshake message itself, a
handshake header and a record header. Figure 3.4 shows how both a ClientHello and an

3.2. General message structure 16

EncryptedExtensions message would look with their headers. The dashed lines symbolize
un-encrypted information and the solid lines symbolize encrypted information.

ClientHello is sent in plaintext and is therefore un-encrypted, however the EncryptedEx-
tensions message must be encrypted, which means that only the record header is plaintext
with the rest being encrypted. This is also reflected in the information in each header.

Figure 3.4: ClientHello and EncryptedExtensions messages with headers. Solid lines symbolize encrypted
content, dotted lines symbolize un-encrypted content.

The record header contains the information needed for de-protection. The need for this
information to be in plain text is highlighted by the two issues with attached solutions
below. Since UDP is unreliable and unordered, DTLS cannot utilize the same mechanisms
that TLS does.

Issue 2; TLS uses an implicit sequence number which is kept and maintained locally and
independently on each side of the connection. The sequence number is used together with
the keys to remove the record protection and such a wrong sequence number will result in
a "bad_record_mac". Unlike TCP, UDP does not promise in-order or reliable transmission,
and each endpoint needs to be able to deduce the sequence number of each individual
received record [1].

Solution 2; As the solution to this issue, DTLS adds an explicit sequence number in the
header of the record, which can then be used to de-protect the record. This however can
lead to some initial concerns, since sequence numbers in TLS enjoy a greater protection, by
never being sent over the exposed internet. For DTLS however, sequence numbers cannot
enjoy this same protection, and has to be sent in plaintext in some capacity. It is interesting
to see how this change effect the security of the overall protocol.

Issue 3; TLS also uses a lock-step cryptographic protocol, which requires packages to arrive

3.2. General message structure 17

in-order. UDP does not promise in-order transmission and such the endpoint needs a way
to figure out what parameters to use of decryption [1].

Solution 3; Again the sequence number along with an epoch is used to order the out of
order messages. However since these values are needed for decryption, both the sequence
number and epoch must be sent in plaintext for the endpoint to analyze.

The handshake header on the other hand, can enjoy protection and contain information
used for reassembly after fragmentation. Fragmentation is how DTLS solves the final
major issue.

Issue 4; Handshake messages are potentially too large to fit within a single datagram,
which is an issue, since the handshake message must be correctly reconstructed before it
can be processed [1].

Solution 4; DTLS solves this by adding a field to the handshake header in order to handle
fragmentation and reassembling. These extra fields can be used to reassemble all parts of
a record, and does not have to be sent in plaintext, and can such enjoy encryption.

The rest of the section will go into detail with the structure of the three message parts.

3.2.1 DTLS handshake messages

The structure of all DTLS handshake messages, with a more detailed explanation can be
found in Appendix A, but for this section we will take a look at ClientHello.

All handshake messages follow the same structure and contain a number of fields. The
ClientHello message contains 7 fields with varying complexity. The extension field will
generally be one of the most complex, as it can contain any number of extensions within.

The client may append a number of extensions for the server to acknowledge. One exten-
sion usually sent here is the Keyshare extension, which contains a list of Diffie-Hellman
groups and keys. This field however, is used for many different extensions, including
the cookie extensions. The report will highlight important extensions when they become
relevant and we refer to the RFC [1] for a full list.

1 struct {
2 ProtocolVersion legacy_version = { 254 ,253 };
3 Random random;
4 opaque legacy_session_id <0..32 > = [];

3.2. General message structure 18

5 opaque legacy_cookie <0..2^8 -1 > = [];
6 CipherSuite cipher_suites <2..2^16 -2 >;
7 opaque legacy_compression_methods <1..2^8 -1 > = 0;
8 Extension extensions <8..2^16 -1 >;
9 } ClientHello;

3.2.2 DTLS handshake header

The listing below shows the DTLS handshake header, with three new fields added in order
to accommodate for solution 4 (see section 3.2).

1 struct {
2 HandshakeType msg_type; /* handshake type */
3 uint24 length; /* bytes in message */
4 uint16 message_seq; /* DTLS -required field */
5 uint24 fragment_offset; /* DTLS -required field */
6 uint24 fragment_length; /* DTLS -required field */
7 opaque body;
8 } DTLSHandshake;

Fragmentation

Fragmentation of handshakes messages is handled by DTLS in order to avoid fragmenta-
tion on the underlying layer. See figure 3.5, for an example of fragmented packages.

3.2. General message structure 19

Figure 3.5: Un-ordered fragments example

Alice initially sends four fragments in the correct order, however under transmission the
packages gets reordered, and Bob receives the fragments out of order. To solve this issue,
each package has a sequence number, a fragment offset, a fragment length and a message
length in their header. For the example, take the values below:

• Fragment: {sequence number: 1, fragment offset: 200, fragment length 300, length:
700}

• Fragment: {sequence number: 2, fragment offset: 0, fragment length 300, length: 300}

• Fragment: {sequence number: 1, fragment offset: 0, fragment length 200, length: 700}

• Fragment: {sequence number: 1, fragment offset: 500, fragment length 200, length:
700}

The fragments above are ordered as Bob receives them, and the reassembly can be seen in
figure 3.6. Bob sees that the first fragment is part of a message with sequence 1, however
since the fragment offset is 200, it is not the first fragment of said message. Bob stores the
fragment for now and reads the next one.

3.2. General message structure 20

The next fragment is of sequence 2. The fragment offset is 0, so it must be the first fragment
of the message, however since the fragment’s length and the length of the message are
both 300, this message has not been fragmented, and thus the full message is already
constructed. The message however is a sequence number ahead, and must be stored for
now.

The third fragment is of sequence number 1, and with a fragment offset of 0. This sym-
bolizes that it is the first fragment in the message. Bob already has a fragment with a
sequence number of 1, and compares the two fragments. The fragment length of 200
in the third fragment matches the fragment offset of the stored fragment, and the two
fragments should appear one after the other. However, since the combined length of the
fragments does not equal the final length of the message, Bob knows that more fragments
are still in flight.

The fourth fragment is again from sequence number 1, and belongs with the other two
fragments. The fragment offset is equal to the total length of the two stored fragments,
and thus this fragment should come after them. The three fragments’ combined length
equals the length of the entire message, and thus the message has been reconstructed, and
can be processed.

Finally the stored fragment with sequence number 2 can also be processed.

Figure 3.6: Fragment reassemble example

3.2.3 DTLS record headers

There exists two types of DTLS record headers, one for encrypted records and one for
unencrypted records. Within the specification, these are known as DTLSPlaintext and
DTLSCiphertext. We see both sequence number and epoch appearing in clear text in both
of these headers in order to solve issue 2 and 3 (see section 3.2).

3.2. General message structure 21

Plaintext

The structure of the plaintext record header can be seen in the listing below. The header
contains six fields, with some being there for legacy reasons. Plaintext records have a fixed
epoch of zero, since this symbolizes an un-encrypted record.

1 struct {
2 ContentType type;
3 ProtocolVersion legacy_record_version;
4 uint16 epoch = 0
5 uint48 sequence_number;
6 uint16 length;
7 opaque fragment[DTLSPlaintext.length];
8 } DTLSPlaintext;

Ciphertext

The header for ciphertext is divided into two sub-headers; the ciphertext header and the
DTLS inner plaintext header. Both the ciphertext header and the inner plaintext header
can be seen in the listing below.

The ciphertext header appears in plaintext, whereas the inner plaintext header is en-
crypted. As such the ciphertext header contains information for deprotection. The inner
plaintext header then has the content type and the actual content of the message along
with some padding.

1 struct {
2 opaque content[DTLSPlaintext.length];
3 ContentType type;
4 uint8 zeros[length_of_padding];
5 } DTLSInnerPlaintext;
6
7 struct {
8 opaque unified_hdr[variable];
9 opaque encrypted_record[length];

10 } DTLSCiphertext;

Chapter 4

Modeling the protocol

The DTLS protocol was modeled and analyzed using Tamarin Prover. The Tamarin Prover
is explained in detail in section 4.1, and utilizes the threat model explained in section 4.1.1.

A total of three models were created; one modeling the full DTLS handshake explained in
section 3.1.1, one modeling a handshake using PSK explained in section 3.1.2 and finally
one modeling the record layer following a successful handshake explained in section 3.1.3.

While modeling, a modular approach was taken. All handshake message was modeled in
a similar fashion, closely resembling the structures explained in section 3.2 and the speci-
fications [1]. Each header also follows the same process, and both the handshake header
and record header was modeled according to the structure explained in section 3.2.2 and
3.2.3. Elements of the models that were changed in comparison to the specifications are
highlighted throughout the subsections in section 4.2.

After presenting these building blocks in section 4.2, the models are validated in section
4.3. The security properties mentioned in section 2.1 were translated into Tamarin lemmas
and validated in section 4.4.

4.1 Tamarin Prover

Tamarin Prover is a security protocol verification tool that allows users to prove and dis-
prove symbolic models. The formalism used in Tamarin is based on multiset rewriting
and allows for creation of detailed models and attackers in the style of Dolev-Yao [11].

22

4.1. Tamarin Prover 23

Tamarin also offers symbolic Diffie-Hellman support, the ability to have an unbounded
amount of instances running simultaneously, and the addition of a graphical interface to
visualize proofs. These features make Tamarin a fitting choice as a tool for modeling DTLS
and other complex protocols.

As mentioned previously, Tamarin uses multiset rewriting, which is used for the “rules”
within the language. An example of a rule inspired by the Tamarin documentation can be
seen below:

1 rule example:
2 [In(X),
3 Fr(~msg),
4 !Ltk($A, key)]
5 --[Sessionkey($A, key)]->
6 [Out(senc(~msg , key))]

Tamarin rules consist of three separate parts: The first part in line 2-4 (premises), The
middle part in line 5 (actions) and the final part in line 6 (conclusions). Both the premises
and the conclusions contain what is known as “facts”. Tamarin functions by having a
global state which is defined by a multiset (a collection) of facts. The multiset is modified
each time a rule is executed.

Tamarin makes use of different types of variables:

• ∼ denotes fresh variables. These variables are unknown to the adversary on creation,
and are unguessable.

• $ denotes public variables.

• % denotes a numerical variable. Numerical variables can be compared to each other
in terms of value. The only natural number that exists in Tamarin is 1:nat. It is
possible to create all positive numbers by adding one to it repeatedly.

• # denotes a temporal variable. This is the type of all timestamps.

• ’c’ are string constants, which are also public.

Tamarin has multiple types of reserved facts.

• The "In" and "Out" facts are reserved for communication over an unsafe channel. All
"Out" facts are processed by the adversary, allowing them to get knowledge from the
input, before creating a matching "In" fact.

4.1. Tamarin Prover 24

• The "Fr" fact is a built-in fact that denotes a freshly generated name. Such ∼ variables
should always on creation appear in the "Fr" facts in the premise of the rule.

• Facts prefixed with an ! are persistent. Rules will consume facts, however persistent
facts can be consumed multiple times.

Returning to the example, the rule can only be executed if all facts in the premise are
available for consumption. In order for "In(X)" to be in the global state, there must have
been an "Out(X)" in a previous rule conclusion. The freshly generated variable ∼msg is
always available for consumption. Finally the "!Ltk($A, key)" requires a previous conclu-
sion containing the fact, however since the fact is persistent, it may have been consumed
before.

The conclusion sends out a message with the "Out" fact. The message is symmetrically
encrypted using built-in cryptographic functionality with the "senc" function. The message
∼msg is encrypted with the key and sent out.

Actions specify observable events, and is used to express certain security properties. Se-
curity properties are encoded as lemmas, an example of which can be seen below:

1 lemma example_property:
2 "All Actor key #i. Sessionkey(Actor , key) @ i
3 ==> not (Ex #j. K(key) @ j)"

The lemma uses one action SessionKey, and ensures that any case where this action is
executed, does not result in the adversary knowing the key. These actions are executed
at certain time slots (#i in the case of SessionKey). These time slots can be assigned to be
before or after any other given time slots, but in the case of this lemma, the time slots #i
and #j are independent of each other. For a more detailed look at Tamarin, we refer to the
Tamarin manual [12].

Tamarin makes great use of pattern matching, and uses Tamarin tuples for this. The syntax
for the tuples is the < and >. The example below shows tuples in Tamarin. The first rule
"Tuple1" sends out the variables x, y and z. These variables are then received in the In fact
in rule "Tuple2", however the tuple with the variables y and z are just received as a new
variable rest, which is equal to "<y, z>".

1 rule Tuple1:
2 [...]
3 -->
4 [Out(<x, <y, z>>]
5

4.2. Datagram Transport Layer Security Model 25

6 rule Tuple2:
7 [In(<x, rest >)]
8 -->
9 [State(z, rest)]

4.1.1 Threat Model

Tamarin, and by proxy, the model makes use of a Dolev-Yao attacker. The attacker has
complete control over the network and can not just eavesdrop, but also intercept, replay,
delete and send synthesized messages on the network. The attacker can gain information
about all sent messages on the network, and can extract information from protected mes-
sages given they have knowledge about the necessary keys. This information can be used
to create new messages, which can be sent out in the network.

The threat model assumes perfect cryptographics, which limits the attacker to only break-
ing cryptographic properties if they have knowledge about the necessary keys. The ad-
versary can also make use of all functions, but cannot break hash functions. The attacker
is provided with further power to compromise long-term keys used for signing and the
ability to compromise DH values. These extra abilities are added to the adversary to al-
low us to check for forward secrecy which revolves around an adversary that has gained
compromised long-term keying material. The rules are shown in the listing below.

1 // Adversary power
2 rule Reveal_DHExp:
3 [DHExp(~x, ~tid , $A)]
4 --[RevDHExp (~x, ~tid , $A), Corrupt($A)]->
5 [S_Out(~x)]
6
7 rule Reveal_LTK:
8 [!Ltk($A, ~ltk)] --[Corrupt($A)]-> [S_Out(~ltk)]

4.2 Datagram Transport Layer Security Model

The model was created using a modular approach, modeling each part of a message indi-
vidually according to the specifications [1]. Each message is divided into three parts, as
explained in section 3.2. The modeling process takes a similar approach, and models the
handshake messages, the handshake header and the record header separately.

4.2. Datagram Transport Layer Security Model 26

This section will not explain all rules in detail, but rather the overall idea for the model.
All models can be found in the attached material or on GitHub [13].

Key Servers

In a real life scenario, the public keys of peers are accessible using key servers, but within
the context of this paper, the idea of key servers are abstracted away from. As such, each
peer simply has knowledge of every public key in the system.

4.2.1 Modeling: Handshake message

We return to the example of ClientHello in section 3.2. The messages modeled in Tamarin
can be seen in the listing below. The resemblance between the struct in section 3.2 and the
Tamarin tuple is obvious. This is done in order to mimic the specifications as closely as
possible, to limit the possibility of introducing errors into the model.

Some fields have been omitted since they only exist for legacy reasons and have a constant
value. In the case of the ClientHello, these fields are the legacy session id, the legacy cookie
and the legacy compression method. We also see the client keyshare extension, which was
briefly discussed earlier. All extensions and other message structs can be found in the
specifications [1].

1 ClientHello =
2 <
3 /* ProtocolVersion */ protocolVersion (),
4 /* Random32 */ crandom ,
5 /* CipherSuite */ ’CipherSuits ’,
6 /* Extension */ <
7 /* ExtensionType */ ’51’,
8 /* KeyshareClientHello */ <
9 /* KeyshareEntry */ <’g’, ga >

10 >
11 >
12 >

Aside from the removed fields, other modifications are also made to the specifications
in order to properly model the protocol. One of the larger ones are the certificate and
certificate verify messages.

4.2. Datagram Transport Layer Security Model 27

Certificate and Certificate Verify

The server certificate is just the constant ’serverCert’, which is sent in the certificate mes-
sage. As for the certificate verify message, removing the headers leaves us with the mes-
sage shown in the listing below. The verify message contains the entire history of the
handshake and the certificate. This is all signed with the servers private key.

The client will use the certificate message and the certificate verify, in order to authenticate
the server. Only if the history and the certificate matches, and the server’s private key was
used to sign the message, will the client accept. In the model we have full trust in the
key-server, however as explained in section 4.1.1, the long-term server private key may be
compromised.

1 CertificateVerify =
2 <
3 /* algorithm */ $alg ,
4 /* signature */
5 sign(hmac(<h1(
6 <ClientHello ,
7 HelloRetryRequest ,
8 ClientHelloCookie ,
9 ServerHello ,

10 EncryptedExtensions ,
11 ServerCertificate >),
12 ’serverCert ’>), serverPrivateKey)
13 >

Other changes include;

• Both the HelloRetryRequest and ServerHello have some legacy fields removed;
legacy_session_id_echo and legacy_compression_methods.

• The protocol version is omitted since it is a constant value of {254, 253}.

• EncryptedExtensions just contains a string, since we do not actually exchange any
extensions.

• The Certificate message just includes a constant with either ’clientCert’ or ’serverCert’.
We do not model the direct way that a certificate is made or the methods used. This
is enough since Tamarin promises perfect cryptographic.

• For the CertificateVerify the algorithm has been replaced with the public value $alg.
The rest follows the specifications closely.

4.2. Datagram Transport Layer Security Model 28

4.2.2 Modeling: Handshake header

With the DTLS handshake header, we must properly handle the message sequence number
and the fragmentation. The handshake header for ClientHello can be seen in the listing
below.

The handshake type for ClientHello is set to a fixed ’1’. The msg_len is the length of the
message, which is a freshly generated value. The length is set to a fresh value. This is
to make the length unknown to the adversary on creation. This allows queries to check
whether the adversary can deduce the length solely from the content of the message. This
will not ensure that the adversary does not know the length of the message, which is
discussed further in section 4.4.

The first 1:nat represents the sequence number for the message. Since the ClientHello is
the first message in a connection, it has a sequence number of 1. Both epoch and sequence
numbers normally start at 0, but since Tamarin natural numbers start from 1, the model
sequence number and epoch likewise start from 1. This makes no difference to the output
of the model.

1 HandshakeHeader =
2 <
3 /* HandshakeType */ ’1’, <
4 /* length */ ~msg_len ,
5 /* sequence number */ 1:nat ,
6 /* fragment offset */ 1:nat ,
7 /* fragment length */ 1:nat >,
8 ClientHello
9 >

The fragment offset and fragment length, has been modeled in a different way to its spec-
ifications explained in section 3.2.2. In the model, the fragment offset represents the frag-
ment’s order in the entire record and the fragment length represents the total amount of
fragments.

In the ClientHello handshake header, the fragment offset and the fragment length are both
set to 1, which means the fragment is this records first fragment out of 1. This also means
that the record is not fragmented.

To showcase a fragmented example, see the listing below, which show the first and last
fragment of a fragmented certificate message. We see that fragment offset is set to 1 in
the first message, and to the max (5 in this case) in the last message. The fragment length

4.2. Datagram Transport Layer Security Model 29

is also max, and this information alone in enough to inform us that the first message
is the first fragment and the last message is the last fragment. Section 3.2.2, explains
fragmentation in detail.

1 DTLSCipherTextSC_1 =
2 <
3 /* HandshakeType */ ’11’, <
4 /* length */ msg_len_1 ,
5 /* sequence number */ %next_seq ,
6 /* fragment offset */ 1:nat ,
7 /* fragment length */ %max >,
8 /* certificate_entry */ ’ser ’
9 >

10
11 DTLSCipherTextSC_5 =
12 <
13 /* HandshakeType */ ’11’, <
14 /* length */ msg_len_5 ,
15 /* sequence number */ %next_seq ,
16 /* fragment offset */ %max ,
17 /* fragment length */ %max >,
18 /* certificate_entry */ ’t’
19 >

4.2.3 Modeling: Record layer

The record layer structure was explained in section 3.2.3, and the model follows this spec-
ification closely. The record header structure does not change much between different
flights, however there are two distinct cases; plaintext header and ciphertext header.

Plaintext record header

For the plaintext record header we use the example of ClientHello. The Tamarin imple-
mentation can be seen in the listing below, with DTLSHandshakeMsg, being the DTLS
handshake message with the handshake header.

1 DTLSPlaintext =
2 <
3 /* ContentType */ ’22’,

4.2. Datagram Transport Layer Security Model 30

4 /*epoch*/ 1:nat ,
5 /* sequence_number */ 1:nat ,
6 /* length */ ~msg_len ,
7 DTLSHandshakeMsg
8 >

The record header consists of a ContentType, Epoch, SequenceNumber, the length of the
fragment, and the fragment itself. The ProtocolVersion seen in the struct for the plaintext
record layer has been omitted, as it is legacy and will always be the same. The ContentType
is ′22′ for all handshake messages.

Ciphertext record header

For the Ciphertext record header we use EncryptedExtensions as an example. The Ci-
phertext can be seen in the listing below, and we see that the unified_hdr has the bit
configuration 001-0-1-1-10. This bit configuration specifies that is is an encrypted message,
without connection id, with a 16 bit sequence number, a length present, and the epoch 2.
The sequence number is also included in the un-encrypted part of the message in order to
aid de-protection.

Ciphertext also contains the DTLSInnerPlaintext that encrypts the content of the message,
a padding of zeros (in the case of our model, it is a singular zero) and the content type
using the traffic key. The next sequence number is carried between flights, and both the
server and the client keeps track on what sequence number is next.

1 DTLSInnerPlaintext =
2 senc{<
3 /* content */ <
4 /* HandshakeType */ ’8’,
5 <
6 /* length */ ~msg_len ,
7 /* sequence_number */ %next_seq ,
8 /* fragment_offset */ 1:nat ,
9 /* fragment_length */ 1:nat

10 >,
11 EncryptedExtensions
12 >,
13 /*zeros*/ <’0’>,
14 /* ContentType */ ’22’
15 >}traffic_key

4.2. Datagram Transport Layer Security Model 31

16
17
18 DTLSCipherText =
19 <
20 /* unified_hdr */ <
21 /*first three bits*/ <’0’,’0’,’1’>,
22 /*Cid flag*/ ’0’,
23 /* Sequence number length flag*/ ’1’,
24 /* Length flag*/ ’1’,
25 /*First two bits of epoch*/ <’1’,’0’>
26 >,
27 /* sequence number */ %next_seq ,
28 /* encrypted_record */ DTLSInnerPlaintextEE
29 >

4.2.4 Modeling: Additional behavior

Some of the model’s behavior is modeled using restrictions. These restrictions allow us to
limit the model in a way, such that unintended traces are not generated. An example of
such a restriction is the Dont_essablish_session_with_self restriction seen in the listing below.

The restriction states that an actor may not establish a session with itself. This is unin-
tended behavior from an implementation point of view, and we therefore want to limit the
model’s behavior as well.

1 restriction R2_Dont_essablish_session_with_self:
2 "All actor1 actor2 role session_id #i.
3 Start(actor1 , actor2 , role , session_id) @ #i
4 & actor1 = actor2 ==> F"

Another example is ordered fragments, which were explained in 3.2.2. The fragments
should be ordered according to their value, which is enforced with the lemma in the
listing below.

1 restriction R4_Fragments_in_order:
2 "All %frag_offset_1 %frag_offset_2 %frag_offset_3 %frag_offset_4
3 %frag_offset_5 #i.
4 FragmentsInOrder (% frag_offset_1 , %frag_offset_2 ,
5 %frag_offset_3 , %frag_offset_4 ,
6 %frag_offset_5) @ i

4.3. Model validation 32

7 ==> %frag_offset_1 < %frag_offset_2
8 & %frag_offset_2 < %frag_offset_3
9 & %frag_offset_3 < %frag_offset_4

10 & %frag_offset_4 < %frag_offset_5"

4.2.5 Modeling: UDP

In previous work [10] the unreliability of UDP was explicitly modeled. However, explicit
modeling of UDP may be simplified, since the adversary provides implicit resending of
unreceived messages.

First, it is vital to distinguish between the adversary "resending" a dropped message, and
"replaying" a message. Replaying of messages is unwanted behavior, since it involves the
message being processed more than once. Sequence and epoch are among other things
included to avoid this very issue. Resending of dropped messages are on the other hand
wanted behavior, since the message will only be processed once.

Unreliability can easily be modeled with the single rule in the listing below. This rule will
silently consume In facts. The re-send properties are provided solely by the adversary. In
tamarin, the adversary gains knowledge about the message when the Out is consumed,
and the In is created. The adversary may then resend the messages, since they have
knowledge about them.

Since the message that is resent, is exactly the same as the initial message, this approach
does not limit the model.

1 rule Drop:
2 [In(x)] --> []

4.3 Model validation

Model validation is a crucial step of any model creation, as this is the part where the
model is evaluated against the specifications. This helps ensure that the model behaves as
the specifications, or as a potential implementation. The model is solely validated against
the specifications, as the only library for implementation, WolfSSL did not work for us.

4.3. Model validation 33

Documentation versus Implementation

When one traditionally validates a model, the model will be directly compared to a trace of
a real implementation. However, in the case of DTLS 1.3, there are limited implementation
resources at the time of writing this paper. From the research done, the two main libraries
that support DTLS is OpenSSL and WolfSSL. While OpenSSL supports DTLS, it currently
does not support DTLS 1.3 and is capped at DTLS 1.2. A DTLS 1.3 update for OpenSSL is
in the works, but it is currently still in the early stages, and cannot be used for validation
[14]. WolfSSL has supported DTLS 1.3 in some capacity since June 2022 [15], but the
compilation process has been troublesome even though the group has previous experience
with WolfSSL. Since neither of the main implementations of DTLS are viable for the project,
the only remaining option would be to implement a simple setup ourselves, but this is
outside the scope of the project.

Thus, the validation of the model is based upon the documentation seen in RFC 9147.

Removing the adversary

To validate correctly, the adversary has to be removed, as validation focuses on the pure
model. The adversary can mistakenly solve issues with the model, by altering the order
or content of messages. This can consequently lead to the model seemingly functioning
correctly, even with errors present.

Tamarin, unlike other similar tools, has a built-in adversary. This then proves to be a
challenge, as Tamarin seemingly has no built-in method to disable the adversary. As a
result, "Secure channels" were developed as a means to remove the adversary’s influence,
since an adversary can neither learn nor modify messages sent in these channels. The code
for the secure channels can be seen in the listing below.

1 /* Channel rules */
2 rule Secure_Chan:
3 [S_Out(m)] --> [S_In(m)]

Validation

In order to validate the models, several lemmas were made within four major categories
relating to parts of the DTLS handshake.

4.4. Security properties 34

• Authentication

• Cookie exchange

• Finished handshake

• Order

These four are focused upon, as we believe them to be the key points that could result
in failure if not thoroughly validated. The validation process highlighted some mistakes
with the order in which messages were sent. Client authentication also was not possible
initially, which was only found out later, since it is an optional branch.

Furthermore the handshake security properties in section 2.1.1 and record layer security
properties in section 2.1.2 were all tested on the restricted model. These properties are
important to test before the adversary is included, as they should be upheld in a legitimate
DTLS connection. The full list of lemmas for the four main categories including a overview
table, can be seen in Appendix B, where a short explanation of the lemmas also exists.

4.4 Security properties

With the DTLS models of the two handshakes and the record layer, the focus can now shift
towards proving the security properties stated in section 2.1. The section narrowed the
security promises of DTLS down to eight handshake properties (H1-H8), four record layer
properties (R1-R4), and two general concerns about abusive behavior enabling potential
DoS attacks (D1 & D2). Only the handshake and record layer properties were modeled,
and all lemmas were tested against a mutated model, with intentional issues, in order to
verify that the lemmas are correct and behave as expected. This section will present how
these properties were modeled in Tamarin.

4.4.1 Handshake properties

Five of the eight handshake properties have been modeled in Tamarin.

Establishing the same session keys (H1) is per [8] limited to completed matching sessions be-
tween two uncorrupted parties. The only sessions that are completed with a HandshakeComplete
action from both the client and the server, are those with a matching finished message,

4.4. Security properties 35

that contains the entire session history. The lemma which can be seen in the listing be-
low, claims that if the handshake was completed by both the client and the server, with
matching nonce, then the session keys should be the same.

The lemmas was tested against a model where the server would commit another key than
the one agreed upon. This would make the committed keys not the same, and the lemma
would fail as expected.

1 lemma H1_Establishing_the_same_session_keys:
2 "All C S client_sid server_sid keyC keyS nonce #i #j.
3 HandshakeComplete(C, S, ’client ’, client_sid , keyC , nonce) @ #i
4 & HandshakeComplete(S, C, ’server ’, server_sid , keyS , nonce) @ #j
5 & not(Ex #p. Corrupt(C) @ p)
6 & not(Ex #q. Corrupt(S) @ q)
7 ==> keyC = keyS"

Secrecy of the session keys (H2) however asks the question of whether or not the session key
is secure, or if the adversary has knowledge about the key. The lemma can be seen in the
listing below, and regards the secrecy of a authenticated session key. The lemma states
that if the actor has accepted a session key from an authenticated peer, while neither they
themselves or their peer has been corrupted, then the adversary will not have knowledge
about the key.

The lemma only regards authenticated session keys. This is done since an adversary
could start a session and exchange unauthenticated keys with the server, and trivially
have knowledge about the session key. The only time that the server can enjoy session
key secrecy, is when they authenticate the client as well. However, since the completed
sessions as per property (H1) ensure that the client and server has the same session key,
since the client enjoys secrecy of session keys, the server will also enjoy secrecy in those
cases.

In attempts to test the validity of the session key secrecy lemma (H2), issues with compu-
tation arose. For a more thorough explanation of computation issues we refer to chapter
5, but the issues resulted in a model where the traffic key was leaked too early, which re-
sulted in the lemma not being computable. The lemma was also changed with these tests
since an earlier version would incorrectly be marked as true, when the model leaked the
key on purpose. We theorize that the unexpected pass is due to some timing in Tamarin,
however the change fixed the issue.

1 lemma H2_Session_key_secrecy:
2 "All actor peer role session_id key #i.
3 SessionKey(actor , peer , role , session_id , key , ’auth ’) @ i

4.4. Security properties 36

4 & not(Ex #p. Corrupt(actor) @ p)
5 & not(Ex #q. Corrupt(peer) @ q)
6 ==> not(Ex #j. K(key) @ j)"

Peer authentication (H3) ensures that when an actor believes they are talking to a peer, then
the identity of the peer should match the actors idea of the peer. An example is when the
client believes they are talking to the server, then it should be the case. This is proved by
the lemma in the listing below, by having an actor commit to a peer’s identity, when they
accept it. When the actor has committed to the identity, then there should exist a peer that
are currently running a matching session, which is the HandshakeHistory.

The lemma was tested on a mutated model, where the client would not ensure that the
certificate had matching history. The lemma was expectedly false, in the mutated model.

1 lemma H3_Authentication:
2 "All actor1 actor2 role1 role2 HandshakeHistory #i.
3 CommitAuth(actor1 , actor2 , role1 , HandshakeHistory) @ i
4 & not(Ex #p. Corrupt(actor1) @ p)
5 & not(Ex #q. Corrupt(actor2) @ q)
6 ==> (Ex #r. Running(actor2 , role2 , HandshakeHistory) @ r)"

Uniqueness of the session keys (H4) can be seen in the listing below and checks for machining
session keys across multiple sessions. The lemma is restricted to check for matches within
roles, so two different clients may not have the same session key, and two different servers
may not have the same session key. This is done since a client and a server who established
a session will share a session key, making the lemma fail unintentionally.

The mutated model for H4 has simply changed the traffic key for each peer. By doing
this, the mutated model encountered some computation issues. Computation issues are
discussed further in chapter 5.

1 lemma H4_Unique_session_keys:
2 "All actor1 actor2 peer1 peer2 role key session_id1 session_id2
3 auth1 auth2 #i #j.
4 SessionKey(actor1 , peer1 , role , session_id1 , key , auth1) @ i
5 & SessionKey(actor2 , peer2 , role , session_id2 , key , auth2) @ j
6 ==>
7 #i = #j
8 | (Ex #p. Corrupt(actor1) @ p)
9 | (Ex #q. Corrupt(actor2) @ q)

10 | (Ex #p. Corrupt(peer1) @ p)
11 | (Ex #q. Corrupt(peer2) @ q)"

4.4. Security properties 37

Downgrade protection (H5) was not modeled within either of the three models. We do not
regard lower versions of DTLS, and do not negotiation cryptographic configurations.

Forward secrecy with respect to long-term keys (H6) can be seen in the listing below and re-
gards secrecy similar to (H2), but in scenarios where one of the actors has been corrupted.
The lemma similarly to (H2) has a completed handshake between two peers, where none
of them are corrupted before the handshake is completed. The server is the final part to
complete the handshake, and the corruption must therefore happen after the timestamp
#j. The lemma then states that if the handshake is complete and one of the endpoints are
corrupted after completion, then the adversary will not gain knowledge about the session
key, if they did not have knowledge of it prior.

The mutated model for H6 should in theory be the same as H2, but by testing H6 on that
model, it continued infinitely. This could be because the traffic key is leaked just as the
handshake ends, and the lemma will therefore disregard it as a part of the handshake.
By moving the "Out" one step back to the ClientFinished, the lemma results in a fail as
expected.

1 lemma H6_Forward_secrecy:
2 "All C S session_id key nonce #i #j.
3 HandshakeComplete(C, S, ’client ’, session_id , key , nonce) @ i
4 & HandshakeComplete(S, C, ’server ’, session_id , key , nonce) @ j
5 & ((Ex #p. Corrupt(C) @ p & #j < #p)
6 | (Ex #q. Corrupt(S) @ q & #j < #q))
7 & not((Ex #k. K(key) @ k & #k < #j))
8 ==> not((Ex #k. K(key) @ k))"

Key Compromise Impersonation (KCI) resistance (H7) was not modeled, due to the way certifi-
cates are handled in the model.

Protection of endpoint identities (H8) was not modeled since the abstractions made for cer-
tificates, did not allow the certificates to be unknown to the adversary, since they must be
directly known to the server and client. In section 4.2.1, we mention how certificates are
modeled as fixed strings. These are known to the adversary per default, and such a lemma
could not be written for the current models that could verify H8. This is a limitation of the
models and not DTLS.

4.4.2 Record properties

All four record properties, explained in section 2.1.2, were modeled.

4.4. Security properties 38

As discussed confidentiality (R1) can mean a lot of things, however DTLS restricts confiden-
tiality to the concealment of plaintext and length concealment. Concealment of plaintext
can be seen in the listing below. It states that for all messages sent, if the adversary knows
the message, it must be because they know the session key as well.

1 lemma R1_Confidentiality:
2 "All actor1 actor2 msg session_key len #i #j.
3 SendMsg(actor1 , actor2 , msg , session_key , len) @ i
4 & K(msg) @ j
5 ==> Ex #l. K(session_key) @ l"

The integrity (R2) lemma can be seen in the listing below, and ensures that all messages
received, are the actual messages sent. The lemma is limited to traces where the adversary
does not know the session key.

1 lemma R2_Integrity:
2 "All actor1 actor2 msg session_key len #i.
3 ReceivedMsg(actor1 , actor2 , msg , session_key , len) @ i
4 & not(Ex #l. K(session_key) @ l & #l < #i)
5 ==>
6 Ex #j. SendMsg(actor2 , actor1 , msg , session_key , len) @ j
7 & #j < #i"

Ensuring length concealment (R3), was a lot harder. The length of the message may be
deduced from other parameters than the written length in the header, and this model does
not promise complete length concealment, however it does ensure that the adversary will
not be able to deduce the length of the message from the content of the message. The
lemma in question can be seen in the listing below.

1 lemma R3_Length_concealment:
2 "All actor1 actor2 msg session_key len #i.
3 SendMsg(actor1 , actor2 , msg , session_key , len) @ i
4 ==> not(Ex #j. K(len) @ j)"

The final record layer property forward secrecy (R4) regards key updates. The lemma can
be seen in the listing below, and states that if a message is sent out on an old key, and the
adversary does not know that message, then the introduction of a new session key, which
the adversary knows, will not reveal the old message.

1 lemma R4_Forward_Secrecy:
2 "All actor1 actor2 role msg_old session_key_old session_key_new
3 len #i #j #m.
4 SendMsg(actor1 , actor2 , msg_old , session_key_old , len) @ i

4.4. Security properties 39

5 & not(Ex #k. K(msg_old) @ k & #k < #j)
6 & RegisterSessionkey(role , ’send ’, session_key_new) @ j
7 & K(session_key_new) @ m
8 & #j < #m
9 & #i < #j

10 ==> not(Ex #l. K(msg_old) @ l)"

Chapter 5

Analysis and results

In order to verify the security properties, the adversary had to be introduced back into the
model. The verification was done on a group member’s home computer, using Windows
Subsystem for Linux with 32 GB allocated ram. This introduced some computation issues,
due to the complexity of the model, with both computation time and memory being an
issue.

Computation time alone does not necessarily propose an issue when it comes to verifica-
tion, since the verification only has to take place once. Whether it takes a week or a day
to verify a model, doesn’t really matter in the long run, since it does not have to be run
repeatably.

The issues with computation time presented themselves during the development of the
model and verifications queries. The model took ∼20 minutes to load and another ∼20
minutes to open. This leaves a ∼40 minute overhead on changes done to the model during
development. This also does not take into account the time it takes to run the queries.
Measures were implemented to limit the resources used during development, which is
explained in section 5.1.

While issues with computation time was not a complete barrier, the same can not be said
about memory. If the hardware runs out of memory before the verification is complete,
either the model and verification query must be changed, or better hardware must be used.
Measures were taken in order to tackle the growing state-space and ease verification, and
is explained in section 5.2.

40

5.1. Debug lemmas 41

5.1 Debug lemmas

In order to ease the development of the lemmas, two limiting debug lemmas were intro-
duced. These lemmas would limit the amount of clients and servers present in the model.

One of the strong advantages of tamarin, is its ability to host an unlimited amount of
clients and servers. This is a large benefit compared to model checkers like UPPAAL and
ProVerif, whose potential were explored in an earlier report [16]. However this also comes
with a greater cost, since an unoptimized model may have major computation issues. As
such, the debug lemmas seen in the listing below were introduced to aid the development
process of the security lemmas.

1 restriction DEBUG_Only_one_session_client:
2 "All a1 a2 a3 a4 sid1 sid2 #i #j.
3 Start(a1, a2, ’client ’, sid1) @ i
4 & Start(a3, a4, ’client ’, sid2) @ j
5 ==> #i = #j"
6
7 restriction DEBUG_Only_one_session_server:
8 "All a1 a2 a3 a4 sid1 sid2 #i #j.
9 Start(a1, a2, ’server ’, sid1) @ i

10 & Start(a3, a4, ’server ’, sid2) @ j
11 ==> #i = #j"

5.2 Combating memory issues

In order to limit the issues with memory use, the amount of accessible states must be
reduced. The state-space can be reduced by introducing some additional information into
the model.

Limiting the amount of rules that can provide a fact

One way additional information was introduced directly into the model, was by limiting
the amount of rules specific facts could be gathered from. We will explain this with an
example from the model.

An earlier iteration of the model made use of two facts to store both the current sending

5.2. Combating memory issues 42

and receiving sequence number and epoch. The two facts would contain the next sequence
number and epoch to use, and the next sequence number and epoch to receive.

These two facts were named ServerNextSeqAndEpoch and ServerRecSeqAndEpoch, and
would be present in almost all rules premise and conclusion. This was an issue, since
during verification, if a rule had ServerNextSeqAndEpoch in its premise (which they almost
always had), then it could be received from almost all other rules (since almost all rules had
the facts in their conclusion as well). Due to the protocol like structure of the model, at any
time, only one or two rules are relevant, and all other rules with ServerNextSeqAndEpoch
would not themselves be executable at that time. However, the prover would not know
this, and would check them anyways.

This lead to a change to the model. Instead of having two facts ServerNextSeqAndEpoch
and ServerRecSeqAndEpoch, they were combined into one fact ServerSeqAndEpochACK.
The fact was also made rule specific, which did not compromise the model. An imple-
mentation would also know what message to expect next, and would hold the sequence
number and epoch up against that information as well. This greatly improved computa-
tion, since the Tamarin Prover now did not have to check all the rules repeatably.

This was later expanded upon further, and the final model only has one fact for the state
of each rule (ex St_ClientHello). This way the Tamarin Prover would not attempt to gather
the current state from multiple different instances, just to later realize that this was not
possible.

Dividing the lemmas into smaller parts

Another way to reduce the state-space was to divide the verification into smaller parts.
Tamarin allows for lemmas with the "reuse" property, which we will call "reuse lemmas".
This allows the lemmas to work as a restriction for other lemmas.

Reuse lemmas and restriction differentiate in a very interesting way. Restrictions cannot be
verified, and its use should be kept to the modeling aspect, by using it to model intended
behavior as seen in section 4.2.4. Reuse lemmas however can be verified, and can thus be
used to ease the verification of larger lemmas, by restricting already verified paths.

An example of this is the Diffie-Hellman challenge. The Diffie-Hellman challenge is a reuse
lemma that was introduced to help the adversary know when it is possible to deduce the
traffic key, created using the Diffie-Hellman method.

During verification, a lot of traces check for the adversaries knowledge of the private parts

5.3. Record layer model restrictions 43

of the Diffie-Hellman key (a and b). This took up a lot of time and memory, and therefore
the reuse lemma was made in order to settle whether or not the adversary is able to
know the key under perfect conditions. By verifying this reuse lemma, it can be used as a
restriction to the verify the lemmas in section 4.4.1.

The lemma can be seen below and is heavily inspired by the work made by [4].

1 lemma dh_challenge[reuse]:
2 "All actor1 actor2 random1 random2 g a b ga gb gab #i #j #r.
3 DHChal(actor1 , random1 , g, a, ga, gb, gab) @ i
4 & DHChal(actor2 , random2 , g, b, ga, gb, gab) @ j
5 & K(gab) @ r
6 ==>
7 (Ex #p. (RevDHExp(a, random1 , actor1) @ p & #p < #r)) |
8 (Ex #q. (RevDHExp(b, random2 , actor2) @ q & #q < #r))"

However, even lemmas such as the Diffie-Hellman challenge, may be too large to verify, so
other lemmas like the "session_id_invariant" below was created.

This reuse lemma is quite a bit simpler, stating that rules that take place in the middle
of a handshake may only occur if the handshake has been initiated. Tamarin, while be-
ing a good tool for protocols, still relies on multiset-rewriting, and all rules are checked
to see whether they aid the current goal or not. This reuse lemma stops Tamarin from
considering rules that appear in the middle of a handshake that has not yet been started.

1 lemma Session_id_invariant[reuse]:
2 "All session_id actor role #i.
3 Instance(session_id , actor , role) @ i
4 ==> (Ex peer #j.
5 Start(actor , peer , role , session_id) @ j & (#j < #i))"

In order to run all the lemmas created in section 4.4 a handful of these reuse lemmas had
to be created. For a complete list of all the reuse lemmas we refer to the attached models,
or the model on GitHub [13].

5.3 Record layer model restrictions

The record layer model required additional restrictions. The model has been restricted to
only allows for one key update, and for application data to be sent twice. These restrictions

5.4. Results 44

were set in place, since in contrary to a handshake, the record layer does not have a
theoretical end to it.

The model also had to be further restricted, by only having one client/server group. The
handshakes are relatively linear, with only one potential branching (optional client au-
thentication). The record layer can constantly choose between the options of updating the
server key, updating the client key or sending application data. This results in a plethora
of branches, with what is to be expected similar results. Some of the branches can be seen
in table 5.1.

This branching resulted in additional time and memory issues, compared to the hand-
shake. The record layer is less complicated, but ultimately the record layer had to be
restricted in order to verify the security properties R1-R4.

Branch 1 Branch 2 Branch 3 Branch 4
Step 1 Client app data Client app data Client app data Client app data
Step 2 Client app data Client app data Client key update Server key update
Step 3 Client key update Server key update Server key update Client key update
Step 4 Server key update Client key update Server app data Server app data
Step 5 Server app data Server app data Client app data Client app data
Step 6 Server app data Server app data Server app data Server app data

Table 5.1: Four of the branches that the record layer creates

5.4 Results

The lemmas mentioned in section 4.4 were checked against the model using Tamarins
interactive prover. All modeled security properties were successfully verified in all three
models, with various restrictions. The results and restrictions can be seen in table 5.2.

This shows us that the additional functionality and changes made to DTLS in comparison
to TLS does not introduce any new security breaches, within the scope of our models.
The addition of sequence numbers and epochs in clear text and the additions of a cookie
exchange does not affect confidentiality, integrity nor authentication.

5.4. Results 45

Property Lemma name Passed Restrictions
H1 H1_Establishing_the_same_session_keys ✓ Unrestricted
H2 H2_Session_key_secrecy ✓ Unrestricted
H3 H3_Authentication ✓ Unrestricted
H4 H4_Unique_session_keys ✓ Unrestricted
H5 Not tested X -
H6 H6_Forward_secrecy ✓ Unrestricted
H7 Not tested X -
H8 Not tested X -
R1 R1_Confidentiality ✓ Only one server/client
R2 R2_Integrity ✓ Only one server/client
R3 R3_Length_concealment ✓ Only one server/client
R4 R4_Forward_Secrecy ✓ Only one server/client

Table 5.2: The results of the lemmas tested.

Chapter 6

UPPAAL translation

While Tamarin has proven to be a valuable tool when it comes to analyzing authentication,
confidentiality, and integrity mentioned in section 2, analyzing availability does not come
intuitively with a Tamarin model. Tamarin makes use of natural numbers to a limited
extent, with its recommended use limited to simplistic counters.

Analyzing availability with a Tamarin model, may not be impossible, however being able
to translate a Tamarin model directly into a UPPAAL model, would allow access to UP-
PAAL’s more powerful notion of numbers and time. Analysis on DTLS power consump-
tion has been modeled previously in UPPAAL [3], showing that these precise clocks and
large numbers make analysis of availability possible.

UPPAAL is a tool that models in a network of timed automata, that are extended to in-
clude traditional data types. We refer to the UPPAAL documentation for more precise
descriptions [17, 18].

This chapter will in section 6.1 present the thoughts and considerations put into a possible
translation of Tamarin models into UPPAAL models. Section 6.2, then presents a trans-
lation method that works for simple and limited Tamarin models. Finally, in section 6.3
this is followed up by thoughts and considerations on what changes are needed in order
to include more of Tamarins features.

It should be noted that the result of this chapter is proof of concept, and not the complete
work. The translation presented, does not utilize all Tamarin features, and the model itself
is also still an over-approximation. We do however believe that this draft has potential,
and with further work this idea could become a realistic translation method.

46

6.1. Tamarin syntax and semantics 47

6.1 Tamarin syntax and semantics

The first step, was to look at the syntax and semantics of Tamarin, in order to effectively
map it to UPPAAL’s syntax and semantics. Both the syntax and the semantics of Tamarin
differ a lot from UPPAAL’s, and previous work done by the group [16] highlights the
formal differences between the two, detailing the large difference in formalisms.

In Tamarin, four major aspects were noted as crucial in the translation process.

• Variables

• Facts

• Pattern matching

• Actions when they are involved in restrictions

6.1.1 Tamarin variables translated to UPPAAL

Tamarin variables, with the exception of natural numbers, are just a symbolic represen-
tation of a name. This differs a lot from UPPAAL, where most variables contain actual
values.

The rule in the listing below creates a fresh variable ∼var. When using the Tamarin Prover,
the first time the rule is executed, a variable ∼var is created. If the rule was executed again,
another variable of the same name is created. Internally these two variables are distinct,
and will in the interactive prover most likely be represented as var and var.1.

1 rule Variable_example:
2 [Fr(~var)] --[]-> []

We can see this as well if we notice the updated rule in the listing below. We have added
an action NewVar, which takes the fresh variable as an input. We also have a lemma,
that asks whether two variables not created at the same time (not(#i = #j)) can ever be
the same. The lemma will confirm our intuition, that they cannot, thereby indeed being
distinct.

1 rule Variable_example:
2 [Fr(~var)] --[NewVar (~var)]-> []
3

6.1. Tamarin syntax and semantics 48

4 lemma Are_variables_distinct:
5 " All var1 var2 #i #j.
6 NewVar(var1) @ i & NewVar(var2) @ j & not(#i = #j)
7 ==> not(var1 = var2)"

Regarding the other variable types shown in section 4.1, public variables work in a similar
way. See the example rule "Public_variable_example" in the listing below.

1 rule Public_variable_example:
2 [] --[]-> [State($var)]

If this rule is run twice, we have two cases. We may have an instance of the fact State with
a public variable $var and another with $var.1 or we have two instances of the fact state
with $var.

The case of strings is different however. They are constant, and if we have a rule similar to
"Variable_example" but with strings, the lemma would not hold, and the opposite would
be true. In all cases the variables would be the same. The example can be seen in the
listing below.

1 rule String_variable_example:
2 [] --[]-> [State(’var ’)]

Finally numerical variables are the only variable within Tamarin, that has an actual "value".
They work as expected, and the number 1 is equal to another number 1, and 2 is larger
than 1.

With this understanding of variables in Tamarin, the variables were modeled in UPPAAL
in section 6.2.1.

6.1.2 Tamarin facts translated to UPPAAL

Translating the facts was a bit more convoluted than translating the variables. Facts contain
two parts, the facts themselves, and the variables they contain. Looking at only the facts
themselves, facts in tamarin are "created" and "consumed" as mentioned in section 4.1.
When a fact is created, it is entered into the global multiset, where it is kept until possibly
being consumed by a later fact.

Two facts are differentiated by both its name and amount of inputs. An example of this
is the fact Fact(x, y) and Fact(x, y, z). If Fact(x, y) is in the current multiset, it cannot be

6.1. Tamarin syntax and semantics 49

consumed as Fact(x, y, z). Two facts with different names Fact1(a, b) and Fact2(a, b) also
are not related. This gives us a lot of leeway when translating facts. This can be seen with
the two ideas in appendix C and the final idea in section 6.2.3

Special facts

There exists some special facts, two of which being the In and Out facts. These facts
concern the adversary, and the content of an Out fact is parsed by the adversary before
becoming an In fact. All In and Out facts also only take one variable.

6.1.3 Pattern matching

Pattern matching plays a large part in Tamarin, and can roughly be divided into two parts.
Firstly, pattern matching can be used to ensure variables have the same value. An example
of this can be seen in the rule "Pattern_matching1" in the listing below. The two facts
Fact_A1 and Fact_A2 shared the same variable id. This means that id must be the same
symbolic value, in both the facts Fact_A1 and Fact_A2.

1 rule Pattern_matching1:
2 [Fact_A1(id, a),
3 Fact_A2(id, b)]
4 -->
5 [...]

The second part of pattern matching, is the tuples in Tamarin. The two rules in the listing
below, showcase this. Both these facts have two variables, and "Pattern_matching2b" may
consume the fact in "Pattern_matching2a".

1 rule Pattern_matching2a:
2 [...]
3 -->
4 [Fact(id, <a, b>)]
5
6 rule Pattern_matching2b:
7 [Fact(id, c)]
8 -->
9 [...]

6.2. Translation for a restricted Tamarin model 50

6.2 Translation for a restricted Tamarin model

This section will present a translation from Tamarin to UPPAAL that works on restricted
Tamarin models. The models may not use actions outside of verification purposes (no
restrictions or reuse lemmas), and may not use the Tamarin tuples. The work presented
here functions as proof of concept, and its use has only been theorized and not tested. The
translation itself has been manually tested on a very small example Tamarin model. We
provide this work as inspiration for further development, since its potential is apparent.

This draft utilizes aspects from all previous ideas, which can be found in appendix C. The
main focus was to utilize more major aspects of UPPAAL. The section will first present
how the symbolic variables from Tamarin is modeled in UPPAAL. Later, how rules are
represented, and how both variables and facts act to create the global state is presented.
Finally, the way in which individual facts were modeled, will be be presented with exam-
ples.

6.2.1 Tamarin symbolic variables into UPPAAL variables

Section 6.1.1 highlighted how variables behave in Tamarin, with each variable being recog-
nized by its name, and an index. As such, the two symbolic variables A.1 and A.2 are not
the same. The struct in the listing below was created in order to contain these variables in
UPPAAL. All symbolic variables are recognized by their name and their index, and two
variables are only equal if both name and index are the same.

1 typedef struct {
2 int name;
3 int index;
4 } variable;

Since UPPAAL’s use of strings are very limited, each variable were assigned an id repre-
senting its name. Since each individual name gets a unique number, this works identically
to using strings. An example can be seen in the listing below. The index is modeled as
an integer that is incremented, whenever a new instance of its corresponding variables i
created.

1 const int id_identifier = 1;
2 const int a_identifier = 2;
3 const int b_identifier = 3;
4 const int x_identifier = 4;
5 const int y_identifier = 5;

6.2. Translation for a restricted Tamarin model 51

6 const int A_identifier = 6;
7 const int B_identifier = 7;

With this variable struct, it is possible to create symbolic Tamarin variables in UPPAAL.
We return to the example in section 6.1.1 (re-pasted below, with a different variable name),
where the rule generates the fresh variable id. When this rule is executed twice, we will
have two distinct variables id and id.1. In UPPAAL with this method, this rule would
generate the two variables, var1 and var2, in the UPPAAL code in the listing below.

1 /* TAMARIN CODE */
2 rule Variable_example:
3 [Fr(~id)] --[]-> []
4
5 /* UPPAAL CODE */
6 variable var1;
7 var1.name = id_identifier;
8 var1.index = id_index ++;
9

10 variable var2;
11 var2.name = id_identifier;
12 var2.index = id_index ++;

6.2.2 Tamarin rules into UPPAAL processes

Each Tamarin rule is translated into a single process in UPPAAL. This process mirrors
the Tamarin rule, with its premise and conclusion. The process’ purpose is to update the
state with its conclusion, when its premise is true. Figure 6.1 shows an example of such a
process.

The process has an initial location. This initial location can only be exited, if the equivalent
Tamarin premise is true. This is highlighted with the guard premise_check and the variable
premise. Each edge going from the initial location back into the initial location represents
a single fact in the premise. If the fact is true in the global state, it can be consumed, and
satisfy that part of the premise. When all parts of the premise is true, the process may
leave the initial location.

The process can also at any point release the consumed facts back into the global state.
This is done, since Tamarin will only consume facts when all facts in the premise is true
and the rule is executed. In UPPAAL we consume the facts one at a time. The next section,
explains how facts are modeled in UPPAAL, but ultimately facts must be immediately

6.2. Translation for a restricted Tamarin model 52

Figure 6.1: A basic example of the proposed model. In this case there is two facts.

consumed upon creation in this translation. We therefore have processes "unconsume"
facts again, to mimic the facts being free in the global state. Processes will in this case hold
onto facts until they themselves or another process need them.

All following locations and edges represents the conclusion. Here the global state is up-
dated with new facts.

6.2.3 Tamarin facts in UPPAAL

Facts were ultimately modeled as broadcast channels. This was decided in order to allow
processes to take a transition, even if there were no responders. This represents a fact that
will not be consumed. This has introduced some errors into the translation, since with the
use of broadcast channels, more than one other process can synchronize on the channel.
This is unwanted behavior for non persistent facts, and a channel that synchronizes with
either one or zero other processes should be used instead.

Facts also contain variables, which must be transmitted from one rule to another when

6.2. Translation for a restricted Tamarin model 53

the fact is consumed. This is done with the use of UPPAAL’s global variables, where the
rule that creates the fact, will save its variables in the global variables, for the rule who
consumes the fact to fetch. These variables are then stored in the process’ local variables.

Each fact has a fixed amount of variables, and can therefore be hardcoded as seen in the
listing below. One could suspect issues could arise, where two sets of variables from
the fact may need to be stored at the same time. This is not the case however, since the
variables are only needed while the rule is actively being executed. This is also the case in
Tamarin, where only one rule is executed at a time as well.

1 variable Fact_A1_var1;
2 variable Fact_A1_var2;
3
4 variable Fact_A2_var1;
5 variable Fact_A2_var2;

6.2.4 Pattern matching for equality checks

Earlier in section 6.1.3, the two types of pattern matching were explained. This draft only
handles the first kind of pattern matching, where variables must have the same symbolic
value. We reuse the example from said section, together with how this is modeled in
UPPAAL. Both the Tamarin code and the UPPAAL code can be seen in the listing below.

In Tamarin we have the two facts Fact_A1 and Fact_A2 sharing the same value for id. In
UPPAAL the check would look as the function pattern_match_check(), which compares the
name of Fact_A1’s first variable with the name of Fact_A2’s first variable, as well as their
index. Only if both match, do the two facts share the same value for their first variable.
The previous figure 6.1 also shows how this pattern match check must be true before the
rule is allowed to proceed, even if all facts of the premise have been consumed.

1 /* TAMARIN CODE */
2 rule Pattern_matching1:
3 [Fact_A1(id, a),
4 Fact_A2(id, b)]
5 -->
6 [...]
7
8 /* UPPAAL CODE */
9 bool pattern_match_check () {

10 return Fact_A1_var1.name == Fact_A2_var1.name
11 && Fact_A1_var1.number == Fact_A2_var1.number;

6.3. Further development 54

12 }

6.2.5 Implementing cost

Finally, in order to have the translation work as a medium for availability analysis, some
sort of cost should be implemented. The cost can be attached to the In and Out facts, in
order to model the cost of receiving and sending messages. One may also associate some
cost with other facts, in order to model the cost of memory. In this work, a template for
cost was thought out and mildly experimented with, however this is detached from the
Tamarin model itself, since it does not consider cost.

The representation of cost is ultimately dependent on the subsequent queries created and
used for verification. This factor may vary from purpose to purpose, however we believe
that cost associated with In and Out facts, can be used to compare the load of receiving
and sending messages between honest users and the adversary. If the adversary is able to
send messages at a cost that is much lower than the cost of receiving and answering to the
messages, then this could be an potential attack on availability.

6.2.6 Adversary behavior in UPPAAL

The special facts In and Out is modeled very similar to all other facts, with the exception
that another process "Adversary" will receive all Out’s and create all In’s. This is also
similar to the adversary implementation in Tamarin. The adversary may create additional
In facts, using previously learned values. The adversary is in a very early state of devel-
opment in this proof of concept, and does not encompass all aspects of the adversary in
Tamarin. Ways to store known values and how the adversary can generate new values
must be thought up.

6.3 Further development

This section work as inspiration for future readers, attempting to expand on this translation
idea. The section contain reflections from the group, on areas of Tamarin not yet covered.
These ideas have not been tested, however we believe in their potential.

6.3. Further development 55

Pattern matching

The pattern matching issue can in theory be solved by implementing pattern matching in
UPPAAL. Pattern matching is also a "nice to have" in Tamarin, and models can be made
without using it, however this may not be a realistic requirement for developers of large
and complex models.

Cryptography

One of the large upsides of Tamarin, is its built-in support for cryptography. We see the
majority of this being modeled in UPPAAL without major issue. Only entities that have
the key should be able to read the content of the message.

Broadcast channels

The choice of channel in UPPAAL was discovered flawed late in the project. We however,
do believe that this could be easily fixed by limiting the broadcast channels, to one zero or
one synchronizations.

Restrictions

In this work restrictions were not explored much, however we believe these could be
implemented in UPPAAL. Restrictions are first order logic on actions, and all Tamarin
actions could therefore be modeled in UPPAAL by adding the actions to the end of a rule
execution in UPPAAL. Referring back to the example in figure 6.1 in section 6.2.2, the
actions would happen on the final edge back into the initial location.

Actions would be stored as a timestamp, in which action1 would be a clock, and have the
value of the time the rule was executed. The restriction could thus be implemented as
a guard with the first order logic, to ensure the model never reached a state where the
restriction was true.

Chapter 7

Discussion

This chapter will reflect on several aspects of the report. This is done to highlight certain
points of interest.

Modeling a specification

The work done within the report, and the resulting models created are solely based on the
official specifications for DTLS 1.3 - RFC 9147 [1]. The models were also solely validated
against the wording in the specifications.

The specification functions as the truth of how one should implement (or in this case,
model) the DTLS protocol. Future implementations may introduce errors that the model
does not currently capture, and may not be subject to the same security properties. It is
important to acknowledge that there exists a gap between specifications and implemen-
tations, but proving the correctness of the specifications give a great baseline for future
implementations.

Specifications has been modeled before, providing tangible results that aided in the final
stages of creation. During the development of TLS 1.3, models of the TLS 1.3 drafts were
made in order to analyze and locate security flaws in the drafts. Issues with the drafts
were found, and subsequently fixed.

56

57

Closely following the specifications

While modeling, the specifications were followed quite closely, in order to ensure a high
accuracy, and avoid any potential errors that could be introduced elsewhere. Tamarin
also works great for this particular purpose, since its syntax follows the flow of a security
protocol very closely.

We find this aspect of modeling security protocols in Tamarin very useful. Earlier work
done by the group [3] [16], highlighted how modeling communications in a protocol into
an arbitrary modeling language requires some language specific translations. In [3] the
act of sending a ClientHello message, was modeled as a synchronization on a channel
called ClientHello. This can still correctly model DTLS, however the option in Tamarin,
to send out a message that structurally looks similar to a ClientHello in the specifications,
provides further reassurance that the specifications are being correctly modeled.

Expanding the model further

Due to the scope of the project, the model is based on a segment of the DTLS protocol. We
believe that an implementation of this segment would be able to at least support realistic
IoT communication, however it does have potential for expansion. The modular method
of modeling the protocol presented in section 4.2 allow for systematic expansion, with the
major limiting factor being the final size of the model.

The start of chapter 4 presents the challenges of expanding the models further, with ever
increasing saturation and computation times. This is also the reason that the three models
are disjoint, since loading and analyzing a full model became infeasible. The steep rise in
complexity was introduced with the addition of natural numbers in the tamarin model.

An older model without natural numbers would finish fully loading in ∼2-3 minutes,
while the final model loads in ∼40-50 minutes. The Tamarin manual [12] and the examples
available on the Tamarin Github [5], only includes limited mentions and examples of
models using natural numbers. It is hard to say whether the natural numbers are the
direct reason for the long saturation times, however it does seem that way. The numbers
are also currently strictly needed to properly model fragmentation.

58

Analyzing availability with UPPAAL

The extent of analysis targeting availability has been limited within the Tamarin models,
however knowledge was gained from the analysis process. The analysis highlighted re-
peated attempts by the adversary to use the weak addresses provided by UDP to breach
the connection. We find that this further highlights the importance for an analysis on this
aspect of the protocol.

Ways to analyze availability within Tamarin was theorized, however it was ultimately
decided against in favor of a possibly more lucrative approach. Previous work attempting
to analyze availability with the use of UPPAAL [10], showcased UPPAAL’s potential in
this area. The group looked into ways to translate the Tamarin model into a potential
UPPAAL model, for availability purposes. This resulted in chapter 6.

The UPPAAL translation is in a very early state due to time constraints, it does however
show the potential of translating a model made in Tamarin, prime for analysis on confi-
dentiality, integrity and authentication, into an UPPAAL model for analysis on availability.
If this translation is sound, this would allow for models created in Tamarin to verify both
confidentiality, integrity and authentication properties as well as availability properties.

Tamarin Prover

The Tamarin Prover was created with the purpose of analyzing security protocols [19],
and is specialized in this exact task. Furthermore, Tamarin has previously shown itself as
a very valuable tool for analyzing protocols, with numerous models being created for a
plethora of different protocols [4] [5]. It also proved to be the most beneficial when three
tools were compared in the report preceding this one [16].

Tamarin draws its major strengths from its formalism allowing infinite instances of servers
and client, something not seen in other tools using different formalisms. It also models
cryptographic very well, and has great support for cryptographic features.

One thing to be aware of when choosing Tamarin, is the lack of resources. For the most
part, the documentation contains everything, and the documentation is seemingly up to
date. It contains a few very simple examples, and is good for an easy introduction. There
is a lack of more medium complex examples, with examples either being very simple or
very complex. The Tamarin GitHub [5] contains a large collection of examples, however
these are not regularity updated and are not explained in all cases. This leaves Tamarin
with a steep learning curve, with limited resources when encountering errors outside the

59

documentation.

DTLS is a large and complex protocol, and the model quickly rose to a size where ad-
ditional information outside the documentation was needed. Accessing this information,
was a tedious process which slowed down development for a period of time. This resulted
in a lot of trial and error in order to get new technologies to work within the model. A
large example of this was the addition of natural numbers. This along with the long load
times also affected the speed of development.

To use the Tamarin Prover effectively to verify lemmas, one need a rather deep knowledge
of multi-set rewriting. This is to be expected, but it is worth noting that users must gather
this information elsewhere, since it is not part of the documentation.

Results

The results are very promising, with the two handshakes passing all modeled properties.
The record layer was subject to some restrictions, by only having one server/client group,
however we do not believe this limitation to have major consequences for the results. The
adversary still has all of its power with this restriction, and the record layer only takes place
after a successful handshake, which we have proven to be safe and have certain properties.
The result of the handshake is a set of secret and authenticated keys, and we do not believe
that the adversary would gain any meaningful information from another client/server
group. The adversary themselves should at this point not be able to impersonate either
client nor server, and the only information the adversary should be able to get from the
connection is in the case where old keys are leaked. This however has not been proven,
and is only our opinion after working extensively with the protocol, and also from working
with the unrestricted record layer model.

The results show the theoretical correctness of a segment of the DTLS protocol, which we
believe could be used in a realistic IoT implementation. We believe that the lack of people
updating to DTLS 1.3 must be reasoned in something not related to the protocol itself,
with the leading theories being the lack of libraries supporting DTLS 1.3, and the high cost
of updating hardware.

Chapter 8

Conclusion

In conclusion, this work has proved that a segment of the DTLS 1.3 protocol, is secure in
regards to the 9 tested security properties promised by the specifications. We believe that
the chosen segment of the protocol is detailed enough, that it would be able to work as a
realistic protocol for an IoT device.

The model closely resembles the specifications, and we believe fully in its correctness to
the extent that it is a model of the protocol. While making a model, some abstractions will
always be present. In this work, the major abstractions lie with the cryptographic aspects
of the protocol. We assume perfect cryptographic, and do not model certificates to their
full extent. The lemmas created in order to verify the security properties were mutation
validated to ensure that they function as expected, and we believe in their correctness as
well.

We conclude that the DTLS protocol is a good choice of a protocol for a lot of IoT devices.
A small analysis of the security desires of IoT devices and the security properties of DTLS
was made during this report. It was shown that all the properties in the CIAA tetrad are
desired traits for various IoT devices. It was concluded that no protocol could provide all
four traits to their fullest, and with the two examples; a security camera and smart lights,
DTLS would effectively only defend against one of the two theorized attacks.

60

8.1. Future work 61

8.1 Future work

If one were to expand the work made in this project, a few options arise. First of all, the
three models should be combined into one model in order to capture potential synergies.
Other additional models could also be made to test other aspects of DTLS that was not
covered by the three original models within the report. If the models were to be optimized
to a point, where additional functionality could be added without state-space explosion
issues, then the models are prime for expansion with the modular approach taken.

A translation of UPPAAL could be another focus point. This could, with ample time,
be developed into a fully fledged script that could automate the proposed idea. With a
complete UPPAAL translation, it would be possible to use Tamarin for the aspects where
it excels; Confidentiality, Integrity and Authentication, and use UPPAAL for Availability.

Bibliography

[1] Eric Rescorla, Hannes Tschofenig, and Nagendra Modadugu. The Datagram Trans-
port Layer Security (DTLS) Protocol Version 1.3. RFC 9147. Apr. 2022. doi: 10.17487/
RFC9147. url: https://www.rfc-editor.org/info/rfc9147.

[2] Qualys SSL Labs - SSL Pulse. [Online; accessed 2025-05-28]. url: https : / / www .
ssllabs.com/ssl-pulse/.

[3] Lise Bech Gehlert et al. “Modelling and Analysis of DTLS: Power Consumption and
Attacks”. In: International Conference on Formal Methods for Industrial Critical Systems.
Springer. 2024, pp. 136–151.

[4] Cas Cremers et al. “A Comprehensive Symbolic Analysis of TLS 1.3”. In: Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security. CCS
’17. Dallas, Texas, USA: Association for Computing Machinery, 2017, pp. 1773–1788.
isbn: 9781450349468. doi: 10.1145/3133956.3134063. url: https://doi.org/10.
1145/3133956.3134063.

[5] tamarin-prover. GitHub - tamarin-prover/teaching: Teaching materials related to the Tamarin
Prover. [Online; accessed 2025-06-03]. url: https://github.com/tamarin-prover/
teaching.

[6] Jun Young Kim et al. “Automated Analysis of Secure Internet of Things Protocols”.
In: Proceedings of the 33rd Annual Computer Security Applications Conference. ACSAC
’17. Orlando, FL, USA: Association for Computing Machinery, 2017, pp. 238–249.
isbn: 9781450353458. doi: 10.1145/3134600.3134624. url: https://doi.org/10.
1145/3134600.3134624.

[7] Alex Hern. “Hacking risk leads to recall of 500,000 pacemakers due to patient death
fears”. In: (2017). url: https://www.theguardian.com/technology/2017/aug/31/
hacking-risk-recall-pacemakers-patient-death-fears-fda-firmware-update.

[8] Ran Canetti and Hugo Krawczyk. “Analysis of Key-Exchange Protocols and Their
Use for Building Secure Channels”. In: Advances in Cryptology — EUROCRYPT 2001.
Ed. by Birgit Pfitzmann. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 453–
474. isbn: 978-3-540-44987-4.

62

https://doi.org/10.17487/RFC9147
https://doi.org/10.17487/RFC9147
https://www.rfc-editor.org/info/rfc9147
https://www.ssllabs.com/ssl-pulse/
https://www.ssllabs.com/ssl-pulse/
https://doi.org/10.1145/3133956.3134063
https://doi.org/10.1145/3133956.3134063
https://doi.org/10.1145/3133956.3134063
https://github.com/tamarin-prover/teaching
https://github.com/tamarin-prover/teaching
https://doi.org/10.1145/3134600.3134624
https://doi.org/10.1145/3134600.3134624
https://doi.org/10.1145/3134600.3134624
https://www.theguardian.com/technology/2017/aug/31/hacking-risk-recall-pacemakers-patient-death-fears-fda-firmware-update
https://www.theguardian.com/technology/2017/aug/31/hacking-risk-recall-pacemakers-patient-death-fears-fda-firmware-update

Bibliography 63

[9] Whitfield Diffie, Paul C. Van Oorschot, and Michael J. Wiener. “Authentication and
authenticated key exchanges”. In: Des. Codes Cryptography 2.2 (June 1992), pp. 107–
125. issn: 0925-1022. doi: 10.1007/BF00124891. url: https://doi.org/10.1007/
BF00124891.

[10] Christoffer Brejnholm Koch et al. IoT Power Consumption & DTLS Modelling. Student
report, Dept. Computer Science, Aalborg University. Available on GitHub: https:
//github.com/Goggon/DTLS_Paper_Models. Jan. 2024.

[11] D. Dolev and A. Yao. “On the security of public key protocols”. In: IEEE Transactions
on Information Theory 29.2 (1983), pp. 198–208. doi: 10.1109/TIT.1983.1056650.

[12] David Basin et al. Tamarin Prover Manual. https://tamarin-prover.com/. (Accessed
on 11/11/2024).

[13] Repository for the project. url: https://github.com/Goggon/P10.

[14] GitHub - openssl/openssl at feature/dtls-1.3. (Accessed on 04/23/2025). url: https :
//github.com/openssl/openssl/tree/feature/dtls-1.3.

[15] wolfSSL. DTLSv1.3 support by rizlik · Pull Request #4907 · wolfSSL/wolfssl · GitHub.
[Online; accessed 2025-04-23]. url: https://github.com/wolfSSL/wolfssl/pull/
4907.

[16] Signe Kirstine Rusbjerg and Tobias Møller. DTLS 1.3 and modeling security in Tamarin.
Student report, Dept. Computer Science, Aalborg University. Jan. 2025.

[17] :: UPPAAL Documentation. [Online; accessed 2025-05-12]. url: https://docs.uppaal.
org/.

[18] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A Tutorial on Uppaal. https:
/ / homes . cs . aau . dk / ~adavid / RTSS05 / UPPAAL - tutorial . pdf. (Accessed on
12/04/2023). 2005.

[19] Tamarin Prover. url: https://tamarin-prover.com/.

[20] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446. Aug.
2018. doi: 10.17487/RFC8446. url: https://www.rfc-editor.org/info/rfc8446.

https://doi.org/10.1007/BF00124891
https://doi.org/10.1007/BF00124891
https://doi.org/10.1007/BF00124891
https://github.com/Goggon/DTLS_Paper_Models
https://github.com/Goggon/DTLS_Paper_Models
https://doi.org/10.1109/TIT.1983.1056650
https://github.com/Goggon/P10
https://github.com/openssl/openssl/tree/feature/dtls-1.3
https://github.com/openssl/openssl/tree/feature/dtls-1.3
https://github.com/wolfSSL/wolfssl/pull/4907
https://github.com/wolfSSL/wolfssl/pull/4907
https://docs.uppaal.org/
https://docs.uppaal.org/
https://homes.cs.aau.dk/~adavid/RTSS05/UPPAAL-tutorial.pdf
https://homes.cs.aau.dk/~adavid/RTSS05/UPPAAL-tutorial.pdf
https://tamarin-prover.com/
https://doi.org/10.17487/RFC8446
https://www.rfc-editor.org/info/rfc8446

Appendix A

Structs of DTLS

These sections provide explanations of the structure for the different messages in DTLS.

A.1 ClientHello

The initial part of a handshake will always be a ClientHello, as the server will not actively
initiate a connection. ClientHello is quite a small message, as it only includes the available
cipher suits. As this message initiates the connection, it cannot be encrypted, and thus it
is sent in plain text.

Technical details

A handshake is initiated by the client, with an initial ClientHello message, that follows the
structure in the listing below. Lots of parameters exists for compatibility between earlier
versions, so we focus on the CipherSuit and Extension. The client will send a list of valid
cipher suits, that it is willing to use. The client can also append a number of extensions that
the server might acknowledge. One extension usually sent here is the Keyshare extension,
which is specific for ClientHello is the KeyShareClientHello, and contains a list of Diffie-
Hellman groups and keys. This concludes the ClientHello, and the message is sent to the
server.

1 struct {
2 ProtocolVersion legacy_version = { 254 ,253 };

a

A.2. HelloRetryRequest b

3 Random random;
4 opaque legacy_session_id <0..32 > = [];
5 opaque legacy_cookie <0..2^8 -1 > = [];
6 CipherSuite cipher_suites <2..2^16 -2 >;
7 opaque legacy_compression_methods <1..2^8 -1 > = 0;
8 Extension extensions <8..2^16 -1 >;
9 } ClientHello;

A.2 HelloRetryRequest

Upon receiving the ClientHello, the server will respond with a HelloRetryRequest, with a
cookie extension. This is done to mitigate DoS attacks. The HelloRetryRequest message
type does not actually exist, and is just a ServerHello message with the Cookie extensions
included. Both the official documentation and this paper will refer to this message as
HelloRetryRequest for simplicity and understanding.

Technical Details

The HelloRetryRequest similarly to the ClientHello contains a lot of legacy parameters.
The Random value is a fixed value for all HelloRetryRequests and is used to determine
a HelloRetryRequest from a ServerHello. The CipherSuit is a single cipher suit chosen
from the list of available cipher suit from the initial ClientHello. The Extensions contain a
keyshare, the cookie extension and a supported versions extension.

The keyshare extension of HelloRetryRequest is called KeyShareHelloRetryRequest, and
only contains the NamedGroup. The supported version extension will contain the version
that the server will use. For the case of DTLS 1.3 this will always be the value 0x f e f c.

The cookie extension itself is rather simple, since it will just contain the cookie. However,
the cookie has some important restrictions and requirements it has to adhere to.

1 struct {
2 ProtocolVersion legacy_version = { 254 ,253 };
3 Random random = CF 21 AD 74 E5 9A 61 11 BE 1D 8C 02 1E 65 B8 91
4 C2 A2 11 16 7A BB 8C 5E 07 9E 09 E2 C8 A8 33 9C;
5 opaque legacy_session_id_echo <0..32 > = [];
6 CipherSuite cipher_suite;

A.3. Second ClientHello c

7 uint8 legacy_compression_methods <1..2^8 -1 > = 0;
8 Extension extensions <8..2^16 -1 >;
9 } ServerHello (HelloRetryRequest);

A.3 Second ClientHello

When receiving a HelloRetryRequest from the server, the client must respond with a
ClientHello that is identical to the one that triggered the HelloRetryRequest, with a few
modifications. Two important ones are listed here but we refer to the RFC [20] for the full
list. If the HelloRetryRequest contains a keyshare, the client should limit their cipher suites
and keyshare to a list of a single keyshare from the same group. The client should also
copy the content of the HelloRetryRequest’s cookie extension into its own cookie extension.

Technical Details

This ClientHello utilizes the same structure as the initial ClientHello, with the addition
of the provided cookie from the HelloRetryRequest. It is paramount that the contents of
the struct is the exact same as the original ClientHello, as the connection will be dropped
otherwise.

A.4 ServerHello

When the server receives a ClientHello with a valid cookie extension, it may continue the
handshake. The goal of this message is to ensure that the client accepted and provided the
cipher suit that was sent in the HelloRetryRequest. This is also the final message sent in
plaintext, as the connection is now ready to begin initial encryption.

Technical Details

A ServerHello is sent to the client containing a random value and the keyshare from
the group agreed on between the HelloRetryRequest and the second ClientHello. The
keyshare for the ServerHello is named KeyShareServerHello, and contains a single key and
its named group. This message also concludes the series of messages sent in plain text.

A.5. EncryptedExtensions d

The server can at this point calculate the server_handshake_tra f f ic_secret, since it has cho-
sen a keyshare group for the connection, and has both the clients and its own part of the
Diffie-Hellman key.

1 struct {
2 ProtocolVersion legacy_version = { 254 ,253 };
3 Random random;
4 opaque legacy_session_id_echo <0..32 > = [];
5 CipherSuite cipher_suite;
6 uint8 legacy_compression_methods <1..2^8 -1 > = 0;
7 Extension extensions <8..2^16 -1 >;
8 } ServerHello;

A.5 EncryptedExtensions

The server must send the EncryptedExtensions message immediately after the ServerHello.
The message contains protected extensions that are not needed for the cryptographic con-
text of the handshake, nor the individual certificates. The extensions used in this message
can be seen in the RFC [20].

Technical Details

This is the first message to be sent with the encryption derived from keys. The structure
of EncryptedExtensions is quite simple, and only contains a list of extensions.

1 struct {
2 Extension extensions <0..2^16 -1 >;
3 } EncryptedExtensions;

A.6 CertificateRequest

The Certi f icateRequest message is used by the server to request a certificate from the client.
In a DTLS handshake the server must always be authenticated, whereas authentication is
optional for the client. This means that for handshakes that use certificates as a way of au-
thenticating, the server must deliberately request a certificate from the client. This is done

A.7. Certificate e

with the Certi f icateRequest message, which contains the signature_algorithms extension,
that specifies the certificate algorithms the server is willing to use.

Technical Details

The Certi f icateRequest message includes two parts, a list of extensions, and the
certi f icate_request_context which must be included in the certi f icate sent by the client in
response.

1 struct {
2 opaque certificate_request_context <0..2^8 -1 >;
3 Extension extensions <2..2^16 -1 >;
4 } CertificateRequest;

A.7 Certificate

The certificate is used to prove an agent’s identity. The Certi f icate message can be sent by
both the server and the client, but it has a few differences depending on the sender. While
the server MUST send their certificate, it is optional for the client, who only has to supply
a certificate if they receive the Certi f icateRequest message.

Technical Details

The Certi f icate message contains a list of certi f icate_request_contexts and a list of
Certi f icateEntries. The certi f icate_request_context’s value depends on whether the cer-
tificate was requested or not, and such differs between the client and the server. The
Certi f icateEntry contains the needed information in order to process the Certi f icateVeri f y
message that immediately follows the Certi f icate message. The information depends on
the chosen certi f icate_type.

1 enum {
2 X509(0),
3 RawPublicKey (2),
4 (255)
5 } CertificateType;
6

A.8. CertificateVerify f

7 struct {
8 select (certificate_type) {
9 case RawPublicKey:

10 /* From RFC 7250 ASN.1 _subjectPublicKeyInfo */
11 opaque ASN1_subjectPublicKeyInfo <1..2^24 -1 >;
12
13 case X509:
14 opaque cert_data <1..2^24 -1 >;
15 };
16 Extension extensions <0..2^16 -1 >;
17 } CertificateEntry;
18
19 struct {
20 opaque certificate_request_context <0..2^8 -1 >;
21 CertificateEntry certificate_list <0..2^24 -1 >;
22 } Certificate;

A.8 CertificateVerify

This message is used to provide explicit proof that the endpoint has access to the long-
term signing key (the private key). The message also provides integrity for the handshake
up to this point. The Certi f icateVeri f y message contains the algorithm used for signing,
and a hash of the entire handshake up to this point concatenated with the certificate sent
in the Certi f icate message.

The receiver can then verify that the unsigned certificate is the same as the one that was
sent in the Certi f icate message, and that the handshake context is the same.

Technical Details

The structure of the Certi f icateVeri f y message contains two parts, a SignatureScheme
which specifies the algorithm used, and the signature which is used to prove ownership
of the certificate signature.

1 struct {
2 SignatureScheme algorithm;
3 opaque signature <0..2^16 -1 >;
4 } CertificateVerify;

A.9. Finished g

A.9 Finished

Both endpoints must send, receive and verify a Finished message. The message is essential
to prove authentication of the handshake and the computed keys. This step is also where
the key for transmitting application data is generated, and therefore this message is the
final message to use the initial encryption for each peer.

Technical Details

The structure of the finished message can be seen in the listing below.

At this point the traffic key (f inished_key) is computed, and used along with the hash of all
previous handshake messages to create a final hash that the peer can verify. This message
connects the final key with the entire handshake context, and the peer can verify the hash,
by constructing their own and compare.

1 finished_key =
2 HKDF -Expand -Label(BaseKey , "finished", "", Hash.length)
3
4 struct {
5 opaque verify_data[Hash.length];
6 } Finished;
7
8 verify_data =
9 HMAC(finished_key ,

10 Transcript -Hash(Handshake Context ,
11 Certificate*, CertificateVerify *))
12
13 * Only included if present.

A.10 Ack

Since DTLS may be run on an unreliable and unordered transport layer, the only way both
parties can be sure that the handshake is successful, is if the retrieval of the final message
of the handshake is acknowledged. The Ack message contains a list of the record numbers
that has been used in the handshake, either processed or buffered. It should be noted

A.10. Ack h

that the Ack is technically not a part of the handshake, but generally it is seen grouped
together with the handshake, as it is directly tied to it.

Technical Details

The structure of the Ack message only contains one part, that being the RecordNumber
which is a list of the records containing handshake messages in the current flight which
the endpoint has received and either processed or buffered, in numerically increasing
order (sequence and epoch numbers).

1 struct {
2 RecordNumber record_numbers <0..2^16 -1 >;
3 } ACK;

Appendix B

Validation Lemmas

The lemmas are split into the same categories as 4.3.

B.1 Authentication

We have three lemmas that concern authentication validation. The first lemma disallows
authentication after the handshake is finished, whereas the two remaining lemmas concern
client authentication, and whether or not this should be provided.

The first lemma "prove_server_auth" seen in lines 1-12, ensures that that in cases where
the handshake is at it’s end, the server has been authenticated. This authentication uses
the handshake history seen in lines 5 and 11.

The two remaining lemmas "client_cert_when_req" seen in lines 14-21 and
"no_client_cert_req" seen in lines 23-31, focus on whether or not the client is requested to
authenticate or not, and whether or not the client provides authentication in these cases.
Since these lemmas passed, it is clear that the client will only send its certificate in a case
where it is requested, as expected.

1 lemma prove_server_auth:
2 "All C S history session_idC #i #j.
3 Send(C, S, ’CF’, session_idC) @ i
4 & CommitAuth(C, S, ’client ’, history) @ j
5 & not(Ex #p. Corrupt(C) @ p)
6 & not(Ex #q. Corrupt(S) @ q)

i

B.1. Authentication j

Lemma Description Category Result
When both sides are finished, Authentication Pass
their handshake history should be the same.
Client Certificate will only be supplied Authentication Pass
to the server if requested
Client Certificate will not be sent if it is not requested Authentication Pass
ServerHello must come after the full cookie exchange Cookie Exchange Pass
HelloRetryRequest must come before ClientHello+Cookie, Cookie Exchange Pass
and the cookie must be identical between the two
ClientHello must come before ClientHello+Cookie, Cookie Exchange Pass
and the contents of each ClientHello must be identical
Both sides must be finished with the handshake, Finished Handshake Pass
before the server sends the final acknowledgment
The server must verify itself by sending their certificate, Finished Handshake Pass
and their certificate verification before the server is finished
All client messages in a given handshake Finished Handshake Pass
contains the same session_id
All server messages in a given handshake Finished Handshake Pass
contains the same session_id
The sequence numbers for each epoch increments correctly Order Pass
for the client
The sequence numbers for each epoch increments correctly Order Pass
for the server

Table B.1: Table showcasing all validation lemmas.

7 ==>
8 (Ex session_idS #k. Send(S, C, ’SF’, session_idS) @ k
9 & #k < #i)

10 & (Ex #l. Running(S, C, ’server ’, history) @ l)"
11
12 lemma client_cert_when_req:
13 "All C S session_idC #i.
14 Send(C, S, ’CC’, session_idC) @ i
15 ==>
16 (Ex session_idS #j. CertificateRequested(S, C, ’True ’,
17 session_idS) @ j & #j < #i)"
18
19 lemma no_client_cert_req:
20 "All C S session_idC #i.
21 Send(C, S, ’CF’, session_idC) @ i

B.2. Cookie exchange k

22 & (Ex session_idS #j. CertificateRequested(S, C, ’False ’,
23 session_idS) @ j & #j < #i)
24 ==>
25 not(Ex #k. Send(C, S, ’CC’, session_idC) @ k)"

B.2 Cookie exchange

The cookie exchange has three validation lemmas in the model.

The first lemma "SH_after_cookie" in lines 1-8, ensures that the handshake cannot reach
the ServerHello message without a cookie exchange. The cookie exchange being complete
is marked by the previous existence of a HelloRetryRequest and a ClientHello+Cookie
message.

The second lemma "HRR_before_CHC" in lines 10-19, makes sure that a HelloRetryRe-
quest Precedes the ClientHello+Cookie message. Additionally, it checks that the cookie is
the same between the two, as the RFC specifies that the server must reject in cases where
they differ.

Finally, the lemma "CH_before_CHC" in lines 21-29, ensures that the ClientHello is sent
before an eventual ClientHello+Cookie, at which point the content of the messages should
be equivalent. This equivalence is again due to the RFC, wherein a server must reject a
client if they do not the send exact same message alongside the cookie.

These three lemmas allows the cookie exchange to function as expected when comparing
it to the documentation.

1 lemma SH_after_cookie:
2 "All C S session_idS #i.
3 Send(S, C, ’SH’, session_idS) @ #i
4 ==>
5 (Ex session_idC #j. Send(C, S, ’CHC ’, session_idC) @ j
6 & #j < #i)
7 & (Ex #k. Send(S, C, ’HRR ’, session_idS) @ k & #k < #i)"
8
9 lemma HRR_before_CHC:

10 "All C S session_idC #i.
11 Send(C, S, ’CHC ’, session_idC) @ #i
12 ==>

B.3. Finished Handshake l

13 (Ex session_idS #j. Send(S, C, ’HRR ’, session_idS) @ j
14 & #j < #i)
15 & (Ex cookie #k #l. HRR_cookie(S, C, cookie) @ k
16 & CHC_cookie(C, S, cookie) @ l)"
17
18 lemma CH_before_CHC:
19 "All C S session_id #i.
20 Send(C, S, ’CHC ’, session_id) @ #i
21 ==>
22 (Ex #j. Send(C, S, ’CH’, session_id) @ j & #j < #i)
23 & (Ex content #k #l. CH_content(content) @ k
24 & CHC_content(content) @ l)"

B.3 Finished Handshake

The end of the handshake has four validation lemmas concerning it. The first lemma
ensures that both sides has sent their "finished" message before the Server concludes the
handshake with the Ack message.

The second lemma claims that if the handshake is finished, the server must be authen-
ticated, as server authentication is required in DTLS. Finally, we have two lemmas that
compare the session_id of the finished messages of the client and server respectively, to
their earlier messages. This ensures that no steps have been skipped in the handshake.

1 lemma CF_and_SF_before_Ack:
2 "All C S session_idS #k .
3 Send(S, C, ’ACK ’, session_idS) @ k
4 ==>
5 (Ex #i. Send(S, C, ’SF’, session_idS) @ i)
6 & (Ex session_idC #j. Send(C, S, ’CF’, session_idC) @ j)"
7
8 lemma SC_before_SF_and_after_SH:
9 "All C S session_id #i.

10 Send(S, C, ’SF’, session_id) @ i
11 ==>
12 (Ex #j #k. Send(S, C, ’SH ’, session_id) @ j & #j < #i
13 & Send(S, C, ’C’, session_id) @ k & #k < #i & #j < #k)"
14
15 lemma all_client_messages_share_same_session_id:

B.4. Order m

16 "All C S session_id #i.
17 Send(C, S, ’CF’, session_id) @ #i
18 ==>
19 (Ex #j. Send(C, S, ’CH’, session_id) @ j & #j < #i)
20 & (Ex #k. Send(C, S, ’CHC ’, session_id) @ #k & #k < #i)"
21
22
23 lemma all_server_messages_share_same_session_id:
24 "All C S session_id #i.
25 Send(S, C, ’SF’, session_id) @ #i
26 ==>
27 (Ex #n. Send(S, C, ’HRR ’, session_id) @ #n & #n < #i)
28 & (Ex #j. Send(S, C, ’SH’, session_id) @ j & #j < #i)
29 & (Ex #k. Send(S, C, ’EE’, session_id) @ #k & #k < #i)
30 & (Ex #l. Send(S, C, ’C’, session_id) @ #l & #l < #i)
31 & (Ex #m. Send(S, C, ’CV’, session_id) @ #m & #m < #i)"

B.4 Order

As mentioned in the specification, DTLS has to be able to reorder messages such that
they are received in the intended order. DTLS uses the sequence numbers and epochs to
achieve this knowledge of the intended order. To ensure these are utilized correctly, we
have created two lemmas, one for the client, and one for the server. These lemmas compare
the message sequence numbers, by checking whether or not the previous number in the
sequence has been received already.

In the case of a message with the sequence number 2 and epoch 1, the lemma checks for
the message with sequence number 1 and epoch 1, and if this message does not exist, then
the lemma fails.

1 lemma correct_seq_per_epoch_client:
2 "All C %X Epoch session_id #i.
3 C_SeqEpoch(C, session_id , %X %+ 1:nat , Epoch) @ i
4 ==>
5 (Ex #j. C_SeqEpoch(C, session_id , %X, Epoch) @ j
6 & #j < #i) | %X %+ 1:nat = 1:nat"
7
8 lemma correct_seq_per_epoch_server:
9 "All S %X Epoch session_id #i.

B.4. Order n

10 S_SeqEpoch(S, session_id , %X %+ 1:nat , Epoch) @ i
11 ==>
12 (Ex #j. S_SeqEpoch(S, session_id , %X, Epoch) @ j
13 & #j < #i) | %X %+ 1:nat = 1:nat"

Appendix C

UPPAAL Translation ideas

This section will present the thought process throughout the time taken to translate Tamarin
to UPPAAL. To see the final idea see section 6.2.

The flower

From here, we started considering different ways of presenting the model in UPPAAL.
The earliest idea was a singular location with a large amount of edges that functioned as
the rules in Tamarin. Each edge would act as a rule, and the single location would act
as the multiset. As the state changed, so would the multiset. See figure C.1 for a visual
representation.

Figure C.1: Example of how a "flower" model would look.

o

p

Major concerns with this approach includes storage of this ever growing multiset. Storing
the multiset would be limited to the capabilities of UPPAAL variables. Ignoring the po-
tential of multiple locations, edges and processes seemed unwise, and such the idea was
expanded.

Client-Server spawning

The next idea relied on the notion that the translation process would only work for Tamarin
models that follow a "client-server protocol structure". The idea was to use the "spawning"
feature in UPPAAL SMC to create any given amount of client and server processes from a
main process.

The name of each rule in Tamarin would be assigned a prefix; client_ or server_. This way
rules would be modeled in either the spawned client or server process. Other than this,
the approach is similar to the first approach. See figure C.2 for a visual representation.

Figure C.2: Example of client-server spawning

This idea still suffers from the downsides of the initial "flower" idea. The information
located in a single process would be less bloated, since it would be limited to an individual
instance of a client or a server. This idea also sparked the method used in the final draft
for sharing variables and facts between processes.

This approach also sparked interest in spawning individual handshakes, however the
translation procedure became more and more specialized to work with just a few select
protocols types, which was not desired.

	Front page
	English title page
	Contents
	1 Introduction
	1.1 Related Work
	1.2 Paper structure

	2 Secure communication
	2.1 Security promises of Datagram Transport Layer Security
	2.1.1 Authentication: Handshake security properties
	2.1.2 Confidentiality and intergrity: Record layer security properties
	2.1.3 Availability: Denial-of-Service security properties

	3 Datagram Transport Layer Security
	3.1 Handshakes and key exchanges
	3.1.1 Full handshake
	3.1.2 Pre-shared keys
	3.1.3 Key update

	3.2 General message structure
	3.2.1 DTLS handshake messages
	3.2.2 DTLS handshake header
	3.2.3 DTLS record headers

	4 Modeling the protocol
	4.1 Tamarin Prover
	4.1.1 Threat Model

	4.2 Datagram Transport Layer Security Model
	4.2.1 Modeling: Handshake message
	4.2.2 Modeling: Handshake header
	4.2.3 Modeling: Record layer
	4.2.4 Modeling: Additional behavior
	4.2.5 Modeling: UDP

	4.3 Model validation
	4.4 Security properties
	4.4.1 Handshake properties
	4.4.2 Record properties

	5 Analysis and results
	5.1 Debug lemmas
	5.2 Combating memory issues
	5.3 Record layer model restrictions
	5.4 Results

	6 UPPAAL translation
	6.1 Tamarin syntax and semantics
	6.1.1 Tamarin variables translated to UPPAAL
	6.1.2 Tamarin facts translated to UPPAAL
	6.1.3 Pattern matching

	6.2 Translation for a restricted Tamarin model
	6.2.1 Tamarin symbolic variables into UPPAAL variables
	6.2.2 Tamarin rules into UPPAAL processes
	6.2.3 Tamarin facts in UPPAAL
	6.2.4 Pattern matching for equality checks
	6.2.5 Implementing cost
	6.2.6 Adversary behavior in UPPAAL

	6.3 Further development

	7 Discussion
	8 Conclusion
	8.1 Future work

	Bibliography
	A Structs of DTLS
	A.1 ClientHello
	A.2 HelloRetryRequest
	A.3 Second ClientHello
	A.4 ServerHello
	A.5 EncryptedExtensions
	A.6 CertificateRequest
	A.7 Certificate
	A.8 CertificateVerify
	A.9 Finished
	A.10 Ack

	B Validation Lemmas
	B.1 Authentication
	B.2 Cookie exchange
	B.3 Finished Handshake
	B.4 Order

	C UPPAAL Translation ideas

