Master Thesis

Machine Learning and Artificial Intelligence

Enabled Failure Prediction for Maritime
Propulsion Systems

JACOB VITFELL KoPKE & EMIL LYTJE-DORFMAN

AALBORG UNIVERSITY

Abstract

This thesis investigates the application of machine learning (ML) and artificial intelligence
(AI) techniques for failure prediction in maritime propulsion systems, with a focus on two
critical failures observed in MAN Energy Solutions’ engines: accumulator membrane fail-
ure in sequential two-stroke engines and pipe damage during methanol fuel changeover in
dual-fuel systems. The thesis explores the feasibility of predictive maintenance through
data-driven approaches, leveraging time series data collected from operational vessels and
controlled test engines. A comprehensive feature engineering pipeline is developed to ad-
dress challenges related to high dimensionality, feature redundancy, and class imbalance.
Feature selection methods are applied to construct interpretable and task-relevant fea-
ture subsets, resulting in insights into system behavior leading up to failure. Multiple ML
and Al models, including Random Forests, 1D Convolutional Neural Networks (CNNs),
and Long Short-Term Memory (LSTM) networks, are implemented and evaluated for
both binary failure classification and remaining useful life (RUL) regression tasks, for
different reading window (RW) and prediction window (PW) sizes. Here SMOTE and
DTW-SMOTE has been used to augment data, increasing the data variance in training.
Results demonstrate that methanol changeover failures are highly predictable, with Ran-
dom Forest and 1D CNN models achieving strong performance with an accuracy of 91%
for changeover classification and an R? of 0.826 for changeover RUL prediction. In con-
trast, accumulator failure prediction proves more challenging due to limited failure data
and lower signal resolution with the 1D CNN providing the greatest accuracy of 71%.
The findings highlight the importance of model selection, task-specific window sizing, and
feature interpretability in predictive maintenance applications. The thesis concludes that
ML and AI can be used for predicting pipe damage during methanol fuel changeover,
while providing valuable insight into the system and the failure through feature engineer-
ing. This task is slightly harder for accumulator membrane failure in sequential two-stroke
engines, and further work is required to develop high performing and robust models for
this purpose.

Titlepage

Title:

Machine Learning and Artificial Intel-
ligence Enabled Failure Prediction for
Maritime Propulsion Systems

Theme:
Predictive maintenance and machine
failure prediction

Project Period:
February 1, 2025 - June 4, 2025

Project Group:
1028

Page Numbers:
118

Participants:
Jacob Vitfell Kapke
Emil Lytje-Dorfman

Supervisors:
Ramoni Ojekunle Adeogun
Carsten Hounsgaard

Date of Completion:
June 3, 2025

UNIVERSITY

STUDENT REPORT

Electronics Systems
Institute of Electronic Systems
http://www.aau.dk

http://www.aau.dk

Acknowledgments

This Master’s thesis was carried out in collaboration with MAN Energy Solutions. We
would like to thank MAN ES for guiding the thesis in a direction that is both relevant to
our academic goals and valuable to the company.

We are especially grateful to Carsten Hounsgaard for proposing the project and for
providing guidance on data selection and methodological direction.

Special thanks go to Christian Skaaning, Mikkel Seebg Hansen, Usman Iqgbal, and
Morten Kjul for generously sharing their expertise and insights into the systems, which
have been essential to the development of this thesis.

We would also like to thank Alexander Reffs and Tobias Bruun Brggger for coordi-
nating resources and investing their time in the planning and collection of the data used
in this work.

Our sincere gratitude goes to Stefan Meyer for establishing the right framework and
welcoming us into his department, creating a supportive and enriching environment for
our research.

Lastly, we would like to extend our heartfelt thanks to our supervisor, Ramoni Ojekunle
Adeogun, from Aalborg University, for his invaluable feedback, constructive criticism,
and consistent support throughout the project.

IT

Contents

(I _Introduction|

(1.1 System description|
(1.2 Problem description|.
[1.3 Predictive maintenance and machine failure prediction|

[2.1 Predictive maintenance and machine tailure prediction]
2.2 Feature engineering|
[2.3 Dataset balancing|o

(3

Theory and background|

[3.1 Dynamic time warping]

I;i,z g:gzllf:lill],QI],I

[3.4 Machine Learning Classification and Algorithms|
[3.5 Al for time sequential tailure prediction|.
[3.6 Data augmentation|o

Proposed Feature Engineering and Failure Prediction Methods|

[4.1 Data pipelining for failure prediction|
[4.2 Proposed failure prediction models|

Data Analysis and Feature Engineering Results|

(5.1 Data analysis for accumulator failure data on the Porsorja Express|
[>.2 Data analysis for methanol change over measurements|.

6 Prediction Model Resulis

[6.1 Results for accumulator failure prediction|.
[6.2 Results for methanol changeover failure prediction
[6.3 Changeover remaining useful life prediction|.
[6.4 Result summary|. L

7 . I lisionl
[[1 Discussionl oo
I;.z g:!!“g:l“{“!!“l

(Bibliography|

I11

10
10
11
12

13
13
14
14
17
21
27

29
30
34

39
39
49

61
61
66
71
76

78
78
81

84

(I Methanol changeover data analysis full results| 90

(Il Validation results| 97

(II1 Network architecture diagrams| 116

IV

Preface

Aalborg University, June 3, 2025

Gl

Emil Lytje-Dorfman Jacob Vitfell Kgpke
elytje20@student.aau.dk jkapke20@student.aau.dk

1 Introduction

Shipping is the main way goods are being moved around the globe, accounting for 80%
of the worlds exports and imports|l]. Greener shipping is therefore a focus of several
regulatory agencies, in an effort to tackle climate change and environmental harm, which
has lead to an increase in regulations, requirements, and taxation on emissions in the
shipping sector|2|[3]. This has naturally caused an increase in demand for greener mar-
itime propulsion systems, with reduced emissions. This demand has been identified by
MAN Energy Solutions, which has several new propulsion designs aimed at tackling this
demand. MAN ES is a company which designs maritime propulsion systems, with a large
focus on two-stroke diesel engines which power most large container ships[4]. The effort
to reduce emissions has been two fold at MAN ES. Firstly, there is a focus on reducing
emissions of diesel combustion. This has resulted in the design of a sequential two-stroke
engine. This design uses pre-combustion, through precise injection timing, to reduce
emission of harmful NO, gasses[5|. Secondly, new systems are developed which allow
the engine to run on a secondary fuel type, such as methanol, which burns cleaner than
diesel|6]. Cleaner combustion is greatly beneficial in emission control areas (ECA) which
have stricter emission requirements|7]. Both new designs have experienced problems in
service, which has been costly for MAN ES due to warranty claims and time and resources
being required for correcting the problems. The hydraulic injection systems for the two
unique and separate engine designs are described in section and their problems in
section [L.2

1.1 System description

While several sequential two-stroke engine designs exist, the focus in this case in on the
engine in service on the Porsorja Express. Similarly several engine models can run on
methanol as secondary fuel. The focus here is on the larger LGIM G95 engines. These
engines are described in subsection [1.1.1] and [1.1.2| respectively.

1.1.1 Two-stroke sequential engine on the Porsorja Express

As mentioned, regulations on emissions has been focused on NO, gas emissions, as these
particles are especially harmful[5]. This has naturally increased the demand for maritime
propulsion systems with reduced NO, emissions. MAN ES’s sequential two-stroke engine

is able to conduct a pre-combustion which reduces main combustion temperature, result-
ing in reduced NO, emissions. The injection system on the Porsorja Express is described
in the block diagram in figure

Ciyne/ Start angle

Setpointcurve - €———— Start ELSQ
)
rofile —
. HPS (On/Off)

,L Crrsq [V]

Setpoint
1 WIVA position
P —Cwrva [V]» WIVA [mA] Pressure [bar]

Lyrva [V}

Sensor €—mM8Mm8™—

A4

Exhaust valve @

Figure 1.1: Block diagram of fuel injection system.

The injection system is responsible for injecting diesel into the cylinders at the right
time and at high pressure. This is controlled through the injection system, which uses
hydraulic and electrical control. The high pressure system (HPS) supplies hydraulic fluid
to the system, which the WIVA controls the flow of in order to control injection and
exhaust. What makes the sequential two-stroke engine unique is its use of sequential
combustion (SC), where three fuel inject sequentially. To control SC precisely while
maintaining high pressure, electronic ON/OFF valves (ELSQ) are used. In contrast to
traditional spring designs, the use of ELSQ valves results in much more controllable but
also sudden injections. An injection cycle is started when diesel is filled into the FBIV.
Once diesel has been filled, the WIVA routes the HPS to the FBIV, pressurizing the diesel.
Once the diesel is pressurized an injection is order by turning on the ELSQ valve. The
ELSQ valve is what allows for precise and sudden injection timing. A flow chart of an
injection cycle can be seen in figure [1.2]

v

WIVA closed FBIV depressurized
FBIV filled with fuel ELSQ orders injection

WIVA connects HPS
to FBIV

Figure 1.2: Flow chart of an injection cycle for the two-stroke sequential engine on the
Porsorja Express.

1.1.2 Methanol changeover procedure

As mentioned, methanol is used for combustion due to its cleaner combustion, which is
beneficial in some ECAs. However, all fuel systems have to be able to run on diesel as a
safety, requiring systems that can run on both. These engine systems make use of a first
fuel (FF) system (diesel), and a second fuel (SF) system (methanol). Each fuel system has
its own injection system, that are similar but with slightly different components. Both
systems are controlled by an ELFI valve which controls the system, through a control
feedback loop which can be seen in figure [1.3]

Setpoint Start <_® Cisyne/ Start angle

curve profile

Setpoint
+ ELFI-L
E » main >
— spool Spool position [mm)]
Lgrrr [V] Sensor €

Figure 1.3: Block diagram of ELFT control system.

The ELFT valve controls hydraulic fluid flow in the system, thereby controlling injection.

The full SF injection system can be seen in figure [I.4] with ELFI-L, FBIV-M and ELBL

Methanol
HPS Tank LPS @ supply
system

P Ty;
A 4 l. A4
> Control €«—Y-Cy; —>» FBIV-M <«—MeOH— ELBI
ELFI-L

Figure 1.4: System diagram of second fuel methanol injection system.

A methanol injection cycle goes through five stages. In the first stage the ELFI-L is closed
and the ELBI fills methanol into the FBIV-M. After methanol has been filled, the ELFI-L
connects the HPS to the FBIV-M, pressurizing the methanol. Once the opening pressure
of the fuel valve is reached, the methanol is injected. After injection, the ELFI-L routes
hydraulic fluid to the tank, depressurizing the FBIV-M. Lastly, the ELFI-L is closed again,
and the system is ready for the next injection. The injection cycle is summarized in the
flowchart in figure [1.5]

v

ELFI-L
Closed
ELFI-L
¢ Cﬁ — Tﬁ
ELBI fills FBIV with T
methanol
Injection
ELFI-L
P— Cﬁ

Figure 1.5: Flow chart of a methanol injection cycle. The orange box represents the
ELFI-L control system.

The injection system and flow are functionally the same for FF diesel injection, which
uses a FIV valve instead of an FBIV-M valve, and an ELFT instead of an ELFI-L.

When the engine wants changeover from one type of fuel to another, it has to undergo a
changeover procedure. When changing from SF to FF, the methanol filling system has
to be purged, and be emptied of methanol. This is done by filling the system with an
inert gas, in this case nitrogen. Once the system has been purged of methanol, diesel
injections can start ramping up. Vice versa, when switching from FF to SF, the nitrogen
in the system is replaced with methanol. After filling, injections can start ramping up,
until the desired level and stability is reached. When methanol is run, diesel is still used
as a pilot flame, as methanol cannot combust without a spark or flame. These changeover
procedures are summarized by the flow charts in figure. 1.6

: Changeover Fill FBIV-M with Ramp up SF
Running FF ordered SF injection
>

(a) FF to SF changeover flow chart.

Purge filling
Running SF Changeover RE_"T'D oo FF system with
ordered injection)
nitrogen

(b) SF to FF changeover flow chart.

Y

Figure 1.6: Flow charts for changeover procedures.

1.2 Problem description

Both described engine designs have experienced system failures once entering service test-
ing. These failures have not been found in the design or simulation processes of the
systems, making them unforeseen. The engine on the Porsorja Express experiences accu-
mulator membrane failure, and the LGIM G95 experiences issues with pipe knocking and
damage when changing over to SF. These problems are described in subsections [1.2.1 and

respectively.

1.2.1 Accumulator failure on the Porsorja Express

Accumulators are a component commonly found on hydraulic injection systems where
they are used for their capacitive and dampening effect. In times of peak demand for
hydraulic fluid, the accumulators ensure this demand can be met by supplying additional
fluid. They can be seen attached to the HPS in figure [I.Il As mentioned in section
the injections on this engine are very sudden. This is suspected to cause a water
hammering effect, which leads to high demand from the accumulators to dampen it. On

the Porsorja express the accumulators have a tendency to burst the membrane and fail,
at a rate and at times not seen on other sequential engine designs. While the engine
can run without accumulators, it does hurt injection, and thereby engine performance.
Furthermore, these failures lead to warranty claims from the ship operator. Avoiding or
reducing the frequency of accumulator failures is beneficial for both MAN ES and as well
as the ship operator. Steps towards reducing the failure frequency has already been taking
by revising the way the accumulators are mounted. While this has reduced the failure
frequency, it has not resolved the problem entirely. So far analysis of the problem has not
reached tangible reasons or solutions for the accumulator failures.

1.2.2 Changeover to methanol failure

When the engine described in section changes over to SF significant knocking has
been noticed in the piping on the system. In certain cases this has resulted in ripping and
significant damage to the pipes. Broken pipes means the engine cannot run as intended,
and is a severe issue if it happens during operation which is costly. This issue only happens
when changing from diesel to methanol and not the other way around. The current
hypothesis is that this is due to nitrogen gas been captured in the system when methanol
injection starts. This can cause air cushions which cannot be compressed, resulting in
the system overcompensating and trying to compress it even further. This hypothesis is
currently being tested for some of the engines that currently have SF systems but not on
all.

1.3 Predictive maintenance and machine failure predic-
tion

Predictive maintenance is a method of maintenance, in which some method or model
predicts when maintenance is necessary in order to prevent a failure|[8]. In general three
main maintenance categorization methods exist; physical model-based, knowledge-based,
and data-driven. The physical model-based method uses mathematical system models
in order to determine when failure happens. The knowledge-based methods uses expert
knowledge in order to reduce the complexity of the physical model. Lastly, data-driven
approaches to predictive maintenance heavily use machine failure prediction (MFP), in
order to predict when maintenance is necessary. MFP is heavily enabled by machine
learning (ML) and artificial intelligence (AI), in order to predict when a "machine" will
fail through either anomaly detection or time-based models|8][9][10].

Applying predictive maintenance to the problems outlined in section can reduce the
frequency of system failures by predicting when they will happen. In this way, preventative
action can be taken which will reduce the amount of total failures. Reducing the amount
of system failures will reduce costs and warranty claims for both the ship operators and
MAN ES. Given that the failures are unforeseen, and have not been found in the design or

simulation process, the failure prediction tasks lend themselves to a data-driven approach.
Using predictive maintenance for these problems will not solve the root cause of the failures
but rather reduce the frequency of them. However, analysis of how the systems interact
with the prediction models may give insight as to what happens leading up to the failures
and what might be the cause of the failures.

Furthermore, in order to develop prediction models, for the outlined failure problems, the
nature of the data used should be taken into account. Careful consideration of the data
should be taken, in order to appropriately choose appropriate failure prediction methods
and model, as this has a great impact on prediction performance|l1][8]. Further data
consideration are introduced in section

1.4 Data considerations

The data used to train data-driven prediction models should reflect and be related to the
failure either directly or indirectly. Furthermore, depending on the data, problems with
dimensionality and redundancy may arise.

When working with high-dimensional data, one must account for the curse of dimension-
ality. High-dimensional data can often lead to model instability, over-fitting, and poor
generalization due to data sparsity. Furthermore, high dimensionality leads to higher
computational complexity, and slower training|12]. High dimensionality can arise from
redundant features. Feature redundancy can come in two forms, either through features
that are not related to the task, or features that have high correlation to other features.
Redundant information has no added model or training benefits, while contributing to
the curse of dimensionality[12].

Another issue that arises with highly correlated features is multicollinearity, where more
than two independent variables are correlated. Multicollinearity causes issues in regres-
sion analysis, as it causes difficulty individual features impact on the model. Furthermore,
multicollinearity causes overfitting in regression models|13|. Lastly, highly correlated data
can degrade interpretability of models. With correlated datasets spurious correlation oc-
cur between non-essential features, leading to poorer models in terms of generalization
and robustness. This also makes identifying the importance of features, and their impact
difficult to interpret correctly[14]. Furthermore, interpretable feature engineering will give
an understanding of the system, and how a failure looks.

When considering the data, balancing should be accounted for. While the described
system failures have a large impact on the system, the operator, as well as MAN ES,
they do not occur at a high frequency, meaning data may be limited. When training
on unbalanced data, a bias is learned towards to majority class|15][16][17]. In this case
the majority class being non-failure, the trained model will have a difficult time learning
failure patterns, if failures are heavily outweighed in the dataset.

Resolving these data considerations through data engineering will create a good founda-
tion for training failure prediction models, as well as provide insight into what the data
reveals about the failures.

1.5 Thesis scope and research question

From the previous section the following inquiries are formulate with the aim of guiding
the thesis towards the goals and objectives outlined in the scope:

Can ML and Al models be used to predict marine propulsion system failures?

How can feature engineering be used to create a feature space suited for prediction
models, while giving insight into the system failures?

The inquiries have lead to the following overarching research question;

"To what extent can ML and Al be used to predict and prevent total system failure in
MAN Energy Solution’s maritime propulsion systems?"

1.6 Thesis contributions

This thesis aims to contribute to the fields of predictive maintenance and machine failure
prediction. Firstly, this thesis will expand on these fields by applying them to hydraulic
injection systems within maritime propulsion. Secondly, the use of interpretable feature
engineering will demonstrate that feature engineering can be used for extracting relevant
information, removing redundancies, while also providing valuable insights into the system
failures. Lastly, the thesis will illustrate the effect of different window sizes when applying
time sequence models, not just for binary failure classification but also remaining useful
life prediction. Ultimately, this thesis will also provide valuable insight into whether or
not ML and AI has appropriate uses within maritime propulsion systems, and what these
uses necessitate. Additionally, there is a focus on feasibilty of implementation without
extra cost in these systems.

1.7 Thesis outline

In order to resolve the aims and objectives the following thesis outline is proposed.

e A literature review is conducted in chapter [2Jon predictive maintenance and machine
failure prediction, feature engineering, and dataset balancing. The review aims to
find gaps in existing literature, and will help make informed decisions on which
methods to use in the remaining chapters.

Based on existing literature, appropriate analysis methods, ML and AI models,
and techniques are described in depth in chapter [3] Underlying the theoretical
background for the remainder of the thesis.

The described data analysis methods are then be used in chapter 5| for finding
relevant features, and feature engineering. The aim is to create the best possible
data subsets for the prediction models.

Having found relevant features for the two problems, prediction models and methods
will be chosen and implemented in chapter] along with a description of the datasets
and the data pipeline, including data augmentation and balancing.

Model specifics and their results are presented in chapter [6], where they are evaluated
through appropriate evaluation metrics.

Finally the results and findings are discussed and concluded upon and chapter [7],
where the research question will also be answered.

2 Literature review

In order to answer the inquiries outlined in chapter [I], existing literature on the topics
of predictive maintenance, feature engineering, and dataset balancing is reviewed in this
chapter. This will provide an overview over existing methods to make informed choices
later in the thesis, as well as highlight the main contributions of this to the research area
of predictive maintenance and machine failure prediction.

2.1 Predictive maintenance and machine failure predic-
tion

As mentioned in the introduction, predictive maintenance is heavily enabled by machine
failure prediction. Existing methods use mathematical and statistical modeling, in order
to describe system behavior, and use data to learn when failures are probable[18][19]. In
[19] system modeling is used used to develop a failure predictor. The predictor is then
enhanced using Gaussian process regression, which is learned through Bayesian inference
using a limited number of real data samples. In 18] the authors improve on Hidden
Markov Model (HMM) methods by adapting Bayesian networks to work in an online set-
ting, thereby improving temporal failure prediction.

Other literature on prediction methods leverage machine learning and deep learning tech-
niques on industrial data with a large number of sensors enabled by IoT devices. A review
shows that the most common prognostic methods are prognostics and health management
(PHM), condition-based maintenance (CBM), and remaining useful life (RUL)[10]. The
review in [10] also highlights that Random Forest (RF) and deep learning (DL) are the
most commonly used prediction techniques for predictive maintenance. [8] and [9] com-
pare different ML, and DL techniques for failure prediction on industrial datasets.

In [9] logistic regression (LR), K-nearest neighbor (K-nn), Support Vector Machine (SVM),
decision trees, bagging classifier, boosting methods, RF, and LSTMs are compared. Here
data pre-processing and dataset balancing using SMOTE is used to improve the models.
The paper clearly shows that deep learning can outperform classical ML models, and
that ensemble methods generally perform well for failure prediction. Additionally, it is
concluded that the use of SMOTE for dataset balancing has a positive impact on model
performance. The study is limited to binary failure classification, and does not expand

10

into methods such as RUL. Additionally, there is a distinct lack of dimensionality reduc-
tion or feature selection.

[8] focuses on comparing similar methods to |9], including transformer, with a focus on
multivariate time series data. From [8] it is clear that the size of the RW and PW are
important for model performance, in case of time variate data. [8] also shows that in
cases of time variate data, deep learning methods which capture temporal information,
such as Convolutional Neural Networks (CNN), LSTMs, and Transformers, perform well.
This provides valuable insights into failure prediction tasks which deal with multivariate
time series data, demonstrating the importance of finding appropriate window sizes, and
choosing models appropriate for the task. However, this is again limited to binary failure
classification, and relies heavily on expert knowledge for feature selection.

The existing literature deals with industrial data such as for production, storage and
robotics. None of the existing literature deals with systems within maritime propulsion
systems, which also can benefit from predictive maintenance and machine failure predic-
tion. Additionally, while the existing literature deals with high dimensional data through
either system and expert knowledge based feature selection, few use data driven feature
selection methods. While literature which does deal with large scale IoT data, the method-
ologies used are novel and very specified for "big data"|20|. The existing literature lacks
failure prediction methods which leverage data-driven feature selection methods allowing
for high interpretability of models and understanding of failure causes.

2.2 Feature engineering

In feature engineering the feature space is manipulated to extract information best suited
for training models, avoiding spurious correlations that are harmful for model training|14].
Some feature engineering methods such as PCA and ICA extract features and reduce di-
mensionality, while ensuring statistics are as preserved as possible. Manifold learning
achieves something similar but is more suited for non-linear data|21][22]]23].

While PCA, ICA, and manifold learning are effective for reducing dimensionality, they
lack interpretability, which is desirable in some cases for model understanding. Here fea-
ture selection methods play a large role. Feature selection methods are grouped into filters
and wrappers. Filters are pre-computable, whereas wrappers are built into the modelspro-
cessing|24][25]. Filter methods include correlation-based feature selection (CFS), where
feature subsets are ranked according to a heuristic metric using MDL, Relief, and sym-
metrical uncertainty for estimating correlation|[24]. The method has later been adapted
for multi-variate time sequence data using adjusted mutual information|25]. Wrapper
methods such as greedy elimination and recursive feature elimination, as well as embed-
ded methods such as Lasso regression use algorithmic approaches to reduce the feature
space by eliminating correlations [26][27][28]. More advanced methods for dealing with
spurious correlations includes causal intervention, invariant learning, feature disentangle-

11

ment, and contrastive learning. These methods are summarized in "Spurious Correlations
in Machine Learning: A Survey" |14]. General for these methods is that they are more
complex, and often parametric or learnable|14].

2.3 Dataset balancing

Unbalanced datasets are a common problem in ML and Al. Extensive research shows that
in order to train the ML and Al methods properly, with the best results, the dataset has
to be balanced. This balancing can be done through either under-sampling the majority
class, or over-sampling the minority class. When under-sampling the majority class, data
from the majority class is removed|16][17].

Under-sampling the majority class involves the removal of samples. The removal of data
can be done in numerous ways. It can be done by finding noisy pairs through TOMEK
links, and removing the majority class data point. Alternatively, a nearest neighbor
method can be used to find a data subset, in which majority class samples that are far
from the decision boundary are removed. The two can also be combined into One Sided
Selection (OSS)[15]. Nearest neighbor methods can also be used to remove majority class
samples with high risk of miss-classification|16].

For oversampling Synthetic Minority Oversampling Technique (SMOTE) is the most com-
mon. SMOTE over-samples the minority class, by creating synthetic samples through
interpolating minority class samples. Many different versions of SMOTE exist with differ-
ing focuses. In general SMOTE works through k-Nearest Neighbor algorithms|15][16][29].
Other methods of generating synthetic data also exist specifically for time sequence data.
The open source framework TSGM combines several methods for time sequence genera-
tion, as well as augmentation, using both data-driven and simulation based methods|30].

12

3 Theory and background

In this chapter the theory and background on different methods, models, and techniques
are discussed in depth. This is based on the literature review conducted in chapter [2 and
general knowledge regarding ML, Al, signal processing, and data analysis.

Dynamic time warping, correlation, and auto correlation analysis are discussed due to their
uses for feature analysis and general data understanding. These techniques can be used
to gain an understanding of the dataset, the relation to system failures, and relationships
within the data itself. These methods can be combined with feature selection methods
in order to engineer the feature space in a interpretable way. This will ultimately help
answer the secondary inquiry "how can feature engineering be used to create a feature
space suited for prediction models, while giving insight into the system failures?”.

Selected machine learning algorithms, as well as Al models that deal with sequential
data are also described, as based on the literature review. These are will help answer
the primary inquiry "can ML and Al models be used to predict marine propulsion system
failures?” by providing the necessary background knowledge to make informed decision
on the most appropriate algorithms and models to use for failure prediction.

3.1 Dynamic time warping

Dynamic time warping (DTW) is a popular and powerful time series analysis tool. In its
essence, DT'W finds the similarity between time sequences by finding the distance between
the best alignments of them. Consider two time-dependent sequences S; and S,, with n
and m samples respectively. DTW aligns S; and S5 such that they are as close as possible
by stretching or compressing them. The alignment is evaluated by a cost matrix C' € R™*™
with local distance scores C(i,j) = c(s1,,52,) for i € {0,1,...,n} and j € {0,1,...,m}
, where close alignments have a low score and far alignments have a high score. The cost
is computed for all paths m € II that traverse over ¢« and 5. DTW is then the total cost of
the path with the minimum cost as seen in equation [3.1]31][32].

DTW (81, 52) = min Z C(i, §) (3.1)
2,JET
A popular cost measure is using the two-norm for Euclidean distance ¢(sy, s2) = ||s1 —s2]|.

13

DTW has several use cases within machine learning. This includes feature analysis by
finding feature similarities in cases where features may be time shifted compared to each
other or other cases where correlation cannot capture the similarity in an appropriate
way|[31]. Furthermore, DTW also has uses within clustering, such as using it in nearest
neighbor algorithms|33][34].

3.2 Correlation

The Pearson correlation coefficient is a normalized covariance, which measures the statis-
tical relationship between two random variables X and Y. The coefficient is found from
equation [3.2]35].

Cov(X,Y)

- Var(X) - Var(Y) (3:2)

PXY

The correlation coefficient can also be computed for a signal with time-lagged versions of
itself in order to find the auto-correlation coefficients(ACF). The ACF measures the time
dependency of a signal with itself[36]. It is described by equation [3.2] with an algorithmic
implementation seen in algorithm
CO'U(XtXt+7—) CO'U(XtXt+T>
pXtXt—‘r = = 2
00X, 0t+r Ox

Cov(Xi Xi—r) = E[(X; — E[XY]) - (Xi—r — E[Xi—/])]
= E[(Xt - ,UX) : (Xt+‘l' - MX)]

= %Z(Xt — px) - (Xepr — pix) (3:3)

Algorithm 1 Algorithm for computing the auto-correlation of signal X.

1: N < number of samples in X

2: lx < sample mean of X

3: 0% < sample variance of X

4: for lag 7 do

5 Cov(Xy, Xi4r) = % ZZJ\:OT(X[Z] — px) - (X[i + 7] — pix)
6
7

. end for

3.3 Feature selection methods
For the problems described in chapter [1| it is not only important to predict the failures

but also understand how and why they occur. Therefore, model interpretability is im-
portant. That is why feature selection methods are used rather than feature reduction or

14

extraction methods. The described methods include correlation-based feature selection
(CFS), greedy elimination, recursive feature elimination, and Lasso regression.

3.3.1 Correlation based feature selection

As mentioned, CFS ranks feature subsets based on a heuristic metric. The metric is based
on the heuristric "a good feature subset is one that contains features highly correlated to
the class, yet uncorrelated with each other”, which is described by equation [24].

krer
M, =
k+k(k—1)T7f

(3.4)

S represents the subset containing k features, 7.5 is the mean class-feature correlation
where f € S, and 755 is the mean feature-feature correlation. Practically, the metric has
to be computed for all subsets to find the best one.

3.3.2 Greedy elimination

Greedy elimination is a wrapper, and is integrated into model training. It continuously
considers smaller feature subsets, measuring the impact of removing a feature through
some score like F1-score or mean square error as described in algorithm [2]27].

Algorithm 2 Greedy Feature Elimination

1: Input: Training data Dy, validation data D,,, model M, feature set F =
{f1,--., fn}, evaluation metric £

2: Output: Reduced feature set F™*

3: Initialize F* + F

4: Train M (Dypain) with F*

5. Compute performance Py, ¢— E(M, Dyar)
6: repeat

7 AP <0

8: for each feature f € F* do

0 Fmp « F\ {f}

10: Retrain M (Diyain) With Fiemp
11: P <+ E(M,Dya)

12: if P > P, then

13: o Ftemp

14: Bt < P

15: AP+ 1

16: break

17: end if

18: end for

19: until AP =0
20: return ™

15

3.3.3 Recursive feature elimination

Recursive feature elimination is a wrapper, and is integrated into model training. It recur-
sively removes the least important feature based on internal model weights or importance
scores, reducing the feature set until the desired number of features is reached. This
functionality is described in in algorithm

Algorithm 3 Recursive Feature Elimination

1: Input: Training data Di..,, validation data D,,, model M, feature set F =
{f1,..., fn}, importance metric Z, number of features to select k
Output: Selected feature subset F™* of size k
Initialize F™* < F
while [F*| > k do
Train M (Dyyain) with features F*
I =7(M, F¥)
Jimin <= argmingep- I(f)
Remove f, from F™*
end while
return F*

H
@

Importance can be measured in different ways, including weights in regression models,
impurity in tree models, or drop in model performance such as F1-score|37].

3.3.4 Lasso regression

Lasso regression is a linear model that performs both feature selection and regularization
by adding an L1 penalty A|5;| to the loss function, the strength of which is controlled
through A. This penalty encourages sparsity in model coefficients, effectively driving some
coefficients to zero, which eliminates less important features. The optimization balances
minimizing the residual sum of squares and the absolute sum of coefficients as shown in

algorithm [4]26][38].

Algorithm 4 Lasso Regression

Input: Training data Dypain = { (7, v:) }1-,, regularization parameter A\ > 0
Output: Coefficient vector B
Initialize coefficients 3 < 0
repeat
for each feature j=1,...,p do
Update coefficients

. 2
B« argming 5- " (?Jz‘ — D i Tikr — xijﬁj) + Al
end for
until convergence criteria met

16

3.4 Machine Learning Classification and Algorithms

In this section machine learning algorithms for classification tasks will be described. Here
nearest neighbor algorithms are described due to their efficacy in MFP tasks, their ability
to be adapted for time sequence data, as well as their use for synthetic data generation in
SMOTE|34][29]. Random Forest is also described, as it is the most common and generally
best performing algorithm within predictive maintenance|10|. Furthermore, random forest
has built in feature selection, and can be adapted for time sequence data|39]. These
methods lay the foundation for answering both inquiries and research question presented
in the introduction [l

3.4.1 Nearest Neighbor Algorithms

Nearest-neighbor classification are non-parametric machine learning algorithms, in which
a training set {(z,,y,)}Y_, is stored with samples from each class. Test samples z are
then classified by assigning the label of the closest training samples. A K-nearest neighbor
(k-nn) conducts a majority vote of the k closest training points. Closeness is a distance
measure, and often the Euclidean distance c(zg,x;) = ||xo — x;]||40][41]. This is also
described in algorithm]

Algorithm 5 k-Nearest Neighbors Algorithm

1: {(x;, ;) }Y, < training data

2: Tiest < test data

3: k <— number of nearest neighbors

4: for each z; in x5 do

e C < H

6: for each z; do

7: cli] < c(Tiest, i)

8: end for

9: y; < majority vote of y; for k closest z; measured by c|i]
10: end for

For time series data, DTW distance can be used as the cost ¢(Zest, ;). This is especially
useful in cases where other distance measures are not appropriate due to shifting or
unequal signal length. In these cases DTW can be used as a distance measure instead in
a DTW-nearest neighbor (DTW-nn), which in many cases lead to improved results over
traditional K-nn|34].

3.4.2 Decision Trees and Random Forest

Decision trees are traditionally a classification method but can also be used for regression.
Decision trees fundamentally work by using recursive partitioning of instances in order to
reach a decision[42]. They consist of a root node that branches to other internal nodes,

17

which contain features, and to leafs where decisions are made. They are described by a
maximum amount of internal nodes, given by the depth of the tree[43]. An example tree
can be seen in figure (3.1} with the root node seen in green, the deepest node in red, and
the leafs are marked as triangles.

Sensor 1

i

>1

Sensor 2

Figure 3.1: Example of a decision using sensor measurements from three sensors in order
to predict a failure.

Decision trees are trained on data by minimizing the generalization error, or until a max
number of nodes or depth is reached. They are learned in either a top-down or bottom-up
manner|43]. Top-down trees function in a greedy manner, starting at the start node,
and finding the best features and splits until the tree is full|44]. Bottom-up methods
start with full trees, and go back up through the tree eliminating redundant nodes, this
is also known as pruning|45]. The most common method is top-down|[43|. Here the tree
recursively learns the best feature and split, according to an impurity measure, this is done
until some stopping criterion is met. This can be combined with bottom-up pruning, in
order to remove redundant nodes and avoid overfitting|45|. This is described in algorithm
ol

18

Algorithm 6 Decision Tree Learning Algorithm (Classification)

1: D < training data with features F' = {f1, fa,..., fu} and labels Y
2: Set stopping criteria (e.g. max depth, min samples)

3: repeat

4: for f € FF'do

5 for each possible split s of f do

6: Split D according to s

7: L(f,s) « Compute impurity of split (e.g. Gini index, entropy)
8 end for

9 end for

10: [, 8" = mins L(f,s)

11: Create node split on f* at s*

12: until Stopping criteria met
13: Prune tree

The impurity measure depends on the task. For classification tasks the most common are
entropy and Gini index. These are described in equations [3.5 and respectively where
Q. represents the node m with (f,,, s;), p the proportion of samples of class ¢ in node
m with a total of C' classes, and n total samples|46].

c
L(Qm) == Pim 1085 (pim) (3.5)
i=1
c
L(@m) =1=) 1l (3.6)
i=1
For regression, the mean square error described in equation is commonly used.
1
L = — — Upm)? .
(Qn) = 7= 2 (ym =) (3.7)
yEQm

Some the most common stopping conditions include; stopping at max depth, pure node
is reached, best splitting purity is below some threshold, the number of cases in the
terminal node is less than the minimum number of cases in the parent nodes, and if the
child nodes of a split contain less than a minimum number of cases. These stopping
criteria are also referred to as pre-pruning, as it prevents the tree from overfitting by
stopping it early|43|. Post pruning runs bottom-up through the tree, removing branches
by evaluating how important the branch is for the tree. This can be done by measuring
the miss-classification impact of the branch through the error rate[45|.

Random forest are ensembles of decision trees. Ensemble learning methods combine the
outputs of multiple models to produce more accurate and robust predictions. The idea
of random forests is to create multiple decision trees to reach a single result. Since this is
the case, the model is generally more accurate than just using decision trees. A random

19

forest model is also able to capture nonlinearities in the data, which can be beneficial when
working with large and complex datasets [47]. They are resistant to noise and outliers,
manages high-dimensional datasets effectively and yield estimates of feature relevance.
Decision trees are created from the original dataset using bootstrapping, where each tree
is trained on a randomly sampled subset of the data, with replacement. Some of the
data, typically around one third, will not be used in the training of a particular tree.
These are referred to as out-of-bag (OOB) samples and are later used to validate the
model. In addition to bootstrapping the data, random forests also introduce randomness
during tree construction by selecting a random subset of features at each split. This
added randomness increases the diversity among the trees, helping to reduce overfitting
and improve generalization [48]. When all trees have been built, the out-of-bag samples
are run through the trees that did not train on them. Each tree "votes" for the class
it predicts the sample belongs to. The votes from all trees are then counted, and the
majority determines the final predicted class[48|. For regression tasks, the model instead
outputs the average of the trees’ predictions. The training structure of the random forest
model can be seen in figure [3.2

Data
|

Out of bag selection

l ! l

Data subset 1 Data subset 2 = = = = = Data subset n
l l l
Decition tree 1 Decition tree 2 "= = =® ® = Decition tree n

N —
\Vote Vote Vote
Prediction

Figure 3.2: The structure of the random forest training process.

The model also uses the OOB samples to estimate the importance of each feature in
the dataset. This is done using a technique called permutation importance. The OOB
samples are run through the trees multiple times, but with the values of a specific feature
randomly permuted. This breaks the relationship between that feature and the target
variable. The model still makes a prediction, but its accuracy typically decreases. The
difference in accuracy before and after permutation is used to estimate the importance
of the feature. A larger drop in accuracy indicates a more important feature. These

20

importance scores can then be normalized and are often presented as values between 0
and 1, where a higher value indicates greater importance [48].

In cases where data has a temporal or sequential structure, such as time series, random
forests can still be effectively applied by incorporating lagged features. These are created
by including past values of variables as additional input features, allowing the model to
capture temporal dependencies even though the algorithm itself is not inherently time-
aware. This approach extends the flexibility of random forests and enables them to
perform well on a wide variety of prediction tasks involving historical data. Overall,
random forests are a powerful and flexible modeling technique that perform well on a
wide range of tasks|39].

3.5 Al for time sequential failure prediction

Given that both tasks deal with time sequential data, Al models that deal well with
sequential data are reviewed. Some of these were discussed in section 2.1, where the most
commonly used Al techniques for time sequence data are Convolutional neural networks
(CNN), Long Short-Term Memory Networks (LSTM), and Transformer networks. These
models are described in order to answer the primary inquiry and research question.

3.5.1 Convolutional Neural Network

Convolutinal neural networks use convolutional layers, and are traditionally used in image
recognition. The convolutional layers extract features through convolving a kernel over
an image, and pooling the results in order to extract features from the image. The
extracted features can then be linearized, and used in a neural network for regression or
classification[49]. An example architecture is illustrated in figure [3.3

21

1x1x64 11 x32 1x1x16
f i 7 [P i

6x6x1

5x5x4 4x4x4 2x2x%x4
input
convolutional + ReLU
max pooling

@ fully connected + RelLU

@ softmax

Figure 3.3: Example CNN architecture for classification with input size 6 x 6 x 1, a filter
bank with four filters and kernels of size 2 x 2, stride of 1, no padding, and using max
pooling.

As mentioned the convolutional layers use matrix convolution. A filter bank, consisting of
multiple learnable kernels, are convolved over the image, capturing different local features
of an image. Pooling is then used, to extract the most meaningful feature from the kernels,
thereby reducing dimensionality of the image. In general two types of pooling exists, max
pooling and mean pooling[49]. An example of convolution and max pooling can be seen
in figure [3.4}

0 4 4 7 5 L PR — ‘ -------------------- , v
' Pl s3] 39 | 75 | 5 | 40
8 7 1 5 6 9 S'em;%en Kernel "
: 79 | 36 | 50 | 77 | 105 [— K —»f 105
0 5 7 3 8 9 |1 5 1 1 8 .
: > * ; 40 | 85 | 34 | 73 | 86
3 | o | & |1]2]2]|! 6 | 9 o | 3 '
: 3 70 | 34 | 23 | 33
3 0 2 6 2 5 L)
: T 3 | 34 | 50 | 25 | 45
5 0 6 0 1 1 Convolution

5-14+1-8+6-0+9-3=40

Figure 3.4: Example of a convolution and max pooling for an image of size 6 x 6 x 1,
kernel size of 2 x 2, and a stride of one.

The convolutional layers can be controlled through the hyperparameters stride, depth,
zero-padding, and pooling size. The stride decides the overlap between kernel convolu-
tions. A stride of one glides the kernel one step when convolving, as seen in figure [3.4]
Depth is the number of kernels in the filter bank, and determines the number of output
channels of the convolutional layer. Zero padding pads the borders of the image, such

22

that the edges can be convolved. Lastly, pooling size decides the shape of the pooling, and
thereby how much dimensionality is reduced. The convolutional layers also make use of
activation functions such as ReLLU. Once features have been extracted from convolutions,
they can be flattened and used in a neural net[49]]50].

While CNNs are developed and most commonly used for 2D images, they also have ap-
plications within 1D signal processing, where they have showed good performance for
limited labeled data. The main difference between 1D and 2D convolution is the kernel
and stride, since these are one dimensional in the 1D case compared to the classic 2D
case|50].

3.5.2 Long Short-Term Memory Network

Long short-term memory (LSTM) networks are a form of recurrent neural networks
(RNN), that capture long term dependencies while avoiding the problems with vanishing
and exploding gradients. It does this by using memory cells with state ¢; at sequence
time t, each cells consists of three gates, an input gate i;, an output gate o;, and a forget
gate f;. Each cell takes in ¢;_1, h;_; which is the latent representation of the previous
layer, and x; which is the current input. The cell outputs the cell state ¢;, and latent or
hidden representation h;. A single LSTM memory block can be seen in figure 3.5 and is

described by equation [3.5.2]51][52].

Ct—1

P O

Tt

Figure 3.5: Single LSTM memory block.

fi = Og(Wfl‘t + Rehyq + bf)
it - Ug(vvixt + Riht—l + bz) © gc(cht + Rcht—l + bc)
0y = O-g(WOwt + Roht—l + bo)

23

= [©ce1 + 1
ht =0; ® O'C(Ct) (38)

All matrices W and vectors b are weights and biases respectively, that can be learned
through backpropagation. ¢ indicates activation functions, where o, are gate activations,
and o, are cell activations, these are commonly sigmoid and tanh respectively[52]. The
final hidden state can be used in neural nets for regression and classification tasks.

Bidirectional LSTM networks (Bi LSTM) are LSTM networks which evaluate a sequence
in both a forwards and backward direction, combining the output from both. Depending
on the task this can boost performance[53]. LSTM networks have performed well for
several tasks such as language modeling, sequence denoising, sequence generation, and

sequence forecasting, generally proving effective and well performing for time sequence
problems[52][54].

A drawback of using a normal LSTM models is difficulty learning positional importance
in sequences. To try and combat this an attention mechanism can be implemented which
helps to learn positional importance in the latent representations|55|. The attention
mechanism allows the model to better focus on the most relevant parts of the input
sequence when making predictions. Instead of using only the final hidden state, attention
gives a weighted sum of all hidden states seen in equation|56].

H= [h17h27"'7hT] (3~9)

The attention mechanism computes an attention score a; for each timestep ¢. This score
reflects the importance of the hidden state h; for the current prediction and is learned
from a single perceptron layer. The perceptron weights are used to compute the score as
seen in equation [3.10]

a;=w'h+b (3.10)

w and b are trainable parameters of the attention layer and are found through a feedfor-
ward network. This allows the model to learn attention through training of the network.
a; is normalized using a softmax function to obtain attention weights. This is described
in equation [3.11]

exp(a

T YT explan)

Finally the context vector ¢ is computed as the sum of the LSTM hidden states, weighted
by their corresponding attention as described in equation [3.12]

Gy

T
C = Zatht (312)
t=1

The context vector serves as the input to the downstream regressor or classifier neural
net. The benefit of using attention in a LSTM model is that the model focuses on the

24

most relevant parts of the input sequence in its predictions. Furthermore, this adds better
interprebility to the model since the magnitude of the weights translates to the importance
of the part of the sequence it represent|55][56].

3.5.3 Transformers

Transformers are a parametric machine learning method that uses attention to model
sequence transduction tasks, such as natural language processing and computer vision, by
learning sequence dependencies and context[57]. A model of the transformer architecture
can be seen in figure [3.6]

OQutput
Probabilities

4
(1 A
Add & Norm <=~

Feed
Forward
e | ™\ | Add & Norm |<_:
EE81E Mo Mult-Head
Feed Attention

Forward D) Nx
.~
Add & Norm

Nx
p—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
At 4 1t
— y, . —)
Positional A Positional
Encodin D & i
coding Encoding
Input Output
Embedding Embedding
Inputs Cutputs
(shifted right)

Figure 3.6: The transformer architecture as described in Ashish Vaswani et. al.|58].

The data sequence input is encoded by the input embedding. This assigns a vector to each
token. The vector representation of each token is parsed through a positional encoder,

25

which encodes information about the token’s position in the sequence. After input encod-
ing, the sequence is passed through self-attention, where the input finds context within
itself. This is done through a multi-head attention block which is described in figure |3.7|

Concat

!

L
Scaled Dot-Product J& o

Attention -
| | |
[Linear]J[Linear],][Linear]]
¥ ¥
\ K Q

Figure 3.7: Multi-Head attention as described in Ashish Vaswani et. al.|5§].

Multi-head attention is based on scaled-dot-product attention. Here a query matrix @)
is associated with the encoded input sequence, each vector in the matrix represents a
“question” which a token asks the other tokens. A key matrix K represents vectors with
token “answers” to the queries. The dot product between the query and key indicates how
much tokens are contextualized by each other. A value matrix then contains vectors that
show how each token contextualizes each other. This is also described by an equation,
where the attention is normalized by the query-key dimension. This is given by equation
where queries Q € RY*Px keys K € RM*Pr and values V € RM*Pv | with N and
M denoting the lengths of queries and keys (or values), and Dy and D, denoting the
dimensions of keys (or queries) and values|5§].

Attention(Q, K, V') = soft (QKT) vV (3.13)
ention((), £, = sortmax .
VDy

To then get multi-head attention the queries, keys and values are then projected H times
with linear projections to dj, d and d, dimensions, respectively[58|. This allows for
attention to be performed in parallel which keeps the same computational complexity as
single-head attention but increases performance of the model[58]. Multi-head attention is

given by equation [3.5.3]
MultiHeadAttn(Q, K, V) = Concat(head, - - - , headz)W
where head; = Attention(QWZ, KWK vivY) (3.14)
One motivating factor for using transformers is that they excel at handling both long and

short sequences of data due to their self-attention mechanism. This is because of how it

26

uses the query-key feature[59]. Another benefit of using transformers is that they process
the entire sequence in parallel. This is also the reason for why a positional encoder is
necessary since the transformer is not able to understand sequence structure without it.

3.6 Data augmentation

As mentioned in section[2.3|having an equally sampled dataset is important. Furthermore,
when training parametric deep learning networks, greater data variance significantly im-
proves learning especially for larger networks|60|[61]. Given limited data availability of
the failures discussed in this thesis, it is necessary to generate augmented data for train-
ing, based on the existing data.

As also mentioned in section SMOTE is a popular technique for generating synthetic
minority class samples. This is done through K-nn, and the technique can in general be
used to generate any number of augmented samples from any class. The augmetation
method is summarized in algorithm [7]29][62].

Algorithm 7 SMOTE algorithm which generates synthetic minority class samples.

1: inputs:
Minority class samples X, oversampling amount /N, number of

nearest neighbors k
2: X, < empty array of length N to store synthetic samples in

3: while 7 =1to N do

4: for sample x; € X do

5: Find k nearest neighbors of z;

6: Select random nearest neighbor xzj of x;
7: d < U(0,1)

8: XS[]] FZ'Z—F(S(iIZ'k—iL‘l)

9: end for

10: end while

In essence synthetic samples are generated along the line segment between a samples and
one of its nearest neighbors.

DTW-nn also has applications within SMOTE. Here it replaces the traditional K-nn
method with DTW-nn to find nearest neighbors. Instead of generating a synthetic samples

as in algorithm [7] the sample is generated along the best aligned path found from DTW.
DTW-SMOTE is described in algorithm [S]63].

27

Algorithm 8 DTW-SMOTE algorithm for generating synthetic minority class time series
samples.

1: inputs:
Minority class samples X, oversampling amount N, number of

nearest neighbors k
2: X, < empty array of length NV to store synthetic samples

3: while 7 =1to N do

4: for each sample z; € X do

5: d < empty array to store distances

6: for z;, in X that is not z; do

7 d(i, k) < DTW (x;, xy)

8: end for

9: Find k nearest neighbors of z; based on d(i, k)
10: Select a random neighbor x; from the k nearest neighbors
11: 7" <— optimal warping path between x; and x; using DTW
12: xs < empty sequence to store synthetic sample

13: for each (i,7) € 7* do
14: d < U(0,1)
15: zs[p] < wilp] + 0 - (zxlq] — xi[p])

16: end for

17: X, [j] — Ty

18: end for

19: end while

28

4 Proposed Feature Engineering and
Failure Prediction Methods

In this chapter the proposed feature engineering and failure prediction methods are de-
scribed, alongside the data pipeline for training the models. The methods described in
this chapter will both be used and applied on the accumulator failure data and methanol
changeover data. The feature engineering will be based upon a feature selection algorithm,
which aims to reduce dimensionality, deal with spurious correlations, while, emphasizing
feature importance. The outlined method will ultimatemly be used to answer the second
inquiry "How can feature engineering be used to create a feature space suited for prediction
models, while giving insight into the system failures?".

The prediction methods proposed in this chapter are two fold, where one uses binary clas-
sification and a Prediction Window, and the second, Remaining Useful Life prediction.
The first prediction problem is formulated as follows;

Can a system failure be predicted through binary classification, by predicting if a failure
happens within a Prediction Window, given data read from a Reading Window?.

From the literature it is found that this method of binary classification works well for time
series data, given appropriate window sizes. The second prediction problem is formulated
as;

Can the Remaining Useful Life of a system be predicted through regression, given data
read from a Reading Window?

This method is also pursued in literature but the same effect of RW size has not been
explored in the same capacity as the binary classification problem.

For the two prediction tasks, different models are used, including Random Forest with
lags, 1D CNN, and LSTM networks. The model choices are fundamental to answer the
inquiry "Can ML and Al models be used to predict marine propulsion system failures?”,
as well as the research question "to what extent can ML and Al be used to predict and
prevent total system failure in MAN Energy Solution’s maritime propulsion systems?".

29

4.1 Data pipelining for failure prediction

The pipeline for training and validating failure prediction models include reading the data,
windowing the data based on the reading window (RW), labeling the data according to
the prediction window (PW) or the remaining useful life (RUL), generating augmented
samples using SMOTE, training and validating the model, and finally testing the model
with unseen data. Each part of the pipeline, summarized in figure is described in this
section.

Validating
Selectin Creating Trainin the model
Data —>» 9 3 window —> Labeling —>» SMOTE —>» g with
features i the model unseen

data

Figure 4.1: Diagram showing the pipeline for the data to be ready for one of the failure
prediction models.

4.1.1 Data description

The data from the Posorja Express is labeled according to previous work as described
section [5.1.1] The data is segmented into smaller time sequences which are labeled ac-
cordingly. The segments are 8000 samples long, corresponding to 2.2 hour, ensuring
sufficient RW sizes for finding temporal dependencies, and data diversity. In total 100
stable segments and 15 failure segments are used. The windowing and labeling of the seg-
ments is described in section [{.1.3] To reduce dimensionality, as well as remove spurious
correlations, the algorithm described in section is used.

In order to find a solution to the problem of knocking and damage of supply pipes men-
tioned in section [I.2.2] service tests were conducted. Here measurement setups were
setup, in order to measure the system and identify the failure cause. It is this data which
will be used for developing changeover failure prediction models. In this case the data is
pre-labeled, with the files obtained from the tests containing either a successful or failed
changeover sequence.

The methanol changeover data has been measured with 20 kHz for several different tests,
containing seven successful changeovers, and eight which failed. Both are used when
training failure prediction within a prediction window. In case of RUL prediction, only
the failed changeovers are used for training. Additionally, for RUL prediction only six of
the eight failed changeovers are used, due to faulty data loading. Exact windowing and

30

labeling of the data is described in section [£.1.3] Due to the high sampling frequency, it
was decided in section to only use the maximum value per injection. Furthermore,
to reduce dimensionality and remove spurious correlations, the algorithm in section [4.1.2]
i used. For classification with a PW, sequences of 78 injections are used, as this is the
smallest number of injections required for the human operator to detect a failure. For
RUL prediction, the full sequence until failure is used, meaning varying sequence lengths.

4.1.2 Algorithm based feature selection

In order to select an appropriate subset of features, redundant information should be
removed, as mentioned in section As also mentioned in section [I.4], features should
also have a high relation to the class. While methods like greedy elimination, and Lasso
regression deal well with elimination feature-feature correlations, they do not consider
each individual features relation to class. On the other hand, CFS considers both feature-
feature correlation, as well as feature-class correlation, however this comes at the cost
of computation time, as all possible subsets of features need to be computed. In an
effort to eliminate high feature-feature correlations, while emphasizing high feature-class
relationship, algorithm |§] is developed based on recursive feature elimination (RFE).

Algorithm 9

1: Input: Features [, feature-feature correlation matrix Cyy, feature-class importance
I.¢, threshold ¢

2: Output: Feature subset F™*

3: F*+ F

4: high correlation<— True

5: while high correlation = True do

6: high correlation < False

7: for each feature pair (7,j) € F do
8: if |Cts(7,7)] > € then

9: high correlation < True

10: if Icf<l) > Icf(j) then

11: Replace j ¢ in F*

12: end if

13: if [cf<]) > [cf(l) then

14: Replace 7 with j in F™*
15: end if

16: end if

17: Re-evaluate Cyy for F™.

18: Sort feature pairs (7, j) € F* from largest to smallest according to C(3, j)

19: end for
20: end while
21: return ™

31

Although algorithm [9]lends from RFE, taking into account feature importance, it diverges
from traditional RFE by using feature-feature correlation threshold rather than contin-
ually considering smaller and smaller feature subsets until a desired number of features
is reached|28|. The measure of feature importance will depend on the task, and will be
described for the accumulator failure, and methanol changeover failure in sections [5.1.4

and [5.2.1] respectively.

4.1.3 Windowing and labeling

In general, data for failure classification, using a prediction window, is a binary classifi-
cation with labels (1) and (0), representing a failure and stable conditions respectively.
Data is windowed according to the RW, which slides along the data sequence. If the
reading window is outside the PW the window is labeled as (0), if the RW is within the
PW it is labeled as (1). This windowing and labeling is illustrated in figure

Features
Failure Incident

e

Featy -+
Featy
Feats
Featy
Feats
Featg
Featr
Feats

Featg
Featyg
Feat;
Feat3

T T T T T T T T T

Featyy
Featys
Featg
Featy7
Featg
Featqg

Mﬁiiiiiggiwiiii ;
1 2 3 4 R;/ 6 7 8 \n—3 n2PWn1 n/ Time

Figure 4.2: Illustration of a sliding reading window over all features at each time step
with a prediction window at the end of the sequence where system failure occurs.

In cases where PW < total sequence length there will be windows of data corresponding
to the lead up to a failure, which are labeled as (0). A window is labeled as (1) when the
RW enters the PW, as described in figure [4.2]

Data used for RUL prediction uses only failure sequences of varying length Lg leading up

32

to and including a failure. The label of each window is the distance from the end of the
RW until the failure occurs. Again a sliding window with size RW is used to window the
data. The windowing and labeling of RUL is described in figure 4.3|

Relevant Features

Failure Incident

Feat; Val +
Featy Val +
Feats Val
Featy Val
Feats Val
Featg Val
Feat; Val -+
Featg Val <
Featq Val -+
Featig Val +
Featy Val +
Feati3 Val +
Feat1y Val +
Featis Val +
Feat1g Val +
Featy7 Val +
Feati1g Val +
Featig Val +

Feat,, Val i

o—

v | o—m
O—M
o—
o—

o |o—m

J

O_
O_
O_
o_
s [o—m

RW RUL

Figure 4.3: Plot showing the reading window over the features in each time stamp moving
towards a failure incident and deciding the remaining useful life.

4.1.4 SMOTE and dataset balancing

Due to the limited data, an issue arises when training a failure prediction models, as
there is very little data variance. To avoid this, augmented data is generated using
SMOTE as described in sectionf3.6] The SMOTE algorithm generates new class samples
with its nearest neighbors, creating augmented data within the class distribution. In
the general the datasets should be balanced, with an equal amount of data labeled (1)
and (0). SMOTE is used to generate augmented failure samples, increasing the class
by N fold. In cases where there is lead up data, the dataset is balanced such that
Nstabie = Nieadup = Naiture/2, using either random sampling or SMOTE. In cases where
PW = Lg, meaning no lead up, the dataset is balanced such that Ngqpe = Ngiture, again
using random sampling or SMOTE.

In the case of Posorja Express the data is heavily skewed towards stable data. Therefore,
SMOTE, as seen in algorithm [7] is used to oversample failure instances, and random
sampling is used to downsample stable data. In the methanol changeover data the dataset

33

is not as unbalanced. However, it contains very few sequences. Therefore, SMOTE is used
to generate both stable and failure samples, to increase the amount of total data and data
variance. Given the uneven sequence lengths in methanol changeover RUL prediction,
the DTW-SMOTE algorithm [8]is used to augment full sequences.

4.2 Proposed failure prediction models

In this section the proposed models for failure prediction are presented. Random forest
with lags, 1D CNN, and LSTM networks are chosen for their failure prediction perfor-
mance for time sequential data, as demonstrated by the literature review in chapter [2|
Transformer are not pursued based on strong recommendations from MAN ES from prior
experience.

4.2.1 Random forest with lagged data

As mentioned in section Random Forest are not inherently meant for multivariate
time sequential data. However, they can be adapted for it using lagged features. In
practise, this is done by flattening the multivariate time sequences such that that shape
goes from (Nyeatures, BW) — (1, Nteatures - BW). The model works by sliding the RW
and making a prediction based on the data in the RW as described in section As
mentioned, the tasks involving a prediction window are classification tasks, and the RUL
prediction is a regression task. For the two different tasks classification and regression
trees are used respectively. In essence this means the use of different impurity measures,
best suited for the purpose. Gini impurity is used for classification, due to its reduced
computational complexity compared to cross entropy. For regression the mean square
error is used, treating the regression as a least squares problem. The random forest
models take in the hyperparameter n_estimators, which dictates the number of decision
trees used in the random forest. The specific tree type, loss function, and n_ estimators
for each task are described in chapter [6]

4.2.2 1D Convolutional Neural Network

As described in section [3.5] a 1D CNN finds temporal features by convolving across one
dimension, and extracting features. The data shape input in a 1D CNN is

(B, Nehannets, Nitime steps), for a batch size of B. When applying this to the machine failure
prediction problems outlined, the shape becomes (B, Nyeatures, RW), with channels equal
to the selected features, and the number of time steps corresponding to reading window
size. Each convolutional layer changes the length of the original sequence with length Lg
according to equation [4.I| where the convolutional layer has a kernel size of ks, padding
of p, and stride s.

B Ls+2p — ks

s

L. +1 (4.1)

34

The convolutions are then pooled to extract features, either through max or average
pooling. After convolution and pooling, fully connected layers are used in order to obtain
the desired output shape. Both convolutional and fully connected layers can use activation
functions such as ReLU to model nonlinearities, or Sigmoid or softmax to fit the output
for classification. Furthermore, the layers may use dropout to avoid overfitting. All
attributes, as well as network depth and size, will depend on the prediction task, and are
described in chapter [6] In figure [£.4] the general architecture of the 1D CNN can be seen.
The input size depends on the number of features Nyeqrures from the feature selection
process, as well as the reading window size RW. The last layer is a pooling layer, which
ensures flattening of the of the time sequence. The original feature size is scaled from
Neatures to a number of channels N.

BXNfeaturesXRW BXNCJ,,XLC BXNthl
Input Convolution """ | convolution Pooling Fully connected | | Output |
) Input with f; features @ Fully connected + activation

Convolution + activation @ Fully connected + activation

) Pooling

Figure 4.4: General 1D CNN architecture for failure prediction.

1D CNNs are well suited for both classification and regression, depending on the loss
function and output layer. Binary cross entropy is used as the loss function binary clas-
sification, and mean square error loss is used for regression tasks. For the output layer,
Sigmoid activation is used for binary classification, and no activation is used on the out-
put layer for regression models. In chapter [] the loss function, as well as the optimizer,
activation functions, learning rate, and batch size, used for training each specific model,
are described.

4.2.3 LSTM networks

As discussed in section LSTM networks capture long term dependencies. They take
in sequential data in the shape (B, Nime steps, IV features) Which equates to (B, RW, Neatures
for batch size B, and are suited for both classification as well as for regression tasks. In this
case they are used for both in cases of longer reading windows, as they can capture long
term dependencies that models like 1D CNN or random forest with lags might miss. LSTM
networks are constructed from one or more LSTM blocks with input, output, and forget
gates. Each LSTM block has a hidden size h, corresponding to the number of output
features of the block. The blocks are often combined with fully connected linear layers,
to output the desired prediction. The linear layers may also use activation functions such
as ReLU to capture non-nonlinearities, or Sigmoid for binary classification. Furthermore,

35

the linear layers may also use dropout to avoid overfitting. The LSTM output has the
same length as the input sequence L, in order to vectorize it for the fully connected layers
two main techniques are used. Firstly, the last time step of the LSTM output can be used,
as it has captured context from previous steps. Alternatively, an attention mechanism
can be used, to capture positional importance in the time sequence as described in section
B.5.2] The general architecture for the LSTM models used for the tasks in this thesis can

be seen in figure [4.5

B x RW x f, B x RW x hy Bx1xh,

Attention or
Input > LSTM block -~ LSTMblock — 5 0 —> Fully connected | --- | Output |

7| Input with f; features @ Fully connected + activation

LSTM block with hidden size hg @ Fully connected + activation

J LSTM output flattening

Figure 4.5: General LSTM network architecture

LSTM networks can be trained with different loss functions depending on the task. Binary
cross entropy is used as the loss function binary classification, and mean square error loss
is used for regression tasks. Model training performance also depends on the optimizer
used, as well as the hyperparameters batch size, learning rate, dropout, and RW. The
choice of hyperparameters greatly impact model training and performance. The specific
dimensions, depth, activation functions, hyperparameters, loss functions, and optimizers
used are described in chapter [f] for each task.

4.2.4 Model training and validation

Once data has been read, features have been selected, data has been windowed, labeled,
and synthetic samples have been generated, the model can be trained. For the Random
Forest this is done according to algorithm where trees in the random forest are trained
according to algorithm [0l The random forest algorithm takes in training and validation
data, together with the number of decision trees used n_estimators. The training and
validation loop works by the model generating a random forest with n_estimators trees,
fits the model using a specified impurity measure, and validating the model on validation
data.

36

Algorithm 10 Random Forest Training and Validation

1:

Input: Training data Dy, validation data D,,, model M, impurity measure L,
number of trees n__estimators

Output: Validation prediction (Yprediction, Ytrue)

Initialize model M with n__estimators

Train model M (Dyain, £)

Validate model Yy ediction — M (Dyar)

For the AT models (CNN, and LSTM), the training loop described in algorithm [11]is used.
Batch training is used for parallel computing and generalization with a specified batch size.
The model is trained over several epochs with early stopping to avoid overfitting. Early
stopping works by stopping training, and restoring the best model, if further training
hurts validation results. The model is fitted using a specified loss function and optimizer,
depending on the task.

37

Algorithm 11 AI Training and Validation with Early Stopping

1: Input: Training data Dy,.i,, validation data D,,;, model M, loss function £, optimizer
O, max epochs F,.,, patience p

2: Output: Trained model M

3: Initialize model parameters 6

4: best _wval loss < oo

5: patience _counter < ()

6: for epoch =1 to E,.x do

7 Shuffle Dy qin

8: for each batch (z,y) in Dipain do

9: Ypred < M (x;0)

10: l0ss <= L(Ypred: V)

11: Update 6 using O to minimize loss
12: end for

13: val loss < 0

14: for each batch (241, Ypar) in Dya do
15: yslrjd — M(zya;0)

16: val_loss < val _loss + LY Yoar)
17: end for

18: val _loss <— val_10ss/|Dyall

19: if val loss < best _wval loss then

20: best _val loss <— wval loss

21: best _weights < 6

22: patience _counter < 0

23: else

24: patience counter <— patience counter + 1
25: if patience counter > p then

26: break

27: end if

28: end if

29: end for

30: Return model M with weights best _weights

To test the models performance on unseen data, a four fold cross validation is used for
certain hyperparameters.

38

5 Data Analysis and Feature Engi-
neering Results

In this chapter the data for the two tasks outlined in section are analyzed in order
to determine whether failure is detectable and predictable. The analysis will also lay a
basis for feature selection and feature engineering of the datasets, resulting in a feature
subset well suited for prediction, while being highly interpretable. To aid in this feature
selection, the algorithm described in section is used. Ultimately, this chapter aims
to answer the secondary inquiry "how can feature engineering be used to create a feature
space suited for prediction models, while giving insight into the system failures?’.

5.1 Data analysis for accumulator failure data on the
Porsorja Express

The dataset from the line recorder files for the Porsorja Express contains 1719 parameters,
some of these are measured for multiple cylinders, or other components that there are
multiples of, this results in a total of 3392 features. In the following section the best
features for classifying the difference between engine stability and accumulator failure are
found. Since the dataset contains a high dimensional feature space with high correlations
and irrelevant features useful to look at, feature selection will be used to eliminate these.
The goal is to obtain a reduced feature subset for the prediction models.

5.1.1 Accumulator failure labeling

In order to label incident times of accumulator failure, an algorithm developed in previous
work will be used|64]. The algorithm was developed using a ratio between the engine load
and swash plate position while looking for an additional Ly v 4 feedback error warning.
The algorithm developed in the previous work [64] can be seen in algorithm [12]

39

Algorithm 12 Algorithm which detects accumulator bursts based on the swash plate
position, engine load, and Ly 4 feedback error.

1:

inputs:

engine load, swash plate position
initialize:

threshold < descision boundary
N < length of engine load

for i =1to N do
engine load|i]
T swash]g)late position|i|
if (r > threshold) AND (engine load[i] > 1) AND (Lw v a feedback error) then
An accumulator has burst
end if

end for

The best threshold found in the precious work [64] is 1.96. The algorithm looks for
cases where the ratio exceeds the threshold, while the engine load is above 1 and when
a feedback error warning occurs. If all conditions are satisfied, then, with high certainty,
an accumulator has failed.

Algorithm [12]is used on the linerecorder files from the Porsorja Express to find instances of
accumulator failure. A linerecorder file continuously spans several days and measures all
features with a frequency of 1 Hz. The two linerecorder files in the dataset contains data
from 08/02-2024 to 22/03-2024 and 10/04-2024 to 08/05-2024. By applying the algorithm
to the linerecorder files the incidents in table were found at the corresponding times.

40

Entry Description File
[97473:97477| New failure File 1
[486906:488000] | Failure on cyl 3 | File 1
[519140:519150] | Failure on cyl 4 | File 1
[527344] Failure on cyl 4 | File 1
[794348:794353| | Failure on cyl 6 | File 1
[912551:912556| | Failure on cyl 8 | File 1
[1078984:1078989] | Failure on cyl 1 | File 1
[1155595:1155601] | Failure on cyl 7 | File 1
[1691149:1691153| | Failure on cyl 5 | File 1
[2030484:2030495| | Failure on cyl 2 | File 1
[2030484:2030495| | Failure on cyl 2 | File 1
[2030850:2030860] | Failure on cyl 2 | File 1
[2064215:2964224| | Failure on cyl 4 | File 1
[3215102:3215105] | Failure on cyl 3 | File 1
[3217855:3217870] | Failure on cyl 3 | File 1
[3285035:3285036] | Failure on cyl 6 | File 1
[196704:196706] | Failure on cyl 5 | File 2
[508707:508716] | Failure on cyl 4 | File 2
[1416347:1416354] | Failure on cyl 8 | File 2
[1619576:1619578| | Failure on cyl 5 | File 2

Table 5.1: Indices all the incidents of accumulator failure in the two linerecorder files with
cylinder number.

The entries in table are the times found by the detection algorithm. Since the linere-
corder files span more days than the dewesoft data obtained directly from Porsorja Ex-
press, new incidents are found, which is a good indication that the algorithm [12| works on
linerecorder data.

These timestamps are used to know when exactly in the linerecorder files an accumulator
burst has occurred. The failure found in file 1 are made into a list of intervals with a
stable segment before and after each incident and with the incident segment extending
3000 samples before the actual burst to also capture the lead up to an incident. This also
makes it so that the data is not heavily skewed towards stable data since this is a very
small part of the total dataset. The intervals used for classification can be seen below.

41

1e7 Cyl Tuning (ACCo)

—— Cyl Tuning (ACCo)

1.4 4

12+

1.0

0.8

Value
- f

'
—_—

0.6 4

0.4 1

0.2 1

0.0 1

T T T T T T T
0 20000 40000 60000 80000 100000 120000
Index

Figure 5.1: Graph of the Engine Load in the chosen intervals, the red indicates the interval
leading up to an incident.

The intervals with stable conditions are found by a series of equation, from which MAN
ES determines engine stability. These new intervals are then to classify when an incident
is happening and when the engine is running as it should.

5.1.2 Feature-class correlation

To determine how closely correlated the features are to the failure, a binary classification
is setup with failure and stable data. The feature-class correlation is computed by calcu-
lating the Pearson correlation coefficient, as described in section [3.2] between the feature
samples and corresponding class labels. The highest correlated features to the class are
listed in order of most correlated to least. The 30 features with the highest absolute
correlation value can be seen in table 5.2

42

Correlation

Feat. Name

-0.3210 Seconds since midnight (UTC)

-0.3210 Seconds since midnight (local)

0.2786 Cyl Tuning (ACCo)->Fuel Oil Pi Adjustment

0.2786 p(i) (ACCo), FO adjustment

0.2632 ECU->I10->CCUs Feedback->Pi average FO Adjustment
-0.2625 | Liner Wall Monitoring->CCU1 LinerWall Temp.1 Dev.|Deg C]
-0.2625 Liner Wall Monitoring->CCU1 LinerWall Temp.1 Dev.|[Deg C]
0.2621 ECU->I10->CCUs Feedback->Pi average FO Adjustment MOP
0.2621 Avg. p(i) (ACCo), FO adj.

0.2566 ECU->I10->CCUs Feedback->Pi average FO Adjustment
0.2556 ECU->I10->CCUs Feedback->Pi average FO Adjustment MOP
0.2520 p(i) (ACCo), FO adjustment

0.2520 Cyl Tuning (ACCo)->Fuel Oil Pi Adjustment

-0.2483 | I0->AI (8615), Compressor Inlet Press

-0.2483 TC air intake pressure - ducted inlet, PT 8615

-0.2473 Cyl Tuning (ACCo)->Cylinder Prise Tuning->Regulator Out Adjustment
-0.2473 | p(rise) adj. (ACCo)

0.2457 Current msec adjustment (ACCo)

0.2457 Cyl Tuning (ACCo)->Current Msec Adjustment

0.2453 Liner Wall Monitoring->CCU1 LinerWall Temp.2 Dev.[Deg C|
0.2452 Liner Wall Monitoring->CCU1 LinerWall Temp.2 Dev.[Deg C|
-0.2436 Air temperature before cyl. (fire box), TE 8610

-0.2436 | I0->AI (8610), Scav.Air Fire Alarm

0.2388 Autotuning V2->SF Avg Adjustment

0.2388 ECU->I10->CCUs Feedback->Msec average Adjustment

0.2385 Autotuning V2->FO Avg Adjustment

-0.2383 | p(rise) adj. (ACCo)

-0.2383 Cyl Tuning (ACCo)->Cylinder Prise Tuning->Regulator Out Adjustment
0.2359 Autotuning V2->SF Avg Adjustment

0.2359 ECU->I10->CCUs Feedback->Msec average Adjustment

Table 5.2: Top 30 Features with the Highest Correlation to Incident Class

The results of the feature-class correlation are generally low and it is suspected this might
be due to non-linear dependencies. For this reason other methods of determining feature-
class relation are pursued.

Random forest is a classic classification method, with built in feature selection and im-
portance as described in section [3.4.2] and is therefore suitable in this case. In order to
determine feature-class relations in a non-linear manner a random forest is used. This
is done because a random forest can handle nonlinearities, whereas Pearson’s correlation
coefficient cannot. To help the model understand past behavior and capture trends in

43

each feature, lagged data is used in the random forest model. When choosing the number
of lags to use, it is important not to use too few lags as this may lead to the model
missing important information. However, using too many lags risks overfitting the model,
while also being computational heavy to calculate a lot of lags. Since the purpose of this
random forest is to features important to classifying a failure occurrence, it is not crucial
to find far back trends in the dataset at this point. Therefore, it has been chosen to use
90 lags in the model. The feature importance of the resulting random forest can be seen
in figure [5.2

Top 500 Feature Importances

0.007 4

0.006

0.005 4

Importance
o
o
o
B
A

o
o
=}
w

0.002

0.001

0.000 -

o 3 (S AN G G (B N Y 50 1 (B (N A G o (I AN A Al s (e B A gl o
GRS LM 4 S A SCCAA AE SN
Feature Index (including lags)

Figure 5.2: Shows a graph the importance level of 500 most important features.

The results in figure shows the 500 most important features. Looking at the graph
it can be seen that it has an exponential shape. Therefore, as you move to the right
the importance of each additional feature decreases quickly. This indicates that is only
necessary to select features from the highest performing group. For now, by looking at
the graph, it has been chosen to focus on the 25 most important features, which are can

be found in table [£.3]

44

Feat. | Org. Feat. | Lag Feat. Name

56305 1104 1 10->AI (8408), Jacket CW Outlet pr. Cyl
10405 204 1 Exhaust valve position

5635 110 25 PSP Safety Margin Min Action nr. 3
21115 414 1 | Hydraulic Pressure LP Filter->Filtered Pressure |bar|
23995 470 25 Cyl Tuning (ACCo)->Pcomp Measured
75287 1476 11 Ordered CCU msec

11832 232 0 Tacho->Max filtered speed

26316 016 0 Pmax Bearing Limit

39372 772 0 Cyl Tuning (ACCo)->Pc/Psc Measured
24187 474 13 Cyl Tuning (ACCo)->Pcomp Measured
19405 380 25 luboil cyl in feedrate

24797 486 11 Cyl Tuning (ACCo)->Prise Measured
15606 306 0 Engine Tuning (ACCo)->PMI Telegram Recv
31645 620 25 TC LO inlet pressure, PT 8103

16345 320 25 Exhaust Valve Supervision->Close Supervision
44687 876 11 Ordered Pcomp/Pscav Ratio

56891 1115 26 I0->AI (8410), Cylinder CW Outlet
30295 594 1 p(max) (PMI)

54595 1070 25 10->AI (8414), CW jacket outlet temp meas
27832 545 37 I0->AI (8421), CW _ InletScavAirPress [bar]
1225 24 1 Exh. Valve Close Request

1045 20 25 Fuel Injection Sync. Angle

22645 444 1 CylTuning(ACCo)->CylPriseTuning
20196 396 0 Estimated effective engine power

39475 774 1 Cyl Tuning (ACCo)->Pc/Psc Measured

The resulting features in table suggests that lagged data is used for failure classifi-
cation. For this reason, longer lags are pursued for failure prediction with the reduced

dataset in chapter [0

Table 5.3: UpdatedFeatureData

5.1.3 Feature-feature correlation

As already established, a lot of features are highly correlated to each other. Therefore,
in order to reduce dimensionality and remove spurious correlations, redundant features
should be eliminated. In order to determine which features are highly correlated a cor-
relation matrix of the feature space is computed and displayed. First, two correlation
matrices are found, one where an failure occurs and one during stable engine operation.
From this is can be seen how correlations look in each scenario. The correlation matrices

are seen in figure

45

Correlation Matrix failure 1 20240208_20240322
TR T T W0 w0 e | T ey || ARG GG i
i

Correlation Matrix stable 1 20240410_20240508

TR I =
vy =

1.00

100

250 0.75 250 0.75

500

750

1000 1000

1250 L 025 1250 L s

1500 {31+
0o +-0.50 : +—0.50

1750 1750 4111
—0.75

-0.75

2000 2000 {i

-1.00
0 250 500 750 1000 1250 1500 1750 2000 o 250 500 750 1000 1250 1500

1750 2000

(a) Feature-Feature correlation matrix for all ~ (b) Feature-Feature correlation matrix for all
relevant features over a failure segment. relevant features over a stable segment.

Figure 5.3: Different Feature-Feature correlation matrices that shows the difference in
behavior between system failure and stable engine conditions.

The first thing to notice from figure [5.3| is that features correlate more with each other
during failure. This, however, makes sense since many features have somewhat the same
behavior during a burst of an accumulator, some might spike at the same time and some
might turn off. It can also be seen in both correlation matrices that features in the lower
right corner are more correlated to each other than other features. This can be explained
by looking further into which features lies here. Many features in that area are the
same measurement measured on different cylinders. For instance, different temperature
measurements for each cylinder lie in this area of the correlation matrix. Logically, these
features relate to each other. A correlation matrix for the full dataset can be seen in

figure

46

Feature-Feature Correlation Matrix

A IE ERE

&
118 - W | i o
177 -
236 -
295 -
354 -
413 -
472 -
531 -
590 -
649 -
708 -
767 -
826 -
885 -
944 -
1003 -
1062 -
1121 -

0.75

- 0.50
-0.25
- 0.00
-—0.25
-—0.50
-0.75

—1.00

Figure 5.4: Feature-Feature correlation matrix for 1530 features.

It is clear from the presented correlation matrices, that significant feature reduction should
be used in order to eliminate potential spurious correlations. This is done in section |5.1.4}

5.1.4 Feature selection

In order to reduce the 3392 features, to remove highly correlated features, and features
unrelated to classifying failure, algorithm [J)is used. The algorithm will use the correlation
matrix seen in figure [5.4) as C'yy, and the importances from the random forest in section

are used as I.;. The feature-feature correlation threshold is set as 0.7, as this
is generally considered the threshold for high correlation [65][66][67]. Using algorithm 9]
with these parameters will ensure a feature subset where features are uncorrelated to each
other and have a high correlation to the class, as described in CFS. Applying algorithm
[0 results in the correlation matrix, with 51 features, seen in figure [5.5]

47

Feature-Feature Correlation Matrix
RE_EGB _pos_1 -
BO _HMI TIUB 3005 B02"1 -
TE_HMI_ECUA 0201112 X 6 - 0.6
PR_HM|_ECUB_50329 1 -
EC_HMI_CCUx_590306_8 -

TI_HMT cCUx_030232BEM 4 - " - "
EC_HMI_CCUx_990309 3 - - 0.4
EC_HMI_CCUx_990309 2 -
AN HMI CCUx 108 7 - HE N E [] &
PR_HMI_ACU4 8464021 - <18 m
TI_AMI_CCUx_0101100_1 - | -0.2
RE_EGB_pos_setpoint_1 - -
TI_HMI_CCUx_03023310 8 - = |
TI_HMI_CCUX_0301E56 7 - n -
RE_AMI_CCUx_TO1D 6 - - 0.0
AN_HMI CCUx 01012476 -
RE_HMI_CCUx_033953_3 - .
LE_exhv_stroke_opening_8 -]
TE_HMI_8423_2 - " i 0.2
IN_HMI_cCUx_03393071 -
TE_HMI_ECUA_0201L11 X 7 -
AN_HAMI_CCUx_010124 7 -
RE_HMI_CCUx_033951 7 - . o4
LE_exhv_stroke close 2 - '
RE_HMI_CCUx_033953"1 -
TE_aIF_IC_In_2 _I [[[[[} [[[[} [[[[|
H|H|2|Hlmﬁlmlmlnglgl:Iglglmlilm|m|:|H|:|:Ih|N|H|2|
e R ST 88838 SAR IR NG ARE
apNmmpmmA = MU s e a]daSay
oD G SR 22 eD BRSPS R §E RIS BoAY,
0eZ AN AR Sdntom xo 825 820 3 w85
Lol wm @ TI0Te nmo 510192 T2 it T
IFN S XA XX0a _1po 10X % gT =0 %X =0 xw
WP 038355 5X3. 85020 %,/3923555F
ERL D0 00503 2% R0 DE U UMD
Ea Elulg YV T q|8 'O 8 = SIU|E Ula BIUIE ©
_mESEUSESSSQYS/TES S SnEERE
S_ITTVYIEITIZTEY =TT E T_ITT VT
I=g 'EI ! 'I|"”§I|°:2'Lu'§ = Z'Lu"i-llml
ThEzhd EFT0E Z2)) ET IR @
gl_u | ~ 5 L
= E =

Figure 5.5: Feature-Feature correlation matrix the reduced feature subset.

Figure [5.5 shows the 51 selected features from algorithm [9] Furthermore, it can be seen
that feature-feature correlations have been significantly reduced with only a few nearing
the correlation threshold of 0.7. In terms of using these features in prediction models the
feature subset has to be expanded. Many of the features are features which are measured
for all cylinders. As accumulators can fail on all cylinders, measurements on all cylinders
need to be used. Adding the additional features results on a feature subset containing
209 total features, based on the results seen in figure [5.5|

Looking at the features selected in this section, they primarily relate to four things,
exhaust temperature, air intake pressure, liner wall temperature, and Adaptive Cylinder
Control (ACCo). These results are logical, as poor injection performance negatively
impacts cylinder health as seen by the temperature. The fact that the air intake pressure
is higher correlates well with the increase in exhaust temperature, since a turbo charger
uses the energy from the exhaust gasses to generate intake pressure. The ACCo is a

48

mechanism that adjusts various engine parameters to adapt to changes and trying to
maintain a desired combustion. Changes in these adaptive parameters could indicate that
the control system finds deviations from normal conditions and tries to correct this.

5.2 Data analysis for methanol change over measure-
ments

The data collected from the methanol changeover is measured in tests. For each test it
is known if the changeover procedure fails, and when during the process it fails. In order
to determine whether prediction of changeover failure is feasible, a simple classification
of the tests is conducted. Each test is split into injection cycles in order to capture only
relevant data, as in between injections, most features have very little variance. Each
injection cycle is labeled according to the test, a summary of the labeled dataset used for
classification can be seen in table 5.4l Note that a failure is labeled as '1’ and stable as
0.

Test | T007 | TO08 | TO10 | T11 | T020 | T030 | T035 | T039 | T044
Sample size | 101 18 11 17 32 59 328 63 68
Label 1 1 1 1 1 0 0 0 0

Engine load | 25% | 25% | 40% | 25% | 50% | 25% | 57% | 60% | 75%

Table 5.4: Summary of changeover data used for preliminary analysis.

In order to develop a failure prediction model, this data is analyzed to gain a better
understanding of what differentiates system failure from stable conditions. This includes
determining whether failure is classifiable, analyzing which features are related to fail-
ure occurrence, selecting an appropriate feature subset, and determining if a failure is
predictable.

5.2.1 Failure classification

Given that the tests in table are conducted at different engine loads, the injection
cycles are not the same length, as injection is based on the crankshaft angle and not time.
For this reason DTW-nn is used for classification. This is also a non-parametric learning
algorithm, meaning it is simply measured how closely features align within each class.
DTW-nn is conducted for each individual feature in the dataset, in order to determine
which features relate to the occurrence of failure. Each feature is evaluated through the
classification accuracy and F1 score. A high accuracy for a feature indicates a strong
relation to the occurrence of failure, and may therefore be useful for failure prediction.

Early experiments with the DTW-nn algorithm yielded an average accuracy of 100% for
four fold cross validation. It was found that this was due to tests being mixed with

49

injections within a test are very similar, and the algorithm would always assign to the
same test. To avoid this, training and testsets were redefined to ensure generalization.
The testset was redefined as containing all injections from one failure test, and one non-
failure test. The trainingset is then the remainder of the tests. The algorithm was run for
each possible combination of testsets, resulting in a total of 16 test folds. Furthermore, the
dataset was balanced such that 18 injections, or data points, were randomly selected from
each test, except for test TO10 and TO11 which were combined with 9 random samples
from each. The resampled dataset can be seen in table [5.5]

Test | T007 | T008 | TO10 & TO011 | T020 | T030 | T035 | T039 | T044 |
Sample size 18 18 18 18 18 18 18 18
Label 1 1 1 1 0 0 0 0

Engine load | 25% | 25% 25% &40% 25% | 50% | 25% | 60% | 75%

Table 5.5: Summary of data used for DTW-nn classification of methanol injections during
changeover.

The results of the 16 test folds can be seen in appendix |[[.I] The accuracy and F1-score is
calculated for each fold, and summarized by the average across folds. The top performing
features, and their average accuracy and F1 score can be found in table

50

Feature name Avg. Accuracy Avg. Fl-score
P886-8 [PM886-8.FOR| 0.95 0.96
PExhBnd8 [PM&702-§] 0.95 0.93
SG3Aft 0.88 0.75
LFBIV Plunger8§ Man mm 0.87 0.91
SG2Aft 0.86 0.74
PGasCh8 [PT6409-8] 0.82 0.85
LFBIV8Man mm 0.81 0.85
LFuel V8Aft 0.79 0.81
P886-8 [PM886-8. AFT] 0.78 0.72
LFBIV Plunger8 Aft mm 0.78 0.72
PCylDAUS [PT1422-8| 0.77 0.72
LFBIV _Plunger8 Aft 0.77 0.72
SG1Man 0.77 0.61
LELFI8 mm 0.77 0.73
CELFI8 mm 0.77 0.73
P886-8 [PM886-8.MAN]| 0.76 0.70
LFuelV8Man 0.76 0.78
LFuelP8 0.75 0.76
PScav8 [PM8601-8| 0.74 0.69
LExhValveFor8 [ZT4111-8. FOR] 0.74 0.73
PCylDAU6 [PT1422-6| 0.74 0.68
PCyl8 [PM1422-8.1] 0.74 0.68
LFBIVS8 [ZM-8. MAN]| 0.73 0.67
LFBIV8Man _filter 0.73 0.67
LELFI-L8 [ZT6424-8] 0.72 0.65
CELFIS8 0.71 0.70
SGI1Aft 0.71 0.66
CELFI-L8 [XC6429-8] 0.71 0.64
PCylDAU5 [PT1422-5] 0.71 0.63
LELFI-L8 mm 0.71 0.63
PLubHole8 [PM1422-8.4] 0.70 0.63
PCylDAU1 [PT1422-1| 0.70 0.74
LFBIV _Plunger8 Man 0.69 0.75
PGasSupply 0.69 0.75

Table 5.6: Summary of results of DTW-nn classification for high performing features.

5.2.2 Feature correlations for changeover

The results from the DTW-nn algorithm have shown that several features are well suited
for failure classification. However, the current feature set might contain redundancies in
the form of highly correlated features. As mentioned in section [2.2] this can cause issues

o1

when training regression models or Al networks. To reduce redundancy, the correlation
between the features are summarized in the correlation matrix seen in figure for high
performing features. A correlation matrix for the full feature space can be seen in appendix

L2

Feature-Feature Correlation Matrix

LFBIV_Plungerg_Man - - B N | 1.00
CELFI8 - | |
|
PGassupply - 0.75
PCyl8 [PM1422-8.1] -]
LFuelv8Man - | -0.50
PCyIDAUS [PT1422-5] -
CELFIB_mm - [| -0.25
PCylDAUS [PT1422-8] -
P886-8 [PM886-8.MAN] - | H - 0.00
SG3Aft -
PCyIDAUL [PT1422-1] - --0.25
LFuelV8Aft - - -
SG2Aft - mm -—0.50
SGLAft - =
P886-8 [PM886-8. AFT] - [-0.75
LFBIV_Plunger8_Aft mm - I
LFBIV_Plungers_Man_mm T T T T T T T T S S B R B -1.00
c® > cin EwZzZEST E£E E£ELT EE
Eb&@%gslﬁ'g%ﬁ'gﬁﬁgelel
DU gHES eS8 3886 ¢ ¢
[7] : ©
g $zecigig ES Be
3 &7y e o = 5%
o = = = o c o
>| «© <L [y =T = 5 £
= o (=] O w a © a3
&g € g 08 < 2 >
a a o o]
o & uom
|

Figure 5.6: Correlation matrix over feature-feature correlations, for the high performing
features seen in table

Some of the correlation pairs such as CELFI8 and CELFIS mm have a correlation coeffi-
cient of 1, as they are the same signal, just one has been converted from a voltage to a mm
measurement. Other cases of high correlation pairs include CELFI-LS and LELFI-LS,
where €' indicates a control signal and L a feedback signal. The control and feedback
signal are naturally highly correlated. A full list of highly correlated features, with a
numerical correlation coefficient above 0.7, can be seen in appendix [[.3]

5.2.3 Feature selection for the changeover problem

In order to eliminate redundancies from high feature-feature correlations, the algorithm
described in section is applied on the feature subset seen in table[5.6] as these features
perform well in terms of classifying system failure. The algorithm is used with DTW-nn
accuracy as the importance measure I, and with the feature-feature correlation matrix

92

in figure 5.6 as Cy; again with a threshold of ¢ = 0.7. The algorithm yields the feature
subset and corresponding feature-feature correlation matrix seen in figure [5.7]

Feature-Feature Correlation Matrix

LExhValveFor8 [ZT4111-8.FOR] - 1.00
PGassupply -
PLubHoleg [PM1422-8.4] - 0.75
SG1Man -
LFuelP8 - _ 0.50
PGasCh8 [PT6409-8] -
PCylDAUS [PT1422-8] -
PCyIDAUG [PT1422-6] - -0.25
PExhBnds [PMB8702-8] -
SG3Aft - - 0.00
LELFI8_mm -
PCylDAUL [PT1422-1] - 025
LFuelv8Aft - '
P886-8 [PM886-8.FOR] -
SG2Aft - -—0.50
SG1Aft -
LFBIVBMan_mm - —0.75
PScavs [PM8601-8] -
LFBIV_Plunger8_Man_mm -
[T T T T T T S S S S S S B -=1.00
E 2 S P oot ETEEE EW E
C8w 3 adddmEd o n E E
“1:,,'\,.-.=DNN08|N;.“-_88|0 1
®ho Q0 E S 23T 5o &
i I EEbE= b 28 == =
SgF s HRSQ BE o
"?_f o W WO g - = = 0 5
N p = =) a 2= 5
fin] [< Lo 2
o v o0 m a @ u 5
= o 0 = =< = © L=
o T > a o
$ & 995 ¢ g >
] = o a =
= T m
I =]
£
ks
wl
-

Figure 5.7: Feture-feature correlation matrix of feature subset determined by algorithm

g

5.2.4 Failure predictability based on selected features

In order to determine whether it is possible to predict a failure auto-correlation is used,
as it allows to check for time dependencies in the features. In order to predict a failure
beforehand the features should demonstrate time dependency.

The auto-correlation is computed for one minute of data, starting from a changeover.
The data is segmented into injection cycles and concatenated. In this way, redundant
information in between injections is removed. This helps with computation and provides
a clearer picture of relevant feature information. For the algorithmically selected features
summarized in figure [5.7, most features show a time dependency and share a similar
pattern to the ACF for P886-8 FOR seen in figure [5.8

93

ACF P886-8 [PM886-8.FOR] ACF P886-8 [PM886-8.FOR]

06

02

nnnnnnnnnnnnnnnnnnnnnnnnnn
Lag

(a) Acf of P886-8 FOR for test 13, which is a (b) Acf of P886-8 FOR for test 31, which is a

failure. non-failure.

Figure 5.8: Acf for P886-8 FOR for a failure and non-failure test.

The spikes in correlation correspond with injection cycles. Meaning that for the lags
where injection cycles line up, there is a high degree of correlation. This indicates that
each injection cycle is dependent on the previous one, and thereby time dependent. The
only feature that does not follow this pattern is LEzhValveFor8, as seen in figure[5.9 It is
suspected that this is because the exhaust valve react to bad injections when the system
is already failing.

ACF LExhValveFor8 [ZT4111-8.FOR] ACF LExhValveFor8 [ZT4111-8.FOR]

00

ooo
Lag Lag

(a) Acf of LEzhValveFor8 for test 13, which is (b) Acf of LEzhValveFor8 for test 31, which is

a failure. a non-failure.

Figure 5.9: Acf for LExhValveForS for a failure and non-failure test.

Lastly, LFBIVS_mm has cases where the auto-correlation is low, as seen in figure [5.10]
These cases have been investigated, and has been linked to instances where the sensor
fails, and becomes extremely noisy.

o4

ACF LFBIV8Man_mm ACF LFBIVBMan_mm

ACF
Aci

-02

nnnnnnnnnnnnnnnnnnnnnnnnnn
Lag

(a) Acf of LFBIV8Man_ mm for test 13. (b) Acf of LFBIV8Man_mm for test 31.

Figure 5.10: Acf for LFBIV8Man_mm for test 13 and 31.

Based on the auto-correlation results, feature LEzhValveForS8 is removed from the feature
space, due to its lack of time dependency. Furthermore, the noisy measurements of
LFBIVS8Man_mm should be considered when training a prediction model. The acf results
also show that the coefficients generally fall off quicker for failure tests, compared to non-
failure tests. This is also an indicator that failure is predictable, as the time dependencies
do not hold leading up to system failures.

5.2.5 Feature engineering for the changeover problem

The results in sections[5.2.3|and [5.2.4] yield a significantly reduced feature subset, reducing
it from 68 to 17 features, based on their relation to failure occurrences, as well as there
time dependencies. The feature subset is summarized in table [5.7]

95

Features

LELFIS mm

LExhValveFor8 [ZT4111-8. FOR)]
LFBIV _Plunger§ Man_mm
LFBIVSMan _mm

LFuelP§

LFuel VSAft

P886-8 [PM886-8.FOR]
PCylDAU1 [PT1422-1]
PCylDAUG6 [PT1422-6]
PCylDAUS [PT1422-8]
PExhBnd8 [PM8702-8]
PGasCh8 [PT6409-8]
PGasSupply

PLubHole8 [PM1422-8.4]
PScav8 [PM8601-8]

SG1Aft

SG1Man

SG2Aft

SG3Aft

Table 5.7: Selected feature subset for mehtanol changeover failure prediction.

The features are sampled with 20 kHz, resulting in long sequences, which will cause issues
when training. For this reason, the temporal dimensionality should also be reduced. As
seen from the autocorrelation, the time dependencies occur from injection to injection.
Therefore, summarizing each injection cycle will help reduce temporal dimensionality,
while maintaining temporal dependencies. Inspecting the autocorrelation results reveal
that the high correlation occur when the peaks of the injections meet. Furthermore, the
spiky pattern of the injections are well suited for using maximum values. For these reasons
the injection maximum for each feature is used. It is checked that all features have an
injection maximum, and not a minimum. An example of injection maximum values can
be seen for P886-8 [PM886-8.FOR] in figure for a stable and failing changeover to
methanol for tests T035 and TO008 respectively.

o6

Peaks for P886-8 [PM886-8.FOR] with Max:248.46

Stable

= il

300 310 320 330 320 350
Time [s]
Peaks for P886-8 [PM886-8.FOR] with Max:428.40

400 4 —2_ railure

300 4

L 9

230 240 250 260 270 280
Time [s]

Pressure [bar]

Figure 5.11: Stem plot of max values of P886-8 [PM886-8.FOR| per injection cycle for
tests T035 and T00S.

It can clearly be seen the temporal development of P886-8 [PM886-8.FOR], where the
stable changeover ramps up and stabalizes, whereas the failed changeover is more sporadic,
and with higher pressure spikes. The selected features and maximum values for the feature
subset have been presented to experts on the injection system. Their analysis of the
results, and their expert knowledge leads to following conclusions; LELFIS mm, which
controls diesel injection, decreases as the methanol injections are ramped up. Therefore,
P886 should increase, to increase injection pressure. However, during a failure that P886
do not follow LELFI8 mm as it is supposed to as seen in figure [5.12] Furthermore, large
pressure spikes in P8§6 occur.

57

966597-01_T010_0000 ['LELFI8_mm', 'P886-8 [PM886-8.FOR]']

20 T
—— LELFI8_mm

—— P&86-8 [PM886-8.FOR] r 1000

15

=
o

w

LELFI8_mm [mm]
—
T
o
P886-8 [PM886-8.FOR] [bar]

r =500

—1000
920 100 110 120 130 140 150 160
Time [s]

(a) Failed changeover in test T010.

966597-01_T032_0003 ['LELFIS_mm’, 'P886-8 [PM886-8.FOR]']

20 . 250
—— LELFIS_mm

—— R886-8 [PM FOR] L 200

1 r 150

r 100

=
o

w

r—50

LELFI8_mm [mm]
r
T T
° 3
P886-8 [PM886-8.FOR] [bar]

r —100

r—150

T
580 590 600 610 620 630 640 650
Time [s]

(b) Successful changeover in test T032.
Figure 5.12: P886 FOR and LELFI8 mm, for a failed and successful changeover.

This results in poor injections, and therefore the cylinder pressures on later cylinders,
such as cylinder PCylDau6 and PCylDau8, have decreased cylinder pressure compared
to the setpoint, and that seen on PC'ylDaul which can be seen in figure 5.1

28

966597-01_T010_0000 ['PCyIDAUL [PT1422-1]', 'PCyIDAUG [PT1422-6]', 'PCyIDAUS [PT1422-8]']

: .
175 1 pcylDAUL [PT1422-1] s 1
—— PCylDAUG [PT1422-6]
150 1 —— PCyIDAUS [PT1422-8] 150 |
5 125 In 1 1257 L
= =)
= 3
& 100 1008t
< <
£ £
o5 s L
— =
2 2
< <
a a
3 s0 50 5 fsc
(9] [¥]
g g
25 25 2
ol Lo 0
90 100 110 120 130 140 150 160
Time [s]

(a) Failed changeover in test T010.

966597-01_T032_0003 ['PCyIDAUL [PT1422-1]', 'PCyIDAU6 [PT1422-6]', 'PCyIDAUS [PT1422-8]']

T
—— PCyIDAUL [PT1422-1]
2007 pcylDAUG [PT1422-6] 200 [
—— PCyIDAUS [PT1422-8] |I
£ 150 BELN BE
: | ﬂ ’ :
& &
& &
< <
— —
E 100 005 |1
— | =
2 | 2
< <
=] | [=]
= =
[8) &)
01 " ; " " VMY G inbabaintntnt bt by ey ¢ 4 0 0
580 590 600 610 620 630 640 650
Time [s]

(b) Successful changeover in test T032.

Figure 5.13: Cylinder pressure on cylinder 1, 6, and 8, for a failed and successful
changeover.

The bad injections can also be seen by poor exhaust in LExhV alve8, and a compensation
in air inlet pressure PScav8. The knocking which occurs in the piping during a failing
changeover is detected by the strain gauges SG1Aft, SG1Man, SG2Aft, and SG3Aft.
Lastly, looking at the F'BIV measurements, it can be seen that the plunger seems to
bounce during failure as seen in figure [5.14]

59

LFBIV_Plunger8_Man_mm vs Time

40 —— LFBIV_Plunger8_Man_mm for 966597-01_T032_0003
—— LFBIV_Plunger8_Man_mm for 966597-01_T010_0000

30 4

iger8_Man_mm [mm]

LFBIV_Plun
~
=
!

204

o] 1000 2000 3000 4000 5000 6000 7000 8000
Time [s]

Figure 5.14: FBIV plunger position for failed changeover T010 seen in orange, and suc-
cessful changeover T032 in blue.

It can also be seen from figure [5.14] that during failure, the FBIV plunger peaks at
a higher max value. These conclusions strengthen the reason for using max values to
reduce temporal dimensionality. Although, this comes at the cost of loosing the secondary,
smaller, spike caused by the FBIV plunger bounce.

60

6 Prediction Model Results

In this chapter results for all prediction models developed are presented. All models are
described by a their program assumptions, hyperparameters are summarized in a table,
and the model is evaluated using a four fold cross validation. In some cases a prelimi-
nary hyperparameter sweep is done before the cross validation to avoid long training and
validation times. The results from this chapter will answer the inquiry "can ML and Al
models be used to predict marine propulsion system failures?”.

6.1 Results for accumulator failure prediction

In this section accumulator failure prediction models are evaluated, addressing the first
prediction problem "can a system failure be predicted through binary classification, by
predicting if a failure happens within a Prediction Window, given data read from a Reading
Window?". This includes random forest with lags, 1D CNN, and LSTM classifiers. Each
model is evaluated for different prediction window and reading window sizes.

6.1.1 Random forest accumulator failure prediction results

The program assumptions for the random forest model used for accumulator failure pre-
diction can be seen in table [G.1]

Component Details

Model Type Random Forest classifier with lags

Hyperparameters | Number of trees (n_estimators), reading window (RW)
Input Shape (1, RW-209 features)

Model description | Random forest containing n_estimators trees that con-
duct majority vote

Output Shape: (1, 1), Value: out € [0; 1]

Impurity measure | Gini index

Table 6.1: Summary of the random forest model used for accumulator failure prediction.

An initial hyperparameter sweep was conducted by training on SMOTE data, and vali-
dating on real data. The failure class was increased five fold using SMOTE with 5 nearest

61

neighbors. The stable samples were randomly split into training and validation in a
0.5/0.5 split, the samples were then randomly undersampled to balance the number of
failure, stable, and lead up samples in the training set. The tested hyperparameters are
summarized in table [6.2]

’ Parameters \ Values ‘

RW stride 100 | 150
n_estimators | 50 | 100 | 150 | 200
RW 600 | 900 | 1200 | 1500 | 1800
PW 600 | 1200 | 1800 | 2400 | 3600 | 5400 | 7200

Table 6.2: Hyperparameters for random forest accumulator failure prediction.

The results from the sweep has multiple runs with an F1-score of 1.0, meaning no misclas-
sification in validation, the results can be seen in appendix [[I. Due to these results, the
model was tested on unseen data, using a four fold cross validation. As mentioned in sec-
tion the data comes from multiple segments of a full dataset. The folds are split into
segments before windowing and using SMOTE. This ensures that SMOTE training data
has not been generated on data used for validation. The hyperparameters are reduced to
include a PW of 600, a RW of 600, and 100 estimators to see how well the cross validation
performs compared to the initial run which had an Fl-score of 1.0. The F1l-score for
failure and stable classes are seen in table together with the fold accuracies.

’ Metrics \ Folds ‘

1 2 3 4 | Avg.
F1 failure | 0.0 | 0.15 | 0.0 | 0.0 | 0.038
F1 stable | 0.67 | 0.69 | 0.67 | 0.67 | 0.675
Accuracy | 0.5 [054 | 0.5 | 0.5 | 0.51

Table 6.3: Four fold cross validation results for random forest accumulator failure predic-
tion.

When performing a four fold cross validation the model performance significantly de-
creases. There is only one fold where a failure is predicted, for all other folds the model
only predicts ’stable’, as can be seen in the confusion matrices found in appendix [[I.1]
This indicates that the model does not perform well on unseen data.

6.1.2 1D CNN classifier accumulator failure prediction results

The program assumptions for the 1D CNN classifier used for accumulator failure pre-
diction can be seen in table [6.22] with description of convolutional and fully connected
layers.

62

Component Details

Model Type 1D Convolutional Neural Network (CNN)

Hyperparameters Learning rate, batch size (B), dropout, reading window
(RW)

Input Shape (B, RW, 209 features)

Convolutional Layers
2 x 1D Conv layer + ReLLU | Channels: 128, Kernel: 5, Padding: 2, Stride: 1

Max Pooling Kernel: 2, Stride: 2

2 x 1D Conv layer + ReLU | Channels: 256, Kernel: 3, Padding: 1, Stride: 1

Adaptive mean pooling Output size: (B, 1, 256)

Fully Connected Layers | FC: 256 — 128 — 64 — 32 — 16 — 1

Activation ReLU activation in intermediate layers, sigmoid activa-
tion in final layer

Output Shape: (B, 1, 1), Value: out € [0; 1]

Loss Function Binary Cross Entropy (BCE)

Optimizer Adam

Table 6.4: Summary of the 1D CNN architecture used for accumulator failure prediction.

Given the results of the random forest classifier in section [6.1.1] a reduced hyperparameter
set is used in combination with a four fold cross validation. A smaller and larger RW
is used, combined with a smaller PW, to see if it is possible to predict accumulator
failures. The network is tested with and without droput, and with a batch size of 16
which should be sufficient for generalization while avoiding computing large matrices.
The hyperparamteters are summarized in table [6.5

’ Hyperparameters \ Values ‘
Batch size 16
PwW 600
RW 600 1800
Dropout 0.0 0.3
Learning rate 0.0001 | 0.001

Table 6.5: Hyperparameters for 1D CNN used for accumulator failure prediction.

The model is trained and validated in a four fold cross validation, using SMOTE with
5 nearest neighbors to increase the failure data by five fold. The data is balanced with
failure, stable and lead up data. The model was trained using early stopping with a max
epochs of 20, and patience of 5. The result with the smallest validation loss, and the
result with the largest accuracy and F1 scores for both classes are seen in table [6.6] Both
runs have a RW of 600, and a learning rate of 0.001, the only difference is the dropout.
The remainding results can be found in appendix [[I.2]

63

’ Parameters \ Metrics ‘

Dropout Loss | Accuracy | F1 failure | F1 stable
0.0 1.045 0.71 0.72 0.69
0.3 0.795 0.59 0.71 0.32

Table 6.6: Four fold cross validation results for 1D CNN accumulator failure prediction.

Despite the higher loss, the run with a dropout of 0.0 performs significantly better with
regard to accuracy and F1 score. Example segments have been passed through the trained
model in order to see how the model classifies them. All examples are from fold 4, and
include a correctly predicted failure, an incorrectly predicted failure, and a misclassified
stable segment. These examples can be seen in figure [6.1]

stable 548026 failure_3285036

=

o

o
=
o
[=]

e True
@ Prediction

e True
@ Prediction

e

~

v
e
~
v

S8

[N}

vl
S8
¥
v

Probability of failure
o
v
o
Probability of failure
o
w
(=]

b
o
o

b
o
o

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Window Window
(a) Misclassified stable segment. (b) Incorrectly predicted failure segment.
failure_2030495
1.00 4 ===
GSJ @ True
& 0751 @ Prediction
hot
=]
2 050
E -
§ 025
e
O ()00 S
0 10 20 30 40 50 60 70
Window

(c) Correctly predicted failure segment.

Figure 6.1: Example segments from accumulator failure data passed through the 1D CNN
model.

6.1.3 LSTM classifier accumulator failure prediction results

The program assumptions for the LSTM classifier used for accumulator failure prediction
can be seen in table [6.7] with description of LSTM blocks and fully connected layers.

64

Component Details
Model Type Long-short term memory
Hyperparameters Learning rate, batch size (B), dropout, reading window

(RW), attention

Input Shape

(B, 209 features, RW)

LSTM layers
LSTM block
Output

Number of blocks: 2, Hidden size: 128
Last time step or attention block, shape: (B, 128, 1)

Fully Connected Layers
Activation

FC: 128 —» 1
Sigmoid

Output Shape: (B, 1, 1), Value: out € [0;1]
Loss Function Binary Cross Entropy (BCE)
Optimizer Adam

Table 6.7: Summary of the LSTM architecture used for accumulator failure prediction.

Given the results from the 1D CNN, the same combination of hyperparameters were tested
as for the validation run with the best accuracy and F1l-score, and tested both with and
without attention. The hyperparameters are summarized in table 6.8

] Hyperarameters \ Values ‘
Batch size 16
Learning rate 0.001
Dropout 0.0
RW 600
PW 600
Attention True | False

Table 6.8: Hyperparameters for LSTM used for accumulator prediction.

The model is trained and validated in a four fold cross validation, using SMOTE with
5 nearest neighbors to increase the failure data by five fold. The data is balanced with
failure, stable and lead up data. The model was trained using early stopping with a max
epochs of 20, and patience of 5. The results for the four fold cross validation without
attention can be seen in table [6.9] with performance measured by average loss, accuracy,
F1-score for the failure and stable class, across folds. Remaining results can be found in

appendix

Loss

Accuracy

F1 failure | F1 stable

0.693

0.56 0.36 0.66

Table 6.9: Four fold cross validation results for LSTM accumulator failure prediction.

65

The results show very poor performance, especially when trying to classify failure data.
Due to the poor results, no further hyperparameters or model training and validation is
pursued.

6.2 Results for methanol changeover failure prediction

In this section the results for methanol changeover failure prediction are presented in
order to solve the first prediction problem "can a system failure be predicted through
binary classification, by predicting if a failure happens within a Prediction Window, given
data read from a Reading Window?". This is done using random forest with lags and
1D CNN. Due to the relative short sequence lengths, and the performance of the other
models, it is deemed unnecessary to pursue an LSTM model for this task. Both models
are evaluated for different prediction windows and reading windows.

6.2.1 Random forest methanol changeover failure prediction

The program assumptions for the random forest model used for changeover failure pre-
diction can be seen in table [6.10l

Component Details

Model Type Random Forest classifier with lags

Hyperparameters | Number of trees (n_estimators), reading window (RW)
Input Shape (1, RW-19 features)

Model description | Random forest containing n_estimators trees that con-
duct majority vote

Output Shape: (1, 1), Value: out € [0; 1]

Impurity measure | Gini index

Table 6.10: Summary of the random forest model used for changeover failure prediction.

The hyperparameters and PW tested for the random forest classifier are summarized in
table [6.11] This is done for a broad range of RW and PW, to test their impact. Early
experiments showed that the number of estimators only performs poorly if there are "few"
or "many". The default number for Sci-Kit Learns random forest is 100 estimators|68|,
therefore, 75 and 100 are tested, as a smaller number would simplify the model.

’ Parameters \ Values ‘

n_estimators | 75 | 100
PW 8 1 32 |64 |78
RW 1 2 4 | 8 16| 32

Table 6.11: Hyperparameters for random forest changeover failure prediction.

66

The hyperparameter performance is measured through training and validation. Failure,
lead up and stable data was used to generate synthetic data using SMOTE by increasing
the failure data five fold and balancing. The Random Forest was trained on synthetic
data and validated on the original data. The results of the hyperparameter sweep can be
found in appendix[[.4, The hyperparameter sweep is evaluated by the log loss, and shows
that a PW size of 78 performs the best, followed by a PW of 64. The reading windows
all perform well for a high PW, in general a RW of 32 and 8 perform with lower loss for
a PW of 78 and 64. A RW of 1 also performs well for a PW of 78. All combinations of
these RW and PW have an Fl-score of 1. The average difference in loss between 100 and
75 estimators is small, however, 100 outperforms slightly.

In terms of selecting model parameters, a PW of 78 is chosen, as this yields the best
results, and allows for prediction furthest prior to failure. Although a RW of 32 performs
best, smaller RW are desired to allow earlier prediction, and requires less data to be
collected and stored in order to make a prediction. Therefore, reading windows of 32, 8,
and 1 are tested in a secondary hyperparameter sweep. This secondary sweep will use a
four fold cross validation split into tests. As mentioned in section [£.1.1] there are eight
changeover tests which fail, and seven which succeed. These tests are split into four folds.
The results of the sweep can be seen in table [6.12] where performance is measured by
the Fl-score for the failure and stable class respectively. The cross validation will also
indicate the models performance and robustness to unseen data.

’ Parameters \ F1-scores per fold ‘
PW | RW 1 2 3 4 Avg.
78 32 1.0/1.0 | 0.90/0.88 | 0.87/0.82 | 0.93/0.89 | 0.93/0.90
78 0.98/0.98 | 0.80/0.67 | 0.80/0.67 | 0.94/0.89 | 0.88/0.80
78 1 1.0/1.0 | 0.97/0.96 | 0.80/0.67 | 0.94/0.89 | 0.93/0.88

Table 6.12: Four fold cross validation results for random forest changeover failure predic-
tion evaluated by the F'1 for the failure and stable class respectively.

A large reason for the under performance of fold 2 and 3 is that the stable test T006 is
in the validation fold. A plot of the predicted probability of failure can be seen in figure
6.2, alongside the predicted probability of test TO10 which is an actual failure from fold
3, as well as a failed and stable changeover from fold 1 which is the best performing fold.

67

T031 0004 with Rw:1 PW78

—— Stable

Probability
=4 e =
(=] (] [=]
L . |

e
kS
L

o
N

| A MY RMM WA A

0.0

T T T T T T T T T
[} 10 20 30 40 50 60 70 80
Window

(a) Failure probability of successful changeover
T031 from validation fold 1.

TO06 0002 with RW:1 PW78

—— Stable
1.0+

Probability
o e
=] @

e
S

e
]

0.0 4

T T T T T T T T T
[} 10 20 30 40 50 60 70 80
Wwindow

(c) Failure probability of successful changeover
TO006 from validation fold 3.

T003 0002 with RW:1 PW78

Failure

Probability
o o =
o] (=)
)) !

o
~
L

o
¥
L

0.0

T T T T T T T T T
0 10 20 30 40 50 60 70 80
Window

(b) Failure probability of failed changeover
TO003 from validation fold 1.

T010 0000 with RW:1 PW78

Failure
1.0

Probability
o o
= @

o
~

o
]

0.01

T T T T T T T T T
] 10 20 30 40 50 60 70 80
Window

(d) Failure probability of failed changeover
TO010 from validation fold 3.

Figure 6.2: Probability of a failure happening within the PW for test T031, T003, T006,
and T010. Orange indicates a failed changeover, and blue a successful changeover.

It can be seen in figure [6.3] that P886 as noisy spikes, even though it can be seen that
the changeover procedure stabilizes. It is likely due to these spikes that the changeover

procedure is predicted as a failure.

68

966597-01_T006_0002 ['LELFI-L8_mm"', 'P886-8 [PM886-8.MAN]']

. 800
5.0 + — LELFI-L8 mm i
—— P886-8 [PM886-8.MAN] L 700
2.5
I o00 =
0.0 E
= =
E -25 500%
: | w0}
[f=]
El -5.0 | é
L || L300 &
H —7.5 | E
w
-10.0 l 1 I” "”l "” ”"” ‘2002
IIHHMHHHHHI III“H““HI Illll““”“lllll
-15.0 : . . . s -0
375 400 425 450 475 500 525
Time [s]

Figure 6.3: P886-8 MAN plotted alongside LELFI-L8 mm for test T006.

The noisy spikes are suspected to be related to a secondary problem on the injection
system. This problem relates to air being caught in the hydraulic fluid, which causes such
pressure spikes in P886. This problem has already been resolved, by updating the piping.
Therefore, this type miss-classification is unlikely to happen on data from an updated
system.

6.2.2 Results for 1D CNN changeover failure prediction with pre-
diction window

The program assumptions for the 1D CNN classifier used for changeover failure prediction
can be seen in table |6.22] with description of convolutional and fully connected layers.

69

Component Details

Model Type 1D Convolutional Neural Network (CNN)

Hyperparameters Learning rate, batch size (B), dropout, reading window
(RW)

Input Shape (B, RW, 19 features)

Convolutional Layers
1 x 1D Conv layer + ReLU | Channels: 64, Kernel: 3, Padding: 1, Stride: 1
1 x 1D Conv layer + ReLU | Channels: 128, Kernel: 3, Padding: 1, Stride: 1

Adaptive mean pooling Output size: (B, 1, 128)

Fully Connected Layers | FC: 128 — 1

Activation Sigmoid

Output Shape: (B, 1, 1), Value: out € [0; 1]
Loss Function Binary Cross Entropy (BCE)
Optimizer Adam

Table 6.13: Summary of the 1D CNN architecture used for changeover failure prediction.

As mentioned in section the 1D CNN takes in RW, PW, learning rate, batch size,
and dropout as hyperparameters. The Random Forest results indicate that larger PW
perform well, therefore, only larger PW are tested for the 1D CNN. Furthermore, smaller
RW of 1 and 2 do not make sense to test, as this leaves to few time steps to convolve over.
The network is both tested with and without dropout. The chosen dropout is smaller,
as the network is shallow. Lastly batch sizes of 16 and 32 are tested, to test the balance
between generalization when learning, and reducing computation. The hyperparamters
are summarized in table [6.14]

’ Parameters \ Values
Batch size 16 32
Learning rate | 0.0001 | 0.001
Dropout 0.0 0.3
PW 32 64 | 78
RW 4 8 16

Table 6.14: Hyperparameters for 1D CNN changeover failure prediction.

Augmented data was generated using SMOTE with 5 nearest neighbors to increase the
data amount. The failure data was increased three fold and balanced with stable and
lead up data. A four fold cross validation was performed, using early stopping with
a maximum of 20 epochs, with a patience of 5. The performance is evaluated on the
average loss, Fl-score and accuracy. The best performing results can be seen in table
6.15| with hyperparameters RW=16, PW=64, batch size=32, learning rate=0.0001, and
dropout=0.3. Results for the remaining hyperparameters are found in appendix [[I.5

70

Loss | Accuracy | F1 failure | F1 stable
0.319 0.91 0.94 0.74

Table 6.15: Four fold cross validation results for 1D CNN changeovr failure prediction.

Again, it is seen that the Fl-score for stable data is lower. The poorest performing fold is
fold 3, containing test T006, which is noisy and therefore being misclassified as mentioned

in section [6.2.1]

6.3 Changeover remaining useful life prediction

In this section the results for methanol changeover remaining useful life prediction are
presented, answering the second prediction problem "can the Remaining Useful Life of a
system be predicted through regression, given data read from a Reading Window?". This
includes regression models using random forest with lags, 1D CNN, and LSTM. All models
are evaluated for different reading windows and hyperparameters.

6.3.1 Results for random forest changeover RUL prediction

The program assumptions for the random forest model used for changeover RUL predic-
tion can be seen in table [6.16]

Component Details

Model Type Random Forest regressor with lags
Hyperparameters | Number of trees (n_estimators), reading window (RW)
Input Shape (1, RW-19 features)

Model description | Random forest containing n_estimators trees that con-
duct majority vote

Output Shape: (1, 1), Value: out € [0; 1]

Impurity measure | Mean Square Error (MSE)

Table 6.16: Summary of the random forest model used for changeover RUL prediction.

The hyperparameters are tested for a broad range of RW and n__estimators as summarized
in table E.17

’ Parameters \ Values ‘
n_estimators | 50 | 100 | 150
RW 1 4 8 |16 | 32

Table 6.17: Hyperparameters for random forest changeover RUL prediction.

The six failure sequences were used to generate 30 additional full sequences using DTW-
SMOTE with 3 nearest neighbors. A four fold cross validation was performed on the

71

SMOTE and original samples in a hyperparameter sweep. The best performing hyper-
parameters are a RW of 32, and 150 estimators. The results can be seen in table [6.18]
evaluated through the coefficient of determination R? for all folds, and the full results can
be found in appendix

’ Fold ‘

1 2 3 4 Avg.
0.696 | 0.862 | 0.871 | 0.696 | 0.781

Table 6.18: Four fold cross validation results for random forest RUL prediction evaluated
by the R? coefficient.

6.3.2 Results for 1D CNN changeover RUL prediction

The program assumptions for the 1D CNN regressor used for changeover RUL prediction
can be seen in table |6.22] with description of convolutional and fully connected layers.

Component Details

Model Type 1D Convolutional Neural Network (CNN)

Hyperparameters Learning rate, batch size (B), dropout, reading window
(RW)

Input Shape (B, RW, 19 features)

Convolutional Layers
2 x 1D Conv layer + ReLU | Channels: 64, Kernel: 3, Padding: 1, Stride: 1

Adaptive mean pooling Output size: (B, 2, 128)

1 x 1D Conv layer + ReLU | Channels: 128, Kernel: 3, Padding: 1, Stride: 1
Adaptive mean pooling Output size: (B, 1, 128)

Fully Connected Layers | FC: 128 — 64 — 32 — 16 — 1

Activation ReLU on all intermediate layers, none on final layer
Output Shape: (B, 1, 1), Value: out € R

Loss Function Mean Square Error (MSE)

Optimizer Adam

Table 6.19: Summary of the 1D CNN architecture used for changeover RUL prediction.

The model is trained and validated in a four fold cross validation for the hyperparameters
seen in table[6.20] Again, 30 augmented changeover sequences are generated using DTW-
SMOTE with 3 nearest neighbors.

72

’ Parameters Values
Batch size 16
Learning rate | 0.0001 | 0.001
Dropout 0.0 0.3
RW 4 8 16 | 32

Table 6.20: Hyperparameters for 1D CNN changeover RUL prediction.

The best performing hyperparameters are a RW of 32, a learning rate of 0.0001, and with
a dropout of 0.0. The results for of the four fold cross validation for these hyperparameters

are found in table [6.21]

\ Fold \
1 2 3 1 | Avg.
0.738 |1 0.921 | 0.905 | 0.739 | 0.826

Table 6.21: Four fold cross validation results for 1D CNN changeover RUL prediction
evaluated by the R? coefficient.

The 1D CNN outperforms the random forest regressor, with all folds having an R? coef-
ficients above 0.7, with two folds having R? coefficients above 0.9. The tests used in the
validation fold are passed through the model individually, to see how the model performs

on unseen changeover sequences. The results for test TO03 and T005 are plotted in figures
and

RUL prediction for test 966597-01_T003_0002 with R2=0.975

140 4 InCY _ @ Prediction
True

120 4
100 1

80

RUL

60

40

204

T T T
80 100 120

Injection

T T
40 60

Figure 6.4: True and predicted RUL of test T003 in validation fold 2.

73

RUL prediction for test 966597-01_T005_0004 with R2=-57.021

o e o o ® ® Prediction
100 A === True
[I
oo
80 A *
L]
°
[}

60

o
[}
=
z e, o
® o0 g 0

40

20

T T T T T T
0 5 10 15 20 25
Injection

Figure 6.5: True and predicted RUL of test T005 in validation fold 3.

It can be seen that the model is able to predict the RUL for test T003 well with R? = 0.975.
The RUL prediction for test T005 on the hand is poor with R? = —57.021. It can also
be seen that test T005 only has 27 injections, meaning fewer than the RW of 32, which
might explain the poor performance. In general it is found that changeovers with fewer
injections before failure have significantly worse RUL predictions. Furthermore, the model
in general has a hard time predicting smaller RUL values, and it can be seen that the
predictions flatten or curve up slightly at the end of the sequence. Plots for all other tests
and folds can be found alongside the full hyperparameter sweep results in appendix [[I.7

6.3.3 Results for LSTM changeover RUL prediction

The program assumptions for the LSTM regressor used for changeover RUL prediction
can be seen in table [6.22, with description of LSTM blocks and fully connected layers.

4

Component Details

Model Type Long-short term memory

Hyperparameters Learning rate, batch size (B), dropout, reading window
(RW), attention

Input Shape (B, 19 features, RW)

LSTM layers

LSTM block Number of blocks: 3, Hidden size: 64

Output Last time step or attention block, shape: (B, 64, 1)

Fully Connected Layers | FC: 64 — 32 — 16 - 8 —» 1

Activation ReLU on all intermediate layer, none on final layer

Output Shape: (B, 1, 1), Value: out € R

Loss Function Mean Square Error (MSE)

Optimizer Adam

Table 6.22: Summary of the 1D CNN architecture used for changeover RUL prediction.

Given that LSTMs are suited for finding long term dependencies, RUL prediction is tested
for longer reading windows to test if it can outperform the 1D CNN. The hyperparameters

used in the sweep can be sen in table [6.23] The model is tested both with and without
attention layer.

’ Parameters ‘ Values ‘
Batch size 16
Attention True | False
Learning rate | 0.0001 | 0.001
Dropout 0.0 0.3
RW 16 32

Table 6.23: Hyperparameters for LSTM changeover RUL prediction.

As with the two previous models, 30 augmented changeover sequences are generated
using DTW-SMOTE with 3 nearest neighbors. Overall the model performs poorly with a
maximum average R? coefficient over folds of 0.477, and largest R? coefficient for a single
fold being 0.788. Both of these runs are without attention, have a learning rate of 0.0001,
and a RW of 32. The only difference is the dropout. The results for these runs can be
seen in table [6.24] and the full results can be found in appendix [[I.8]

5

’ Hyperparameters \ R? coefficient per fold ‘

Dropout 1 2 3 4 Avg.
0.3 0.333 | 0.421 | 0.783 | 0.370 | 0.477
0.0 0.530 | 0.306 | 0.788 | -0.132 | 0.373

Table 6.24: Four fold cross validation results for LSTM changeover RUL prediction eval-
uated by the R? coefficient.

6.4 Result summary

The model results are summarized in table in order to answer the outlined prediction
problems. The models are evaluated through the best metric scores, averaged over folds
in a four fold cross validation. For classification the models are evaluated through the
F1-score for failure, and F1-score for stable. The regression models are evaluated by the
coefficient of determination R?, and root mean square error RMSE.

Dataset Prediction Model Evaluation metrics
method
F1l-score F1-score
failure stable
Accumulator PW Random Forest | 0.038 0.675
failure classifier
Accumulator PW 1D CNN classi- | 0.72 0.69
failure fier
Accumulator PW LSTM classifier | 0.36 0.66
failure
Changeover fail- | PW Random Forest | 0.93 0.90
ure classifier
Changeover fail- | PW 1D CNN classi- | 0.94 0.74
ure fier
R? RMSE
Changeover fail- | RUL Random Forest | 0.781 19.64
ure regressor
Changeover fail- | RUL 1D CNN regres- | 0.826 17.18
ure sor
Changeover fail- | RUL LSTM regressor | 0.477 27.37
ure

Table 6.25: Summary of failure prediction model results.

From the results it can be concluded the the methanol changeover failures are easier to
predict, compared to the accumulator failure. The best performing model for accumulator

76

failure prediction is the 1D CNN, whereas for the changeover failure the random forest
classifier has the best performance. For changeover RUL prediction the 1D CNN regressor
performs better than both the random forest and LSTM. In general the LSTM models
have poor performance compared to other models.

7

7 Discussion and conclusion

In this chapter the results from chapters [5] and [6] are discussed and concluded upon,
considering the the outlined inquiries and research question in section [I.5]

7.1 Discussion

In this section the results from the feature engineering in chapter [3, and the prediction
results in chapter [0] are discussed. This discussion aims to provide the foundation for
concluding and answering the inquiries and research question outlined in section

7.1.1 Discussion of accumulator failure results

The challenge with developing models which can predict accumulator failures on the Por-
sorja Express is the sparsity of system failures within the dataset. Two types of data was
acquired from the Posorja Express, similarly to the methanol changeover system, specific
measurements of the hydraulic system has been measured in a test setup using Dewesoft,
capturing data with high frequency, which has been analyzed in previous work [64]. The
data used in this thesis is linerecorder data collected directly from the ship computer,
sampling with 1 Hz. The reason for using this is, with respect to a solution implemen-
tation, it would be easier to implement since it does not require additional equipment.
Furthermore, even though the datasets do not span the exact same time period, the num-
ber of failures were almost equal and mostly the same were found in both cases. The
linerecorder files contain 20 failures, while the Dewesoft files contain 21 failures.

The low number of failures make it challenging to train parametric models, such as trans-
formers, sufficiently. Data augmentation was used to synthetically generate failure class
samples for model training. Early results using this method showed potential. However,
once unseen data was introduced in a four fold cross validation the model collapsed. The
lack of data for this project is mainly due to time restrictions, as MAN ES was not able
to board the ship to gather additional data. However, newly collected data may have
posed new challenges, as significant modifications have been made to the cylinder heads
in the meantime. These modifications could potentially effect measurements, severely
challenging model robustness. If further work is to be done, this lack of data should be
addressed. While the early results indicated good results, the introduction of unseen data

78

collapsed the model. It is suspected that this is due to the engine conditions for the
specific segment being classified rather than the actual failure. Thus when introducing
new data, the engine conditions appear too different to be able to classify.

7.1.2 Discussion of methanol changeover failure results

For the methanol changeover problem generally good results are achieved. For binary fail-
ure prediction the random forest performs best, as seen in chapter [f, The random forest
results, in section [6.2.1] show that both a large Reading Window of 32 and a smaller RW
of 1 perform well. While a RW of 1 has slightly worse performance, it does come with
several benefits. A RW of 1 implies that a system failure can, in some cases, be predicted
from the first methanol injection. This allows for very early warning, as well as simpli-
fying the model and storage requirements, which can be beneficial in implementation.
Similarly, for the random forest regressor, used for changeover remaining useful life pre-
diction, a RW of 32 perform the best as concluded in section [6.3.1] However, in this case
the random forest is outperformed by the 1D CNN, which clearly demonstrates superior
performance for the larger RW as demonstrated in section [6.3.2] These results indicate
that the changeover failure is highly predictable, given the engineered feature set found
in section [5.2.5] Furthermore, the conclusions reached, based on the feature engineering,
demonstrate the importance of highly interpretable feature selection, as this allows to
reach conclusions regarding system failures, how they can be seen, and concretizes the
lead up to a failure.

Although the methanol changeover failures are predictable, the models and methods lack
implementation feasibility. The reason for this is the aforementioned specified test setup
used to collect the data. These measurements are not standard and implementing the pre-
diction model would require extra equipment. Therefore, it is recommended to correlate
the findings from the prediction models in this thesis, to the 1Hz sampled linerecorder
data during changeover procedures. This would allow to implement the prediction model
based on measurements already collected by the ship’s computer, without requiring ex-
tra equipment. The feature engineering in section [5.2.5] provides a good basis for this
possibility, as the data has already been downsampled, using only peak values for each
injection.

7.1.3 Prediction model and window size comparison

From section it is found that the best performing model for accumulator failure pre-
diction and changeover RUL prediction is the 1D CNN, whereas for changeover failure
prediction the random forest classifier performs best. In all cases, the LSTM has the poor-
est performance. The 1D CNN performs better in cases where a longer RW is needed for
prediction, with a RW of 600 for accumulator failure classification, and 32 for changeover
RUL prediction. While the random forest classifier used for changeover failure classifi-
cation has a lower ’stable’ class Fl-score, for a RW of 32, the model performance for

79

a RW of 1 indicates that failure can be predicted on a single time measurement. This
indication implies that time dependencies are not necessary for changeover failure classi-
fication, which can explain why the random forest outperforms. For accumulator failure
classification and changeover RUL prediction, longer RWs yield better results. This indi-
cates that time dependencies are necessary for failure prediction, in these cases. The 1D
CNNs ability to extract temporal features may result in better model predictions, when
learning time dependencies is required. The poor performance of the LSTM networks
is suspected to be related to the amount of training data, with few failure sequences to
train on resulting in low data variance. Furthermore, in for methanol changeover the PW
is large, which aligns with the finding sin [8], which also concludes that LSTMs perform
worse for larger PWs.

A shorter RW performs better in the case of predicting accumulator failures. Further-
more, as seen in section for changeover failure prediction, a RW of 1 has the second
highest performance. While intuition might dictate that longer RWs provide better re-
sults, it can be seen that this is not necessarily the case. The results for different reading
windows indicate that the window size has to be appropriate for the task and data. For
instance, the cause of an accumulator failure may happen within a short time period. In
this case, increasing the window size will outweigh the relevant information, as indicated
by the results in section [6.1.2] In the case of changeover failure classification, it seems
that either most of- or all of the sequence should be taken into consideration, or failure
prediction should be instance based. The medium sized windows likely lead to a higher
degree of ’stable’ misclassifications, as noisy instances have a greater impact over several
windows. This is not an issue for a RW of 1, as the noise is only misclassified once, and
it is not a problem for a large RW, as the noise is outweighed. Lastly, for changeover
RUL prediction seen in section [6.3.2] there is a clear relation between longer RWs and
better prediction results. Furthermore, it seems that longer RWs are necessary compared
to binary classification. This can be due to the added complexity of predicting when a
failure occurs, rather than if it occurs.

Lastly, the choice of Prediction Window also has a great impact on the model. As with
the RW the appropriate size is very task dependent. As seen for accumulator failure in
section [6.1.2] a shorter PW is needed, as it is not possible to predict failures for larger
windows. This indicates that the the cause or signs of failure are only detectable close to
a failure. On the other hand, for the changeover problem, a longer PW yields improved
results. This is likely due to the fact that the cause of the failure happens prior to the
start of methanol injections. Therefore, the failure is detectable already from the start.

7.1.4 Problem and dataset comparisons

In general, the results in section indicate that changeover failures are easier to predict
compared to the accumulator failures. This comes down to the nature of the problem and
data. As mentioned in section the preliminary analysis of the measurements from

80

methanol changeover procedures, resulted in a hypothesis regarding captured nitrogen air
causing the failures. No similar hypothesis has been able to be made for the accumulator
failure problem. While it is possible for ML and Al models to find patterns undetectable
to humans, knowing that experts are able to extract useful information from the dataset
creates a much stronger foundation to build these models upon.

Furthermore, considering that hydraulic injection systems are high-frequency systems, the
higher sampling rate of the methanol changeover data makes it easier to extract relevant
features and use feature engineering to find relevant information. Additionally, the mea-
surements for the methanol changeover procedures are much more direct, compared to
those of the accumulator failure. The first is data from specified setups measured directly
on the hydraulic system, whereas the latter are general monitoring values from the ship’s
computer. While a data analysis was conducted of high frequency hydraulic measure-
ments on the Porsorja Express in [64], these yielded only discernible patterns up to 250
injections prior to failure, using DTW. This prediction time-frame is too narrow to be
useful for taking preventative action. While the prediction time-frame for the changeover
problem is similar, it is more useful in this case, as the system can stop a changeover from
injection to injection. The engine can always switch back to diesel, meaning no downtime
or man power required to prevent system failure.

7.2 Conclusion

The resulting feature sets found in chapter [5| are heavily based on feature engineering,
focusing on removing spurious correlations within the feature space, while maintaining
feature importance. This has resulted in significantly reduced dimensionality, reducing
the curse of dimensionality. In the case of the accumulator failure dataset from the Por-
sorja Express, the feature space has been significantly reduced by removing the numerous
multiples of measurements. It was found that the same measurements are measured on
multiple subsystems, resulting in a large number of redundant features. Generally, the
found features relate to cylinder health, such as the exhaust temperature, air intake pres-
sure, liner wall temperature, and cylinder control measurements and adjustments. This
indicates that a failure can be seen by poor injections in the cylinder which experiences
accumulator failure. For the methanol changeover dataset from the LGIM G95, fea-
tures have been selected mainly based on feature importance with regard to good or bad
injections. The auto-correlation of the selected features show clear and significant time
dependency between injections. For this reason it was found that looking at the maximum
injection values for these features demonstrated a clear pattern for methanol changeover
sequences with identifiable system failures. Based on these results, it was possible to
describe the failure sequence based on P886 pressure, cylinder pressure, exhaust valve
measurements, air intake pressure, FBIV plunger and needle position, and strain gauge
measurements. The results from feature engineering demonstrate the benefits of highly
interpretable features, as they provides key insights into the failures.

81

Several models were tested for failure prediction, with a focus on time sequence data.
This included using random forest with lagged data, 1D CNNs, and LSTMs. Notably,
transformers were not pursued in this thesis based on recommendation from MAN ES.
However, given the results in this thesis, they might be worth testing in future work.
To improve model training and performance, SMOTE and DTW-SMOTE was used to
augment data. In general the changeover failures were easier to predict, compared to
accumulator failure. The best performing model for accumulator failure prediction is the
1D CNN, performing with an accuracy of 71%. For changeover failure the best performing
model is the random forest classifier with an accuracy of 91% for a RW of both 32 and 1,
with a worse Fl-score for stable data with a RW of 1. Lastly, for predicting changeover
Remaining Useful Life, the 1D CNN outperforms the other models for the regression task,
with an R? coefficient of 0.831 for a RW of 32. These results indicate a high degree of
predictability for methanol changeover failure, with a lesser degree of predictability for
accumulator failure. In general LSTM networks perform poorly, likely due to the limited
amount of data.

From conducting hyperparameter sweeps it is found that the Reading Window and Predic-
tion Window size are heavily dependent on the task. In the case of accumulator failure,
large RWs reduce model performance, and smaller PWs are necessary, indicating that
failures occur without much warning. In the case of changeover failure prediction using
random forest classification, small and large RWs perform well, while using medium sized
RWs hurt performance. Here, large PWs are required, as it is suspected that the cause of
failure occurs prior to methanol injection start. Lastly, larger RWs are required for the
regression task of predicting methanol changeover RUL.

Based on these conclusion the research question is answered;

"To what extent can ML and Al be used to predict and prevent total system failure in
MAN Energy Solution’s maritime propulsion systems?"

ML and Al models can be used to predict methanol changeover failures to a high degree.
Furthermore, the applied ML techniques, such as DTW-nn, have given a great insight into
the failure sequence. Accumulator failures are predictable to a lesser degree, using the
chosen models. It seems that the lack of data makes it difficult to find a repeatable pat-
tern. Overall this thesis has contributed to the research field of predictive maintenance by
successfully applying ML and AI models to predict failures on hydraulic injection systems
within maritime propulsion. Additionally, the high interprebility of the feature selection
and engineering process is not only able to deal with high dimensionality and spurious
correlations but also provide valuable insights into system failures. Lastly, it has been
highlighted that the window sizes, for binary failure classification and Remaining Useful
Life, have a great impact on model performance, and the choice of these should be task
specific. In spite of these contributions, there is room for improvement and future work.
In terms of methanol changeover failure, it is recommended to correlate the results of this
thesis with data collected on the ship’s computer through linerecorder data. Develop-
ing prediction models fit for linerecorder data would eliminate the requirements for extra

82

equipment. Furthermore, the models should be expanded to include additional engines,
other than the LGIM G95, that experience the same issue. Regarding accumulator fail-
ure prediction, there is significant room for improvement of the prediction model. To
achive this, it is recommended to either collect more data including from other ships, pur-
sue unsupervised methods, re-review the high-frequency data, or combine real data with
simulation models. This might provide valuable insights into the problem, more clearly
defining the problem and task. Finally, these recommendations open the possibilities for
MAN ES to further pursue predictive maintenance and machine failure prediction, for
their maritime propulsion systems, based upon the valuable insights and results of this
thesis.

33

Bibliography

1]

2l

3]

4]

[5]

6]

7]

8]

9]

International Chamber of Shipping. Shipping and World Trade: Driving Prosperity.
https://www.ics-shipping.org/shipping-fact/shipping-and-world-trade-
driving-prosperity/. Accessed: 30/05/2025. 2022.

European Commission. Reducing emissions from the shipping sector. https://

climate.ec.europa.eu/eu-action/transport/reducing-emissions-shipping-
sector_en. Accessed: 12/12/2024.

International Maritime Organization. Nitrogen Oxides (NOz) — Regulation 13. https:
//www . imo . org/en/OurWork/Environment /Pages/Nitrogen - oxides - (NOx) -
4AS-Regulation-13.aspx. Accessed: 12/12/2024.

MAN Energy Solutions. About MAN Energy Solutions. https://www.man-es.com/
company/about-us. Accessed: 12/12/2024.

Clean Air Technology Center (MD-12). Nitrogen Ozxides (NO,): Why and How They
Are Controlled. Tech. rep. EPA-456/F-99-006R. Accessed: 12/12/2024. Research
Triangle Park, NC: United States Environmental Protection Agency, 1999. URL:
https://www3.epa.gov/ttncatcl/dirl/fnoxdoc.pdf.

MAN Energy Solutions. Methanol fuel for the maritime industry. Accessed: 2025-
05-29. -. URL: https://www.man-es.com/marine/strategic-expertise/future-
fuels/methanoll

The Editorial Team. How a vessel switches to low sulfur fuel when entering ECAs.
Accessed: 2025-05-29. 2016. URL: https : //safety4sea . com/how- a- vessel -
switches-to-low-sulfur-fuel-when-entering-ecas/.

Nicolo Oreste Pinciroli Vago, Francesca Forbicini, and Piero Fraternali. “Predicting
Machine Failures from Multivariate Time Series: An Industrial Case Study”. In: Ma-
chines 12.6 (May 2024), p. 357. 1sSN: 2075-1702. DOI: |10.3390/machines12060357.
URL: http://dx.doi.org/10.3390/machines12060357.

Devendra K. Yadav, Aditya Kaushik, and Nidhi Yadav. “Predicting machine fail-
ures using machine learning and deep learning algorithms”. In: Sustainable Manu-
facturing and Service Economics 3 (2024), p. 100029. 1SSN: 2667-3444. DOI: https:
//doi.org/10.1016/j.smse.2024.100029. URL: https://www.sciencedirect.
com/science/article/pii/S2667344424000124.

84

https://www.ics-shipping.org/shipping-fact/shipping-and-world-trade-driving-prosperity/
https://www.ics-shipping.org/shipping-fact/shipping-and-world-trade-driving-prosperity/
https://climate.ec.europa.eu/eu-action/transport/reducing-emissions-shipping-sector_en
https://climate.ec.europa.eu/eu-action/transport/reducing-emissions-shipping-sector_en
https://climate.ec.europa.eu/eu-action/transport/reducing-emissions-shipping-sector_en
https://www.imo.org/en/OurWork/Environment/Pages/Nitrogen-oxides-(NOx)-–-Regulation-13.aspx
https://www.imo.org/en/OurWork/Environment/Pages/Nitrogen-oxides-(NOx)-–-Regulation-13.aspx
https://www.imo.org/en/OurWork/Environment/Pages/Nitrogen-oxides-(NOx)-–-Regulation-13.aspx
https://www.man-es.com/company/about-us
https://www.man-es.com/company/about-us
https://www3.epa.gov/ttncatc1/dir1/fnoxdoc.pdf
https://www.man-es.com/marine/strategic-expertise/future-fuels/methanol
https://www.man-es.com/marine/strategic-expertise/future-fuels/methanol
https://safety4sea.com/how-a-vessel-switches-to-low-sulfur-fuel-when-entering-ecas/
https://safety4sea.com/how-a-vessel-switches-to-low-sulfur-fuel-when-entering-ecas/
https://doi.org/10.3390/machines12060357
http://dx.doi.org/10.3390/machines12060357
https://doi.org/https://doi.org/10.1016/j.smse.2024.100029
https://doi.org/https://doi.org/10.1016/j.smse.2024.100029
https://www.sciencedirect.com/science/article/pii/S2667344424000124
https://www.sciencedirect.com/science/article/pii/S2667344424000124

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Tiago Zonta et al. “Predictive maintenance in the Industry 4.0: A systematic liter-
ature review”. In: Computers Industrial Engineering 150 (2020), p. 106889. 1SSN:
0360-8352. DOI: https://doi.org/10.1016/7.cie.2020.106889. URL: https:
//www.sciencedirect.com/science/article/pii/S0360835220305787.

Sigurd S. Petersen et al. “An AI-Powered RIS Technology for Hand Gesture Recog-
nition in the Radiating Near Field”. In: 2025 IEEE International Workshop on An-
tenna Technology, iWAT 2025. IEEE Communications Society, 2025, pp. 1-4. ISBN:
979-8-3315-2737-2. DOI: 10.1109/iWAT64079.2025.10931217.

Dehua Peng, Zhipeng Gui, and Huayi Wu. Interpreting the Curse of Dimension-
ality from Distance Concentration and Manifold Effect. 2024. arXiv: 2401 .00422
[cs.LG]. URL: https://arxiv.org/abs/2401.00422.

Eda Kavlakoglu Jacob Murel. What is multicollinearity? https://www.ibm. com/
think/topics/multicollinearity. Accessed: 13-02-2025. 2023.

Wengian Ye et al. Spurious Correlations in Machine Learning: A Survey. 2024.
arXiv: 2402.12715 [cs.LG]. URL: https://arxiv.org/abs/2402.12715.

Gustavo Batista, Ronaldo Prati, and Maria-Carolina Monard. “A Study of the
Behavior of Several Methods for Balancing machine Learning Training Data”. In:
SIGKDD Ezxplorations 6 (June 2004), pp. 20-29. DOI: 10.1145/1007730.1007735.

Seba Susan and Amitesh Kumar. “The balancing trick: Optimized sampling of im-
balanced datasets—A brief survey of the recent State of the Art”. In: Engineering
Reports 3.4 (2021), €12298. DOI: https://doi.org/10.1002/eng2.12298. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1002/eng2.12298.

Nongnuch Poolsawad, Chandra Kambhampati, and J.G.F. Cleland. “Balancing Class
for Performance of Classification with a Clinical Dataset”. In: Proceedings of the
World Congress on Engineering 1 (July 2014), pp. 237-242.

A. Abu-Samah et al. “Failure Prediction Methodology for Improved Proactive Main-
tenance using Bayesian Approach”. In: IFAC-PapersOnLine 48.21 (2015). 9th IFAC
Symposium on Fault Detection, Supervision andSafety for Technical Processes SAFE-
PROCESS 2015, pp. 844-851. 1SSN: 2405-8963. DOI: https://doi.org/10.1016/
j .ifacol.2015.09.632. URL: https://www.sciencedirect . com/science/
article/pii/S2405896315017619.

Anjali Parashar et al. Failure Prediction from Limited Hardware Demonstrations.
2024. arXiv: 2410.09249 [cs.RO]. URL: https://arxiv.org/abs/2410.09249.

Daeil Kwon et al. “IoT-Based Prognostics and Systems Health Management for
Industrial Applications”. In: IEEE Access 4 (2016), pp. 3659-3670. DOI: 10.1109/
ACCESS.2016.2587754.

IBM. What is principal component analysis (PCA)? https://www . ibm . com/
topics/principal-component-analysis. Accessed: 06/11,/2024. 2023.

85

https://doi.org/https://doi.org/10.1016/j.cie.2020.106889
https://www.sciencedirect.com/science/article/pii/S0360835220305787
https://www.sciencedirect.com/science/article/pii/S0360835220305787
https://doi.org/10.1109/iWAT64079.2025.10931217
https://arxiv.org/abs/2401.00422
https://arxiv.org/abs/2401.00422
https://arxiv.org/abs/2401.00422
https://www.ibm.com/think/topics/multicollinearity
https://www.ibm.com/think/topics/multicollinearity
https://arxiv.org/abs/2402.12715
https://arxiv.org/abs/2402.12715
https://doi.org/10.1145/1007730.1007735
https://doi.org/https://doi.org/10.1002/eng2.12298
https://onlinelibrary.wiley.com/doi/abs/10.1002/eng2.12298
https://doi.org/https://doi.org/10.1016/j.ifacol.2015.09.632
https://doi.org/https://doi.org/10.1016/j.ifacol.2015.09.632
https://www.sciencedirect.com/science/article/pii/S2405896315017619
https://www.sciencedirect.com/science/article/pii/S2405896315017619
https://arxiv.org/abs/2410.09249
https://arxiv.org/abs/2410.09249
https://doi.org/10.1109/ACCESS.2016.2587754
https://doi.org/10.1109/ACCESS.2016.2587754
https://www.ibm.com/topics/principal-component-analysis
https://www.ibm.com/topics/principal-component-analysis

22]
23]
[24]

[25]

[26]

[27]

28]

[29]

[30]

31

[32]

[33]

[34]

Jonathon Shlens. A Tutorial on Independent Component Analysis. 2014. arXiv:
1404.2986 [cs.LG]. URL: https://arxiv.org/abs/1404.2986.

F. Pedregosa et al. Manifold learning. Accessed: 17/02/2025. URL: https://scikit-
learn.org/stable/modules/manifold.html.

Mark A. Hall. “Correlation-based Feature Selection for Machine Learning”. PhD
thesis. The University of Waikato, 1999.

Bahavathy Kathirgamanathan and Padraig Cunningham. “Correlation Based Fea-
ture Subset Selection for Multivariate Time-Series Data”. In: CoRR abs/2112.03705
(2021). URL: https://arxiv.org/abs/2112.03705.

R Muthukrishnan and R Rohini. “LASSO: A feature selection technique in predic-
tive modeling for machine learning”. In: 2016 IEEE International Conference on
Advances in Computer Applications (ICACA). 2016, pp. 18-20. pOI1: 10 . 1109/
ICACA.2016.7887916.

Fabiana Camattari et al. Greedy feature selection: Classifier-dependent feature se-
lection via greedy methods. 2024. arXiv: 2403.05138 [stat.ML]. URL: https://
arxiv.org/abs/2403.05138.

F. Pedregosa et al. Feature selection. https://scikit - learn . org/stable/
modules/feature_selection.html. Accessed: 05/05/2025. 2011.

N. V. Chawla et al. “SMOTE: Synthetic Minority Over-sampling Technique”. In:
Journal of Artificial Intelligence Research 16 (June 2002), 321-357. 1SSN: 1076-9757.
DOI: 10.1613/jair.953. URL: http://dx.doi.org/10.1613/jair.953.

Alexander Nikitin, Letizia lannucci, and Samuel Kaski. TSGM: A Flexible Frame-
work for Generative Modeling of Synthetic Time Series. 2024. arXiv: 2305. 11567
[cs.LG]. URL: https://arxiv.org/abs/2305.11567.

“Dynamic Time Warping”. In: Information Retrieval for Music and Motion. Springer
Berlin Heidelberg, 2007. 1SBN: 978-3-540-74048-3. DOI: |10 . 1007 / 978 - 3 - 540 -
74048-3_4. URL: https://doi.org/10.1007/978-3-540-74048-3_4.

Karl Bringmann et al. Dynamic Dynamic Time Warping. 2023. arXiv: 2310.18128
[cs.CG]. URL: https://arxiv.org/abs/2310.18128.

Francois Petitjean, Alain Ketterlin, and Pierre Gancarski. “A global averaging method
for dynamic time warping, with applications to clustering”. In: Pattern Recognition
44.3 (2011), pp. 678-693. 1SsN: 0031-3203. DOIL: https://doi.org/10.1016/
j . patcog.2010.09.013. URL: https://www.sciencedirect . com/science/
article/pii/S003132031000453X.

Daren Yu et al. “Dynamic time warping constraint learning for large margin nearest
neighbor classification”. In: Information Sciences 181.13 (2011). Including Special
Section on Databases and Software Engineering, pp. 2787-2796. 1SSN: 0020-0255.
DOI: https://doi.org/10.1016/j.1ins.2011.03.001. URL: https://www.
sciencedirect.com/science/article/pii/S0020025511001204.

36

https://arxiv.org/abs/1404.2986
https://arxiv.org/abs/1404.2986
https://scikit-learn.org/stable/modules/manifold.html
https://scikit-learn.org/stable/modules/manifold.html
https://arxiv.org/abs/2112.03705
https://doi.org/10.1109/ICACA.2016.7887916
https://doi.org/10.1109/ICACA.2016.7887916
https://arxiv.org/abs/2403.05138
https://arxiv.org/abs/2403.05138
https://arxiv.org/abs/2403.05138
https://scikit-learn.org/stable/modules/feature_selection.html
https://scikit-learn.org/stable/modules/feature_selection.html
https://doi.org/10.1613/jair.953
http://dx.doi.org/10.1613/jair.953
https://arxiv.org/abs/2305.11567
https://arxiv.org/abs/2305.11567
https://arxiv.org/abs/2305.11567
https://doi.org/10.1007/978-3-540-74048-3_4
https://doi.org/10.1007/978-3-540-74048-3_4
https://doi.org/10.1007/978-3-540-74048-3_4
https://arxiv.org/abs/2310.18128
https://arxiv.org/abs/2310.18128
https://arxiv.org/abs/2310.18128
https://doi.org/https://doi.org/10.1016/j.patcog.2010.09.013
https://doi.org/https://doi.org/10.1016/j.patcog.2010.09.013
https://www.sciencedirect.com/science/article/pii/S003132031000453X
https://www.sciencedirect.com/science/article/pii/S003132031000453X
https://doi.org/https://doi.org/10.1016/j.ins.2011.03.001
https://www.sciencedirect.com/science/article/pii/S0020025511001204
https://www.sciencedirect.com/science/article/pii/S0020025511001204

[35]

[36]

137]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

|45]

|46]

[47]

Hossein Pishro-Nik. “Introduction to Probability, Statistics, and Random Processes”.
In: Kappa Research LLC, 2014. Chap. 5. URL: https://www.probabilitycourse.
cor.

Joshua Noble and Eda Kavlakoglu. What is Autocorrelation? https://www.ibm.
com/think/topics/autocorrelation. Acessed: 05/05/2025.

F. Pedregosa et al. Scikit-learn: Machine Learning in Python — Feature Importance.
Accessed: 2025-05-28. 2023. URL: https://scikit-learn.org/stable/modules/
permutation_importance.html.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. “The Elements of Statis-
tical Learning: Data Mining, Inference, and Prediction”. In: 2nd. New York, NY:
Springer, 2009. Chap. 3.

Zahira Marzak et al. “Forecasting Multivariate Time Series with Trend and Season-
ality: A Random Forest Approach”. In: Innovative Intelligent Industrial Production
and Logistics. Ed. by Michele Dassisti, Kurosh Madani, and Hervé Panetto. Cham:
Springer Nature Switzerland, 2025, pp. 128-144.

L. E. Peterson. “K-nearest neighbor”. In: Scholarpedia 4.2 (2009). revision #137311,
p- 1883. DOI: |10.4249/scholarpedia. 1883,

Oliver Kramer. “K-Nearest Neighbors”. In: Dimensionality Reduction with Unsu-
pervised Nearest Neighbors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 13-23. 1SBN: 978-3-642-38652-7. DOI: 10.1007/978-3-642-38652-7_2. URL:
https://doi.org/10.1007/978-3-642-38652-7_2.

Aaryan Ohekar. What is the difference between a Decision Tree Classifier and a
Decision Tree Regressor? https://medium.com/@aaryanohekar277/what-is-
the-difference-between-a-decision-tree-classifier-and-a-decision-
tree-regressor-36641bd6559c. Accessed: 2025-05-27. 2023.

Lior Rokach and Oded Maimon. “Decision Trees”. In: vol. 6. Jan. 2005, pp. 165-192.
DOI: 10.1007/0-387-25465-X_9.

Cynthia Rudin. Decision Trees, MIT 15.097 Course Notes. https://ocw.mit.edu/
courses/15-097 - prediction-machine-learning-and- statistics- spring-
2012/£5678de0e329ce097fc6ec6182ebaca2 _MIT15_097512_lec08.pdf. Accessed:
12/05/2025. 2012.

Floriana Esposito et al. “A Comparative Analysis of Methods for Pruning Decision
Trees”. In: Pattern Analysis and Machine Intelligence, IEEE Transactions on 19
(June 1997), pp. 476 —491. DOI: |10.1109/34.589207.

F. Pedregosa et al. Scikit-learn: Machine Learning in Python. https://scikit-
learn . org/stable/modules/tree . html #tree - mathematical - formulation.
Accessed: 2025-05-21. 2011.

IBM. What is random forest? https://www.ibm.com/think/topics/random-
forest. Accessed: 03/05/2025. 2024.

87

https://www.probabilitycourse.com
https://www.probabilitycourse.com
https://www.ibm.com/think/topics/autocorrelation
https://www.ibm.com/think/topics/autocorrelation
https://scikit-learn.org/stable/modules/permutation_importance.html
https://scikit-learn.org/stable/modules/permutation_importance.html
https://doi.org/10.4249/scholarpedia.1883
https://doi.org/10.1007/978-3-642-38652-7_2
https://doi.org/10.1007/978-3-642-38652-7_2
https://medium.com/@aaryanohekar277/what-is-the-difference-between-a-decision-tree-classifier-and-a-decision-tree-regressor-36641bd6559c
https://medium.com/@aaryanohekar277/what-is-the-difference-between-a-decision-tree-classifier-and-a-decision-tree-regressor-36641bd6559c
https://medium.com/@aaryanohekar277/what-is-the-difference-between-a-decision-tree-classifier-and-a-decision-tree-regressor-36641bd6559c
https://doi.org/10.1007/0-387-25465-X_9
https://ocw.mit.edu/courses/15-097-prediction-machine-learning-and-statistics-spring-2012/f5678de0e329ce097fc6ec6182ebaea2_MIT15_097S12_lec08.pdf
https://ocw.mit.edu/courses/15-097-prediction-machine-learning-and-statistics-spring-2012/f5678de0e329ce097fc6ec6182ebaea2_MIT15_097S12_lec08.pdf
https://ocw.mit.edu/courses/15-097-prediction-machine-learning-and-statistics-spring-2012/f5678de0e329ce097fc6ec6182ebaea2_MIT15_097S12_lec08.pdf
https://doi.org/10.1109/34.589207
https://scikit-learn.org/stable/modules/tree.html#tree-mathematical-formulation
https://scikit-learn.org/stable/modules/tree.html#tree-mathematical-formulation
https://www.ibm.com/think/topics/random-forest
https://www.ibm.com/think/topics/random-forest

48]
[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]
[57]
[58]

[59]

[60]

Leo Breiman. Random Forests. https://www. stat . berkeley.edu/ “breiman/
RandomForests/cc_home.htm. Accessed: 03/05/2025. 2001.

Keiron O’Shea and Ryan Nash. An Introduction to Convolutional Neural Networks.
2015. arXiv: 1511.08458 [cs.NE]. URL: https://arxiv.org/abs/1511.08458.

Serkan Kiranyaz et al. “1D convolutional neural networks and applications: A sur-
vey”. In: Mechanical Systems and Signal Processing 151 (2021), p. 107398. 1SSN:
0888-3270. DOI: https://doi.org/10.1016/j.ymssp.2020.107398. URL: https:
//www.sciencedirect.com/science/article/pii/S0888327020307846.

Sepp Hochreiter and Jiirgen Schmidhuber. “Long Short-Term Memory”. In: Neural
Computation 9 (Nov. 1997), pp. 1735-1780. DOI: 10.1162/neco.1997.9.8.1735.

MathWorks. Long Short-Term Memory Networks. Accessed: 06/05/2025. 2024. URL:
https://www . mathworks . com/help/deeplearning/ug/long- short - term-
memory-networks.html|

Davi Guimaraes da Silva and Anderson Alvarenga de Moura Meneses. “Comparing
Long Short-Term Memory (LSTM) and bidirectional LSTM deep neural networks
for power consumption prediction”. In: Energy Reports 10 (2023), pp. 3315-3334.
ISSN: 2352-4847. DOI: https://doi.org/10.1016/j.egyr.2023.09.175. URL:
https://www.sciencedirect.com/science/article/pii/S2352484723014208.

Benjamin Lindemann et al. “A survey on long short-term memory networks for time
series prediction”. In: Procedia CIRP 99 (2021). 14th CIRP Conference on Intelligent
Computation in Manufacturing Engineering, 15-17 July 2020, pp. 650-655. ISSN:
2212-8271. DOIL: https://doi.org/10.1016/j.procir.2021.03.088. URL:
https://www.sciencedirect.com/science/article/pii/S2212827121003796.

Manu Chauhan. A simple overview of RNN, LSTM and Attention Mechanism.
https://medium.com/swlh/a-simple-overview-of-rnn-1lstm-and-attention-
mechanism-9e844763d07b. Accessed: 2025-05-27. 2021.

Stefania Cristina. The Attention Mechanism from Scratch. https://machinelearningmastery.
com/the-attention-mechanism-from-scratch/. Accessed: 2025-05-27. 2023.

Qingsong Wen et al. Transformers in Time Series: A Survey. 2023. arXiv: 2202.
07125 [cs.LG]. URL: https://arxiv.org/abs/2202.07125.

Ashish Vaswani et al. Attention Is All You Need. 2023. arXiv: 1706.03762 [cs.CL]|
URL: https://arxiv.org/abs/1706.03762.

Zuo X. Li-R. et al. Su L. “A systematic review for transformer-based long-term series
forecasting”. In: Artificial Intelligence Review 58 (2025). DOI: https://doi.org/
10.1007/s10462-024-11044-2. URL: https://link.springer.com/article/10.
1007/s10462-024-11044-2.

Jordan Hoffmann et. al. Training Compute-Optimal Large Language Models. 2022.
arXiv: 2203.15556 [cs.CL]. URL: https://arxiv.org/abs/2203.15556.

38

https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
https://arxiv.org/abs/1511.08458
https://arxiv.org/abs/1511.08458
https://doi.org/https://doi.org/10.1016/j.ymssp.2020.107398
https://www.sciencedirect.com/science/article/pii/S0888327020307846
https://www.sciencedirect.com/science/article/pii/S0888327020307846
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.mathworks.com/help/deeplearning/ug/long-short-term-memory-networks.html
https://www.mathworks.com/help/deeplearning/ug/long-short-term-memory-networks.html
https://doi.org/https://doi.org/10.1016/j.egyr.2023.09.175
https://www.sciencedirect.com/science/article/pii/S2352484723014208
https://doi.org/https://doi.org/10.1016/j.procir.2021.03.088
https://www.sciencedirect.com/science/article/pii/S2212827121003796
https://medium.com/swlh/a-simple-overview-of-rnn-lstm-and-attention-mechanism-9e844763d07b
https://medium.com/swlh/a-simple-overview-of-rnn-lstm-and-attention-mechanism-9e844763d07b
https://machinelearningmastery.com/the-attention-mechanism-from-scratch/
https://machinelearningmastery.com/the-attention-mechanism-from-scratch/
https://arxiv.org/abs/2202.07125
https://arxiv.org/abs/2202.07125
https://arxiv.org/abs/2202.07125
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/https://doi.org/10.1007/s10462-024-11044-2
https://doi.org/https://doi.org/10.1007/s10462-024-11044-2
https://link.springer.com/article/10.1007/s10462-024-11044-2
https://link.springer.com/article/10.1007/s10462-024-11044-2
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556

[61]

[62]

[63]

[64]

|65]

[66]
[67]

(68

Li Shen et al. On Efficient Training of Large-Scale Deep Learning Models: A Liter-
ature Review. 2023. arXiv: 2304.03589 [cs.LG]. URL: https://arxiv.org/abs/
2304.03589.

Dina Elreedy, Amir F. Atiya, and Firuz Kamalov. “A theoretical distribution anal-
ysis of synthetic minority oversampling technique (SMOTE) for imbalanced learn-
ing”. In: Machine Learning 113 (2024), pp. 4903-4923. DOI: 10.1007/s10994-022-
06296-4. URL: https://doi.org/10.1007/s10994-022-06296-4.

Xinyu Yang et al. “A Time Series Data Augmentation Method Based on Dynamic
Time Warping”. In: 2021 International Conference on Computer Communication
and Artificial Intelligence (CCAI). 2021, pp. 116-120. DOI: 10.1109/CCAI50917 .
2021.9447507.

Emil Lytje-Dorfman Jacob V. Kgpke. Machine Learning Based Signal Analy- sis for
Detecting Accumulator Failures in Hydraulic Systems. Tech. rep. Aalborg University,
2025.

Keith G. Calkins. Applied Statistics - Lesson 5 - Correlation Coefficients. https://
www . andrews . edu/ “calkins/math/edrm611/edrm05 . htm. Accessed: 03/06/2025.
2005.

Haldun Akoglu. “User’s guide to correlation coefficients”. In: Turkish Journal of
Emergency Medicine 18.4 (2018), pp. 91-93. DOI: |10.1016/j.tjem.2018.08.001.

Correlation - Statistics Resources. https://resources.nu.edu/statsresources/
correlation. Accessed: 03/06/2025. 2025.

F. Pedregosa et al. Scikit-learn: Machine Learning in Python. Accessed: 2025-05-27.
2023. URL: https://scikit-learn.org/stable/.

89

https://arxiv.org/abs/2304.03589
https://arxiv.org/abs/2304.03589
https://arxiv.org/abs/2304.03589
https://doi.org/10.1007/s10994-022-06296-4
https://doi.org/10.1007/s10994-022-06296-4
https://doi.org/10.1007/s10994-022-06296-4
https://doi.org/10.1109/CCAI50917.2021.9447507
https://doi.org/10.1109/CCAI50917.2021.9447507
https://www.andrews.edu/~calkins/math/edrm611/edrm05.htm
https://www.andrews.edu/~calkins/math/edrm611/edrm05.htm
https://doi.org/10.1016/j.tjem.2018.08.001
https://resources.nu.edu/statsresources/correlation
https://resources.nu.edu/statsresources/correlation
https://scikit-learn.org/stable/

I Methanol changeover data analysis

full results

In the appendix all results from the methanol changeover data analysis are found.

I.1 Results of DTW-nn for the methanol changeover

injection classification

All results for DTW nearest neighbor injection classification for all features and all folds.

Feature/Test

7&35 T&30 T&44 T&39 8&35 8&30 8&44 8&39 1011&35

PMS886-8.FOR
PExhBnd8
SG3Aft
PlungerMan mm
SG2Aft

PGasCh8

LFBIV8Man mm

LFuel V8Aft
PM8&86-8. AFT
PlungerAft mm
PCylDAUS
Plunger Aft
SG1Man
LELFI8 mm
CELFI8 mm
PM8&86-8. MAN
LFuelV8Man

0.75

1
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

1
0.5
0.5
0.5
0.5

1
1
0.5

1
1
0.5
1

1
1
0.5
1

90

0.75
0.94

1
0.5
1
0.5
0.5
0.5
0.5
0.5
0.5
0.5

0.64

0.5
0.5
0.5
0.5

(@n) [@n)
Rl i e N
(@)
O = ooy e
=~ e~
(@)
el e i) B i
IS 9]

]
]

0.94
1
1
0.47

0.25
0.5
0.25
0.69
0.5
0.47
0.47
0.97
0.5
0.5
0.5
0.25

Feature/Test 1011&30 1011&44 1011&39 20&35 20&30 20&44 20&39 Avg
PM886-8.FOR 1 1 1 0.75 1 1 1 0.95
PExhBnd8 1 1 1 1 1 1 1 0.95
SG3Aft 1 1 1 1 1 1 1 0.88
PlungerMan mm 0.97 0.97 0.97 0.5 1 1 1 0.87
SG2Aft 1 1 1 1 0.94 0.94 094 0.86
PGasCh8 0.94 0.75 0.75 0.5 1 1 1 0.82
LFBIV8Man mm 0.83 0.83 0.83 0.5 0.92 0.92 092 0.81
LFuel V8Aft 0.86 0.75 0.75 0.5 0.89 0.89 0.89 0.79
PM886-8. AFT 0.89 0.89 0.89 0.67 0.5 0.5 0.5 0.78
PlungerAft mm 0.97 0.97 0.97 0.5 0.5 0.5 0.5 0.78
PCylDAUS 0.97 0.97 0.97 0.5 0.5 0.5 0.5 0.77
Plunger Aft 0.97 0.97 0.97 0.5 0.5 0.5 0.5 0.77
SG1Man 0.97 0.97 0.92 0.5 0.5 0.5 0.58 0.77
LELFI8 mm 0.92 0.92 0.92 0.5 1 1 1 0.77
CELFI8 mm 0.89 0.89 0.89 0.5 1 1 1 0.77
PM886-8. MAN 0.89 0.89 0.89 0.69 0.5 0.5 0.5 0.76
LFuelV8Man 0.81 0.75 0.75 0.5 0.81 0.81 0.81 0.76
Feature/Test 7&35 T&30 T&44 T&39 8&35 8&30 8&44 8&39 10 11&35
LFuelP8 0.5 1 1 1 0.5 092 092 0092 0.25
PScav8 039 097 089 0.89 0.5 1 1 1 0.5
LExhValveFor8 FOR | 0.5 0.67 0.69 0.69 05 0.97 1 1 0.17
PCylDAU6 0.5 0.5 0.5 0.5 0.5 086 0.8 0.86 0.47
PCyl8 0.5 1 1 1 0.5 1 1 1 0.36
LFBIVS8 MAN 0.5 1 1 1 0.5 086 0.86 0.86 0.36
LFBIV8Man _filter 0.5 1 1 1 0.5 086 0.86 0.86 0.36
LELFI-L8 0.5 1 1 1 05 094 094 094 0.25
CELFI8 0.5 067 067 067 05 094 094 094 0.25
SG1Aft 0.75 1 0.5 1 0.75 1 0.5 1 0.86
CELFI-LS8 0.5 1 1 1 0.5 092 092 0092 0.25
PCylDAU5 0.5 0.5 0.5 0.5 0.5 1 1 1 0.47
LELFI-L8 _mm 0.89 0.56 056 0.56 0.5 1 1 1 0.33
PLubHole8 0 0.5 0.5 0.5 0.5 1 1 1 0.5
PCylDAU1 0.5 0.5 1 1 0.5 0.5 1 1 0.25
PFuelP8 0.5 025 053 053 05 072 1 1 0.33
Plunger8 Man 0.5 0.5 1 1 05 036 0.8 0.86 0.25

91

Feature/Test 1011&30 1011&44 1011&39 20&35 20&30 20&44 20&39 Avg
LFuelP8 0.86 0.75 0.75 0.5 0.72 0.72 0.72 0.75
PScav8 0.92 0.92 0.92 0.5 0.5 0.5 0.5 0.74
LExhValveFor8 FOR 0.83 0.67 0.67 0.5 0.97 1 1 0.74
PCylDAUG6 0.92 0.92 0.92 0.5 1 1 1 0.74
PCyl8 0.81 0.81 0.81 0.5 0.5 0.5 0.5 0.74
LFBIV8 MAN 0.94 0.86 0.86 0.5 0.5 0.5 0.5 0.73
LFBIV8Man_filter 0.94 0.86 0.86 0.5 0.5 0.5 0.5 0.73
LELFI-L8 0.92 0.72 0.72 0.5 0.5 0.5 0.5 0.72
CELFI8 0.97 0.75 0.75 0.5 0.78 0.78 0.78 0.71
SG1Aft 0.89 0.89 0.89 0.33 0.5 0 05 071
CELFI-LS8 0.92 0.72 0.72 0.5 0.5 0.5 05 0.71
PCylDAU5 0.92 0.92 0.92 0.5 0.69 0.69 0.69 0.71
LELFI-L8 mm 0.81 0.81 0.81 0.5 0.67 0.67 0.67 0.71
PLubHole8 0.75 0.75 0.75 0.5 1 1 1 0.7
PCylDAU1 0.67 0.64 0.67 0.5 0.5 1 1 0.7
PFuelP8 0.97 0.81 0.81 0.5 0.72 1 1 0.7
Plunger8 Man 0.75 0.75 0.75 0.5 0.5 1 1 0.69

Feature/Test 7&35 T&30 T&44 T&39 8&35 8&30 8&44 8&39 1011&35
PGasSupply 0.5 0.5 1 1 0.5 0.44 094 094 0.25
LExhValveFor8 filter 0.5 044 069 069 05 072 097 097 0.17
CELBIS 0.5 1 1 1 0.5 086 086 0.86 0.17
CELFI-L8 mm 0.83 053 053 053 05 1 1 1 0.42
PLPS8 0.5 1 1 1 0.5 072 072 0.72 0.25
VFBIV8Man 083 08 05 08 05 053 05 0.53 0.75
LFBIV8Aft mm 0.19 069 097 069 0.5 1 0.97 1 0.47
PLPS ReturnOilValve8 | 0.5 0.5 0.5 0.5 0.5 092 092 0.92 0.39
PFuel V8Aft 0.5 0.03 053 053 05 0.5 1 1 0.31
PCylDAU2 0.5 053 094 094 05 0.58 1 1 0.25
PCylDAU3 0.5 0.5 1 1 0.5 036 086 0.86 0.42
CELFI8 pilot 0.5 0.5 1 1 0.5 036 086 0.86 0.25
Engload calc 0.5 0.5 1 1 0.5 0.36 0.86 0.86 0.31
LELFI8 0.5 0.5 1 1 0.5 036 086 0.86 0.25
P455-8 0.5 0.5 1 1 0.5 036 086 0.86 0.25
PExhVDamper8 0.5 0.5 1 1 0.5 0.5 1 1 0.25
LELBIS 0 0.64 044 0.5 0.5 0.8 086 0.92 0.17

92

Feature/Test 1011&30 1011&44 1011&39 20&35 20&30 20&44 20&39 Avg
PGasSupply 0.78 0.75 0.75 0.5 0.39 0.89 0.89 0.69
LExhValveFor8 filter 0.86 0.67 0.67 0.5 0.72 0.97 0.97 0.69
CELBIS8 0.78 0.67 0.67 0.5 0.53 0.53 0.53 0.68
CELFI-L8 mm 0.83 0.83 0.83 0.5 0.53 0.53 0.53 0.68
PLPS8 0.92 0.75 0.75 0.5 0.5 0.5 0.5 0.68
VFBIV8Man 0.75 0.89 0.75 0.61 0.64 0.5 0.64 0.66
LFBIV8Aft mm 0.72 0.72 0.72 0.5 0.5 0.47 0.5 0.66
PLPS ReturnOilValve8 0.81 0.81 0.81 0.5 0.64 0.64 0.64 0.65
PFuel V8Aft 0.89 0.78 0.78 0.5 0.5 1 1 0.65
PCylDAU?2 0.94 0.72 0.72 0.31 0.11 0.53 0.53 0.63
PCylDAU3 0.92 0.83 0.83 0.5 0 0.5 0.5 0.63
CELFI8_ pilot 0.92 0.75 0.75 0.5 0.11 0.61 0.61 0.63
Engload calc 0.97 0.81 0.81 0.5 0.03 0.53 0.53 0.63
LELFI8 0.92 0.75 0.75 0.5 0.08 0.58 0.58 0.63
P455-8 0.92 0.75 0.75 0.5 0.08 0.58 0.58 0.63
PExhVDamper8 0.75 0.75 0.75 0.5 0 0.5 0.5 0.63
LELBIS 0.58 0.58 0.64 0.5 0.92 0.92 0.97 0.63
Feature/Test 7&35 T&30 T&44 T&39 8&35 8&30 8&44 8&39 1011&35
PFuelV8Man 05 053 053 053 05 089 0.8 0.89 0.25
Frequency 0.5 0.5 1 1 0.5 036 086 0.86 0.25
PCylDAU4 0.5 0.5 1 1 05 036 086 0.86 0.33
PSeal FBIV 0.5 0.5 1 1 0.5 039 089 0.89 0.25
PScavAbs 0.5 0.5 1 1 05 036 086 0.86 0.25
PAirspring8 0.5 0.5 1 1 0.5 036 086 0.86 0.25
PHPSS8 0.5 0.5 1 1 05 036 086 0.86 0.25
VFBIV8Aft 0.8 0.8 0.83 0.86 0.5 0.5 0.5 0.5 0.58
SG3Man 036 0.5 0.5 05 075 069 0.69 0.69 0.75
PCylDAU7 0.5 0.58 1 0.81 0.5 0.58 1 0.81 0.17
CELVAS 0.5 0.5 1 1 0.5 036 086 0.86 0.17
CSync8 0.5 0 0.5 0.5 0.5 0.5 1 1 0.06
KnockSensorl 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.47
LFBIV8 AFT 0 0 0.5 0.5 0.5 031 081 0.81 0.25
LFBIV8Aft filter 0 0 0.5 0.5 0.5 031 081 0.81 0.25
SG2Man 0 0 0.5 0.5 0.5 031 081 0.81 0.25
PIndCock8 0 0.5 0.5 053 05 0.5 1 0.5 0.5

93

Feature/Test 1011&30 1011&44 1011&39 20&35 20&30 20&44 20&39 Avg
PFuelV8Man 0.97 0.72 0.72 0.5 0.5 0.5 0.5 0.62
Frequency 0.97 0.75 0.75 0.5 0.03 0.53 0.53 0.62
PCylDAU4 0.92 0.78 0.78 0.5 0 0.5 0.5 0.62
PSeal FBIV 0.97 0.75 0.75 0.5 0 0.5 0.5 0.62
PScavAbs 1 0.75 0.75 0.5 0 0.5 0.5 0.61
PAirspring8 0.86 0.75 0.75 0.5 0.03 0.53 0.53 0.61
PHPSS 0.92 0.75 0.75 0.5 0 0.5 0.5 0.61
VFBIV8Aft 0.58 0.58 0.58 0.5 0.5 0.5 0.5 0.61
SG3Man 0.69 0.69 0.69 0.39 0.67 0.53 053 0.6
PCylDAU7 0.89 0.67 0.67 0.5 0.08 0.5 031 0.6
CELVAS 0.78 0.67 0.67 0.5 0.03 0.53 0.53 0.59
CSync8 0.56 0.56 0.56 0.5 0.47 0.97 0.97 0.57
KnockSensorl 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
LFBIV8 AFT 0.86 0.75 0.75 0.5 0 0.5 0.5 047
LFBIV8Aft filter 0.86 0.75 0.75 0.5 0 0.5 0.5 047
SG2Man 0.75 0.75 0.75 0.5 0 0.5 0.5 0.46
PIndCock8 0.25 0.75 0.25 0.5 0 0.5 0 0.42

1.2 Full correlation matrix

Full correlation matrix for all features in the methanol changeover dataset can be seen in

figure

94

Feature-Feature Correlation Matrix

D-m - =) B 1.00

3 -
‘ | [| |
6 - = m m -
. | HH Em .

9- gt "I - . 0.75
ig_ o g ™ =

. pu= == E n
18 - :jlln] B | I.J 0.50
21 - = !I I-=-I]
24 - = N g " -0.25
27 - " - .
30 - .. i B .- =
33 - [| [
36 - -0.00
39 - - --'-'. i
42 - . ":.'- --0.25
45 - | " [}
48 - ':ll 5
51 - Em —-0.50
54 - "
57 -
60 — « . . —0.75
63 - L
°0- -1.00

Figure I.1: Correlation matrix of methanol changeover features.

95

I.3 Highly correlated feature pairs

Feature 1 Feature 2 Correlation
CELFI8 CELFI8 mm 1
LELFI-L8 [ZT6424-8] LELFI-L8 mm 1

LFBIVS [ZM-8.MAN]|
PCylDAUS [PT1422-§|
CELFI-L8 [XC6429-8|
CELFI-L8 [XC6429-8|
CELFIS8

LELFI8 mm

LFBIVS [ZM-8.MAN]|
LFBIV8Man _filter
LFuelV8Man

P886-8 [PM886-8. MAN]|
P886-8 [PM886-8. AFT]
LFBIV Plunger8 Aft mm
LFBIV_Plunger8 Aft
P886-8 [PM886-8. MAN]|
P886-8 [PM886-8. AFT]
P886-8 [PM886-8. MAN]|
PCylDAUS5 [PT1422-5]
P886-8 [PM886-8. AFT]
P886-8 [PM886-8. AFT]
P886-8 [PM886-8. MAN]|
LELFI-L8 [ZT6424-8]
LFBIV _Plunger8 Aft
LFBIV_Plunger8 Man
LFBIV_Plunger8 Aft
LFBIV_Plunger8 Man

Table I.1: List of feature pairs with a numerical correlation coefficient above 0.7.

LFBIV8Man_filter

PCyl8 [PM1422-8.1]
LELFI-L8 [ZT6424-8]
LELFI-L8 mm

LELFI8 mm

CELFI8 mm
LFBIV8Man mm
LFBIV8Man mm

LFuel V8Aft
LFBIV8Man mm

P886-8 [PM886-8.MAN]|
LFBIV Plunger8§ Man mm
LFBIV_Plunger8 Man
LFBIVS [ZM-8.MAN]|
LFBIV8Man mm
LFBIV8Man _filter
LExhValveFor8 [ZT4111-8.FOR|
LFBIVS [ZM-8.MAN]|
LFBIV8Man _filter
LELFI-L8 mm

P886-8 [PM886-8. MAN]
LFBIV_ Plunger8 Man mm
LFBIV_ Plunger8 Aft mm
LFBIV _Plunger8 Aft mm
LFBIV Plunger8§ Man mm

96

0.992479969
0.917223897
0.903615151
0.90361515
0.886462346
0.886462346
0.872129944
0.861296673
0.852549421
0.833140269
0.826149059
0.803732477
0.790930369
0.776855916
0.761389152
0.755006896
0.74464756
0.724883878
0.719970284
0.719780144
0.719780141
-0.792911922
-0.802817853
-0.984810613
-0.999872518

11 Validation results

In this appendix all results from validating models in chapter [6] can be found.

II.1 Random forest accumulator failure prediction
The initial hyperparameter sweep results conducted, by training on SMOTE data and

validated on real data, can be seen in table for all hyperparameters resulting in no
misclassifications.

97

Parameters \ Metrics ‘

n_estimators | log loss | pw | rw stride | accuracy | fl-score
150 0.129 1200 | 600 | 150 1 1
150 0.0936 600 | 600 | 100 1 1
50 0.092 600 | 600 | 100 1 1
50 0.080 600 | 1500 | 100 1 1
100 0.083 600 | 1500 | 100 1 1
200 0.131 600 | 1500 | 150 1 1
50 0.097 600 | 1800 | 100 1 1
150 0.153 600 | 600 | 150 1 1
150 0.092 600 | 1800 | 100 1 1
100 0.154 600 | 600 | 150 1 1
50 0.138 600 | 1500 | 150 1 1
200 0.083 600 | 1500 | 100 1 1
100 0.130 600 | 1500 | 150 1 1
50 0.154 600 | 600 | 150 1 1
150 0.082 600 | 1500 | 100 1 1
100 0.093 600 | 600 | 100 1 1
50 0.101 600 | 900 | 100 1 1
100 0.129 1200 | 600 | 150 1 1
200 0.096 600 | 600 | 100 1 1
100 0.092 600 | 1800 | 100 1 1
200 0.131 600 | 1500 | 150 1 1
200 0.154 600 | 600 | 150 1 1
150 0.130 600 | 1500 | 150 1 1

Table I1.1: Table of initial hyperparameter sweep validation results for random forest
accumulator failure prediction, for all hyperparmeters resulting in no misclassifications.

Confusion matrices for all folds in the four fold cross validation for a reading window and
prediction window of 600, with a learning rate of 0.001, and a dropout of 0.0.

98

Confusion Matrix PW:600 RW:600 Confusion Matrix PW:600 RW:600

Stable
o
Stable

15

True
True

-10

Failure
o
Failure

' - |
Stable Failure Stable Failure

Predicted Predicted
(a) Confusion matrix for fold 1 (b) Confusion matrix for fold 2
Confusion Matrix PW:600 RW:600 Confusion Matrix PW:600 RW:600

18

Stable
o
Stable

15

True
True

-10

Failure
o
Failure

' - |
Stable Failure Stable Failure
Predicted Predicted

(c) Confusion matrix for fold 3 (d) Confusion matrix for fold 4.

Figure I1.1: Confusion matrices for all four folds in the four fold cross validation.

II.2 1D CNN accumulator failure prediction

Results of the hyperparameter sweep conducted for 1D CNN accumulator failure predic-
tion can be seen in table [[I.2] The hyperparameters are evaluated by accuracy Fl-score
for failure, F1l-score for stable, and loss. These metrics are averaged across a four fold

cross validation.

99

’ Parameters \ Evaluation metrics

dropout | Ir pwW | Tw accuracy | f1 failure | f1 stable | loss

0.300 0.001 | 600 | 600 | 0.594 0.711 0.316 0.795
0.000 0.001 | 600 | 600 | 0.706 0.719 0.693 1.045
0.300 0.000 | 600 | 1800 | 0.562 0.533 0.588 1.308
0.300 0.001 | 600 | 1800 | 0.475 0.323 0.571 1.774
0.300 0.000 | 600 | 600 | 0.537 0.362 0.637 1.995
0.000 0.001 | 600 | 1800 | 0.558 0.243 0.676 2.284
0.000 0.000 | 600 | 600 | 0.487 0.000 0.655 2.657
0.000 0.000 | 600 | 1800 | 0.500 0.000 0.667 3.309

Table I1.2: Table of four fold cross validation hyperparameter sweep results for 1D CNN
accumulator failure prediction. Metrics are the averaged across folds.

I1.3 LSTM accumulator failure prediction

Results of the hyperparameter sweep conducted for LSTM accumulator failure prediction
can be seen in table [[I.3] The hyperparameters are evaluated by accuracy Fl-score for
failure, Fl-score for stable, and loss. These metrics are averaged across a four fold cross
validation.

] Parameters \ Evaluation metrics ‘
pw | rw | attention | accuracy | fl failure | f1 stable | loss
600 | 600 | True 0.5 0 0.667 0.693
600 | 600 | False 0.556 0.360 0.660 0.693

Table 1I1.3: Table of four fold cross validation hyperparameter sweep results for LSTM
accumulator failure prediction. Metrics are the average across folds.

II.4 Random forest changeover failure prediction

The results of random forest changeover prediction, for initial hyperparameter sweep
trained on SMOTE data and validated on real data, can be found in tables and [[I.5]

100

’ Parameters Evaluation metrics

n_estimators | pw | rw | accuracy | fl-score | log loss

75 78 | 8 | 1.000 1.000 0.006
100 64 | 32 | 1.000 1.000 0.006
100 78 | 32 | 1.000 1.000 0.006
I6) 64 | 32 | 1.000 1.000 0.006
75 78 | 32 | 1.000 1.000 0.006
100 78 | 8 | 1.000 1.000 0.006
100 64 | 16 | 1.000 1.000 0.007
100 78 | 16 | 1.000 1.000 0.007
5 78 | 16 | 1.000 1.000 0.007
75 64 | 16 | 1.000 1.000 0.007
100 78 |4 | 1.000 1.000 0.007
I6) 78 |4 | 1.000 1.000 0.007
75 78 |1 | 1.000 1.000 0.008
100 78 |1 | 1.000 1.000 0.008
100 78 |2 | 1.000 1.000 0.008
5 78 |2 | 1.000 1.000 0.009

Table 11.4: Table of initial hyperparameter sweep results for random forest changeover
failure prediction, for all hyperparameters resulting in no misclassifiactions.

101

’ Parameters Evaluation metrics ‘

n_estimators | pw | rw | accuracy | fl-score | log loss

100 32 |8 |0.993 0.995 0.046
5 32 |8 |0.993 0.995 0.047
100 32 |4 10993 0.995 0.057
I6) 32 12 |0.993 0.996 0.057
100 32 (2 10993 0.996 0.057
1) 32 |4 | 0.989 0.993 0.058
100 64 |4 | 0.993 0.994 0.060
75 64 |4 | 0.993 0.994 0.060
5 64 |8 |0.981 0.982 0.061
100 64 |8 |0.981 0.982 0.061
100 32 | 16 | 0.987 0.991 0.062
I6) 32 32]0.989 0.991 0.062
75 32 | 16 | 0.983 0.988 0.062
100 32 | 32 | 0.989 0.991 0.062
100 64 | 1 | 0.986 0.988 0.063
5 32 |1]0.976 0.985 0.065
100 32 |1 10976 0.985 0.066
75 64 [1 |0.983 0.985 0.066
100 64 | 2 | 0.990 0.991 0.066
75 64 | 2 | 0.993 0.994 0.066
75 8 32 | 0.989 0.994 0.080
100 8 32 | 0.989 0.994 0.081
5 8 [4]0.965 0.981 0.109
100 8 |4]0.965 0.981 0.110
100 8 16 | 0.966 0.982 0.121
75 8 16 | 0.958 0.977 0.123
100 8 |8 10.948 0.971 0.136
75 8 |8 |0.955 0.976 0.136
100 8 1 10.932 0.963 0.162
75 8 1 10932 0.963 0.163
100 8 2 10924 0.958 0.173
75 8 2 0927 0.960 0.174

Table I1.5: Table of remaining results of initial hyperparameter sweep for random forest
changeover failure prediction.

Results of the secondary hyperparameter sweep for RW = {1,832}, PW = 78, and
n_estimators = 100 can be seen in the cofusion matrices in figures [[I.2] [[T.3] and [[T.4]

102

Confusion Matrix PW:78 RW:1 Confusion Matrix PW:78 RW:1

140 140
v
2 120 2 120
]]
A @
100 100
2 80 E 80
g £
- 60 -60
e g
E] - a0 5. - 40
& &
-20 -20
! -0 . -0
stable Failure Stable Failure
Predicted Predicted
Confusion Matrix PW:78 RW:1 Confusion Matrix PW:78 RW:1
140 120
o o
= 120 2
=2 & 100
@ [
100
80
g 8 g
E =
-60
- 60
g g 40
3 - 40 5.
& &
| 20 -20
! -0 , -0
Stable Failure Stable Failure
Predicted Predicted

(c) Fold 3 (d) Fold 4

Figure I1.2: Confusion matrices from four fold cross validation with PW =78, RW =1,
n__estimators = 100.

103

Confusion Matrix PW:78 RW:8

Confusion Matrix PW:78 RW:8
140 140
120 120
kS K
b=} 5
2 i
& 100 & 100
80 80
@ v
= =
= =
- 60 -60
e - 40 g - 40
2 2
& &
-20 -20
! -0 . -0
stable Failure Stable Failure
Predicted Predicted
(a) Fold 1 (b) Fold 2
Confusion Matrix PW:78 RW:8 Confusion Matrix PW:78 RW:8
140
120
120
o o 100
= =
2 e
2l 100 @
80
80
@ v
2]
=3 & 60
- 60
- 40
@ -40 g
3 El
& &
| 20 -20
-0 , -0
Stable Failure

"
Stable Failure
Predicted

(c) Fold 3

Predicted

(d) Fold 4

Figure I1.3: Confusion matrices from four fold cross validation with PW = 78, RW = §,
n__estimators = 100.

104

Confusion Matrix PW:78 RW:32 Confusion Matrix PW:78 RW:32
80
20
60
Failure

80
o
]
60
u
E]
£
- 40
g
E o
-20
-0

I
Stable
Predicted Predicted

Stable
Stabl

Fails

(a) Fold 1 (b) Fold 2

Confusion Matrix PW:78 RW:32 Confusion Matrix PW:78 RW:32

80
70
o 60
50
Failure

Stable
Stabl

Fails

80
v
]
60
v
E]
£
- 40
g
5. 12
-20
-0

"
Stable
Predicted Predicted

(c) Fold 3 (d) Fold 4

Figure I1.4: Confusion matrices from four fold cross validation with PW = 78, RW = 32,
n__estimators = 100.

II.5 1D CNN changeover failure prediction

Results of the hyperparameter sweep conducted for 1D CNN changeover failure prediction
can be seen in table The hyperparameters are evaluated by accuracy F1l-score for
failure, Fl-score for stable, and loss. These metrics are averaged across a four fold cross
validation.

105

Parameters Metrics

batch size | dropout | Ir pw | rw | accuracy | f1 failure | f1 stable | loss

16 0.0 0.0001 | 64 | 16 | 0.882 0.922 0.707 0.429
32 0.3 0.0001 | 64 | 16 | 0.906 0.941 0.737 0.319
16 0.0 0.0001 | 64 | 16 | 0.897 0.933 0.726 0.498
32 0.0 0.0001 | 64 | 16 | 0.892 0.93 0.72 0.388
32 0.0 0.0001 | 78 | 16 | 0.887 0.924 0.716 0.424
32 0.3 0.0001 | 78 | 16 | 0.883 0.92 0.712 0.364
32 0.0 0.001 |64 |16 | 0.882 0.919 0.711 0.768
16 0.3 0.0001 | 78 | 8 | 0.882 0.92 0.717 0.511
16 0.3 0.0001 | 78 | 16 | 0.874 0.913 0.698 0.486
32 0.0 0.0001 | 78 | 4 | 0.867 0.906 0.704 0.491
16 0.3 0.0001 | 64 | 16 | 0.865 0.905 0.688 0.468
32 0.3 0.001 |78 |16 | 0.865 0.901 0.695 0.765
32 0.3 0.001 |78 [8 |0.863 0.9 0.699 0.922
32 0.0 0.0001 | 78 | 8 | 0.862 0.899 0.698 0.45

32 0.0 0.001 |78 | 16 | 0.861 0.895 0.693 0.577
16 0.0 0.001 |78 |4 |0.857 0.896 0.693 1.054
16 0.3 0.001 |78 |8 | 0.852 0.889 0.688 1.19

32 0.3 0.0001 | 78 | 4 | 0.847 0.886 0.685 0.449
32 0.3 0.0001 | 78 | 8 | 0.847 0.886 0.681 0.48

16 0.0 0.0001 | 78 |4 | 0.846 0.884 0.685 0.621
16 0.3 0.001 |78 |16 | 0.843 0.896 0.637 1.042
16 0.0 0.0001 | 78 | 8 | 0.838 0.881 0.667 0.54

32 0.3 0.001 |64 |16 | 0.837 0.89 0.633 0.825
16 0.0 0.0001 | 78 | 16 | 0.829 0.881 0.631 0.555
16 0.0 0.001 |64 |16 | 0.828 0.875 0.642 0.974

106

batch size | dropout | Ir pw | rw | accuracy | f1 failure | f1 stable | loss

16 0.3 0.001 |78 |4 |0.827 0.873 0.655 1.176
32 0.0 0.001 |78 |4 |0.825 0.877 0.637 0.923
16 0.0 0.001 |78 |16 | 0.824 0.877 0.624 1.035
32 0.3 0.001 |78 |4 |0.818 0.875 0.619 1.131
32 0.0 0.001 |78 |8 |0.818 0.872 0.622 1.121
16 0.3 0.0001 | 78 |4 | 0.816 0.872 0.623 0.601
16 0.3 0.001 |64 |16 | 0.813 0.865 0.616 0.891
16 0.0 0.001 |78 |8 |0.811 0.865 0.62 1.029
16 0.3 0.001 |32 |8 |0.692 0.499 0.761 1.477
32 0.3 0.001 |32 |4 |0.684 0.363 0.773 1.463
16 0.0 0.0001 | 64 | 4 | 0.681 0.633 0.689 0.66

32 0.0 0.0001 | 32 |4 | 0.676 0.48 0.756 0.68

32 0.3 0.0001 | 32 | 8 | 0.675 0.475 0.736 0.686
32 0.0 0.001 |32 |16 | 0.674 0.373 0.751 1.793
32 0.3 0.001 |64 |8 |0.674 0.691 0.623 1.593
16 0.0 0.0001 | 32 |4 | 0.673 0.464 0.744 0.723
32 0.0 0.001 |32 |8 |0.672 0.47 0.748 1.467
32 0.0 0.0001 | 32 | 16 | 0.67 0.502 0.702 0.816
16 0.0 0.0001 | 32 | 16 | 0.666 0.461 0.732 0.793
32 0.3 0.001 |32 |8 |0.666 0.486 0.738 1.611
16 0.3 0.0001 | 32 | 8 | 0.665 0.46 0.745 0.781
16 0.3 0.0001 | 32 | 16 | 0.663 0.509 0.699 0.865
32 0.0 0.0001 | 32 | 8 | 0.66 0.503 0.714 0.752
16 0.3 0.001 |32 | 16 | 0.658 0.451 0.731 1.474
32 0.0 0.0001 | 64 | 8 | 0.653 0.595 0.627 0.756
16 0.3 0.0001 | 32 |4 | 0.653 0.331 0.733 0.825
16 0.0 0.001 |32 |4 | 0.652 0.297 0.734 1.46

16 0.0 0.0001 | 32 | 8 | 0.651 0.476 0.704 0.716
32 0.3 0.0001 | 32 | 16 | 0.649 0.484 0.706 0.709
16 0.0 0.001 |32 | 16 | 0.649 0.482 0.721 1.683
32 0.0 0.0001 | 64 | 4 | 0.641 0.526 0.671 0.786

107

batch size | dropout | Ir pw | rw | accuracy | f1 failure | f1 stable | loss
32 0.3 0.0001 | 64 | 8 | 0.641 0.542 0.657 0.787
16 0.3 0.001 |32 |4 |0.639 0.33 0.719 1.369
32 0.3 0.0001 | 32 |4 | 0.639 0.342 0.713 0.686
32 0.3 0.0001 | 64 |4 | 0.635 0.531 0.641 0.747
16 0.3 0.0001 | 64 | 4 | 0.632 0.523 0.645 0.734
32 0.3 0.001 |32 | 16 | 0.627 0.331 0.692 1.649
16 0.3 0.001 |64 |4 | 0.626 0.522 0.601 1.743
16 0.3 0.0001 | 64 | 8 | 0.622 0.544 0.605 0.808
16 0.0 0.0001 | 64 | 8 |0.62 0.517 0.62 0.834
32 0.0 0.001 |32 |4 |0.617 0.377 0.712 1.333
32 0.0 0.001 |64 |4 |0.598 0.565 0.53 1.926
16 0.0 0.001 |64 |4 |0.597 0.53 0.556 1.346
16 0.3 0.001 |64 |8 |0.592 0.571 0.512 2.039
32 0.3 0.001 |64 |4 | 0.592 0.506 0.563 1.711
32 0.0 0.001 |64 |8 |0.59 0.531 0.538 1.474
16 0.0 0.001 |64 |8 |0.587 0.53 0.508 1.732
16 0.0 0.001 |32 |8 |0.587 0.308 0.656 2.161
32 0.0 0.0001 | 78 | 4

Table I1.6: Table of four fold cross validation hyperparameter sweep results for 1D CNN
changeover failure prediction. Metrics are the averaged across folds.

II.6 Random forest changeover RUL prediction

Results of the hyperparameter sweep conducted for random forest changeover RUL pre-
diction can be seen in table The hyperparameters are evaluated by mean absolute
error, R?, and root mean squared error. These metrics are averaged across a four fold
cross validation.

108

’ Parameters \ Metrics ‘
n_estimators | rw | MAE | R2 RMSE
150 32 1 10.999 | 0.781 | 19.635
100 32 | 11.071 | 0.778 | 19.7734
50 32 | 11.122 | 0.772 | 19.971
150 16 | 13.668 | 0.730 | 23.801
100 16 | 13.708 | 0.725 | 24.033
50 16 | 13.540 | 0.7296 | 23.803
150 8 15.303 | 0.706 | 25.721
100 8 15.297 | 0.706 | 25.712
50 8 15.721 | 0.691 | 26.376
150 4 | 14.221 | 0.755 | 23.785
100 4 | 14.180 | 0.755 | 23.785
50 4 | 14.117 | 0.759 | 23.676
150 1 14.406 | 0.756 | 24.014
100 1 14.551 | 0.753 | 24.184
50 1 14.367 | 0.758 | 23.857

Table I1.7: Table of four fold cross validation hyperparameter sweep results for random
forest changeover RUL prediction. Metrics are the averaged across folds.

II.7 1D CNN changeover RUL prediction

Results of the hyperparameter sweep conducted for 1D CNN changeover RUL prediction
can be seen in table [[I.§ The hyperparameters are evaluated by mean absolute error,
R?, and root mean squared error. These metrics are averaged across a four fold cross

validation.

109

’ Parameters Metrics ‘
dropout | Ir rw | Loss MAE | R2 RMSE
0.0 0.0001 | 32 | 300.512 | 10.867 | 0.831 | 16.995
0.0 0.0001 | 32 | 300.512 | 10.867 | 0.831 | 16.995
0.0 0.0001 | 32 | 307.534 | 11.602 | 0.826 | 17.182
0.3 0.0001 | 32 | 325.226 | 13.009 | 0.817 | 17.854
0.0 0.001 | 32 | 348.57 | 11.531 | 0.803 | 18.213
0.0 0.0001 | 16 | 417.254 | 13.572 | 0.801 | 20.068
0.3 0.001 | 32 | 360.83 | 13.311 | 0.787 | 18.851
0.3 0.0001 | 16 | 459.025 | 15.874 | 0.78 | 21.308
0.0 0.001 | 8 |507.23 | 15.942 | 0.775 | 22.402
0.0 0.0001 | 4 | 544.543 | 16.764 | 0.77 | 23.148
0.3 0.001 | 16 | 481.031 | 15.946 | 0.762 | 21.689
0.0 0.001 | 16 | 461.419 | 14.482 | 0.76 | 20.891
0.0 0.0001 | 8 | 550.846 | 16.381 | 0.76 | 22.975
0.0 0.001 |4 |552.71 | 15.84 | 0.749 | 22.995
0.3 0.0001 | 8 | 567.159 | 17.96 | 0.743 | 23.664
0.3 0.0001 | 4 | 619.539 | 19.132 | 0.737 | 24.838
0.3 0.001 | 8 | 605.478 | 18.782 | 0.721 | 24.238
0.3 0.001 |4 |658.011 | 19.103 | 0.72 | 25.588

Table I1.8: Table of four fold cross validation hyperparameter

sweep results for Istm

changeover RUL prediction. Metrics are the averaged across folds.

The predicted and true RUL are plotted for all sequences in all folds as seen in the figures
below. This is done for the best performing hyperparameters RW = 32, learning rate =

0.0001, drop out = 0.0.

110

RUL prediction for test smote_4 with R2=-2.452

. ® Prediction
%% %,

RUL

Injection

Figure I1.5: Smote 4, R? = —2.45

RUL prediction for test smote_9 with R2=0.205

. © Prediction
o —-- True
100 oo,
0
Y
E
s
20 By
. N
o 20 50 50 100

Injection

Figure I1.7: Smote 9, R? = 0.205

RUL prediction for test smote_15 with R2=0.003
120

® Prediction
——- Tue

Injection

Figure I11.9: Smote 15, R? = 0.003

RUL prediction for test smote_19 with R2=-3.895

oy o prediction
120 b --- Tue
ooy,
100 o,
LT
ib.'
°.
wo0f *
~~~~~ o
3 || T o
z SNy
e I B )
~~~~~~ oo0
‘‘‘‘‘ .
L R B o .
“““““ 0% o00ey oo
. o
20 S
. -
13 o % E) E) B E)
njection

Figure I1.11: Smote 19, R? = 0. — 3.895

RUL prediction for test smote_28 with R2=0.653

© Prediction
120 o --- Tue

° 20 0 6 80 100 120

0
Injection

Figure I1.13: Smote 28, R? = 0.653

RUL prediction for test smote_5 with R2=0.978

@ Prediction
——- True
175 ~3

o ~
o 25 50 75 100 125 150 175 200
Injection

Figure I1.6: Smote 5, R? = 0.978

RUL prediction for test smote_11 with R2=0.838

100 @ Prediction
-2 e
%0 |
° ‘\.d'\.
2 ~ h

o s N

20

0

5 2 3 £y 100
jection

Figure I1.8: Smote 11, R? = 0.838

RUL prediction for test smote_16 with R2=0.913

® Prediction

RUL

20 RSN
009%00000500000000
\‘:‘!'3--0“"

0 >~

0 10 20 0 40 50 60 7
Injection

Figure 11.10: Smote 16, R? = 0.913

RUL prediction for test smote_23 with R2=0.104

® Pprediction
40 =
EY o
.
M e . .
220 ~5
. oo °®
N .
Ny o,
10 >
0
o H 10 15 25 0 35 40
Injection

Figure I1.12: Smote 23, R? = 0.104

Figure 11.14: Fold 1

RUL prediction for test 966597-01_T003_0002 with R2=0.975

10 ® Prediction
= --- Tue
120
100
80
3
2
60
0 >~
) N
\”’
o Ts.
0 20 a0 100 120 140

Injection

Figure I1.15: T003, R? = 0.975

RUL prediction for test 966597-01_T013_0003 with R2=-10.658

° © Prediction
80 o 00
. Py --- Tue
®e
ce,
60 S
oo
.
.
o .
ER) &
_____ .
__________ .
******* .
0= .
________ !
------- .
Tfeagpe®
o S,
o 5 10 20 5 0

Figure I11.17: T013, R? = —10.7

RUL prediction for test smote_8 with R2=0.988

® Prediction
140 ——- Tue

L
;(
3
/

Injection

Figure 11.19: Smote 8, R? = 0.988

RUL prediction for test smote_18 with R2=0.956

.. © prediction
—-- Te
175
150
125
2100
7
50
25 <
o ..
o 25 50 B3 100 125 150 175 200

Injection

Figure 11.21: Smote 18, R? = 0.956

RUL prediction for test smote_30 with R2=0.849

70 ® Prediction
-—- True
50
50
40
2
0
20 ")
0a%900,0%"
10
o <.
° 10 20 0 50 60 70

Injection

Figure I1.23: Smote 30, R? = 0.849

RUL prediction for test 966597-01_T010_0000 with R2=-7.584

s @ Prediction

.
e eetan nee

o 10 20 30 a0
Injection

Figure I1.16: T010, R?* = —7.584

RUL prediction for test smote_2 with R2=0.907

@ Prediction
--- True

0
Injection

Figure I1.18: Smote 2, R? = 0.907

RUL prediction for test smote_12 with R2=0.947

bt ® Prediction
i —-- e

RUL

Injection

Figure 11.20: Smote 12, R? = 0.947

RUL prediction for test smote_21 with R2=0.979

® Prediction

vl enan g

0
Injection

Figure 11.22: Smote 21, R? = 0.979

Figure 11.24: Fold 2

RUL prediction for test 966597-01_T004_0000 with R2=0.829

RUL prediction for test 966597-01_T005_0004 with R2=-57.021
© Prediction e, e o Pprediction
--- Tue 100 T -
80 * e,
80 .
.
60 .
.
0
ENR H Cee,
Ceceoe’
o
20 —~ wol T
0000s300n0e00ss00000ee | T T ——
o RN o T ———
o 10 20 EY 50 2] o 3 s 10 20 25
njection Injection

Figure I1.25: T004, R?* = 0.829 Figure 11.26: T005, R? = —57.0

RUL prediction for test 966597-01_T008_0001 with R2=0.167

RUL prediction for test smote_6 with R2=0.966

100
o o ® Prediction . ® Prediction
a0 %, _— S fm—
o oo e - Tue
| 80 - inn,
< (™
60 = ~
* "9,
E . 2 o S
doe s o w Sy
0%,0 /%00 o S
3 .
- .
2 e » ?
I h o =
o o 2 w B3 oo B3 5 2 £ 3 £y 100
iection nection

Figure I1.27: T008, R? = 0.167 Figure I1.28: Smote 6, R? = 0.966

RUL prediction for test smote_7 with R2=0.968

RUL prediction for test smote_14 with R2=0.992

N o Pedition N o medction
s s S
(———

< 125

3 100 ~ 3 100

2
13 75 [
50

Nlng— i
o - B ~.
3 B3 E) 7 150 s 150 s 260 3 B3 E) s 100 35 150 s 260
njection njection

Figure 11.29: Smote 7, R? = 0.968 Figure 11.30: Smote 14, R? = 0.992

RUL prediction for test smote_25 with R2=0.697

RUL prediction for test smote_26 with R2=0.723

. ® Prediction

P o prediction
- % ——- Tue o damibd
100 .

——- T
120 LS ©
I Coe

RUL

/
/
/
I
//{
)
/
/
<
2

A
40 \ .
/\h’. . © u-""‘"\
N 0 -
2 ~sL 20 AN
. \-'P-
0 o o =
13 2 B % % 100 3 % w©)) 150
jection

Injection

Figure 11.31: Smote 25, R? = 0.697 Figure 11.32: Smote 26, R? = 0.723

RUL prediction for test smote_29 with R2=0.989

ol omy ® Prediction

b \
100 Pt

Injection

Figure 11.33: Smote 29, R? = 0.989 113

Figure 11.34: Fold 3

RUL prediction for test smote_1 with R2=0.953 RUL prediction for test smote_3 with R2=0.232
100

© pregiction LR - o Prediction
\ —-- True S ——- True
80 e <

oL
,(/
Y]
/
oL
s
o
y
/

o 00,
~ o 00990000, 4e00000000% "%
W - » 0 009%00%0 4 g0000000! s ~
aposnn
P, 20 ®o00, S
\,.\ ®ecccessvinasses,,
2 RN g e
- 10 RS
. L
o = o =
o 20 60 80 100 3 10 20 E) W 50 50 70
njection Injection

Figure 11.35: Smote 1, R? = 0.953 Figure 11.36: Smote 3, R? = 0.232

RUL prediction for test smote_10 with R2=0.823

RUL prediction for test smote_13 with R2=-0.529

3 o Prediction

Y ® Prediction
o --- True . - True
35 S 100 s
o o
30 oo Y
. 50 .
25 s
P N

320 60 s -.5\ ~.

o 20 40 60 80 100
Injection Injection

Figure 11.37: Smote 10, R? = 0.823 Figure 11.38: Smote 13, R? = —0.529

RUL prediction for test smote_17 with R2=0.970

RUL prediction for test smote_20 with R2=0.818

N Prediction
140 ~ °

~ o prediction
<. - True 5 o - Tue
N ° R
120 N L
™~ ~.

RAUL

o
.
i %000, ,0
80 I 2*
. 3
oL 2
60 S

Injection Injection

Figure 11.39: Smote 17, R? = 0.970 Figure 11.40: Smote 20, R? = 0.818

RUL prediction for test smote_22 with R2=0.947

RUL prediction for test smote_24 with R2=0.929

100
S o prediction o prediction
120 { e e - e . .
O a0 emy N
e ~ :\\ "d%‘.\,\
e T
0 3];\ 60 %

RuL
4

0
Injection Injection

Figure I11.41: Smote 22, R? = 0.947 Figure 11.42: Smote 24, R? = 0.929

RUL prediction for test smote_27 with R2=0.954

P ® Prediction
"»\ -2 e
80 53

.&\5\

60 “Se

SN

E] \:\

w0 s

L
)
. M\%! ot
) N
13 20 o P 100
njection

Figure I1.43: Smote 27, R? = 0.954 114

Figure 11.44: Fold 4

II.8 LSTM changeover RUL prediction

Results of the hyperparameter sweep conducted for LSTM changeover RUL prediction
can be seen in table [[I.9. The hyperparameters are evaluated by mean absolute error,
R?, and root mean squared error. These metrics are averaged across a four fold cross

validation.

’ Parameters \ Metrics ‘
attention | batch size | dropout | Ir rw | Loss MAE | R2 RMSE
true 16 0.3 0.0001 | 32 | 1029.186 | 19.216 | 0.419 | 30.539
false 16 0.3 0.0001 | 32 | 793.428 | 20.533 | 0.477 | 27.366
true 16 0 0.0001 | 32 | 809.946 | 19.311 | 0.410 | 28.062
false 16 0 0.0001 | 32 | 802.007 | 20.387 | 0.373 | 28.140
true 16 0.3 0.001 | 32 | 1466.079 | 22.842 | 0.027 | 36.873
false 16 0.3 0.001 |32 |929.787 | 19.793 | 0.387 | 29.496
true 16 0 0.001 | 32 | 1092.440 | 22.136 | 0.202 | 32.712
false 16 0 0.001 | 32 | 1228.876 | 22.523 | 0.088 | 34.949

Table I1.9: Table of four fold cross validation hyperparameter sweep results for lstm

changeover RUL prediction. Metrics are the averaged across folds.

115

111 Network architecture diagrams

209 features 209 — 128 128 - 128 RW — RW/2
e e N BN
r Nr Nr N B
RW Max pooling —‘
128 — 256 256 — 256 RW/2—1
e e G
r N N h
> = Average
| pooling
—>» 256 — 128 128 — 64 64 — 32 32 — 16 16 — 1
J input) Pooling

convolutional + ReLU

fully connected + RelLU
kernel size = 5, padding = 2 @ Y

convolutional + ReLU . .
@ kernel size = 3, padding =1 @ fully connected + sigmoid

Figure III.1: Proposed network architecture for accumulator failure prediction with a
reading window RW and prediction window PW.

116

19 features 19 — 64 64 — 128 128 x 1
S S N
r RIS RN 0 I’_Jﬁ

Average 3 Class
RW pooling LAt L prediction

) input @ fully connected

convolutional + ReLU @ sigmoid

) average pooling

Figure II1.2: Proposed network architecture for changeover failure prediction with a read-
ing window RW and prediction window PW.

RW x features RW x 128 — 128 64 — 1

128 features 128 features 128 — 64

) input @ Fully connected +RelLU

LSTM layer with 128 hidden features ﬁ Fully connected + Sigmoid

) Attention or last LSTM step

Figure II1.3: Proposed LSTM classification network for accumulator failure prediction for
reading window RW and prediction window PW.

117

RW x features

64 features 64 features 64 features —‘

\—> | | | | 1 O

RW x 64 — 64 64 — 32 32—+16 16—+8 8—1

& J input @ Fully connected +ReLU

LSTM layer with 64 hidden features @ Fully connected output

<) Attention or last LSTM step

Figure I11.4: Proposed LSTM regression network for methanol changeover RUL prediction
for reading window RW.

118

	Introduction
	Literature review
	Theory and background
	Proposed Feature Engineering and Failure Prediction Methods
	Data Analysis and Feature Engineering Results
	Prediction Model Results
	Discussion and conclusion
	Bibliography
	Methanol changeover data analysis full results
	Validation results
	Network architecture diagrams

