
SUMMARY

This paper tackles a critical limitation in Natural Language to SQL (NL2SQL) systems,

their inability to determine when a user’s question cannot be answered given the database

schema. While modern NL2SQL systems perform impressively on benchmarks, they often

fail in real-world environments where databases are large, complex, and contain incomplete

information. These failures typically result in models trying to generate SQL queries even

when the data to answer the question is missing or misaligned with the user’s intent. This

produces misleading outputs and erode user trust, particularly in high-stakes domains like

healthcare.

To address this, we propose SGAM, a Schema Guided Abstention Mechanism that enables

NL2SQL systems to abstain from generating SQL when a query is unanswerable given the

database schema. SGAM operates as a pre-generation filter and does not require fine-tuning

on each individual database, making it scalable and practical for real-world applications. The

system is composed of three main components: a preprocessing step that converts the database

schema into a format called M-Schema and chunks it into smaller sub-parts of the schema for

improved processing, a schema linking phase that extracts only the schema elements relevant

to the user’s question and outputs a reduced schema, and a final binary classification phase

that predicts whether the question can be answered given the reduced schema.

Unlike previous approaches that rely heavily on task- or schema-specific fine-tuning and

large labelled datasets, SGAM is trained using general-purpose datasets like Spider and a

modified version of BIRD. This allows SGAM to perform in zero-shot settings and maintain

strong generalisability across domains. Experiments show that SGAM outperforms state-of-

the-art abstention models across modified BIRD, EHRSQL, and TrialBench, achieving better

recall and F2-scores without defaulting to excessive abstention. The schema linker, evaluated

independently, also demonstrates strong performance, e!ectively reducing schema size while

retaining most relevant schema elements, which is an essential capability for dealing with large

enterprise databases. However, the schema linker does not contribute, when testing the entire

pipeline with abstention and SQL generation.

When integrated into a full NL2SQL pipeline, SGAM improves both execution accuracy

and overall reliability. Interestingly, a variant of SGAM that omits schema linking performs

better in pipeline integration, suggesting that further research on the schema linking needs

to be conducted to improve the abstention task. SGAM o!ers an e!ective and generalisable

method to make NL2SQL systems more reliable by training them to identify and abstain from

answering infeasible questions. This marks a meaningful step toward making these systems

more reliable for practical use.

This study is conducted in collaboration with Novo Nordisk A/S, who provided data and

guidance in the field of clinical trial metadata.
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Abstract
NL2SQL systems democratise access to databases by enabling non-
expert users to retrieve information through natural language. Al-
though state-of-the-art NL2SQL models show impressive SQL gen-
eration, they typically lack mechanisms to assess question answer-
ability, limiting their practical reliability. Existing approaches that
incorporate abstention often require extensive training for each
database, which hinders generalisability.

We explore a schema-guided approach to abstention that enables
NL2SQL systems to identify and abstain from infeasible questions
before SQL generation. Our schema-guided abstention approach
uses the pretrained features of existing decoder-only models to
capture the connection between user question and schema, and
from this information drive the abstention prediction. With our
method, we create an abstention mechanism that transfer to unseen
domains, reducing the amount of data required for training. Our
experiments show that we achieve state-of-the-art performance in
the abstention task, while maintaining a better balance between
abstention and SQL generation than existing NL2SQL systems. This
improves reliability andmoves NL2SQL systems closer to real-world
usability.

1 Introduction
Natural language to SQL (NL2SQL) systems enable users to query
structured databases using natural language, lowering the barrier
of entry to information stored in databases. These systems are
becoming increasingly important as organisations seek to democra-
tise data access, allowing non-technical users to retrieve insights
e!ciently [5, 22].

Recent advancements in large language models (LLMs) have sig-
ni"cantly improved NL2SQL performance, achieving near-human
accuracy on benchmarks such as Spider [29] and BIRD [20]. Despite
these advancements, NL2SQL models still exhibit fundamental reli-
ability issues. They are trained to generate SQL queries, but lack
the ability to decide whether a query is answerable given a particu-
lar database [2, 5]. This behaviour results in two primary failure
patterns:

(1) The model fails to correctly link a user’s question to the data-
base schema when the schema lacks the necessary information,
resulting in incorrect schema mappings or hallucinations of
non-existent schema elements [2, 5, 26].

(2) User questions can be underspeci"ed or ambiguous, meaning
that the intended relationship to the database schema is unclear.
In such cases, the model generates SQL queries based on its
interpretation, which may not align with the actual intent of
the user [27].

In both cases, a reliable NL2SQL system should be able to detect
when a suitable SQL query cannot be generated. Attempting to an-
swer when no valid response exists degrades trustworthiness and
usability, particularly for non-expert users who may not recognise
incorrect outputs [2]. In this paper, we focus on the "rst type of
failure, when a user’s question is unanswerable given the database
schema.We investigate howNL2SQL systems can be designed to ab-
stain from generating SQL queries when the necessary information
is not available.

Question: What is the 1 year mortality  rate for patients who have undergone 
heart transplant?

SELECT SUM(
mor t al i t y_st at us = ' deceased'  *  1. 0 /  
COUNT( * )  

FROM Sur ger yRecor ds 
WHERE pr ocedur e = ' hear t  t r anspl ant ' ;

NL2SQL 
System

Generate 
SQL

User Prompt

DB Schema

SurgeryRecords

id patient_id procedure diagnosis

heart transplant

Database

Execute

mortality_status

deceased

......

Answer: The mortality  rate is 4% for patients who have 
recieved a heart transplant.

Retrieve

WRONG, SurgeryRecords only has information about patients who died during 
surgery, not post operation. The user question cannot be answered.

Incorrect! mortality_status only has information 
on patient mortality during surgery.

Figure 1: Illustration of an NL2SQL translation failure due to
a mismatch between user intent and database semantics

Figure 1 shows an example of this, where a user asks: "What is the
one-year mortality rate for patients who have undergone heart trans-
plant?" The database only contains immediate mortality data, with
no follow-up information, hence this question cannot be answered.
Instead of recognising that the table lacks information on time,
the system selects the most similar attribute name and generates
a query that retrieves immediate mortality rate, misrepresenting
them as one-year outcomes. This type of incorrect generation can
lead users to make decisions based on false information [17].

Current NL2SQL abstention mechanisms rely on techniques
such as "ne-tuning [11, 13, 14, 16], schema linking [3], and token
probabilities [3, 13, 16]. All three approaches currently assume
large labelled training datasets for the databases they are deployed
to, which are costly to create, making them impractical in real-
world scenarios [30]. Furthermore, current solutions assume that
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Table 1: Features of existing NL2SQL systems with abstention

Method Fine-tuning Schema
Linking

Uncertainty
Estimation Extraction Generation

TrustSQLP[16] Task & Schema ✁
TrustSQLU[16] Schema ✁ ✁
PLUQ[13] Schema ✁ ✁
PromptMind[11] Schema ✁
RTS[3] Schema ✁ ✁ ✁
SGAM (ours) Task ✁ ✁ ✁

the context window of a model can accommodate an entire data-
base schema, which becomes problematic when dealing with large
databases [5]. Even when the schema "ts, including irrelevant con-
text has been shown to degrade performance compared to using a
more focused schema [21].

An e#ective abstention mechanism must detect when a database
schema cannot answer a query and clearly communicate this limi-
tation [16, 17]. It should function autonomously, without human
intervention or frequent retraining as schemas evolve. Additionally,
the system must be able to scale across large enterprise databases
and function e#ectively in a zero-shot setting, as "ne-tuning for
each new database is impractical in real-world applications [10, 28].

In this paper, we propose Schema Guided Abstention Mechanism
(SGAM), a method that combines segmented schema linking with
a decoder-only classi"er to determine when an NL2SQL system
should abstain from generating an SQL query. By incorporating
segmented schema linking, SGAM scales to large database schemas
beyond the scope of existing benchmarks, such as BIRD [20] and
Spider [29].Moreover, by decoupling abstention from the generative
process, SGAM can be added to any system as a preprocess to
the SQL generation. SGAM represents a signi"cant step towards
scalable and robust NL2SQL systems in zero-shot settings, where
training data is limited and schema complexity high.

Our work presents the following contributions:

• We propose SGAM, an extractive abstention approach
that leverages database schema information to determine
whether a question is answerable. We show that this ap-
proach provides state-of-the-art performance in abstention
for the NL2SQL task.

• We evaluate NL2SQL and abstention systems in a zero-shot
setting on di!cult real-world databases.

2 Related Work
While numerous solutions have been proposed for NL2SQL, most
aim to maximise SQL generation accuracy and assume all input
questions are answerable [7, 18, 27]. However, few address the
critical issue of abstention. In this section, we review recent ap-
proaches to abstention in NL2SQL and identify two key limitations:
reliance on large labelled datasets and limited generalisability across
databases.

Table 1 summarises current approaches and the techniques they
use. We identify two "ne-tuning strategies, task-level and schema-
speci"c, as well as four techniques for abstention: schema linking,
uncertainty estimation, extraction, and generation.

TrustSQL [16] introduces two approaches for abstention: Trust-
SQLP and TrustSQLU, both based on either GPT-3.5-turbo-0125 or

T5-3B [25] for SQL generation, trained on the TrustSQL dataset,
which contains 13,958 training examples.

TrustSQLP employs two separate LLMs: the "rst is "ne-tuned
on →385,000 examples from TriageSQL [31] to classify infeasible
questions prior to SQL generation. If a question passes this check,
SQL is generated and passed to a second model, "ne-tuned on
2,460 examples from both the TrustSQL validation and TriageSQL
datasets, to detect and reject erroneous SQL.

TrustSQLU uses uncertainty estimation directly from the SQL
generation model. It calculates maximum entropy or maximum
probability over token predictions to determine whether to abstain
based on an uncertainty threshold. This approach is "ne-tuned to
the target schema and a validation set. Across most evaluations,
TrustSQLU outperforms the pipeline method. However, both ap-
proaches depend heavily on large labelled datasets, for classi"er
training, SQL generation, and threshold calibration, limiting their
generalisability.

PLUQ [13] integrates "ne-tuning and uncertainty estimation
into a single approach leveraging their joint advantages. It uses a
GPT-3.5-Turbo-0125model "ne-tuned on EHRSQL, containing 5,124
training examples, of which 8% are infeasible [18]. To address this
class imbalance, PLUQ performs self-training by pseudo-labelling
additional infeasible examples from the unlabelled test set, incor-
porating them into the training data. This augmentation aims to
improve the model’s ability to recognise and abstain from answer-
ing infeasible questions. In a second stage, PLUQ applies uncertainty
estimation using a maximum entropy method to $ag and abstain
from questions with high uncertainty. The entropy threshold is cal-
ibrated based on the estimated proportion of infeasible questions.
While this approach enhances PLUQ’s robustness to infeasible ques-
tions, it introduces a risk of over"tting by incorporating test set
data into training. Furthermore, its e#ectiveness depends on the
calibration of the threshold, demanding a pre-known estimate of
infeasible queries.

PromptMind [11] is an ensemble method that combines gener-
ated outputs from multiple LLMs, all "ne-tuned on the EHRSQL
dataset, including infeasible questions. PromptMind shows that
using a two- or three-model ensemble increases the amount of in-
feasible questions detected compared to using a single model. There
is a trade-o# to this improvement, as the ensembles tend to iden-
tify more false positives as additional models are added. In critical
domains, this might be preferable, but for the method to provide
utility, this trade-o# needs to be considered to have a functional
NL2SQL system. While ensembles help validate outputs, they are
also limited as they require large amounts of labelled training data
from the target database. Furthermore, ensemble methods increase
the computational resources needed to answer each question due
to their use of multiple LLMs.

RTS [3] uses schema linking and token-level uncertainty estima-
tion to abstain. RTS "ne-tunes a Deepseek-7B model for schema
linking on a labelled dataset, derived from the target database, en-
abling the model to select relevant schema elements and abstain if
none exist. When the system "nds relevant schema parts, it uses
token-level probability estimates during SQL generation to detect
schema uncertainty. If it detects uncertainty, it invokes a separate
classi"cation model to verify the relevance of the linked schema el-
ements or to abstain from generating SQL. This classi"cation model
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utilises a Deepseek-7B "ne-tuned on the BIRD [20] and Spider [29]
training datasets, to classify if a given schema element is relevant
to generate the query. As with other methods based on "ne-tuning
for a target database, supervised training of the schema linking
model is not shown to be generalisable.

Despite growing interest in abstention for NL2SQL, existing
strategies consistently depend on domain-speci"c "ne-tuning, large-
scale labelled data for the target database, or extensive model en-
sembles. These constraints hinder their practical deployment across
diverse real-world databases. Speci"cally, current methods require
a large collection of domain-speci"c labelled data for "ne-tuning or
threshold calibration, and show no evidence for generalisability in
zero-shot or low-resource settings [2, 5, 30]. To address these limita-
tions, we propose SGAM, a method that combines schema-linking
and extraction utilising "ne-tuning for the task of abstention, in-
stead of relying on labelled dataset for the target database. By
leveraging existing cross-domain datasets, such as BIRD [20] and
Spider [29], SGAM mitigates the need for domain speci"c training,
supporting zero-shot abstention, enabling new-domain NL2SQL
deployment.

3 Problem De!nition
Given a database 𝐿 , we denote its schema by 𝑀 . Each table 𝑁 ↑ 𝑀 has
its own set of columns 𝑂 ↑ 𝑃 (𝑁). Each column 𝑂 is a tuple (𝑄,𝑅𝑁,𝑆 ),
where 𝑄 is the name of the column, 𝑅𝑁 the data type and 𝑆 sample
values from 𝐿 .

Information from 𝐿 can be retrieved by an SQL query 𝑇↑𝑈 ,
where 𝑈 denotes the in"nitely countable SQL queries that can be
created given 𝑀 and 𝑇 is the representative of the equivalence class
[𝑇]={𝑇↓↑𝑈 : 𝑇↓→𝑇} with → denoting the equivalence relation mean-
ing that 𝑇↓ and 𝑇 produce the same results and share semantics.
Similarly, we say that each SQL query 𝑇↑𝑈 maps to a natural lan-
guage question 𝑉↑𝑊 , describing the intent of the speci"c SQL query,
where 𝑊 is the set of all possible questions and 𝑉 is the representa-
tive of the equivalence class [𝑉]={𝑉↓↑𝑊 : 𝑉↓→𝑉} with → denoting
the equivalence relation meaning that 𝑉 and 𝑉↓ have the same in-
tent and request the same information. However, it does not apply
that all 𝑉↑𝑊 have a corresponding SQL query 𝑇↑𝑈 for a given data-
base 𝐿 , we refer to these as infeasible questions, as they require
information that is not contained in 𝑀 .

NL2SQL is described as a function 𝑋𝑌2𝑀𝑊𝑌 : 𝑊↔P(𝑈 ), where
P(𝑈 ) denotes the power set of 𝑈 . The function 𝑋𝑌2𝑀𝑊𝑌 maps 𝑉↑𝑊
to either the equivalence class [𝑇] for the corresponding SQL query
𝑇↑𝑈 , that can be executed on 𝐿 to retrieve the information required
by 𝑉, or ↗ if the question is infeasible. The function must be able to
determine whether 𝑉 is feasible or not. In this work, we study the
SQL abstention problem as follows:

P!"#$%& (B’()!* C$)++’,’-).’"( ,"! SQL A#+.%(.’"().
Given an NL2SQL system, a database 𝐿 and a question 𝑉 ↑ 𝑊 , the
Binary Classi"cation for SQLAbstention problem requires to design
a binary classi"cation function: 𝑍 :𝑊↔{↘,≃}, where 𝑍 (𝑉)=≃ if an
SQL query 𝑇 exists such that 𝑋𝑌2𝑀𝑊𝑌(𝑉) ⇐ [𝑇], and 𝑍 (𝑉)=↘ if the
question is infeasible, hence 𝑋𝑌2𝑀𝑊𝑌(𝑉)=↗.

Extract M-Schema
DB

Chunk M-Schema

Preprocessing
Phase

Schema Linker User Question

Concat Relevant 
Schema Elements

Prompt for Classif ier

Binary Abstention 
Classif ier

Output

Schema Linking
Phase

Classif ication
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Figure 2: Model architecture overview of SGAM

4 Methodology
In this section, we outline the key components and design of SGAM.
SGAM aims to identify unanswerable questions before SQL genera-
tion. SGAM utilises pre-generation abstention to decide whether
or not to abstain entirely based on the database schema. This al-
lows for seamless integration with existing NL2SQL systems as an
abstention module prior to SQL generation.

Figure 2 presents an overview of SGAM, showing the di#erent
phases of the approach. In the preprocessing phase, the database
schema is converted into the M-Schema [7] format and divided into
smaller chunks. During the schema linking phase, SGAM evaluates
the relevance of tables and columns to the user’s question for each
chunk, "ltering out unrelated schema elements. The remaining
subsets are then concatenated into a reduced schema. The last phase
is the binary abstention classi"er, which leverages the reduced
schema, provided by the schema linker, to decide when a users
question is unanswerable by SQL.

4.1 SGAM Input Data
SGAM’s input is a tuple (𝑉,𝐿), where 𝑉 is a natural language ques-
tion, and 𝐿 the input database. SGAM adopts the M-Schema rep-
resentation for database schemas [7]. This representation extends
the traditional DDL schema representation by incorporating a set
of example values for each column, together with explicitly list-
ing all foreign key relations. Figure 3 illustrates the di#erence be-
tween a given database schema in both DDL and M-Schema format.
M-Schema provides additional semantic grounding beyond DDL,
addressing the issue that LLMs misinterpret semantically similar
column and table names when structural context is insu!cient [2].
By incorporating content-level cues along with structural metadata,
M-Schema reduces schema ambiguity and improves schema linking
performance [7].

4.2 Preprocessing
As a preprocessing step, we propose schema chunking, to split
the database schema into smaller chunks containing sub-parts of
the schema. We choose this approach as recent studies show that
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CREATE TABLE user s(
user _i d I NTEGER PRI MARY KEY,
name TEXT,
emai l  TEXT

) ;

CREATE TABLE or der s(
or der _i d I NTEGER PRI MARY KEY,
user _i d I NTEGER,
amount  REAL,
FOREI GN KEY ( user _i d)

REFERENCES user s( user _i d)
) ;

?DB_I D? or der _db
?Schema?
# Tabl e:  user s
[
( user _i d: I NTEGER,  Pr i mar y Key,  Exampl es:  [ 1,  2] ) ,
( name: TEXT,  Exampl es:  [ Al i ce Johnson,  Bob Smi t h] ) ,
( emai l : TEXT,  Exampl es:  [ al i ce@mai l . com,  b@mai l . com] )
]
# Tabl e:  or der s
[
( or der _i d: I NTEGER,  Pr i mar y Key,  Exampl es:  [ 1,  2,  3] ) ,
( user _i d: I NTEGER,  Exampl es:  [ 1,  2] ) ,
( amount : REAL,  Exampl es:  [ 99. 99,  149. 5,  200. 0] )
]
?For ei gn keys?
or der s. user _i d=user s. i d

DDL M- Schema

Figure 3: Example of a database schema presented in both
M-Schema and DDL format, illustrating the di"erence

exploiting LLMs large context windows to provide more informa-
tion does not necessarily result in better performance, and can in
some cases have a negative impact [5, 21]. This is relevant as many
databases in the real world are larger than what is seen in current
state-of-the-art benchmarks [5] This also mitigates any limitations
with LLMs context windows being too small to "t the entire data-
base schema. Chunking takes the database 𝐿 as input, extracts its
schema and divides the schema into chunks such that each chunk
𝑀𝐿 ⇐ 𝑀 , and

⋃𝑀
𝐿=1 𝑀𝐿 = 𝑀 . The schema chunking procedure, shown

in Algorithm 1, groups entire tables together and includes related
tables using foreign keys for context. Schema chunking is consid-
ered a preprocessing step, as schema chunking only needs to be
rerun when the database schema is updated.

Algorithm 1: Schema Chunking
Input :database 𝐿 , max chunks 𝑎 , context size 𝑃
Output :List of schema chunks 𝑀chunked = {𝑀1, . . . , 𝑀𝑀}

such that 𝑀𝐿 ⇐ 𝑀 for all 𝑏
1 𝑀 ⇒ extractSchema(𝐿);
2 𝑀chunked ⇒ [ ];
3 𝑀𝐿 ⇒ ↗ ; // Initialise empty set
4 foreach 𝑁 ↑ 𝑀 do
5 𝑁size ⇒ computeTokenSize(𝑀𝐿 ) ;
6 if (𝑎 > 0 ⇑ |𝑀chunked | >= 𝑎) ⇓ (𝑁size > C

2 ) then
7 append 𝑀𝐿 to 𝑀chunked;
8 𝑀𝐿 ⇒ ↗ ; // Initialise empty set
9 𝑀𝐿 ⇒ 𝑀𝐿 ⇔𝑐 ⇔ getRelatedTables(𝑁, 𝑀);

10 else
11 𝑀𝐿 ⇒ 𝑀𝐿 ⇔𝑐 ⇔ getRelatedTables(𝑁, 𝑀);

12 if 𝑀𝐿 ω ↗ then
13 append 𝑀𝐿 to 𝑀chunked;
14 return convertChunksToSchemaStrings(𝑀chunked);

4.3 Schema Linking
In the schema linking phase, we use a decoder-only model to iden-
tify the schema elements relevant to answer a user’s question. This
reduces the size of the schema and narrows the search space. As a
result, SQL generation is improved [5, 9, 21].

"users user_id" : 0.21 
"users name": 0.19 
"users email" : 0.15 
"orders order_id" : 0.41 
"orders user_id" : 0.26 
"orders amount" : 0.38

Tokeniser

½Frozen 
Decoder LLM

EOS Vector

Filter Schema

"users user_id" : 0.21 
"users name": 0.19 
"users email" : 0.15 
"orders order_id" : 0.41 
"orders user_id" : 0.26 
"orders amount" : 0.38

Input: Prompt with schema, question, and all columns

Output: A focused schema

?DB_I D? or der _db
?Schema?
# Tabl e:  or der s
[
( or der _i d: I NTEGER,  Pr i mar y Key,  Exampl es:  [ 1,  2,  3] ) ,
( user _i d: I NTEGER,  Exampl es:  [ 1,  2] ) ,
( amount : REAL,  Exampl es:  [ 99. 99,  149. 5,  200. 0] )
]

Tokeniser

?DB_I D? or der _db
?Schema?
# Tabl e:  user s
[
( user _i d: I NTEGER,  Pr i mar y Key,  Exampl es:  [ 1,  2] ) ,
( name: TEXT,  Exampl es:  [ Al i ce Johnson,  Bob Smi t h] ) ,
( emai l : TEXT,  Exampl es:  [ al i ce@mai l . com,  b@mai l . com] )
]
# Tabl e:  or der s
[
( or der _i d: I NTEGER,  Pr i mar y Key,  Exampl es:  [ 1,  2,  3] ) ,
( user _i d: I NTEGER,  Exampl es:  [ 1,  2] ) ,
( amount : REAL,  Exampl es:  [ 99. 99,  149. 5,  200. 0] )
]
?For ei gn keys?
or der s. user _i d=user s. i d

To answer :  " What  i s t he most  expensi ve or der ?"

We need col umns:
<< user s user _i d >>
<< user s name >>
<< user s emai l  >>
<< or der s or der _i d >>
<< or der s user _i d >>
<< or der s amount  >>

Concatenate

LLM

Linear Layer

Sigmoid

Classif ication
Head

Figure 4: The schema linker takes the chunked M-Schema
as an input and predicts the relevance of each column. The
relevant columns are concatenated into a reduced M-Schema.
The blue block in the decoder-only model visualise that it is
frozen, such that we only train the classi!cation head added
on top of the model

We implement schema linking using an extractive approach [9].
Unlike generative methods, which are computationally expensive
and prone to hallucinating non-existent schema elements, the ex-
tractive method is lightweight and directly tied to the provided
input.

We implement schema linking by augmenting a decoder-only
model with a lightweight classi"cation head, which is implemented
using a linear layer trained on the Spider dataset [29]. This layer re-
places the model’s standard language modelling head and operates
over the "nal hidden states of schema tokens, capturing interac-
tions between the question and schema. This approach is selected
as we can then use decoder-only models trained speci"cally for
NL2SQL and only adapt their outputs for the schema linking task,
reducing the cost of training and the amount of data required for
training [9].

The process of schema linking can be seen in Figure 4, the input
to the schema linker is a tuple (𝑀𝐿 ,𝑉,𝑃 (𝑀𝐿 )), where 𝑀𝐿 is a schema
chunk,𝑉 a natural language question, and𝑃 (𝑀𝐿 ) is the set of columns
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LLM

You ar e a dat a sci ent i st  who has t o vet  user  
quest i on,  you have r ecei ved t he quest i on:  
" What  i s t he most  expensi ve or der ?"
The dat abase i s descr i bed by t he f ol l owi ng schema:
?DB_I D? or der _db
?Schema?
# Tabl e:  or der s
[
( or der _i d: I NTEGER,  Pr i mar y Key,  Exampl es:  [ 1,  2,  3] ) ,
( user _i d: I NTEGER,  Exampl es:  [ 1,  2] ) ,
( amount : REAL,  Exampl es:  [ 99. 99,  149. 5,  200. 0] )
]
I s t he quest i on answer abl e by t he schema? 
[ yes]  or  [ no]

Input: Label conditioned prompt

Tokeniser

Frozen 
Decoder LLM

Output: A binary classif ication

Cl ass:  1 ( answer abl e)

Linear Layer

Extract Label 
Embeddings 

Sigmoid

Classif ication 
Head

Figure 5: The abstention mechanism receives the reduced
schema from the schema linker and a user question, and
classi!es whether the question is answerable. The blue block
indicates that the decoder-only model is frozen, and only the
classi!er head is trained

in that chunk. These elements are concatenated into a single input
sequence for the model.

The schema linker computes a relevance score for each column
such that, for each column 𝑂 ↑ 𝑃 (𝑀𝐿 ), the linear layer predicts
the probability 𝑑𝑁𝑂𝑃 (𝑂 |𝑉) that column 𝑂 is relevant to the given
natural language question 𝑉. This is repeated across all schema
chunks, allowing the model to assess relevance for the full schema.
After scoring, we apply a relevance threshold to "lter columns. The
selected elements across all chunks are then merged into a reduced
schema 𝑀𝑁𝑂𝑄𝑅𝑆𝑂𝑄 , which is the output of the schema linking phase.

4.4 Extractive Abstention Classi!er
In the "nal phase of SGAM, a binary classi"er determines whether
a user question can be answered given the reduced schema. This
component addresses the limitation that traditional NL2SQL sys-
tems will produce SQL output, even when no valid SQL query
exists [2, 3, 16].

The abstention classi"er takes as input the tuple (𝑉, 𝑀𝑁𝑂𝑄𝑅𝑆𝑂𝑄 ),
where 𝑉 is the natural language question and 𝑀𝑁𝑂𝑄𝑅𝑆𝑂𝑄 is the subset
of schema elements identi"ed as relevant by the schema linker.
Figure 5 shows how these elements are composed into a natural
language prompt that primes the model to assess whether the user
questions is answerable given the reduced schema.

The classi"er is implemented using a decoder-only model, where
the original generation head is replaced with a lightweight classi-
"cation head. Rather than generating output, we extract hidden
states corresponding to the label tokens "yes" and "no" from the "nal
decoder layer. The embeddings of "yes" and "no" tokens are concate-
nated along with their di#erence vector, to form a representation
of the prompt. This representation is passed to the classi"cation
head, which "rst uses a linear layer to produce a scalar logit, then

converts it into a probability over "yes" and "no" via a sigmoid
function.

As in the schema linking phase, we freeze the base decoder-only
model’s parameters and train only the classi"cation head. This
approach preserves the model’s semantic understanding of instruc-
tions and natural language, while enabling e!cient adaptation to
the binary classi"cation task.

We use a decoder-only model for its increased context size, and
ability to follow instructions [6]. Works has shown that decoder
models can be e#ectively adapted to classi"cation via label condi-
tioning [23].

A dedicated abstention classi"er is necessary because neither
schema linking nor generation con"dence provides a reliable sig-
nal of feasibility [3, 16]. Schema linkers may incorrectly identify
irrelevant or spurious schema elements as relevant, and genera-
tion models often exert high con"dence in all its answers, even on
unanswerable queries [13, 16]. By framing abstention as a separate
classi"cation task, we aim to enhance model reliability on infeasi-
ble questions, ensuring that NL2SQL systems are more reliable for
real-world applications.

5 Experimental Design
We describe the datasets, training procedures, and methods used to
evaluate our approach. We seek to answer the following research
questions (RQ):
RQ1 Is an extractive abstention approach a viable solution for

classi"cation of unanswerable user questions in NL2SQL
systems?

RQ2 Is the extractive abstention approach more accurate in clas-
sifying unanswerable user questions than state-of-the-art
systems?

RQ3 Is extractive schema linking accurate at identifying relevant
schema elements on databases with varying sizes compared
to state-of-the-art schema linkers?

RQ4 What training hyperparameters optimise the accuracy of
the schema-guided abstention mechanism?

5.1 Datasets
To comprehensively evaluate our approach to abstention in NL2SQL
systems, we use four datasets that re$ect di#erent real-world chal-
lenges. As seen in Table 2, the datasets are both widely used public
benchmark datasets and custom datasets speci"cally designed to
test capabilities such as handling infeasibility and generalising to
unseen domains.

We use the Spider dataset [29] to train and evaluate schema link-
ing under standard conditions, as this has been the go-to for other
schema linkers [24]. We introduce a modi"ed BIRD dataset [20],
which allows training and evaluation on a large dataset, that spans
multiple domains. To evaluate abstention in sensitive or high-risk
domains, we use EHRSQL [17], which simulates queries on medical
records with 20% infeasible questions in the test set. Finally, to eval-
uate the abstention mechanism’s ability to handle less structured
databases, while in an unseen domain, we utilise TrialBench [2].

Spider is a widely used benchmark dataset for NL2SQL tasks,
consisting of 7,000 training examples, 1,034 validation examples,
and 2,148 test examples across 200 databases from 138 di#erent



Andersen et al.

Table 2: Datasets used for experiments. Infeasibility refers to
the percentage of questions that are infeasible in the split.
*not publicly available

Dataset Examples Split (%) Domain Infeasibility (%)
Spider 10,182 68/10/22 cross-domain 0/0/0

BIRDmod* 10,821 77/9/14 cross-domain 45/45/25
EHRSQL 7,454 68/15/16 Health 9/20/20

TrialBench* 206 -/-/100 Clinical Trials -/-/13.6

domains [29]. We use Spider exclusively to train and evaluate our
schema linker to ensure direct comparability with prior work [12,
24]. As most recent schema linking systems report performance on
Spider, it also serves as the benchmarking for our schema linking
model.

Modi!ed BIRD is a dataset based on BIRD that serves for "ne-
tuning, validation, and testing. The dataset consists of a total of
10,821 examples, of which 8,379 are used in training, 931 for valida-
tion, and 1,511 are reserved for testing. The dataset is created by
modifying BIRD to include questions that are unanswerable. BIRD
is modi"ed by removing columns from the target databases, and
marking the questions whose resulting SQL utilises any of these
removed columns as infeasible. The training and validation datasets
have 45% infeasible questions. This split was chosen as it results in
an almost balanced dataset, while not removing so many columns
that questions became trivial. This is a concern, as we cannot re-
move columns that are foreign or primary keys. The test dataset
consists of 25% infeasible question, to vary from the split seen in
training and validation. We choose to use a modi"ed version of
BIRD for "ne-tuning both SGAM and TrustSQL, as one of our key
objectives is to demonstrate generalisability and zero-shot perfor-
mance. BIRD, known for its diverse databases spanning 37 di#erent
domains, aligns well with this goal. Its domain diversity provide a
robust foundation for assessing how well models can generalise to
unseen data and perform without explicit task-speci"c training.

EHRSQL is based on electronic health records and serves as a
benchmark for abstention systems [16–18]. We use EHRSQL’s test
set, consisting of 3,600 examples, of which 30% are infeasible. The
dataset targets the healthcare domain, where abstention is impor-
tant due to the high cost of incorrect responses. We use EHRSQL to
evaluate the models’ ability to transfer abstention to a new domain.

TrialBench is a benchmark dataset derived from clinical trial
metadata provided by Novo Nordisk [2]. It comprises 206 challeng-
ing samples, of which 28 are classi"ed as infeasible. Despite its small
size, TrialBench is valuable for stress-testing models in real-world
scenarios with sparse data, large databases, and irregular schemas.
Its database features 91 tables and 998 columns, far more than BIRD
or EHRSQL, and lacks explicit relations while using a highly spe-
cialised vocabulary. Using TrialBench, we assess the generalisation
capabilities of SGAM, particularly its robustness to out-of-domain
vocabulary, novel domains, and complex database schemas.

5.2 Training
In this section, we describe the details of how we train the schema
linking model and the extractive abstention classi"er.

5.2.1 Schema Linking. Our extractive schema linking model is
trained using column-level annotations derived from the Spider
dataset. For each question-query pair, columns appearing in the
gold query are labelled as positives, and all others as negatives. We
use OmniSQL-7B [19] as the base model and freeze its parameters,
as this model is already trained for NL2SQL. We train using binary
cross entropy loss against the extracted relevance labels, using an
AdamW optimiser with a learning rate of 4.98𝑒↖5 and weight decay
of 0.0004 for two epochs yields the best results on the validation set.
We use a "ltering threshold of 0.15. With exception of experiment 4,
we use the above described hyperparameters across all experiments.

5.2.2 Abstention Mechanism. The classi"cation head for the ab-
stention mechanism is trained using the modi"ed BIRD dataset. We
adopt XiYanSQL-7b [7] because of its strong SQL reasoning abilities.
During training, we freeze its parameters and train only the classi"-
cation head for abstention. The classi"cation head is trained using
binary cross entropy loss, supervised by the feasibility labels from
the modi"ed BIRD dataset. With the exception of experiment 4, we
train using an AdamW optimiser with a learning rate of 7.25𝑒 ↖ 4,
weight decay of 6.99𝑒 ↖ 2, and two epochs. We use a threshold of
0.70 for the abstention classi"er.

5.3 Evaluation Methods and Metrics
In this section, we provide details on the design of our experiments,
outlining the purpose, metrics, and baselines to compare against.

5.3.1 Experiment 1 - Pipeline w/ NL2SQL. This experiment seeks
to answer research question 1. We evaluate how combining SGAM
with existing NL2SQL systems a#ects the performance of the en-
tire pipeline. We consider the baseline LLM XiYanSQL-32B [7], in
addition to TrustSQLU [16]. For SGAM con"gurations, we consider:

• SGAM + XiYanSQL: SGAM as preprocessing step for XiYan-
SQL.

• SGAMNSL + XiYanSQL: SGAMNSL as preprocessing step
for XiYanSQL.

To evaluate the utility of the entire pipeline, we consider the met-
rics execution accuracy (EX), precision, recall, and F1-score, and
evaluate on EHRSQL and TrialBench. We de"ne EX as:

𝑓𝑔 =




1, if 𝑉𝐿 ↑ 𝑊 ⇑ 𝑍 (𝑉𝐿 ) = ≃ ⇑ 1(𝑆𝐿 ,𝑆𝐿 ) = 1,
0, if 𝑉𝐿 ↑ 𝑊 ⇑ 𝑍 (𝑉𝐿 ) = ↘,
0, if 𝑉𝐿 ↑ 𝑊 ⇑ 𝑍 (𝑉𝐿 ) = ≃ ⇑ 1(𝑆𝐿 ,𝑆𝐿 ) = 0,
0, if 𝑉𝐿 ↑ 𝑊 ⇑ 𝑍 (𝑉𝐿 ) = ≃,
1, if 𝑉𝐿 ↑ 𝑊 ⇑ 𝑍 (𝑉𝐿 ) = ↘,

1(𝑆 ,𝑆 ) =
{
1, if 𝑆 = 𝑆

0, if 𝑆 ω 𝑆

where 𝑆𝐿 is the result of executing the goal query, 𝑆𝐿 is the result
from executing the generated SQL, 𝑊 the set of feasible questions
and 𝑊 the set of infeasible questions.

5.3.2 Experiment 2 - Abstention Mechanism. This experiment seeks
to answer research question 2. It serves as the primary evaluation
of our abstentions mechanism’s e#ectiveness in determining the
feasibility of questions across di#erent settings. We assess whether
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SGAM can accurately identify infeasible queries, when the under-
lying database schema does not support a correct SQL translation.

We compare against TrustSQLP and TrustSQLU [16], which
represent current state-of-the-art for abstention mechanisms in
NL2SQL, details of our implementation can be found in subsec-
tion 8.3.

We conduct this evaluation on three datasets: Modi"ed BIRD,
EHRSQL and TrialBench. We evaluate using precision, recall, and
F2-score on the abstention decision, focussing on the model’s ability
to identify infeasible questions. We consider SGAM and SGAM
without schema linking (SGAM𝑇𝑈𝑉).

5.3.3 Experiment 3 - Schema Linking. With this experiment, we
aim to answer research question 3. We evaluate the e#ectiveness of
our extractive schema linker, in identifying relevant tables within
a database schema. As a baseline, we include DTS-SQL [24], which
represents the current state-of-the-art in schema linkers and em-
ploys a generative strategy for schema linking. We consider the
precision, recall, and relative reduction on the size of the "ltered
schema compared to the full schema, on both table- and column-
level. An e#ective schema linker should maximise recall, while also
minimising the relative schema size, reducing irrelevant schema
elements for downstream components.

We conduct our evaluation on Spider and TrialBench. These two
datasets allow us to test the schema linker under varying database
sizes.

We assess the extractive schema linker under three di#erent
input chunking strategies:

• No chunking (ExSL): the entire database schema is pro-
cessed at once.

• Naive chunking (ExSLn): tables are packed into chunks until
the model’s context window is full, attempting to maximise
schema context per chunk.

• Extreme chunking (ExSLe): each table is evaluated indepen-
dently.

5.3.4 Experiment 4 - Hyperparameters. In this experiment, we aim
to answer research question 4. We consider two components, the
extractive schema linker and the abstention classi"er. For each, we
perform a hyperparameter search using Bayesian optimisation [1],
treating each con"guration as a study evaluated on the Spider and
BIRD validation set respectively. The objectives di#er by compo-
nent:

• For the schema linker we aim to maximise precision, while
keeping recall at 1.000, measuring recall e!ciency.

• The abstention classi"er aims to maximise the F2-score,
prioritising high recall in detecting infeasible questions.

The F2-score is a variant of the F-measure that weighs recall
twice as much as precision. This emphasis on recall is intentional,
because it prioritises reducing false negatives, minimising the
chance of answering infeasible questions. This is crucial in do-
mains where incorrect answers can have serious repercussions,
such as healthcare [16].

The search space for each objective is detailed in Table 3. After
searching for the optimal training hyperparameters, we perform a
second search for the optimal threshold for each component using
a grid search.

Table 3:Hyperparameter search space for training the classi!-
cation heads of the schema linker and abstentionmechanism

Objective Learning Rate Weight Decay Epochs
Schema Linking (5𝑒 ↖ 5) - (5𝑒 ↖ 7) 0.10 - 0.01 2 - 4
Abstention Mechanism (5𝑒 ↖ 3) - (5𝑒 ↖ 6) 0.10 - 0.00 2 - 5

For the schema linker, the threshold search optimises a balance
between recall, precision, and relative schema reduction, while
for the abstention mechanism, the search targets maximising the
F2-score once again. We calculate the relative schema reduction
as |𝑈 |↖ |𝑈𝐿𝑀𝑁𝑂𝑃𝑀𝑁 |

|𝑈 | , where |𝑀 | denotes the amount of columns in the
full schema and |𝑀𝑁𝑂𝑄𝑅𝑆𝑂𝑄 | the amount of columns in the reduced
schema.

6 Results
In this section, we evaluate SGAM to answer our RQs.

6.1 RQ1 - Pipeline w/ NL2SQL
Table 4 presents the EX, precision, recall, and F1-score for various
abstention mechanisms integrated into NL2SQL pipelines, eval-
uated on the EHRSQL and TrialBench datasets. Comparing the
baselines, we observe contrasting behaviours. TrustU emphasises
caution, abstaining from SQL generation on infeasible questions,
at the cost of abstention on all feasible questions too. In contrast,
XiYanSQL is overly permissive, generating SQL for all questions,
including the infeasible ones. The combination of SGAMNSL with
XiYanSQL consistently achieves the best performance across all
metrics, outperforming both the baseline TrustU and XiYanSQL
alone.

On EHRSQL, SGAMNSL + XiYanSQL achieves an EX of 0.31
and F1-score of 0.32, compared to XiYanSQL alone with an EX of
0.21 and F1-score of 0.20. On TrialBench, it reaches an EX of 0.36
and F1-score of 0.52, substantially improving over XiYanSQL with
an EX of 0.26 and F1-score of 0.42. This indicates that inserting
SGAMNSL prior to an NL2SQL system improves end-to-end per-
formance, leveraging its strength in abstention while preserving
the SQL generation capabilities of the underlying NL2SQL model.
Interestingly, SGAMNSL, which does not use schema linking, out-
performs SGAM, which includes schema linking. The weaker per-
formance of SGAM suggests that the current implementation of
schema linking does not e#ectively support abstention decisions.

RQ1: The results show that extractive abstention is a more viable
solution for classifying unanswerable user questions in NL2SQL
systems. Integrating SGAMNSL with an existing NL2SQL model
improves performance across abstention benchmarks, achieving a
better balance between abstaining on infeasible inputs and gener-
ating SQL for feasible ones.

6.2 RQ2 - Abstention Mechanism
The objective of SGAM is to abstain from answering user ques-
tions that cannot be reliably grounded in the schema of the target
database.

Table 5 compares SGAM, SGAMNSL, and TrustSQL baselines
across three datasets using precision, recall, and F2-score.
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Table 4: EX, Precision (P), recall (R), and F1-score (F1) of
di"erent abstentionmechanisms onEHRSQL andTrialBench

EHRSQL TrialBench
NL2SQL Pipeline EX P R F1 EX P R F1
TrustU 0.20 0.20 0.20 0.20 0.14 0.14 0.14 0.14
XiYanSQL 0.21 0.19 0.20 0.20 0.26 0.45 0.39 0.42
SGAMNSL + XiYanSQL 0.31 0.31 0.32 0.32 0.36 0.55 0.49 0.52
SGAM + XiYanSQL 0.26 0.26 0.26 0.26 0.31 0.48 0.42 0.45

TrustSQLU achieves perfect recall at 1.000 by abstaining on every
question, yielding the highest F2-scores on modi"ed BIRD and
EHRSQL. However, this blanket abstention is impractical, as it treats
all queries as unanswerable and its precision merely re$ects the
fraction of infeasible questions. Real-world systems must instead
discriminate between answerable and unanswerable queries.

Among the models that do not default to abstention, SGAM and
SGAMNSL outperform both TrustSQL variants. On modi"ed BIRD,
TrustSQLU attains the highest precision of 0.406 but with minimal
recall at 0.034, limiting practical utility. Conversely, SGAM and
SGAMNSL bias towards detecting unanswerable questions. SGAM
achieves much higher recall at 0.859 with a precision of 0.270,
slightly above the infeasible-question baseline. This results in an
F2-score of 0.598 for SGAM, compared to 0.042 for TrustSQLP.

On EHRSQL, SGAMNSL leads with an F2-score of 0.637, combin-
ing a precision of 0.283 with recall at 0.927. The similar performance
of SGAM and SGAMNSL suggests that schema linking does not sig-
ni"cantly a#ect abstention e#ectiveness on this dataset.

TrialBench results reinforce this pattern. SGAMNSL achieves the
highest precision of 0.615 and F2-score at 0.795, outperforming
TrustSQLU despite its perfect recall. This underscores SGAMNSL’s
capacity to handle complex schemas seen in real-world scenarios.

Overall, extractive decoder-based architectures like SGAM pro-
vide more balanced and practical abstention behaviour than purely
generative or overly conservative baselines. While perfect recall is
trivial through over-abstention, the key challenge lies in maintain-
ing high precision without sacri"cing recall. SGAM and SGAMNSL
demonstrate progress toward this goal.

We observe a notable gap between validation and test perfor-
mance. SGAM attains an F2-score of 0.864 on the modi"ed BIRD
validation set, but generalises less e#ectively on the test set, indicat-
ing possible over"tting or dataset shift. Additionally, this could be
the result of the train set containing a higher frequency of infeasible
questions, resulting in the model overemphasising abstention.

To explore SGAM’s failure modes, we analyse 50 strati"ed ran-
dom samples from both SGAM and SGAMNSL across the test
sets. We identify recurring patterns in misclassi"cation and assess
whether these errors stem from architectural limitations, dataset
artefacts, or represent broader challenges in the abstention task.

A signi"cant proportion of errors occurs in the questions that
require reasoning across multiple tables. For instance, the model fre-
quently predicts questions to be infeasible when answering requires
joining more than two tables. This suggests that SGAM struggles
to perform compositional reasoning over relational structures, a ca-
pability that is necessary to di#erentiate between infeasible queries
and those that are complex.

Table 5: Precision (P), recall (R), and F2-score (F2) of di"erent
abstention mechanisms on modi!ed BIRD, EHRSQL, and
TrialBench

Abstention BIRD EHRSQL TrialBench
Mechanism P R F2 P R F2 P R F2
TrustP 0.406 0.034 0.042 0.333 0.009 0.011 - - -
TrustU 0.253 1.000 0.628 0.199 1.000 0.555 0.136 1.000 0.440
SGAM 0.270 0.859 0.598 0.229 0.979 0.591 0.378 0.892 0.702
SGAM𝑇𝑈𝑉 0.268 0.827 0.584 0.283 0.927 0.637 0.615 0.857 0.795

Errors are also common in cases where questions include indirect
references to schema content, which require interpretive inference.
For example, in a modi"ed BIRD instance asking "Which sets have
Italian translations?", the schema lacks an explicit "translations"
column, but relevant information is encoded in the "name" col-
umn. SGAM often abstains in these cases, failing to resolve implicit
semantic mappings to the schema.

A minority of failure cases on modi"ed BIRD are attributable
to mislabelled infeasible examples. Because infeasibility is induced
by removing columns referenced in the original SQL, questions
referencing those columns are automatically labelled as unanswer-
able, even when semantically equivalent alternatives exist. These
edge cases may introduce noise into the training signal, causing the
model to over"t to super"cial patterns rather than true question
discrimination based on the database schema.

This behaviour mirrors "ndings in prior work on NL2SQL sys-
tems, where models perform well in-domain but degrade on un-
seen schemas [14, 16, 18]. SGAM is designed to generalise without
domain-speci"c retraining, but its current reliance on surface-level
features is insu!cient to meet this objective.

Improving reliability likely requires a combination of better train-
ing data, particularly withmore diverse and realistic infeasible cases,
and architectural enhancements that support structured reasoning.

RQ2: The extractive abstention models SGAM and SGAMNSL
outperform state-of-the-art baselines in accurately classifying unan-
swerable user questions. While challenges remain in compositional
reasoning and handling implicit schema references, these results
con"rm that extractive abstention is a more accurate and balanced
solution than existing methods.

6.3 RQ3 - Schema Linking
We present schema linking results on the Spider and TrialBench
datasets, evaluating both table-level and column-level "ltering, as
seen in Table 6.

On the Spider test set, DTS-SQL achieves state-of-the-art perfor-
mance in table-level "ltering, showing the best schema reduction of
0.570 and precision of 0.979, while maintaining a high recall at 0.969.
This indicates that DTS-SQL is e#ective at selecting a compact yet
relevant subset of tables for Spider’s relatively moderate schema
size.

Among the methods that support column-level "ltering, ExSLn
achieves the highest precision at the column-level of 0.425 alongside
a schema reduction of 0.593. This re$ects its ability to accurately
isolate relevant columns while reducing the schema size. Notably,
ExSLe yields the highest recall at both levels, with a recall of 0.994
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Table 6: precision (P), recall (R), and Relative schema size
reduction (Red) for table- and column-level !ltering on the
Spider and TrialBench test sets

Table Column
Method P R Red P R Red

Spider
DTS-SQL 0.979 0.969 0.570 – – –
ExSL 0.580 0.946 0.297 0.405 0.892 0.586
ExSLn 0.564 0.945 0.314 0.425 0.890 0.593
ExSLe 0.458 0.994 0.202 0.407 0.945 0.555

TrialBench
DTS-SQL 0 0 0 – – –
ExSL 0.021 0.284 0.814 0.005 0.162 0.950
ExSLn 0.025 0.236 0.811 0.007 0.153 0.964
ExSLe 0.011 1.000 0.017 0.003 0.982 0.414

Table 7: Approximation of optimal training hyperparameters
found during Bayesian search for the schema linker and
abstention mechanism

Objective Learning Rate Weight Decay Epochs
Schema Linker 4.98e-5 4e-4 2
Abstention Mechanism 7.25e-4 6.99e-2 2 - 5

at table-level and 0.945 at column-level, though this comes at the
cost of lower precision, indicating over-inclusion.

On TrialBench, which involves a much larger and more complex
schema compared to Spider, we observe clear challenges for schema
linking methods. DTS-SQL fails to return results, highlighting that
it does not scale to real-world databases with large schemas.

In contrast, ExSLe includes nearly the entire schema with a table-
level schema reduction of just 0.017 and recall of 1, ensuring that
no relevant tables are omitted. However, this comes at the cost of
extremely low precision at 0.011, o#ering limited "ltering. This
result con"rms that table-level "ltering alone becomes ine#ective
in large-scale settings like TrialBench, where including all or most
tables is often necessary to preserve coverage.

More importantly, column-level "ltering shows better adapt-
ability to large schemas. Although precision remains low across
methods, ExSLe achieves a column-level recall of 0.982 while still
signi"cantly reducing the schema size by 0.414. This is critical in
NL2SQL system as precision and reduction are less informative
if relevant schema elements are excluded. Therefore, maintaining
high recall alongside signi"cant schema reduction is the key objec-
tive. ExSLn and ExSL achieve similar reductions of 0.964 and 0.950
respectively, which comes at the cost of limited recall, indicating
that most relevant schema elements have been removed.

RQ3: Extractive schema linking achieves substantial schema size
reduction while maintaining high recall, especially at the column-
level, even on large databases. However, this comes with a trade-o#
in precision, as extractive schema linking tends to overinclude
irrelevant schema elements to preserve recall, whereas state-of-the-
art methods achieve higher precision on smaller databases.

Figure 6: Shows the behaviour of recall, precision, and
schema size reduction at di"erent schema linking !ltering
thresholds. The metrics have been included for !ltering at
both table- and column-level

6.4 RQ4 - Hyperparameter Search
Table 7 summarises the optimal hyperparameters identi"ed for the
schema linker and abstention classi"er using Bayesian optimisa-
tion. These con"gurations are used for "nal training in all other
experiments.

Figure 6 shows threshold behaviour for the schema linker. In-
creasing the threshold improves precision and schema reduction
by pruning more aggressively but reduces recall. A threshold of
0.15 provides a strong trade-o#, column-level recall remains high
at 0.910, with a precision of 0.350 and a schema size reduction of
0.610. At table-level, recall remains near perfect at 0.971, with a
modest reduction of 0.196 and a precision of 0.511.

By increasing the threshold beyond 0.15, recall drops sharply,
particularly at columns-level, indicating diminishing returns from
further threshold increases. These results highlight the schema
linker’s sensitivity to threshold tuning, especially when precision
must be improved without sacri"cing recall.

For the abstention classi"er, Figure 7 shows that performance
improves signi"cantly around a threshold of 0.7. This threshold
yields the highest F2-score of 0.84, balancing recall of 0.89 and
precision of 0.84. Below 0.4, the model fails to predict any infeasible
questions, while higher thresholds cause performance to decline,
re$ecting a narrow con"dence distribution.

This sensitivity suggests that small changes in thresholding can
meaningfully alter abstention behaviour, showing that careful tun-
ing is essential for the abstention mechanism.

RQ4: Performance for both SGAM components varies substan-
tially with hyperparameter and threshold choice. Using Bayesian
and grid search, we identify strong con"gurations for the validation
sets of Spider and BIRD. However, the narrow range of e#ective
thresholds indicates that transferring these values to unseen distri-
butions may require recalibration.
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Figure 7: Recall, precision, and F2-score at di"erent absten-
tion classi!cation thresholds. The thresholds starts at 0.4, as
any threshold below resulted in no infeasible predictions

7 Conclusion
In this work, we introduce SGAM, a schema-guided abstention
mechanism for NL2SQL systems, which identi"es unanswerable
questions before SQL generation. Unlike prior abstention ap-
proaches, SGAM decouples feasibility detection from SQL genera-
tion and avoids schema-speci"c "ne-tuning, enabling more reliable
performance in zero-shot settings.

SGAM shows state-of-the-art performance on abstention bench-
marks, especially in realistic and high-risk settings such as Trial-
Bench. SGAM without schema linking, consistently outperforms
both baseline and SGAM in end-to-end pipeline evaluations, sug-
gesting that current schema linking strategies do not yet support
the abstention task.

Our analysis further reveals that failures often stem from limited
reasoning and understanding of questions, highlighting the chal-
lenge of abstract schema-level understanding. We observe signs of
over"tting as performance discrepancies emerged between valida-
tion and test splits.

In general, our results show that SGAM represents a practical
step toward more reliable and deployable NL2SQL systems.

8 Future Work
In this section, we suggest directions for further development of
SGAM. This includes improving the precision of abstention and
expanding on how abstention is handled.

8.1 Improving Precision of Abstention
Prediction

Recent work suggests that LLMs struggle with abstract reasoning
due to limited generalisation beyond context-bound patterns [8].
This limitation impacts tasks such as abstention prediction in
NL2SQL, where models must infer the feasibility of a question
with minimal surface cues.

To improve abstention precision, SGAM could explore the in-
tegration of causal reasoning and program induction. Causal rea-
soning would enable models to identify the underlying factors that

make a query infeasible, rather than relying on shallow heuris-
tics. [8, 15] Program induction could support the construction of
interpretable logic-based decision paths, improving consistency
and generalisation across diverse questions [8, 32].

By moving beyond pattern recognition toward structured, ab-
stract reasoning, these methods hold promise for reducing false
positives and improving the precision of abstention decisions in
NL2SQL systems. Additionally, they may provide a basis for gener-
ating informative justi"cations for abstentions, improving trans-
parency and user trust.

8.2 Exposing Feasibility Score
SGAM treats abstention as a binary decision without o#ering in-
sight into the reasoning behind that decision.

A straightforward approach would be to expose the feasibility
score predicted by the classi"er prior to "ltering. This score could
indicate whether a question was clearly classi"ed as infeasible or
abstention resulted from ambiguity or uncertainty. Presenting this
information could help users re"ne their questions to better align
with the database schema.

Exposing the feasibility score may also be bene"cial for queries
that proceed to SQL generation, as we observe that many feasible
questions still result in incorrect SQL. In such cases, the feasibility
score might serve as a proxy for con"dence in the generated SQL,
potentially $agging outputs for user veri"cation or downstream
"ltering.

However, this approach raises several open questions. It remains
to be seen if a meaningful correlation exists between feasibility
scores and SQL generation quality, warranting further research.
Additionally, the utility of a numeric score for end users is unclear,
and would require user studies to assess its interpretability and
e#ectiveness in practice.
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8.3 Appendix A: Implementation on TrustSQL
Baselines

To evaluate the performance of our method against current state-
of-the-art, we implement both the pipeline-based and uni"ed ap-
proaches introduced in TrustSQL [16]. Since the original TrustSQL
dataset is not publicly available, we adapt their methods to work
on the modi"ed BIRD dataset, which serves as our benchmark for
supervised "ne-tuning. This appendix details how we reproduced
their methodology.

8.3.1 A.1 Pipeline-based approach. TrustSQL proposes a three
stage pipeline for SQL generation: (1) classi"cation of infeasible
questions, (2) SQL generation via a sequence to sequence model,
and (3) detection of incorrect SQL outputs. We implement each
of these stages using models and data aligned with TrustSQL’s
architecture, while applying them to our modi"ed BIRD.

Table 8: Training con!guration used to replicate TrustSQL’s
pipeline approach on the BIRD dataset

Model T5-3B [25] sqlcoder-7b-2 [4]
(infeasibility)

sqlcoder-7b-2 [4] (sql
errors)

Input Question + serialised
schema

Question + serialised
schema (labelled
infeasibility)

Question + serialised
schema (labelled SQL
errors)

Optimiser Adam Adam Adam
Precision BF16 FP16 FP16
Epochs Until loss $attens 1 1
Learning Rate 1e-4 1e-4 1e-4
Trainer Seq2SeqTrainer AutoModelForCausalLM AutoModelForCausalLM

Until loss $attens is not de"ned speci"cally in the paper. Here
we assume the "rst two decimals as important, when they stabilise,
we stop training.
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8.3.2 A.2 Unified Approach. We only implement their uni"ed ap-
proach using T5 and maximum entropy, as this approach showed
the most promising results in the original paper. We use the same
model for SQL generation here, as for the pipeline approach. To "nd
the maximum entropy threshold we apply the heuristic described
in TrustSQL appendix C.2:

(1) For each example in a validation set, compute the mean
output entropy.

(2) Sort examples by entropy, and compute a cumulative score
(+1 for correct outputs, -1 for incorrect ones).

(3) Threshold is selected at the point where the cumulative
score stops increasing.
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