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Abstract:

This thesis presents a novel variant of the
Firefly Algorithm—called the Clustered Fire-
fly Algorithm (cFA)—for efficient parameter
estimation in dynamic models used within
the context of Model Predictive Control
(MPC). By integrating k-Means clustering
with the original Firefly Algorithm, the
proposed method reduces time complexity
while maintaining strong global search ca-
pabilities.

Benchmark experiments across several stan-
dard optimization functions demonstrate
that the cFA converges faster and more re-
liably to high-quality solutions compared
to the original Firefly Algorithm and other
baseline methods.

The algorithm’s effectiveness is further val-
idated through two real-world applica-
tions: parameter estimation for a theo-
retical wastewater treatment plant (ASM1
model) and a thermal building model used
for heat pump control. Results indicate
that the algorithm handles complex, multi-
modal search landscapes effectively. While
the results are promising, further experi-
mental validation is recommended to fully
assess the cFA’s applicability across diverse
MPC scenarios.
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Summary

The energy sector is one of the largest contributors to climate change. To mitigate its im-
pact, more efficient energy solutions must be developed. One strategy to improve energy
efficiency in existing technologies is the use of advanced real-time computational control
methods that derive optimal, energy-efficient control actions.

A prominent framework for implementing such strategies is Model Predictive Control
(MPC). MPC relies on a dynamic model of the system to predict the future trajectory of
system states. Based on these predictions, an optimization algorithm computes control
actions that are applied to the real system. However, the effectiveness of MPC strongly
depends on the accuracy of the underlying model, as control decisions are derived from
its predictions.

Many such models are parameterized, and their performance depends on the accurate
identification of model parameters. Therefore, accurate parameter estimation is essential
for achieving effective and reliable control.

This thesis presents a novel variant of the Firefly Algorithm—called the Clustered Firefly
Algorithm (cFA)—for efficient and accurate parameter estimation in the context of Model
Predictive Control. The proposed method integrates the original Firefly Algorithm with
k-means clustering to reduce time complexity with respect to objective function evalu-
ations, which are typically a computational bottleneck in simulation-based optimization
problems. At the same time, the algorithm retains strong global search capabilities. Sev-
eral additional modifications to the original FA are introduced to improve convergence
behavior and reduce runtime.

It is formally shown that the cFA reduces the per-generation time complexity from
O(n?) to O(n%/?) compared to the original Firefly Algorithm.

Furthermore, benchmark experiments demonstrate that the cFA outperforms both the
original FA and a Grid Search baseline in terms of solution quality and convergence speed
across a range of standard test functions.

To evaluate the algorithm in practice, the cFA is applied to two real-world case studies.

The first case study focuses on estimating kinetic parameters in a theoretical wastew-
ater treatment plant based on the Activated Sludge Model No. 1 (ASM1). This work is
conducted in collaboration with Dansk Hydraulisk Institut (DHI). The results demonstrate
the cFA’s ability to navigate complex, non-linear optimization landscapes. While promis-
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ing, these results are based on synthetic data, as no real measurements were available.
To evaluate the algorithm’s practical applicability, more realistic experiments would be
necessary.

The second case study addresses thermal parameter estimation in residential build-
ings for heat pump control, in collaboration with the company CEDAR. Real-world data
from a building in northern Denmark is used to estimate thermal parameters for multiple
rooms in an interconnected house model. For each room, a separate set of parameters
is estimated, capturing individual thermal dynamics. The results show that the cFA can
successfully estimate parameters for simplified models, even under noisy data conditions.

Although parameters were estimated successfully for most rooms, further experiments
revealed that some parameter sets did not generalize well, suggesting overfitting. Addi-
tional experimentation with a more refined setup is needed to fully assess the algorithm’s
applicability for thermal parameter estimation in MPC contexts.

Future work could include integrating the cFA into a complete MPC framework to
investigate the practical impact of global parameter estimation on control objectives, such
as reducing energy costs.
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Chapter 1

Introduction

Climate change is widely recognized as one of the most pressing challenges of the twenty-
first century. Its impacts are already visible today, manifesting among other things through
biodiversity loss, more frequent and intense extreme weather events, and increasing food
insecurities [1]. If global warming continues unabated, these risks and adverse effects are
expected to intensify.

In 2015, the international community adopted the Paris Agreement under the United
Nations Framework Convention on Climate Change, committing to limit global tempera-
ture rise to well below 2°C above pre-industrial levels, and to pursue efforts to restrict it
to 1.5°C [2].

However, in a recent report the Intergovernmental Panel on Climate Change (IPCC)
warns that current climate policies are inadequate to meet these targets [1]. Without im-
mediate and substantial action, global warming is likely to exceed 1.5°C within the twenty-
first century. The report further notes that while limiting warming to 2°C remains more
plausible, even this target is not assured under existing commitments. Exceeding these
temperature limits would significantly heighten the risk of irreversible biodiversity loss
and long-term harm to human health, livelihoods, and infrastructure. With this in mind,
the urgency of identifying immediate and effective mitigation strategies for climate change
is evident.

The energy sector is one of the largest contributors to climate change, accounting for
approximately 73% of global greenhouse gas emissions [3]. This makes it a primary target
for strategies aimed at mitigating climate change.

As the energy demand from industry and other sectors is not expected to decline in the
foreseeable future, alternative approaches are required to reduce emissions. One widely
discussed solution is the transition to carbon-neutral renewable energy sources. However,
building a sufficient infrastructure for large-scale renewable energy deployment requires
significant time and investment.

A complementary and more immediately actionable strategy is to improve the effi-



ciency of existing energy systems. For instance, the International Energy Agency (IEA)
highlights that significantly enhancing energy efficiency is essential for achieving carbon
neutrality by 2050 [4].

One effective way to improve energy efficiency in existing systems is through the im-
plementation of advanced control strategies. A particularly promising framework for this
purpose is Model Predictive Control (MPC). MPC relies on a dynamic model of the system
to compute control actions that optimize a given objective, such as minimizing energy
consumption.

Unlike static control strategies, MPC continuously updates its control inputs by solving
an optimization problem for each time period, using the most recent system information
[5]. This receding horizon approach allows MPC to adapt to changes in the system and
environment, making it more robust and responsive than fixed policy strategies.

Depending on the system dynamics and application requirements, MPC can be imple-
mented using different types of models and optimization strategies.

Generally, models can be categorized into three types [6]:

* White-box models are derived from first principles and are based on physical laws
such as conservation of mass, energy, and momentum. They are typically very accu-
rate and interpretable, making them suitable for well-understood systems. However,
they require detailed system knowledge and significant effort to model. Addition-
ally, simulation times can be long, which may pose challenges for deriving real-time
advanced control strategies, for example using MPC.

* Black-box models rely purely on data to learn the mapping from inputs to outputs.
Common examples include neural networks and other machine learning algorithms.
These models require minimal domain knowledge and can model highly complex
systems, but they demand large amounts of high-quality data. They also lack inter-
pretability, making it difficult to verify whether the model behaves realistically across
all scenarios. This can pose risks, particularly in safety-critical applications.

* Grey-box models combine elements of both white-box and black-box approaches. They
incorporate simplified physical models (e.g., ordinary differential equations) while
using data to identify unknown parameters. Although typically less accurate than
full white-box models, they offer significantly faster simulation times and retain a
degree of physical interpretability. This makes them a practical compromise for
many real-world applications, especially in control and optimization tasks.

These different model types can be combined with a variety of optimization techniques
to compute near-optimal control strategies for the underlying system. In the following,
some examples are presented.

For instance, Linear Programming (LP) and Quadratic Programming (QP) can be used
to minimize linear or quadratic cost functions, respectively, subject to linear constraints



and system dynamics [5]. A limitation of this approach is that the underlying system
model must be linear or appropriately linearized, which restricts its applicability with
more complex or highly nonlinear systems.

Another approach to deriving control strategies is through Reinforcement Learning
(RL), which learns by interacting with the environment or model. A notable example
applied in MPC contexts is UPPAAL Stratego [7]. In this approach, the system is typically
modeled as a grey-box using hybrid timed automata, and Stratego synthesizes a near-
optimal control strategy based on a given objective using a partition-refinement-based Q-
learning algorithm [8]. A key advantage of this method is that it can be applied to complex,
nonlinear systems without requiring linearization or differentiability of the model.

In contrast to MPC, many neural network-based controllers aim to learn a fixed op-
timal policy during training. While effective in static environments, they often require
retraining to adapt to changes in system dynamics or operating conditions. This limitation
highlights the advantage of adaptive, model-based approaches like MPC, which continu-
ously optimize control actions in response to updated system information.

A prerequisite for MPC is a sufficiently accurate model of the system, as control deci-
sions are directly informed by the model’s predictions.

In the context of this work, the focus is placed on grey-box models. While these mod-
els offer a structured framework for capturing system dynamics, their accuracy depends
on identifying the correct parameter values. Without proper parameter estimation, even a
well-designed model may fail to reflect the real behavior of the system. This underlines
the importance of parameter estimation methods for achieving effective control.

To illustrate the concept of MPC, Figure 1.1 presents an overview of the MPC frame-
work in the context of residential building heating. The figure is inspired by the study con-
ducted by Hasrat et al. [9], where significant energy savings were achieved by combining a
grey-box building model with regularly updated parameter estimation and reinforcement
learning using UPPAAL Stratego.

The figure highlights the two main components of the MPC framework: the main
control loop and the parameter estimation loop.

In the parameter estimation loop, historical measurement data from the building are
used to identify or update the parameters of a thermal house model.

In the main MPC loop, real-time measurements—together with predictive inputs such
as weather forecasts and day-ahead energy prices—are used as inputs to the model to
simulate future system behavior. An optimization algorithm then computes a control
strategy that minimizes a predefined objective, such as energy use or operational cost.
This strategy is forwarded to the building’s controllers, which implement the next control
action.

The main loop is repeated for each control period, with the control strategy typically
recalculated after each action, enabling it to dynamically adapt to changing conditions.
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Figure 1.1: Model Predictive Control framework for heating cost reduction in residential buildings.

In contrast, the parameter estimation loop is executed less frequently, since the underly-
ing physical parameters (e.g., thermal properties) typically change more slowly over time.
This dual-loop structure enables MPC to provide a continuously updated, near-optimal
control strategy that responds both to environmental changes and to system uncertainties.

The core focus of this thesis lies in the parameter estimation loop—specifically, in the
development of an algorithm for identifying model parameters. To this end, the thesis
introduces a new variant of a nature-inspired global optimization algorithm—the Firefly
Algorithm (FA) [10]-for efficient and qualitative parameter estimation. The FA was first
proposed by Yang in 2008 and is inspired by the bioluminescent flashing behavior observed
in fireflies. In the algorithm, each firefly represents a candidate solution in the optimization
space. Fireflies are attracted to others with higher "brightness," which corresponds to
better objective function values. This attraction mechanism guides the swarm through
the search space by balancing random exploratory movements with directed exploitation
of promising regions. The algorithm has been shown to outperform other nature-inspired
global optimizations algorithms in terms of efficiency and success rate-meaning how often
the global maximum was found on a range of benchmark problems [10].

Although the FA is not among the most recent nature inspired metaheuristics, it re-
mains widely used due to its simplicity, flexibility, and competitive performance across a
broad range of application domains. In a recent survey on the FA [11], Li et al. highlight its
use in diverse fields, including general optimization, classification, industrial process con-
trol, and robotics, among others. They emphasize that the algorithm’s simplicity makes
it particularly amenable to domain-specific modifications. This adaptability makes FA a
strong choice for this thesis, as it can be customized to fit within the MPC framework.



To this end, the thesis proposes a modified variant called the Clustered Firefly Algorithm
(cFA). This approach integrates the original FA with a clustering technique to improve
computational efficiency while maintaining strong exploratory performance.

The improved time complexity of the cFA is formally analyzed, and its performance
is benchmarked on a range of optimization problems. The results demonstrate that cFA
generally converges more rapidly and consistently to better solutions compared to both
the original FA and a grid-search baseline.

Additionally, the cFA is applied to estimate parameters in two real-world use cases that
significantly contribute to global energy consumption. These use cases have been studied
in collaboration with two companies.

The first case involves wastewater treatment plants (WWTP) and was conducted in
collaboration with Dansk Hydraulisk Institut (DHI)!. WWTPs are estimated to account
for approximately 1% of global energy usage [12]. In this context, the cFA is used to
estimate sensitive parameters in a theoretical plant modeled using the Activated Sludge
Model No. 1 (ASM1) [13]. Another student group is working on the integration of MPC
in WWTPs with the aim of reducing energy costs and improving effluent quality. The
parameter estimation approach developed in this thesis is complementary to that effort
and could be integrated into their MPC framework to identify accurate model parameters.

The second case focuses on residential buildings heated by heat pump systems. Resi-
dential energy consumption is estimated to contribute around 10.9% to global energy use
[3], making it a promising target for efficiency improvements. The cFA is applied to esti-
mate parameters for a grey-box thermal model of a residential building located in northern
Denmark, using real-world data provided by the company CEDAR?.

For both use cases, the generalization performance of the estimated parameters is eval-
uated on unseen data to assess the robustness of the identified models—an essential re-
quirement for reliable performance in an MPC framework.

Overall, the cFA demonstrates promising results in both use cases as an effective
method for parameter identification. However, further improvements in experimental
design may be necessary to fully assess its practical applicability in real-world control
scenarios.

IDHI https://www.dhigroup.com/
2CEDAR: https://cedar-heat.dk/
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Chapter 2

Related Methods and Related Work

Parameter estimation in complex systems has been extensively studied across scientific and
engineering disciplines. A wide range of optimization techniques have been developed to
identify model parameters that best reproduce observed data, from classical statistical
methods to modern metaheuristics and machine learning approaches.

This section provides an overview of selected methods and relevant literature, with a
particular focus on the two application domains addressed in this thesis: kinetic parameter
estimation in wastewater treatment plants (WWTPs) and thermal parameter estimation in
residential building systems.

2.1 Related Methods

Gradient-Based Approaches Gradient-based optimization methods are widely regarded
as foundational and effective techniques for parameter estimation in dynamical systems,
particularly when derivatives of the objective function are available or can be approxi-
mated. These methods iteratively adjust model parameters to minimize or maximize an
objective function by following the direction of the gradient—corresponding to the steep-
est descent in minimization problems. While highly efficient for smooth and well-behaved
problems, gradient-based methods guarantee convergence to a global optimum only in the
case of convex objective functions. For non-convex problems, they may converge to local
optima, as gradient information alone does not convey global structure [14].

When analytical gradients are unavailable, they can be approximated numerically us-
ing finite differences. However, for complex systems, this approach can be computationally
expensive and sensitive to both truncation and perturbation errors [15]. These limitations
have motivated the use of alternative optimization and parameter estimation techniques
that do not rely on gradient information.

Bayesian Inference Bayesian inference methods estimate a full probability distribution
over the model parameters rather than a single point estimate, as is typically obtained with
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gradient-based approaches [16]. This probabilistic perspective allows for explicit quantifi-
cation of uncertainty in the parameter estimates, making Bayesian methods particularly
valuable for stochastic systems that include randomness or measurement noise.

At the core of Bayesian inference is the computation of the posterior probability distri-
bution P(6 | y), which represents the probability of the parameters 6 given the observed
data y. Bayes” Theorem defines this relationship as:

Po ) = P

where P(y | 6) is the likelihood, that is, the probability of the observation y given the
parameters 6; P(0) is the prior; and P(y) is the marginal likelihood or evidence.

For complex models, computing P(y) analytically is often intractable, as it requires
integration over all possible parameter values, so approximate methods such as Markov
Chain Monte Carlo (MCMC) sampling [16] or variational inference [17] are used to es-
timate the posterior. While Bayesian inference provides a more comprehensive view of
parameter uncertainty, it is computationally demanding—particularly in simulation-based
models—due to the large number of samples required for convergence.

Machine Learning-Based Approaches With the advancement of data-driven modeling,
several machine learning-based approaches for parameter estimation have emerged. At
their core, these methods learn mappings from inputs to outputs by optimizing model
parameters using available data. Examples range from classical models such as linear
regression and support vector machines to more complex architectures like deep neural
networks [18].

Neural networks, particularly deep neural networks, have received significant attention
in recent years due to their ability to approximate arbitrary nonlinear functions given
sufficient complexity (i.e., number of layers and neurons) [19]. This universal function
approximation property makes them highly expressive, but also susceptible to overfitting,
especially in low-data regimes. Moreover, their high parameter complexity often results in
limited interpretability, which is why they are commonly referred to as "black-box models."
Ensuring good generalization typically requires large amounts of training data, which can
be a limiting factor in scientific applications where data is scarce or expensive to obtain.

To address these limitations, the framework of Physics-Informed Neural Networks (PINNs)
has been proposed [20]. PINNSs incorporate physical knowledge—often in the form of par-
tial differential equations—into the training process by adding physics-based terms to the
loss function. This regularization by prior knowledge enables better generalization even
with less data, and allows the model to respect known physical constraints.

Global Optimization Algorithms Another class of widely used optimization algorithms
for parameter estimation is the class of global optimization methods. In contrast to
gradient-based techniques and other local optimizers, global methods aim to explore the
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entire parameter space to identify the globally optimal solution, rather than converging to
the nearest local minimum. In the context of parameter estimation, this means searching
for the parameter configuration that minimizes an objective function—such as the error
between simulated model output and observed data.

Since an exhaustive search is computationally infeasible for all but the lowest-dimensional
problems, global optimization relies on heuristic search strategies to efficiently explore the
parameter space. A notable advantage of most global optimization algorithms is their
ability to operate without gradient information, making them particularly suitable for
problems where the objective function is non-differentiable, noisy, or expensive to evalu-
ate.

Many of these algorithms draw inspiration from natural phenomena. For example,
the Genetic Algorithm (GA) mimics the process of natural selection by evolving a popu-
lation of candidate solutions over generations [21]. Each individual is assigned a fitness
score based on the objective function, and new candidates are generated using selection,
crossover, and mutation operations. Another prominent example is Particle Swarm Opti-
mization (PSO) [22]. This algorithm is inspired by swarming behavior observed in nature,
such as bird flocking or fish schooling. Similar to genetic algorithms, PSO maintains a
population of candidate solutions—called particles—that evolve over several iterations.
Each particle adjusts its position in the search space based on its own best-known position
and the best-known position found by the entire swarm. This combination of individual
knowledge and social sharing allows the swarm to efficiently explore the search space and
converge toward high-quality solutions.

The parameter estimation algorithm developed in this thesis is based on the Firefly
Algorithm [10] (FA), which is a swarm based optimization algorithm similar to PSO. As
already stated in the introduction, it has been shown to outperform other nature inspired
global optimization algorithms such as GA and PSO in terms of efficiency and solution
quality [10]. The FA will be described in detail in Section 4.1.

2.2 Related Work

The parameter estimation methods discussed above have been applied in a wide range of
scientific and engineering domains. This thesis focuses on two specific application areas:
kinetic parameter estimation in WWTPs and thermal parameter estimation in residential
building systems. In the following, we review selected contributions from the literature
related to these two domains, with an emphasis on how the aforementioned methods (es-
pecially the global optimization methods) have been applied in practice.

A recent review by Deepak et al. [23] discusses the application of various nature-inspired
global optimization algorithms to a broad range of problems in wastewater treatment, in-
cluding process design, control, and parameter estimation. Their findings indicate that
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these algorithms can offer significant improvements in performance, robustness, and mod-
eling flexibility.

One important area of application is control optimization. Selamat et al. [24] and Choo
et al. [25] employed PSO to automatically tune PID controllers in activated sludge pro-
cesses, focusing on control variables such as dissolved oxygen and nitrate concentrations.
Both studies reported improved dynamic response and reduced tuning effort compared to
traditional heuristic tuning methods.

Another relevant domain is the integrated optimization of both process control and
plant design. For example, Schliiter et al. [26] proposed an Extended Ant Colony Optimization
Algorithm—a global optimization method based on swarm intelligence—for simultaneous
optimization of control setpoints and structural configurations in WWTPs. Their approach
optimized both continuous parameters (e.g., aeration rates, controller gains) and discrete
design choices (e.g., number of tanks, placement of anoxic zones). The results showed
superior performance and cost-efficiency across multiple benchmark scenarios compared
to conventional strategies.

In addition to control and design, nature-inspired algorithms have been successfully
applied to parameter estimation tasks, which are a central focus of this thesis. For instance,
Khoja et al. [27] and Du et al. [28] applied variants of the Cuckoo Search Algorithm—an algo-
rithm close to the principles of GA—to estimate kinetic and stoichiometric parameters in
activated sludge models. These studies demonstrated that such metaheuristic approaches
can achieve accurate parameter identification and robust model fitting, even in highly
nonlinear and multimodal optimization landscapes.

Overall, the literature demonstrates that nature-inspired global optimization algorithms
are effective tools across a range of wastewater treatment applications. However, a com-
mon drawback of these methods is their relatively high computational cost due to the need
for extensive exploration of the parameter space. This thesis aims to address this limitation
by developing a novel variant of the well-established Firefly Algorithm—the Clustered Fire-
fly Algorithm—which achieves lower time complexity while maintaining strong parameter
estimation performance.

While the wastewater treatment domain offers a well-established setting for explor-
ing parameter estimation methods, similar challenges arise in the context of residential
building systems—particularly in modeling and optimizing thermal behavior. Accurate
estimation of thermal parameters is crucial for developing energy-efficient control strate-
gies. In the following, we review relevant literature addressing parameter estimation in
residential building systems, with a focus on data-driven modeling and nature-inspired
optimization techniques.

In one study, Saryazdi et al.[29] developed a data-driven optimization framework for
residential buildings in hot climates, using an artificial neural network (ANN) as a sur-
rogate model to approximate building performance simulations. The ANN was trained
to predict cooling energy consumption, discomfort hours, and carbon emissions based on
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various building design and operational parameters. They then applied a multi-objective
genetic algorithm to identify optimal parameter combinations, demonstrating significant
reductions in all three objectives. While effective they do not use parameter estimation in
the context of more complex control strategies.

In a another study, Rivera et al. [30] employ RC networks as grey-box models to repre-
sent the thermal dynamics of a residential building located in a tropical climate. They
define several candidate RC network topologies based on physical insight and use MAT-
LAB’s greyest function—an algorithm that selects the most suitable among several local
optimization methods—to estimate model parameters. Due to the local nature of the op-
timizer, the authors run the parameter identification multiple times with varying initial
guesses to increase the likelihood of converging to a global minimum. The final identified
model is then used to automatically tune a PID controller, which successfully regulates
indoor temperature to a predefined setpoint. Although the study shows promising re-
sults, their model assumes the house to be a single thermal zone, which compromises its
applicability for fine-grained or more advanced control strategies.

Hasrat et al. [9] developed a thermal grey-box model of a multi-zone residential house
equipped with a heat pump system. In their approach, each room is modeled with its own
set of parameters and thermal interactions with neighboring rooms are considered. Each
room’s thermal dynamics are represented using three state variables: room air temper-
ature, floor temperature, and envelope temperature. Parameter estimation is performed
using CTSM-R [31], a gradient-based local optimization tool for continuous-time stochas-
tic systems. The identified models are then incorporated into a broader MPC framework,
where parameters are periodically re-estimated based on recent data. The identified mod-
els are used with Uppaal Stratego [7], a tool that integrates stochastic hybrid systems and
reinforcement learning to synthesize optimal control strategies. Their case study reports
energy cost savings of up to 46—-49% compared to a baseline control strategy.

The room-level temperature model developed by Hasrat et al. is also employed in this
thesis as the basis for thermal parameter estimation.

Among the reviewed studies, Saryazdi et al. focused on data-driven optimization for
building design, using a global nature-inspired algorithm—a genetic algorithm—to iden-
tify optimal design parameters. In contrast, both Rivera et al. and Hasrat et al. addressed
control applications using grey-box models in combination with local optimization meth-
ods for parameter estimation.

In this thesis, parameter estimation is pursued in a control-oriented context using a
global optimization method—the previously mentioned Clustered Firefly Algorithm. This
algorithm is applied to identify the parameters of the grey-box thermal model based on
real-world data.

Compared to local optimizers, the proposed global metaheuristic optimization algo-
rithm enables broader exploration of the parameter space, increasing the likelihood of
avoiding suboptimal local optima and improving the robustness and accuracy of model
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identification. Although the global nature of the algorithm entails higher computational
cost, this trade-off is justified by its enhanced reliability and potential for more precise
parameter estimates.



Chapter 3

Problem Statement

Improving energy efficiency is a critical step toward achieving carbon neutrality. As out-
lined in the introduction, advanced computational control strategies—such as those used
to optimize the operation of existing systems—can play a key role in reducing energy
consumption. One framework that has gained widespread adoption in such control tasks
is Model Predictive Control (MPC). However, the effectiveness of MPC depends on the ac-
curacy of the underlying system model. Since many modeling approaches rely on pa-
rameterized models, it is essential to employ accurate parameter estimation methods to
ensure the model reflects the real system dynamics. As parameter estimation may be
performed repeatedly in MPC, the algorithm must also be computationally efficient and
robust—meaning it should consistently produce a valid solution and not fail.

In the previous chapter, various optimization methods suitable for parameter estima-
tion tasks were discussed. For the two case studies considered in this thesis—parameter
estimation for wastewater treatment plants and for thermal models of residential build-
ings— nature-inspired global optimization algorithms have shown promise across a range
of related problems. However, their global search capabilities come at the cost of increased
computational runtime, which can limit their practicality in time-sensitive control settings
such as MPC.

One algorithm that has been successfully applied in a wide range of problems and
application domains is the Firefly Algorithm (FA), which has been shown to outperform
other nature-inspired optimization algorithms such as Genetic Algorithms (GA) and Particle
Swarm Optimization (PSO) [10]. While it shares the drawback of increased computational
runtime common to global optimization methods, its simplicity allows for straightforward
modifications tailored to specific application domains, as mentioned in the introduction.
These characteristics make it a promising foundation for addressing the challenge of effi-
cient and accurate parameter estimation in dynamic systems.

12
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This motivates the following problem statement:

Can we develop a new variant of the Firefly Algorithm that enables more ef-
ficient and accurate global parameter estimation for dynamic system mod-
els in the context of Model Predictive Control?

The following subgoals are defined to address the problem statement:

* Develop a new variant of the FA and formally verify its reduced time complexity.

¢ Demonstrate that the proposed variant achieves strong optimization performance on
a set of benchmark optimization problems.

¢ Apply the proposed variant to parameter estimation in a theoretical WWTP use case
and evaluate its generalization performance on unseen data.

¢ Apply the proposed variant to parameter estimation in a residential building use case
using real-world data; compare its performance to an existing method (CTSM-R) and
evaluate its generalization on unseen data.



Chapter 4

Methods

4.1 Firefly Algorithm

The Firefly Algorithm (FA) is a nature-inspired metaheuristic search algorithm for mul-
timodal optimization problems, first introduced by Xin-She Yang [10]. In the following
section, the algorithm is described as outlined by Yang in [10].

In nature, fireflies use bioluminescent flashing patterns as a form of communication to
attract other fireflies. The light intensity I of the flashing decreases as the distance r from
the source increases. As a result, fireflies are only visible to other fireflies within a limited
distance.

In the context of the algorithm, a firefly represents a set of parameters to be optimized,
while the light intensity corresponds to the "goodness" of these parameters according to
an objective function. Fireflies are attracted to other fireflies with higher light intensities,
while also undergoing randomized movement to explore the search space. Over time, the
tireflies collectively explore the search space through a combination of random motion and
attraction toward brighter individuals.

The attractiveness between fireflies is modeled as a function that decreases with distance,
reflecting the natural weakening of light intensity over space. This mathematical formu-
lation allows fireflies to be more strongly attracted to nearby brighter fireflies while still
retaining some degree of exploration.

Formally, this behavior can be described as follows: Let d be the number of parameters
to be optimized. A firefly x is a vector of parameters x = (x1, ..., x;)T € R%.
Let f be an objective function f : RY — R. The light intensity of a firefly x is determined
by f(x).
To initialize the algorithm, a set of initial fireflies F = {xi|k € {1..n}} is initialized. Over
several generations, the fireflies will explore the search space.
In each generation, the light intensity I; of each firefly x; € F is compared to that of every

14
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other firefly x; € F. If I; < I}, firefly x; moves toward x; based on their mutual attraction,
combined with a randomized movement component, updating its own intensity after each
movement.

The attractiveness  between two fireflies is defined as a function of the distance r;; between
them, starting from an initial attractiveness fB:

B(r) = ﬁoe_wz, 4.1)

where 7y controls the rate at which attractiveness decreases with distance. It should be
chosen based on the scale of the optimization parameters and the desired balance between
exploration and convergence.

The updated position of a firefly x; after moving to another firefly x; is given by:

1
X = x; + ﬁoe—wz(x]- —x;) +a- S(rand — E)' (4.2)

1

where, « € [0,1] is the randomization parameter determining the magnitude of ran-
dom movement, S € R is a scaling factor that accounts for the different scales of the
parameters, and rand € [0, 1]d is a uniformly sampled random vector.
It should be noted that the movement of fireflies depends on the order in which they are
processed. Even in the absence of randomness, evaluating two identical sets of fireflies
in different orders can lead to different outcomes due to the sequential nature of their
updates.
Algorithm 1 shows the pseudocode for the original FA.

Algorithm 1 Original Firefly Algorithm (FA)

1: Initialize parameters: &, 7y, population size n, etc.
2: Define Objective function: f(x)

3: Initialize n fireflies randomly in the search space
4: for each generation i = 1 to Ngen do

5: for each firefly x; do

6: for each firefly x; do

7: if f(x;) better than f(x;) then

8: Move x; toward x; based on attractiveness
9: Add random movement controlled by a
10: Recompute f(x;)

11: end if

12: end for

13: end for

14: end for

15: Return the best firefly found
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One important consideration when implementing the FA is its computational complex-
ity. In each generation, every firefly compares itself with every other firefly. These compar-
isons are relatively inexpensive, as the intensity values (i.e., objective function evaluations)
are typically precomputed at the start of each generation and after each movement. How-
ever, when a firefly moves toward a brighter one, it must perform a new evaluation of
the objective function at its updated position. This step is generally the most computa-
tionally expensive, particularly when the evaluation involves a simulation, as is the case
in this work. In the worst case, each firefly may move toward every other brighter firefly,
resulting in up to O(n?) objective evaluations per generation. Consequently, the overall
worst-case time complexity is O(Ngen . nz), with Ngen being the total number of genera-
tions. If the objective function is costly to evaluate—as with simulations requiring several
seconds per evaluation—this quadratic complexity becomes a significant computational
bottleneck, especially for large populations.

This observation motivates several of the modifications introduced in the following
sections, which aim to reduce unnecessary objective evaluations and improve convergence
efficiency.

The next section, Section 4.2, presents minor modifications to the original algorithm.
Following that, Section 4.3 introduces a novel extension of the algorithm based on cluster-
ing, designed to further improve its performance.

4.2 Modifications of the Algorithm

In this thesis, several modifications to the original FA are proposed to address the compu-
tational and practical challenges specific to this project.

Here, the objective function includes the simulation of the system of interest (either the
wastewater treatment plant or the house thermal model). Although individual simulations
are relatively fast, the objective function is evaluated many times during each generation,
depending on the number of fireflies. As a result, computational efficiency becomes a
critical concern.

The modifications to the FA are described in the following.

Population Control

In each generation, the intensity of every firefly is compared with that of all other fireflies.
If a firefly encounters another with a better intensity, it moves toward the brighter firefly,
and the objective function must be evaluated at its new position.

It is evident that reducing the number of fireflies improves computational efficiency,
but at the cost of reduced exploration of the search space. To balance this trade-off, the
number of fireflies is gradually reduced over the generations. Fireflies with the lowest
intensity are removed to ensure that the most promising individuals continue to explore
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the search space.

During the optimization, the population size at generation 7 is updated according to

. i
n(i) = max (nmin/ \‘”max <1 - Ngen)J) ’ (4.3)

where 74y is the initial number of fireflies, 1y, is the minimum allowed number, and
Ngen is the total number of generations.

« Decay

As shown in Equation 4.2, a controls the magnitude of the random movement of each
firefly.
To encourage broad exploration during early generations and more focused convergence
in later generations, a decay factor is applied to « at each generation i. The update rule is
given by

a;11 = «; - decay_factor, 4.4)

where decay_factor € (0,1) controls the rate of decay.
A higher decay factor (closer to 1) results in slower decay, maintaining randomness longer,
while a lower decay factor accelerates convergence.

7 Variation

The parameter <y controls the rate at which the attractiveness between two fireflies de-
creases with distance, as shown in Equation 4.1.

Varying 7 therefore influences how far fireflies are willing to travel toward brighter in-
dividuals, balancing exploration and convergence. A low < increases the effective range
of attraction, encouraging broader exploration of the search space. In contrast, a high
limits attraction to nearby fireflies, promoting local convergence.

The update rule for -y at generation i is given by

i
Yi = Ymin + (’)’max - ’)’min) : <N> ’ (4.5)
gen

where Ymin and Ymax are the minimum and maximum values of 7y, and Nge,, is the total
number of generations. Increasing 7y gradually over the course of the optimization favors
global exploration in the early stages and local refinement as convergence progresses.

Distance Measure

In the original formulation of the FA, the distance between two fireflies is computed using
the standard Euclidean distance in d-dimensional space [10]. However, alternative distance
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measures may be employed depending on the nature of the optimization problem.

In this project, a normalized Euclidean distance is used to account for differing parameter
scales. The distance between two fireflies x; and x; is defined as

xi—x]-
S

where S € RY is a vector containing characteristic scaling factors for each parameter,
chosen based on the typical ranges or expected magnitudes of the respective parameters.
This normalization ensures that parameters with larger magnitudes do not dominate the
distance calculation, thereby promoting balanced exploration of the search space.

Handling of Parameter Bounds

To ensure that the optimization remains within physically meaningful regions, parameter-
specific bounds were imposed on the search space. Where available, these bounds were
chosen based on expert knowledge or literature values for the respective parameters.

When a firefly’s movement would cause it to exceed the allowed bounds, a bounce-back
mechanism was employed: instead of clamping the firefly to the boundary, its movement
was reflected back into the feasible region. This approach prevents fireflies from accumu-
lating at the search space boundaries, which could otherwise bias the swarm’s behavior
toward the edges and diminish the algorithm’s exploratory capabilities.

Mathematically, the bounce-back correction applied after each movement step (Equa-
tion 4.2) is defined for each parameter dimension as

2L —x; ifx; <L,
xi=<2U —x; ifx; > U, 4.7)

X; otherwise,

followed by clipping to the feasible interval [L, U] if necessary.

4.3 Clustered Firefly Algorithm

To further improve the performance of the FA, we propose an extension based on cluster-
ing, referred to as the Clustered Firefly Algorithm (cFA).

This extension organizes the fireflies into groups using K-means clustering and mod-
ifies their movement strategy based on cluster-wise information. The goal is to reduce
the number of objective function evaluations—since these are typically the most time-
consuming—while improving convergence speed by combining local search within clus-
ters with guided migration toward stronger clusters.
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The cFA presented in this section is a novel contribution developed as part of this the-
sis. All algorithmic design elements—including the clustering-based movement strategy,
centroid-based global attraction, and dynamic cluster size reduction—were designed and
implemented specifically for this work.

Clustering

At the start of each generation, all fireflies are grouped into clusters, which correspond
to a subset C; C F of the total set of fireflies F. The number of clusters is determined
dynamically based on the current number of fireflies and a hyperparameter called target
fireflies per cluster. This parameter controls the average size of each cluster and affects the
number of clusters as follows:

Neluster — Max <1/ \f’lﬁrefliesJ ) (4.8)

ntarget

where 7grefies is the current number of fireflies, and 72target is the target number of fireflies
per cluster.

For each cluster C;, the centroid c; is tracked, and an intensity value I(c;) is assigned
based on the mean intensity of the fireflies within the cluster. This is defined as:

¢

1 Y f(x;), forallx; €C; (4.9)

I(Cj) - ne ;.5
1=

where 7. is the number of fireflies in cluster C;, and f(x;) is the objective function value
(intensity) of firefly x;.

k-means

In this thesis, k-means was chosen as a clustering method. It is a centroid-based algorithm
that partitions data into k clusters, minimizing within-cluster variance [32].

The algorithm operates iteratively by first initializing k centroids, typically chosen ran-
domly from the data. Each data point is then assigned to the nearest centroid based on
euclidean distance, forming k clusters. After assignment, the centroids are updated to be
the mean of the points in their respective clusters. This process repeats until the centroids
stabilize or a maximum number of iterations is reached.

It should be noted that the normalized Euclidean distance introduced in Equation 4.6
is used for distance calculations in K-means. This ensures that parameters with wider
bounds do not dominate the clustering process, maintaining a balanced influence across
all dimensions.
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Local Movement

In each generation, the movement of every firefly is divided into two phases: a local move-
ment phase within its assigned cluster and a global movement phase toward other clusters.

During the local movement phase, each firefly in cluster i considers only the other
tireflies within the same cluster. If a neighboring firefly within the cluster has a higher
intensity (i.e., a better objective function value), the firefly moves toward it according to
the movement rule defined in Equation 4.2. Restricting interactions to within the cluster
encourages localized exploration and helps refine solutions in promising regions of the
search space.

Global Movement

In the global movement phase, each firefly considers only the centroids of other clusters as
potential movement targets. If the centroid c; of a cluster j has a higher intensity than the
firefly’s current position, the firefly moves toward that cluster. To account for the fact that
each cluster is represented by a single centroid rather than multiple individual fireflies,
the movement is scaled based on the cluster size n.. This leads to the following updated
movement rule:

2
XMW = x; 4 /508_7<¢77> (c]- — xi) + - S(rand - %) (4.10)

1
Here, the square root of the cluster size 1, is used to moderately increase the attraction to-
ward larger clusters—representing a stronger collective signal—without overly amplifying
the movement. Alternative scaling functions based on group size could also be considered
depending on the specific optimization context.

Reduction of Cluster Size

Similar to the population control mechanism, the average size of the clusters is reduced
over time to balance exploration and exploitation. The previously introduced target fireflies
per cluster, denoted as niarget, is adapted dynamically at generation i according to:

) i
”target (1) = maXx ntarget,minr ntarget,max : 1 - 7 (4 1 1)
N, gen

where 7arget,max 1S the initial value, ftargetmin is the minimum allowed value (typically 1),
and Ngen is the total number of generations.

This reduction in cluster size increases the resolution at which fireflies perceive other
regions of the search space. Early in the optimization process, larger clusters span broader
areas, providing a coarse assessment of each region’s quality. As optimization progresses,
clusters become smaller, allowing more fine-grained comparisons between regions. When
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combined with population control, this mechanism enhances convergence in later stages
while avoiding excessive computational cost, since the total number of fireflies—and thus
the number of function evaluations—also decreases over time.

4.3.1 Pseudocode
The pseudocode of the cFA is given in Algorithm 2.

Algorithm 2 Clustered Firefly Algorithm (cFA)

1: Initialize parameters: &, Ymin, Ymax, Ntarget, max/ population size n, etc.
2: Initialize # fireflies randomly in the search space

3: for each generation i = 1 to Ngen do

4: Update 7: interpolate between ymin and ymax

5: Cluster fireflies using k-means
6: Compute intensity for each cluster centroid
7: for each firefly x; do
8: Identify cluster C; to which x; belongs
9: for each firefly x; € C; do
10: if f(x;) better than f(x;) then
11: Move x; toward x; using Equation 4.2
12: Recompute f(x;)
13: end if
14: end for
15: for each centroid c; from other clusters do
16: if I(c;) better than f(x;) then
17: Move x; toward c¢; using Equation 4.10
18: Recompute f(x;)
19: end if
20: end for
21: end for
22:  Reduce population size if applicable (remove worst fireflies)
23: Reduce cluster size if applicable (decrease ntarget)
24: Update a: & < « - decay_factor
25: end for

26: Return the best firefly found

4.3.2 Time Complexity

The time complexity with respect to the number of objective function evaluations improves
when using the cFA, as shown in the following. For simplicity, we ignore the effects of
population reduction and dynamic cluster resizing.
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In each generation, two types of movement contribute to the number of objective func-
tion calls: local and global movement.

Local movement Assuming that the average cluster size is 7target, then there are about
nfmget potential movement updates for each cluster, as each firefly in a cluster compares
itself with all other fireflies in its cluster. Since the total population is n and the average
cluster size is target, the number of clusters is n/ Ntargets this results in the following number
of objective function evaluations due to local movement:

2
Marget * 1/ Ntarget = Ntarget = N

Global movement Each firefly may move toward the centroid of every other cluster,
excluding its own, resulting in up to (7/7rget — 1) movements per firefly. Thus, for a
population of n fireflies, the total number of objective evaluations due to global movement
is approximately:

n- (7’1 /ntarget) = nz/ntarget

Total Combining both movement types, the total number of objective function evalua-
tions per generation is:

n2

1 - Niarget +—
ntarget
To enable a direct comparison with the original Firefly Algorithm, we assume #arget =
v/n. This assumption is reasonable when clustering a large population, as it ensures that
the average cluster size remains significantly smaller than the total population size (i.e.,
Ntarget < 11). Substituting this into the expression, we obtain:

2
n
n\/ﬁ_|_ :Tl3/2+n3/2:2n3/2
NG

Thus, the total number of objective evaluations per generation becomes O(n%/2), which is
an improvement over the O(n?) evaluations required by the original FA (see Section 4.1).

4.3.3 Firefly Visualization

In this section, a simple optimization problem is visualized to provide insight into how
the cFA operates.

As an objective function, the Schwefel function is used [33], which, for a d-dimensional
problem, is defined as follows:

Flx) = — (418.9829 - Zd;xi sin (W)) . (4.12)

i=1
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Note, that the function was negated to transform it into a maximization problem, aligning
with the FA’s preference for brighter (higher fitness) solutions.

The Schwefel function is typically defined over x; € [—500,500] for alli = 1,...,d, with the
global maximum located at x; = 420.9687 for all i. The corresponding maximum function
value is 0.

This function has many local optima, making it well suited to demonstrate the ability of
the cFA to navigate complex multimodal search spaces. A 3D plot illustrating the rugged
landscape of the 2-dimensional Schwefel function is shown in Figure 4.1. The abundance
of local optima increases the risk of premature convergence, as optimization algorithms
may easily become trapped in suboptimal regions. Additionally, the global optimum is
located far from the center of the search space, further challenging algorithms that tend to
favor central or local exploration strategies.

Figure 4.1: 3D plot of the Schwefel function landscape used for visualization.
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4.3.4 Setup

For the visualization, the cFA was run on the two-dimensional Schwefel function over 15
generations. The initial population consisted of 15 fireflies randomly distributed across the
search space x; € [—500,500]. The randomization parameter & was initialized at 0.5 and
decayed by a factor of 0.95 each generation. The attractiveness parameter y was varied
linearly from 1 to 7 over the generations.

An average target cluster size value of 3 was chosen with a minimum target size of 1. Pop-
ulation control was turned off for this experiment to better show the swarming behavior
of the fireflies.

4.3.5 Results

Figure 4.2 illustrates the evolution of the firefly population over 15 generations. Initially
(Generation 4.2a), the fireflies are widely dispersed across the search space. As the opti-
mization proceeds, they progressively explore the landscape and begin to cluster toward
regions of higher objective value. By Generation 4.2i, the majority of fireflies have swarmed
near the global optimum, demonstrating the algorithm’s ability to balance exploration and
exploitation over time.

The best fireflies, depicted by star symbols, were initially located at different local op-
tima but eventually converged to the global optimum. This behavior showcases the cFA’s
capacity to perform global search and overcome attraction to local optima.

It should be noted that this optimization run was specifically selected to illustrate the
desired behavior. Due to the stochastic nature of the algorithm, convergence to the global
optimum is not guaranteed. In other runs with the same experimental setup, the fireflies
occasionally became trapped in local optima. Therefore it is important to choose the right
amount of fireflies—to balance computational efficiency and solution quality.
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Figure 4.2: Evolution of the firefly population over generations on the Schwefel function. The best firefly in
each generation is highlighted with a star symbol. The color of a firefly indicates to which cluster that firefly
belongs.



Chapter 5

Benchmark Experiments

To evaluate the effectiveness of the proposed cFA, its performance is benchmarked against
the original FA, a modified FA that includes all non-cluster related modifications and a
baseline grid search approach on several standard test functions.

As a performance measure, the best-so-far function value is plotted against the number
of objective function evaluations. This metric is chosen because evaluating the objective
function is typically the most computationally expensive operation during the optimiza-
tion process.

Formally, the best-so-far value after t evaluations is defined as

fi =max{f(x;) |1 <i<t}, (5.1)

where f(x;) denotes the objective function value at the i-th evaluation.

If the objective function values span several orders of magnitude, a logarithmic trans-
formation is applied to better highlight improvements near the optimum. The transformed
performance metric is defined as

ye = —log (| +¢), (5.2)

where ¢ is a small constant added to avoid numerical instability near zero.

5.1 Benchmark Functions

Three functions were selected to evaluate the performance of the algorithms. It should be
noted that the sign of each function has been inverted from its original definition, convert-
ing the problems into maximization tasks to align with the FA’s metaphor of attraction
toward brighter (i.e., higher-scoring) individuals.

The first function is the Schwefel function (Equation 4.12), which was previously intro-
duced in Section 4.3.3. It is characterized by a rugged landscape with many local maxima

26
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and deceptive regions, making it well-suited to assess the algorithm’s global exploration
capabilities.

The second benchmark is the Rosenbrock function [33], mathematically defined as:

-1
rosenbrock(x) = — Y_ [100(xi1 — x7)* + (x; — 1)?] (5.3)
i=1

In contrast to the Schwefel function, the (negated) Rosenbrock function is unimodal, with
its global maximum situated along a long, narrow, curved ridge. While the general region
of the optimum is relatively easy to locate, the ridge’s flatness and curvature make precise
convergence particularly challenging. As such, this function emphasizes the importance
of convergence mechanisms over broad exploration strategies. The global maximum of
the d-dimensional Rosenbrock function is located at x; = 1 for all i € {1,...,d}, with a
corresponding function value of 0. A 3D plot of the 2-dimensional function is shown in
Figure 5.1a.

(a) Rosenbrock function (b) Ackley function

Figure 5.1: 3D plots of the 2-dimensional Rosenbrock and Ackley benchmark functions.

Lastly, the Ackley function [33] was chosen, which is mathematically defined as

(Ell i COS(Cxi)> +a+exp(l)] (54)
i

This function features many local maxima scattered across a relatively flat landscape
surrounding a large global optimum at the center. To reach the optimum, an algorithm
must both explore broadly to escape local optima and converge precisely to avoid over-
shooting. As such, this benchmark is well suited to highlight algorithms that effectively
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balance exploration and convergence. The global maximum of the Ackley function lies

at the center, with x; = 0 for all i € {1,...,d}, corresponding to a function value of 0.
Standard values are chosen for parameters: a = 20, b = 0.2 and ¢ = 27t.

In Figure 5.1b, the landscape of the two-dimensional Ackley function is visualized.

5.2 Grid Search

Grid Search is an exhaustive search optimization technique that evaluates the objective
function at a fixed number n of regularly spaced points across the search space. While it
can perform well in low-dimensional spaces, it suffers from the curse of dimensionality [34],

meaning that the number of points Ng;iq to be evaluated grows exponentially with the
number of dimensions 4:

Ngrid = nd (5.5)

In these baseline experiments, a modified version of Grid Search is used that iteratively
zooms in on the best solution found so far. In each iteration, a new, smaller grid is con-
structed around the previously best-performing point, allowing the algorithm to refine its

estimate over time. A visualization of this process for the 2-dimensional Schwefel function
is shown in Figure 5.2.

1000 1000 ~1000

-1200 1200 -1200

1400 1800 1400

1600 1600 1600

(a) Tteration 0 (b) Iteration 1 (c) Iteration 2

Figure 5.2: Evolution of the grid search process over iterations on the 2-D Schwefel function.

5.3 Experimental Setup

Based on the expected difficulty of the optimization problems—favoring either conver-
gence or exploration—different hyperparameters were selected for each algorithm. For

each benchmark problem, a learning budget was defined as the maximum number of ob-
jective function evaluations.
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To ensure a fair comparison, the original and modified FAs were initialized with the
same number of fireflies. However, since fireflies in the cFA move less frequently due to
group-based movement, the number of initial fireflies was increased when necessary to
ensure the algorithm fully utilized the available learning budget.

Fixed values of By = 1 and « = 0.5 were used in Equation 4.2 for all Firefly-based
algorithms.

The problem-specific hyperparameters used in the experiments are summarized in Ta-
bles 5.1, 5.2, and 5.3.

For the Grid Search algorithm, the number of evaluation points per dimension and the
number of zoom-in iterations were selected based on the dimensionality of the optimiza-
tion problem. These settings are also listed in Tables 5.1, 5.2, and 5.3. Here, it should be
noted that the points per dimension and the number of zoom-in iterations are smaller in
the higher-dimensional experiments due to the previously mentioned curse of dimensional-

ity.

As mentioned earlier, the best-so-far value, defined in Equation 5.1, was plotted against
the number of objective function evaluations. For the Firefly Algorithms, the mean best-
so-far value over 100 independent runs was used to observe the general performance, as
the algorithms are inherently stochastic. Since Grid Search is deterministic, only a single
run was performed.

For the Schwefel optimization problem, experiments were conducted in dimensions 5
and 10, with budgets of 20,000 and 40,000 objective function evaluations, respectively. The
function was evaluated over the hypercube x; € [—500,500] for all i € {1,...,d}. The
chosen hyperparameters are summarized in Table 5.1.

Parameter Modified Firefly Original Firefly Grid Search Cluster Firefly
Initial number of fireflies (max) 70 70 - 70

Number of generations 100 100 - 100
Minimum number of fireflies (7min) 30 - - 30

« (randomness weight) 0.5, decay factor 0.97 0.5 - 0.5, decay factor 0.97
7 (attractiveness decay) Linear 1 — 3 1 - Linear 1 — 3
Grid resolution per dimension (1) - - 5(2) -

Number of zoom-in iterations - - 10 (40) -

Target fireflies per cluster - - - 5

Table 5.1: Hyperparameters used for the Schwefel benchmark problem.

Experiments on the Rosenbrock function were conducted in dimensions 5 and 15 over
the hypercube x; € [—50,50] for alli € {1,...,d}. Since convergence generally takes longer
due to the flatness around the maximum, a learning budget of 100,000 objective function



5.4. Results 30

evaluations was used. Due to the steepness of the function, the logarithmic transformation
defined in Equation 5.2 was applied to the best-so-far values, using ¢ = 108 to avoid
numerical issues near zero. The hyperparameters for the experiments are summarized in
Table 5.2.

Parameter Modified Firefly Original Firefly Grid Search Cluster Firefly
Initial number of fireflies (7max) 60 60 - 80

Number of generations 150 150 - 350
Minimum number of fireflies (min) 20 - - 20

« (randomness weight) 0.5, decay factor 0.95 0.5 - 0.5, decay factor 0.95
7 (attractiveness decay) Linear 0.1— 10 1 - Linear 0.1— 10
Grid resolution per dimension (1) - - 7 (2) -

Number of zoom-in iterations - - 6 (4)

Target fireflies per cluster - - - 8

Table 5.2: Hyperparameters used for the Rosenbrock benchmark problem.

Lastly, for the Ackley optimization problem, experiments in dimension 5 and 15 were
conducted on the hypercube x; € [-32.768,32.768] for all i € {1...d}. Again, a learn-
ing budget of 100,000 objective function evaluations was used. Table 5.3 summarizes the
hyperparameters of the experiment.

Parameter Modified Firefly Original Firefly Grid Search Cluster Firefly
Initial number of fireflies (1max) 60 60 - 80
Number of generations 125 125 - 350
Minimum number of fireflies (#yn) 25 - - 25

« (randomness weight) 0.5, decay factor 0.95 0.5 - 0.5, decay factor 0.95
7 (attractiveness decay) Linear 0.1 — 10 0.1 - Linear 0.1 — 10
Grid resolution per dimension (1) - - 7 (2) -

Number of zoom-in iterations - - 6 (4)

Target fireflies per cluster - - - 8

Table 5.3: Hyperparameters used for the Ackley benchmark problem.

5.3.1 Hardware Specifications

All experiments were conducted on an Acer Nitro AN515-54 laptop running Windows
10 Home. The system was equipped with an Intel Core i7-9750H processor (6 cores, 12
threads, 2.6 GHz base frequency) and 16 GB of RAM. All computations were executed on
the CPU.

5.4 Results

Figure 5.3 shows the convergence behavior of the three algorithms on the different bench-
marking problems.
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Figure 5.3: Convergence behavior of the three algorithms across different benchmark problems and dimen-
sions.

5.4.1 Results on the Schwefel Function

Figures 5.3a and 5.3b show the performance on the 5- and 10-dimensional Schwefel func-
tions. The best performance is achieved by the cFA. The performance of the modified and
original FA is similar across both problems, with the modified version performing slightly
better. All Firefly-based algorithms perform significantly better than Grid Search for both
dimensions. It should be noted that for both dimensions, the global maximum was not
found (on average) within the experimental budget.
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5.4.2 Results on the Rosenbrock Function

The performance on the 5- and 15-dimensional Rosenbrock functions is shown in Fig-
ures 5.3c and 5.3d.
In the 5-dimensional case, Grid Search achieves the best performance in the early stages,
finding high-valued solutions more quickly. All Firefly-based algorithms show similar be-
havior in the early stages; however, the original FA stagnates and ultimately yields the
worst results. In contrast, both the modified and clustered FAs continue to improve, with
the clustered variant converging faster and ultimately reaching a better objective value
than Grid Search.

On the 15-dimensional Rosenbrock function, both the modified and clustered FAs out-
perform the original version and Grid Search.
The clustered variant demonstrates the fastest convergence and consistently yields the best
solutions, while the modified variant performs second best, converging to slightly less op-
timal solutions on average. The original FA remains the weakest performer. As with
the Schwefel function experiments, on average, the exact global optimum was not reached
within the allocated budget.

5.4.3 Results on the Ackley Function

The results for the Ackley function are shown in Figures 5.3e and 5.3f.

As in the previous experiment, Grid Search performs well on the 5-dimensional prob-
lem—this time achieving the best overall performance, followed by the clustered Firefly
Algorithm and the modified variant.

For the 15-dimensional case, the cFA achieves the best performance, once again demon-
strating faster convergence than the modified version. In both experiments, the original
FA exhibits the weakest performance.

Unlike in the previous benchmarks, the global optimum is reached: by Grid Search in the
5-dimensional case, and by both the clustered and modified Firefly Algorithms in the 5-
and 15-dimensional cases.

5.5 Discussion

Overall, the cFA performed the best, demonstrating both the ability to explore the search
space and to converge more rapidly.

The original FA exhibited weaknesses in convergence. However, it performed with a
similar performance in the Schwefel problem as the modified algorithm. A possible ex-
planation is that the Schwefel landscape is extremely challenging, characterized by many
local optima. In such cases, broad exploration is crucial, and the original FA’s strong ex-
ploratory behavior becomes advantageous.
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The Grid Search algorithm showed solid performance. As expected, it performed worse
on higher-dimensional problems but still outperformed the original FA on the Rosenbrock
and Ackley functions. It is worth noting that Grid Search likely benefited from the sym-
metrical nature of these two benchmark functions, where the global optimum is located
near the center of the search space. In contrast, the Schwefel function’s global optimum
lies far from the center; once Grid Search zooms in on a local optimum, it cannot recover,
leading to poor performance.

The modifications introduced to the FA-including dynamic population control, adap-
tive attractiveness parameters, and randomness decay—appear to improve the balance be-
tween exploration and exploitation. These adjustments enable the algorithm to explore the
search space broadly in the early stages while progressively focusing on convergence to-
ward the best-found solutions later on, particularly in high-dimensional and multimodal
landscapes.

The clustering mechanism, which combines local search within a cluster and guided
movement toward other clusters, appears to improve both global exploration and conver-
gence. This hybrid approach allows fireflies to first exploit local optima and then migrate
to stronger “colonies” when their own cluster appears suboptimal. One possible explana-
tion for the strong performance is a smoothing effect introduced by using cluster centroids.
Rather than reacting to noisy or highly localized variations in the fitness landscape, fire-
flies are influenced by the aggregated behavior of nearby solutions, guiding them toward
broadly promising regions of the search space. This may help avoid premature conver-
gence while still maintaining directional focus.



Chapter 6

Parameter Estimation of Theoretical ASM1
Wastewater Treatment Plant

Wastewater treatment plants (WWTPs) play a crucial role in protecting public and environ-
mental health by removing pathogens, pollutants, and chemical substances from wastew-
ater. To achieve this, WWTPs employ a combination of physical, biological, and chemical
processes. As wastewater is generated by both the public sector (e.g., municipalities) and
the private sector (e.g., industrial sources), WWTPs are indispensable in modern society.

Despite their necessity, WWTPs pose a significant challenge: high energy consumption.
It is estimated that the water sector accounts for approximately 4% of global energy usage,
with WWTPs contributing around 1% to this total [12]. Consequently, improving the
energy efficiency of WWTP operations while maintaining or enhancing effluent quality is
a matter of great concern.

In the previous semester, our group worked on a dynamical simulation model of a
WWTP intended for integration with MPC, with the aim of deriving near-optimal control
strategies to reduce energy consumption and improve water quality. This semester, the
group has been divided into two subgroups. While one focuses on developing MPC-based
control strategies, this project concentrates on parameter estimation for WWTP models in
this use-case. Accurate parameter estimation is essential for ensuring that the dynamical
simulation model reliably reflects the actual system, which is a prerequisite for deriving
effective control strategies.

Case Study This use case was conducted in collaboration with Dansk Hydraulisk Insti-
tut (DHI)!, an independent research and consulting institute focused on the water envi-
ronment. DHI proposed several topics of interest, one of which centered on parameter
estimation. The case study investigated in this thesis is based on the following problem
formulation provided by DHI:

Ihttps://www.dhigroup. com/
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Process model re-calibration: Mechanistic/deterministic models, such as WEST
or MIKE?, are comprised of many different parameters and equations for mod-
elling biological, chemical, and physical processes. The accuracy and reliability
of these models directly depend on correctly calibrating the input parameters.
However, even if models are correctly calibrated using data from a specific pe-
riod, the accuracy of the model going forward can deteriorate. Therefore, to
keep the model accurate, regular recalibration of parameters may be required.
This process of recalibration can be time-consuming and often relies on human
engineers to manually update the parameters.

This topic will investigate whether it is possible to use data-driven approaches
to recalibrate model parameters within mechanistic models.

In the following experiments, the clustered Firefly Algorithm is employed to estimate
kinetic parameters in a simulated wastewater treatment plant based on the ASM1 model.
To evaluate the generalization capability of the estimated parameter set, the model’s per-
formance is also tested on a separate timeframe that was not used during the parameter
estimation process.

The following section provides an overview of the plant layout and model formula-
tion, including the differential equations and parameters used. For a more detailed dis-
cussion of the biological processes and underlying assumptions, the reader is referred to
the semester project report that preceded this thesis [35].

6.1 Model Description

Plant Layout

A simple denitrifying wastewater treatment plant layout was chosen for this experiment.
The layout is inspired by a standard configuration available in the modeling software
WEST, developed by DHI. It consists of two biological process tanks, a secondary settling
tank, and internal recycle flows.

Wastewater from the source (e.g., a municipality) enters the system as influent and
first flows into the anoxic tank, where no oxygen is added. In this tank, nitrate (NO37)
is reduced to nitrogen gas by heterotrophic bacteria through denitrification, effectively
removing nitrogen from the wastewater.

The flow then continues to the aerobic tank, where oxygen is supplied through aeration
equipment. In this tank, heterotrophic bacteria oxidize organic matter, and autotrophic
bacteria convert ammonium (NH4") into nitrate via nitrification. To support continued
denitrification, a portion of the nitrate-rich mixed liquor is recycled back to the anoxic
tank via an internal recycle line.

2MIKE and WEST are software tools used for modeling water and environmental systems. See dhi-
group.com for more information.
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Figure 6.1: Waste Water Treatment Plant Layout.

The remaining flow is sent to the secondary settling tank (clarifier), where particulate
biomass settles by gravity. The settler has two outputs: the overflow (effluent), which con-
tains mainly soluble compounds and exits the system, and the underflow, which contains
concentrated biomass. This underflow is recycled to the anoxic tank as return activated
sludge (RAS) to maintain sufficient biomass concentrations in the biological reactors. Ex-
cess sludge that is not recycled is removed and typically undergoes further treatment in
dedicated sludge processing units.

An overview of the plant layout is shown in Figure 6.1.

Biological Tank Model Description

The Activated Sludge Model No. 1 (ASM1) [13] is a mechanistic model that describes the
temporal evolution of soluble and particulate components in a WWTP through a system
of ordinary differential equations (ODEs). It is widely used for simulating the biological
processes of carbon oxidation, nitrification, and denitrification.

Table 6.1 lists the main state variables (components) used in ASM1.
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Component Notation
Readily biodegradable substrate Sg
Slowly biodegradable substrate Xs
Soluble inert organic matter St
Particulate inert organic matter X1
Heterotrophic biomass XBH
Autotrophic biomass XB A
Particulate products arising from biomass decay | Xp
NI—II and NH3; ammonia nitrogen SNH
Soluble biodegradable organic nitrogen SND
Particulate biodegradable organic nitrogen XND
Nitrate and nitrite nitrogen SNno
Alkalinity S ALK
Oxygen So

37

Table 6.1: List of ASM1 components. Soluble components are indicated by Sy and particulate components by

Xx

Model Parameters

ASML1 includes a set of kinetic and stoichiometric parameters that define the behavior of
each process. Table 6.2 provides an overview of these parameters along with standard
values for each parameter. The standard values are taken from [13].
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Description ‘ Symbol ‘ Value (Units)
Stoichiometric Parameters
Heterotrophic yield Yy 0.67 (g COD/g COD)
Autotrophic yield Ya 0.24 (g COD/g N)
Fraction of biomass yielding particulate products fr 0.08 (-)
Mass N / mass COD in biomass ixB 0.086 (g N/g COD)
Mass N / mass COD in products from biomass ixp 0.06 (g N/g COD)
Kinetic Parameters
Heterotrophic maximum specific growth rate HH 6.0(d™ 1
Heterotrophic decay rate by 0.62 (d71)
Half-saturation coefficient for heterotrophs Ks 20 (g COD/m?)
Oxygen half-saturation coefficient for heterotrophs Kon 0.20 (g O2/m?3)
Nitrate half-saturation coefficient for denitrifying heterotrophs Kno 0.50 (g N/m?®)
Autotrophic maximum specific growth rate UA 0.80 (d~1)
Autotrophic decay rate ba 0.15 (d71)
Oxygen half-saturation coefficient for autotrophs Koa 0.4 (g O2/m?)
Ammonium half-saturation coefficient for autotrophs Knu 1.0 (g N/ m?)
Correction factor for anoxic growth of heterotrophs Mg 0.80 (-)
Ammonification rate k, 0.08 m® g COD d"1
Maximum specific hydrolysis rate ky, 3.0(d™h
Half-saturation coefficient for hydrolysis of slowly biodegradable substrate Kx 0.03 (g COD/g COD)
Correction factor for anoxic hydrolysis M 0.40 (-)

Table 6.2: Stoichiometric and kinetic parameters used in the ASM1 model at 20°C. Units follow standard
ASM1 conventions.

Process Rates

The ASM1 model defines eight biological and chemical processes that govern the dynamic
evolution of the interdependent state variables listed in Table 6.1. Each process is associ-
ated with a process rate expression, typically based on Monod kinetics and stoichiometric
coefficients. Table 6.3 summarizes these processes and their corresponding rate expres-
sions. Note that these processes use the parameters introduced in Table 6.2.
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Table 6.3: ASM1 processes and their rate expressions

Process Rate Expression
Aerobic growth of heterotrophs (p1) UH ( Kssﬁss) ( Kolfﬁr 50) X H

. S K S
Anoxic growth of heterotrophs (p2) HH ( e sz) ( Ko,:f50> ( Kwoﬁ%wo) 1¢XB,H

. S
Aerobic growth of autotrophs (p3) Ha < KNSII‘\:‘%NH) ( KO,Aﬂr&)) Xp,A
Decay of heterotrophs (p04) buXpH
Decay of autotrophs (ps) baXp A
Ammonification of soluble organic nitrogen (os) | ksSnpXp,H
Hydrolysis of entrapped organics

ydroly pped organics (o7) Xs/XnH ( 5 )
"Kx + (XSI?XB,H) KOHS+ So
OH NO
+ X
T (KOH + 50) (KNO + 5NO> } o

Hydrolysis of entrapped organic nitrogen (ps) 07 (XX—NSD>

Each state variable in ASM1 evolves over time according to its associated processes
and their stoichiometric contributions. In general, the rate of change ry for component Y
is given by some weighted sum of the eight processes as follows:

8
ry =Y vivpi, (6.1)
i=1
where p; denotes the rate of process i, and v;y is the stoichiometric coefficient that
defines the impact of process i on component Y. The sign of v;y indicates whether the
component is produced (positive) or consumed (negative) by the process.

To illustrate how process rates affect individual state variables, consider the component
Ss, which is influenced by processes p1, p2, and p7. The biological rate of change for Sg is
given by:

ss 1 1

where Yy is the heterotrophic yield coefficient, a stoichiometric parameter. As indi-
cated by the signs, Sg is consumed in processes p; and p2, and produced in process p7.

A compact notation for this system of equations is the Gujer matrix [36], which ar-
ranges the stoichiometric coefficients of all components and processes into a matrix. This
matrix can then be used together with the process rate vector to compute the rate of change
of each component according to Equation 6.1. The Gujer matrix for ASM1 is provided in
Appendix A.1.
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Ultimately, the concentrations of the various components (represented by the state vari-
ables) evolve according to a set of simultaneous differential equations defined by these
process rates.

Settling Model

The settling and recycling of particulate solids is an essential process in the secondary
treatment stage of WWTPs. To simulate sludge settling, we include a one-dimensional
clarifier model based on the work of Takics et al. [37]. The model divides the settler into
multiple vertical layers and describes solids transport as a combination of gravity-driven
settling and bulk flow convection due to influent, underflow, and overflow. Flux limita-
tions are applied to ensure physically realistic transport, especially in zones of high solids
concentration. The model accounts for settling phenomena such as hindered settling, com-
pression, and sludge blanket formation.

In this experiment, we use a 10-layer configuration with a middle-layer influent feed,
similar to the implementation described in the preceding semester report [35]. For further
details on the mathematical formulation and assumptions of the Takdcs model, the reader
is referred to that report.

Transport and Flow Terms

In a complete plant model, the change in concentration of each component is influenced
not only by biological and chemical transformation rates (as defined in ASM1), but also
by advective transport due to water flows between units. The general mass balance for a
component Y; in a given tank is:

2 _ v+ X Qe (YY) (6.3)

dt inlets

where:

* Qin is the volumetric flow rate into the tank (m3/d). In this model, the outflow from
each unit is assumed to equal the inflow,

. Y].in is the concentration of component Y; in the incoming stream,
. Y] is the current concentration in the tank,
* 1y, is the biological transformation rate from Equation 6.1.

This equation applies to all flow streams, including the influent, internal recycles, ef-
fluent, and underflow /overflow from the settler. These transport terms are essential for
coupling the ASM1 biological processes with the hydraulic dynamics of the plant.
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Aeration Control via PI Controller

The dissolved oxygen concentration in the aerobic tank is regulated using a Proportional-

Integral (PI) controller [38]. The controller dynamically adjusts the oxygen input rate to

maintain the concentration of dissolved oxygen Sp close to a predefined setpoint So get-
The PI controller computes the control error as:

e(t) = Soset — So(t) (6.4)

The aeration input is then calculated as:

t
u(t) = Kp - e() + K; - / e(t)dt 6.5)
0
where:
¢ Kp is the proportional gain,
e Kj= I%’ is the integral gain, with T; being the integral time constant,
e ¢(t) is the error between the desired and actual oxygen concentration.

The resulting aeration rate u(t) is applied as an input to the oxygen mass balance in
the aerobic tank, directly influencing the dynamics of Sp.

Controller

In real-world WWTPs, operators can adjust control variables such as the dissolved oxygen
setpoint and the recycle flow rates (return sludge and internal nitrate recycle) to meet
specific objectives, such as optimizing energy efficiency or effluent quality. However, since
this thesis does not focus on operational optimization, these control variables are held
constant throughout the simulation. The values used in this model are summarized in
Table 6.4.

Control Variable ‘ Value
Dissolved oxygen setpoint 1.5mg/L
Underflow (return sludge) recycle rate | 14 m3/min
Nitrate liquor (internal) recycle rate 38.5 m®/min

Table 6.4: Fixed values of control variables during simulation.

6.2 Experimental Setup

6.2.1 Modelling Software

The wastewater treatment plant was modeled using the UPPAAL software suite, which is
designed for modeling, simulation, and verification of stochastic hybrid systems through
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timed automata [39]. With the addition of UPPAAL Stratego, the tool also supports the
synthesis of optimal control strategies [7].

In the context of this project, the primary use of UPPAAL was for simulation pur-
poses—specifically, to evaluate the behavior of the WWTP model under different param-
eter configurations. For a more detailed explanation of the modeling process and the use
of UPPAAL, the reader is again referred to the previous semester’s report [35].

Alternatively, other simulation tools such as WEST could have been used to simulate
the WWTP. However, due to prior familiarity with UPPAAL and the fact that its perfor-
mance—both in terms of speed and accuracy—is comparable to WEST for this specific
plant layout (see previous semester report), UPPAAL was chosen.

6.2.2 Parameter Setting

The experimental setup and selection of sensitive parameters in this study follow the ap-
proach used by Du et al. [28], who based their work on established sensitivity analyses of
the ASM1 model.

A set of seven highly sensitive parameters and their respective ranges is adopted, as shown
in Table 6.5. The remaining, less sensitive parameters are fixed to the standard values de-
fined by Henze et al. [13] that have been shown in Table 6.2.

Sensitive Parameters
Description Symbol Typical Range
Heterotrophic yield Yy 0.38 - 0.75 (g COD/g COD)
Heterotrophic decay rate by 0.09 —4.38 (d71)
Heterotrophic maximum specific growth rate UH 3-133(d™)
Autotrophic maximum specific growth rate Ua 0.34-0.65 (d7 1)
Oxygen half-saturation coefficient for autotrophs Koa 0.5-2.0 (g O/m?)
Ammonium half-saturation coefficient for autotrophs | Kyy 0.6 - 3.6 (g N/m?)
Half-saturation coefficient for heterotrophs Ks 10 — 180 (g COD/m?)

Table 6.5: Seven sensitive ASM1 parameters and their typical value ranges used in this study.

6.2.3 Ground Truth Dataset

Since no real-life measurement data was available for this project, a synthetic dataset was
generated for the purpose of parameter estimation based on the ASM1 treatment plant.
To initialize the model’s internal state, a steady-state inflow was applied for a period of
10,000 minutes. This approach is commonly used in the field of wastewater treatment to
ensure that the simulated system reaches a stable operating condition before introducing
dynamic inflow variations. After initialization, a dynamic inflow pattern obtained from
the WEST modeling software was used to simulate realistic influent fluctuations.
Following the approach in [28], four effluent components were selected as ground truth
targets: Ss, Xs, Snu, and Syo. While these components were experimentally measured
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in their study, here they are generated by simulating the model with a known parameter
configuration.

To produce the ground truth dataset, the more sensitive parameters were randomly
selected within the ranges listed in Table 6.5, while all other parameters were fixed to their
default values:

Yo buw un ua Koa Ky Ks
069 334 6.16 051 137 279 3852

Table 6.6: Parameter values used to generate the ground truth dataset.

With this configuration, the model was simulated under dynamic inflow conditions
for a period of 3 days, using a fixed timestep of 10 minutes. The resulting time series of
the selected effluent components serve as the ground truth for the parameter estimation
experiment.

6.2.4 Objective Function

To apply the cFA for parameter estimation, an objective function is required to evaluate
the quality of each firefly (each candidate parameter configuration).

Since simulated effluent data is available over a 3-day period, the objective function
is based on the discrepancy between the ground truth time series and the output of a
simulation using the candidate parameters. More specifically, the negative mean squared
error (MSE) is used to quantify this difference.

To prevent components with larger numeric ranges from dominating the error, all time
series are normalized using min-max normalization based on the ground truth values.
Let ylg: denote the normalized ground truth value of component i at time f, and y?i;“ the
correéponding normalized simulation value. Then the MSE-based objective function is
defined as:

MSE — — L 3y (yim _ 8t)? 6.6
——NTZ;E(%J _yi,t) (6.6)
i=1t=
where N is the number of effluent components (4 in this case), and T is the number of time
steps. The goal of the optimization is to maximize this objective function, thereby finding

a parameter configuration that produces effluent behavior similar to the ground truth.

6.2.5 Clustered Firefly Algorithm Experiment

The cFA is used to estimate the parameters to match the ground truth data. Its parameters
were chosen based on prior experiments to ensure a reasonable runtime so that the algo-
rithm gets enough time to explore the solution space but at the same time not too much
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so that it becomes unpractical for real life scenarios.
Table 6.7 lists the chosen parameters for this experiment.

Parameter Cluster Firefly
Initial number of fireflies (1max) 35

Number of generations 50
Minimum number of fireflies (#1yin) 5

Target Fireflies per cluster (#target) 5
Minimum fireflies per cluster 1

« (randomness weight) 0.5, decay factor 0.97
Bo (initial attractiveness) 1.0

7 (light absorption) Range 0.01 — 10

Table 6.7: Cluster Firefly Algorithm configuration used for ASM1 parameter estimation.

Results

It took 1 hour and 57 minutes to run the first experiment with the setup and the hardware
that was described in Section 5.3.1.

Figure 6.2 shows the simulated effluent concentrations of the 4 components compared
to the ground truth curves over multiple generations of the clustered Firefly Algorithm.
As expected, the simulated curves improve in later generations, gradually aligning more
closely with the ground truth. In the final generation, all curves exhibit a close match.

However, it can be observed that the initial discrepancy between simulation and ground
truth varies across components. For instance, early predictions of Syo show a larger devia-
tion compared to Syy, which is already relatively close from the beginning. This suggests
that some components are more sensitive to parameter changes or more difficult to fit
accurately.

Despite differences in absolute values, all four simulated effluent curves exhibit the
same qualitative behavior as the ground truth, including the position of peaks and the
overall trend.



6.2. Experimental Setup

1000

Effluent Ss

400

1200

1000

Effluent Syy

400

= Ground Truth
cFA Gen 0
CFA Gen 16
CFA Gen 33
—— cFA Gen 50
0.0 0.5 1.0 15 2.0 25 3.0
Time
(a) Effluent Sg
= Ground Truth
cFA Gen 0
cFA Gen 16
cFA Gen 33
—— cFA Gen 50
0.0 0.5 1.0 15 20 25 3.0

Time

(¢) Effluent Sy

Effluent Xs

Effluent Suo

250

N
3
3

150

100

50

0.25

°
N
S

Figure 6.2: Simulated vs. ground truth effluent concentrations
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for the four monitored components over

Table 6.8 presents the ground truth values of the kinetic parameters alongside the
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estimates produced by the algorithm. While the estimated values do not exactly match the
ground truth, most fall within a reasonably comparable range. Notably, the estimates for
Kyp and Kg deviate more significantly—being approximately half and double their true
values, respectively. Despite these discrepancies, the resulting curves closely match the
ground truth curve.

Yy by un  pa Koa Kyu Ks
Ground Truth Parameters 0.69 334 6.16 051 137 279 38.52
Estimated Parameters 0.67 334 846 049 130 128 68.06

Table 6.8: Ground Truth Parameters and Estimated Parameters

6.2.6 Generalization Performance

Since two out of seven estimated parameters—Kyp and Ks—deviate notably from the
ground truth, yet the model still achieves a very good fit across all effluent values, it is
important to investigate whether this performance generalizes to unseen data. This step
helps determine whether the accurate fit results from overcompensation between param-
eters, which could indicate overfitting and limit the model’s predictive reliability beyond
the calibration timeframe.

This consideration is particularly important in the context of MPC, where the primary
objective is not to replicate historical behavior, but to accurately predict future system
states for effective control.

Therefore, the estimated parameters obtained from the initial 3-day calibration period
were applied to simulate a 2-week timeframe. In this setup, the first 3 days correspond
to the training data used for parameter estimation, while the remaining 11 days repre-
sent previously unseen data. By comparing the model’s output with the ground truth
simulation over the full period, the quality and generalization capability of the estimated
parameters can be more thoroughly evaluated.

Results

Figure 6.3 shows the resulting effluent curves produced using the ground truth parameter
values compared to those generated with the estimated parameters. The simulated curves
match the ground truth very closely for all compounds, both during the estimation period
and throughout the unseen timeframe.

Minor deviations are observed for component Syo between days 6 and 8. However,
these differences are small in magnitude, and the overall alignment between the two curves
remains strong.
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Figure 6.3: Comparison of simulated effluent concentrations using estimated parameters versus ground truth
values across all components. The training period is highlighted in grey, and the test period in yellow.
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6.3 Discussion

In this section, the findings of the parameter estimation on the synthetic effluent data are
examined. While the algorithm achieved a good fit across all effluent components within a
reasonable timeframe, several experimental limitations affecting the realism and practical
applicability of the results are also highlighted.

Algorithmic Performance

The parameter estimation results for the simulated WWTP demonstrate that the cFA can
reproduce the dynamic behavior of effluent components under idealized conditions. Al-
though two of the seven estimated parameters deviated significantly from the ground
truth, the resulting output curves still closely matched the simulated data. This indicates
that accurate model fits can be achieved even when some estimated parameters differ sub-
stantially from their true biological values, suggesting a potential loss of interpretability.
Nevertheless, these results highlight the algorithm’s capability to explore and identify so-
lutions within complex, non-linear optimization landscapes such as those defined by the
ASM1 model.

This conclusion is further supported by the generalization experiment, where simu-
lations using the estimated parameters continued to closely align with the ground truth
curves beyond the training period. This consistency suggests that, in this experiment, the
algorithm did not merely find a solution overfitted to the training data, but rather identi-
fied parameter sets that generalize well. Such behavior is especially valuable in predictive
modeling and control, where the focus lies on accurate state prediction under previously
unseen conditions.

Experimental Limitations

Even though the algorithm performed well in this setup, several important limitations
should be noted. First, the simulation assumes idealized conditions: no measurement
noise, perfect knowledge of the system’s internal state, and continuous inflow data. These
assumptions simplify the estimation task considerably, since the ground truth can be ex-
actly generated by the same model structure. In contrast, real-world data is typically noisy,
incomplete, and collected at lower sampling frequencies, which would introduce an inher-
ent mismatch between model and measurements.

Second, the similarity in qualitative behavior between the simulated and ground truth
effluent curves — even in early generations — is largely due to structural properties of the
model. Because the outflow is strongly correlated with the inflow, and the same inflow
pattern is used in both the ground truth and candidate simulations, some level of curve
alignment is to be expected. This should not be attributed to the algorithm’s performance,
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but rather to the model’s deterministic structure.

Furthermore, standard values were assumed for parameters not included in the esti-
mation process. While this is a reasonable simplification for a controlled test case, it is an
unrealistic assumption in real applications, where insensitive parameters may vary from
plant to plant as well.

Lastly, in the context of the generalization experiments, it is important to consider that
in real-world systems, the biological composition of microbial communities in a WWTP
may change over time. As a result, the kinetic parameters themselves could drift, leading to
gradual changes in the system’s dynamics. This kind of parameter drift was not modeled
in the generalization experiment, and realistically simulating such changes in synthetic
data is challenging. Consequently, the current setup does not allow for a meaningful as-
sessment of the algorithm’s robustness under conditions of evolving system dynamics,
which are likely to occur in practical applications.

In conclusion, this experiment demonstrates that the cFA can handle the type of non-
convex optimization problems posed by mechanistic WWTP models. However, its practical
applicability cannot be judged based on this idealized scenario alone. Future experiments
would need to incorporate realistic conditions such as partial observability, measurement
noise, and possibly real-world data to more accurately assess the algorithm’s utility in
operational settings.



Chapter 7

Thermal Parameter Estimation from Heat
Pump Data

Accurate thermal parameter estimation is a prerequisite for optimized control of heating
systems using dynamic simulation models of real buildings. In a recent study, Hasrat et
al. [9] demonstrated that Model Predictive Control (MPC), when combined with adaptive
model identification, weather forecasts, and day-ahead electricity prices, can significantly
reduce energy consumption and costs in residential buildings equipped with heat pumps.
By employing a simplified, data-driven thermal model and synthesizing control strate-
gies using Uppaal Stratego, their approach achieved energy cost reductions of up to 49%,
depending on the control strategy used.

We adopt this use case for two main reasons. The first is to evaluate the effectiveness
of the cFA in identifying suitable parameters from real-world data. The second is to com-
pare its performance to already established methods for parameter estimation, particularly
CTSM-R [31] in this context.

In this case study, we estimate thermal parameters—specifically, heat transfer coeffi-
cients—of a residential building based on real-world operational data provided by the
company CEDAR!. The dataset includes indoor temperature measurements, outdoor weather
conditions, and detailed heat pump operation data.

This experiment enables us to assess the robustness of the cFA under realistic condi-
tions, including noisy measurements, missing data, and a simplified thermal model that
abstracts away some of the building’s physical complexities.

This use case provides a valuable addition for evaluating the performance of the cFA,
as—unlike the previous case—it is based on real-world data from a physical system.

ICEDAR: https://cedar-heat.dk/
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7.1 Thermal Model Description

The thermal model used in this experiment is directly taken from Hasrat et al. [9]. In
their work, a building with four rooms is modeled, with each room having its own set
of thermal parameters. This modeling approach can be easily extended to buildings of
arbitrary size, as the parameters are estimated individually for each room.

In the model, the thermal dynamics of each room i are represented by a three-state
model, consisting of the room temperature T, heater temperature T}, and envelope tem-
perature T.. The evolution of these state variables is governed by state and external input
variables (summarized in Table 7.1), heat exchange coefficients (provided in Table 7.2), and
the system of differential equations given in Egs. 7.1, 7.2, and 7.3.

Table 7.1: State and Input Variables Table 7.2: Heat Exchange Coefficients
Variable Description Coefficient Description
Trz room i air temp. ), heat resistance between floor and room air
i room i floor temp. al heat resistance between envelope and room air
lel room i envelope tem al heat resistance between solar radiation and room
—"’i . P ﬂp al, heat resistance between water pipes and floor
M room ¢ water ma?s ow al heat resistnace between envelope and outdoor
T forwara wate.r temp. exiting heat-pump al heat resistance between room i and n
Toutdoor ~ outside temp ] heat capacity of floor pipes
st solar heat to room i ¢ heat capacity of evelop
i
Uy i (B = 1) (T = T) ol - § 7.1)
dr h\*h r e\“e r s .
dTi,  of . . = iy
H _ “h(fi i i i i
ar 7<Tr - Th) g Ml(Tforward - Th) (7.2)
P
d'T'i lxi . . . . . .
e _ He i i i i i(fm i
T T(Tr - Te) + lxa(Toutdoor - Te) + Z D‘n(Tr - Te) (7'3)
dt IB e neN

Figure 7.1: Grouped representation of model components: input variables, heat exchange coefficients, and
differential equations. The figure is taken from [9]. N in Equation 7.3 is the set of neighboring rooms for room
i.

Since the model treats each room independently, the parameter estimation process
must be performed separately for each room. This approach has the advantage that the
dimensionality of each estimation problem remains comparatively small.
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Variable Description

T Room i air temperature
Ttorward ~ Water temperature exiting the heat pump
Toutdoor  Outside temperature

Table 7.3: Variables directly available from the dataset.

7.2 Data

As previously mentioned, this experiment uses real-world data to estimate the heat ex-
change coefficients. All data is provided in the form of time series, where each entry
consists of a measured value and its corresponding timestamp.

The data was collected during the winter months in northern Denmark. However, the
exact timeframe has been intentionally omitted to protect privacy.

However, not all variables required by the model are directly available in the dataset.
Some values have been estimated based on other data or derived using simplified model
assumptions.

The measured data available for the heating model is summarized in Table 7.3. For the
missing variables, different estimation approaches have been applied.

It should also be noted that the dataset used in this thesis did not include the exact
number of rooms in the building, as a single room may contain multiple temperature
sensors. Additionally, no information about room adjacency was provided. As a result,
both the room count and neighborhood structure had to be assumed, as will be described
in Section 7.3.

7.2.1 Estimating the Water Mass Flow Mi

The company CEDAR, which provided the data for this experiment, mentioned that while
“supply pump speed data” could serve as a proxy for water mass flow, it is considered
unreliable in practice. Instead, they recommended the following approach (translated from
danish):

It is possible to abstract away from the mass flow component of the equations
and assume that the mass flow decreases from 100% to 0% over a narrow inter-
val, as the average room temperature increases from approximately 21.5°C to
22.5°C.

Following this approach, we define the mass flow for room 7 as a function of the room
temperature TIQ using a sigmoid function, so its output lies in the interval [0, 1]:
Mi(Th) = 1 ,
1+ exp (k(Th — Tset))

(7.4)

where:
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* Tiet is the setpoint temperature that determines the center of the transition region.
* k controls the steepness of the transition.

Both Tset and k are treated as additional parameters to be optimized as part of the room
model.

7.2.2 Estimating Solar Heat S’ to Room i

Direct measurements of solar heat were not available in the dataset. However, the weather
data included two relevant variables: the cloud area fraction, indicating the proportion of
the sky covered by clouds, and the sun altitude, corresponding to the solar elevation angle
7.

Following the work of Kasten and Czeplak [40], the solar irradiance under clear-sky
conditions can be approximated as proportional to sin(7y). Since the room-specific solar
gain is scaled by the heat transfer coefficient &, it is sufficient to estimate the relative solar
gain; the absolute scale can be absorbed into . during parameter fitting.

To account for cloud cover, a nonlinear attenuation factor is applied based on the cloud
area fraction c € [0, 1]:

St =sin(y) - (1 —0.75 - *7) (7.5)

This formulation models the reduction in solar gain due to cloudiness more realistically
than a simple linear scaling and is empirically supported for mid-latitude atmospheric
conditions [40].

Because the dataset does not provide room-specific solar exposure (e.g., orientation or
shading), S' is assumed to be the same for all rooms. This simplification can be compen-
sated by the solar heat coefficient i, which captures differences in actual solar impact
across rooms.

7.2.3 Start values for state variables

From Table 7.3, it is apparent that the floor temperature T} and the envelope temperature
Tel are not available in the dataset. Therefore, their initial values are treated as parameters
to be optimized as well.

7.2.4 Interpolation of Time Series Data

The data originates from various sources—different sensor types for room temperature
measurements, a heat pump sensor, and weather forecast data—which differ in both their
start and end times, as well as in their sampling frequencies. To address this, a com-
mon time frame (start and end point) had been identified, and a dataset with one-minute
intervals was generated using linear interpolation.



7.3. Identifying the Room Layout 54

Most sensor data was originally recorded every 30 minutes. However, since tempera-
ture tends to change slowly, linear interpolation was deemed sufficiently accurate.

7.3 Identifying the Room Layout

As described in Section 7.1, the parameters are estimated for each room individually. The
model accounts for heat exchange between neighboring rooms, as shown in Equation 7.3,
which describes the evolution of the envelope temperature T} for room i.

However, the dataset does not include any information about the physical layout of the
rooms. As a result, the adjacency between rooms is unknown.

To enable the use of the model despite this limitation, the room layout is inferred and
represented as an undirected graph based on correlation analysis.

7.3.1 Correlation Analysis

The interpolated temperature data from the rooms and the outside temperature over a
two-week period is used for the correlation analysis.

Figure 7.2a shows the correlation matrix from the initial analysis. It is noticeable that
some rooms exhibit very high correlations (1.0 or close to it). These rooms are likely to
represent the same physical space, as one room may contain multiple temperature sensors,
and two different sensor types are used for room measurements.

Since including duplicates in the parameter analysis would not be meaningful, only
one sensor per highly correlated room group was retained. A cutoff value of 0.96 was
arbitrarily chosen—rooms with a correlation equal to or higher than this threshold were
considered to be the same room.

After the assumed duplicates were removed, a total of 11 rooms remained. A second
correlation analysis was performed with the remaining rooms. The result is shown in
Figure 7.2b. Here, it can be noted that the number of rooms for parameter estimation was
cut down from 17 to 11.

7.3.2 Room Layout Graph

Using the second correlation matrix, an undirected graph was constructed to serve as the
assumed room layout. Two rooms are considered neighbors if their correlation exceeds a
threshold, which was arbitrarily set to 0.5.

Figure 7.3 shows the resulting undirected graph. It is noticeable that most rooms ex-
hibit a high level of interconnectivity, while others—such as Room 3 and Room 5—have
only two and four neighboring rooms, respectively. Although the layout may not accu-
rately reflect the true physical structure of the building, it provides a practical basis for
applying the thermal room model as described earlier.



7.4. Experiments 55

1.00

LELCEILEE 1.00 10.68 0.63 (0w 30555 0.64 112
075 LI 0.68 1.00 0.76 (1334 0.74 0.66 0.87 0.71 0.71 0.81 0.57 [WAW) 0.75
T_Room_2 {LHEERV[3) LODMDASQ 0.67 0.65 0.71 0.71 0.71 0.81 Wiy

) T_Room_3 -0.26 0.51 ﬁ pNi(e] 0.44 0.24 0.32 0.28 -7/ 0.28 0.27

T_Room_4 /SO ER FC1) 0.44 B 0.31 (UEERVVLCRNYLEEY 0.44 0.03

T_Room_5 -EEOEEERONCVA 0.24 0.31 pMid) 0.45 0.38 0.42 0.38 /-1 0.09

e T_Room_6 - 0.51 JE:yA 11551 0.83 L) 1.00 0.82 0.78 0.91 1024

0.50

-0.25

-0.00

T_Room_7 -0.42 LvASVAR 0.32 (04 0.38 [oX:PARNVONRTNR:{3 1572 0.01 --0.25

T_Room_12 -0.43 [UARVAR 0.28 [UVEN 0.42 [0 BRI RNE:Y2 01572 -0.03
-0.50
T_Room_15 Lk} 0.81 0.71 10:57 0.93 k4 0.91 0.86 0.82 1.00 [0:56HAL]
RN YA 0:62 0157 0.81 [OWL: N ZR056N -3 80.62 0.62 05561 1.00 Kilor] -0.75

o T_outdoor --0.04 0.17 0.20 0.27 0.03 0.09 0.24 0.01 -0.03 0.14 -0.02 g¥i}
-1.00

T_Room_1

T_Room_6

Toutdoor- 004 017 020 027 003 009 024 001 018 002 016 016 003 001 023 014 003 002 [REE

T_Room_17 -
T_outdoor

T_Room_15 -

T_Room_12 -

T_Room_0 -
T_Room_2 -
T_Room_3 -
T_Room_4

T_Room_5 -
T_Room_7 -

(a) Correlation Matrix before rooms were removed. (b) Correlation matrix after rooms were removed.

Figure 7.2: Heatmaps for correlation analysis of room temperatures.

7.4 Experiments

Based on the previously described data, the assumed room layout, and the thermal room
model, the parameters for each room were estimated using the cFA. A time span of one
week was considered. The objective of the experiment was to identify parameters such
that the simulated room temperatures over the 7-day period closely matched the observed
temperature data.

In addition, the parameter estimation results obtained using the cFA were compared
to those from CTSM-R—a tool used in the original publication [9] that introduced the
thermal grey-box model.

Finally, the generalization performance of the estimated parameters was evaluated on
a separate time period that was not used during training, in order to assess how well the
model fit temperature data beyond the initial one-week window.

7.4.1 Clustered Firefly Parameter Estimation

To estimate the thermal parameters of each room, the cFA was employed.

In contrast to previous experiments, parallel computing was used to take advantage of
all available CPU cores in order to reduce computation time. The same hardware that was
already described in Section 5.3.1 was used.

Hyperparameters were selected based on prior experiments to strike a balance between
runtime and solution quality. Table 7.4 lists the parameters used. The same settings were
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Figure 7.3: Assumed room layout for parameter estimation problem.

applied to all rooms.

Parameter Cluster Firefly
Initial number of fireflies (nmax) 70

Number of generations 70
Minimum number of fireflies (#1yin) 12

Fireflies per cluster 7
Minimum fireflies per cluster 1

« (randomness weight) 0.5, decay factor 0.97
Bo (initial attractiveness) 1.0

v (light absorption) Range 0.01 — 10

Table 7.4: Clustered Firefly Algorithm configuration used for thermal parameter estimation.

Table 7.5 summarizes the parameter bounds used in this experiment. For the heat
exchange coefficients, a wide range was selected, as no expert knowledge was available.
These ranges are similar to those used in the experiments of Hasrat et al. [9].

Realistic bounds were applied to the initial values of the temperatures T, and T:. For
the mass flow estimation, the setpoint temperature Tset was also assigned a realistic range,
while a narrow, arbitrarily chosen range was used for the parameter k to control the slope
of the mass flow function.

Objective Function

Similar to the WWTP use case, the objective function is based on comparing the simulated
output time series for a given parameter configuration with the measured data. In this
case, the simulated room temperature is compared to the observed room temperature.
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Parameter Description Range

(Xfl, B, etc. Heat Exchange Coefficients [0.0001, 1000]
T, T, Initial temperatures (°C) [10, 40]

k Mass flow parameter [0.1, 10]

Tset Setpoint temperature (°C) [19, 23]

Table 7.5: Parameter bounds used for cFA Parameter estimation

One objective function used is the negative mean squared error (MSE), as defined in
Equation 6.6. Note that the MSE is not normalized in this context, since we are only
comparing a single output variable—the estimated room temperature—to its measured
counterpart. In the WWTP use case, normalization was used to balance the influence of
multiple output time series, which is not necessary here.

In this thesis, we propose a shape-weighted MSE (swMSE) objective function to fur-
ther encourage models that not only minimize overall error but also better capture system
dynamics. In this function, the Pearson correlation coefficient [41] is used to scale the negative
MSE, effectively penalizing output curves that do not exhibit similar dynamic behavior.
The objective function is mathematically defined as follows:

MSE (ysim’ yobs)

MSE =
swMS max (6 + (1 —d)r, 1le—3)

(7.6)

where:

¢ MSE is the (negative) mean squared error,
5™ js the simulated temperature time series,
* 4° is the observed temperature time series,

* § € [0,1] is a hyperparameter controlling the influence of the correlation factor, set
to 0.5 in our case,

¢ ris the Pearson correlation coefficient between the two time series.

The max function in the denominator is used to handle cases where the correlation is
negative, ensuring that the scaling remains stable and preventing unintended behavior in
the objective function.

Results

Figure 7.4 presents graphs showing the measured temperature in each room, along with
the simulated temperatures generated using the best parameter configuration identified by
the cFA. Results are shown for both the swMSE and the standard MSE objective functions.
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Some of the graphs reveal significant discrepancies between the real and simulated
temperature curves, both in terms of dynamics and absolute values. This suggests that the
clustered Firefly Algorithm was not able to identify parameter sets that accurately capture
the thermal behavior of all rooms.

However, in most cases (especially rooms 2, 4, and 15), the simulated temperatures
align very closely with the measured data. Although not perfect, these simulations ap-
proximate the real temperature evolution more accurately than in other rooms.

Most of the results obtained using the two different objective functions are closely
aligned, with the exception of room 1, where both simulations deviate noticeably from the
actual temperature trajectory.

Table 7.6 presents the objective function values and computation times for each room
using the clustered Firefly Algorithm, run with both the swMSE and standard MSE ob-
jective functions. As the objective function is being maximized, higher values (i.e., values
closer to zero) indicate better performance. Generally, rooms with better alignment be-
tween simulated and observed temperatures also exhibit higher objective values.

Note, however, that the objective values obtained using the two functions are not di-
rectly comparable, as they reward different aspects of model fit.

It is also notable that, despite using the same algorithmic configuration for each room,
the computation time varies considerably across rooms. The computation times for the
two different objective functions are generally similar; in some cases, the swMSE objective
results in shorter runtimes, while in others, the MSE objective is faster.

Room swMSE MSE
Value Time [s] | Value Time [s]
0 -0.855 1194.08 | -0.643 1642.41
1 -0.312 834.81 | -0.325 1255.26
2 -0.200 1185.03 | -0.175 1140.62
3 -0.638 3914.35 | -0.488 1447.00
4 -0.130 11968.06 | -0.121 12609.74
5 -0.184 154399 | -0.148 1155.00
6 -0.442  967.89 | -0.403 1090.18
7 -0.217 116231 | -0.219  953.72
12 -0.150 1450.87 | -0.151 1907.85
15 -0.088 12795.10 | -0.052 13113.53
17 -0.338 1432.08 | -0.300 1596.71

Table 7.6: Objective function values and computation times for the swMSE and MSE objective functions using
the clustered Firefly Algorithm.

The specific parameter values that resulted from the cFA are provided in Appendix B.1
and B.2.
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7.5 Parameter Estimation using CTSM-R

To provide a benchmark for the parameter estimation results obtained using the cFA, we
also performed parameter estimation using the tool CTSM-R.

CTSM-R (Continuous Time Stochastic Modeling in R) is a modeling and estimation
framework for continuous-time grey-box systems with stochastic components [31]. It uses
maximum likelihood estimation and Kalman filtering to identify parameters for a system
of stochastic differential equations based on observed time series data. CTSM-R was also
used in the original study that introduced the interconnected room temperature model by
Hasrat et al. [9], making it a natural choice for comparison in this experiment.

In CTSM-R, the system is described by a continuous-discrete time state space model,
consisting of stochastic differential equations for the system dynamics and discrete-time
measurement equations as defined in [31]:

dxy = f(x¢,ug, t,0)dt + o (uy, t,0) dw; (7.7)
Yi = h(Xk, uy, tk, 9) + €y, € ~ N(O, S(uk, fk)) (78)

Here:

¢ x; denotes the (unobserved) state vector at time ¢,

* u; is the exogenous input vector,

* 0 represents the set of model parameters,

e f(-) and o(-) define the drift and diffusion terms of the system,
* dw; is a Brownian motion process,

* y; are the measurements at discrete time points f,

® Ji(-) is the measurement function,

* ¢ is the Gaussian measurement noise with covariance S(uy, f¢).

Setup

The setup of this experiment closely follows the procedure used in [9].

To apply the three-state energy model described in Section 7.1, each differential equa-
tion is extended with a diffusion term o (-), as defined in Equation 7.7. This term intro-
duces stochasticity into the system through process noise.

For each state equation i, the diffusion term is defined as:

exp(p;) - dws,
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Parameter Description Initial Value Range

0&2, B, etc. Heat Exchange Coefficients 0.2 [0.0001, 1000]
T,, T; Initial temperatures (°C) T; [10, 40]

k Mass flow parameter 5 [0.1, 10]

Tset Setpoint temperature (°C) 21 [19, 23]

pi Process Noise 0.01 [-100,100]

€11 Measurement Noise 0 [-100, 100]

Table 7.7: Initial parameter values for CTSM-R experiment.

where p; is a parameter estimated during model fitting. This parameter determines the
magnitude of the process noise affecting the dynamics of state i. This allows the model to
capture small unmodeled disturbances and uncertainties inherent in real-world tempera-
ture dynamics.

The observation model links the simulated room temperature state T to the measured
room temperature variable Troom. This is expressed in CTSM-R as:

I?,Obs = T; + ek, ex N(O, eXp(EH)Z)

Here, ¢, denotes Gaussian measurement noise with zero mean and a variance of
exp(en)z, where eq; is a parameter estimated during model fitting. The exponential trans-
formation ensures that the variance remains strictly positive throughout the optimization.

This formulation allows the model to account for measurement uncertainty in the ob-
served temperature signal.

For both the process and measurement noise parameters, the lower and upper bounds
were adopted directly from [9].

In addition, for the heat exchange coefficients and other physical model parameters,
the same parameter ranges as used for the clustered Firefly Algorithm were applied (see
Table 7.5).

In CTSM-R, initial values must be provided for each parameter, serving as starting
points for the estimation process. Based on prior experiments, starting values close to the
lower bounds tended to result in faster convergence. Therefore, small initial values were
used in our experiments. An overview over the initial values and the parameter bounds
for all parameters is given in Table 7.7.

Results

CTSM-R successfully estimated parameters for the majority of the rooms, allowing their
temperature trajectories to be simulated. However, for rooms 0, 3, 4, and 7, the algorithm
failed to converge to a good solution with error messages such as:

® Did not converge. I’m sorry, but I don’t know this error code.
Code: 130
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¢ Did not converge. The state covariance matrix is not positive definite.
Code: 30

For these rooms no valid parameter set was obtained for simulation.

Figure 7.5 shows the simulated room temperatures obtained from the CTSM-R pa-
rameter estimation, alongside the real observed temperatures. For comparison, the cor-
responding simulation results using the cFA with the swMSE objective function are also
included.
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Figure 7.5: Simulated vs. observed room temperatures for CTSM-R and cFA across all rooms.

For most rooms where parameters were successfully identified, the simulated temper-
ature curves align closely with those generated using the cFA-derived parameters. For
rooms where the clustered Firefly Algorithm struggled to find a well-fitting parameter set
(e.g., Rooms 5 and 17), CTSM-R also fails to produce good results. This suggests that the
simplified model may not adequately capture the thermal dynamics of these rooms.

To examine the performance in more detail, Table 7.8 presents the negative MSE values
and computation times for the CTSM-R results. For rooms where no solution was found,
only the computation time is reported.

For comparison, the corresponding MSE values and runtimes from the cFA are also
included. With the exception of Room 7, CTSM-R completes significantly faster than cFA
across all rooms. In total, CTSM-R required 5,070.92 seconds to run for all rooms, while
cFA took 39,648.57 seconds—approximately eight times longer.
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In addition to faster execution, CTSM-R achieves similar or even better MSE values for
most rooms.

Room CTSM-R cFA (swMSE objective)
MSE Value Time [s] | MSE Value Time [s]
0 - 125.7 -0.673 1194.08
1 -0.254 499.7 -0.301 834.81
2 -0.131 884.93 -0.170 1185.03
3 - 172.45 -0.525 3914.35
4 - 1053.49 -0.125 11968.06
5 -0.153 88.79 -0.152 1543.99
6 -0.691 47.8 -0.393 967.89
7 - 1943.62 -0.215 1162.31
12 -0.145 57.83 -0.144 1450.87
15 -0.086 152.36 -0.084 12795.10
17 -0.412 43.15 -0.274 1432.08

Table 7.8: MSE objective values and computation times for the results of CTSMR and clustered Firefly Algo-
rithm using the swMSE objective function.

The complete set of parameter values estimated by CTSM-R is provided in Appendix B.3.

7.5.1 Generalization Performance

As described earlier, the goal of parameter estimation in this context is to obtain a model
that accurately captures the thermal dynamics of the different rooms and can be used to
predict future states (i.e., room temperatures) under varying control strategies. This, in
turn, enables the derivation of optimal strategies that minimize cost and energy usage
during heat pump operation.

Therefore, it is important that the estimated parameters generalize well beyond the
training data. To assess this, we evaluate how the fitted parameters perform when the
time window is extended. In this experiment, a two-week period was considered: the first
week was used for parameter estimation, and the second week—comprising previously
unseen data—was used to evaluate generalization performance.

Results

Figure 7.6 shows the temperature trajectories over the two-week period, including the
observed temperatures, the simulated temperatures from the clustered Firefly Algorithm
using the swMSE objective function, and the simulated temperatures from CTSM-R. For
rooms where CTSM-R failed to produce a solution, only the Firefly-based simulation is
shown.
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Figure 7.6: Observed and simulated room temperatures over a two-week period. Simulations were generated
using the clustered Firefly Algorithm (cFA) with the swMSE objective function and CTSM-R. Only cFA results
are shown for rooms where CTSM-R failed to converge. The first week was used for parameter estimation;
the second week tests generalization.

The clustered Firefly Algorithm produced mixed results. For some rooms where a good
temperature fit was achieved during the estimation period, the model also generalizes well
to the second week—see, for example, rooms 7, 12, and 15. However, in other cases—such
as rooms 1 and 2—where the fit during the first week was acceptable, the second week
shows large temperature spikes that deviate significantly from the observed data. As
expected, for rooms where cFA failed to produce a good fit during the estimation period,
for example room 17, the simulation also performs poorly in the generalization period.

CTSM-R generally achieved better generalization performance in cases where it closely
matched the observed temperature during the first week—for example, rooms 1, 12, and
15. The simulations based on CTSM-R parameters do not exhibit unrealistic temperature
spikes, with the exception of room 17.

For room 17, CTSM-R performs comparably poorly to cFA. Naturally, performance
cannot be evaluated for rooms where CTSM-R failed to produce a valid parameter set
during the estimation period. However, this inability to produce a solution can itself be
interpreted as an indicator of performance in those cases.

Table 7.9 compares the negative MSE values for the second week. For room 1, where
the cFA solution exhibited the most pronounced and unrealistic temperature spikes, the
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error is by far the highest. CTSM-R achieved better MSE values in 4 out of the 7 cases.
As expected, the MSE values are generally higher compared to those in the parameter
estimation experiment, which used only the training week (see Table 7.8).

Room | CTSM-R | cFA (swMSE)
0 - -0.748
1 -0.487 -5.228
2 -0.236 -0.388
3 - -0.619
4 - -0.395
5 -0.226 -0.231
6 -0.251 -0.183
7 - -0.189
12 -0.158 -0.098
15 -0.088 -0.104
17 -0.539 -0.393

Table 7.9: Comparison of MSE values for CTSM-R and the clustered Firefly Algorithm (cFA) using the swMSE
objective function of the second week.

7.6 Discussion

This section discusses the findings of the thermal parameter estimation experiments us-
ing the cFA on real-world data from a residential heat pump system. The goal was to
evaluate the algorithm’s ability to identify thermal parameters that would allow simulated
temperatures to closely match measured real-life data.

While the algorithm was able to identify suitable parameters for some roomes, it failed
to produce meaningful parameter sets for others. This highlights a number of limitations
and considerations that may explain the observed results—ranging from model simplifi-
cations and data quality issues to aspects of the experimental setup itself. The following
discussion evaluates these factors and considers their implications for practical deploy-
ment and future research.

7.6.1 Model and Data Limitations

Model Simplification and Data Availability The use of a simplified thermal model,
combined with missing or estimated data, likely contributed to the discrepancies observed
between the simulated and measured room temperatures.

The three-state thermal room model itself is a simplification, as it does not account
for various internal activities within the building. Examples include cooking, showering,
opening windows for ventilation, or the presence of occupants—all of which can signif-
icantly influence room temperature but are not captured by the model. As a result, an
inherent mismatch arises between the simulated temperatures and the actual conditions.
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In addition, several assumptions had to be made to apply the model, which may have
negatively affected performance. The model for room i requires knowledge of adjacent
room temperatures to simulate inter-room heat exchange. Since this information was not
available, the room layout was approximated using correlation analysis, from which an
undirected graph of room connectivity was derived. As described in Section 7.3, rooms
with very high mutual correlation were assumed to represent the same physical space,
and neighboring rooms were selected based on an arbitrarily chosen threshold value. This
process may have led to a room layout that does not accurately reflect the true physical
structure of the building.

More sophisticated methods for inferring room adjacency—or additional experiments
to determine more robust threshold values—could potentially improve the accuracy of
the simulation. Alternatively, obtaining the actual adjacency information from building
plans or available sensor metadata would likely be more reliable and is often obtainable
in real-world settings—if such data is accessible.

Approximation of Mass Flow and Solar Gain Some critical data affecting the tempera-
ture trajectory in each room—such as mass flow and solar gain—had to be approximated,
introducing an additional layer of simplification.

Mass flow was approximated using a simple heuristic: it was assumed to increase
within a narrow range around a temperature setpoint. While this approach may provide a
rough approximation, it does not reflect the actual control behavior of the heating system
and may therefore have negatively affected the model’s accuracy. A more refined approach
for approximating mass flow could potentially improve model performance. The company
CEDAR, which provided the dataset, also noted an alternative (translated from danish):

It is also possible to infer it from rooms that have a "state" field indicating
whether their flow valve is open.

This method, which infers mass flow based on the open/closed state of room valves,
was not pursued due to time constraints but may offer a more accurate approximation.

Similarly, solar gain was not derived using a detailed radiation model, but rather
assumed uniformly across all rooms. It was approximated based on available weather
data—specifically solar altitude and cloud cover. While this offers a general sense of so-
lar input, using more granular data (such as the fraction of low-, mid-, and high-altitude
clouds) could improve the fidelity of the approximation. Moreover, the current approach
does not differentiate between rooms, assuming the same solar exposure for all. Including
room orientation data (which was not available) could enable more accurate, room-specific
solar gain profiles and further enhance model realism.

7.6.2 General Performance, Comparison with CTSM-R, and Generalization

The experiments comparing the cFA with the CTSM-R tool revealed both advantages and
disadvantages for each method. For the rooms where CTSM-R successfully converged to a
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solution, it achieved significantly shorter runtimes than cFA, while yielding parameter sets
with comparable performance. This is likely due to CTSM-R employing local optimization
techniques, which search for solutions close to the initial parameter estimates.

In contrast, the cFA performs global optimization, which naturally requires more com-
putation time to explore a broader search space. However, this global nature brings the
advantage of independence from initial parameter configurations. As a result, cFA was
able to identify reasonable parameter sets for several rooms where CTSM-R failed to con-
verge. This indicates that although CTSM-R can be faster when it succeeds, it is sensitive
to initial conditions—potentially limiting its robustness in complex or noisy estimation
tasks where good initial guesses are not available.

One potential enhancement for CTSM-R would be to run it from multiple initial guesses
and select the best resulting solution. However, this raises questions about whether its run-
time advantage would still hold, and how to systematically choose those initial guesses.

In the context of MPC with parameter estimation being an integral part of the con-
trol loop, it is crucial that the algorithm reliably returns a solution. Failure to do so may
require fallback strategies, such as defaulting to pre-tuned parameters or previously iden-
tified configurations. In this regard, the cFA demonstrates greater robustness, as it always
returns a solution. Of course, the quality of that solution is not always guaranteed to
be optimal—as seen in the subpar fits for Room 1 and Room 17—but it avoids outright
failure.

The runtime of cFA could potentially be improved by reducing the learning budget
(e.g., number of fireflies or generations), which was set relatively high in these experi-
ments. In many cases, the best solution was found in early generations. A promising
enhancement would be to introduce a convergence criterion that stops the algorithm early
if no significant improvement is observed over time. This would allow the algorithm
to use its full budget for difficult estimation problems, while terminating early in easier
cases—thereby improving overall efficiency without sacrificing robustness.

Generalization The generalization experiments revealed some limitations of the cFA.
In some cases—most notably in Room 1—the algorithm achieved a good fit during the
training week but produced unrealistic temperature spikes when applied to unseen data
in the second week. This behavior indicates that the model was overfitted to the training
data.

Such overfitting is problematic in practical applications where historical data is used
to identify model parameters and the resulting model is expected to predict future system
states for optimal control. In contrast, CTSM-R demonstrated better generalization per-
formance for the rooms where it successfully converged, maintaining stable and realistic
behavior on unseen data.

One possible reason for the unrealistic behavior observed in some rooms is the use
of extremely wide—and in some cases, physically implausible—parameter bounds for the
heat transfer coefficients. The bounds for these coefficients ranged from 0.0001 to 1000,
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Figure 7.7: Simulated temperature vs observed temperature for room 1 with restricted parameter bounds.

based on those used in the original paper introducing the three-state model [9].

However, when examining the parameter values identified by CTSM-R, it becomes
clear that such extreme values are rarely explored. For instance, the highest value found
by CTSM-R across all rooms was 12.42 for the coefficient a2 in Room 2. This suggests that
the bounds were chosen to avoid unnecessarily restricting the search space, rather than to
reflect physically realistic expectations.

In contrast, the clustered Firefly Algorithm did produce values close to the upper
bound, such as 992.4 for coefficient a}f in Room 15. A possible consequence of this is
that the algorithm may select physically unrealistic parameter combinations that nonethe-
less achieve a good fit during the training week by compensating for each other. However,
on unseen data—where these compensatory dynamics may not hold—such parameter sets
can lead to unrealistic or unstable behavior.

These findings suggest that while cFA is more robust in consistently producing so-
lutions, its use in predictive control applications may require safeguards against overfit-
ting—such as tighter parameter bounds or regularization.

To investigate this further, the parameter estimation process for Room 1 was repeated
with the upper bounds for all thermal parameters restricted to 15.

As shown in Figure 7.7, this modification resulted in a significantly better fit: the
temperature spikes previously observed were no longer present, suggesting that the gen-
eralization issues may indeed stem from unrealistic parameter bounds.

Future Work Future experiments could explore the impact of using narrower, more phys-
ically informed parameter bounds for the heat transfer coefficients of all rooms. This could
reduce the risk of overfitting and improve the physical plausibility of the identified mod-
els. Additionally, introducing convergence criteria for the cFA—such as early stopping
when no significant improvement is observed—may reduce runtime while preserving so-
lution quality. These adjustments would be particularly relevant in real-time applications,
such as model predictive control, where both performance and computational efficiency
are critical.

Another potential direction would be to explore a hybrid approach, where the cFA is
run for a limited number of generations to identify promising regions in the parameter
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space. These candidate solutions could then be used as initial values for CTSM-R, en-
abling fast and focused local optimization. Such a combination could leverage the global
exploration capabilities of cFA and the efficient convergence of CTSM-R.



Chapter 8

General Discussion

This chapter discusses the overall results, design choices, and potential limitations of the
Clustered Firefly Algorithm. It also outlines areas for improvement and possible directions
for future development.

General Applicability

A general advantage of most nature-inspired global optimization algorithms—including
the cFA—is their broad applicability to a wide range of problems and systems. These
methods do not require gradient or Jacobian information, making them suitable even
when the objective function is non-differentiable, noisy, or only accessible through sim-
ulations. As long as a simulation tool exists for a given system, the algorithm can be
applied directly, making it particularly attractive for complex models where traditional
gradient-based methods are impractical.

To give an example, an attempt was made to use CTSM-R for the WWTP use case,
similar to its application in the residential building model. However, this revealed several
potential shortcomings of CTSM-R in handling complex systems such as WWTPs.

CTSM-R is primarily designed for continuous-time systems, whereas WWTPs are typ-
ically modeled as hybrid systems. Discontinuities arise due to changing control setpoints,
variable inter-tank water flows, and internal model components such as settling tanks,
which use min functions and if-else logic. These features introduce non-smooth or discon-
tinuous dynamics that challenge gradient-based estimation tools.

An effort was made to approximate the WWTP model as a continuous system to make
it compatible with CTSM-R. This process involved re-implementing the model equations in
R and modifying several model components to enforce continuity. Despite the significant
additional workload, CTSM-R ultimately failed to produce parameter estimates for the
continuous approximation of the WWTP model. The estimation process terminated with
error messages such as:
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® 90 — Unable to perform numerical ODE solution.

® 30 — The state covariance matrix is not positive definite.

These errors indicate numerical instability during simulation and filtering, likely caused
by discontinuities or ill-conditioned dynamics, despite efforts to enforce continuity.

It should be noted that this is not to say CTSM-R is inherently unsuitable for complex
models such as WWTPs. The issues encountered may have been due to how the continu-
ous approximation of the model was implemented, rather than limitations of the tool itself.
However, this experience highlights a clear practical advantage of the cFA: it can be applied
directly to a wide variety of complex systems with minimal additional effort. In contrast,
other estimation tools may require careful and sometimes non-trivial modifications to the
model or its structure before they can be effectively used.

Comparison to Other Algorithms

In the benchmark experiments, the cFA was shown to outperform the original Firefly
Algorithm, the modified FA variant, and Grid Search on the majority of the considered
benchmark problems. For the WWTP case study, only the cFA was applied, while in the
residential building case study it was compared to CTSM-R. In this comparison, cFA gen-
erally achieved a good fit and demonstrated more robust convergence behavior, although
some generalization issues were observed, as discussed in Section 7.6.2.

While the results across all three experiments and use cases are promising, a more
comprehensive evaluation would require comparisons with additional optimization algo-
rithms. In particular, there exists a wide range of other global, nature-inspired optimiza-
tion methods that could have served as alternative baselines. Including such compar-
isons would provide a stronger basis for assessing whether the cFA offers truly superior
performance. However, due to time constraints, these additional experiments were not
conducted in the current work.

Modifications to the Firefly Algorithm

In addition to the clustering mechanism and the division into local and global firefly move-
ment, several smaller modifications were introduced to the original Firefly Algorithm with
the goal of improving the balance between exploration and exploitation, and ultimately
reducing runtime. In the experiments, all of these modifications were applied simultane-
ously. As a result, it is not possible to determine which individual changes contributed
most to the performance improvements—or whether any may have had a negative effect
on solution quality.

To evaluate the contribution of each modification, the benchmark experiments would
need to be repeated with algorithm variants in which only one modification (or subsets
of them, depending on the desired level of granularity) is applied. The results could then
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be compared against two baselines: one with all modifications active and one using the
unmodified original algorithm.

Hyperparameter Selection

One drawback of the various modifications introduced to improve the Firefly Algorithm is
the resulting increase in the number of hyperparameters that must be defined before run-
ning the algorithm. In the conducted experiments, these parameters were chosen heuristi-
cally based on prior experience. No systematic procedure was employed for hyperparam-
eter selection.

Since these parameters significantly influence the balance between exploration and ex-
ploitation, a more principled approach could improve both robustness and efficiency. This
is particularly relevant in the context of MPC, where parameter estimation may need to be
performed periodically. In such cases, it would be beneficial to identify hyperparameter
settings that offer a good trade-off between solution quality and computational cost.

For example, in the thermal parameter estimation task for a residential building, it
may be sufficient to use 50 fireflies to obtain a good temperature fit. However, if signifi-
cantly more fireflies are used—simply because that setting performed well in earlier exper-
iments—runtime may increase unnecessarily without yielding a meaningful improvement
in solution quality.

One possible solution would be to use a simple grid search algorithm—or another
global optimization method, depending on the dimensionality of the hyperparameter
space—to identify a robust configuration prior to deployment. This tuning process could
be conducted once for a specific problem setting, and the resulting hyperparameters could
then be fixed for future use. This approach is particularly appropriate in cases where the
structure of the optimization problem remains constant over time and only the input data
changes, as is typical in MPC applications.

Applicability in an MPC Setting

Both experiments revealed that the algorithm requires a non-negligible amount of time
to arrive at a solution, with runtime depending on the available computational resources.
For the WWTP problem, the computation time took approximately two hours (without
parallelization), while the parameter estimation for the residential building—covering 11
rooms—took around 11 hours, even with parallel processing. The latter, in particular, is a
considerable time investment.

Whether the algorithm is practical for use within an MPC framework depends primar-
ily on two factors.

The first is how frequently the parameters need to be re-estimated. If this interval is
shorter than the time required for parameter estimation, the approach may not be feasible.
However, this is influenced by the generalization behavior of the estimated parameters. In
the WWTP case study, the parameters showed good alignment with unseen data across a



8.1. Future Work 73

two-week period, suggesting that frequent re-estimation may not be necessary. In contrast,
the building case study produced more ambiguous results: some rooms exhibited overfit-
ting, others showed poor fits, while a few generalized well. As discussed in Section 7.6.2,
these inconsistencies may be due more to limitations in the experimental setup than to
the algorithm itself. An improved experimental design would be needed to make stronger
conclusions about re-estimation frequency.

The second factor is the computational load of the control strategy calculation itself.
If computing the control input occupies most of the available time between updates, then
there may be insufficient time to run parameter estimation in parallel. On the other hand,
if the control strategy is computed quickly and spare computational resources are avail-
able, parameter estimation could be performed during this idle time without requiring
additional hardware.

Additionally, further experiments should be conducted to evaluate how much frequent
parameter re-estimation actually improves the performance of the control strategy. Most
MPC setups rely on simplified models of the real-world system, which introduces an in-
herent mismatch between simulated and measured data. However, control strategies based
on such models may still achieve significant reductions in objective metrics such as energy
consumption or operational cost. It therefore remains an open question to what extent
control performance is affected when using suboptimal models—either due to standard
parameter settings or infrequent parameter updates.

8.1 Future Work

As discussed in both the experiment-specific and general discussion sections, there are sev-
eral areas that could be improved or explored further. In general, most experiments could
benefit from a refined setup. For instance, the residential building parameter estimation
could be repeated with more physically informed parameter bounds, and the WWTP case
study could be revisited using more realistic, noise-perturbed data.

In the following, we outline several broader directions for future work that could fur-
ther enhance the algorithm’s performance and applicability.

Cluster Mechanism

The clustering of fireflies into separate groups has been shown to improve the conver-
gence rate of the algorithm with respect to the number of objective function evalua-
tions, as demonstrated in Chapter 5 through the benchmark experiments. Furthermore,
Section 4.3.2 formally showed that this approach reduces the algorithm’s time complex-
ity—from O(n2) to O(n?) in each generation—in terms of objective function evaluations,
which represent the most computationally expensive component of the optimization pro-
cess.
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Figure 8.1: Overview over the Hierarchical Clustered Firefly Algorithm idea. Different levels of clustering are
displayed. At the bottom only individual fireflies are considered corresponding to the original Firefly Algo-
rithm. At level 1, all fireflies are clustered once corresponding to the Clustered Firefly Algorithm. Additional
levels could be considered for the Hierarchical Clustered Firefly Algorithm.

The current implementation employs a single layer of clustering. A natural extension
would be to explore the use of multiple clustering levels. Introducing hierarchical cluster-
ing could potentially further reduce the number of required evaluations while maintaining,
or even improving, estimation accuracy.

This concept is illustrated in Figure 8.1. At the base level, all fireflies are treated indi-
vidually, corresponding to the original FA. In the cFA, fireflies are grouped into clusters
and updated through two mechanisms: local movement within each cluster, and global
movement toward the centroids of other clusters, based on average cluster intensities. This
introduces a single level of clustering.

To extend this idea, additional layers of clustering can be introduced, forming a hier-
archical structure. In the figure, two additional clustering levels are shown, representing a
potential extension toward a hierarchical clustered Firefly Algorithm.

In such a framework, the movement rules would need to be adapted accordingly. Local
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movement within individual clusters would remain unchanged. At the mid-level, fireflies
could consider moving toward centroids of other clusters within the same supercluster,
provided those clusters have a better average intensity. At the top level, if another super-
cluster demonstrates superior average intensity, fireflies could additionally be influenced
to move toward that supercluster’s centroid. This rule-based structure can naturally be
extended to accommodate deeper hierarchical levels, allowing fireflies to make movement
decisions based on information aggregated at multiple scales.

Hybrid Approach

Another potential research direction, briefly discussed in Section 7.6.2, is the combination
of the cFA with local optimization methods.

In such a hybrid approach, cFA could first be used for several generations to explore
the global search space and identify promising regions. One possible strategy would then
involve using the centroids of the final clusters as initial points for a local optimizer. This
could potentially lead to faster convergence compared to running the full cFA.

An alternative strategy would be to select the best-performing m fireflies as starting
points for local optimization. While these candidates are likely closer to local optima,
a potential drawback is that they may be concentrated in the same region of the search
space—especially if they originate from the same cluster—thus reducing the diversity of
starting points and limiting the algorithm’s ability to explore distinct local regions of the
search space.

Both strategies offer trade-offs between exploration and exploitation and could be eval-
uated in future work to assess their impact on convergence speed and solution quality.

For the local optimization phase, a variety of tools can be considered, depending on
the nature of the system.

Gradient-based local optimizers may be beneficial in settings where the system is
smooth and well-behaved. For example, CTSM-R is a suitable choice for stochastic, continuous-
time systems, particularly when dealing with noisy or uncertain measurements. However,
as previously discussed, its applicability may be limited in the context of hybrid or numer-
ically unstable systems, where the computation or approximation of derivatives becomes
challenging.

In contrast, a wide range of gradient-free local optimizers are also available. These
include methods such as Nelder-Mead [42], Powell’s method [43], or pattern search algo-
rithms [44], which do not rely on derivative information and are well-suited for black-box
or non-smooth objective functions.

This flexibility makes the hybrid approach highly adaptable and not restricted to any sin-
gle optimization strategy.
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Incorporation into an MPC Framework

As stated in the introduction and the problem statement, the overarching goal of develop-
ing this parameter estimation algorithm is its application within an MPC framework for
energy-intensive systems, with the aim of enabling more energy-efficient operation.

A natural next step would be to incorporate cFA into an MPC setup and study its
overall impact on control performance. This could be done in collaboration with the afore-
mentioned student project focused on optimizing WWTPs. Alternatively, cFA could be
integrated into an MPC framework for residential heating systems, similar to the work
presented by Hasrat et al. [9]. Other use cases could also be explored to further assess the
practicality and effectiveness of cFA in real-world control applications.



Chapter 9

Conclusion

In this thesis, a new and effective variant of the Firefly Algorithm—the Clustered Firefly
Algorithm—has been developed. This algorithm is a global optimization method designed
to efficiently balance global exploration and local exploitation by organizing fireflies into
clusters and dividing their movement into local and global movement.

It was formally shown that the algorithm achieves an improved time complexity com-
pared to the original Firefly Algorithm, reducing the potential number of movements per
generation from O(n?) to O(n%/2), under the assumption that each cluster contains ap-
proximately /7 fireflies on average.

Experimental results on a range of benchmark optimization functions demonstrated
that cFA generally converges more quickly and yields better solutions than the original
Firefly Algorithm, a modified variant, and a Grid Search baseline—particularly in higher-
dimensional settings.

Additionally, the algorithm was successfully applied to estimate parameters for a syn-
thetic dataset based on a theoretical WWTP using the ASM1 model. The estimated param-
eters demonstrated a good model fit, even on unseen data. However, certain experimental
limitations were identified, and a more realistic dataset would be necessary to fully assess
the algorithm’s practical applicability.

Furthermore, the algorithm was successfully applied to estimate thermal parameters of
an interconnected room temperature model for a residential building, using noisy real-life
data. It was compared to the parameter estimation tool CTSM-R, with cFA demonstrating
greater robustness by finding parameter fits for all rooms considered. However, in some
cases, the resulting fits were poor—likely due to the many assumptions, approximations,
and simplifications required to implement the interconnected room model with the avail-
able data. In such cases, the model may not have been capable of accurately describing
the room temperature dynamics, which reflects limitations of the implementation of the
model rather than of the algorithm itself.

Lastly, in this use case, the algorithm exhibited some generalization issues, which, as
discussed earlier, may stem from the experimental setup—particularly the use of unrealis-
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tic parameter bounds. To fully evaluate the effectiveness of cFA in the residential building
context, further experiments with improved modeling assumptions and design might be
necessary.

In relation to the problem statement and defined subgoals, the first two subgoals—concerning
time complexity and optimization performance on benchmark functions—have been suc-
cessfully achieved. The latter two subgoals, involving parameter estimation for the WWTP
and residential building use cases, were only partially fulfilled due to the experimental
limitations discussed earlier.

As a result, the overall problem statement is only partially answered. While the cFA
demonstrates clear potential as a parameter estimation tool in control-oriented contexts,
further experiments are necessary to fully evaluate its applicability within an MPC frame-
work.
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Appendix A

Gujer Matrix

The Gujer matrix, shown in Table A.1, provides a compact overview of the ASM1 model.
It captures the set of biological processes considered in ASM1 and how each state variable
is affected by them. Each row corresponds to a biological process, while each column
represents a component (state variable) or a process rate. If a component i is affected by
a process j, the corresponding entry contains a stoichiometric coefficient (weight factor)
indicating the extent of that influence.

The net rate of change for each component Y; is computed as a weighted sum of the
process rates:

ay;
=T
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Gujer Matrix for the ASM1 model. [36]

Table A.1



Appendix B

Thermal Parameter Estimation Values
from Heat Pump Data Experiments

The following tables present the thermal parameters estimated in the heat pump data
experiment. Table B.1 reports values estimated using cFA with the shape-weighted MSE
objective. Table B.2 contains estimates obtained using cFA with a standard MSE objective.
Finally, Table B.3 shows the parameters estimated using CTSM-R.

In the case of CTSM-R, entries marked with “~” indicate that no valid parameter esti-
mates were obtained for that room. For all tables, “~” is also used to indicate parameters
that do not apply to a specific room.



Table B.1: Thermal parameters estimated for each room using cFA with the shape-weighted MSE objective
function

Room T_e0 T_hO a_a a_e a_h as aw bh bhe ailO ail ai2 ai3 ai4 aib ai6 ai?7 ail2 ails5 ail? k set

0 1249 2205 264 469.63 2830 84932 60.84 499.12 480.41 - 967.63 748.69 - 2842 4.59 7.71 - - 2519 2.02 890 19.36
1 2199 2676 340 68.74 236.87 60622 887.10 347.18 40229 957.52 - 610.08 8345 2.33 3.68 50498 42070 1132 2151 6.73  6.73 20.63
2 2904 2134 0.56 479.55 334.64 20337 509.57 44195 731.75 987.58 968.83 231.80 - 8180 27245 98.62 55439 153.34 93.05 7457 746 20.02
3 410 3144 6192 522.60 711 761.82 489.38 593.59 804.57 - 73073 - - - - - - - 29211 - 497 2054
4 1156 3177 23277 930.82 255 71326 505.63 66553 685.72 350.59 296 180.73 - - — 48543 48843 48439 957.26 - 559 20.60
5 1715 2560 14.09 80443 2350 66511 23096 59.26 627.78 32437 1327 370.86 - - - - - - - 98032 9.74 19.09
6 19.64 2443 878 8752 12581 74496 41215 6777 818.86 430.98 850.07  28.60 - 74593 - — 80941 11991 269.74 1454 812 19.05
7 2475 3520 573 39790 521.56 184.51 168.01 544.18 44743 - 77857 67235 - 57.30 - 79818 - 77243 5855 11512 6.67 19.20
12 2226 21.65 1466 61279 37202 18421 19146 78.88 313.92 - 4443 23180 - 69251 - 11619 936.64 - 59882 789.83 884 19.31
15 2864 2556 352.87 645.53 0.99 25873 450.37 72538 56737 251.64 442.30 15949 680.62 992.40 - 831.38 883.27 437.74 - 27951 487 21.64
17 2274 2033 25097 93295 43590 297.16 227.75 361.57 340.82 163.64 654.96 604.82 - - 98339 23233 71451 498.35 434.63 - 994 1949

Table B.2: Thermal parameters estimated for each room using cFA with the MSE objective function

Room T_e0 T_hO a_a a_e a_h a_s a_w boh bhe ail ail ai2 ail3 ai4 aib ali6 ai?7 alil2 alil5 alil’ k set

0 1394 2131 043 678.10 152.16 601.25 114.98 45324 627.65 - 87503 771.19 - 563 2090 5230 - - 2.59 169 6.04 19.85
1 1330 2161 128 9920 389.72 83141 25693 839.41 671.57 988.59 - 87593 5735 2575 3485 67496 53496 4283 570  40.69 298 19.00
2 3023 2725 1017 86890 399.53 25735 321.91 219.95 41571 960.51 866.22 - - 1717 33810 19933 50521 9559 1740 76.01 414 19.85
3 3001 3865 6453 629.86 216.04 13451 193.68 194.96 92241 - 77811 - - - - - - - 5145 - 857 19.62
4 2472 3458 281.10 937.62 2.00 46347 36540 169.99 39445 499.99 1611 51.07 - - - 668.73 423.68 93546 889.76 - 328 2193
5 3053 37.15 148 45871 176.85 62495 164.81 24678 41586 319.61 62.68 138.13 - - - - - - - 94437 990 19.17
6 3498 31.64 6.69  69.79 144.65 754.07 798.56 579 13776 5878 89726 62243 - 479.95 - - 67091 43.68 64648 30.66 694 19.26
7 2622 1345 700 78252 47716 42646 369.99 74548 61235 - 80218 723.14 - 69.10 - 713.60 - 74245 12230 3838 7.80 1947
12 2903 21.73 1625 66582 547.60 537.88 246.86 101.82 923.53 - 4876 24361 - 42739 — 14746 863.16 - 89283 83001 9.38 19.22
15 2315 2991 20833 849.16 115 464.00 22811 51574 869.49 26.67 107.79 199.38 261.18 850.51 - 76698 739.48 420.57 - 1622 322 2274

17 30.73 26.06 306.18 829.03 73155 207.26 208.85 214.12 254.79 504.59 355.19 740.77 - - 641.33 551.98 77785 830.84 282.76 - 859 19.06




Table B.3: Thermal parameters estimated for each room using CTSM-R.

Room  T_e0 T_h0 a_a a_e a_h as a_w b_h  b_he a0 aiil ai2 a3 a_i4 a5 a6 ai7 ail2 alil5 ail7 k  set_point
0 - - - - - - - - - - - - - - - - - - - - - -
1 28515 25994 14654e-05 0.089568  0.19637 04596 020031 021142 0.14925  9.6991 - 2.8863 0.56676 0.062165 0.46843 1644 13174 022569 0.092077 0.13752 2.5169 21.465
2 20347 24246 0.00060637 079165 0.084519 0.003671 028758 022996 0.29924 20692 12427 - -~ 001266 23477 0010711  1.3402 029192 0024827  3.6071 50009 20.251
3 - - - - - - - - - - - - - - - - - - - - - -
4 - - - - - - - - - - - - - - - - - - - - - -
5 20116 22.079 0013175 0.18057  0.20122 0.2418  0.11631  0.12472 0.23599 0.33008  0.11682  0.47037 - - - - - - - 15313 6.3631 19.38
6 24022 22161 0016038  0.15572  0.20021  0.29652  0.18608  0.18691  0.1776 0.47469  0.66775  0.35492 - 014914 - - 0351 0.19651  0.17164 0.14586 59117 20.058
7 - - - - - - - - - - - - - - - - - - - - - -

12 16.637 18.735 0.023705  0.22857  0.21483  0.12533 021177 021241  0.2262 — 0095491  0.13339 - 0.38276 - 010353 0.93438 - 0.34341 0.84842 54684 19.817
15 26285 6.9125 016521  0.26233  0.22951  0.67105 0.028064 0.027778 0.28302 0.06151  0.14962 0.085871 0.31998  0.84998 - 076636 0.18869 0.27126 - 010219 5.4964 21.102

17 20417 20.855 0.11986  0.20795  0.19944  0.19691  0.19099  0.19086 0.20422 0.22381  0.21892  0.21986 - - 021584 020695 0.21377 0.20965 0.20188 - 4852 20.138
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