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Abstract

Inspection and monitoring are critical activities in the maintenance and protection of un-
derwater infrastructure. The opacity and turbidity of water can difficult the visibility of
essential elements in such structures. This project explores the use of synthetic data gen-
eration to train a DeepLab v3+ semantic segmentation network with a ResNet-18 back-
bone. The objective of this thesis is to evaluate the neural network’s ability to correctly
identify objects in submerged environments with different turbidity levels. 1,800 im-
age pairs comprising raw images and their corresponding segmentation masks were ren-
dered by parameterizing water scattering and absorption in Blender. They were analyzed
for five different situations, covering three discrete turbidity levels, an environment with
no turbidity or diffraction elements, similar to the absence of water, and the case where
all the aforementioned turbidity conditions and different water colorations are taken into
account. The network was trained separately on each dataset and then evaluated on a
turbidity test set to determine how sensitivity to training conditions affects real-world
performance. Comparative analysis with models trained with low, medium, and high
turbidity studies the impact of data diversity on prediction accuracy. These results offer
valuable insights for developing robust vision systems for industrial applications such
as pipeline inspection or structural health studies of infrastructure, where reliable object
detection under turbid waters is essential for safety and operational efficiency.
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1 Introduction

Over the last century, the society and industry in Europe have developed together. Many
laws have been implemented to guarantee citizens’ security and workers’ rights. Pre-
cisely in Denmark, the beginning of the welfare state and worker protection flourished at
the end of the 19th century, as outlined in [1]. This transformation occurred in two main
stages.

Consolidation of the Welfare State (1930s)

In 1933, the Social Assistance Act ("Socialhjeelpsloven") occurred,establishing public aid
for families at risk and the unemployed. Later, in 1938, another law was published re-
quiring compensation for workers in case they suffer work-related injuries. (Lov om Ar-
bejdsskadeforsikring). These improvements established the beginning of a state focused
on universal social protection [2].

Safety in Marine and Offshore Environments (1970s)

Following the discovery of oil fields in the North Sea around 1972, and the rapid devel-
opment of offshore rigs, the Danish government began developing labor regulations in
this sector. In 1977, a law was implemented requiring a reduction in the number of dan-
gerous manual tasks and mandatory protective equipment [3], [4].

These two legislative stages were key in reducing exposure to dangerous tasks and in-
creasing social and labor rights in Denmark. For this reason, over the past decades, the
inspection and maintenance of offshore infrastructure has required the use of more spe-
cific technologies. This project focuses on the use of underwater vision technologies. The
complexity of these environments is determined by several factors.

1.1 Underwater environments

Approximately a 70% of the Earth’s surface is covered by water, it is understandable that
underwater environments are incredibly diverse. Physical factors such as temperature,
salinity, and dissolved oxygen concentration can generate completely different scenarios
for both marine flora and fauna, and geological makeup plays a very important role in
water conditions. This project studies optical properties such as water absorption and
scattering, both of which vary with wavelength.

Other elements that affect water turbidity are sediments and dissolved or soluble organic
matter in the aquatic environment itself. Generally, locations such as ports, where there
is a sudden change from aquatic to terrestrial environments, are greatly affected by high
turbidity levels. For the experimental period, a small pool will be used as a test bed




1. Introduction

to monitor the turbidity levels studied. In general, it is important to account for water
color, as it affects turbidity, and the colors in the chromatic range complicate segmenta-
tion based on different color thresholds.As discussed by Schechner and Karpel, the color
of water significantly influences turbidity perception and complicates image segmenta-
tion based on color thresholds, especially in turbid environments [5].

Submerged elements can suffer from corrosion, like metals, or degradation and rot, like
wood. Both materials have varied considerably refractive indices, so when combined
with the aquatic environment, affect identification. Due to the difficulty and scarcity of
large volumes of classified images in underwater environments, the idea of generating
synthetic data in Blender arose. If the use of virtual images to identify objects in real
environments proves successful, scalability to industrial applications will expand in the
coming years.

1.2 State of the Art and Synthetic Image Use

Several recent studies have explored the use of deep learning for underwater object
recognition and segmentation. Most of these approaches rely on convolutional neural
networks (CNNs) such as U-Net or DeepLabv3+, which have shown excellent results in
standard segmentation tasks [6]. However, a key limitation is the lack of annotated un-
derwater datasets with sufficient variability in lighting, turbidity, and background clutter.

To overcome this limitation, researchers have turned to synthetic data generation. By
simulating underwater scenes using tools like Blender or Unity, it is possible to create
thousands of labeled images with controlled variations in geometry, lighting, and mate-
rials. The URPC [7] and the SUIM dataset [8] have contributed partially synthetic data
for underwater vision research. Islam [9], for example, proposed a dual approach com-
bining image enhancement with semantic segmentation to improve underwater percep-
tion. Similarly, Shafique [10] focused on training deep learning models exclusively on
synthetic data to evaluate their generalization to real underwater scenes. These studies
support the growing evidence that synthetic datasets can effectively supplement limited
real-world data.

Mai et al. [11] proposed a methodology to generate synthetic underwater datasets with
realistic lighting and marine growth using Blender, aiming to replicate real-world in-
spection scenarios. In a related study, Khan et al. [12] explored the use of these synthetic
images for semantic segmentation tasks, demonstrating their effectiveness in training
models capable of generalizing to real underwater conditions. These works represent a
significant contribution toward bridging the domain gap between synthetic and real sub-
sea imagery.

Despite the progress, few studies have quantitatively evaluated how well these models
transfer to real subsea conditions, especially under varying degrees of turbidity, which
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directly affects visibility and contrast. Most prior work focuses on clear-water environ-
ments or laboratory settings, where the domain gap is smaller.

1.3 Project Motivation

From an academic but industrially oriented perspective, a study on object identification
under high levels of turbidity is considered interesting because it focuses on solving cur-
rent problems that are being addressed at the industrial level. Its applicability in improv-
ing visibility in these environments is directly relevant to actions such as infrastructure
maintenance, surveillance, and protection.

Different approaches can be used to address how turbidity and light attenuation com-
plicate vision. Some examples include the use of powerful lights on remotely operated
vehicles (ROVs) to ensure sufficient illumination, as well as the use of neural networks,
where the decoder element strives to remove turbidity from these images and the identi-
fication algorithms are applied. Sensors such as sonars can also be used where turbidity
does not significantly affect object identification. However, their resolution is very low,
and they do not allow for the perception of small details or textures.

Convolutional neural networks (CNNs) were selected as an alternative approach, given
the potential limitations of traditional inspection methods. The methodology adopted is
described in detail in Chapter 1.5.

1.4 Project Objective

The main objective of the whole thesis is:

* To evaluate the performance of DeepLab v3+ with a ResNet-18 backbone for se-
mantic segmentation in underwater environments with varying turbidity.

To achieve this main objective, various sub-objectives and tasks must be completed.
These are:

* Generate sufficient synthetic images, with satisfactory quality and the ability to
simulate different environments.

¢ Compare networks trained at different turbidity levels.

* Validate the networks and inspect their individual performance for the real labora-
tory images.

* Interpret real-world turbidity measurements and replicate them in a synthetic en-
vironment.
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1.4.1 Delimitation

The main delimitations are listed:

* Exclusive use of synthetic data: All training and validation images are generated in
Blender, without incorporating real-world field datasets beyond the final validation
tests.

¢ Limited number of classes: Only five object categories are considered (pool back-
ground, black cylinder, silver cylinder, wooden piece, and granite), which does not
cover the full diversity of underwater elements.

* Controlled turbidity levels: Four discrete turbidity grades are simulated (very low,
low, moderate, and high), without modeling intermediate or dynamic variations.

¢ Single network architecture: Only DeepLab v3+ with a ResNet-18 backbone is
employed, with no comparison to other segmentation topologies.

* Static scenes: All captures use a fixed camera and stationary objects; effects of mo-
tion, waves, or currents are not evaluated.

* Homogeneous lighting and camera settings: The same light properties (point/spot)
and camera parameters are used throughout, without exploring alternative config-
urations or moving light sources.

* No real-time processing: The workflow focuses on offline rendering and segmen-
tation; optimizations for inference on embedded systems or live video are not ad-
dressed.

¢ Limited validation scope: Validation with real images is restricted to laboratory
tests; no trials are conducted in open-water or actual ocean conditions.

¢ Limited time and resources: Given the slightly over three-month timeframe, it was
not possible to test alternative network architectures or different data-generation
methodologies.

¢ Camera connectivity and setup delays: Significant issues were encountered when
connecting the camera for real-image capture, leading to extended delays in prepar-
ing the system to a “ready-to-go” state.

1.5 Research Pathline

Most methodologies start with analyzing the research question and explain the relevance
of such investigation. The current state of the case study needs to be reserach. Subse-
quently a brainstorm is advised to define how to address and solve the problems pre-
sented. This entire process can be summarized as understanding and synthesizing the
case study.
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The next step was to research different neural network structures (since these are net-
works designed to work with images). It is important to investigate how they work and
what alternatives exist to see if it is worthwhile to use another strategy.

In the next stage, it is necessary to gather information on the generation of synthetic data,
including the key aspects involved and the available tools for this purpose. Additionally,
it is important to investigate methods for creating segmentation masks. A thorough re-
view of all relevant topics should be conducted in order to enable subsequent analysis
and evaluation of the results.

The last step is to develop a work plan of the points to be addressed, how to approach
them, and estimate how much time will be needed for each phase of the project. Finally,
the creation of a diagram that encompasses all the steps to be followed throughout the
project.

The project is presented in Figure 1.1 and can be summarized as a block diagram. The

main block, or process, is the CNN, which has two inputs and one output. All relevant
steps during the project are introduced later in this section.

I m e e - - = == === 1 | e e e e - = === - 1 | e m e - - = = === - ]
Synthetic Data Network Algorithm
¢ Model Design
e Obj i
jects Materfal . Results
« Water Properties > Images Resize

Camera and Light
Configuration
Segmentation Mask script
Color Image Preprocessing

Picture Augmentation
Pixel Count

Network Properties
Network Training
Network Validation

Object Prediction
Confusion Matrix
Accuracy

Network Performance
Networks comparation

.
Y
e o o o o

Real Data Accuracy and loss graphs
- Segmentation
Camera Connections
Performance

Camera Calibration
Experiment Design
Water Absortion analysis
Object Material Selection

Figure 1.1: Research Pathline

Synthetic Data

One of the inputs corresponds to the synthetic data. To create a successful data package,
several tasks must be performed. These are presented as bullet points and entered in the
following list:
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* Model Design: The mesh of all objects to be included in the render is designed.

* Object’s Material: The material architectures to be assigned to each object are cho-
sen.

* Water Properties: The absorbance and scattering properties of the water are estab-
lished in Blender.

¢ Camera and Light configuration: The lighting and camera options are modified to
match those of the experimental chamber and the laboratory lighting.

* Segmentation Mask script: A script is generated to obtain a segmentation mask
for each generated render.

* Image Preprocessing: The generated mask images are resized, and color deviations
are corrected.

The synthetic data is intended to feed the network for training and then validate how the
network performs in correctly predicting classes.

Real Data

This section describes the procedure followed to obtain the real images used for testing
and comparing the performance of the neural networks. These images are subsequently
linked to the network evaluation process. A detailed explanation of each step involved
in data acquisition and preparation is provided.

e Camera Connections: To execute a plan to feed the camera and extract real-time
data transfer.

¢ Camera Calibration: To calibrate the camera’s optical properties to obtain the best
possible image quality.

¢ Experiment Design: Experiments were designed to include the desired variability
in turbidity for the project.

e Water Absorption Analysis: Water turbidity was analyzed in the laboratory in or-
der to translate it into synthetic data.

* Object Material Selection: Objects with distinct shapes and textures were selected
to ensure varied light reflection and facilitate their identification.

Network Algorithm

DeepLab v3+ was chosen to perform the segmentation process, using the ResNet-18 net-
work as the backbone, responsible for identifying groups of objects in images. To build
the network, the code was divided into small sections with well-defined functions. Fi-
nally, the network produced a segmentation mask prediction and a copy of the input test
image as output. The small operations that were executed are the following:

6
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* Image Resizing: The input images were resized to ensure they had the correct

dimensions.

* Image Augmentation: The training images were distorted within defined margins
and randomly deformed to enhance the feature extraction process.

¢ Pixel Count: The pixels were counted to subsequently balance the class weights.
* Network Properties: The network training options were defined.

* Network Training: The network architecture was established and trained under
the selected options.

* Network Validation: The network was validated using synthetic data to verify its
performance.

* Accuracy and Loss Graphs: The accuracy and loss curves were generated.

¢ Segmentation Performance: The prediction was carried out on the test image.

Results

This is the final step, where the results are obtained. The network, under certain com-
mands, provides metrics to evaluate its performance in addition to the predictions. Ide-
ally, these results serve as the starting point for an iterative method where, based on the
conclusions, small adjustments are made to both the network and the synthetic data to
improve predictions and data generation. Due to time constraints, the knowledge and
results obtained could not be used as feedback to improve the prediction process. The
results obtained are listed below.

* Object Prediction: The predictions were obtained in the form of segmentation
masks.

¢ Confusion Matrix: A matrix was generated to indicate the accuracy with which the
classes were correctly identified.

* Accuracy: The accuracy and loss curves were plotted.

¢ Network Performance: The predictions were compared with the manually created
segmentation masks from the experimental images.

* Networks Comparison: The results provided by each network were compared.




2 Deep Learning

Since the Industrial Revolution emerged in the late 18th century, the idea of automating
tasks has grown. The advantages are clear: avoiding repetitive tasks, reducing produc-
tion costs, and speeding up production processes. Centuries later, after the Second World
War, the potential of computer science as a scientific discipline began to develop as stated
in [13]. Since the 1940s, this discipline has advanced in the process of automating intel-
lectual tasks. This process has advanced so much that it has now generated the concept
of artificial intelligence, which is nothing more than a tool of algorithms and mathemat-
ical processes, whose objective is to design systems capable of reasoning, learning, and
executing decisions autonomously.

Within artificial intelligence, there is the field of machine learning (ML), in which ma-
chines learn by feeding them data. This learning differs from conventional learning in
that it does not provide manually written lines of code that dictate rules or orders. Within
ML, there are several main techniques. On the one hand, there is supervised learning,
where models receive labeled data; on the other, unsupervised learning, where unclas-
sified data is provided and the model searches for patterns and extracts features. There
is also reinforcement learning, where the model makes predictions through a system of
rewards and punishments [14].

Deep learning (DL) emerges from ML when more complex models begin to be developed
with greater depth and number of layers, allowing learning from more complex environ-
ments [15]. The architecture of deep learning models is typically structured across three
distinct types of layers:

* Low layers: responsible for extracting basic and localized features, such as edges,
textures, or simple patterns.

e Middle layers: integrate and combine lower-level features to identify more com-
plex structures or shapes within the input data.

¢ High layers: abstract and consolidate information from the middle layers to rec-
ognize high-level representations, such as object categories, actions, or complete
scenes.

There are many memorable events throughout history regarding the progress made,
starting from the perceptron in 1958 [16] where the first artificial neuron capable of linear
classification was created. In 2012 AlexNet emerged [17] where systems were devel-
oped to use GPUs during the training process and therefore increasing their speed for
predicting. And in 2015, the concept of Residual Network emerged from Kaiming He’s
study called Deep Residual Learning for Image Recognition [18]. This study offers a quite
useful solution to the problem of gradient reduction in the backforward process, which
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provided an increase in error for models with more layers and which intuitively should
provide significantly lower errors than similar models but with fewer layers.

As a hierarchical synthesis, Figure 2.1 shows the order from a more general level to reach
the topic of computer vision, whose field of study focuses on, through digital images,
being able to process tasks such as classification, detection, segmentation or 3D recon-
struction.

Computer Science

Artificial Intelligence

Machine Learning

Deep Learning

Computer Vision

Figure 2.1: Hierarchy of Disciplines in Artificial Intelligence

2.1 Resnet-18

As time goes by, new, deeper and more powerful neural networks are constantly (CNN)
emerging. CNN are a special type of neural network used to analyze images. The model
used in this project is ResNet-18, proposed by [18]. This network consists of 18 layers or-
ganized into residual blocks. Previous versions of CNNSs, such as LeNet-5 [19], AlexNet
[17], VGGNets [20], or GoogLeNet/Inception v1 [21], faced problems with vanishing or
exploding gradients during backpropagation. These gradients could become extremely
small, causing the first layers to learn very slowly or even fail to learn at all. Conversely,
when gradients became too large, they made the network unstable, providing very large
weights where solutions could not converge [22].

Kaiming’s network model offered solutions to these problems, allowing deeper networks
to train successfully. The most significant contribution was the use of residual blocks
with direct connections or shortcuts. In simple terms, rather than letting a stack of layers
directly learn a transformation (H(X)), a bypass or shortcut is applied on that layer or set

9
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of layers, and, an identity is added to the output of those layers, generally called x, forcing
the layers to learn a residual function that would be F(x) = H(x) - x. This methodology
solves the degradation problem, since these shortcuts provide shorter alternative paths
for gradients to flow to previous layers. Allowing the addition of more layers, which
generates deeper and more powerful networks.

2.1.1 Architecture

The MATLAB has been employed for the implementation of this network [23].The 18 lay-
ers that make up the network are organized in blocks, where each layer would in turn
have convolutional layers and residual shortcuts. The convolutional layers are those that
extract the image features. These layers are made up of the size of the input image to the
layer, the kernels used (3x3, 7x7, etc.), the applied stride, which indicates the kernel dis-
placement, and the padding (additional pixels around the image). All of these elements
define the output size of the layer. There are also pooling layers that modify the image
resolution. The most notable feature of this network model is the residual connections it
uses.

Regarding the general composition of the network, it begins with the Input layer, which
is fed into a first convolutional layer to detect notable features, such as edges, colors, an-
gles, etc.

There are 4 residual blocks, and each block is divided into 2 different layers, the pur-
pose of which is to extract more complex patterns than those of the input layer. In these
convolution blocks, there are convolution layers. As the signal passes through a layer,
an activation function is applied to extract nonlinear features. By default, the activation
function is ReLu (rectified linear unit). This function is responsible for setting the input
signal value to zero if and only if the initial value was negative; otherwise, it does not
modify the signal value. The organization at the filter or kernel level for the residual
blocks is as follows:

1. In the first block, there are 64 filters.

2. In the second block, there are 128 filters.
3. In the third block, there are 256 filters.
4. In the fourth block, there are 512 filters.

After these blocks, the image passes to a pooling layer to reduce its size and is sent to
a fully connected layer, which takes the final image and uses it to make a final decision.
Finally, there is the output layer, which has a number of channels equivalent to the num-
ber of classes to be identified in the network. Appendix A shows an image A.1 with the
block-level architecture of the network and a table specifying the contents of each block.

10
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2.2 Deeplab v3+

ResNet-18, previously discussed as a convolutional neural network for image classifica-
tion tasks, includes final layers that produce a probability vector across a set of predefined
classes. The network outputs the class with the highest probability, which is interpreted
as the predicted label. A correct classification is assumed when this predicted class cor-
responds to the actual object in the image.

In this section, the use of DeepLab v3+, a semantic segmentation architecture developed
by Google in 2018, is presented. In this configuration, ResNet-18 functions as the encoder,
extracting hierarchical features from the input image. These features are then processed
by a decoder module—specifically the Atrous Spatial Pyramid Pooling (ASPP)—to gen-
erate a segmentation mask that classifies each pixel individually.

The network was trained using pairs of images: one showing the original scene and an-
other providing a pixel-wise annotated mask, where each pixel corresponds to a specific
object or class present in the composition.

As a main feature of this network, it highlights the use of ASPP, which employs dilated
(atrous) convolutions, increasing the image’s field of view without losing resolution. The
network output is an image segmentation where the results have been refined to make
them sharper and more accurate. Regarding optimization, the cross-entropy loss func-
tion is generally used, which calculates the difference between the predicted and actual
labels for each pixel. This function is used by the Adam algorithm to adjust the network’s
weights during the training phase.

For the implementation of this network, Matlab was used due to familiarity with the tool.
There is extensive documentation available online and examples similar to the case study.
The main advantage of Deeplab v3+ is its accuracy; however, the model is computation-
ally intensive. As for its applications, it has been used in fields such as the automotive
industry to identify road elements, and in healthcare to detect injuries through X-rays or
MRIs.

11



3 Experiment setup

The goal is to generate a synthetic dataset for simulating underwater environments, with
the ultimate purpose of improving the identification of objects in environments with low
visibility, whether due to turbidity, lack of light, or suspended particles that hinder visi-
bility.

However, to measure the quality of this data, it is necessary to compare it with real scenes.
In this case, different objects will be distributed in varying positions and orientations at
different turbidity levels. A model will be prepared in the laboratory for this purpose.
The experiments are carried out in a controlled environment. The measurements of the
pool and all the objects used, are known. The Lighting information of the fluorescent
lamps is extracted by the technical specifications of the product [24].

3.1 Equipment

This chapter explains all the elements used to carry out the experiment at the university
facilities. This includes the objects to be identified and the camera connections, including
how the turbidity of the pool water was manipulated and how it relates to the values
entered into the virtual simulation.

3.1.1 Lab’s Lightning

During the experimental phase, the lighting in the laboratory was constant. Fluorescent
bulbs were used. The light used does not have a very marked direction, but rather en-
velops the scene like natural light, without generating shadows or very marked contrasts.
The technical specifications of which are shown in 3.1. An image of the lighting is shown
in figure 3.1.

12
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Property Value Unit
Brand Sylvania -
Tube Type T5 -
Power 80 W
Length 1450 mm
Diameter 16 mm
Luminous Flux 6150 Im
Color Temperature 3000 K
Light Tone Warm White -
Base Type G5 -

Table 3.1: Main characteristics of the T5
fluorescent tube used in the experimentation

Figure 3.1: T5 fluorescent tube
[24]

3.1.2 Pool

The technical data sheet for the pool model [25] details its dimensions and materials.
This data sheet was obtained through manual measurement and an internet search for
the model printed on the pool’s exterior surface. The pool has a filter system to recircu-
late and clean the water, which has never been used. For this reason, in later stages of
the project, the water quality exhibits inherent turbidity without the addition of external
elements, nevertheless, the turbidity will be increased externally. This turbidity occurs
due to a lack of chlorine and ideal temperatures, as well as light, which can contribute to
the growth of microalgae.

Property Value Unit
Brand Bestway -
Model Power Steel -
Shape Rectangular -
Dimensions 404 x 201 x 100 cm
Volume (90%) 6,478 L
Frame Material Steel -
Liner Material = Tritech™ (3-layer PVC) -
Inner Finish Mosaic Print -
Color Rattan Grey -

. Table 3.2: Main characteristics of the Bestway
Figure 3.2: Bestway Power Steel Rectangular Pool Power Steel pool used in the experimentation [25]

13



3. Experiment setup

3.1.3 Object to identify

The selected components were chosen due to their diversity in size, color, and the way
light interacts with their surfaces. Another key factor in their selection is their resem-
blance to commonly used industrial shapes, as well as to forms frequently found in na-
ture. As a result, the initial elements consist of cylindrical and parallelepiped geometries.
Specifically, the setup includes two pipes of different diameters, granite cobblestones,
and a wooden table. Table 3.3 lists their dimensions, while Figure 3.3 illustrates their

main characteristics.

Figure 3.3: Selection of objects to identify

Object Dimension Value [m]
Black Pipe Length 0.30

Black Pipe Radius 0.025
Aluminum Pipe Length 0.95
Aluminum Pipe Radius 0.050
Granite Cobblestone Side Length 0.40
Wooden Piece Width x Length x Height 0.19 x 0.30 x 0.05

Table 3.3: Main dimensions of the objects to be identified in the segmentation task

3.1.4 Kaolin

To increase the pool’s turbidity, kaolin was used. The composition is found in 3.4. This
clay mineral is used because it is not water-soluble, forming a suspension and not health
hazardous. It is sprinkled into the water solution and mixed with the water using brushes,
increasing its turbidity. The dissolved kaolin particles modify how light scatters in the
water and give it a whitish color.

For each degree of turbidity, the amount of kaolin was increased, and samples were col-

14
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lected to subsequently analyze the total absorbance of the water in each experiment.

- Component Estimated Content

Kaolin > 90%
— Silica 45-55%
u; Alumina 35-40%
= Iron oxide <1%
________ M — Titanium dioxide <2%
pH (in water) 4-6
“— Appearance White powder

Figure 3.4: Kaolin and its representative composition [26]

3.1.5 Testing Environment

The experimental tests were conducted in a controlled environment at the AAU-Esbjerg
laboratory. As shown in Figure 3.5. The pool setup allowed for the submersion of objects
at different depths and positions under stable lighting conditions.

Figure 3.5: Lab-scale pool used for the experimental trials

3.1.6 Camera Connection and Configuration

The camera model used is illustrated in figure 3.6, it is the camera with the best quality
and resolution available at the time of this project at the AAU-Esbjerg. The technical data
sheet shows that its optical sensor is 1/2.9” SONY CMOS 2 Megapixel and that its opti-
mal wavelength captured range is 500-700 [nm]. Therefore, the average value is taken as

15
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the starting wavelength to obtain the absorbance values of the analyzed samples.

r 1"s 2
I 1304 B
II I! . ' .
o °
" a

Figure 3.6: Oceantools C3-30 Subsea Camera [27]

The camera power connector is an 8-pin interface, with each pin assigned to a specific
function. As a first step, a multimeter was used to check continuity between the connec-
tor pins and the ends of the cable that would later interface with the Fathom Tether [28].
This test aimed to verify the integrity of the cable and confirm whether the camera was
operational or exhibited any faults.

Using the camera’s technical datasheet, the function of each pin was identified. Fig-
ure 3.11 illustrates the wiring between the camera and the tether. For proper pin-to-pair
mapping between the 8-pin connector and the four twisted pairs of the Blue Robotics
Fathom Tether (an Ethernet-type cable), the Advantech patch cable white paper was used
as a reference [29], [30], as it details the standard RJ45 pair-to-terminal assignments.

10/100 mode B, | 10/100 mede A, | 1000 (1 gigabit) mode B, | 1000 (1 gigabit) mode A,

Pins at switch T568A color T568E color ) ) )
DC on spares | mixed DC & data DC & bi-data DC & bi-data

Pin 1 = ) Ri+ Re+  [DC+ | ToRxA+ TXRXA + DC +
White/green stripe | White/orange stripe
[ a0

Pin 2 ' Ry - Rx - DC + TxRX A - TxRX A - DC +
Green solid Orange solid
b — =]

Pin 3 = = s Tx+ |DC- |TxRxB+ TxRXB + De -
Whiteforange stripe | White/green stripe
o ] [ ]

Pin 4 N N DC + Unused TXRXC + DC + TXRX C +
Blue solid Blue solid

. ([ ([

Pin & N X N X DC + Unused TxRx C - DC + TxRx C -
White/blue stripe | White/blue stripe

Pin 6 —— Tx - Tx- |DC- |TxRxB- TXRX B - DC-
Orange solid Green solid
R — |

Pin 7 = - |= ) DG - Unused TXRXD + DC- | TxRxD+
White/brown stripe | White/brown stripe
o ] o ]

Pin 8 DC — Unused TxRx D - DC - TxRx D -
Brown solid Brown solid

Figure 3.7: Power over Ethernet connections
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The required power to turn on the camera is 24 [V], the camera had to be powered with
an external source. The injector [31] passively provides sufficient voltage from the be-
ginning of the connection to launch the camera. Besides, the switcher [32] transfers and
monitors the transmitted packages. Both devices are presented in figure with their re-
spective references.

| 4Poiink | 5-Port Gigabit Easy Smart Switch with 4-Port PoE+

-

-

Figure 3.8: Switch and Injector

A port scan was performed on the computer to know the IP address connection. The
employed software were SoftPerfect Network Scanner [33] and SADP [34]. Additionally
the manufacturer (OceanTools [35]) was contacted to verify that the mounting system 3.9
was not harmful to the camera. Moreover, the manufacturer was contacted to consult the
username and password required to get access to the camera settings.

‘ Camera ‘

‘ Smart Switch ‘ ‘ Injector ‘

‘ Laptop ‘ ‘ Electrical Grid ‘

Figure 3.9: Camera Connection Architecture

Subsequently, each pair of cables was soldered and properly insulated. Once the physical
connection was completed, and before attempting communication between the camera
and the computer, a transmission test was carried out to evaluate the quality and integrity
of data packets exchanged between both devices. After contacting the manufacturer, it
was possible to successfully establish a connection with the camera and extract images.
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Figure 3.10 shows the evolution of the insulating process.

Figure 3.10: Cable Soldering & Waterproofing

To control the entire recording process, VLC Media player [36] to record and store the
images, and then, using a Matlab script, we extracted the desired frames with the best
image quality.

To manage the entire recording process, VLC Media Player [36] was used to capture and
store the video streams. Subsequently, a MATLAB [37] script F was employed to extract
the frames with the highest image quality from the recorded footage.

Camera calibration was performed through the camera’s settings interface 3.11. To re-
duce noise caused by movement, the camera was secured to a metal post using safety
ties, which fixed the camera’s position and orientation relative to the water movement.
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Gamma: Standard mode v

EEEEE
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Figure 3.11: C3-30 Subsea Camera’s interface

Various tests were performed throughout the calibration process to choose the camera
configuration option with the values that provided the best image quality.Unfortunately,
no samples were collected to be shown.

3.2 Overview of conducted experiments

The objective of the experiments is to evaluate the network’s ability to accurately identify
various objects in images affected by turbidity. To assess performance under different
perspectives, two distinct object arrangements were created. For each arrangement, four
experiments were conducted, each corresponding to a different level of turbidity.

The initial experimental plan included capturing an additional image set under clear wa-
ter conditions, intended to serve as a baseline with zero turbidity. However, since the
pool water was not chemically treated, it gradually developed a greenish coloration and
a mild level of turbidity over time. This natural coloration was later masked by the ad-
dition of kaolin during the turbidity experiments. For this reason, the reference test does
not display the same positioning as the other sets and includes an additional element,
removed from the classes to be identified.

Regarding turbidity levels, four distinct degrees were defined, each applied to two dif-
ferent object arrangements. This resulted in a total of eight experiments.

1. Very low turbidity: kaolin is added and visibility remains good.
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2. Low turbidity: kaolin concentration increases and object silhouettes begin to appear
blurred.

3. Moderate turbidity: visibility is reduced; although objects can still be recognized at
a glance, many details are lost.

4. High turbidity: visibility is very poor; it becomes almost impossible to discern ob-
jects and their edges are heavily blurred.

The following image 3.12 shows a diagram used in the experimentation, additionally,
the sequential process is explained. During this entire process the camera has been fixed
without changing its orientation or position.

First the position and orientation of the objects to be shown were located and captured.
A photo of their distribution was taken to replicate it later. For a given distribution, the
photos are taken and the second arrangement of objects is made, these are recorded and
kaolin is added to them while it is mixed manually and the entire process is recorded, to
select a significant image of this experiment. When the desired degree of turbidity has
been reached and the image stored, it is changed to the previous position and the scene
is recorded again. This iterative process of taking experiments and changing the position
of objects continues until all the desired combinations are achieved.

Turbidity 1 Position 1 Turbidity 4 Position 1
v *

Turbidity 1 Position 2 Turbidity 4 Position 2
v 0

Turbidity 2 Position 2 Turbidity 3 Position 2
v *

Turbidity 2 Position 1 > Turbidity 3 Position 1

Figure 3.12: Experiment work flow

3.3 Absorption and Scattering in the Experimental Pool

In the pool with kaolin in suspension, the light that traverses the water is affected by the
physical phenomena of absorption and scattering.

1. Absorption (u,), that describes the part of the luminous energy converted into heat.

2. Scattering (us) is the change in direction upon colliding with particles, which makes
the water blurry.

To quantify how the intensity I(I) decays after traveling a distance [ [m], It was started
from the Beer—Lambert law [38], [39], equation 3.1 and 3.2 summarize the relations be-
tween intensity and apparent absorbance. Here the intensity is radiometric and measures
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the radiant power incident on a unit area after traveling a distance /. Its unit is watts per
square meter [W/m?]:

I(l) = Iy exp|—Capp ] (3.1)

I
Aapp = — 10%10( 1(0)) (3.2)
* capp = [t is the total apparent attenuation coefficient.

* A,pp is the apparent absorbance, the ratio between transmitted and incident irra-
diance; it explains in a dimensionless way how the medium darkens due to par-
ticle suspension. Higher values indicate more attenuation and therefore greater
darkness/turbidity. The apparent absorbance is measured with the Cary 60 UV-Vis
spectrophotometer [40].

* Incident irradiance Iy is the radiant power per unit area before the light begins to
traverse the distance /.

e Transmitted irradiance I(!) is the radiant power that emerges after traversing the

medium.

The factor 2.303 arises when converting between the natural logarithm (In) and the deci-
mal logarithm (log,):

In(xz) = 2.303 logg(x). (3.3)
Solving for capp gives
2.303 A,
Capp = fpp (34)

The apparent attenuation coefficient c,p;, can be decomposed into its two fundamental
physical components: absorption (11,) and scattering (u5). The ratio between these com-
ponents is known as the scattering-to-absorption ratio, defined as R = p/p,. According
to previous studies conducted under controlled coastal and laboratory water conditions,
this ratio typically ranges between 20 and 29 [38], [41]. These references, along with
equations 3.5 and 3.6, describe the optical decomposition of light attenuation and the re-
lationship between absorption and scattering coefficients.

Capp = Ma + Us (35)

ps = R fia, (3.6)

Substituting equations 3.5 and 3.6, the following expressions are obtained

[y = —epp 3.7)
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R capp
1+ R’
Finally, by substituting the term c,p, from equation 3.4 into equations 3.7 and 3.8, the

e = (3.8)

resulting expressions are given in equations 3.9 and 3.10.

2303 Aapp
2.303 R Aqpp
s = ———————— 1
a I(1+R) (3-10)

D Building upon the theoretical foundations established in the previous section, the fol-
lowing subsection describes the procedure for obtaining water samples and measuring
the apparent total attenuation coefficient. These measurements are subsequently used to
derive the absorption (1,) and scattering (11,) coefficients.

3.3.1 Absorbance analysis

During the experimental phase, 15 [mL] conical centrifuge tubes, commonly known as
Falcon tubes [42], were employed to collect water samples. These containers, depicted
in Figure 3.13, enabled the storage of sufficient water volumes for multiple analyses per
sample, thereby minimizing potential deviations. Each sample underwent four tests,
with the average value representing the analysis.

The analyses were conducted using the Agilent Cary 60 UV-Vis Spectrophotometer [40],
scanning each sample across a wavelength range from 300 [nm] to 800 [nm], recording
absorbance at 5 [nm] intervals. This range adequately encompasses the human visible
spectrum, which spans approximately from 380 [nm] to 700 [nm] [43].

For these measurements, plastic spectrophotometer cuvettes [44] were utilized. However,
for analyses involving wavelengths below 300 [nm], it is recommended to use quartz cu-
vettes due to their superior transparency in the ultraviolet range [45]. The cuvette used
has a path length of 1 [cm]. The apparent absorbance values obtained across the spectral
range are presented in Figure 3.14, while the corresponding absorption and scattering
coefficients at 640 [nm] are summarized in Table 3.4.
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Figure 3.13: Left plastic cuvette [44] and right experimental samples [42]

Apparent Absorbance vs Wavelength
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—0.05
300
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Figure 3.14: Graph of Apparent Absorbance Vs Wavelength

Sample [[m] Aapp Capp R Lha Ihs

Baseline  0.01  0.00729 1.678776 25 0.064568 1.614208
Sample1l 0.01 0.014091 3.245085 25 0.124811 3.120274
Sample2 0.01 0.014849 3.419752 25 0.131529 3.288223
Sample3 0.01 0.054054 1244875 25 0.478798 11.96995
Sample4 0.01 0.061359 14.13089 25 0.543496 13.5874

800

Table 3.4: Apparent absorbance and derived optical coefficients for all samples at 640 [nm] with a ratio of 25
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3.4 Visual Results from Laboratory Testing

During each experiment, a custom script was used to extract individual frames from the
recorded video sequences (see Appendix F). From these, the highest-quality frame per
experiment was manually selected. Despite the fixed camera position, suspended parti-
cles present in the water were visible in several of the images due to the turbidity of the
medium.

Once the images were selected for testing the neural network’s performance, manual
semantic segmentation was performed using the free software Photopea [46]. Figures
3.15 to 3.23 illustrate the selected images alongside their corresponding manually anno-
tated segmentation masks. The RGB color code assigned to each class remains consistent
across the project, including both the synthetic data generated in Blender and the input
provided to the CNN via the Matlab processing script.

Figure 3.15: Baseline of experimental images

Figure 3.16: Position 1 - Turbidity 1
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Figure 3.17: Position 1 and Turbidity 2

Figure 3.18: Position 1 and Turbidity 3

Figure 3.19: Position 1 and Turbidity 4

Figure 3.20: Position 2 - Turbidity 1
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Figure 3.21: Position 2 - Turbidity 2

Figure 3.22: Position 2 and Turbidity 3

Figure 3.23: Position 2 and Turbidity 4
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Synthetic data refers to information generated artificially. For this project the synthetic
data are the generated virtual pictures. The employed tool is Blender [47], which is open-
source and offers a broad range of customizable options, online repositories, and exten-
sive documentation. Additionally, it’s free and supports Python integration for custom
modifications.

The synthetic data generated in this project can be categorized into two distinct types.
First, photorealistic images resembling those captured by the experimental camera (see
Section 3.4); and second, corresponding segmentation masks derived from those images.

This mask is an ordered composition of the classes to identify in the image, where the
RGB values of each pixel are related to a particular class. Therefore the variety of colors
in the segmentation mask is very small, there are as many colors in the colloquial sense as
there are classes. A visual example of a data pair generated for this project can be found

(a) Synthetic Scenes (b) Segmentation Maps

in image 4.1.

Figure 4.1: Realistic Appearance Images vs Segmentation Maps

The main advantage of synthetic data is the cost savings compared to real-world images,
which would require a team of professionals and specialized equipment such as ROVs.
In addition, capturing real footage offshore entails transportation logistics and planning
around favorable weather conditions to ensure a safe operation. For instance, manually
classifying the nine selected images from the experimentation, pixel by pixel for the five
chosen classes, took an entire day of work.

Another advantage is its high variability, allowing to the simulation of very diverse states
and environments, being these easily modifiable. Some manipulable elements are the
material properties, the light in the captured scene, the reflections, different degradation
states of the objects, etc. Being able to generate data batches with diverse environments
enriches the network by providing more general features and therefore increasing pre-
diction accuracy [48], [49].
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To provide a clear overview of the process involved in generating synthetic data, the
following steps were carried out:

1. The meshes of the objects were designed, including both the main study elements
and their surrounding environment.

2. Appropriate materials were assigned to each object to realistically simulate surface
properties.

3. The optical properties of the water, specifically light absorption and scattering, were
modeled to replicate subsea conditions.

4. Scene lighting was configured to simulate real-world illumination scenarios.

5. Camera settings, render engine parameters, and other computational properties
were adjusted to ensure consistent output quality.

6. A script was developed to automatically generate segmentation masks for the sim-
ulated images, storing the results in a structured and classified format.

7. The diversity of the virtual environments was increased to enhance the representa-
tiveness and robustness of the synthetic dataset.

8. The outcomes of the synthetic data generation were analyzed to iteratively improve
the composition and realism of the scenes.

Throughout this chapter, the most relevant processes involved in the creation of synthetic
data are described in detail.

4.1 Mesh modeling

The first step in modeling the objects was to establish a clear structure outlining the key
elements to address. This included defining the modeling strategy, selecting the objects
to be represented, and determining their corresponding sizes. Consequently, it was nec-
essary to measure the dimensions of each object in advance.

Once Blender was launched, the objects were created within the “Layout” workspace by
inserting basic geometric primitives such as cubes or cylinders. These shapes were then
edited to match the desired symmetry. Subsequently, materials were assigned to each
object according to their specific characteristics.

4.1.1 Pipes

For the pipes, both the aluminum (referred to as the silver pipe throughout the project)
and the black one, the creation process was as described below.
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A cylindrical shape was selected as the base geometry using the mesh option in Object
Mode, with approximate dimensions set accordingly. The number of vertices was then
defined; this parameter determines the resolution of the circular faces. Since achieving a
perfectly smooth curvature was not essential for the objectives of this project, a total of
128 vertices were selected.

Once the final form was completed, a bevel was applied to trim the edges; this step was
performed on all objects to make the details more closely resemble real-world appear-
ances. The bevel size and edge smoothing settings varied depending on the object. The
selected measurements and an image of the mesh are shown in Figure 4.2.

Object Element Measure [m]
Black Pipe  Length 0.30
Silver Pipe  Length 0.95
Black Pipe = Radius 0.025
Silver Pipe  Radius 0.050

(a) Smoothed mesh of pipes (b) Pipe dimensions

Figure 4.2: Beveled and smooth-shaded pipe meshes alongside their dimensions

4.1.2 Granite cobblestone

The workflow for the granite model followed the same steps. First, a large cube with di-
mensions of 0.4 [m] was added in the Layout workspace. Then, work was carried out in
the Sculpting workspace, where the design Rock and Stone Brushes addon [50] was ap-
plied using imported brushes to achieve the desired surface texture. Next, in the UV Edit-
ing workspace, the vertex density was adjusted, the mesh was remeshed, and the faces
were redistributed to create a more heterogeneous rock surface. This process, known as
UV unwrapping, was followed by scaling the UV islands to match the dimensions of the
granite pieces used. Three granite models were created, as shown in Figure 4.3.

Figure 4.3: Granite Mesh
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4.1.3 Wooden Piece

The wooden piece was created starting from a cubic volume. Using the scale tool, its
dimensions width, height, and thickness were adjusted to match those of the real wooden
object, measuring 19 [cm] x 30 [cm] x 5 [cm] . Figure 4.4 shows the resulting 3D model
of the wooden table.

Figure 4.4: Wooden Piece Mesh

41.4 Pool

During the early stages of project development, attempts were made to model the shape
of the pool, however due to its high complexity and number of polygons and nuances to
take into account, it was decided to purchase the pool model, scale it manually in the x, y
and z coordinate axis, so that its measurements would match those of the laboratory. The
address of the purchased model as well as information on the created modeling artists
can be found in [51]. Figure 4.5 represents the quality of the pool mesh.

Figure 4.5: Pool Mesh

4.2 Object’s Material

An essential part of the object representation process was the selection and application of
appropriate materials to simulate realistic surface properties. To support this task, exter-
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nal resources such as the BlenderKit Asset Library [52] were employed, offering a broad
collection of user-generated assets and textures.

For elements like the pipes and the wooden box, predefined texture packs were down-
loaded and directly applied to the respective models. In contrast, the granite stone mate-
rial was selected manually to achieve a more accurate visual representation. Additionally,
the interior lining of the pool was recreated by capturing a photograph of the actual pool
bottom and mapping it onto the model’s surface.

In Section 4.3.1, the results obtained following the addition of textures are presented.

4.2.1 Granite Material

The texture of granite stones was searched on the Poligon website [53], the texture pack
[54] was downloaded and assembled manually, and figure 4.6 contains the employed
images. The blocks involved in the material setup are detailed in the list below. Figure 4.7
shows the block specifically applied to simulate the granite surface.

1. Block Image Texture (Base Color) provides the image of what the material looks
like in a flat form and feeds the Principled BSDF.

2. Image Texture (Roughness) loads the roughness map. Overlays a grayscale image,
so the diffusion of light on the object is different in each area.

3. Image Texture (Normal) and Normal Map here it is loaded the RGB normal map,
which converts color vectors into altered surface normals. These modified normals
simulate fine details such as scratches without changing the mesh geometry.

4. Image Texture (Height) + Displacement the height map generates a real geometry
displacement by applying a grayscale image and a push or pull command based on
the texture image.

5. Principled BSDF combines all the properties in one shader to provide photorealistic
appearance.

6. Material output apply final surface shading and geometry displacement.

Figure 4.6: Granite Textures: Base Color - Height - Roughness - Normal
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Figure 4.7: Granite Material Architecture

4.2.2 Aluminum Pipe Material

The material used has been downloaded from Blender Kit, This metallic material has
been chosen for its great similarity to the real aluminum pipe. The following list high-
lights the components. The structure is quite similar to the previous case, but has an
added block Texture Coordinate + Mapping that provides the coordinates and applies
location/rotation/scale adjustments to control texture placement. Figures 4.8 and 4.9
detail the aluminum textures.

Figure 4.8: Aluminum Textures: Base Color - Roughness - Normal
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Figure 4.9: Silver Aluminum Material Architecture

4.2.3 Black Pipe Material

The following material simulates a black, opaque pipe with subtle metallic highlights.
Only the Principled BSDF shader has been used, the RGB values are 0.13 in each channel,

and the rest of the properties are visible in the image 4.10.

v Material Output
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ncipled BSDF

Alpha 1.000

MNorm:

# Thin Film

Figure 4.10: Black Pipe Material Architecture

4.2.4 Wooden Piece Material

A pine wood material was chosen for its natural coloration, affordability, and common
usage. The architecture is identical to case Aluminum Pipe Material 4.2.2 where the input
textures are modified to simulate wood. Figures 4.11 and 4.12 encapsulates the texture
and architecture.

Figure 4.11: Wooden Piece: Base Color - Roughness - Normal
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Figure 4.12: Wooden Piece Material Architecture

4.2.5 Pool Background Material

The pool object was a prebuilt asset with its own texture pack, The texture pack is not
detailed here except for the replaced background texture, which is a picture of the bottom
of the pool in the flow lab 4.13. For this reason, only the use of the image and the shader

principle BSDF is shown 4.13.
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Figure 4.13: Pool’s Background Material

Figure 4.14: Bottom part of the laboratory’s pool
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4.3 Light Modeling in Blender

First, the fluorescent tube lights used in the laboratory are identified [24]. Then, the same
scene is recreated with the configuration 4.15. In Blender, light power values are not di-
rectly equivalent to real-world wattage. For instance, simulating an 80 [W] fluorescent
tube (approximately 6150 lumens) often requires setting the power parameter to a signif-
icantly higher value in Blender [55].

Point 3% Sun [} Spot \__\, Area

Power 1000 W

Shape Rectangle

Size X 1.45m

Y 0.02m

Max Bounces 1024
« Cast Shadow

« Multiple Importance
Shadow Caustics

Portal

Figure 4.15: Light Properties

Parameter Values
Light Type Area
Shape Rectangle
Size (X) 1.45m
Size (Y) 0.02m
Color #fffdfa
Power 1000 W

Multiple Importance  Enabled
Cast Shadow Enabled

Table 4.1: Settings in Blender to simulate an 80W T5 fluorescent tube

4.3.1 Visual Comparison of Model Stages

Once the mesh modeling and the material have been explained, a visual comparison
is presented to show the simulated model’s progression. This little section highlights
the transition from mesh only to mesh with textures. Figure 4.16 serves as a point of
comparison.
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(a) Geometry Preview (b) Textured & Shaded Render

Figure 4.16: Mesh vs. Textured Visual Comparison

4.4 Water Volume Properties

The water volume was simulated using the structure described in [56]. The correlation
between the light scattering and absorption is described in chapter 3.3, an image of the
architecture is found in figure 4.18. In this subsection, the effect of kaoling mixed with
water is represented.

* Absorption coefficient i, [m~1]: controls light attenuation through the volume.
e Scattering coefficient 1s[m~!]: controls light diffusion by suspended particles.

* Anisotropy factor g [-]: sets the preferred scattering direction.

The initial absolute attenuation or apparent absorbance values are taken for the 640 [nm]
wavelength, measured from water samples from the four tests performed. The contri-
butions due to the absorption coefficient and the scattering coefficient are calculated and
manually added to the material.

Turbidity Aapp lha Ihs

Reference 0.00728 0.06456 1.61420
Low 0.01409 0.12481 3.12027
Medium  0.01484 0.1315  3.28822
Moderate 0.05405 0.47879 11.96994
High 0.06135 0.54349 13.58739

Table 4.2: Turbidity grades with corresponding attenuation, absorption, and scattering coefficients.

However, when simulating the measured values, these barely show a contrast as marked
as in reality, i.e., the synthetic images obtained by using the actual measured values
showed less turbidity than the real images. Therefore it was decided to manually tune
these values as well as the Absorption and Scattering density, so that the executed ren-
ders are similar to the captured experimental images.The absorption color is identical for
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every channel being 0.025 and the Scattering color is 0.115, 0.124 and 0.133 for the red,
green and blue colors

Turbidity Absorption Scattering Anisotropy

Low 1.00 1.00 0.00
Medium 1.00 2.00 0.00
Moderate 1.00 3.00 0.00
High 3.00 7.00 0.10

Table 4.3: Final values employed to simulate different turbidities

Due to this manual adjustment, the color and visibility of the rendered water are more

similar to the laboratory test images, as shown in Figure 4.17.

(a) Test (b) Measured (c) Tuned

Figure 4.17: Image comparison between real test, simulated with measured values, and tuned for the high
turbidity condition
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Figure 4.18: Water volume properties

The following figure 4.19 shows different degrees of turbidity for the same scene.
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(a) Very Low turbidity (b) Low turbidity (c) Medium Turbidity (d) High Turbidity

Figure 4.19: Turbidity Levels

4.5 Render Properties

In Blender, rendering refers to the process of transforming a three-dimensional scene—including
geometry, lighting, camera settings, and materials—into a two-dimensional image or an-
imation. This involves simulating how light interacts with surfaces to produce realistic
visual effects such as color, shadows, and reflections.

During the initial stages of the project, the EEVEE render engine was employed due to its
faster rendering capabilities, which facilitated rapid testing and scene adjustment. How-
ever, EEVEE is a real-time, rasterization-based engine and does not offer the level of
physical accuracy required for high-fidelity visual output. As a result, several visual ar-
tifacts were observed, particularly in the rendering of reflective and metallic surfaces, as
well as in the fine details of the granite cobblestones (see Figure 4.20).

To address these limitations, the Cycles engine was adopted for the final image genera-
tion. Cycles is a physically-based, path-tracing renderer that simulates the behavior of
individual light rays as they interact with the scene. Although more computationally
demanding, this engine provides superior results in terms of lighting realism, shadow
accuracy, and material representation—features that are essential when generating syn-
thetic images intended to mimic real-world underwater environments.

(a) Render using EEVEE (b) Render using Cycles

Figure 4.20: Comparison between rendering engines for a high turbidity condition

To accelerate the image generation process, several render optimization settings were ap-
plied in Blender. First, the rendering device was switched from the CPU to the GPU, as
modern GPUs are highly parallelized and significantly outperform CPUs in rendering
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tasks, especially when using path-tracing algorithms.

Second, the noise threshold parameter was enabled and set to 0.1. This value controls
the adaptive sampling behavior in Cycles: during rendering, Blender estimates the noise
level in different parts of the image, and if the noise falls below the threshold (in this case,
0.1), it stops calculating additional light samples for that pixel. This prevents unneces-
sary computation in well-converged regions, helping to reduce render times. Conversely,
if the noise remains high, the renderer may increase the sample count up to a maximum
limit (1024) to improve image quality.

Third, a maximum render time of 120 seconds per image was imposed to avoid excessive
computation in complex scenes. This time cap ensures a balance between visual quality
and dataset generation efficiency.

Overall, these settings were chosen to optimize the trade-off between speed and quality,
enabling the generation of high-fidelity synthetic images in a reasonable timeframe.

The camera resolution was chosen based on the size of the images extracted from the
real camera and the field of view, in order to achieve similar results when comparing
the Blender renders with the experimental photographs. The image resolution was set to
1920x1080 pixels, which was configured using the output resolution settings.

The virtual camera settings were adjusted after selecting the camera object. In the camera
properties panel, the lens type was set to perspective, and the focal length was adjusted
to 45.22 [mm] to match the real camera. The sensor camera size was kept at 28 [mm].

To assess the quality of the synthetic images presented in Figure 4.19, a visual comparison
was conducted against the real images obtained during the experimental phase (see Sec-
tion 3.4). The evaluation relied on a subjective method in which several individuals were
asked to distinguish between real and synthetic images. When respondents encountered
difficulty in differentiating them and provided incorrect classifications, the synthetic ren-
derings were deemed sufficiently realistic for the purposes of this study.

4.6 Camera Pose Sampling

To automatically create the renders, a distribution of camera positions and orientations
was added to the code, always pointing at the central area of the pool, (since the elements
to be captured were located in the central area) from different heights and sides, to obtain
different viewpoints of the objects being studied. The positions used are shown in the
following image.
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7 )

Figure 4.21: Camera distribution over a rendered scene

4.7 Synthetic Image Pair Creation

The training process selected for the CNN is supervised, where it is provided with an
object classification with pixel by pixel information. The network is trained in pairs; the
process of creating unclassified synthetic images has been explained in the previous sec-
tions. To create the mask, a script has been developed in Blender, in the Python language;
this script will be detailed in chapter 5.1.1. This section indicates its operation at a high
level.

The mask is created by selecting a pass index for each object. This index is a label used
to identify each object. A new material is then generated. This material is applied to all
objects (pipes, granite, wood, and pool) and assigns them specific RGB values by index,
so each element has a different, known color. The image is then rendered, creating the
raw segmentation mask.

The constructed material provides a known color for each object. Its construction is based
on blocks; the colors used do not follow any specific criteria. The architecture is explained
in the following list and can be visualized in figure 4.22. The images obtained will be
processed before being fed to the neural network.

1. Object identifier: assigns a unique integer to each object.

2. The node Value: indicates how many objects are expected to be colored in the im-
age.

3. The Divide node: normalizes the object index to a [0-1] range, which is exactly what
the Color Ramp expects at its Fac input.

4. Color Ramp: takes the normalized value [0-1] and converts it to a color according
to the ramp stops.

5. Emission shader: uses the ramp’s output color to emit light of that hue.

6. Material Output: connects the Emission shader to the Surface socket so the object
appears self-lit in that color.
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Figure 4.22: Segmentation Mask Architecture

4.8 Other simulated environments

Additionally, to train the broader neural network model, feeding it with greater image
variability to enrich the predictions. It has been decided to modify the water color as well
as the light intensities to generate more conditions. Some examples of these images are
found in Figure 4.23.

Figure 4.23: Collection of additional Simulated Underwater Conditions
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Neural networks can be developed using various programming languages and special-
ized frameworks. Commonly used languages include C++, R, Java, and particularly
Python, which is widely adopted due to its simplicity and extensive support libraries.
Several frameworks are available to facilitate neural network development, such as Ten-
sorFlow, PyTorch, Keras, CNTK, and Matlab.

For this project, Matlab was selected as the development environment due to prior famil-
iarity and its integrated toolboxes. Specifically, the Deep Learning Toolbox and the Deep
Network Designer were employed, in combination with official tutorials and example-
based documentation [57]-[59].

This chapter outlines the methodology used for preprocessing the dataset, the training
process of the neural networks, and the implementation of the prediction pipeline to
generate semantic segmentation masks, along with other relevant elements.

5.1 Image preprocessing

This section covers all the scripts used to train the network. Before feeding the CNN, each
synthetic image and real photograph had to undergo a uniform preprocessing process.
Some examples are: Resizing and Normalization.

5.1.1 Creation of the segmentation mask in blender

As explained in Chapter 4.7, Blender not only produced the original images, but also
generated a copy of them by applying a segmentation mask. This subsection explains the
code used step by step. Appendix B contains the full code, which is broken down and
explained section by section.

Libraries and Main Folder

This script define the libraries employed and selects the output folder of the entire code.

import bpy # Blender’s Python API for automation
import os # File-system operations: paths and directory creation
import math # Math functions, e.g. degree-to-radian conversion

# Main output folder for renders
output_dir = r"C:\Users\mikio\Desktop\Pool"

43



5. Convolutional Neural Network in matlab

Scene Objects & Materials Setup

To select the objects to be displayed in the render and links them to the materials to be
used, both for the original and segmented images. Therefore, the name used for each
object must be unique and assigned in the framework.

# Objects to render
paisaje_objs = [
bpy.data.objects["BlackCilinder"],
bpy.data.objects["SilverCilinder"],
bpy.data.objects["Water"]
]
# Their original materials, with paisaje_objs
mats_paisaje = [
bpy.data.materials["mat11"],
bpy.data.materials["Frozen white metal"],
bpy.data.materials["WaterProp"]
]
# Segmentation material (a flat, index-colored shader)

matsegmentacion = bpy.data.materials["matsegmentacion"]

Camera Position Definitions

The number of camera locations is indicated, both the orientation and the position, the
camera always aims to the center of the pool, where the objects are located. Section 4.6
introduces these positions.

# A list of (location, rotation) tuples for the camera
cam_positions = [
([2.1876, -0.139, -0.13949], [math.radians(85.15), ...]),
([0.2708, 0.48936, 0.58282], [math.radians(161.41), ...]1)
]

Object Placement

The object configuration process is automated to save time, thus obtaining more renders
in the same amount of time spent.

composiciones_objetos = [
{ "SilverCilinder": {"loc": ..., "rot": (...)} ,
R O A U SR
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Loop objects positioning
Iterates setting each object’s position and rotation.

def aplicar_composicion(compo_dict):

for name, vals in compo_dict.items():
obj = bpy.data.objects[name]
obj.location = vals["loc"]
obj.rotation_euler = vals["rot"]

Main render function

Creates two folders in the output directory, one for the segmentation mask renders and
other for the raw images, checks for the last numerical number in the folders and contin-
ues with the upcoming one. Calls for the camera and objects positioning, later starts the
renders firstly for the segmentation mask and secondly for the raw images.

def render_segmentacion_y_raw(output_dir, paisaje_objs,
mats_paisaje, matsegmentacion, cam_positions):

# Create output folders

mascara_dir = os.path.join(output_dir, "mascara_segmentacion")
raw_dir = os.path. join(output_dir, "raw_imagenes")
os.makedirs(mascara_dir, exist_ok=True)

os.makedirs(raw_dir, exist_ok=True)

scene = bpy.context.scene

cam scene.camera
# get next free index based on existing PNGs
def get_next_index(folder):
existing = [f for f in os.listdir(folder) if f.endswith(".png")]
if not existing:
return 1
nums = [int(f.split(".")[0]) for f in existing if f.split(".")[0].isdigit()]

return max(nums) + 1 if nums else 1
idx = get_next_index(mascara_dir)
# Loop over each camera pose
for pos, rot in cam_positions:

frame_name = f"{idx:044}"

# Move & rotate camera

cam.location = pos

cam.rotation_euler rot
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# 1) Segmentation mask render
for obj in paisaje_objs:
obj.active_material = matsegmentacion
scene.render.filepath = os.path.join(mascara_dir, frame_name + ".png")

bpy.ops.render.render (write_still=True)

# 2) Raw render with original materials
for obj, mat in zip(paisaje_objs, mats_paisaje):
obj.active_material = mat
scene.render.filepath = os.path. join(raw_dir, frame_name + ".png")
bpy.ops.render.render (write_still=True)

idx += 1 # Increment filename index

5.1.2 Image grouping and classification

One of the prior steps before feeding the CNN was to merge all the data into one folder
for each specific purpose. This script was developed because two different computers
were employed to render the data set images.

% Paths to add the images (output directories)
dest_mask_dir = ’C:\Users\mikio\Desktop\Pool\mascara_segmentacion’;
dest_raw_dir = ’C:\Users\mikio\Desktop\Pool\raw_imagenes’;

% Paths of folders to take the data (input directories)
src_mask_dir = ’C:\Users\mikio\Desktop\Turbidity2&3\mascara_segmentacion’;

src_raw_dir = ’C:\Users\mikio\Desktop\Turbidity2&3\raw_imagenes’;

% Search the last number in the output folder
mask_files = dir(fullfile(dest_mask_dir, ’*.png’));
raw_files = dir(fullfile(dest_raw_dir, ’*.png’));

% Obtain the last figure (asuming names follow the structure 0001.png)
last_idx = 0;
if “isempty(mask_files)
nums = arrayfun(@(f) str2double(f.name(1:4)), mask_files);
last_idx = max(nums);

end

% list the source files

src_mask_files = dir(fullfile(src_mask_dir, ’*.png’));

src_raw_files dir(fullfile(src_raw_dir, ’*.png’));
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% Order both

[~, idx_mask] = sort({src_mask_files.namel});
src_mask_files = src_mask_files(idx_mask);
[, idx_raw] = sort({src_raw_files.namel});

src_raw_files = src_raw_files(idx_raw);

% Copy and rename keeping the parity relation

for i = 1:min(length(src_mask_files), length(src_raw_files))
% Nuevo indice global
new_idx = last_idx + 1i;

new_name = sprintf (’%04d.png’, new_idx);

% Mask copy
copyfile(fullfile(src_mask_dir, src_mask_files(i).name),

fullfile(dest_mask_dir, new_name));

% Raw copy
copyfile(fullfile(src_raw_dir, src_raw_files(i) .name),
fullfile(dest_raw_dir, new_name));

end

disp(’Combinacién y renumeracién completadas.’);

5.1.3 Normalization and resizing of the segmentation Mask

During the image classification process before feeding the network, it became apparent
that the images selected in the segmentation mask did not contain unique RGB values for
each class. To address this problem, code was written to look for similar colors, allowing
for a difference of 4 units in the scale of each RGB channel (0-255), and replace them with
the colors assigned in Blender. The image dimensions were also resized from 1920x1080
to 960x540 to reduce computational costs. A similar script was created for the raw photos,
but it won’t be shown. Only the segmentation values are shown in this section.

inputFolder = ’C:\Users\mikio\Desktop\Turbidity2&3\CamVid\mascara_segmentacion’;
outputFolder = ’C:\Users\mikio\Desktop\Turbidity2&3\CamVid\labels’;
newSize = [540, 960]; % [alto, ancho]

tolerance = 4;

% RGB values for each class
classColors = [
160 196 189; % Pool’s background
141 195 141; % Black cilinder
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199 187 116; % Silver cilinder

165 92 174; % Wooden piece

197 197 197 Y% Granite cobblestones
1;

% Create output directore
if “exist(outputFolder, ’dir’)
mkdir (outputFolder) ;

end

% Read PNG files
dir(fullfile(inputFolder, ’*.png’));

files

for k = 1:length(files)

% Read and resize the pictures

img = imread(fullfile(inputFolder, files(k).name));

img = imresize(img, newSize);

% Initialize corrected image with background color (class 1)

correctedImg = uint8(ones(size(img)) .* reshape(classColors(l, :), 1, 1, 3));

% For each class, correct pixels within tolerance
for i = 1:size(classColors, 1)
targetColor = classColors(i, :);

% Create mask for pixels similar to targetColor
mask = all(abs(double(img) - reshape(targetColor, 1, 1, 3)) <= tolerance, 3);

% Apply the class color to matching pixels
for ¢ = 1:3
channel = correctedImg(:,:,c);
channel (mask) = targetColor(c);
correctedImg(:,:,c) = channel;
end

end

% Save corected image
imwrite(correctedImg, fullfile(outputFolder, files(k).name));
end
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5.2 Trainig of ResNet-18

For the training of the network, different strategies and an iterative trial and error method
was followed, until some reasonable results were obtained. Some inspirational examples
include a Matlab exercise where a ResNet-18 network was trained for a single channel
and one class [59].

The code will be divided into smaller and more understandable parts. The original code
is found in appendix C. This code is presented for training the network under the lowest
turbidity condition. Scripts with identical structures have been developed, but they adapt
differently to the different cases analyzed. However, to use a logical comparison criterion,
the training options have not been altered from one case to another.

Paths, classes and labellDS

In this part of the code, the routes where the original and classified images are stored are
defined, the classes with their colors in RGB are defined, and the datastore variable that
stores all this information is generated.

%Here we set the path to images and label folders
rutalmagenes = ’C:\Users\mikio\Desktop\EntrenamientoT1\CamVid\images’;
rutaEtiquetas = ’C:\Users\mikio\Desktop\EntrenamientoT1\CamVid\labels’;

% class names

classes =

L
"Pool_background"
"Black_Pipe"
"Silver_Pipe"
"Wooden_Box"
"Granite"

1;

% Define the RGB colors associated in order
labelIDs =
[
160 196 189; % Pool’s background
141 195 141; 9% Black cilinder
199 187 116; % Silver Cilinder
165 92 174; % Wooden box
197 197 197 % Granite
1;

% Create the datastore
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imds = imageDatastore(rutalmagenes);

pxds = pixelLabelDatastore(rutaEtiquetas, classes, labelIDs);

Data Partitioning

This section shows how the dataset was divided and the percentages used to train and
validate the network.

% Split the data into 80% for training and 20% for validation

% Total number of images
numFiles = numel(imds.Files);

% Create a random index

randIdx = randperm(numFiles);

% Percentage for training
trainRatio = 0.8;

numTrain = round(trainRatio * numFiles);
% Indexes for training and validation
trainldx = randIdx(1:numTrain);

valldx = randIdx(numTrain+1:end);

% Split the image datasore

imdsTrain = subset(imds, trainIdx);

imdsVal

subset (imds, valldx);

% Split the label datasore

pxdsTrain = subset(pxds, trainIdx);

pxdsVal subset (pxds, valldx);

Once the raw and segmentation folders have been divided between training and valida-
tion, they are separated into only training and only validation, and the type of network
to be used is also indicated.

% Combine the training datastore

trainingData = combine(imdsTrain, pxdsTrain);

% Combine validation datastore

validationData = combine(imdsVal, pxdsVal);
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%Define the size of the images and the number of channels
imageSize = [540, 960, 3]; % height, width and channels
numClasses = 5;

network = ’resnetl8’; % Network employed

5.2.1 Training options

Standard training options and layer graph for a DeepLab v3+ semantic segmentation
network are specified in the code below, and the network training begins by selecting the
training data, options, and layer graph. Finally the network is inspected and stored.

options = trainingOptions(’sgdm’,
’InitiallLearnRate’,le-4,
’MaxEpochs”’, 30,
’MiniBatchSize’,6,
>Shuffle’,’every-epoch’,
’VerboseFrequency’, 10,
’Plots’,’training-progress’,

’ExecutionEnvironment’, ’auto?);

lgraph = deeplabv3plusLayers([540 960 3],5,’resnet18’);

[net, info] = trainNetwork(trainingData, lgraph, options);
class(net)

save("TrainedNetworkT1.mat", "net","info");

5.3 Segmentation mask via DeepLab v3+

The methodology followed in this project was inspired by the practical Matlab exam-
ple [57], developed in collaboration with the University of Cambridge. The script was
adapted to meet the specific requirements and conditions of this study. This section
provides a detailed step-by-step explanation of the modified version. The complete,
unabridged code can be found in Appendix D.

Class & Colormap Definitions

Defines the list of semantic classes, their corresponding integer identifiers, and the RGB
category color map used during training and visualization.

function classes = getClassNames()

classes =

[
"PoolBackground"
"BlackCilinder"
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"SilverCilinder"
"Wooden Piece"
"Granite"

1;

end

function labellDs = camvidPixelLabelIDs()

labelIDs =

{
[160 196 189], % PoolBackground
[141 195 141], % BlackCilinder
[199 187 116], % SilverCilinder
[165 92 174], Y% Wooden Piece
[197 197 197] % Granite

s

end

function cmap = camvidColorMap()
cmap =
[160 196 189;
141 195 141;
199 187 116;
165 92 174;
197 197 1971 / 255;
end

Data Loading & Visualization

The code snippet below performs the loading of synthetic raw images along with their
corresponding segmentation masks. It then displays a sample image overlaid with its
ground truth mask, and concludes by calculating the number of pixels per class and
plotting their frequency distribution.

classes = getClassNames();

labelIDs = camvidPixelLabelIDs();

cmap = camvidColorMap() ;

imgDir = fullfile(outputFolder, "images");
imds = imageDatastore(imgDir);

pxds = pixellLabelDatastore(...

fullfile(outputFolder, "labels"),...
classes, labellDs);
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% Example display

I = histeq(readimage(imds,25));
C = readimage(pxds,25);
B = labeloverlay(I, C, ColorMap=cmap);

imshow(B); pixelLabelColorbar(cmap,classes);

% Pixel counts & bar chart

tbl = countEachLabel (pxds);

frequency = tbl.PixelCount / sum(tbl.PixelCount);
bar (1:numel(classes), frequency);
xticklabels(tbl.Name); xtickangle(45);

ylabel ("Frequency") ;

Train/Val/Test Split & Augmentation

The algorithm below performs the following operation, the database is divided into train-
ing, validation, and testing. It generates the variable datastores where the sets for each
training are grouped and the images are slightly modified by applying random reflection
and translation to augment the training set.Only the main structure is preserved, to view
the rest of the code go to appendix D.

[imdsTrain, imdsVal, imdsTest, pxdsTrain, pxdsVal, pxdsTest] = ...
partitionCamVidData(imds, pxds);

dsTrain = combine(imdsTrain, pxdsTrain);
dsVal

combine (imdsVal, pxdsVal);

/» Augmentation settings
xTrans = [-10 10]; yTrans = [-10 10];

dsTrain = transform(dsTrain, @(data)augmentImageAndLabel(data,xTrans,yTrans));

Network Creation & Class Weighting

The DeepLab v3+ network architecture is constructed using ResNet-18 as its backbone.
Additionally, the class imbalance present in the dataset is analyzed. To address this is-
sue, class weights are computed and incorporated into the custom loss function during
training, ensuring that the network learns in a balanced way and does not become biased
toward the most frequently occurring classes.

[960 540 3];
numClasses = numel (classes);

imageSize

network = deeplabv3plus(imageSize, numClasses, "resnetl18");
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% Compute class weights
tbl = countEachLabel (pxds) ;
imageFreq = tbl.PixelCount ./ tbl.ImagePixelCount;

classWeights = median(imageFreq) ./ imageFreq;

Training Options & Execution

The script presented here is responsible for configuring the training options and execut-
ing the training process if required.

options = trainingOptions("sgdm",
LearnRateSchedule="piecewise",
LearnRateDropPeriod=6,
LearnRateDropFactor=0.1,
Momentum=0.9,
InitialLearnRate=1e-2,
L2Regularization=0.005,
ValidationData=dsVal,
MaxEpochs=18,
MiniBatchSize=4,
Shuffle="every-epoch",
CheckpointPath=tempdir,
ValidationPatience=4);

doTraining = false; % set to true for training
if doTraining
[net, info] = trainNetwork(dsTrain, network, ...@(Y,T) modelLoss(Y,T,classWeights),
options);

end

Evaluation on Test Image

The pretrained network is loaded. It performs semantic segmentation on one test image
and overlays the prediction vs. the ground truth. Finally, it computes the Intersection
over Union (IoU), which returns a bounded value between 0 and 1, indicating how close
the prediction is to the ground truth.

load(’TrainNetworkT1.mat’,’net’);

Itest = readimage(imdsTest,1);

Cpred semanticseg(Itest, net, Classes=classes);
% Overlay & colorbar
Bpred = labeloverlay(Itest, Cpred, Colormap=cmap, Transparency=0.4);

imshow(Bpred); pixelLabelColorbar(cmap, classes);
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% Compute IoU
expected = readimage(pxdsTest,1);
iou = jaccard(Cpred, expected);

table(classes, iou)

Batch Evaluation & Experimental Data Test

This code computes the segmentation on all images obtained after the experimental tests
in the laboratory and calculates the general metrics. It applies the trained network to
these images, generating the segmentation mask prediction with the RGB colors assigned
to each class.

% Bulk test

pxdsResults = semanticseg(imdsTest, net,
Classes=classes, MiniBatchSize=4,
WriteLocation=tempdir, Verbose=false);

metrics = evaluateSemanticSegmentation(pxdsResults, pxdsTest);

% Experimental data
I_test imread(fullfile(testImgDir, testFile));
GT_test = imread(fullfile(testMaskDir, testFile));
% Convert RGB mask - categorical indices if needed
if ndims(GT_test)==3

GT_label = rgb2label(GT_test, cmap, classes);
else

GT_label = categorical (GT_test, 1:numel(classes), classes);
end
C_test = semanticseg(I_test, net, Classes=classes);
% Display & IoU
figure;
subplot(1,2,1); imshow(labeloverlay(I_test, C_test, Colormap=cmap));
title(’Prediction?’);
subplot(1,2,2); imshow(labeloverlay(I_test, GT_label, Colormap=cmap));
title(’Ground Truth’);
iou_test = jaccard(C_test, GT_label);
table(classes(:), iou_test(:), ’VariableNames’,{’Class’,’IoU’})
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Results

The chapter is structured to present, in a systematic manner, the outcomes of training

CNN under different turbidity scenarios. As outlined in the project’s objectives, the aim

is to evaluate the impact of turbidity on the model’s ability to perform accurate predic-

tions. Each section corresponds to a specific dataset condition. Chapter 7 provides a

critical evaluation of the results obtained, examining the performance of each CNN un-

der different turbidity conditions.

No water conditions: The net is trained under the premise of The network is
trained under the premise that the environment does not have water, parameters
such as turbidity, water depth, scattering, etc. are not present and therefore the
network learns to identify the most relevant characteristics of each object.

Low Turbidity: The second case taken deals with an environment with low turbid-
ity conditions, the properties of water have a slight impact on the visualization of
objects.

Moderate Turbidity: To train this network, synthetic data from cases 2 and 3 were
combined, as they did not show significant changes. The performance of the neural
network is analyzed under moderate to high turbidity conditions.

High Turbidity: Images with a high turbidity content are used; the light absorption
and scattering values are high, therefore the visibility is very low, making it difficult
to identify objects in the designed synthetic images.

Data Fusion: All the generated data, over 1,800 rendered images and their corre-
sponding segmentation masks, are used to train this network. The network utilizes
not only the different degrees of turbidity, but also variations in water color and
light.

It is worth mentioning that each synthetic database has 330 images, so this is the number

of photos used except for the case of moderate turbidity which has 660 photos. Regard-

ing the results presented, the structure will be identical for each subsection, facilitating

network comparisons with the results obtained. The structure is:

Counting the number of pixels and their distribution graphs.
Precision and loss graph for synthetic data.

Randomly display the predictions made for a chosen synthetic image
Compare the network’s predictions to the ground truth images.

Visualize the intersection over union for the selected synthetic data.
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* Evaluate the trained network using the metrics commands.

¢ Show the predictions made for the images taken in the laboratory during the exper-
iments. Display the metrics for each real-world image. In this chapter, due to the
extension of the results, one picture from the experimental phase is shown, the rest
are in appendix E.

6.1 No-Water Model

Pixel Count & Distribution

As shown in Table 6.1 and Figure 6.1, the pixel distribution in the No-Water training
dataset is heavily imbalanced, with over 80% of all annotated pixels corresponding to the
pool’s background. In contrast, the remaining object classes particularly the black cylin-
der are significantly underrepresented, which may introduce class bias during training.

Name Pixel Count Image Pixel Count
Pool’s Background  147.006.706 180.921.600
Black Cilinder 4.005.385 155.520.000
Silver Cilinder 12.854.311 148.780.800
Wooden Piece 7.968.856 163.296.000
Granite Cobblestone 9.086.342 166.924.800

Table 6.1: Number of pixels in No-Water Model

Frequency

Figure 6.1: Distribution graph for No-Water Model

57



6. Results

Synthetic Data: Accuracy & Loss Curves

The No-Water model exhibits rapid convergence, reaching approximately 90% accuracy
within the first 200 iterations. Both accuracy and loss curves stabilize early, indicating
effective learning in clear conditions.
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Figure 6.2: Accuracy graph - No Water Network
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Figure 6.3: Loss curve - No Water Network

Sample Synthetic Prediction

Figure 6.4 is a combination of synthetic photography, truth ground, prediction, and sub-
traction between prediction and actual values (ground truth). The results of this example
image are quite accurate as figure 6.4d reflects. Chapter 7.1.3 explains how to interpret
the color range obtained in the fourth image (6.4d) which is acomparison of prediction
and ground truth.
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(a) Original and synthetic image (b) Ground truth segmentation mask

(c) Network prediction (d) Prediction error vs ground truth

Figure 6.4: Visual comparison of segmentation results for the No-Water Model

Intersection-over-Union Analysis

The IoU results presented in Table 6.2 indicate consistently high performance across all
classes, with particularly strong accuracy in segmenting the pool’s background and the
silver (aluminum) cylinder

Class IoU

Pool’s Background  0.9911

Black Cilinder 0.8699
Silver Cilinder 0.9545
Wooden Piece 0.8971

Granite Cobblestone 0.8766

Table 6.2: IoU per class in random sample No-Water Model

Overall Network Metrics

The evaluation metrics summarized in Tables 6.3 and 6.4 provide a comprehensive overview
of the network’s segmentation performance. Globally, the model achieves a high over-
all accuracy of 97.96% and a weighted IoU of 0.9610. Per-class analysis further confirms
consistent performance across all categories, with the pool’s background and granite cob-
blestone showing the highest values for IoU and boundary precision.
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Figure 6.5: Predictions for Baseline experimental images in No-Water Model

Metrics GlobalAccuracy MeanAccuracy MeanloU WeightedloU MeanBFScore

Values 0.9796 0.9260 0.8853 0.9610 0.8354

Table 6.3: Global model metrics across the entire dataset in No-Water Model

Clase Accuracy IoU  MeanBFScore
Pool’s Background 0.9937  0.9824 0.9280
Black Cilinder 0.8547  0.8093 0.7892
Silver Cilinder 09312  0.8626 0.7761
Wooden Piece 0.9003  0.8568 0.7722
Granite Cobblestone ~ 0.9503  0.9154 0.8829

Table 6.4: Metrics per class: Accuracy, IoU y Mean Boundary F1 Score

Real-World Image Predictions

The predictions on real-world experimental images are illustrated in Figure 6.5, with
Table 6.5 reporting the corresponding Intersection over Union (IoU) scores. Although the
network demonstrates moderate success in identifying the pool’s background and the
black cylinder, the overall IoU average remains low (0.4556), highlighting the challenge
of generalizing from synthetic to real data under complex underwater conditions.

Class IoU

Pool’s Background  0.77153

Black Cilinder 0.46452
Silver Cilinder 0.22118
Wooden Piece 0.44961

Granite Cobblestone 0.37868

Table 6.5: IoU values per class for the current experiment, IOU average of classes: 0.4556
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6.2 Low-Turbidity Model

Pixel Count & Distribution

In the Low-Turbidity dataset (Table 6.6 and Figure 6.6), the pixel count remains highly
imbalanced. The pool background dominates the dataset, representing approximately
80% of the total pixel annotations. Other classes, such as the black cylinder and wooden
piece, are underrepresented, which may hinder the network’s ability to generalize effec-
tively across all object categories.

Class PixelCount ImagePixelCount
PoolBackground 128113141 158 630400
BlackCilinder 3677917 138412800
SilverCilinder 12494 623 141523200
Wooden Piece 5744256 138412800
Granite 8600463 147744000

Table 6.6: Number of pixels in Low-Turbidity Model

Frequency

Figure 6.6: Distribution graph for Low-Turbidity Model

Synthetic Data: Accuracy & Loss Curves

The Low-Turbidity model reaches approximately 87% accuracy, with performance stabi-
lizing after 200 iterations. The loss curve shows a gradual decline, indicating consistent
training despite the slight presence of turbidity.
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Figure 6.7: Accuracy graph - Low-Turbidity Network

Loss

| | | | | | | | |
0
0 100 200 300 400 500 600 700 800 900
Iteration

Figure 6.8: Loss curve - Low-Turbidity Network

Sample Synthetic Prediction

The composition 6.24b shows the network performance in the sample image and the
difference between the predicted and ground truth, results are slightly inaccurate.
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(b) Ground truth segmentation mask

| I Wooden Piece

SilverCilinder
BlackGilinder

PoolBackgrount

(c) Network prediction (All Data Model) (d) Prediction error vs ground truth

Figure 6.9: Visual comparison of segmentation results for the Low-Turbidity Network.

Intersection-over-Union Analysis

Table 6.7 displays the per-class Intersection over Union (IoU) results for a second real-
world experimental test. Notably, the Pool Background class again achieved the high-
est IoU score (0.9488), indicating consistent performance across experiments. However,
other classes such as the Black Cilinder and Silver Cilinder registered much lower scores,
highlighting continued challenges in segmenting these objects under real underwater

conditions.

Class IoU

PoolBackground 0.9488
BlackCilinder 0.1101
SilverCilinder 0.2521
Wooden Piece 0.3430
Granite 0.5787

Table 6.7: IoU per class in random sample Low-Turbidity Model

Overall Network Metrics

Table 6.8 presents the global metrics obtained for the entire dataset in this test. Although
the Global Accuracy remained high (0.8858), the Mean Accuracy (0.5176) and Mean IoU
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(0.4307) reflect considerable imbalance in class-wise performance, as also indicated by
the low MeanBFScore (0.3377).

Table6.9 presents detailed per-class performance metrics for the third real-world exper-
iment. While the PoolBackground class maintained a high accuracy (0.9858) and IoU
(0.9138), indicating reliable segmentation, the rest of the classes showed significantly
lower performance. The Wooden Piece, in particular, displayed the weakest results across
all metrics, with an accuracy of just 0.1460 and a MeanBFScore of 0.1200. These findings
confirm that the segmentation network struggles to generalize effectively for certain ob-
ject classes under real-world conditions.

GlobalAccuracy MeanAccuracy MeanloU WeightedloU MeanBFScore

Overall 0.8858 0.5176 0.4307 0.8075 0.3377

Table 6.8: Dataset-level metrics for the current experiment in Low-Turbidity Model

Class Accuracy IoU  MeanBFScore
PoolBackground  0.9858  0.9138 0.6942
BlackCilinder 0.2365  0.2220 0.2557
SilverCilinder 0.4687  0.3586 0.2428
Wooden Piece 0.1460  0.1232 0.1200
Granite 0.7509  0.5359 0.3078

Table 6.9: Intersection over Union (IoU), Accuracy and Mean Boundary F1 Score per class for the current
experiment.

Real-World Image Predictions

Table 6.10 summarizes the per-class IoU scores obtained when evaluating the network
trained with low-turbidity synthetic data. The Pool Background class achieves the high-
est intersection-over-union (0.84364), indicating a reliable prediction. However, all object
classes exhibit substantially lower IoU values, with scores around or below 0.25. These
results suggest that despite the model performing well on background segmentation, it
struggles to accurately detect and segment smaller foreground objects under low turbid-
ity conditions.
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Figure 6.10: Predictions for Baseline experimental images using Low-Turbidity Model

Class IoU

PoolBackground 0.84364
BlackCilinder 0.17000
SilverCilinder 0.17038
Wooden Piece 0.19465
Granite 0.24670

Table 6.10: Per-class Intersection over Union (IoU) for a test image

6.3 Medium-Turbidity Model

Pixel Count & Distribution

As illustrated in Table 6.11 and Figure 6.11, the Medium-Turbidity dataset shows a more

balanced pixel distribution compared to previous models. Although the pool background

still constitutes the largest proportion of annotations, the other object classes—particularly
silver cylinders and granite cobblestones—present significantly higher pixel counts. This

improved distribution may offer the network a more diversified training set, potentially

enhancing generalization across multiple object categories.

Class PixelCount ImagePixelCount
PoolBackground 27859384 342144000
BlackCilinder 7 668 860 283046 400
SilverCilinder 25493253 291340800
Wooden Piece 13097387 300153 600
Granite Cobblestone 17290 656 317260800

Table 6.11: Number of pixels in Medium-Turbidity Model
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Figure 6.11: Distribution graph for Medium-Turbidity Model

Synthetic Data: Accuracy & Loss Curves

The Medium-Turbidity model achieves an accuracy close to 91%, with convergence reached

after approximately 300 iterations. The loss steadily decreases, indicating effective learn-
ing despite the increased turbidity in the training dataset.
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Figure 6.13: Loss curve - Medium-Turbidity Model
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Sample Synthetic Prediction

In the medium turbidity scenario, the model shows a tendency to overpredict dominant
classes such as Pool Background and Silver Cylinder (aluminum), while significantly un-
derperforming in detecting less represented classes like the Wooden Piece or Granite. The
error map highlights frequent false positives and omissions, suggesting that the reduced
visibility introduced by turbidity hinders the network’s ability to generalize to all object

types equally.
(a) Original and synthetic image (b) Ground truth segmentation mask
(c) Network prediction (All Data Model) (d) Prediction error vs ground truth

Figure 6.14: Visual comparison of segmentation results for the Medium-Turbidity Model

Intersection-over-Union Analysis

The medium turbidity model performed well in identifying the pool background and
granite, but showed poor detection for the wooden piece and black cylinder.

Class IoU

PoolBackground 0.9614
BlackCilinder 0.0700
SilverCilinder 0.4834
Wooden Piece 0.0017

Granite Cobblestone 0.5415

Table 6.12: Intersection over Union (IoU) per class in the Medium-Turbidity Model
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Overall Network Metrics

The medium turbidity network achieved solid global accuracy, with particularly strong
performance on the pool background and granite classes, while struggling to consistently
segment smaller elements like the wooden and black cylinders.

GlobalAccuracy MeanAccuracy MeanloU WeightedloU MeanBFScore

0.9148 0.6442 0.5641 0.8490 0.4577

Table 6.13: Global performance metrics for the Medium-Turbidity Model

Class Accuracy IoU  MeanBFScore
PoolBackground 0.9833  0.9253 0.7372
BlackCilinder 0.3746  0.3026 0.3297
SilverCilinder 0.7144  0.5914 0.3828
Wooden Piece 0.3157  0.2861 0.2348
Granite Cobblestone  0.8328  0.7152 0.4983

Table 6.14: Per-class performance metrics in the Medium-Turbidity Model

Real-World Image Predictions

Under medium turbidity conditions, the network maintained reasonable accuracy on
background segmentation, but exhibited notably poor performance across all object classes,
particularly for silver and wooden components.

Figure 6.15: Predictions for Baseline experimental images using Medium-Turbidity Model
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Class IoU

PoolBackground 0.7468
BlackCilinder 0.0504
SilverCilinder 0.0062
Wooden Piece 0.0040
Granite 0.2278

Table 6.15: IoU for a test image under Medium-Turbidity

6.4 High-Turbidity Model

In the High-Turbidity dataset, pool background pixels dominate the distribution. The
other classes remain significantly underrepresented, mirroring previous patterns of im-
balance.

Pixel Count & Distribution

Class PixelCount ImagePixelCount
PoolBackground 142848171 174700800
BlackCilinder 3866263 136 857 600
SilverCilinder 12986 130 147 744 000
Wooden Piece 6315440 151372 800
Granite Cobblestone 8684796 161740800

Table 6.16: Number of pixels in High-Turbidity Model
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Figure 6.16: Distribution graph for High-Turbidity Model

Synthetic Data: Accuracy & Loss Curves

The High-Turbidity model reaches an accuracy of approximately 86% with slower con-
vergence compared to previous cases. The loss curve remains relatively high, suggesting
challenges in learning under severe visibility degradation.
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Figure 6.17: Accuracy graph - High-Turbidity Model

Loss

0 100 200 300 400 500 600 700 800 900 1000
lteration

Figure 6.18: Loss curve - High-Turbidity Model
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Sample Synthetic Prediction

In high turbidity conditions, segmentation accuracy significantly declined, particularly
for non-background classes, with notable confusion between similarly shaped objects
and frequent overprediction artifacts.

(a) Original synthetic image (b) Ground truth segmentation mask

Siver Cilinder

Black Cilinder

(c) Network prediction (d) Prediction error vs ground truth

Figure 6.19: Visual comparison of segmentation results for the High-Turbidity Model

Intersection-over-Union Analysis

The absence of the black cylinder in the image justifies the IoU value of 0.0000. The
background and granite cobblestone classes achieved high scores, while the remaining
objects were either poorly segmented or largely omitted.

Class IoU

PoolBackground 0.8650

BlackCilinder 0.0000
SilverCilinder 0.1384
Wooden Piece 0.0285

Granite Cobblestone 0.7706

Table 6.17: IoU for each class in the High-Turbidity Model
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Overall Network Metrics

The segmentation model trained on the high-turbidity dataset exhibits strong perfor-
mance for the background and granite classes, while the remaining objects—especially
the black cylinder and wooden piece—show significantly lower accuracy and boundary
scores, indicating difficulty in feature extraction under poor visibility.

GlobalAccuracy MeanAccuracy MeanloU WeightedloU MeanBFScore

0.8757 0.4475 0.3773 0.7865 0.3026

Table 6.18: Global performance metrics of the segmentation model

Class Accuracy IoU MeanBFScore
PoolBackground 0.9848  0.8943 0.6417
BlackCilinder 0.1027  0.0920 0.1206
SilverCilinder 0.3346  0.2469 0.1831
Wooden Piece 0.0605  0.0574 0.1164
Granite Cobblestone  0.7547  0.5961 0.3369

Table 6.19: Per-class performance metrics of the segmentation model

Real-World Image Predictions

Under high turbidity conditions, the network struggled to accurately identify most ob-
jects, with the exception of the background class, which still retained a moderate IoU
score.

Figure 6.20: Predictions for Baseline experimental images using High-Turbidity Model

6.5 Full Dataset Model

Pixel Count & Distribution

The All-Images network exhibits a strong class imbalance, with the pool background
dominating the dataset, which may bias the training process toward this majority class.
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Class PixelCount ImagePixelCount
PoolBackground 76419542 949190400
BlackCilinder 20341832 809 222 400
SilverCilinder 74675106 832550400
Wooden Piece 41894708 853 286 400
Granite Cobblestone 48 083 332 884908 800

Table 6.20: Number of pixels in the Full Dataset Model

Frequency

Figure 6.21: Distribution graph for Full Dataset Model

Synthetic Data: Accuracy & Loss Curves

The All-Images Network achieved the highest accuracy, reaching approximately 92%,
with a smooth and stable learning curve. The loss steadily decreased, indicating consis-

tent convergence despite the greater data variability.
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Figure 6.22: Accuracy graph - Full Dataset Model
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Figure 6.23: Loss curve - Full Dataset Model

Sample Synthetic Prediction

The prediction for the Full-Dataset Model shows reasonable segmentation performance,
although misclassification around object boundaries is evident, especially between the
silver and black cylinders.
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(a) Original synthetic image (b) Ground truth segmentation mask

(c) Network prediction (d) Prediction error vs ground truth

Figure 6.24: Visual comparison of segmentation results for the Full Dataset Model

Intersection-over-Union Analysis

The Full Dataset Model shows good segmentation, identifies the classes presented in the

picture.
Class IoU
PoolBackground 0.9363
BlackCilinder 0.6739
SilverCilinder 0.7182
Wooden Piece 0.0000

Granite Cobblestone 0.0000

Table 6.21: Intersection over Union (IoU) for each class in the Full Dataset Model

Overall Network Metrics

The Full Dataset Model demonstrates the most balanced performance across all classes,
achieving both high global accuracy and strong per-class IoU scores, particularly for
PoolBackground, Granite, and SilverCylinder.
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GlobalAccuracy MeanAccuracy MeanloU WeightedloU MeanBFScore

0.9241 0.7150 0.6259

0.8670

0.4975

Table 6.22: Global performance metrics of the Full Dataset Model

Class Accuracy IoU  MeanBFScore
PoolBackground 0.9811  0.9372 0.7644
BlackCilinder 04208  0.3465 0.3713
SilverCilinder 0.7399  0.5986 0.4213
Wooden Piece 0.6113  0.5182 0.3184
Granite Cobblestone ~ 0.8220  0.7292 0.5307

Table 6.23: Per-class performance metrics of the Full Dataset Model

Real-World Image Predictions

The All-Data Network performs consistently well across all objects in the selected real-
world test image, with the background and wooden piece achieving the highest IoU val-

ues.

Figure 6.25: Predictions for Baseline experimental images using Full Dataset Model

Class IoU

PoolBackground 0.87337
BlackCilinder 0.31697
SilverCilinder 0.23102
Wooden Piece 0.50075
Granite Cobblestone 0.38605

Table 6.24: Per-class Intersection over Union (IoU) on a single test image
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7 Discussion

This chapter presents an analysis of the results obtained and discusses the influence of
varying turbidity levels on the training performance of the neural networks.

7.1 Comparison between neural networks

7.1.1 Pixel distribution

Regarding the pixel distribution across classes (figures 6.1, 6.6, 6.11 , 6.16 and 6.21), it is
evident that the dataset is imbalanced. The pool background appears by far the most fre-
quently, followed by the aluminum pipe. Although this may initially seem insignificant,
it becomes highly relevant when analyzing prediction errors. As will be discussed later,
the networks tend to over predict the most frequent classes in the dataset, particularly
these two, while failing to correctly identify others. In contrast, classes with fewer visible
pixels—such as the granite block and the black cylinder are significantly less likely to be
recognized in the real-world test images.

7.1.2 Accuracy and loss curves

The accuracy and loss graphs obtained during training, were generated exclusively from
synthetic data. These results are summarized in Table 7.1. Figure 6.2, 6.7, 6.12, 6.17 and
Figure 6.22 illustrate the training accuracy curves for each dataset. Two main trends can
be observed:

On one hand, there is a pattern between the number of training images and model
performance-datasets with more samples lead to higher accuracy and lower loss. For
example, although the Medium Turbidity and High Turbidity models are trained un-
der more challenging visual conditions due to increased scattering, the model trained on
Medium Turbidity images achieves 91% accuracy, outperforming Low Turbidity, which
reaches only 87%. This might be attributed to the Medium Turbidity dataset containing
nearly twice as many training images as the Low Turbidity dataset.

On the other hand, training under turbid conditions does not necessarily result in im-
proved performance on similarly turbid images. In fact, as turbidity increases, model
accuracy tends to decline, as seen in the High Turbidity network, which achieved the
lowest accuracy (86%) among all models.

Finally, the All Data model-trained on the complete dataset spanning all turbidity levels
achieved the best results overall, with the highest accuracy (92%) and lowest loss (0.24).
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This indicates that a diversified training set helps the network generalize better across
varying underwater conditions.

Model Type Accuracy [%] Loss
No Water 90 04
Low Turbidity 87 0.45
Medium Turbidity 91 0.38
High Turbidity 86 0.5
All Data 92 0.24

Table 7.1: Accuracy and loss values obtained from training with each dataset

7.1.3 Comparison Between Predicted and Ground Truth Masks

To qualitatively evaluate the model performance, a composite image was generated by
overlapping the predicted segmentation mask with the ground truth mask. This results
are ilustrated in 6.4, 6.9 , 6.14 , 6.19 and 6.24. Each pixel in the image is assigned a color
based on the agreement or disagreement between the predicted and true label, allowing
for intuitive visual interpretation of the model’s errors and successes.

The color scheme follows a false-color convention, where specific hues and intensities
represent different semantic relationships between the two masks. These include cor-
rect matches, false positives, and false negatives. In addition, color intensity encodes the
relative class value, with lighter tones indicating higher classes.Table ?? summarizes the
visual meaning of each color and its interpretation:

The color-coded output obtained when comparing predicted segmentation masks with
ground truth annotations visually highlights the agreement or disagreement between
them. Below is the explanation of each color and its meaning:

* Black: Represents background pixels correctly classified as background in both the
predicted and ground truth masks.

¢ Dark to Light Gray: Indicates pixels that belong to the same object class in both
masks. Lighter shades represent higher class indices.

* Green: Marks pixels that are labeled as belonging to an object class in the ground
truth but were not identified by the model. This is a false negative.

* Green shades (Green scale): The brighter the green, the higher the class index
that was missed. This helps to assess which specific classes are more frequently
overlooked.

* Magenta: Highlights pixels that the model predicted as an object class, but which
are not actually present in the ground truth. This is a false positive.
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* Magenta shades (Magenta scale): Brighter shades of magenta indicate overpredic-
tions of higher class indices. This reveals which false classes are being incorrectly
predicted.

* White: Indicates a perfect match for higher-index classes, meaning the object was
correctly identified at a detailed class level.

This visualization serves as an essential diagnostic tool for understanding which objects
or regions are more prone to misclassification, and whether the model tends to underpre-
dict or overpredict certain classes. It also highlights class imbalance effects and segmen-
tation difficulties, especially in cases involving visually similar or low-contrast objects.

7.1.4 Intersection-over-Union Analysis

This metric was used selectively to assess the prediction quality on specific test images.
Intersection-over-Union (IoU) quantifies the overlap between the predicted segmentation
and the ground truth for a given class. It is defined as the ratio between the number of
correctly predicted pixels for a particular class (intersection) and the total number of pix-
els belonging to that class in either the prediction or the ground truth (union). Therefore,
the higher the IoU value, the more accurate the prediction for that class in the analyzed
image. The IoU is not a valid tool to represent the overall performance of a network if it
is not used for the entire set of images.

7.1.5 Metrics

Figures 6.3, 6.8, 6.13, 6.18 and 6.22 support the findings discussed in subsection 7.1.2.
Global accuracy is higher when the dataset contains lower turbidity levels. Even though
the number of training samples also has a significant impact on performance. The data
suggest that increasing the dataset size may not enhance accuracy as effectively as train-
ing under clear water conditions.

7.1.6 Prediction on the real images

Overall, when evaluating all the predicted images, the results are considerably poor. The
best predictions were achieved by the model trained on the dataset without turbidity. As
turbidity increases, a clear decline in prediction accuracy can be observed.

There are some studies that have investigated object detection under foggy conditions.
The YOLOv8x model was evaluated on the basis of its performance in various fog densi-
ties by Faiz et al. [60]. They found that its performance declined as fog density increased,
which aligns with the project finding that the lower the turbidity, the higher the detec-
tion accuracy. Additionally, they noted that the results were more reliable as the dataset’s
diversity increased. This supports the observation expressed in section 7.1.2 that a larger
number of training samples improves accuracy. Zhang and Jia [61] proposed HR-YOLO,
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an improved detection model designed specifically for foggy environments. According
to their findings, the accuracy of detection can be enhanced by enhancing the quality of
the image. The absence of turbidity has a more significant impact on the accuracy than
the number of training images, which is consistent with the analysis of the carried ex-
periments during this project. Lastly, Chu et al. [60] introduced D-YOLO, a dual-path
detection network that integrates both hazy and dehazed features through an attention-
based fusion module. This discovery reflects the ideas expressed in this study, as models
developed on clarity-free datasets notably outperformed those built on unclear data, re-
gardless of sample quantity.

7.2 Impact of turbidity on training

The model trained with the complete dataset appears to suffer from overfitting. Regard-
ing the impact of turbidity, as previously discussed in Section 7.1.3, there is evidence to
suggest that turbidity negatively affects the performance of the network.

In terms of the training process, notable differences were observed in the training times
required for each network. Specifically, the models trained on the moderate turbidity
dataset and the full dataset required significantly more time to complete training. This
may be attributed to differences in dataset composition or size.

For the other models, a trend was observed in which higher turbidity levels made the
training process more challenging, suggesting that increasing turbidity complicates fea-
ture extraction and convergence during learning.
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8 Conclusion

Regarding the objective of the network’s performance evaluation, as outlined in the mo-
tivation of the project (see Section 1.3), this goal has been successfully achieved. A con-
volutional neural network (CNN) was trained under various predefined turbidity levels,
and its performance was critically assessed in Chapter 7 through a structured analysis.

A clear trend was observed: training the network under clear water conditions—i.e.,
in the absence of turbidity—enables better feature extraction, leading to more accurate
object identification. This advantage remains even when the model is later exposed to
scenes with reduced visibility, where object features are partially obscured by suspended
particles.

When tested on synthetic data, all trained models demonstrated strong performance,
achieving high accuracy in identifying objects within simulated underwater scenes. How-
ever, a significant drop in accuracy was noted when these models were applied to real-
world images with varying turbidity levels. The underlying reasons for this degradation
are further discussed in Section 7.

Despite this limitation, synthetic imagery proves to be a viable and scalable alternative
for training segmentation models in scenarios where annotated real-world data is scarce.
With proper refinement, this approach can effectively support underwater perception
tasks in visually challenging environments.

A primary constraint of the study was the limited availability of time and computational
resources, which restricted the exploration of alternative network architectures that could
potentially enhance model performance.
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9 FutureWork

This chapter outlines several recommendations and directions that could be explored to
further develop and improve the project.

If the work is continued, one of the first steps would be to experiment with different
training configurations. This could involve adjusting parameters such as the maximum
number of epochs, the minibatch size, or particularly modifying the class weight balanc-
ing strategies. Exploring these adjustments may lead to better convergence and more
balanced prediction results across classes.

A more in-depth analysis of class-wise performance is also advisable. Tools such as Mat-
lab’s allScores function could be employed to gain insights into the contribution and
influence of each class on the final segmentation output. This type of analysis may help
identify dominant classes in each image and relate them to those used during training.
Furthermore, deliberate manual tuning of class weights could be implemented to mit-
igate the dominance of overrepresented classes—such as the pool background and the
aluminum pipe, which were the most frequent in the dataset. Rebalancing the weight
distribution might help the model better differentiate less-represented classes, such as
the black cylinder or granite blocks, and reduce bias toward background classification.

Another promising pathway would be to explore alternative neural network architec-
tures. Beginning with object detection models such as YOLO and its variants referenced
in Chapter 8 could provide a complementary approach to semantic segmentation, poten-
tially improving accuracy under varying visual conditions.

Regarding the synthetic data pipeline, improvements could be made by enhancing the
simulation of underwater conditions. Investigating more advanced material and light
interaction models would contribute to generating more realistic underwater imagery.
Additionally, performing new absorbance measurements using quartz cuvettes (which
are more suitable for low-wavelength light) could reveal whether optical properties of
water samples significantly influence network training or image realism.

Lastly, if a shift in the methodology is considered, alternative sensing techniques such
as sonar could be tested. Sonar systems are less affected by water turbidity and might
provide more robust object detection in challenging underwater environments. Similarly,
the use of hyperspectral cameras could be explored to determine whether they can extract
additional spectral features that enhance object classification capabilities in low-visibility
conditions.
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Image Input

2-D Convolution
Batch Norm
ReLU

2-D Max Pooling
2-D Convolution
Batch Norm
ReLU

2-D Convolution
Batch Norm
Addition

RelLU

224x224x3x1
112x112x64x1
112x112x64x1
112x112x64x1
56x56x64x1
56x56x64x1
56x56x64x1
56x56x64x1
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56x56x64x1
56x56x64x1

weights: 7x7x3x64; bias: 1x1x64

scale, offset: 1x1x64 each

weights: 3x3x64x64; bias: 1x1x64

scale, offset: 1x1x64 each

weights: 3x3x64x64; bias: 1x1x64

scale, offset: 1x1x64 each
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(Continued from previous page)

No. Layer name Type Activations Learnable parameters

13 res2b_branch2a 2-D Convolution 56x56x64x1 weights: 3x3x64x64; bias: 1x1x64

14  bn2b_branch2a Batch Norm 56x56x64x1 scale, offset: 1x1x64 each

15 res2b_branch2a_relu ReLU 56x56x64x1 —

16  res2b_branch2b 2-D Convolution 56x56x64x1 weights: 3x3x64x64; bias: 1x1x64

17  bn2b_branch2b Batch Norm 56x56x64x1 scale, offset: 1x1x64 each

18  res2b Addition 56x56x64x1 —

19  res2b_relu ReLU 56x56x64x1 —

20 res3a_branch2a 2-D Convolution 28x28x128x1  weights: 3x3x64x128; bias: 1x1x128
21 bn3a_branch2a Batch Norm 28x28x128x1  scale, offset: 1x1x128 each

22 res3a_branch?a relu ReLU 28x28x128x1  —

23 res3a_branch2b 2-D Convolution 28x28x128x1  weights: 3x3x128x128; bias: 1x1x12:
24  bn3a_branch2b Batch Norm 28x28x128x1  scale, offset: 1x1x128 each

25 res3a_branchl 2-D Convolution 28x28x128x1  weights: 1x1x64x128; bias: 1x1x128
26  bn3a_branchl Batch Norm 28x28x128x1  scale, offset: 1x1x128 each

27  res3a Addition 28x28x128x1  —

28  res3a_relu ReLU 28x28x128x1  —

29 res3b_branch2a 2-D Convolution 28x28x128x1  weights: 3x3x128x128; bias: 1x1x12
30 bn3b_branch2a Batch Norm 28x28x128x1  scale, offset: 1x1x128 each

31  res3b_branch2a_relu ReLU 28x28x128x1  —

32 res3b_branch2b 2-D Convolution 28x28x128x1  weights: 3x3x128x128; bias: 1x1x12:
33  bn3b_branch2b Batch Norm 28x28x128x1  scale, offset: 1x1x128 each

34 res3b Addition 28%x28x128x1  —

35  res3b_relu ReLU 28x28x128x1  —

36 res4a_branch2a 2-D Convolution 14x14x256x1  weights: 3x3x128x256; bias: 1x1x25
37  bnda_branch2a Batch Norm 14x14x256x1  scale, offset: 1x1x256 each

38  resda_branch2a_relu ReLU 14x14x256x1  —

39 resda_branch2b 2-D Convolution 14x14x256x1  weights: 3x3x256x256; bias: 1x1x25
40  bn4a_branch2b Batch Norm 14x14x256x1  scale, offset: 1x1x256 each

41 resda_branchl 2-D Convolution 14x14x256x1  weights: 1x1x128x256; bias: 1x1x25¢
42  bnda_branchl Batch Norm 14x14x256x1  scale, offset: 1x1x256 each

43  resda Addition 14x14x256x1  —

44 resda_relu ReLU 14x14x256x1  —

(Continued on next pa;
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(Continued from previous page)

No. Layer name Type Activations Learnable parameters

45  res4b_branch2a 2-D Convolution 14x14x256x1  weights: 3x3x256x256; bias: 1x1x25¢
46  bn4b_branch2a Batch Norm 14x14x256x1  scale, offset: 1x1x256 each

47 resdb_branch2a_relu ReLU 14x14x256x1  —

48 res4b_branch2b 2-D Convolution 14x14x256x1  weights: 3x3x256x256; bias: 1x1x25
49 bn4b_branch2b Batch Norm 14x14x256x1  scale, offset: 1x1x256 each

50  resdb Addition 14x14x256x1  —

51  resdb_relu ReLU 14x14x256x1  —

52 resba_branch2a 2-D Convolution 7x7x512x1 weights: 3x3x256x512; bias: 1x1x51:
53  bnba_branch2a Batch Norm 7x7x512x1 scale, offset: 1x1x512 each

54  resba_branch2a_relu ReLU 7x7x512x1 —

55  resba_branch2b 2-D Convolution 7x7x512x1 weights: 3x3x512x512; bias: 1x1x51:
56  bnba_branch2b Batch Norm 7x7x512x1 scale, offset: 1x1x512 each

57 resba_branchl 2-D Convolution 7x7x512x1 weights: 1x1x256x512; bias: 1x1x51.:
58  bnba_branchl Batch Norm 7x7x512x1 scale, offset: 1x1x512 each

59  resba Addition 7x7x512x1 —

60  resba_relu ReLU 7x7x512x1 —

61 resbb_branch2a 2-D Convolution 7x7x512x1 weights: 3x3x512x512; bias: 1x1x51:
62  bnbb branch2a Batch Norm 7x7x512x1 scale, offset: 1x1x512 each

63  resbb_branch2a_relu ReLU 7x7x512x1 —

64  resbb_branch2b 2-D Convolution 7x7x512x1 weights: 3x3x512x512; bias: 1x1x51:
65  bnb5b_branch2b Batch Norm 7x7x512x1 scale, offset: 1x1x512 each

66  resbb Addition 7x7x512x1 —

67  resbb_relu ReLU 7x7x512x1 —

68  pool5 Global Avg Pooling  1x1x512x1 —

69  £c1000 Fully Connected 1x1x1000x1 weights: 1000x512; bias: 1000x1

70 prob Softmax 1x1x1000x1 —
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B Appendix - Segmentation Mask Genera-
tion

import bpy
import os

import math

def render_segmentacion_y_raw(output_dir, paisaje_objs, mats_paisaje,
matsegmentacion, cam_positions):
# Create the paths if don’t exist
mascara_dir = os.path.join(output_dir, "mascara_segmentacion")
raw_dir = os.path.join(output_dir, "raw_imagenes")
os.makedirs(mascara_dir, exist_ok=True)

os.makedirs(raw_dir, exist_ok=True)

scene = bpy.context.scene

cam = scene.camera

# Get the next frame number automatically
def get_next_index(folder):
existing = [f for f in os.listdir(folder) if f.endswith(".png")]
if not existing:
return 1
existing nums = [int(f.split(".")[0]) for f in existing if
f.split(".")[0].isdigit ()]

return max(existing nums) + 1 if existing_nums else 1
idx = get_next_index(mascara_dir)

for pos, rot in cam_positions:
frame_name = f"{idx:04d}"

Assign position and rotation to the camera
cam.location = pos

cam.rotation_euler = rot

#1 creates the Segmentation render
for obj in paisaje_objs:
obj.active_material = matsegmentacion
scene.render.filepath = os.path.join(mascara_dir, frame_name + ".png")

bpy.ops.render.render (write_still=True)
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#2 creates the original/raw images

for obj, mat in zip(paisaje_objs, mats_paisaje):
obj.active_material = mat

scene.render.filepath = os.path.join(raw_dir, frame_name + ".png")

bpy.ops.render.render (write_still=True)

idx += 1 # Aumenta el indice del nombre del archivo

# Sets the output folder
output_dir = r"C:\Users\mikio\Desktop\Pool"

# Sets the objects that will appear

paisaje_objs = [
bpy.data.objects["BlackCilinder"],
bpy.data.objects["SilverCilinder"],
bpy.data.objects["WoodenPiece""],
bpy.data.objects["GraniteCobblestonel"],
bpy.data.objects["GraniteCobblestone2"],
bpy.data.objects["GraniteCobblestone3"],
bpy.data.objects["PoolsBackground"],
bpy.data.objects["Water"]

]

# Sets the material to the objects

mats_paisaje = [
bpy.data.materials["mat11"],
bpy.data.materials["Frozen white metal"],
bpy.data.materials["Natural Pine Wood"],
bpy.data.materials["mat4"],
bpy.data.materials["mat4"],
bpy.data.materials["mat4"],
bpy.data.materials["PBackground"],
bpy.data.materials["WaterProp"]

]

# Sets the segmentation mask to the objects

matsegmentacion = bpy.data.materials["matsegmentacion"]

Define the positions XYZ and XYZ rotation in radians
cam_positions = [
([2.1876, -0.139, -0.13949],
[math.radians(85.15), math.radians(-2.686), math.radians(-633.03)]),
([2.1876, -0.56223, -0.13949],
[math.radians(85.15), math.radians(-2.686), math.radians(-642.61)]),
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([2.1876, -1.0051, -0.13949],

[math.radians(85.15), math.radians(-2.686), math.radians(-653.14)]),
([1.2814, -1.0051, -0.13949],

[math.radians(85.15), math.radians(-2.686), math.radians(-665.83)]),
([0.24339, -1.0051, -0.13949],

[math.radians(85.15), math.radians(-2.686), math.radians(-715.38)1),
([-0.71151, -1.0051, -0.13949],

[math.radians(85.15), math.radians(-2.686), math.radians(-766.87)]),
([-2.1785, -1.0051, -0.13949],

[math.radians(85.15), math.radians(-2.686), math.radians(-789.95)]),
([-2.1785, -0.62995, -0.13949],

[math.radians(85.712), math.radians(-2.7883), math.radians(-799.67)]),
([-2.1785, -0.12293, -0.13949],

[math.radians(85.712), math.radians(-2.7883), math.radians(-809.73)]1),
([-2.1785, 0.64807, -0.13949],

[math.radians(85.712), math.radians(-2.7883), math.radians(-826.21)]),
([-1.3023, 0.64807, -0.13949],

[math.radians(85.712), math.radians(-2.7883), math.radians(-831.83)]),
([-0.45946, 0.64807, -0.13949],

[math.radians(85.712), math.radians(-2.7883), math.radians(-857.93)]),
([0.78394, 0.64807, -0.13949],

[math.radians(85.712), math.radians(-2.7883), math.radians(-951.53)]),
([1.7773, 0.64807, -0.13949],

[math.radians(85.712), math.radians(-2.7883), math.radians(-968.4)]),
([1.7773, 0.64807, 0.24793],

[math.radians(73.534), math.radians(2.0628), math.radians(-968.32)]),
([1.7773, 0.19052, 0.24793],

[math.radians(73.534), math.radians(2.0628), math.radians(-980.51)]),
([1.7773, -0.3208, 0.020469],

[math.radians(79.728), math.radians(3.0444), math.radians(-998.87)]),
([1.6333, -0.77644, 0.020469],

[math.radians(79.728), math.radians(3.0444), math.radians(-1011.9)]),
([1.0748, -0.77644, 0.29043],

[math.radians(66.506), math.radians(-8.1847), math.radians(-1029.9)]),
([0.017811, -0.77644, 0.29043],

[math.radians(55.576), math.radians(-10.962), math.radians(-1093.5)]),
([-1.5262, -0.22958, 0.55828],

[math.radians(64.856), math.radians(0.8171), math.radians(-1165.5)]),
([-1.5262, 0.20207, 0.55828],

[math.radians(64.856), math.radians(0.8171), math.radians(-1176.3)]),
([-1.5262, -0.77644, 0.55828],

[math.radians(63.924), math.radians(-25.467), math.radians(-1138.8)]),
([-1.5262, 0.89005, 0.31416],
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[math.radians(74.138), math.radians(6.0765), math.radians(-1199.2)]),

([-0.82002, 0.89005, 0.31416],

[math.radians(66.398), math.radians(-2.1693), math.radians(-1216.9)]1),
([-0.033676, 0.89005, 0.079797]1,

[math.radians(71.494), math.radians(-3.572), math.radians(-1244.7)]),

([0.98131, 0.89005, 0.079797],

[math.radians(71.494), math.radians(-3.572), math.radians(-1297.3)]),

([1.7491, 0.61135, 0.079797],

[math.radians(79.007), math.radians(-7.6286), math.radians(-1321.9)]),
([1.079, 0.20459, 0.079797],

[math.radians(79.007), math.radians(-7.6286), math.radians(-1336.8)]),
([0.21656, -0.56372, 0.079797],

[math.radians(57.65), math.radians(-6.3956), math.radians(-1435.4)]),

([-0.50165, -0.56372, 0.079797],

[math.radians(70.281), math.radians(-14.318), math.radians(-1498.7)]1),
([-0.059662, 0.48936, 0.032715],

[math.radians(70.281), math.radians(-14.318), math.radians(-1225.5)]),
([0.2708, 0.48936, 0.58282],

[math.radians(161.41), math.radians(-190.18), math.radians(-1228.4)])

# Object Placement I have deleted most of them, the idea is the same:
to put positions following the same structure.

composiciones_objetos = [

{
"SilverCilinder": {"loc": (-0.3918, 0.47566, 0.13896),
"rot": (math.radians(0), math.radians(0), math.radians(0))},
"BlackCilinder": {"loc": (0.57164, -0.31983, -0.1512),
"rot": (math.radians(0), math.radians(0), math.radians(0))},
"GraniteCobblestone3": {"loc": (0.56957, -0.34484, 0.060706),
"rot": (math.radians(0), math.radians(0), math.radians(-54.679))7},
"GraniteCobblestonel": {"loc": (0.023351, -0.076065, -0.25806),
"rot": (math.radians(87.992), math.radians(1.4775), math.radians(-387.02))},
"WoodenPiece": {"loc": (0.12894, 0.39159, -0.2343),
"rot": (math.radians(45), math.radians(0), math.radians(-64.699))7},
},
{

"SilverCilinder": {"loc": (0.20467, 0.43373, -0.26387),

"rot": (math.radians(90), math.radians(0), math.radians(69.808))},
"BlackCilinder"": {"loc": (0.57164, -0.33989, -0.026217),

"rot": (math.radians(177.33), math.radians(0), math.radians(0))},
"GraniteCobblestone3": {"loc": (0.56957, -0.32478, -0.23906),

"rot": (math.radians(178.46), math.radians(2.1788), math.radians(54.65))},
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"GraniteCobblestonel": {"loc": (0.85093, -0.000336, 0.25806),

"rot": (math.radians(87.992), math.radians(1.4775), math.radians(-387.02))},
"WoodenPiece": {"loc": (0.16886, 0.37313, -0.2343),

"rot": (math.radians(45), math.radians(0), math.radians(159.81))3},

1,
{
"SilverCilinder": {"loc": (0.24358, 0.090395, -0.22191),
"rot": (math.radians(265.37), math.radians(180.57), math.radians(173))7},
"BlackCilinder"": {"loc": (0.57164, 0.045368, -0.16616),
"rot": (math.radians(0), math.radians(0), math.radians(0))},
"GraniteCobblestone3": {"loc": (-0.10497, 0.46522, -0.23906),
"rot": (math.radians(178.46), math.radians(2.1788), math.radians(54.65))},
"GraniteCobblestonel": {"loc": (0.12824, -0.003301, -0.21342),
"rot": (math.radians(0), math.radians(90), math.radians(90))},
"WoodenPiece": {"loc": (0.16886, -0.002515, -0.29092),
"rot": (math.radians(90), math.radians(0), math.radians(10))},
},
]
1

# Apply a composition to objects in the scene
def aplicar_composicion(compo_dict):
for nombre_objeto, valores in compo_dict.items():
obj = bpy.data.objects[nombre_objeto]
obj.location = valores["loc"]

obj.rotation_euler = valores["rot"]

# executes the function in the loop
def main():
for composicion in composiciones_objetos:
aplicar_composicion(composicion)
render_segmentacion_y_raw(output_dir, paisaje_objs,
mats_paisaje, matsegmentacion, cam_positions)

main()
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18

rutalmagenes = ’C:\Users\mikio\Desktop\EntrenamientoT1\CamVid\images’;
rutaEtiquetas = ’C:\Users\mikio\Desktop\EntrenamientoT1\CamVid\labels’;

classes = [
"Pool_background"
"Black_Pipe"
"Silver_Pipe"

"Wooden_Box"

"Granite"

1;

labellDs = [
160 196 189; % Pool’s background/Fondo de piscina
141 195 141; Y% Black cilinder/ Cilindro pequefio negro
199 187 116; % Silver Cilinder/ Cilindro grande plateado
165 92 174; % Wooden box/ Madero
197 197 197 % Granite/ Granito

1;

imds = imageDatastore(rutalmagenes);

pxds = pixelLabelDatastore(rutaEtiquetas, classes, labelIDs);

numFiles = numel(imds.Files);

randIdx = randperm(numFiles);

trainRatio = 0.8;

numTrain round(trainRatio * numFiles);

trainIdx randIdx(1:numTrain) ;

valldx = randIdx(numTrain+1:end);
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imdsTrain = subset(imds, trainIdx);
imdsVal = subset(imds, valIdx);
pxdsTrain = subset(pxds, trainIdx);
pxdsVal = subset(pxds, valldx);

trainingData = combine(imdsTrain, pxdsTrain);

validationData = combine(imdsVal, pxdsVal);

imageSize = [540, 960, 3]; % height, width and channels
numClasses = 5;

network = ’resnetl8’;

options = trainingOptions(’sgdm’,
’InitiallLearnRate’,le-4,
’MaxEpochs’, 30,
’MiniBatchSize’,6,
’Shuffle’, ’every-epoch’,
’VerboseFrequency’, 10,
’Plots’,’training-progress’,

’ExecutionEnvironment’,’auto’);

lgraph = deeplabv3plusLayers([540 960 3],5,’resnet18’);

[net, info] = trainNetwork(trainingData, lgraph, options);
class(net)

save("miRedEntrenadaTlnum?2.mat","net","info");
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DeepLab v3+

classes = getClassNames()
imagePretrainedNetwork("resnet18")
%Main folder where both folders are

outputFolder = fullfile("C:\Users\mikio\Desktop\EntrenamientoT1", "CamVid");

% Define routes directly
imgDir = fullfile(outputFolder, "images");
labelDir = fullfile(outputFolder, "labels");

imgDir = fullfile(outputFolder, "images");

imds = imageDatastore(imgDir) ;

I = readimage(imds,25);

I = histeq(I)

figure

imshow(I)

impixelinfo

labelIDs = camvidPixelLabelIDs();

labelDir = fullfile(outputFolder,"labels");

pxds = pixellLabelDatastore(labelDir,classes,labelIDs);

C = readimage(pxds,25);

cmap = camvidColorMap;

B = labeloverlay(I,C,ColorMap=cmap) ;
imshow (B)

pixelLabelColorbar (cmap,classes);

tbl = countEachLabel (pxds) %count the number of pixels by class label

frequency = tbl.PixelCount/sum(tbl.PixelCount);
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bar(1:numel(classes),frequency)
xticks(1:numel(classes))
xticklabels(tbl.Name)
xtickangle(45)

ylabel ("Frequency")

Jnow Prepare Training, Validation, and Test Sets

[imdsTrain, imdsVal, imdsTest, pxdsTrain, pxdsVal, pxdsTest] =
partitionCamVidData(imds,pxds) ;

numTrainingImages = numel(imdsTrain.Files)
numValImages = numel(imdsVal.Files)
numTestingImages = numel(imdsTest.Files)
dsVal = combine(imdsVal,pxdsVal);

dsTrain = combine(imdsTrain,pxdsTrain);

[-10 10];
[-10 10];
dsTrain = transform(dsTrain, @(data)augmentImageAndLabel(data,xTrans,yTrans));

xTrans

yTrans

%Create the Network

imageSize = [960 540 3]; %mi data set size with RGB channels

numClasses = numel(classes);

network = deeplabv3plus(imageSize,numClasses,"resnet18");

%Balance Classes Using Class Weighting

imageFreq = tbl.PixelCount ./ tbl.ImagePixelCount;
classWeights = median(imageFreq) ./ imageFreq;

%#Select Training Options
options = trainingOptions("sgdm",...

LearnRateSchedule="piecewise", ...

LearnRateDropPeriod=6, ...
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LearnRateDropFactor=0.1, ...
Momentum=0.9, ...
InitialLearnRate=1e-2,...
L2Regularization=0.005,...
ValidationData=dsVal, ...
MaxEpochs=18, ...
MiniBatchSize=4, ...
Shuffle="every-epoch",...
CheckpointPath=tempdir,...
VerboseFrequency=10,. ..
ValidationPatience=4) ;

%Start Training
doTraining = false;
if doTraining
[net,info] =
trainnet(dsTrain,network,@(Y,T) modelLoss(Y,T,classWeights),options);

end

% Test Network on One Image

J#Employ of the pretrainNet

load (’miRedEntrenadaTinum2.mat’)

I = readimage(imdsTest,1);

C = semanticseg(I,net,Classes=classes)

cmap = camvidColorMap;
B = labeloverlay(I,C,Colormap=cmap,Transparency=0.4)

imshow(B)
hold on

pixellLabelColorbar (cmap, classes)
expectedResult = readimage(pxdsTest,1);
actual = uint8(C);

expected = uint8(expectedResult);

imshowpair (actual, expected)

iou = jaccard(C,expectedResult);
table(classes,iou)

%Evaluate Trained Network

pxdsResults = semanticseg(imdsTest,net,

100



D. Appendix - Semantic Segmentation Using DeepLab v3+

Classes=classes,
MiniBatchSize=4,
WriteLocation=tempdir,

Verbose=false) ;
metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTest,Verbose=false);
metrics.DataSetMetrics
metrics.ClassMetrics
%Test on experimental data

% Path to the folder with real images and manual masks of the experiment:
testImgDir = ’C:\Users\mikio\Desktop\TestImages\PreprocessTestImagesRaw’;
testMaskDir = ’C:\Users\mikio\Desktop\TestImages\PreprocessTestImagesSegmentation’;

% Test file name

testFile = ’001.png’; % use the correct picure

% 1. Read image and label photo with same name
I_test = imread(fullfile(testImgDir, testFile));
GT_test = imread(fullfile(testMaskDir, testFile));

%The block makes sure that your ‘‘ground truth”
(GT_test) always ends up as a categorical array of class labels,
whether you receive it in RGB format (colored image) or if you
already have it as an array of indices.
if ndims(GT_test) ==
% convert RGB-coded ground truth to numeric label indices
GT_test_label = rgb2label(GT_test, cmap, classes); % Convierte RGB a etiquetas
else
% 2D label matrix: convert numeric labels to a categorical array
%GT_test_label = categorical(GT_test, 1:numel(classes), classes);

GT_test_label = categorical(

GT_test, ... % input matrix of label indices (1...N)
1:numel(classes), ... % valid label values
classes ); % names of each category

end

% 2.using raw image and network make prediction

C_test = semanticseg(I_test, net, Classes=classes);
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% 3. show the prediction and manual mask (both on the original image)
figure;

subplot(1,2,1);

imshow(labeloverlay(I_test, C_test, Colormap=cmap, Transparency=0.4));

title(’Net Prediction’); % Prediccidén red

subplot(1,2,2);
imshow(labeloverlay(I_test, GT_test_label, Colormap=cmap, Transparency=0.4));

title(’Manual mask’); %Mascara manual

% 4. Calculate the accuracy per class (IOU)

iou_test = jaccard(C_test, GT_test_label);

T_test = table(classes(:), iou_test(:), ’VariableNames’, {’Clase’,’I0U’});
disp(’Accuracy per class (I0U) for the test image:’);

disp(T_test);

% 5. Displays the average I0U over valid classes

fprintf (’\nI0U average of classes: %.4f\n’, mean(iou_test("isnan(iou_test))));

%Suporting Functions

function labels = rgb2label(maskRGB, cmap, classNames)
labels = zeros(size(maskRGB,1), size(maskRGB,2));
for k = 1:numel(classNames)
color = uint8(round(cmap(k,:) * 255));
match = maskRGB(:,:,1) == color(l) & maskRGB(:,:,2) ==
color(2) & maskRGB(:,:,3) == color(3);

labels(match) = k;
end
labels = categorical(labels, 1:numel(classNames), classNames);

end

b

function labelIDs = camvidPixelLabelIDs()
labelIDs = { ...

% "Pool Background"

L
160 196 189;

]
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% "Black Cilinder"
[

141 195 141;

]

% "Silver Cilinder"
[

199 187 116;

]

% "Wooden Piece"
L

165 92 174;

]

% Granite cobblestone
[
197 197 197,
]
+;

end

function classes = getClassNames()
classes = [
"PoolBackground"
"BlackCilinder"
"SilverCilinder"
"Wooden Piece"
"Granite"
1;

end

function pixelLabelColorbar(cmap, classNames)

% Add a colorbar to the current axis. The colorbar is formatted
% to display the class names with the color.

colormap(gca,cmap)

% Add colorbar to current figure.

¢ = colorbar(’peer’, gca);

% Use class names for tick marks.
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c.TickLabels = classNames;

numClasses = size(cmap,1);

% Center tick labels.

c.Ticks = 1/(numClasses*2):1/numClasses:1;

% Remove tick mark.
c.TickLength = 0;

end

function cmap = camvidColorMap()
% Define the colormap used by CamVid dataset.

cmap = [
160 196 189 % Pool
141 195 141 % Black Cilinder
199 187 116 % Silver Cilinder
165 92 174 % Wooden Piece
197 197 197 % Granite
1;

% Normalize between [0 1].

cmap = cmap ./ 255;

end

function [imdsTrain, imdsVal, imdsTest, pxdsTrain, pxdsVal, pxdsTest] =
partitionCamVidData(imds, pxds)
% Partition CamVid data by randomly selecting 60% of the data for training.

The rest is used for testing.

% Set initial random state for example reproducibility.
rng(0);

JnumFiles = numpartitions(imds);

numFiles = numel(imds.Files);

shuffledIndices = randperm(numFiles);

% Use 607 of the images for training.
numTrain = round(0.60 * numFiles);

trainingldx = shuffledIndices(l:numTrain);

% Use 20% of the images for validation
numVal = round(0.20 * numFiles);

valldx = shuffledIndices(numTrain+1:numTrain+numVal) ;
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% Use the rest for testing.

testIdx = shuffledIndices(numTrain+numVal+1:end);

% Create image datastores for training and test.
imdsTrain = subset(imds,trainingldx);

imdsVal = subset(imds,valldx);

imdsTest = subset(imds,testIdx);

% Create pixel label datastores for training and test.
pxdsTrain = subset(pxds,trainingldx);

pxdsVal = subset(pxds,valldx);

pxdsTest = subset(pxds,testIdx);

end

function data = augmentImageAndLabel(data, xTrans, yTrans)
% Augment images and pixel label images using random reflection and

% translation.
for i = 1:size(data,l)

tform = randomAffine2d(. ..
XReflection=true,...
XTranslation=xTrans,

YTranslation=yTrans) ;

% Center the view at the center of image in the output space while
% allowing translation to move the output image out of view.

rout = affineQutputView(size(data{i,1}), tform, BoundsStyle=’centerOutput’);

% Warp the image and pixel labels using the same transform.
data{i,1}
data{i,2} = imwarp(data{i,2}, tform, OutputView=rout);

imwarp(data{i,1}, tform, OutputView=rout);

end
end

function data = augmentImageAndLabel(data, xTrans, yTrans)

% Augment images and pixel label images using random reflection and

% translation.

for i = 1:size(data,l)
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tform = randomAffine2d(...
XReflection=true,...
XTranslation=xTrans,

YTranslation=yTrans) ;

% Center the view at the center of image in the output space while
% allowing translation to move the output image out of view.

rout = affineQutputView(size(data{i,1}), tform, BoundsStyle=’centerOutput’);

% Warp the image and pixel labels using the same transform.
data{i,1}
data{i,2} = imwarp(data{i,2}, tform, OutputView=rout);

imwarp(data{i,1}, tform, OutputView=rout);

end

end
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Each subsection presents the results obtained by training the DeepLab v3+ architecture
with a ResNet-18 backbone. The figures are organized to display the raw image, the man-
ually labeled ground truth, and the corresponding prediction. Within each subsection,
the results are further divided according to the two experimental positions analyzed.

E.0.1 No Water Model - Real Test Predictions

This section presents the prediction results of the new system using the ResNet-based

network under two training conditions: one designed to minimize overfitting, as de-
scribed in the CNN section, and another where overfitting was intentionally allowed.
Due to time constraints, a detailed comparison between both configurations could not
be conducted; however, preliminary results from the overfitted network appeared to be
promising.

Figure E.1: Old Predictions for Baseline experimental images

Net Prediction Manual mask

Figure E.2: New Predictions for Baseline experimental images
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Figure E.3: Predictions for No Water Network-Position 1

Figure E.4: Predictions for No Water Network-Position 2
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E.0.2 Low Turbidity Model - Real Test Predictions

Figure E.5: Predictions for Low turbidity Network-Position 1

Figure E.6: Predictions for Low turbidity Network-Position 2
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E.0.3 Medium Turbidity Model - Real Test Predictions

Figure E.7: Predictions for moderate turbidity Network-Position 1

Figure E.8: Predictions for moderate turbidity Network-Position 2
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E.0.4 High Turbidity Model - Real Test Predictions

Figure E.9: Predictions for high turbidity Network-Position 1

Figure E.10: Predictions for high turbidity Network-Position 2
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E.0.5 All images Model - Real Test Predictions

Figure E.11: Predictions for full data Network-Position 1

Figure E.12: Predictions for full data Network-Position 2
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% Set the main working directory
workingDir = "C:\Users\mikio\Desktop\ImagenPrueba\Extraerframes";

% Create the main folder

mkdir (workingDir)

% Create a subfolder to store the extracted images

mkdir (workingDir, "images8")

% Load the video file
shuttleVideo = VideoReader ("P2.T4.mp4d");

% Initialize frame counter

i=1;

% Loop through all frames of the video
while hasFrame(shuttleVideo)
% Read current frame

img = readFrame (shuttleVideo);

% Create a filename with padded numbering (e.g., 001.jpg)
filename = sprintf("%03d",i)+".jpg";

% Build the full path to save the image
fullname = fullfile(workingDir,"images8",filename) ;

% Save the frame as a JPEG image

imwrite (img,fullname)

% Increment frame counter
i = 1i+1;

end
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