Context-Aware navigation and
Semantic Perception for Intra-factory
Logistics

Master Thesis
Group 1061

Aalborg University
Robotics

AALBORG UNIVERSITY
STUDENT REPORT

Title:
Context-Aware navigation and Semantic
Perception for Intra-factory Logistics

Theme:
Master Thesis

Project Period:
Spring Semester 2025

Project Group:
1061

Participant(s):
Rasmus Lilholt Jacobsen
Wallat Bilal

Supervisor(s):
Dimitirs Chrysostomou

Page Numbers: 67

Date of Completion:
June 4, 2025

Robotics
Aalborg University
http://www.aau.dk

Abstract:

This project explores how a service
robot can perform context-aware navigation
based on human-given commands. The
system combines semantic mapping, object
detection, natural language processing, and
a navigation stack to allow the robot to in-
terpret and act on voice or text instructions.
The robot builds a semantic map by iden-
tifying and clustering objects, and then in-
fers room labels using an ontology graph.
Commands are processed through an NLP
module that extracts relevant keywords and
maps them to locations using the seman-
tic map and ontology. The robot can then
navigate to the requested location and de-
tect objects in the area. The entire system
is tested in a simulated environment using
ROS2 and NAV2. While there are some lim-
itations, such as the need for the robot to
stop to record object poses and the use of
center-point navigation targets, the results
show that the system can handle mid-level
context-aware tasks. Future improvements
could include more advanced scene under-
standing, dynamic goal selection, and ob-
ject search behaviors.

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement with

the author.

http://www.aau.dk

Contents

1 Introduction 1
1.1 Initial Problem statement 1

2 Problem Analysis 2
21 Motivation e e e e 2
2.1.1 Servicerobots e e 2

22 Semanticmapping 6
221 Pipeline 9

222 Imagesegmentation, 10

223 State-of-the-art CNN 12

23 Understanding humans 14
23.1 Keyword Extraction 15

232 Ontology 16

233 Navigation. 17

24 Problem /Usecase o v i i e 17

3 Problem Formulation 20
3.1 Final Problem State 20
32 Objectives 20
3.3 Delimitations e e e e e 21

4 Design 22
4.1 Simulation Environment e 22
42 Systemoverview 24
421 Ontology 24

42.2 Natural Language Processing Node 26

423 Object DetectionNode 26

424 Semanticmappingnode L L 27

43 ROSNodeGraph 29
43.1 Semantic mapping overview 30

432 Context aware navigation overview 31

5 Implementation 32
51 Semanticmapping 32
5.1.1 Object Detection output processing 33

51.2 Clusteringobjects. oo o 36

5.1.3 Location area estimation., 41

5.1.4 Locationinference 42

ii of 72

5.2 Context aware navigation 44

521 NLPnode e e 45

522 Navigation. 47

6 Test setups and results 48
6.1 TestSetups 48
6.1.1 Test 1: Object Detection 48

6.1.2 Test 2: Keyword Extraction 50

6.1.3 Test 3: Location Inference 51

6.14 Test 4: Semanticmapping L 53

6.1.5 Test5: Command execution 53

6.2 TestResults 55
6.2.1 Test 1: Object Detection 55

6.2.2 Test 2: Keyword Extraction 56

6.2.3 Test 3: Location Inference 56

6.24 Test4: SemanticMapping 57

6.2.5 Test5: Command Execution 58

7 Discussion 59
701 Testresults e e 59
72 Futurework e e 61

8 Conclusion 63
Bibliography 64
A Appendix 68
Al panoptic segmentationnode L 0oL oL 70
A2 Simpledbscan 72

iii of 72

Preface

Aalborg University June 4, 2025

This report is a master thesis from Aalborg University in the field of Robotics. The project
was completed by the group as part of the master’s program and focuses on developing a
context-aware navigation system for a service robot using semantic mapping and natural
language processing.

The project was a great opportunity to explore how robots can understand and respond to
human commands in dynamic environments. Through this work, we gained a deeper un-
derstanding of semantic perception, navigation, and integration of different robotic com-
ponents in ROS2.

We would like to thank our supervisor, Dimitris Chrysostomou, for his guidance and
helpful feedback throughout the project.

The codebase for the project can be found on Github and videos of the testing can be found
at this link.

\Nﬁ]%

Rasmus Lilholt Jacobsen Wallat Bilal
rlja20@student.aau.dk <whbilal18@student.aau.dk>

Raswmus Lilholt Jacobsen

iv of 72

https://github.com/Rlilholt99/ROB10_context_aware_navigation
https://youtube.com/playlist?list=PLIRP1gixL0JhDBo2i-nb4ARFRuaJxkAsU&si=SYigsnbw8YXzM6QT

Acronyms

BERT Bidirectional Encoder Representation from Transformers. 16, 50
CNN Convolutional Neural Network. ii, 7, 8, 10, 12, 13, 26

DBSCAN Density Based Spatial Clustering of Applications with Noise. 28, 38, 41

DOF Degrees of Freedom. 3, 4
FCN Fully Convolutional Network. 10
GRU Gated Recurrent Unit. 16

HRC Human Robot Collaboration. 1

HRI Human-robot Interaction. 2
IoU intersection over union. 26

LLM Large Language Model. 16, 25, 26

LSTM Long Short-Term Memory. 15, 16
MBR Minimum Bounding Rectangle. 28-30, 41, 62

NAV2 Navigation2. 6,9, 10, 17, 44, 45, 47, 53

NLP Natural Language Processing. 1, 10, 15-17, 31, 44, 45, 47, 50, 59-61
OWL Web Ontology Language. 16, 24, 42

RNN Recurrent Neural Network. 15, 16

ROS Robot Operating System. 6, 17

SLAM Simultaneous Localization and Mapping. 9, 17, 60

v of 72

Introduction

Over time more and more robots are being implemented in different environments. Robots
are being used as tour guides, elderly help and other tasks which all fall under the con-
cept of a robotic assistant. Moving to Industry 5.0 introduces the concept of Human Robot
Collaboration (HRC) where collaborative robots being introduced into factories where the
operators are able to instruct robots on specfic tasks. It is not exclusively manipulators
which are becoming collaborative, mobile robots are also being introduced and working
along people in factory settings. Static maps of the factories makes it easy for the mobile
robots to go from point A to point B however, the problem is not so clear cut since the en-
vironment is much more dynamic and people are constantly working around the robot. In
an environment such as that simply taking the shortest path could easily lead to accidents
or disrupting the people working around it. To tackle this problem the robot would need
to be able to collect data from the environment upon which a context can be constructed.

As a robot assistant, how the user interacts which the robot is an important aspect. There
are a few possibilities for how the interaction could be done, but the most natural for hu-
mans by far is through speech. This project focuses on building a system that combines
semantic mapping, Natural Language Processing (NLP), and context-aware navigation for
a mobile service robot. The goal is for the robot to take in a command from a user, pro-
cess the intent using NLP, use semantic information about its environment to interpret the
command, and perform the requested navigation task.

1.1 Initial Problem statement

"How can a personal service robot understand a human given command to perform navigation
tasks.”

1o0f 72

Problem Analysis

This chapter will be focusing on the motivation behind context aware navigation, this
includes looking at the motivation for service robots in general.

2.1 Motivation

Industry 4.0 was introduced in 2011 by the European union where the idea of having
fully automated factories where robots handled as much of a assembly line as possible
[1]. The main component for that kind of factory setting was the concept of Internet of
Things where all the different machines in the factory were connected on a network. This
connection between everything makes it possible to create a digital twin of a factory which
could potentially lead to a more optimized factory through the use of information. With
this information the plan was to involve less people in an shifting to a much more heavily
automated version of a factory. However, Industry 4.0 was replaced after about 12 years
by Industry 5.0 which aims to augment Industry 4.0 by adding the human element back
in. One of the goals of Industry 5.0 is the shift back to a more human centric form of
automation which empowers workers rather than replacing them [2]. To achieve this the
concept of collaborative robots, also known as cobots, is introduced which focuses more
on the Human-robot Interaction (HRI) for working together. The idea of working together
with robots has emerged in other fields than automation, specifically the health care sector
has seen advancements in cobots being used in elderly care and hospitals where they work
as personal assistants to the staff [3]. There are two different uses for cobots in the health
care, logistic tasks where the robots assist nurses by bringing samples to and from places.
The second is social tasks which occurs more in elderly care where the robot fulfil a social
need in the elderly. The robots used in this is referred to as service robots.

2.1.1 Service robots

The international federation of robotics define service robots as a robot which is able to
perform tasks for humans or machines in a professional or personal environment [4]. To
do these tasks the robot requires a number of different features such as mobility, manipu-
lation and external sensors. It is necessary for the robot to be mobile as it moves around
the workspace performing tasks for the human. One of the most common tasks for service
robot would be a form of item retrieval which requires the robot to be able to manipu-
late the environment with a gripper. For external sensors there are a few which are an
requirement, cameras are essential for the robot to do object detection and manipulation
in an unknown environment. The ideal camera for this would be a depth camera for the
capability to retrieve real world coordinates. A range scanner for the navigation is also
essential, it could technically also be done using a depth camera but it could potentially

20f72

lead to issues in dynamic obstacle avoidance. Lastly while not needed being able to use
sound for the human interaction can be very beneficial as the most natural method of
communication for humans are through speech.

Name Camera Microphone Manipulation Speaker ROS
Pepper [5] | 2xRGB + 3d depth sensor True 2x7 DoF arm True
TIAGo [6] | RGB-D True 7 DoF Arm True
Hobbit [7] | RGB-D True 5 DoF Arm True
Fetch [8] Primesense 3d sensor False 7 DoF Arm True

Table 2.1: Table of four different service robots. The usage of these robot varies with robots like Pepper and
TIAGo seeing more use in hospitals, Hobbit being used in elderly care and the fetch robot in warehouses.
Features important to a service robot is shown in this table

Pepper

The Pepper robot is a humanoid robot which was developed by SoftBank Robotics. As
can be seen in Table 2.1 Pepper has all of the features outlined previously such as micro-
phone and speech capabilities for human robot interaction. For manipulation Pepper has
a dual arm setup with sixDegrees of Freedom (DOF) in each arm one in each gripper. The
microphone arrays allows humans to use speech to communicate with it as well as sound
localization which has been used in hospitality tasks.

Figure 2.1: Softbank Robotics Pepper[9]

30f72

TIAGo Robot

The TIAGo robot is made by PAL Robotics and is essentially made with the purpose of
being a service robot. The TIAGo is a mobile manipulator well designed for the service
robot task. It is equipped with a differential drive base, seven DOF manipulator where six
are in the arm and the last from the gripper, RGB-D camera and two microphone arrays
[10].

Figure 2.2: The Tiago robot with a omni directional drive base, equipped with a RGB-D camera and a 7 DOF
manipulator.

These different tools makes the TIAGo an ideal choice for a service robot, in addition
to this the TIAGo has been used in a number of studies where it has been used for various
task such as high level user instruction [11] and robotic assistant [12].

Hobbit

Hobbit is a service robot designed for elderly care. It slightly leans more towards an
assistive robot but still has built in features such as item retrieval and move commands [7].
The main form of interaction is through its graphical user interface. For studies Hobbit
has mostly seen use as a personal assistant in elderly homes where it provides a variety of
different features such as safety checks, object transportation, assistance with fitness and
the ability for the user to teach the robot about objects of interest [13].

4 of 72

Figure 2.3: The Hobbit Robot. This robot is specifically designed for elder care. [7]

Fetch

Fetch from Fetch Robotics is a service robot which leans more towards working in a ware-
house environment due to its bulkier build compared to the previous robots. While it has
the manipulation and sensor capabilities it does lack the ability to hear sound. This makes
it not possible for the a operator to interact with the robot throguh speech.

L
S

-

.

Figure 2.4: Fetch Robotics” Fetch Robot with an additional mobile base which carries items picked up by the
main robot. This robot is mainly designed for working in warehouses.[8]

50f72

These four different robots have been used for a variety of service tasks throughout
the years. The Hobbit robot is significantly older than the three other robots and mostly
used in scientific research therefore it will not be used. For the three other robots Fetch,
Pepper and TIAGo, they are all very similar in the capabilities however Fetch is missing the
capability to hear sound. Manipulation-wise this does not matter, but for the interaction
between the operator and the robot this is a significant feature. Pepper and TIAGo has
seen more use in scientific studies compared to Fetch, specifically in service robot tasks.
Between Pepper and TIAGo it is very task dependent, Pepper can in theory handle more
complex manipulation task through the use of its dual manipulator setup. The TIAGo is
still capable of a majority of manipulation tasks and has a longer reach than Pepper. Both
robots could be used for context aware navigation, therefore moving the TAIGo will be
considered the chosen robot. The question is then how the robot handles adding context
from a human into the problem of navigation. To do this the robot needs a higher level of
understanding of its environment in the form of a semantic map.

2.2 Semantic mapping

A semantic map can be split up into three distinct layers, the geometric layer, object layer
and scene layer. The geometric layer is represented in the form of an occupancy grid
where specific cells are marked as either an obstacle or free space. The geometric map can
be created with the mapping algorithms, which can be provided through exisiting Robot
Operating System (ROS) packages such as Navigation2 (NAV2). The object layer contains
the different objects found around the mapped environment. To build the object layer an
object detection algorithm is needed, combining it with pose estimation and the localiza-
tion provided by NAV2 allows the system to locate objects in the geometric map. Lastly
is the scene layer, this layer uses both the geometric layer and object layer to essentially
determine specific scenes in the map. To do this, the objects found in the object layer needs
to be clustered together using a clustering algorithm. Once objects have been clustered to-
gether the system essentially has a list of poses and object labels. Passing the object labels
through a ontology database, which describes relations between things, a label for the lo-
cation can be inferred and then the geometric placement of the location can be computed
using the poses of the objects. The three different layers are visualized in Figure 2.5.

6 of 72

/L/ / | < __ GeometIc map

Figure 2.5: Semantic mapping built up on multiple layers, first layer is the Geometric map: here the robot
gathers all (x,y) coordinates of the environment like (object, obstacles, wall, doors, etc.). Once the coordinates
are found, the second layer will do object detection to find all the objects/obstacles in the rooms. At the last
layer, the information gathered is used for scene localization, where the semantic mapping tries to figure out
what this place is whether it’s a "kitchen", "living room", etc.

To sum up the semantic mapping pipeline, the goal of semantic mapping is first to find
all the (x,y) coordinates of objects in the environment. Then, using those coordinates of
the objects along the labels to identify what the location is ("Kitchen", "Living room", etc.)
and estimate the area of the location. As mentioned, an essential component of semantic
mapping is an object detection algorithm which utilises image segmentation to identify
and label each pixel[14], [15].

To have a deeper understanding of semantic mapping, Stinderhauf et al. introduced a
system which combines semantic place categorisation, mapping and real-time robot opera-
tion. By using a combination of a Convolutional Neural Network (CNN) for categorisation
and One-vs-All Classifiers for recognising new labels. The One-vs-All Classifiers are used
to train one binary classifier per class which each binary classifier tries to answer "is this
input an instance of class X or not". For example, a label output is given as "cat"; the
classifier says yes if it's a cat; otherwise, "no" [16]. To reduce overlapping of classes, a
Bayesian Filter is used to ensure temporal coherence in place classification. Stinderhauf et
al. indicated by implanting semantic mapping into their system, where it demonstrated
the ability to classify places in environments without needing specific training data and
adapt to new categories online. The integration with Bayesian filters provided stable, tem-
porally coherent results, and semantic maps proved useful for robotic tasks like object
detection and path planning [14].

Where Kostavelis and Gasteratos et al. used a different approach, they used methods
for semantic mapping using metric, topological, and topometric maps as well as vision-
based techniques. These approaches are based on their scalability, temporal coherence,
and topological map usage. The paper is more about surveying existing methods and
categorizing them based on the underlying characteristics. It looks at how semantic maps

7 of 72

can be used for task planning, navigation, and human-robot interaction. They provide a
taxonomy of methods, including vision-based systems, laser scanners, SLAM, and topo-
logical maps. Their focus is not on a specific robot or approach but rather on the various
ways semantic information can be incorporated into robot mapping and navigation [17].

The main goal of semantic mapping is to operate in human-centred complex indoor and
outdoor environments, the robot must understand its surroundings, which goes beyond
a simple algorithm for avoiding obstacles and building world maps. To handle this com-
plexity, the robot must be capable of extracting semantic information about the environ-
ment it is placed in. Typically, initialize localization for navigation (“Where am I?”) is not
enough for semantic mapping but also (“What is this place like?”) is necessary. This gives
higher-level information about the environment and decision processing, enabling easier
interaction between the robot and humans [14].

e
o
=]
T
=
o
O

(a) Using CNN for object detection (b) Semantic mapping [14]

Figure 2.6: The figure shows how the object has been labelled to identify (“What is this place like?””) which is
then used for labeling the environment.

Figure 2.6 shows the use of a CNN, which classifies each object and the image individ-
ually using techniques like one-vs-all and Bayesian filters, gradually building a map based
on the resulting place labels. Semantic mapping can be split into three parts. First, “Under-
standing the environment”. The main goal of understanding the environment is to know
the meaning of different regions when mapping. In this case, the Tiago-base robot has to
not just understand the collection of obstacles and free spaces, but also assign meaning to
the different regions that have been mapped, like "kitchen," "living room," office, etc. The
second part is "Object Recognition & Classification”. The goal is to identify objects in
the environment, such as furniture, doors, and pathways, which would make Tiago-base
navigate more effectively. Lastly, "sensor fusion”. Combining low-level metric maps, such
as LiDAR scans, with a high-level semantic understanding of "this is a table" improves
navigation efficiency. Once semantic mapping has been completed, a file with ontology

8 of 72

will be made to fill in all the data of the environment in terms that are meaningful and
understandable [14], [15], [18].

2.21 Pipeline

As described in section 2.2 there are a few different components which form the semantic
mapping pipeline, before looking at how the semantic map is used the function of these
different components needs to be clarified. Before semantic mapping can be done the robot
need knowledge of the environment in the form of a geometric map, this can be done using
Simultaneous Localization and Mapping (SLAM) toolbox with the NAV2 package. Once
the geometric map is made then additional information can be added to this in the form
of semantic mapping.

Object
Location
Ontology Database / relations

Knowledge Graph

Localization N —
in exisiting N Locatipn of
map i locations
NAV2 > Semantic /objects
> Mapping 7| Location
Database

Object Detection
Object Labels and
relative position

Figure 2.7: Semantic mapping pipeline. The semantic mapping node will take it some localization transform
from NAV2 which it will use to estimate the position of detected objects in the environment. Based on the
object seen some location is determined, the relations between objects and locations is defined in an ontology
database / knowledge graph. Combining this information into location and object positions in the map is
then stored in a location database.

Figure 2.7 represents the pipeline for creating the semantic map. The semantic map-
ping module will combine localization in the map with object detection to find different
objects and estimate what location the objects are in. This is combined with information
about object relations in the form of an ontology database so the system can estimate
where specific locations could be. The output of the semantic mapping is the coordinates
of these locations which are estimated. Once the semantic map has been built it is only a
question of how the robot makes use of it.

90of 72

Command Motor

Sentence Navigation Commands
Commands
User Input >
NLP Module Nav2 —>

Location
and object
relations

Y

Coordinates
of desired
location

Ontology Database /

Knowledge Graph Location

Database

Figure 2.8: The pipeline for handling the different levels of commands. The entry point is in the form of some
user input, this could be text or speech. First is the NLP node which have the output of navigation commands.
This is done by first extracting keywords such as a task and location/object. Using these keywords it estimates
which location to lookup in the database using the ontology database which were also used for the semantic
mapping. From the location database it retrieves the map coordinates to go to which is then compiled into a
navigation message which is then sent to the NAV2 framework.

Figure 2.8 represents the main loop of the system, for this pipeline it should already
have a geometric and semantic map of the environment. The main issue this pipeline tack-
les is turning the commands from the operator into something the robot understands. As
can be seen in Figure 2.8 the pipeline consists of different nodes which fulfil the different
capabilities needed. First is the NLP node which is responsible for interpreting the user in-
put and translate it into commands. The NLP node will interface with the database which
contains the different coordinates of the locations of interest. The NLP module figures out
what data to lookup in the database based on the keyword extraction which is run through
the same ontology database.

2.2.2 Image segmentation

Segmentation is an end-to-end process, meaning that a single model handles the entire
workflow from raw image input to final output without requiring separate manual stages.
During training, the model learns all necessary steps, such as feature extraction, classi-
fication, or segmentation. There are three types of image segmentation tasks semantic,
instance, and panoptic segmentation, which classify input images based on attributes like
colour, contrast, placement, and other characteristics [19].

Semantic segmentation: is a computer vision task used in various fields such as au-
tonomous driving, medical imaging, and robotics, which require a detailed, pixel-level
understanding of an image. Its goal is to categorize and label each pixel in the image
according to its class and label. A common approach is to use a type of Convolutional
Neural Network (CNN) known as a Fully Convolutional Network (FCN). Unlike tradi-
tional CNNs that end with fully connected layers and output a single label for the entire
image, the FCN relies solely on convolutional layers. This design preserves the spatial
structure of the input, enabling the network to generate detailed, pixel-level predictions,

10 of 72

as seen in Figure 2.9, showing how each pixel is semantically segmented [19][20].

(a) Input image. (b) Output image of semantic segmentation.

Figure 2.9: This image shows how semantic segmentation has categorised each pixel into regions based on
the pixel labeling.

Instance segmentation: goes a step further than semantic segmentation. While seman-
tic segmentation labels every pixel in an image with a class, instance segmentation not only
does this but also distinguishes between different instances of the same class. This means
that if there are multiple objects of the same type (like several cars or people), each one
is individually identified and segmented. Instance segmentation provides a more detailed
understanding of an image by isolating and segmenting each object instance individually,
offering a finer granularity of analysis, as seen in Figure 2.10 how each object has been
instance segmented into an individual class [21][22][23].

(a) Input image. (b) Output image of instance segmentation.

Figure 2.10: This image shows how instance segmentation has categorised each pixel and distinguishes be-
tween different instances of the same class.

Panoptic segmentation: Combine semantic and instance segmentation into a single

11 of 72

task. By working with a context-based robot, panoptic segmentation gives both "what is
this?" and "which exact object is it?". The robot needs context of semantic to understand
the environment, like knowing there is a floor and there is a wall. Also, the robot needs to
have instance-level understanding to interact with individual objects, like knowing what
an object is, table one, and which one is table two. If only using semantic segmentation,
the robot can not tell the difference between tables apart, it would just know it is a table.
Also, if only using the instance segmentation the robot can distinguish between cups, but
might not understand where the floor or wall is located [24][25][26].

wall—other—merged

person

(a) Input image. (b) Output image of panoptic segmentation.

Figure 2.11: This image shows how Panoptic segmentation using both approaches to identify and labeling
objects in the image.

2.2.3 State-of-the-art CNN

A typical Convolutional Neural Network is based on a sequence of layers including con-
volutional, activation, pooling, and fully connected layers, which work together to extract
and process spatial features from input data, as seen in Figure 2.12.

12 of 72

Input //

S Output
Pooling Pooling Pooling PR /
- Horse
N Zebra
: e Dog
: SoftMax
. . . O\ Activation
Convglutlon Convglutlon Convglutlon X Funcon
Kernel RelU RelU RelU Flatten
Layer \
Fully
Feature Maps . Connected
Layer
| | | -
Feature Extraction Classification Probabilistic
Distribution

Figure 2.12: A typical model of CNN backbones [27]

Within a backbone network, which is pretrained on a large dataset and optimized for
feature extraction, such as AlexNet, VGG, ResNet, DenseNet, and others. They provide
the foundational feature extraction capability required to process complex visual data.
The selection of the backbone is critical to the performance of the model, as different ar-
chitectures are designed to address specific challenges in computer vision tasks, such as
recognizing objects, classifying images, and segmenting scenes [28].

A table has been set up to show a comparison of state-of-the-art panoptic segmentation
methods used in modern research and industry, as seen in Table 2.2. The primary goal of
this table is to provide an overview of the different techniques used for panoptic segmen-
tation, showcasing the methods” performance in various aspects such as accuracy, compu-
tational efficiency, and ease of use. These methods are evaluated based on key metrics,
including Panoptic Quality (PQ), Average Precision for panoptic segmentation (APpan),
mean Intersection over Union (mIoU), the number of parameters (#params), Floating Point
Operations (FLOPs), and frames per second (fps).

Method Year Backbone Dataset PQ (Approx.) (%) APpan (%) mloU (%) #params (Million) FLOPs (Giga) fps
MaX-DeepLab [29] 2021 MaX-Large COCO 51.3 57.2 424 451 7384 131
Mask2Former [30] 2022 Swin-Large COCO 57.8 61.7 62.4 216 868 4

Panoptic SegFormer [31] 2022 ResNet-50 COCO 49.6 45.6 47 51 214 7.8
MaskDINO [32] 2022 ResNet-50 COCO 53 46 48 52 285 14

Table 2.2: Comparison of selected panoptic segmentation methods with approximate PQ scores, AP, mloU,
parameters, FLOPs, and fps on COCO.

* Method: Lists the name of the panoptic segmentation approaches. The method
shows earlier to more recent advances in the computer vision field.

* Year: The year of the method’s publication. This helps track the progression of

13 of 72

panoptic segmentation techniques over time.

Backbone: The backbone network used for feature extraction. This is crucial because
the choice of backbone affects the overall performance and computational complexity
of the model.

Dataset: The dataset on which the method was tested. Most methods in this ta-
ble have been evaluated on the COCO dataset, a standard benchmark for panoptic
segmentation, but some are also evaluated on other datasets like Cityscapes.

PQ (Approx.): Panoptic Quality, an approximate measure that combines segmenta-
tion accuracy and object detection quality. This metric is essential for assessing the
overall performance of panoptic segmentation methods.

(APpan): Average Precision for panoptic segmentation, focusing specifically on the
quality of both instance segmentation and semantic segmentation tasks. It provides
a more detailed measure of the model’s performance in distinguishing objects and
segments.

mloU: Mean Intersection over Union. This metric evaluates the quality of segmen-
tation at the pixel level, with higher values indicating better segmentation perfor-
mance.

#params: The number of parameters in the model, which is a measure of model
complexity and its potential impact on inference time and computational resources.

FLOPs: Floating Point Operations, which indicate the computational cost of the
model. This is important for evaluating the efficiency of the method in terms of
required computation.

fps: Frames per second, a measure of inference speed. This is critical for real-time
applications where fast processing is essential.

Based on the table and various aspects such as Panoptic Quality (PQ), Average Precision
for panoptic segmentation (APpan), mean Intersection over Union (mloU), the number of
parameters (#params), Floating Point Operations (FLOPs), and frames per second (fps),
an appropriate method can be selected according to the project’s needs. When picking a
method, the focus will be on three metrics Panoptic Quality (PQ), Average Precision for
panoptic segmentation (APpan), and mean Intersection over Union (mloU).

2.3 Understanding humans

Once the semantic map is built and ready to be used the system needs to consider how to
translate human commands into robot actions. The first step is to actually get an objective

14 of 72

for the system from a human user. There are multiple ways of doing this, it could be
done through a text prompt or graphical user interface but humans’ preferred method
of communication is through speech. This is something that has been explored plenty
through out the years with multiple methods of doing this. This chapter will not focus
on converting speech into text but what methods is used to understanding the speech
which have been processed into natural language in the form of text, this is known as
NLP. Studies on NLP often uses a variation of the Recurrent Neural Network (RNN), the
main reason for the use of RNNs is the how it excels in handling sequential data [33].
When humans look at a sentence their understanding of the meaning depends the current
word being read and the words prior. In neural network fashion one could say that there
is an internal state which is updated with each data entry being processed. This is how an
RNN works, it receives a single data input at a time and updates its internal state. There
are multiple different variations which solves issues such as exploding/vanishing gradient
which affects the baseline RNN architecture.

2.3.1 Keyword Extraction

When looking at a sentence there often are "padding" words which helps form the simplest
command into a coherent sentence for humans. Consider the following command "Please
bring me a box". Looking at the sentence it is easy to split it into an action and a target for
the action. In this case "bring" is the action of retrieval and box is the target for the action.
The question is then how does a computer understand which parts of the sentence is what.
To do this there needs to be some form of keyword extraction. The most common method
for keyword extraction is the use of neural networks, specifically variations of RNN has
been widely used. More recent state of the art however moves away from the use of RNN
in favour of transformers.

Long Short-Term Memory (LSTM)

One of the RNNs which often used is a LSTM as seen in the following studies [34] [35].
The LSTM is a RNN. There are few different variations of this model but one of the
more commonly used is the bidirectional LSTM model. The main strength of the LSTM
model is the ability to retain information while processing large inputs, however there
are some shortcomings. The main issue with the standard LSTM is the way sentences
sometimes provide additional information at the end. Consider the following sentence:
"Please bring me a cold glass of water and not ice water.". The standard model in this
case first recognizes it needs to bring a cold glass of water which could potentially mean
a glass of ice water as it is cold. With the bidirectional LSTM the sentence is processed
from both sides, and in this case the robot would have the context of it needs to bring cold
water which is not ice water.

15 of 72

Gated Recurrent Unit (GRU)

State of the art shows that the GRU model has seen uses in the natural language processing
of voice commands for medical robots [36]. GRU is similar to the LSTM model, the main
difference is in the way the hidden state is updated. LSTM uses updates its memory using
the forget and input gates while GRU achieves this with only and update gate. This gives
an slight advantage in real time performance and training time of the model however, the
model performs slightly worse than the bidirectional LSTM model. With the introduction
of transformers both GRU and LSTM was used less

Bidirectional Encoder Representation from Transformers (BERT)

BERT moves away from RNN models over to transformers which makes use of the at-
tention concept discussed in the Attention is all you need paper[37]. An advantage of
transformers is in the time to train, RNN can only handle data sequentially while trans-
formers is able to process the input data in parallel. In addition to being more easily
trained it also hold an advantage over the RNN models mentioned when dealing with
very large inputs.

Summary

While Transformer models such as BERT is the current state of the art for NLP modules
given the short commands defined in 2.3 all of the different methods could potentially be
used in the use case. However since there w

2.3.2 Ontology

When the keyword extraction is done it should leave keywords in the form of an action
and a target, the target however is not always clear cut for the robot. Consider the input "I
am thirsty can you bring me something". Humans would easily recognize that the person
wants something to drink, robots would not understand what the target here is specifically.
The system needs to have some sort of knowledge of how different words relate to each
other. There are multiple ways of imbuing the robot with knowledge, a standard of doing
this is through the use of a ontology database such as Web Ontology Language (OWL) [38].
This is a method which has seen use in previous studies of semantic mapping [39]. There
are also other methods for knowledge learning, with advancements in Large Language
Model (LLM) there have been studies where the knowledge section of the robot is using
LLMs for translating commands into robot commands [40, 41, 42]. While an knowledge
graph is good and fast for development of specific use cases it struggles with scalability
as adding more objects and relations between objects, locations and needs is exponentially
more work and will have issues in environments which are dynamic.

16 of 72

2.3.3 Navigation

Since the robot will need to move around the environment there needs to be a navigation
system which can interface with the NLP component of the system. Considering that
the TIAGo is built using ROS2 framework and already have implementations in NAV2
available it makes sense to use the NAV2 for the navigation system. NAV2 contains all
the necessary functionality needed to run a navigation stack. This involves components
such as localization, path planning, path execution and behaviour planning in the form
of behaviour trees. The challenge is in converting the processed input from the user to
commands which the framework understands. NAV2 mainly works with poses in a known
environment which have been mapped out using SLAM algorithms such has Cartographer
and Gmapping. Using the semantic map the system has specific areas of the geometric
map which can be used to compute navigation poses. The question is then what kind of
commands can the system expect?

2.4 Problem / Use case

Before looking at the design of the specific components in the system it is important to
describe the problem. In this case the system will be a robotic assistant which is able to
help the user. The first task that will be considered is a retrieval task. There are multiple
levels to retrieval task, consider the following tasks.

Level 1: Go to the kitchen

Level 2: Go to the kitchen and bring a glass
Level 3: Bring me a glass

Level 4: I am thirsty

Level 5: Please assist me

Table 2.3: Overview of the different levels of commands. Each level comes with a new level of requirements.
Level 1 covers the basic command to navigation. Level 2 introduces commands with sequentiality, the robot
first needs to drive to the kitchen, find a glass and bring it back. Level 3 brings an increased need for semantic
capability to the system, while the command semantically means the same as the level 2 command the robot
needs to be able to understand a glass can be found in the kitchen.

For humans the most natural way to communicate is through the use of their voice.
The problem is how can the robot hear a command, translate it to robot commands and
then execute it. There are several levels of commands as can be seen in Table 2.3.

Level 1 is a mid level command, it simply saying to the robot it should drive to a spe-
cific location. Of course there needs to be some understanding of where this location is
in the natural way of describing the environment. In the case of level 1 the robot would
simply have to convert the location "kitchen" into some 2D coordinates for the robot.

17 of 72

: "Go to th 1.
Kitchen _
Office

Figure 2.13: Example of a level 1 case, 1. The robot is given a command from a user, in this case the user is in
the office and the command is to go to the kitchen. 2. Navigate to a pose in the kitchen.

Li et al. [40] explored commands similar to what described here. While level 1 de-
scribes a location it could also be something simple as an object.

Level 2 The second level bring additional information to the level 1 prompt, in this case
the robot needs to understand it first needs to drive to the kitchen, then find a glass and
bring that glass back to the user. The main challenge here is how the robot actually finds
the item. A study [43] looked into a similar problem in the form of the prompt "pick up
the black cup”. Li et al. also solved similar issues by taking the high level command and
splitting into smaller tasks [40]. Looking at the level 2 tasks it could be split up into the
following smaller tasks:

1. Navigate to kitchen

2. Navigate to glass

W

. Grasp glass

S

. Navigate to start position
5. Place glass

Level 3 is closer to what could be considered normal speech pattern, level 1 and 2 leans
a little more to specific instructions while level 3 essentially is a higher level instruction

18 of 72

which might fulfil the same purpose as the level 2 command. In the case of level 3 the
robot essentially needs to be able to understand where it can find a glass. There are several
methods for making this connecting between glass and the location it could be located in.

Level 4 removes the specification of what the operator actually wants. When consider-
ing the input "I am thirsty" humans would of course think of a glass of water to quench
the thirst. To be able to solve this problem the robot would need to be able to understand
who the target is, and what item they actually want. Li et al. [44] used a similar command
for a pick and place operation where the robot based on this command predicted which
item on the table in front of it to pick up. The method for extracting information from
natural language was trough the use of rule matching and Conditional Random Fields.
Combining the natural language processing with image recognition the robot was able to
predict which object to grasp based on the command. The question is then can the same
method be used on a service robot.

Level 5 is the level which completely removes any given context from the user. The robot
would need to deduct the context of the situation based on its own sensors. To achieve
this it would require a very complex system which is able to make use of all the different
sensors on the robot.

19 of 72

Problem Formulation

After exploring the problem the requirements for a system which uses semantic mapping
for context aware navigation is much clearer. Semantic mapping requires the robot to be
able to build the three different layers described in section 2.2. This involves the use of
laser scans, object labelling and pose estimation in the environment. Using the information
found by these components the system needs to infer the specific scenes found in the
geometric map. To apply the context to the navigation the system requires a form of
natural language processing which is able to understand high level commands from the
operator and convert it into commands for the navigation system. Finally these different
components of semantic mapping has been presented in a pipeline which describes the
data shared between them. This leaves the final problem formulation.

3.1 Final Problem State

"How can a context aware navigation pipeline be used in a personal service robot for object retrieval
tasks through the use of natural language processing and semantic mapping?”

3.2 Objectives

1. Complete Level 4: As described in section 2.4 there are several levels of commands
which require different things of the robot. To make sure that the objective is feasible
within the scope of the project the robot should be able to complete up to level _

2. Interpret Commands: The ability to take high-level instructions from the operator
and turn it into input for the rest of the system is essential for this project. Specifically
the system should be able to identify actions and targets of those actions. In addition
to this being able identify multiple actions and targets and handle them sequentially
will also be very helpful.

3. Create a semantic map: To be able to interpret high-level commands from the op-
erator the system needs a higher understanding of its surroundings. This will be
achieved through the use of cameras to detect the environment. The goal is to build
the three layers described in section 2.2.

4. Identify object in the environment: To do semantic mapping the system will need
to be able to identify objects within the environment. This is done through the use of
an object detection neural network. The objects and location of detection is essential
to be able to semantic mapping.

20 of 72

5. Ready to grasp an object: The final goal of project is for the robot to be able to
retrieve the desired object from the high-level command. Being able to place the
robot at a pose where it is able to grasp the target sets up a clear point where a
grasping pipeline can be applied.

3.3 Delimitations

Since there is a finite amount of time for this project there are several delimitations with
needs to be outlined.

1. Simulation: The goal of making a pipeline which is able to perform semantic map-
ping will only be implemented in simulation. There are two reasons for this choice,
focusing on simulation avoids spending time making the different components of
the pipeline work on the robot itself giving. Avoiding spending time on making
the components works allows for more time to make the general pipeline work. Sec-
ondly having a simulation environment allows for more varied type of environments.
Being able

2. Command complexity: the complexity level of the commands the robot will be
tasked with, the commands described in section 2.4 are simple in the form of be-
ing comprised of a single location and target object. These commands could have
more added complexity to cover, an example could be "go to the kitchen and bring
the glass which stands on a red box". This command adds even more context to the
command and it makes sense as a future work goal.

3. Navigation: For the navigation the environment which the robot will be moving
around in will remain simple so no moving obstacles. There will be no specific goal
for the navigation time but mostly whether the robot is able to understand where to
go and reach that specific location.

21 of 72

4 Design

This chapter will cover specific design choices for the system, this includes choice of algo-
rithms and methods for the different system components. It will also cover the construc-
tion of the simulation environment.

4.1 Simulation Environment

The simulation is made to simulate a real environment, the aim is to have a number of
different type of rooms. There are three types of rooms, kitchen, office and bedroom.
A room is designated based on the objects in the room as the semantic mapping would
understand it. The kitchen is a room where objects such as a fridge, kitchen counter with
an oven and stove and some dining furniture. In addition to this several objects which can
be picked up is placed in the environment such as cans. The kitchen can be seen in the
Figure 4.1

Figure 4.1: The kitchen room environment,

An office space would contain a workspace with objects such as desks, computers, cups
and some general office space objects.

22 of 72

Figure 4.2: The office environment.

Lastly is the bedroom, here usual objects are objects such as a bed, night table with a
lamp etc.

23 of 72

Figure 4.3: The bedroom environment

In total there are the three types of rooms described and five rooms in total. In these
different rooms there will be the objects which can not be manipulated by the and small
objects spread through out the room.

4.2 System overview

This section will discuss the design of each component in the pipeline described in sub-
section 2.2.1. Choice of algorithm and the expected input and output of each component
will be the main points.

4.2.1 Ontology

For the ontology OWL is being used for the specific problem that is being solved. For
that purpose an ontology graph is built which aims to show relations between objects
and locations but also relations between objects and needs. First step is to define the
different classes, first is location of course which describe different locations in the map.
Next class is objects which describe different objects in the environment. Lastly is needs,
this describes different wants and needs which might infer needs for specific objects, an
example of this is the need "thirsty" which infers something drinkable.

24 of 72

Kitchen

Figure 4.4: Example of an ontology graph. There are three main categories, location, object and needs. As
the location will in most cases be the main output of the ontology graph it is made as the root of the graph.
From the location specific objects can be inferred, this goes both ways as the location can also be inferred
from objects. The class object has a subset class in the form of "needs" where specific objects can fulfil specific
needs. This means from a level 4 command such as "i am thirsty" can directly be inferred to specific objects
which then can be inferred to a specific location.

An example relation can be seen in Figure 4.4 where a simplified relationship for the
location kitchen is described. In this case three objects are defined it be located in the
kitchen a fridge, a glass and chips. These objects which can be found in the kitchen has
a set of needs attached to them, in this case a glass is something which relates to being
thirsty while chips relate to being hungry. Using these relations the location kitchen can be
inferred from either an object or a need. As described in subsection 2.3.2 there could also
be used something like a LLM. While LLM have seen more use in the recent state of the art
this is not implemented in this system for two reasons. First is the computational require-
ments, the robot is already running a number of different algorithms such as a navigation
stack and object detection model. Adding a LLM on top of the necessary components can

25 of 72

potentially strain the performance of the robot. This could be circumvented interfacing
with a server which runs the LLM, but this gives the robot a requirement of a constant
internet connection with the server which can limit the amount of environments where it
could be deployed. LLM is much better for scalability as it is able to apply reason to a
much larger variety of inputs.

4.2.2 Natural Language Processing Node

This node is responsible for converting the command from the operator to robot com-
mands. As explored in subsection 2.3.1 there are three commonly used architectures for
processing the command. The most recent state of the art has primarily been using Trans-
formers, while a LSTM or GRU model certainly could be used for the commands described
in section 2.4 this node will make use of a transformer model. Specifically it will imple-
ment the python package Spacy which provides the transformer model roBERTa. The
Spacy framework does not naturally provide keywords for location and action to take,
therefore this needs to be handled within the node. To do this the node will make use
of the tags provided from the Spacy framework, these could as an example be nouns and
verbs.

4.2.3 Object Detection Node

This node is used to detect objects by implementing a CNN model, which identifies the
objects and labels them. It is not enough to just identify the objects; the accuracy of the
identified objects must also be labelled correctly. To address this, in Section 2.2.3, multiple
CNN models were shown in Table 2.2. The idea is to use a model with high accuracy and
correct labelling, since learning the context of an environment can be taxing. To choose
a model, three things must be evaluated: Panoptic Quality (PQ), Average Precision for
Panoptic Segmentation (APpan), and mean intersection over union (IoU).

Upon closer inspection of Table 2.2 minimum and maximum of the (PQ), (APpan) and
(mlIoU):

o (PQ) = (49.6%) - (57.8%)
o (APpan) = (45.6%) - (61.7%)
o (mloU) = (42.4%) - (62.4%)

Where Mask2Former model seems the most prominent with the highest values. Another
key aspect is the position estimation to further the object detection node. By looking into
the 3D point estimation using the intrinsic parameters and Depth. The intrinsic parameters
defines how a 3D point in the real world is projected onto a 2D image plane. The intrinsic
camera parameters describe the internal geometry of the camera, such as [45], [46]:

¢ Focal length (fx, fy)

26 of 72

¢ Principal point (cx, cy)
e Skew coefficient (s)
¢ Distortion coefficients

Given a pixel coordinate (u#,v), a depth value Z, and camera intrinsics fy, fys€x,cy, this
can compute into the 3D point (X,Y, Z) in the camera coordinate frame as seen in Figure
4.5

p (u, v)
[)

Image

Coordinates X y
x Camera
= Coordinates

Camera

Intrinsic
Coordinates

Ly

World
Coordinates

Extrinsic
Coordinates

Figure 4.5: This image shows how a point in the world gets projected to the image plane of a camera when
doing intrinsic camera parameters [45].

Figure 4.5 shows three coordinate systems and the transformations between them.
First, world coordinates, where the global reference frame shows how 3D objects are de-
fined, and a point represents a physical location in the real world. Second, the camera
coordinate system, which is centered at the camera’s optical center (the pinhole), where
the axes (X, y, z) move with the camera. Third, the image or pixel coordinates, which rep-
resent the 2D plane where the image is captured. The coordinates are denoted as p(u,v),
where u is the horizontal pixel coordinate and v is the vertical pixel coordinate [47], [48].

4.2.4 Semantic mapping node

The purpose of this node is of course to build the semantic map of the simulation envi-
ronment. To do this it needs to be able to build the different layers described in section 2.2
by performing the following tasks.

27 of 72

1. Record all inputs from object detection node
2. Locate the objects in the global map frame

3. Cluster the objects into specific locations.
4. Compute the areas covered by the clusters
5. Infer the location based on object labels.

The node starts off with the input from the object detection where as described in subsec-
tion 4.2.3 it receives a list of object labels and their local poses in relation to the camera.
The node is responsible for transforming the local poses so they relate to the global map
frame. Once all the objects have been transformed into the global map frame the node
clusters the objects, for this a clustering algorithm needs to be chosen. One of the most
commonly used methods is to simply base cluster pairing on the distance between ob-
jects, this could be achieved using a density based clustering algorithm such as Density
Based Spatial Clustering of Applications with Noise (DBSCAN). As for computing the ar-
eas there are a two methods which could be used, for a more straight forward area finding
the Minimum Bounding Rectangle (MBR) otherwise something like a convex hull for the
location could be used.

O

Object 2

Ok

Object 1

Figure 4.6: Comparison between convex hull and MBR, the convex hull gets a much more condensed area
compared to the MBR. The MBR is simpler to describe where you would only need width, height and center
coordinates while the convex hull would require storing every single coordinate making up the hull.

The first and the simplest would be computing the MBR, this provides the rectangle
which has the smallest area and contains all the different poses of the object. Another

28 of 72

option could be computing the convex hull for all the poses, this gives a convex shape
which contains all the different poses. This node will make use of the MBR over the
convex hull, the main reason is that the convex hull produces a more complex shape
than what is needed for the use case as can be seen on Figure 4.6. Since all the different
locations are placed in mostly rectangular rooms the MBR should not be able to overlap
into different rooms when computed. It also makes the process of saving the semantic map
more streamlined since we do not need to store a complex shape, instead the location can
simply be stored by saving the width, height and the center coordinates of the rectangle.

4.3 ROS Node Graph

The goal of this section is to give an understanding of the overall system, how each node
talks to each other and what information is retrieved from where and the general output of
each node. There will be two different overviews, one for the semantic mapping pipeline
and for using the semantic map. First we will look at the semantic mapping overview.

29 of 72

4.3.1 Semantic mapping overview

Semantic mapping

node

Output:
Semantic Map

A A A
Subscription
Lookup Service
Transform Request
Y

ROS TF2

Owl Graph

Object Detection
Node
Service:
Infer Location

Transform from
camera to base link

Publishes:

Object Labels
Local Poses

NAV2

Localization
Base Link Transform

Figure 4.7: Overview of the semantic mapping node graph. The root here will the be the semantic mapping
node since this is where all the data from the different nodes are assembled into the semantic map. The
semantic mapping node receives a list of object poses and local coordinates in relation to the frame from the
camera. These local coordinates are transformed to the global map coordinates which is then stored internally
in the node. When the operator thinks enough objects have been recorded the compute location service can
then be called uses the ontology to determine a location and the object poses to estimate geometric area.

The semantic mapping node the central node in the semantic mapping node. As described
in subsection 4.2.4 the node is subscribed to the object detection node which provides a
message with the list currently visible objects and their local pose. The semantic mapping
node then processes the message from the object detection node, all of the detected poses
will be stored locally until finished. The semantic mapping node has an exposed service
which can be called to compute the location area. When called it will go through the
previously mentioned algorithms to first cluster the objects into locations, compute the
MBR of the location and make a service call to the OWL graph to get the location label for
each cluster. When these steps are complete the semantic map is saved and can then be
loaded using the semantic map server.

30 of 72

4.3.2 Context aware navigation overview

Entrypoint

High level command

Y
(NLP Node

.

A
>

A

—

A

Y Y
Navigation Stack OWL Graph node Semantic map server Object detection
Input: Navigation Input: Object or need Input: Location Output: Object label
pose Output: Inferred Output: Navigation and local pose
Output: Goal reached location pose

Figure 4.8: Overview of the main loop for context aware navigation. The entry point for the operator in
this pipeline is the NLP node. The NLP node is connected to the OWL graph node, the navigation stack,
the semantic map server and object detection. The OWL graph is used to infer target locations from the
commands if not directly given in the command. Using the target location the NLP node makes a request
to the semantic map server for the coordinates of the target locations. These coordinates are then sent to the
navigation stack which then navigates to the target location.

For the context aware navigation the root will be the NLP node which subscribes to the a
high level command topic which can be used for the input as seen in Figure 4.8. When an
input is published the NLP node processes the input into a action and a target, 1. step is,
depending on the level of command, the NLP node makes a service request to the OWL
Graph node to infer a location based on the a given target from the input. Once the target
has been inferred the 2. step is the NLP node makes a request to the semantic map server
to get the coordinates for a specific location. Once the NLP node has received a navigation
pose from the semantic map server the 3. step is sending a go to pose request to the
navigation stack which will then handle the navigation to the target location. The 4. and
last step is when the NLP node has confirmation that it is at the location it will use the
object detection to find the target object and bring the target back.

31 of 72

Implementation

This chapter will cover the specific implementation of the algorithms described in chap-
ter 4.

5.1 Semantic mapping

This section explains the implementation of the semantic mapping algorithm. There are
several steps that the algorithm goes through to generate the output, which is a JSON file
containing information

such as "pose", "object label", "object position", and more.

The node starts by initializing the semantic mapping process. It subscribes to several
topics, including object_local_pose and cmd_vel_out. These inputs are used to determine
whether the robot is moving and to transform object poses into the global map frame. The
compute_location is implemented as a service within the node and is not an input topic;
instead, it serves as a callback trigger that finalizes the mapping process when called.

If the robot is not moving, the node looks through the current object’s local pose mes-
sage and transforms the object poses to the map frame. If the robot is moving, it skips this
step. Next, the node checks if the detected object is near an existing one with the same
label. If not, it adds the object to object_poses and object_labels, and the compute location
service is only activated by the mapping, which triggers the compute_location service. If
the object is already near one with the same label, it skips this imaginary step.

Once the object poses have been collected the compute location service can be called where
the object poses are clustered, and each cluster of object labels are passed to the owl_graph
service, which assigns a location label. Based on the location label and the poses of the de-
tected objects, bounding boxes are computed, including their size and centre point. Then,
markers are published, and the bounding boxes are sent to the /location_areas and /lo-
cation_area topics for visualization. The semantic map is then saved as a JSON file. The
node continues running in a loop until shutdown. To better understand the full code, a
flowchart was created based on semantic_mapping_node.py, which can be seen in figure
5.1.

32 of 72

/object_local_pose/ /compute_location/ / /emd_vel_out /

localPoseCallback() service callback cmd_vel_callback()

Y

Is new object Add object

Is robot Initializes near existing one
ose and label
cmd_vel_callback: Semantic mapping (same label)? p
Yes No object_local_pose_callback L List of
Transformed object ~—Yes objects and labels
pose apd label

Set moving flag to Set moving flag to Transform object Skip object Service

true false poses to map frame pose and label /compute_location
T
Manually
True Triggered
Call ontology Cluster object

N [€-Groups objects—
End callback service /owl_graph poses

semantic category
A A

Calculate size | Compute location

Compute center point area

Save semantic map

Figure 5.1: The semantic mapping pipeline. There are three separate callback, cmd_vel callback, localPose-
Callback and computeLocationCallback. The cmd_vel callback keeps track of whether the robot is moving
and sets a flag based on the output. The localPoseCallback is responsible for keeping track of the recorded
object poses and labels, in this process it adds objects while the robot is not moving. When adding new objects
it checks whether the new object is near an existing recorded object it skips it otherwise it adds it to object
poses and labels. Lastly is the compute location callback, when this is called it takes the list of object poses
and labels and process them into a semantic map.

5.1.1 Object Detection output processing

As described in subsection 4.2.4, the first step is to process the message received from the
object detection node. Where the implementation of object detection in the algorithm is
to get some input data from the camera intrinsic parameters node, the input data fetched
from the camera is the following includes the RGB image frame, depth image, and camera
intrinsics (fx, fy,cx,cy). The depth image is used to determine the distance to an object,
which is denoted as the Z-axis in the camera coordinate frame. The RGB images pass
through the Mask2Former model with “Swin-large-ade-panoptic”, which extracts the in-
formation and outputs the objects and labels. This is used for environment classification

33 of 72

and to find the pose of the object. Camera intrinsics (fx, fy,cx, cy) are used for this pur-
pose. By looking into the 3D point estimation using the intrinsic parameters and Depth.
Given a pixel coordinate (u,v), a depth value Z, and camera intrinsics fy, f;, cx, ¢y, this can
compute into the 3D point (X,Y,Z) in the camera coordinate frame using the following
transformation:

(u—cy)-Z
X u T
Y|=7-K|o| = |l=2)Z
fy
Z 1 7

Where:
* (u,v) is the 2D pixel location in the image
* Z is the depth value at that pixel
* fx, fy are focal lengths in pixels
* cy,cy are the optical center coordinates

To better understand what happens when running the panoptic segmentation node, an
algorithm table which shows the pseudocode of the algorithm [1] can be seen, and a flow
chart in the appendix show how everything works together A.1.

34 of 72

Algorithm 1 panoptic segmentation node

Require: RGB image frame, depth image, camera intrinsics (fx, fy, cx, cy)
Ensure: Updated segmentation image and object poses
1: (objects, labels, image) <— DETECTOBJECTSFROMCAMERA (frame, depth_map)
. environment < CLASSIFYENVIRONMENT(labels)
: fused_objects <— FUSEDETECTIONS(objects)
: for all obj in fused_objects do

(xmin/ Ymins Xmax,]/max) — Obj-bbox

2
3

4

5

b: (u,v) « ("mm; Ximax) , (ymin;ymx)
7

8

9

d < obj.distance
if d # None then
X< (u—cx)-d/fx

10: Y < (v—cy)-d/fy

11: Z <+ d

12: obj.position + (X,Y,Z)
13: end if

14: end for

15: ANNOTATEIMAGE(image, environment)
16: initialize pose_msg

17: for all obj in fused_objects do

18: if obj.position is valid then

19: APPENDPOSETOMESSAGE(pose_misg, obj.label, obj.position)
20: end if
21: end for

22: PUBLISH(pose_msg)
23: return resized annotated image

The algorithm table [1] panoptic segmentation node goes through the following steps.

1. Use the RGB frame and depth map to detect objects and get their labels and a seg-
mentation image.

2. Classify the environment based on the detected object labels.

3. Annotate the segmentation image based on the classified environment.
4. Initialize a new message to hold object poses.

5. For each fused object:

(a) If the object has a valid position, append its label and position to the pose
message.

35 of 72

6. Publish the pose message.

7. Return the resized and annotated segmentation image.

To detect all the objects in the environment, the robot is moved around the room while
continuously capturing RGB and depth images from its camera. These images are pro-
cessed by the panoptic segmentation node, which detects objects, assigns labels, and es-
timates 3D positions. However, not all detections are recorded. Object poses are only
considered when the robot is standing still. This is to avoid errors caused by motion blur
or localization drift during movement. When the robot stops, the assumption is that the
localization is more accurate, and the detection results are more reliable.

Each time the robot stops, the segmentation node runs and outputs a list of detected
objects. For each object, the center of its bounding box is used to extract a depth value
from the depth image. This depth, combined with the camera intrinsics, is used to calcu-
late the 3D position of the object in the camera frame. The result is then transformed to the
map frame using the robot’s current pose estimate. The output is published as a message
that includes the object labels and their corresponding 3D poses.

The task of checking for duplicate objects is handled later in the semantic mapping node.
To avoid recording the same object multiple times from different angles, the system com-
pares new detections with previously stored ones of the same label. If a new detection is
within a defined distance threshold (€) of an existing object, it is treated as the same object
and skipped. This filtering helps maintain a clean and consistent map, even as the robot
views objects from various perspectives.

Over time, as the robot explores the space and stops at different locations, a fuller and
more complete map of the environment is built.

The final output of the detection pipeline consists of:
* A list of 3D poses representing the detected object positions in the map frame.

¢ A corresponding list of object labels (e.g., “chair,” “table,” “bottle”) describing the
detected objects.

These two lists are passed to the semantic mapping pipeline for clustering, categorization,
and publishing of the semantic map.
5.1.2 Clustering objects

When the system has all the objects in the environment it needs to figure out which objects
are connected to correctly infer the location. To do this a clustering algorithm is imple-
mented, as mentioned in subsection 4.2.4 the choice of clustering algorithm is a version of

36 of 72

DBScan which takes into account the map. It has the parameters € which describes the
max distance between points and minimum amount of data points in the cluster needs to

be decided.

The steps this clustering algorithm makes is the following:

1.

2.

9.

10.

Go through each object pose and find the neighbours based on e

For each neighbour check if there is an obstacle inbetween, remove any neighbors
with an obstacle inbetween.

If there are less than min_samples label as noise, otherwise give it cluster id cid
Go through seeds which are the neighbours to the start object pose

For each seed, check for objects which has not been visited and within e distance of
the seed.

Repeat step 2-5 until all poses have been visited.

Go through the list of poses and find entries which has the same cid, append object
pose and object label to separate cluster and cluster label lists.

Append cluster and cluster label lists to a list containing all clusters and a list con-
taining all cluster labels.

Repeat for all clusters

Return the list of all clusters and the list containing all cluster labels.

All of these steps are are described in the the pseudo code described in algorithm 2.

37 of 72

Algorithm 2 Map-Aware DBSCAN

Require: poses, object_labels, e, min_samples, optional map
Ensure: clusters of poses and their labels
1: initialize all points as unvisited, label = unclassified, cid < 0
2: for all point 7 in poses do
3: if not visited[i] then

4: visited[i] < true
5: 1 <— REGIONQUERY(i, €, map) > Returns a list of all the neighbours
6: if |n| < min_samples then
7: label[i] + noise
8: else
9: label[i] < cid
10: seeds < n
11: while seeds not empty do
12: current < seeds.pop()
13: if not visited[current] then
14: visited[current] « true
15: m <— REGIONQUERY(current,e, map)
16: if |m| > min_samples then
17: add unseen elements of m to seeds
18: end if
19: end if
20: if label[current] == noise then
21: label[current] < cid
22: end if
23: end while
24: cid + cid +1
25: end if
26: end if
27: end for

28: return clusters and object labels

The way this implementation of DBSCAN is augmented compared to the standard
version is the ability to check the visibility between object poses. This is achieved through
the algorithm called Bresenham’s Line Algorithm which can be seen in Figure 5.2.

38 of 72

Position 2

O

O

Position 1

Figure 5.2: The Bresenham Line algorithm. It takes two position described with real world coordinates and
computes the grid squares which form a line between the two points.

The purpose of this algorithm is to take the two poses, which in this case are the
two object poses, and compute the line between them. The problem is the error between
the poses needs to be essentially projected onto the grid which is what the algorithm 3
describes.

39 of 72

Algorithm 3 Check Line-of-Sight Between Two Grid Cells

Require: (xo,Y0), (x1,¥1) > Grid cell coordinates
1: width, height > Grid dimensions
2: grid_data > Flattened array of size width x height
3: wall_threshold > Value indicating obstacle

Ensure: true if clear line-of-sight; false otherwise
4: function BRESENHAM_LINE(Xy, Yo, X1, Y1)
5: dx < |x1 —xo|, dy <+ |y1 —yol

6 sx< (vo<x1)? +1:-1
72 sy<+ (Yo<wy1)? +1:-1
8: err < dx —dy
9: X< X0, Y Yo
10: points < []
11: while true do
12: append (x,y) to points
13: if x = x; and y = y; then break
14: end if
15: e2 <2 xerr
16: if e2 > —dy then
17 err <—err —dy; X <= x+sx
18: end if
19: if 2 < dx then
20: err <—err+dx; y<y+sy
21: end if
22: end while
23: return points

24: end function

40 of 72

Cluster 2 Cluster 1

Figure 5.3: Clustering using the map aware DBSCAN described in Algorithm [2], object poses are recorded
in two adjacent rooms and clustered. Objects in the two separate rooms does not end up in the same cluster
since the algorithm checks whether there is a wall between them.

As can be seen in Figure 5.3 there are two sets of clusters in each room, if a standard
DBSCAN algorithm would be used in this case the two clusters would end up in the
same cluster which is not desired. Incorrect clusterings potentially leads to wrong location
estimations based on the object labels. To fix this issue the clustering algorithm needs
to account for the wall between objects. This can be done by passing in the map in the
algorithm and use information such as the resolution of the map to link specific cells to
the specific poses and computing the Bresenham line between two points as previously
described. By making the algorithm aware of the obstacle between objects in the two
rooms incorrect location estimations are avoided. Then the task is simply when adding
another pose to the cluster, it checks whether the closest node object is to a wall which
separates into a new cluster.

5.1.3 Location area estimation

As described in subsection 4.2.4 the area is computed using a MBR, the specific implemen-
tation does not find the orientation of the rectangle which provides the absolute smallest
area.

41 of 72

Algorithm 4 Minimum Bounding rectangle

Require: Cluster of 2D points C = {(x1,v1), (x2,Y2),---, (Xn, Yn)}
Ensure: Width, height, and center of the bounding box
* Xmin < min(xi ’ (xi,]/i> € C)

Xmax < max(x; | (x;,y;) € C)

Ymin < min(y; | (x;,y;) € C)

Ymax < max(yi | (xi/yi> € C)

width < Xmax — Xmin

height < Ymax — Ymin

centery + W

center, < 7%““?“‘“

return (width, height, centery, center,)

[a=y

As seen in Algorithm [4] the input to the location area is simply a cluster of object
poses. The goal of algorithm is the find the width, height and the centre coordinates of the
area. To do this it simply find the minimum and maximum points in the x and y-axis of
the clusters. Once the maximum and minimum values have been found by simply finding
the width and height to difference between the max and min on the different axes, and
lastly finding the centre position by finding the average of the two. This is repeated for
every cluster found in the object layer, each location is then saved in a JSON file as the
semantic map, which can then be reconstructed by the semantic map server.

5.1.4 Location inference

This section will cover the location inference performed by the owl graph node. The knowl-
edge graph is built in python using the OWL framework owlready2 with the structure
described in Figure 4.4. When the node receives the service request to infer the location it
can either receive an input of a list of object labels in the context of semantic mapping or
a specific object or need in the context of navigating to specific locations. In the context of
semantic mapping the node processes each object label one at a time where it essentially
looks up in the built knowledge graph for instances where the label is the same. Based on
which locations the objects are defined to be in it increments a counter for each location.
As an example, if the node receives the label "chair" it can infer from the knowledge graph
that the chair can be both in office and kitchen but not in the bedroom. Therefore the
counters for the kitchen and office are incremented while the bedroom count remains the
same. If the next object label is fridge the knowledge graph infers that the location can
only be the kitchen and therefore the kitchen counter is incremented. If the object label is
not defined in the knowledge graph the node will not increment anything. Once all the
object labels in the input has been processed a label is returned based on which location
counter is the largest. The described algorithm can be seen in algorithm 5 and can be used
for both semantic mapping and context aware navigation.

42 of 72

Algorithm 5 Ontology-Based Location Inference

Require: List of input labels E = [e1, ey, . .., €]

Ensure: Most likely inferred location or fallback message

1

10:
11:
12:
13:

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

: Initialize dictionary L <

: foralle € E do
for all object 0 € Object.instances() do
if 0.name equals e then
for all location loc € 0.R do
L[loc.name] < L[loc.name] + 1
end for
end if
end for
end for
if L is not empty then
return location with highest count in L
end if

> Counts of inferred locations
> — First pass: match Objects directly —

> — Fallback: match Needs, then find Objects that fulfill them —

Initialize list N < |,]
foralle € E do
for all need n € Need.instances() do
if n.name equals e then
Append n to N
end if
end for
end for
forall n € N do
for all object 0 € Object.instances() do
if n € o.fulfills then
for all location loc € 0.R do
L[loc.name] < Ll[loc.name] + 1
end for
end if
end for
end for
if L is not empty then
return location with highest count in L
end if
return "No locations inferred."

> Matched needs

43 of 72

5.2 Context aware navigation

In the context aware navigation part of the system the main component is the NLP Node
which connects everything together.

/high_level_command

NLP Node

Command_callback

Process command

Location String——————————————————= = =3t -

Y

Input: Location string

Need
String

If level of command
is...

Infer Location ~ |€— Location Lookup Location | OutputLocation Pose

@
=
5
@
A

A A

Object String Location String

Input: Need or object string

Output: Location String
Go to Pose action call

y

Owl Graph Node Nav2 Stack

Figure 5.4: Context aware navigation flowchart. The NLP node subscribes to the high level command topic,
the callback processes the command and depending on the level of action looksup the location from the map
server. If the command is level 3 or 4 it first infers the locations first before looking up the location. Once it
has the location pose it send a go to pose action call to the NAV2 stack.

As can be seen in the Figure 5.4 the operator starts the context aware navigation
through the topic high level command topic. The command is processed and identified as
one of the four commands described in Table 2.3. Depending on the level of the command
it makes calls to the map server first or the owl graph node for the location string and then
the map server. Once the location pose has been retrieved from the map server it send an

44 of 72

go to pose action call to the NAV2 stack.

5.2.1 NLP node

As described in 4.3.2, the robot must interpret high level commands from the user and
turn them into navigation commands for the robot. To achieve this, an NLP node is im-
plemented which makes use of the NLP framework spacy for interpretation. As described
in section 3.2 this node needs to be able to handle up to level 4 commands, therefore the
node needs a method to identify the expected keywords in each level of command. The
spacy framework provide different attributes for each word in the given input, this will be
the basis for how the keywords in different levels are found.

Level 1

As described in section 2.4 this command will simply be telling the robot to go to a specific
location. The different components the node looks for at this level is simply an action and
a location. To find the action the node looks for words which are verbs, this is words such
as "go, navigate, move" etc. For the location the node looks for a noun, for the location
specifically however the node keeps a table of the possible locations it can go to. Once a
noun has been found the node checks whether it is part of the known location list, if found
it can then send a request to the map server for the navigation pose. The reason the node
has to keep a table of the possible locations is apparent when trying to process the level 2
command.

Level 2

For the level 2 command there are three keywords the node looks for, the action, the
location and the object. The problem here is that both the object and the location will
show as nouns which is why it needs to have the table of known locations. This way the
node is able to recognize the difference between locations and objects.

Level 3

For the level three the procedure is almost the same as level 1, in this case the node looks
for an action and a object. For this command the system needs to infer the location to
navigate to through the knowledge graph.

Level 4

For the level 4 command the robot needs to be able to establish a need from the command
and infer an object and a location from that specific need. While needs are often described
using an adjective such "hungry, thristy" etc. This is not the only way to describe a need,
it can also be described as essentially wanting to perform a specific action. Consider the

45 of 72

following input "I want to cut a piece of paper". Humans will understand this command
as they need something which can cut a piece of paper but there are not adjectives in this
command so there are two methods which needs to be used to make sure the node capture
as many needs as possible. The way to find a need in this format is to look at the verb
and nouns again, the most common structure of the sentence will be a verb describing the
action the user wants to take and the object they want to perform the action on. Therefore
the node looks specifically for a verb followed by a noun and uses the base form of the
verb as the specific need keyword.

Command Parsing

As can be seen in algorithm 6 the node processes the same input through all four of the
different levels. Essentially what each of levels do is they take the input and check for the
previously described keywords expected in each level. If the keywords are not present in
the input it simply returns an indication that there is no output for that speecific level.
In the case of the level 2 input there are some complications since the expected keywords
of a level 1 and level 3 are subsets of the expected keywords of level 2. Therefore if the
command has the necessary keywords to classify it as a level 2 command it also qualifies
for level 1 and 3. To solve this issue A slight change in the ordering of the commands
was implemented. Essentially the first level being checked is level 2, if it has the necessary
components the command is then processed.

46 of 72

Algorithm 6 Analyze Command Across Four Levels

Require: input command text T
Ensure: predicted level ¢ and output string R
1: A < extract_action(T)
2: L <+ extract_location(T)
3: O < extract_object(T)
4: N < extract_need(T)
5: ,R < None, “Unable to parse command” > Try each parsing level in priority order
(2,1,34)

6: if AZQDANL #QDANO # @ then
7: £+ 2

8 R< Al [[L]>,>[O

9: else if A # DAL # @ then

10: {1

11: R+ A|",’|L

12: else if O # @ then

13: (<3

14: R+ O

15: else if N £ @ then

16: {4

17: R « “Recognized need: ” || N
18: end if

19: return (¢, R)

5.2.2 Navigation

To run this section of navigation, three things happen first: a JSON file is outputted
from semantic mapping pipeline which contains all the known locations and their coor-
dinates. When the NLP node receives the location pose from the location lookup it sends
it toNavigation2 (NAV2) in order to move the Tiago base robot from its current pose to
location. The NAV?2 is a version of the ROS 1 move_base stack, which enables the mobile
robot to navigate in an environment autonomously. NAV2 allows the robot to:

¢ Plan a path to a goal pose (x,y, theta)
* Dynamically avoid obstacles
¢ utilize the maps for localization and path planning

¢ Perform smooth motion control to follow the path

47 of 72

Test setups and results

This chapter aims to test the different components of the system. It will be split up into a
section talking about the test setups and a section which presents the results of the test. A
link to videos of the testing can be found in the preface.

6.1 Test Setups

This section describes the test setups, first there will be component tests which evaluates
the performance of the different components of the pipeline. Lastly will be system test
where the performance of the system on the use case described in section 2.4.

6.1.1 Test 1: Object Detection

For semantic mapping to work properly it requires the object detection to work properly
as a wrong label will lead to a wrong estimation of the location. In addition to this the
pose estimation will also be evaluated, more accurate pose estimation of the objects will
give a more accurate location estimation.

Goal of the test

1. Evaluate the accuracy of the object detection

Test Setup

The environments are setup such that there are a few different objects at each location, the
robot should then move around at each location to find as many of the present objects.

48 of 72

Bedroom Office Kitchen

Objects Present L

Objects Present Sgcr:)in 2. Objects Present 3.
Sofa
Bed Keyboard Chair
" etc.
Pillow Table
etc. Cabinet

etc.

@

Figure 6.1: Test setup for the object detection test. There are the three locations which have different objects,
the robot will move to each of these locations and find as many of the present objects.

Protocol

The robot is loaded into the prebuilt environment where the position and objects are
known.

1.

Place objects in the simulation environment
Make a list of objects present in each location
Start the object detection node

Move the robot around the location

Record detected object labels

When the camera have been placed at locations such that all objects had the oppor-
tunity to be seen move to the next location.

Repeat until all locations have been covered

Evaluation

Before the test is made a ground truth list of the objects are recorded, this is based on the
location in the simulated environment. Once this has been established and a list of detected

49 of 72

object have been made it will be compared with the ground truth. Each data point can
have one of three values, either it successfully found the object, it missed the object or a
false positive which means it found a label which was not defined in the ground truth.
The success of the test will be based on the results for each location.

6.1.2 Test 2: Keyword Extraction

The keyword extraction mainly uses the transformer model BERT. To work properly, it
requires the Tiago base robot to understand the inputs of the user. First, it needs to
understand the action and then understand the target for the action. When the user gives
the robot "fetch me a glass of water", in this case, the action would be “fetch” and the
target action would be “glass of water”.

Goal of the test

1. Evaluate the NLP node’s ability to extract the correct keywords.

Test Setup

25 commands for each level is prepared along with a list with the expected keywords
the NLP node should output. Then each command is processed and compared with the
expected value.

Command Extracted Keyword

Level 1: Go to the kitchen —— ——» Level 1: go,kitchen

Level 2: Go to t.he kitchen __| ——>» Level 2: go,kitchen,glass
and bring a glass

NLP Node

Level 3: Bring me a glass —— —> Level 3: bring,glass

Level 4. I'mthirsty — L3y Level4: thirsty

Figure 6.2: Test 2 setup. A list for each level of command is made and processed by the NLP node. This
outputs keywords which are different for each level. These keywords are compared with a ground truth and
estimated to be correct or wrong.

Protocol

The robot is loaded into the prebuilt environment where the position and objects are
known.

50 of 72

1. 25 commands for each level is prepared, 100 in total along the expected keywords
for each command.

2. Input a command and process it
3. Compare the outputted keywords with the expected keywords

4. Repeat 2 and 3 for all prompts in each level

Evaluation

The test will be evaluated based on the amount of correct keywords the algorithm extracts
from the different level of commands up to level 4.

6.1.3 Test 3: Location Inference

The location inference looks into how ontology utilizes keyword extraction in order to
build the Knowledge graph so the robot can understand the context and actions which
been given and made into instructions.

Goal of the test

1. Evaluate the accuracy of the location inference

51 of 72

Test Setup

Input 1
Location: Office

Screen _—

Book
Chair) Outp.ut 1:
Office
Input 2
Location: Bedroom
Cushion —_— OWL Graph Node |, Output2:
Bedroom
Bed
Sofa
Input 3 Output 3:
Location: Kitchen —> Kitchen
Stove _—

Table
Chair

Figure 6.3: Test 3 Setup. There are three different inputs for each of the locations, where an input is a list of
objects expected to be in that environment. The input is processed by the OWL graph node which outputs a
location based on the objects in the input list.

Protocol
1. Start up the simulation
2. Move the robot around the different rooms
3. Record the object labels
4. Cluster the objects
5. Infer a location based on the object labels in a cluster

6. Compare inferred location with expected location

Evaluation

The success of this test will be based on whether it as able to correctly infer the locations
based on the objects seen in the environment. The inferred location will be compared with
the ground truth, if all the inferred locations as the same as the ground truth the test will
be considered a success.

52 of 72

6.1.4 Test 4: Semantic mapping

The semantic mapping node uses all the data from the different nodes to assemble into
the semantic map. Which receives record all inputs from object detection node, locate
the objects in the global map frame, and then it cluster the objects into specific locations,
Compute the areas covered by the clusters and at the end Infer the location based on object
labels.
Goal of the test

1. Evaluate the accuracy of the Object Location relations

2. Evaluate the accuracy of the Localization in the existing map

3. Evaluate the accuracy of the Object Labels and relative position

Test Setup
The robot will move around the simulation while calling on the semantic mapping node
to identify the object and its location of the object. Then look into the NAV2 for the
localization in the existing map. In the end object labels and relative position will be
tested.
Protocol

1. Start up the simulation
Move the robot around the different rooms
Record the object labels
Cluster the objects

Infer a location based on the object labels in a cluster

Compare location with ground truth

N o @k e DN

Compare location Object Labels and relative position

6.1.5 Test 5: Command execution

This test of command execution would mainly look into how the full system execute the
given action through using keyword extraction and ontology.

Goal of the test

1. Evaluate the full systems ability to handle the different levels of comamnds.

53 of 72

Test Setup

The robot will be placed at any position in the simulation environment, from this point the
robot needs to be able to move to each of the locations using all four levels of commands.

Protocol

1. Start up the simulation.
2. Load the semantic map into the semantic map server.
3. Give the system a level 1-4 command for each room.

4. Note the end pose of the robot at the end of the navigation.

Evaluation

The robot will be evaluated on whether it reaches the desired location, it does not have to
specifically be the goal pose retrieved from the semantic map server but simply somewhere
within the estimated location area.

54 of 72

6.2 Test Results

This section will cover the test results, data collected according to the protocol described
in section 6.1 will be presented here and an evaluation of the test will be presented.

6.2.1 Test 1: Object Detection

Object Detection Results per Room

Bl Correctly Detected
| - Missed (in GT, not detected)
EEm False Positives (detected, not in GT)

Count

bedroom kitchen office

Figure 6.4: Object detection test results. Three different things were collected here, first the number of correct
object detections compared with the pre established set of objects in each locations, this is represented by the
blue color. The orange color describes the number of objects which were present in each location but not
detected by the object detection. Lastly the green color represents objects detected which were not established
to be in each location.

As can be seen in Figure 6.4 the object detections had a very inconsistent performance.
The most success were found in the kitchen area where only a single object were not
seen and a single false positive out of the seven different objects described to being in the
environment. The location where the object detection were least successful were the office
locations where the majority of the different objects were not detected and about four false
positives. Lastly the bedroom had a 50/50 split between correctly detected and missed
objects with about 2 false positives.

55 of 72

6.2.2 Test 2: Keyword Extraction

Parser Test Results

I Pass

Number of Cases

2 3
Test Level

Figure 6.5: The results for test 2

As can be seen in Figure 6.5 the system does a good job of detecting the different kinds of
commands the user could give. Specifically level 2 and 3 the system performed well with
about 84% and 92% accuracy respectively as can be seen in Table 6.1. Level 1 and 4 did
not get the best results with 48% and 55% respectively.

Level | Pass | Fail | Accuracy
1 12 13 | 48%
2 21 4 84%
3 23 2 92%
4 10 8 55%

Table 6.1: Test 2 results
6.2.3 Test 3: Location Inference

Based on the objects found in test 1 it can infer the location based on objects in the envi-
ronment It also successfully infers location based on specific needs.

56 of 72

Test | Object labels Inferred | Expected
tv stand, trashcan, sofa,

bedroom, pillow, lamp

refrigerator, sink, cabinet,

chair, table, can,

screen, keyboard, mouse, mousepad,
speaker, book, paper,

bowl, cup, pen,

swivel chair, phone, desk,

Bedroom | Bedroom

Kitchen Kitchen

Office Office

Table 6.2: Results of test 3. The location inference was able to correctly estimate all three locations with the
given object labels.

As can be seen in Table 6.2 using the objects established in test 1 it finds bedroom,
kitchen and office correctly.

6.2.4 Test 4: Semantic Mapping

e

]

ir*s S I

(a) The output of the semantic mapping algorithm. (b) The ground truth mapping of the locations.
The algorithm found the three locations, bedroom is
blue, yellow is the office and green is the kitchen.

Figure 6.6: Comparison between the output of the semantic mapping pipeline (a) and the established ground

truth placement of the locations (b).

As can be seen in Figure 6.6 the semantic mapping output was able to be fairly accurate in
the mapping of the locations when compared with the ground truth defined in Figure 6.6
(b). While the locations are placed at the correct locations they do not quite fill out the

57 of 72

room as depicted in Figure 6.6. This is somewhat expected, as while humans understand
it as the whole room is the location, the semantic mapping method will only try to find
the area which contains all the detected objects. The clustering did well in separating
the different rooms however there are some issues with this implementation. Consider the
kitchen area where there is a countertop with a sink in it. While the object detections could
see the sink and locate it, the pose of the sink would be behind the mapped wall, which
in reality is the countertop. So when the algorithm tried to add the sink to the kitchen
cluster, it simply were excluded due to the line between the closet cluster object and the
sink would not be clear of obstacles. Overall the semantic mapping test is considered a
success, but there are a few points which could be addressed.

6.2.5 Test 5: Command Execution

This was the full system test, as long as the input were correctly processed it was able to
handle the four different levels. One occasional issue it had was the navigation goal for
each location. Since we're currently just going for the center of the location there are times
where the navigation goal would be inside an object.

Level 1 | Level 2 | Level 3 | Level 4
Office v v v v
Kitchen v v v v
Bedroom v v v v

Table 6.3: Test 5 results. As can be seen the the system were able to navigate to the three different locations
through the use of the different levels of command.

As can be seen in Table 6.3 the robot was able to navigate to all the different locations
using the different levels of command. There were specific locations however where the
robot had an easier time navigating to, specifically the office location where much more
accessible for the robot as there were nothing placed in the middle of the location area.
The bedroom and kitchen however were more trouble some as objects and obstacles were
placed near the centre of the location which means occasionally the robot had a hard time
moving to the exact spot it wanted. While all test are considered successful this is in the
sense that it always ended the navigation in the room.

58 of 72

Discussion

This chapter will cover the discussion of the project, it will reflect over the test results for
the different components and the overall system tests.

7.1 Test results

This section will cover the discussion of the test results. This covers the reflection over
the result, where it succeeded and where each component fell short and potential reasons
why it fell short.

Object detection

While the object detection did not have the best results with regards to detection objects
correctly the system were still able to perform correctly. But why is it the case that it did
not perform so well in the test. The first reason could be the simulation environment,
while there it was attempted to recreate a real environment there still was a distinct lack of
real world features. Specifically, there was a lack of colour and generally different colours
in the environment and of the different objects, respectively. The office location which had
the largest amount of missed objects also had the largest amount of smaller object, such as
phones, cups, books, etc. These smaller object can be particularly hard to detect, especially
in a featureless environment. There were also a number of cases where the object detection
fuses multiple objects into a single object, an example of this is the object "computer”. A
computer have many different components which add up to the full system, this includes
objects such as a screen, keyboard and mouse, all objects which were included in the
ground truth of the objects it could detect. These objects, however, were often fused into
a single object of a computer, which makes the results of the test indicate that it missed
more objects than it really did.

Other reasons for the model mislabelling or not detecting the object in the environment
are highly likely due to the dataset used, which was the large base COCO dataset. This
COCO dataset, even if it has similar label objects to the ones used in the simulation envi-
ronment, does not have the exact same objects in terms of colour, texture, length, height,
etc. This resulted in mislabelling or completely missing the object because the model could
not recognize it due to different features, even though the model had a label for that object.

Natural Language processing

While the NLP component did well on the test there are still alot of issues which needs to
be addressed. First of all the way the logic is built leaves very little room for ambiguity

59 of 72

in the command inputs it can take. Of the shortcut that had to be made in it was first to
distinct between objects and locations. Since a locations such as kitchen and object such
as glass are both nouns it runs into the issue of both being able to be labelled as an object.
To avoid this happening the NLP module was augmented with a list of possible locations
which would be used when checking if a noun was a location. This adds more configu-
ration and issues with scalability which the system already suffers from. In addition to
that workaround it also had issues with ambiguous inputs in level 1 and 4 commands,
specifically different ways to describe the action. Currently it relies on a verb being used
to describe the action to take, however in some cases humans would use an input like
"head into the kitchen" where the action is described used nouns.

Knowledge graph

While the knowledge graph test were successful there are some more underlying issues
with this part of the implementation, specifically in scalability. Adding new objects or
relations is creates exponentially more setup for the pipeline to work in different environ-
ments. If the environments and relations between objects in those environment remain
small in size this implementation of the knowledge graph should be fine but if more com-
plex tasks needs to be solved another method should be considered.

Semantic mapping

Overall the semantic mapping pipeline fulfilled the base requirements of being able to
find identify the locations and their placement in the environment. There still are some a
few workarounds which could be improved upon as mentioned in subsection 6.2.4. The
current implementation requires the robot to stand still to record the poses of the objects in
the environment which differers from other mapping algorithms such as the conventional
SLAM implementations where the mapping happens more seamlessly.

Context aware navigation

While the system was able to perform the context aware navigation using the different
levels of commands there are still some navigational issues which has not been account
for. The current implementation still only receives the centre coordinates of each area
which could potentially result in issues for the robot. Consider the kitchen area where
the dinner table is often placed in the middle of the room, this results in when the robot
retrieves the pose for the kitchen area it would evidently try to navigate into the middle
of the table resulting in a failed go to pose task. Also the issue of finding the objects have
not really been explored, this means when the robot reaches the location if the object is
not in sight of the robot it will not be able to find a local goal pose to move into range of
the grasping.

60 of 72

7.2 Future work

This section will cover potential future works in the project, this could be changes to
improve the performance in areas not covered in this report.

Object detection

There are a few things that could be improved in future work. First, using a more realistic
simulation environment with better lighting, more textures, and more variation in colours
could help the model detect objects more accurately. The current simulation lacked many
of the real-world features that would normally help object detection. Second, using a
custom dataset that matches the simulation objects more closely would likely improve
results. The COCO dataset has similar labels, but the actual objects look different in terms
of size, shape, colour, and texture. Training the model on examples that look more like
the ones in the environment would help it recognize them better. Lastly, better handling
of compound objects like computers (which include screens, keyboards, and mice) could
improve the accuracy of the detection results. Right now, the model tends to fuse these
into a single object, which makes the test results look worse than they actually are. One
solution could be to train the model to detect the smaller parts individually and then
group them logically afterward.

Natural language processing and knowledge graph

While the NLP module and knowledge graph was successful in completing the test made
in this project there still is a question of scalability. As described in subsection 5.1.4,
to build the knowledge graph every single object, location, need and relation between
different object had to be manually defined. While this approach works for simple object
relations and a limited scope on the environments, more locations, objects and even a
larger semantic understanding of the environment can quickly get out of control.

The same can be said for the NLP component, it did a good job on the the different levels
of commands, in the same manner as the knowledge graph the scalability

Semantic mapping

For the semantic mapping part, there are still improvements that could be made to the
current pipeline. Right now, the robot has to be standing still to record the object poses,
which limits how flexible the mapping process is. Future work could focus on making
the system work more like traditional SLAM methods, where mapping can happen while
the robot is moving. This would make the process faster and more efficient. Some of the
workarounds mentioned earlier could also be improved or removed with a more advanced
mapping system. The current location estimation could be slightly improved as well, the
current implementation does not account for the orientation of the area which lead to a

61 of 72

slight difference between the estimated ground truth and the output of the location area.
The choice of MBR as the location estimate still seems like the optimal choice for both
storing the location and as the estimated area. It could potentially lead to issues if the
room is not rectangular but this is an edge case which should not be a common occurrence.

Context aware navigation

As for context aware navigation, one of the main problems is that the robot only receives
the centre pose of each area. This can cause navigation issues, especially in rooms with big
objects in the middle, like kitchen tables. In these cases, the robot might try to go straight
into the table, which causes it to fail the task. A better system would be to provide the
robot with a set of valid poses or an area to move within, rather than just a single point.
Also, object search and discovery could be improved. Right now, if the robot reaches a
location and can’t see the object, it won’t try to search for it or adjust its position. Adding
a local search strategy to find objects that are not in direct view would make the system
more reliable in real-world use.

62 of 72

Conclusion

The goal of this project was to develop a context-aware navigation system that allows a
service robot to perform navigation tasks based on human input. This was achieved by
building a pipeline that integrates semantic mapping, natural language processing, and a
navigation stack. The semantic mapping was able to detect and localize objects in the en-
vironment, cluster them into areas, and assign scene labels using ontology. The NLP node
successfully extracted commands and translated them into actions and targets, which were
then used by the navigation system to guide the robot.

The system was tested in simulation and was able to complete several levels of commands,
such as moving to specific rooms or searching for objects. However, some limitations were
found during testing. For example, the robot could only record object positions while
standing still, and navigation relied on static center coordinates, which sometimes caused
collisions with furniture. Also, object search behaviour was not included if the target was
not in direct view.

Overall, the system showed that it is possible to use human context and semantic in-
formation to guide a robot’s actions in a structured environment. The results indicate
that this approach can be extended with improvements such as continuous object map-
ping, smarter pose selection, and more flexible object search strategies. These areas would
help make the system more robust and closer to being used in real-world service robotics
applications.

63 of 72

Bibliography

[1]

3]

[4]

European Parliament et al. Industry 4.0. European Parliament, 2016. por: doi/10.
2861/947880.

European Commission et al. Industry 5.0, a transformative vision for Europe — Govern-
ing systemic transformations towards a sustainable industry. Publications Office of the
European Union, 2021. por: doi/10.2777/17322.

Grace Titilayo Babalola et al. “A systematic review of collaborative robots for nurses:
where are we now, and where is the evidence?” In: Frontiers in Robotics and Al 11
(2024). 155N: 2296-9144. por: 10 . 3389/ frobt . 2024 . 1398140. URL: https: //wuw .
frontiersin. org/journals/robotics-and-ai/articles/10.3389/frobt.2024.
1398140.

International Federation of Robotics. Serivce Robots. URL: https://ifr.org/service-
robots/. (accessed: 21.03.2025).

Amit Kumar Pandey and Rodolphe Gelin. “A Mass-Produced Sociable Humanoid
Robot: Pepper: The First Machine of Its Kind”. In: IEEE Robotics & Automation Mag-
azine 25.3 (2018), pp. 40-48. por: 10.1109/MRA.2018.2833157.

Jordi Pages, Luca Marchionni, and Francesco Ferro. “TIAGo: the modular robot that
adapts to different research needs”. In: 2016. URL: https://api.semanticscholar.
org/CorpusID:218478582.

David Fischinger et al. “HOBBIT - The Mutual Care Robot”. In: Nov. 2013.

Melonee Wise et al. “Fetch Freight : Standard Platforms for Service Robot Applica-
tions”. In: 2016. URL: https://api.semanticscholar.org/CorpusID:42886148.

SoftBank Robotics. Pepper. URL: https://us . softbankrobotics . com/pepper. (ac-
cessed: 01.04.2025).

PAL Robotics. TIAGo. URL: https://pal-robotics.com/robot/tiago/. (accessed:
20.03.2025).

U.U. Samantha Rajapaksha, Chandimal Jayawardena, and Bruce A. MacDonald.
“ROS Based Multiple Service Robots Control and Communication with High Level
User Instruction with Ontology”. In: 2021 10th International Conference on Informa-
tion and Automation for Sustainability (ICIAfS). 2021, pp. 381-386. por: 10 . 1109/
ICIA£552090.2021.9606062.

Christian Tamantini et al. “A Robotic Assistant for Logistics and Disinfection in
Health Centers”. In: Jan. 2021.

Markus Bajones et al. “Results of Field Trials with a Mobile Service Robot for Older
Adults in 16 Private Households”. In: |. Hum.-Robot Interact. 9.2 (Dec. 2019). port:
10.1145/3368554. URL: https://doi.org/10.1145/3368554.

64 of 72

https://doi.org/doi/10.2861/947880
https://doi.org/doi/10.2861/947880
https://doi.org/doi/10.2777/17322
https://doi.org/10.3389/frobt.2024.1398140
https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2024.1398140
https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2024.1398140
https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2024.1398140
https://ifr.org/service-robots/
https://ifr.org/service-robots/
https://doi.org/10.1109/MRA.2018.2833157
https://api.semanticscholar.org/CorpusID:218478582
https://api.semanticscholar.org/CorpusID:218478582
https://api.semanticscholar.org/CorpusID:42886148
https://us.softbankrobotics.com/pepper
https://pal-robotics.com/robot/tiago/
https://doi.org/10.1109/ICIAfS52090.2021.9606062
https://doi.org/10.1109/ICIAfS52090.2021.9606062
https://doi.org/10.1145/3368554
https://doi.org/10.1145/3368554

[14]

[15]

[16]

[19]

[20]

[21]

Niko Stinderhauf et al. “Place categorization and semantic mapping on a mobile
robot”. In: 2016 IEEE International Conference on Robotics and Automation (ICRA). 2016,
pp. 5729-5736. por: 10.1109/ICRA.2016.7487796.

Denis F. Wolf and Gaurav S. Sukhatme. “Semantic Mapping Using Mobile Robots”.
In: IEEE Transactions on Robotics 24.2 (2008), pp. 245-258. por: 10.1109/TRO. 2008.
917001.

Mikel Galar et al. “An overview of ensemble methods for binary classifiers in multi-
class problems: Experimental study on one-vs-one and one-vs-all schemes”. In: Pat-
tern Recognition 44.8 (2011), pp. 1761-1776. 1ssN: 0031-3203. por: https://doi.org/
10.1016/j .patcog.2011.01.017. URL: https://www.sciencedirect.com/science/
article/pii/S0031320311000458.

Ioannis Kostavelis and Antonios Gasteratos. “Semantic mapping for mobile robotics
tasks: A survey”. In: Robotics and Autonomous Systems 66 (2015), pp. 86-103. 1ssn:
0921-8890. po1: https://doi.org/10.1016/j.robot.2014.12.006. URL: https:
//www.sciencedirect.com/science/article/pii/S0921889014003030.

Zhiliu Yang and Chen Liu. “TUPPer-Map: Temporal and Unified Panoptic Percep-
tion for 3D Metric-Semantic Mapping”. In: 2021 IEEE/RS] International Conference on
Intelligent Robots and Systems (IROS). 2021, pp. 1094-1101. por: 10.1109/IR0S51168.
2021.9636599.

Panqu Wang et al. Understanding Convolution for Semantic Segmentation. 2017. arXiv:
1702.08502 [cs.CV]. URL: https://arxiv.org/pdf/1702.08502. pdf.

Gabriela Csurka, Diane Larlus, and Florent Perronnin. “What is a good evaluation
measure for semantic segmentation?” In: Proceedings of the British Machine Vision
Conference (BMVC). 2013. URL: https://projet . liris . cnrs. fr/imagine/pub/
proceedings/BMVC-2013/Papers/paper0033/paper0033.pdf.

Abdul Mueed Hafiz and Ghulam Mohiuddin Bhat. “A survey on instance segmen-
tation: state of the art”. In: International Journal of Multimedia Information Retrieval
9.3 (2020), pp. 171-189. 1ssN: 2192-662X. po1: 10.1007/s13735-020-00195-%. URL:
https://doi.org/10.1007/s13735-020-00195-x.

Wenchao Gu, Shuang Bai, and Lingxing Kong. “A review on 2D instance segmen-
tation based on deep neural networks”. In: Image and Vision Computing 120 (2022),
p- 104401. 1ssN: 0262-8856. pOI: https://doi.org/10.1016/j.imavis.2022.104401.
URL: https://www.sciencedirect.com/science/article/pii/S0262885622000300.

Bernardino Romera-Paredes and Philip Hilaire Sean Torr. “Recurrent Instance Seg-
mentation”. In: Computer Vision — ECCV 2016. Ed. by Bastian Leibe et al. Cham:
Springer International Publishing, 2016, pp. 312-329. 1sBN: 978-3-319-46466-4.

65 of 72

https://doi.org/10.1109/ICRA.2016.7487796
https://doi.org/10.1109/TRO.2008.917001
https://doi.org/10.1109/TRO.2008.917001
https://doi.org/https://doi.org/10.1016/j.patcog.2011.01.017
https://doi.org/https://doi.org/10.1016/j.patcog.2011.01.017
https://www.sciencedirect.com/science/article/pii/S0031320311000458
https://www.sciencedirect.com/science/article/pii/S0031320311000458
https://doi.org/https://doi.org/10.1016/j.robot.2014.12.006
https://www.sciencedirect.com/science/article/pii/S0921889014003030
https://www.sciencedirect.com/science/article/pii/S0921889014003030
https://doi.org/10.1109/IROS51168.2021.9636599
https://doi.org/10.1109/IROS51168.2021.9636599
https://arxiv.org/abs/1702.08502
https://arxiv.org/pdf/1702.08502.pdf
https://projet.liris.cnrs.fr/imagine/pub/proceedings/BMVC-2013/Papers/paper0033/paper0033.pdf
https://projet.liris.cnrs.fr/imagine/pub/proceedings/BMVC-2013/Papers/paper0033/paper0033.pdf
https://doi.org/10.1007/s13735-020-00195-x
https://doi.org/10.1007/s13735-020-00195-x
https://doi.org/https://doi.org/10.1016/j.imavis.2022.104401
https://www.sciencedirect.com/science/article/pii/S0262885622000300

[24]

Rohit Mohan and Abhinav Valada. “EfficientPS: Efficient Panoptic Segmentation”.
In: International Journal of Computer Vision 129.5 (2021), pp. 1551-1579. 1ssn: 1573-
1405. por: 10.1007/s11263-021-01445-z. URL: https://doi.org/10.1007/s11263-
021-01445-z.

Alexander Kirillov et al. “Panoptic Segmentation”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). June 2019.

Omar Elharrouss et al. “Panoptic Segmentation: A Review”. In: CoRR abs/2111.10250
(2021). arXiv: 2111.10250. URL: https://arxiv.org/abs/2111.10250.

Swapna. Convolutional Neural Network | Deep Learning. Accessed: 24-03-2025. 2020.
URL: https://developersbreach.com/convolution-neural-network-deep-learning/
#1-what-is-cnn.

Omar Elharrouss et al. “Backbones-review: Feature extractor networks for deep
learning and deep reinforcement learning approaches in computer vision”. In: Com-
puter Science Review 53 (Aug. 2024), p. 100645. 1ssN: 1574-0137. por: 10.1016/j .
cosrev.2024.100645. URL: http://dx.doi.org/10.1016/j.cosrev.2024.100645.

Huiyu Wang et al. MaX-DeepLab: End-to-End Panoptic Segmentation with Mask Trans-
formers. 2021. arXiv: 2012.00759 [cs.CV]. URL: https://arxiv.org/abs/2012.00759.

Bowen Cheng et al. Masked-attention Mask Transformer for Universal Image Segmenta-
tion. 2022. arXiv: 2112.01527 [cs.CV]. URL: https://arxiv.org/abs/2112.01527.

Zhiqi Li et al. Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Trans-
formers. 2022. arXiv: 2109.03814 [cs.CV]. URL: https://arxiv.org/abs/2109.03814.

Feng Li et al. Mask DINO: Towards A Unified Transformer-based Framework for Object
Detection and Segmentation. 2022. arXiv: 2206 .02777 [cs.CV]. URL: https://arxiv.
org/abs/2206.02777.

Francois Chollet. “Deep Learning with Python”. In: Manning Publications Co., 2017,
pp- 294-296.

Zhe Hu et al. “Safe Navigation With Human Instructions in Complex Scenes”. In:
IEEE Robotics and Automation Letters 4 (2018), pp. 753-760. URL: https : //api .
semanticscholar.org/CorpusID:52198622

Jesse Thomason et al. “Vision-and-Dialog Navigation”. eng. In: (2019).

Mohammad Taufik et al. “Voice-Controlled Interaction of Medical Robots Using
Deep Learning with Gated Recurrent Units”. eng. In: 2024 IEEE International Con-
ference on Control & Automation, Electronics, Robotics, Internet of Things, and Artificial
Intelligence (CERIA). IEEE, 2024, pp. 1-6.

Ashish Vaswani et al. Attention Is All You Need. 2023. arXiv: 1706 . 03762 [cs.CL].
URL: https://arxiv.org/abs/1706.03762.

W3C. Web Ontology Language (OWL). URL: https : //www.w3 . org/0WL/. (accessed:
25.03.2025).

66 of 72

https://doi.org/10.1007/s11263-021-01445-z
https://doi.org/10.1007/s11263-021-01445-z
https://doi.org/10.1007/s11263-021-01445-z
https://arxiv.org/abs/2111.10250
https://arxiv.org/abs/2111.10250
https://developersbreach.com/convolution-neural-network-deep-learning/#1-what-is-cnn
https://developersbreach.com/convolution-neural-network-deep-learning/#1-what-is-cnn
https://doi.org/10.1016/j.cosrev.2024.100645
https://doi.org/10.1016/j.cosrev.2024.100645
http://dx.doi.org/10.1016/j.cosrev.2024.100645
https://arxiv.org/abs/2012.00759
https://arxiv.org/abs/2012.00759
https://arxiv.org/abs/2112.01527
https://arxiv.org/abs/2112.01527
https://arxiv.org/abs/2109.03814
https://arxiv.org/abs/2109.03814
https://arxiv.org/abs/2206.02777
https://arxiv.org/abs/2206.02777
https://arxiv.org/abs/2206.02777
https://api.semanticscholar.org/CorpusID:52198622
https://api.semanticscholar.org/CorpusID:52198622
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://www.w3.org/OWL/

Luis Riazuelo et al. “RoboEarth Semantic Mapping: A Cloud Enabled Knowledge-
Based Approach”. In: IEEE Transactions on Automation Science and Engineering 12.2
(2015), pp. 432-443. pOT: 10.1109/TASE.2014.2377791.

Yu Li et al. Where to Fetch: Extracting Visual Scene Representation from Large Pre-Trained
Models for Robotic Goal Navigation. 2024. arXiv: 2408 . 10578 [cs.RO]. URL: https:
//arxiv.org/abs/2408.10578.

Yinpei Dai et al. Think, Act, and Ask: Open-World Interactive Personalized Robot Naviga-
tion. 2024. arXiv: 2310.07968 [cs.RO]. URL: https://arxiv.org/abs/2310.07968.

Haru Nakajima and Jun Miura. Combining Ontological Knowledge and Large Language
Model for User-Friendly Service Robots. 2024. arXiv: 2410.16804 [cs.RO]. URL: https:
//arxiv.org/abs/2410.16804.

Ying Zhang, Guohui Tian, and Xuyang Shao. “Safe and Efficient Robot Manipula-
tion: Task-Oriented Environment Modeling and Object Pose Estimation”. In: IEEE
Transactions on Instrumentation and Measurement 70 (2021), pp. 1-12. por: 10.1109/
TIM.2021.3071222.

Zhihao Li et al. “Intention Understanding in Human-Robot Interaction Based on
Visual-NLP Semantics”. eng. In: Frontiers in neurorobotics 14 (2021), pp. 610139-
610139. 1ssN: 1662-5218.

UCL Course Notes. Camera Calibration. Accessed: 2025-06-01. 2024. URL: https://
mphy0026.readthedocs.io/en/latest/calibration/camera_calibration.html.

Wikipedia contributors. Camera Resectioning. Accessed: 2025-06-01. 2024. URL: https:
//en.wikipedia.org/wiki/Camera_resectioning.

Karthikeya Shodhan. What are Intrinsic and Extrinsic Camera Parameters in Computer
Vision? Accessed: 2025-06-01. 2022. URL: https://towardsdatascience.com/what-
are - intrinsic - and - extrinsic - camera - parameters - in - computer - vision -
7071b72fb8ec/.

Kyle Simek. Intrinsic Parameters. Accessed: 2025-06-01. 2013. URL: https://ksimek.
github.i0/2013/08/13/intrinsic/.

67 of 72

https://doi.org/10.1109/TASE.2014.2377791
https://arxiv.org/abs/2408.10578
https://arxiv.org/abs/2408.10578
https://arxiv.org/abs/2408.10578
https://arxiv.org/abs/2310.07968
https://arxiv.org/abs/2310.07968
https://arxiv.org/abs/2410.16804
https://arxiv.org/abs/2410.16804
https://arxiv.org/abs/2410.16804
https://doi.org/10.1109/TIM.2021.3071222
https://doi.org/10.1109/TIM.2021.3071222
https://mphy0026.readthedocs.io/en/latest/calibration/camera_calibration.html
https://mphy0026.readthedocs.io/en/latest/calibration/camera_calibration.html
https://en.wikipedia.org/wiki/Camera_resectioning
https://en.wikipedia.org/wiki/Camera_resectioning
https://towardsdatascience.com/what-are-intrinsic-and-extrinsic-camera-parameters-in-computer-vision-7071b72fb8ec/
https://towardsdatascience.com/what-are-intrinsic-and-extrinsic-camera-parameters-in-computer-vision-7071b72fb8ec/
https://towardsdatascience.com/what-are-intrinsic-and-extrinsic-camera-parameters-in-computer-vision-7071b72fb8ec/
https://ksimek.github.io/2013/08/13/intrinsic/
https://ksimek.github.io/2013/08/13/intrinsic/

Appendix

Here is the appendix

68 of 72

69 of 72

A.1 panoptic segmentation node

Tiago
Simulation
Data

Start up

Repeat the loop—

/rgb/image_ra: /camera_inf
/depth/image_raw 1

RGB Depth // Camera info/

(fx.fy,cx,cy)

Cv Bridge

(sensor_msgs/Image)

Mask2Former —>»{ Compute 3D Position

Detect and segment objects

Classify Default placeholder
. €
Environment values
Labels the environment Calculate 3D position (0.0, 0.0, 0.0)
Fuse
Detections

Merged into a single bounding

v v v
Annotate
Image
/segmentation/annotated I/objectflocalfpose
Publish Publish
Annotated image, objectLocalPose
End

70 of 72

Figure A.1: Panoptic_segmentation_node.py

71 of 72

A.2 Simple dbscan

min_samples Poses object_labels eps
) 4) 4
simpleDBscan <

N « len(poses)
Initialize all labels « [-1]* N Define

variables once visited < [False] * N region_query(i)

cluster_id < 0

region_query(i)

i return all point within eps radius
Mark point i |
as visited D i Loop
over each 1€

point (i) in 0 to N-1

T
visited[i] < True

Get neighbors of i
using region_query(i)

Has point i
been visited?

neighbors « region_query(i)

Yes
Skip

Point i
have enough
neighbors?

| Whileseeds# 9 |€Ye:

No
labels[i] < -1

(mark as noise) No !
continue to next i Repeat un til
seeds list is empty

labels[i] < cluster_id
seeds « neighbors \ {i}

Has current
seed point
been visited?

Was current
previously labeled
as noise?

Yes
labels[current] « cluster_id

Group poses
labels by cluster ID

L

End terminator

72 of 72

Figure A.2: simpleDBscan.py

	Front page
	English title page
	Contents
	1 Introduction
	1.1 Initial Problem statement

	2 Problem Analysis
	2.1 Motivation
	2.1.1 Service robots

	2.2 Semantic mapping
	2.2.1 Pipeline
	2.2.2 Image segmentation
	2.2.3 State-of-the-art CNN

	2.3 Understanding humans
	2.3.1 Keyword Extraction
	2.3.2 Ontology
	2.3.3 Navigation

	2.4 Problem / Use case

	3 Problem Formulation
	3.1 Final Problem State
	3.2 Objectives
	3.3 Delimitations

	4 Design
	4.1 Simulation Environment
	4.2 System overview
	4.2.1 Ontology
	4.2.2 Natural Language Processing Node
	4.2.3 Object Detection Node
	4.2.4 Semantic mapping node

	4.3 ROS Node Graph
	4.3.1 Semantic mapping overview
	4.3.2 Context aware navigation overview

	5 Implementation
	5.1 Semantic mapping
	5.1.1 Object Detection output processing
	5.1.2 Clustering objects
	5.1.3 Location area estimation
	5.1.4 Location inference

	5.2 Context aware navigation
	5.2.1 NLP node
	5.2.2 Navigation

	6 Test setups and results
	6.1 Test Setups
	6.1.1 Test 1: Object Detection
	6.1.2 Test 2: Keyword Extraction
	6.1.3 Test 3: Location Inference
	6.1.4 Test 4: Semantic mapping
	6.1.5 Test 5: Command execution

	6.2 Test Results
	6.2.1 Test 1: Object Detection
	6.2.2 Test 2: Keyword Extraction
	6.2.3 Test 3: Location Inference
	6.2.4 Test 4: Semantic Mapping
	6.2.5 Test 5: Command Execution

	7 Discussion
	7.1 Test results
	7.2 Future work

	8 Conclusion
	Bibliography
	A Appendix
	A.1 panoptic segmentation node
	A.2 Simple dbscan

