
RESUMÉ

Formål
Formålet med dette speciale er at implementere og afprøve et system der kan forudsige CPU forbruget og kontrollere

mængden af instanser en eller flere applicationer har, der er deployet i Kubernetes således at man kan være på forkant med at
skalere mængden af instanser der skal til for at kunne besvare alle forespørgsler til applicationen. Vi har derfor foretaget en
gennemgribende gennemgang af eksisterende løsninger og deres fremgangsmåde med at løse problemet, og i den forbindelse
identificeret flere problematikker der kunne adresseres og forbedres. Vi har derudover undersøgt forskellige Machine Learning
biblioteker med henblik på at finde det der både var nemmest at benytte således at vi kunne komme i mål inden for tidsfristen,
samt det der var bedst egnet til at lave et sådant system. Vi brugte tiden på vores forspeciale på at lave forsøg der identificerede
de modeller der bedst forudsagde CPU forbruget, samt lave en prototype af systemet. Vores løsning består af to komponenter; en
Autoscaler samt en Forecaster. Autoscaleren er hjernen i systemet som ved hjælp af Forecasteren laver skaleringsbeslutninger
på baggrund af den forudsigelse af CPU-forbrug Forecasteren laver. Autoscaleren består derudover af en frontend der giver
brugeren mulighed for at monitorere forudsigelserne samt rette skalerings-parametre. Forecasteren står for alt hvad der har med
Machine Learning at gøre, hvilket vil sige at den, ved forespørgsel fra Autoscaleren laver en forudsigelse, og fortsat træning
af modellerne på det aktuelle CPU forbrug, for yderligere at forbedre modellernes præcision.

Eksperimentet
For at teste om hvorvidt vores autoskalerings-system er i stand til at forudsige CPU forbruget og skalere mængden af

instanser på en fornuftig måde har vi opstillet et forsøg hvor Autoscaleren skal styre mængden af instanser for to forskellige
deployments i 24 timer. De to deployments autoscaleren skal styre er den samme applikation bestående af en API med en
række endpoints der har forskellig eksekveringstid før svar bliver sendt tilbage for at simulere en rigtig application. Forskellen
på de to deployments ligger i mængden af forespørgsler der bliver sendt til dem hver i sær. Det ene deployment får sendt
en mængde forespørgsler der svarer til det data modellerne er blevet trænet på, og det andet deployment får sendt en anden
mængde forespørgsler, for at teste systemets evne til at tilpasse sig. Derudover foretager vi også kontroleksperimenter som
vores system kan sammenlignes med. Vi foretager først en base case test, hvor vi slår alt autoskalering fra, for at se hvordan
de to deployments klarer sig uden at mængden af instanser ændres fra en enkelt instans. Derudover foretager vi en ground
truth test, hvor vi slår Kubernetes egen reaktive Horizontal Pod Autoscaler til, da dette er en veltestet og meget brugt løsning
i industrien. Vores resultater viser at vores autoskalerings system forbedre den gennemsnitlige svar tid med mellem 18.3% og
20%. Derudover sænker den mængden af forespørgsler med svar tider på over et skund med mellem 92% og 94%.

Konklusion
Dette speciale præsenterer en omfattende implementering af et autoskalerings system med fokus på på funktionalitet

Kubernetes der benytter sig af machine learning til at forudse CPU forbruget af deployments der kører i et Kubernetes cluster.
Vores system demonstrere at ved at forudsige CPU forbruget, at der kan opnåes væsentlige forbedringer af den gennemsnitlige
svar tid for applicationer på helt op til 20% imens mængden af forespørgsler der tager længere tid at besvare nedsættes med helt
op til 99%. Derudover demonstrere det også evnen til at tilpasse sig andre workloads siden vores system klarer sig væsentligt
bedre på også det sinusformede workload. Derudover er det udviklet til at kunne deployes direkte i Kubernetes i et production
environment, med et minimum af afhængighed af andre applikationer/services. Der er dog nogle enkelte begrænsninger specielt
i form af applikationer med uforudsigelige forbrugsmønstre hvor systemet med stor sandsynlighed ikke ville præstere ligeså
godt. Det vil dog i langt de fleste tilfælde have mulighed for at tilpasse sig. I takt med at container baserede systemer bliver
flere og flere og systemerne bliver mere og mere komplekse, vil forudsigende systemer som dette blive mere og mere brugbare,
for at bibeholde den samme præstation af applikationerne. Dette speciale bigrager med et stort skridt i den rigtige retning for
at udløse det fulde potientiale af forudsigende skalerings systemer.

Fremtidig udvikling
I forbindelse med udviklingen af vores autoskalerings-system, har vi identificeret en række ændringer der ville kunne forbedre

løsningen yderligere, samt gøre at den ville være væsentligt mere relevant at bruge i industrien. Den første ting der kunne
forbedres er at træne en model der er i stand til at udvælge den bedste model ud fra en række fejlmargen-udregninger således
at vi kigger på flere ting end blot root mean squared error. Det også være relevant at benytte feature selection fra Optuna
frameworket brugt til at optimere hyperparametre, samt at automatisere gen-tuning af modellerne ligesom med gen-træningen.
Derudover kunne det være relevant at kigge på at have sæson-trænede modeller der er specialiseret i at forudsige eksempelvis
weekender, eller andre højtider hvor forbruget er markant anderledes. Det kunne også være relevant at kigge på at træne modeller
der kigger på at skalere vertikalt, altså mængden af resourcer en instans har tilgængeligt, da dette ofte er meget hurtigere end
at starte nye instanser op. Her kunne det også være relevant at kigge på strømforbruget af hele Kubernetes clusteret for at
optimere på dette samtidig med at QoS stadigvæk er overholdt. Man kunne også se om det kunne være relevant at kigge på
at distribuere gen-træningen af modeller således at det skalerer væsentligt bedre end vores løsning. Dette kunne gøres ved



at implementere et kø-system hvor Autoscaleren blot forespørger gentræning af modellerne til en service hvor dette så bliver
eksekveret når der er ledigt på GPU’erne. Det vil derudover også være nødvendigt at foretage nogle usability tests af frontenden
således at de personer der rent faktisk skulle benytte sig af systemet også syntes at brugergrænsefladen er brugervenlig. Til
sidst vil vil det også være relevant at foretage en række yderligere tests af systemet, hvor andre test applikationer og workloads
ville blive benyttet således, at systemets soliditet, samt evne til at tilpasse sig enhver applikation ville blive understreget.
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Implementing a Predictive Autoscaler in Kubernetes
Using ML Time Series Forecasting Models

Jonathan Wisborg Fog, Jens Jacob Torvin Møller, and Thomas Møller Jensen,

Abstract—This thesis explores how a predictive autoscaling
system for Kubernetes can be implemented using time series
forecasting utilizing multiple different machine learning models,
continuously trained on incoming data. The default reactive
autoscaling solutions often leads to loss of QoS during high peak
periods, since deployments begin to scale only when the peak is
already apparent. We propose a predictive autoscaling solution
able to predict the future load of multiple individual deployments
and begin scaling each deployment accordingly before the load
occurs. The solution is fairly easy-to-deploy, which only requires
few dependencies being present in the cluster. The solution
continuously monitors the cluster detecting new deployments
for which the autoscaling can be applied. Experimental results
demonstrate that the Autoscaling system is able to outperform
the Kubernetes HPA on the average response time by between
14% and 20%, while lowering the amount of requests above one
second by between 93% and 95%, while only using 3% more
power, and between 2% and 5% more pods. The source code
we used in this study is available as open-source on GitHub see
Section A (p. 19).

Index Terms—Kubernetes, autoscaling, machine learning, time
series forecasting, cloud computing, microservices, predictive
algorithms, resource optimization.

I. INTRODUCTION

CLOUD native and orchestration platforms such as Ku-
bernetes has gained more popularity in recent years

[1], due to its ability to streamline the process of deploying
multi-container solutions and ease the maintainability of these
deployments. Furthermore these orchestration platforms have
the ability to automatically scale these deployments, if the
load, i.e. traffic, CPU, memory, becomes too large according to
a user-defined threshold. The scaling can be applied in multiple
ways, that is, scaling the amount of nodes, pods or allocated
resources [2]. Scaling the amount of pods for a deployment is
known as horizontal pod scaling where scaling the amount
of resources is known as vertical scaling [3]. Traditional
horizontal pod autoscaling occurs reactively, that is, as soon as
the considered metric becomes larger than a given threshold,
additional pods automatically start deploying. Most major
cloud service providers implement some form of predictive
autoscaling using ML models to generate a forecast, consisting
of timestamps and their respective amount of a given metric,
based on former data, which makes it safe to assume that
the field has gained popularity in recent years. This allows
orchestration platforms to start creating pods before the load
increases, maintaining quality of service (QoS), by preparing
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the deployment to handle the increased load beforehand, thus
eliminating the necessity to wait for the pod to be created.
Conversely, when the load is decreasing, it allows the orches-
tration platforms to scale down deployments, thus eliminating
over-provisioning. Futhermore, when demand, and thus also
load, fluctuates the necessity to scale down a deployment
which needs to be scaled up again immediately can also be
eliminated, by utilizing predictive autoscaling.

A. Problem Statement
The challenges addressed in this thesis include:
• How to develop a system utilizing ML to allow for multi-

deployment and deployment-specific predictive horizontal
pod autoscaling in a Kubernetes cluster.

• Is such a system able to outperform the traditional reac-
tive autoscaling process based on a comparative analysis
of response time and other metrics?

• Is the system able to retrain and adapt to different loads,
to overcome the obstacle of using a general-purpose
model?

B. Significance and Contribution
This research contributes to the field of cloud-native ML

scheduling by:
• Exposing and developing an MLOps pipeline with an

extensive pre-trained model zoo, data preprocessing
pipeline and recurrent model training and deployment.

• Developing a deployment-ready Kubernetes workload
which is able to proactively scale deployments using
deployment-specific models and forecasts.

• Providing a comparative analysis between the traditional
autoscaling process and the developed system.

Paper structure: Section II presents background informa-
tion on autoscaling in Kubernetes as well as various forecast-
ing methods. Section III presents the design of the autoscaling
system as well as how it will be tested and measured. Section
IV describes how the different parts described in section III
have been implemented. Section V presents the results of the
system tests and VI discusses said results and various design
and implementation choices. Section VII concludes the work,
while VII-A provides various ways of extending the work in
the future.

II. BACKGROUND AND RELATED WORK

A. ML Automation
Automated Machine Learning (AutoML), a part of MLOps,

is a process where the end-to-end development of machine
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learning models is automated [4] [5] . This includes au-
tomating the reoccurring aspects of the ML lifecycle typically
consisting of, but not limited to [6]:

• Data collection / Data preparation
• Data preprocessing
• Model tuning
• Model training
• Model evaluation
• Model selection
• Model deployment
• Model retraining / retuning
Automating such repetitive tasks can help engineers save

time, abstract away some of the complexity which ML tend
to exhibit and continuously select the best-performing model.
The AutoML/MLOps approach does though come with some
limitations such as making the model development more
opaque [7].

B. Autoscaling in Kubernetes

Kubernetes (K8s) is an open source platform for managing
containerized applications. It manages workloads, i.e. applica-
tions, and provides features such as scaling, both vertical and
horizontal, load balancing and self-healing, in the event of
failures during deployment of containers [8]. A common way
of scaling deployments in Kubernetes is using the Horizontal
Pod Autoscaler (HPA). Kubernetes HPA automatically starts
and stops pods depending on metrics such as CPU, memory
or custom metrics. This ensures that should the demand for a
deployment increase, the amount of pods increases to match
the incoming load. The scaling happens in a control loop
which runs intermittently with a custom-defined interval (sync
period) and the scaling is based on configured thresholds,
resulting in a reactive scaling strategy.

C. Limitations of Reactive Autoscaling

The reactive scaling strategy introduces several limitations
including:

• Over-provisioning — When demand for workloads in-
creases the HPA can as a result start up several pods to
handle the load, which afterwards may still be running,
even though the load has decreased, if for example the
sync period is set too large [9].

• Fluctuating loads — When loads fluctuate a lot during
a short period of time, and the sync period is not
set properly, the HPA eventually scales up and down,
even though it could have potentially just kept the same
amount of pods running throughout this period [10].

• Cloud provider costs — If the cluster is running in a
cloud provider environment, where the billing method is
pay-as-you-go, having an unnecessary amount of pods
running may grow expensive [9].

• Scaling delay — As mentioned, pod creation may take
some time, depending on the size of the containers, which
can lead to pods needing to terminate immediately after
starting up, if the demand has decreased since, wasting
resources unnecessarily in the creation process. Another

even greater problem introduced by this delay is that the
workload is simply not ready to handle the increasing
demand, since the pod creation only happens after the
demand increase [10].

D. Time Series Forecasting
Time series forecasting involves predicting future values

based on previous values [11]. Time series consist of entries
of equally spaced timestamps and discrete values on the form
(T, v) for uni-variate time series and (T, (v1, ..vn)) for multi-
variate time series. A time series is ordered by time, that is,
T0 < T1.

E. Forecasting Methods
Time series forecasting can be carried out in several ways.

According to [12] time series forecasting methods can be
divided into traditional time series forecasting models, ma-
chine learning models and hybrid models, where traditional
forecasting models can be further divided into linear models
and non-linear models. Traditional methods are based on
mathematical and statistical models [12]. Linear models are
easier to understand and implement, utilizing linear assump-
tions, but non-linear models sometimes prove better, since
they can overcome these linear assumptions, and capture more
complex relationships [12].

Machine learning models, which include neural networks,
prove more efficient as datasets become larger, non-linear and
more complex, due to their self-organizing behavior [12].

Hybrid models is a combination of traditional models and
machine learning models, used to address the accidental and
complex nature which time series exhibit. The hybrid method
essentially combines aspects of multiple methods to produce
more accurate predictions [12].

Ensemble models is a method that combines multiple learn-
ers or models to improve the predictive performance [13]. [14]
considers the ensemble method as a subclass of hybrid models
whereas [15] considers ensemble models as a method of
combining weak, homogeneous models and hybrid models as a
method of combining completely different and heterogeneous
models.

Multiple ensembling methods exist including, but not lim-
ited to:

• Stacking — Multiple base learners are trained on the
same dataset, with different training algorithms, each
providing a prediction which are compiled and used as
training data for the final model (meta-learner), which
could be any model [13].

• Bagging — Multiple base learners are trained using the
same training algorithm, but with a modified dataset for
each learner (bootstrap resampling) [13]. The predictions
are compiled and used as a final prediction.

• Boosting — Trains a learner on an initial dataset, resam-
ples the data by prioritizing the misclassified instances
and trains a new learner on the resampled dataset, and
resamples again yielding a new dataset produced from
the two former learners. This process repeats, lastly
combining and weighting all the learners to produce a
final prediction [13].
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F. Related Work & Existing Solutions

Several research efforts and existing solutions have focused
on proactively scaling deployments in cloud environments:

• PredictKube by Dysnix is a solution which uses a single
AI model which can observe metrics such as the requests-
per-second or CPU load and show the trend for up to
six hours. PredictKube utilizes the KEDA framework
[16] and can be used to proactively scale deployments.
PredictKube is a proprietary service [17].

• KubeFlow by Google is a collection of Kubernetes based
components used in different stages of the ML lifecy-
cle. It introduces pipelines (KFP), Kubeflow Trainer for
model training, Katib for AutoML and KServe for serving
models [18].

• Yuan, H. & Liao, S. propose a Kubernetes Operator
predictive autoscaling mechanism, which utilizes two
forecasting models, Holt-Winter and GRU, and a data-
collecting REST API to obtain metrics to dynamically
scale the number of instances [19].

• Naayini, P. propose a Kubernetes-based MLOps architec-
ture which builds upon multiple open-source tools such
as Kubeflow, MLflow & ONNX to cover the entire ML
lifecycle [20].

• Koskinen, Jan. proposes, in his master thesis, an ML
pipeline designed for time series forecasting and con-
tinuous training, build upon the OSS MLOps platform
[21], an ML platform consisting of components such
as Kubernetes, MLflow, Kubeflow, KServe, Prometheus
and Grafana. The proposition furthermore scientifically
examines the challenges which arise when implementing
continuous training [22].

• In our preliminary research [23] we provide a founda-
tion for solving these problem statements, by exploring
and comparing different time series forecasting models
and implementing a proof-of-concept application which
should be able to fetch data from Prometheus, utilize
a single embedded forecasting model to predict future
timestamps and lastly display the forecast in a Graphical
User Interface (GUI).

• In [10] a Proactive Pod Autoscaler (PPA) has been
developed which is able to forecast workloads based
on custom user-defined metrics. The solution does out-
perform the default HPA. The paper does mention that
their solution lacks automation with regards to model
tuning and optimization. It mentions an approach which
involves running the solution with multiple models being
fed the same data and then automatically selecting the
best model.

The proposed solution is developed as a Kubernetes ori-
ented, deployment-ready application, which can be imple-
mented in any Kubernetes cluster, with minimal dependencies,
while still covering aspects of the ML life cycle from data
collection and preprocessing to training, evaluation, compara-
tive model selection, deployment and retraining. The solution
differs by providing the ability to adjust the forecast horizon,
e.g. how much time into the future the system predicts, by
having an extensive pre-trained model zoo, which can all be

deployment-specifically retrained and used to create a forecast,
thus always providing the best possible forecast available at
the moment for a specific deployment. The proposed solution
further builds upon the aforementioned preliminary work in
[23], since the models used were tuned and trained as a part
of the comparative analysis. Furthermore, we use the modules
from the Autoscaler component in the preliminary work [23]
as a strong foundation for the proposed Autoscaling system.
The ML part of our proposed solution also utilizes the Darts
library. The hyperparameter tuning functionality is strongly
based upon the previous hyperparameter tuning functionality
used to train and tune the models used in [23]. The objective
function is also almost identical. Utilizing this work, we
propose a deployment-ready autoscaling solution deployed in a
real-world Kubernetes cluster and a comparative test, verifying
whether the proposed solution is competitive to the default
Kubernetes HPA.

III. METHODOLOGY

Section III-A describes the overall system architecture
we will use to build our autoscaling system. Section III-B
describes how we collect data for training. Section III-C
describes how we have designed the ML part of our system.
Section III-D describes the preprocessing pipeline used to
get the data ready for the training. Section III-E presents the
design of the autoscaling part of the system and section III-F
describes the database schema design we use for collected and
produced data. Section III-G presents the visual design of
the frontend as well as the various functions available. Lastly
Sections III-H, III-I and III-J describe the cloud setup used
for training and tests, as well as the metrics we will use for
evaluation respectively.

A. System Architecture

Our predictive autoscaling system for Kubernetes consists
of the following components:

• Forecaster: Uses the ML models from the Darts library
to predict the future CPU utilization for the different
deployments, as well as continued training on historical
data.

• Autoscaler: Uses the forecasts to make scaling decisions
based on configurable policies.

• Frontend: A GUI where the forecast can be monitored
and edited, as well as different settings.

• Data Collection (Prometheus): A service which is capable
of monitoring the CPU utilization of all the pods which
can be used for further training.

• Database: A database where various information about
the deployments as well as historical data, trained models
and forecasts can be stored.

We have chosen this overall architecture since we learned
from our previous work that packing everything into the
same container would result in performance and reliability
difficulties since we are running the Autoscaling system in
a cloud environment with limited resources, hence distribut-
ing the computation into more containers allows for better
performance.
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Figure 1 (p. 5) illustrates how our Autoscaler interacts
with Kubernetes, through the Kubernetes API, the frontend,
Forecaster, database as well as Prometheus which is used for
data collection.

B. Data Collection (Prometheus)

For data collection we chose to use Prometheus since it
comes out of the box with the functionality we need which is
historical sampling of data and is made to run in Kubernetes
which makes it ideal for our scenario. We use Prometheus to
collect the CPU utilization for the deployment to continuosly
re-train the models. The reason that we only collect the CPU
utilization is that the amount of requests is roughly equivalent
to that of the CPU utilization [10] and furthermore that some
of the models only allow for uni-variate time series.

C. Forecaster

The Forecaster consists of an API module which is an
interface that allows communication with the Autoscaler,
a database module to insert forecasts as well as retrieve
models and historical data, and a ML module which is in
charge of retraining the models and providing forecasts for
the Autoscaler. Furthermore it consists of a preprocessing
pipeline, which all incoming historical data must pass through,
to ensure its validity in regards to the training process. Figure
Figure 2a (p. 6) displays a detailed view of the Forecaster’s
architecture and how it communicates with the system.

For the ML module we chose to use the Darts library as we
did in our preliminary research since it provides a large array
of different time series forecasting models.

The ML models used from the Darts library are listed in
Table I (p. 4):

Models

ARIMA BATS
VARIMA Croston
AutoARIMA Prophet
StatsForecastAutoARIMA RNNModel
ExponentialSmoothing BlockRNNModel
TBATS N-BEATSModel
StatsForecastAutoETS N-HiTSModel
Theta TCNModel
FourTheta DLinearModel
StatsForecastAutoCES NLinearModel
StatsForecastAutoTheta TransformerModel
KalmanForecaster TiDEModel
TSMixerModel TFTModel

TABLE I: Models used from the Darts library.

A more detailed description of the models can be seen in
our preliminary research [23]. The StatsForecastAutoARIMA
and VARIMA models are still not used because of train-
ing issues and single dimensional data respectively. Fur-
thermore, TBATS, BATS, RNNModel, KalmanForecaster, N-
BEATSModel, and StatsForecastAutoCES are not used due
to long training times, which are not concomitant with the
requirements of a time-critical system.

The Trainer module continuously trains all deployment-
specific models at predefined intervals and saves them to the

database. When all models have been retrained a forecast
is generated for each of the models and compared against
the historical data. This essentially makes all the models
compete continuously in a winner-takes-all manner, similar
to ensembling. This ensures that all models are always trained
on the most recent data from Prometheus and that the most
accurate models forecast is used and displayed in the UI.

D. Data Preprocessing

The Forecaster module implements a preprocessing
pipeline through which all historical data from the
Prometheus module must pass. The pipeline is responsible
for preparing the data for the Trainer module, by removing
outliers, assuring that it contains no negative values, removing
noise, filling missing values and normalizing the data. These
measures are implemented to help the models make more
sense of the raw data and increase the training efficiency and
forecast accuracy [24]. A flowchart describing the pipeline can
be seen in Figure 3 (p. 6).

A comparison of the raw data versus the transformed data
can be seen in Figure 4 (p. 7). The seasonality of the data
appear more distinguished and the seasonal patterns (peaks)
are more clearly defined when the data processing has been
applied. The plot on the right with the transformed data
shows that some outliers still appear in the data. This can
be accounted for by changing the threshold, which is a user-
defined argument passed to the preprocessing pipeline, used
to determine when values should be considered as outliers.

E. Autoscaler

The Autoscaler consists of an API module such that the
frontend can retrieve and/or update forecasts and settings from
the database, a database module in charge of communication
with the database, a Prometheus module to to retrieve CPU
metrics from the Kubernetes cluster, a Kubernetes module
to find the deployments running in the cluster as well as
changing their pod count, and lastly the runner module which
is in charge of making scaling decisions based on the forecast
generated by the Forecaster for each of the deployments in
the cluster. Figure 2b (p. 6) displays a detailed view of the
Autoscaler’s architecture and how it communicates with the
system.

F. Database

For storing historical data, forecasts, deployment settings
and ML models we have chosen to use a PostgreSQL database.
The database consists of the tables listed in Table II (p. 5).

G. Frontend

Since the Autoscaler is developed using the ASP.NET
Core framework, it also serves the frontend in our system.
The frontend consists of a main page where all the relevant
deployments are viewable and there is a clear distinction
between which deployments have autoscaling enabled. The
frontend also consists of a page for each of the deployments
where their individual forecasts as well as deployment-specific
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Fig. 1: System interaction overview.

Tables Description

Model Table (Id, ServiceId, Name,
Bin, Ckpt, TrainedAt)

Storing the model binaries for the
individual services

Forecast Table (Id, ServiceId, Cre-
atedAt, ModelId, Forecast, Has-
ManualChange)

Storing the forecasts for the indi-
vidual services

Historical Table (Id, ServiceId,
CreatedAt, HistoricData)

Storing the historical data for the
individual services

Settings Table (Id, ServiceId,
ScaleUp, ScaleDown,
MinReplicas, MaxReplicas,
ScalePeriod, TrainInterval)

Storing the settings for the individ-
ual services

Services Table (Id, Name, Au-
toscalingEnabled)

Storing information about the ser-
vice

BaselineModel Table (Id, Name,
Bin, Ckpt, TrainedAt)

Storing pre-trained model binaries

TABLE II: Database tables and their attributes.

settings can be viewed and edited. Figure Figure 5 (p. 7) and
Figure 6 (p. 7) shows the visual design of the two pages which
make up the GUI.

H. Training Setup

To train the baseline models used in the Autoscaling system
we used the following cloud setup. We did not specifically

decide on this configuration, but were granted this machine
from the university and found that it was sufficient, after expe-
riencing that the default machines did not perform sufficiently
without a GPU.

The models were trained on a VM running on the hardware
in the AAU Strato Cloud [25]. The hardware specifications
can be seen in Table III (p. 5). We specifically requested a
machine with GPU to leverage these in the model training
process, as a measure to optimize and speed up the process.

GPU’s: 2 X NVIDIA Corporation GA102GL [A10] (rev a1)
CPU: Intel® Xeon® Gold 6134 Processor 24.75M Cache, 3.20 GHz
RAM: 100GB

TABLE III: Strato Virtual Machine Specifications.

As described in [23] the models used to create the forecasts
were trained on a dataset consisting of ≈ 5760 logs from
a HTTP server. The full dataset consists of ≈ 8000 entries
split such that ≈ 5760 entries are used for training and ≈
2880 entries are used for validation. The data is processed to
include only a timestamp and the number of requests at the
given timestamp. The interval between two timestamps is one
minute. The full training data is visualized in Figure 7 (p. 8)
(before MinMaxScaling has been applied).
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(a) Architecture of the Forecaster. (b) Architecture of the Autoscaler.

Fig. 2: Architectural diagrams of the main parts of the system.

Fig. 3: ML preprocessing pipeline.

I. Experimental Setup

To evaluate our predictive Autoscaling system, we will
deploy it to the following cloud setup since this is the set-
up we had available at our university.

1) Test Environment:
• A Kubernetes (K3s) cluster running on the AAU Strato

cloud [25].
• A node pool with five individual VM’s. Specifications are

described in Table IV (p. 6).
• Prometheus for metrics collection.
• Two deployments of the test application.

• Two deployments of the workload generator application
using the Locust.io .framework [26] for real life workload
simulation.

• Our Autoscaling system.

CPU: AMD EPYC Processor, Model family 23, model 1
Cores: 4 X 2.00 GHz (Base clock)
RAM: 12GB

TABLE IV: Cluster Nodes VM Specifications.

The reason for the chosen setup is that it minimizes the
amount of manual setup as opposed to using a cluster consist-
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Fig. 4: Raw data and transformed data after being fed through the preprocessing pipeline.

Fig. 5: A page displaying the overall view of all the deployments in the cluster.

Fig. 6: A page displaying the forecast and settings for a single deployment.
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Fig. 7: Data used to train the baseline models. The training
data is from time 05 - 09. Validation data is from 11 - 13.

ing of equivalent physical machines.
The forecasting part of the Autoscaling system will be

deployed outside the cluster on the same machine as used
in Section III-H (p. 5) to allow for fast model retraining.

2) Test Applications: We deploy two instances of our test
application which will be a basic web API with various
endpoints. These endpoints will do different tasks to simulate
different user requests which has different durations. The
endpoints will include simple get requests as well as post
requests where various matrix multiplications will be done to
simulate heavy computational tasks.

3) Workload generator application: The workload gener-
ator application consists of an application written in Python
using the Locust.io framework [26]. The framework is set up
to follow a diurnal curve which matches the usual utilization
curve for a web application. The reason for using the Locust
framework is that it simulates real user behavior, by picking
an endpoint based on a percentage specified for each endpoint
so that some endpoints are chosen more often than others to
simulate a real system. In addition to this it will also wait
a random amount of time within a given interval between
sending the requests to further add to the real life likeness
of the user behavior. We configure the workload generator
application with the parameters listed in Table V (p. 8) to
make the data closely resemble the data which was used to
train the models.

VARIABLE DEFAULT Description
GENERATOR MAX 2000 Workload amplitude (i.e. maximum amount of requests)
GENERATOR MIN 50 Workload baseline (i.e. minimum amount of requests)
GENERATOR PEAK 16.0 Timestamp of workload peak
GENERATOR X 100 Size of X in matrix multiplication
GENERATOR Y 100 Size of Y in matrix multiplication
GENERATOR MIN DELAY 1 Minimum delay between requests
GENERATOR MAX DELAY 3 Maximum delay between requests
GENERATOR SHAPE mapped Shape of the generated workload

TABLE V: Configuration parameters for the workload gener-
ator application.

We will be deploying different workload generator appli-
cations for the different test applications, and in addition to
this, we will be using different amounts of users to simulate
different loads on the services and our Autoscaling systems
ability to adapt to the individual deployments. We use the
data we trained the models on to tune the Locust framework to
produce a similar curve. We will however also tune the Locust
framework to produce a sinusoidal curve which is different

from the data the models were trained on to test the systems
adaptability. The difference lies in the peak load, as well as
the gradient between peak and valley.

J. Evaluation Metrics

To evaluate our system we have chosen to use the following
metrics:

• Response time
• Pod count
• Node power usage (Watt)
• Forecast RMSE
• Model used for forecast

a) Response time: was chosen as it is the primary
motivator behind the project, to optimize the response time
compared to the Kubernetes HPA and no autoscaling.

b) Pod count: was chosen as it is another metric that is
directly related to the motivation of the project. The goal is to
have a pod count that is proportionally similar to the request
count from the Workload Generator, while still being able to
handle all incoming requests.

c) Node power usage: was chosen as it gives a view of
the computational impact of our Autoscaling system compared
to the industry standard (HPA). Since we will have the values
for both HPA and our solution, a direct comparison of power
usage will be useful to determine the efficiency of this system.

d) Forecast RMSE: is collected to measure the deviation
of the prediction compared to the validation set. The model
is trained on 80% of the input data from Prometheus, and
the remaining 20% of the input data is used as validation set.
The RMSE is calculated by comparing the validation set to
the same amount of minutes of the forecast starting from the
beginning.

e) Model used: was chosen so we can test whether
the system needs the functionality to supply forecasts from
multiple models. If the same model always performs better
than all the other models, we have found out that the need to
support so many models is not necessary, and selecting one
or two models would be sufficient at least for the workloads
under consideration.

IV. IMPLEMENTATION

Section IV-A presents the implementation of the Au-
toscaler described in Section III-E (p. 4) as well as the
database implementations. Section IV-B presents the imple-
mentation of the Forecaster as described in Section III-C (p.
4). In addition to this it describes various modules used by
the Forecaster. Section IV-C presents the frontend imple-
mentation. Sections IV-D and IV-E describes the tools used
to test the system and the implementation of the system tests
described in Section III-I (p. 6).

A. Autoscaler / Backend

The Autoscaler is implemented in C# 8.0 and is split into
four sub-projects: Api, Persistence, DbUp and Runner. The
frontend co-exists in the Api sub-project, and is hosted by the
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ASP.NET core framework. The Persistence project is a struc-
tured database sub-project, that abstracts database calls using
the repository pattern, in the rest of the Autoscaler. The DbUp
sub-project constitutes a database migration tool with SQL
scripts for initialization of our database schemas. This project
builds on [27]. When run, it checks the schemaversions table
in the database to check wether the script in question has
already been run. If not, it applies the script to the database,
if it has, the script is simply skipped and it goes on to next
one. This is proper for a production setting since, the scripts
will only be executed if they have not been run. We have also
prefixed all scripts with a sequence number xxxx script.sql
such that they are run in a specific order. This allows us to have
the ability to take down the database in case of bad data, or
similar, and execute all these scripts in a manner that would
give us the same exact database again. Finally the Runner
project is the brain of the application e.g. where the autoscaling
decisions are made. The API sub-project serves as the entry-
point of the application, where all other sub-projects except for
DbUp are instantiated, where also the Frontend is started.
Other than being the entry-point of the application, it also
contains the controller, that exposes the necessary endpoints
to accommodate the functionality provided by the Frontend.
When the Autoscaler is started and/or when the start endpoint
provided by the API is called, the Runner will be created and
discover deployments in Kubernetes through the Kubernetes
API as shown in Figure 1 (p. 5). Then it will start a Monitor
thread for each detected deployment which will monitor the
deployment and scale periodically according to the forecast
if autoscaling is enabled for the deployment. At the start of
the Monitor thread it will query Prometheus for the last hour
of historical data which will be used by the Forecaster when
calling both the train endpoint and the predict endpoint. After
querying Prometheus and storing the data in the database,
the Runner checks whether autoscaling is enabled, if it is
enabled it then checks if it is the first iteration of the loop.
If this condition is met, it retrains the models on the historic
data to get correct predictions from the models since they
begin the prediction from the last seen timestamp that was
available in the training set. It also retrains the models at user
specified intervals on all other iterations. The Runner then
proceeds to check if there is a forecast in the database and
if not requests one from the Forecaster. Then it finds the
forecast horizon by looking at the average pod startup time.
We get this by requesting the creation time and the status of
the pods from the Kubernetes API where we can calculate
the time it takes to start up, from the creation time until
the status is Ready. The runner then looks that far into the
future of the forecast rounded up to nearest minute, and then
determines if it should scale the amount of pods up or down.
It does so by using the same algorithm used by the Horizontal
Pod Autoscaler in Kubernetes [28] while making sure to be
within the min replicas and max replicas determined by the
user. Lastly it waits for the rest of the forecast horizon before
starting the next iteration of the loop. A flowchart of the runner
can be seen in: Figure 8 (p. 10).

The dataset retrieved from Prometheus is of cpu sec-
onds consumed, which are directly proportional to the core

count associated with a given pod. We are using con-
tainer cpu usage seconds total for our calculations [29].
The dataset resembles the combined CPU usage of all the
pods of the deployment which gives a general view of the
CPU usage regardless of the number of pods. Since we
communicate with various pieces of software we have chosen
to spend some time creating a development mode for the
Autoscaler. We have done this so that we do not have to
deploy the Autoscaler to Kubernetes each time we would
like to test a new feature. To do this we have created Mock
services meaning that we have the following service mocks in
the Autoscaler:

• MockPrometheusService
• MockKubernetesService
• MockForecasterService

When running the Autoscaler in development mode, these
services will return generated responses from all the services
mocking their behavior, and allowing to test the Autoscaler’s
logic locally.

B. Forecaster

The Forecaster is responsible for abstracting python de-
pendencies, machine learning model training and predicting
future timestamps and their values. The Forecaster is im-
plemented using Python 3.11, Darts 0.32.0, psycopg2 and
Flask. It exposes a REST API with endpoints for training,
tuning and prediction. The Forecaster expects a set of models
to already be available for each deployment, and a single
entry of historical data for each deployment. All data must
be preprocessed using the preprocessing pipeline described in
Section III-D (p. 4) to ensure its validity and avoid exceptions
during training. The Forecaster is implemented to simulta-
neously train and create forecasts for all models using per-
deployment multiprocessing to ensure that the training of one
of the deployments models does not bottleneck the training of
another deployments models, which could be fatal since we
train all models when the TrainInterval is exceeded. Since we
run the training in parallel we could encounter memory issues,
but since the machine we are using has 100GB of RAM we
do not consider this to be an issue in our case ( >5 GB of
RAM should be sufficient see: Section B (p. 19) but more
may be needed depending on the models). When a forecast
has been created for each model, the best forecast according
to the RMSE, calculated between the predicted values and the
historical data as described in Section III-J (p. 8), is inserted
into the database. When the TrainInterval is exceeded each
model for each deployment is trained on the historical data,
i.e. the last hour, and the aforementioned forecast procedure
is executed to update the forecast in the database according to
the newly trained models. Furthermore each updated model is
inserted in the database as well to allow for further training.
The preprocessing pipeline as shown in Figure 3 (p. 6) is
implemented using various data processing measures including
sklearns MinMaxScaler and darts fill missing values, a
custom outlier detection mechanism and a de-noiser mech-
anism using the darts KalmanFilter model.
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Fig. 8: Runner/Monitor functionality visualized.

C. Frontend

The solution includes frontend GUI from which the user
can inspect and make manual changes to the forecast. This
could be used if the user knows that abnormal loads will
occur in the future, which are impossible for the models
to predict, since they may not follow the pattern which the
models expect. The frontend is developed using ReactJS and
consists of two pages shown in Figure 9 (p. 11) and Figure 10
(p. 11); A deployment selection page and a dashboard showing
the forecast and a number of settings which can be adjusted
to the users preference. These include how much the CPU
load should increase or decrease before scaling occurs, the
minimum and maximum amount of pods, and how often
training and prediction should occur. The deployment selection
page displays the active deployments and whether they have
autoscaling enabled. Selecting one of these redirects the user
to the dashboard page mentioned above.

D. Evaluation Tools

To evaluate the performance of our Autoscaling system
in comparison to no autoscaling as well as the HPA from
Kubernetes, we have developed a robust platform where we
have a test application and a workload generator application as
described in Section III-I (p. 6) and a system testing program
to generate datasets for the evaluation metrics described in
Section III-J (p. 8).

1) Test application: The test application consists of an API
that exposes three endpoints which the generator can send
requests to

• Matrix Multiplication (POST)
• Matrix Sum (POST)
• Instant response (GET)

Matrix Multiplication is implemented as a heavy multi-
threaded workload, while the matrix sum is implemented as a

heavy single threaded workload. Finally the instant response
immediately returns a HTTP 200 response. The workload
application does nothing on its own, and the only configuration
it has, is hosting configuration. The test application will
therefore just await incoming requests which means that the
only thing that will have an impact on the CPU utilization is
the requests and the CPU usage will therefore scale linearly
to the request count [10].

2) Generator application: The generator is implemented
using the Locust library, with configurable variable load. Since
the models were trained on data from a real life system, the
generator will follow the curve of the same real life system.
Granting the system a workload that is almost identical to the
real data. The generator further has the ability to create other
types of curves, e.g. a sinusoidal curve, also used in the system
tests to test the adaptability of the system. Scaling the curves
up by the same scalar it was scaled down with produces very
similar curves as shown in Figure 11 (p. 12). This imply that
our workload generation is similar to the load on the system
the models were trained on. This is done by looking at each
timestep in the trained data and then determining the amount
of users at this point in time to make the gradient match the
trained data. The amount of users is scaled down since our
small Kubernetes cluster wont be able to handle the amount
of requests in the original data. If we take a look at Figure 12
(p. 12) we can see that the relation between the two datasets
is rather linear, which means that they are fairly similar. In
addition to this, we calculated various metrics to confirm the
similarity of the datasets which can be seen in: Table VI (p.
12).

E. System Tests
The system tests were implemented as its own project where

it manages setup of:
• A base case.
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Fig. 9: Dashboard displaying all deployments in the cluster.

Fig. 10: View of a specific deployment.
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Fig. 11: The request count curve produced by the generator compared to the dataset (green), for both the curve that closely
resembles the training set (blue), and the curve that is vastly different from the dataset (orange).

Fig. 12: Scatter plot displaying the similarity of the generated
request count and the training data.

Metric Value
Pearson r 0.9760
R2 0.9526
Spearman ρ 0.9492

TABLE VI: Similarity metrics for minute-aggregated, time-of-
day averaged request counts.

• A Ground Truth (HPA).
• The proposed solution.
• Workload applications.
• Workload generator applications.

The base case is defined as a case where no autoscaling is
performed, it should be configured to lead to a worse response
time than the rest, showing a general need to autoscale. The
Ground Truth is defined as a well tested case that is proven

in an industry setting. For this the standard Horizontal Pod
Autoscaler in Kubernetes can be considered sufficient, since
it is the default in Kubernetes. The system tests will along
with the workload generator application, send requests to the
workload-api. The system test only sends very few requests to
record the response times, by sending similar request to that
of the workload generator application. The system test can
be configured through various parameters, the parameters are
shown in Table VII (p. 13).

The purpose of these parameters is to have as similar a
configuration as that of the HPA for the predictive Autoscaler
as possible. The system tests will then generate a set of kube-
configs in JSON format with all the adjustments applied. The
workload configs are a list of tuples containing the minimum
and maximum amount of simulated users for the workload
generator, while also defining the type of workload, whether
its mapped based on the training data or a generic curve.
The system tests also have some parameters unique to the
predictive Autoscaler, namely the forecaster remote config
and deployment settings. The forecaster remote config sets
the target url for the remote Forecaster, while deploy-
ment settings updates the settings table with train interval
or scale period and more based on a dictionary passed to
the tests. The millicores (the unit for amount of CPU used
by Kubernetes [30]) used for cpu utilization calculations
within Kubernetes, are defined in what Kubernetes calls a Re-
source Request and Resource Limits. In cloud environments
1000 millicores correspond to a single vCPU (Virtual CPU)
which similarly corresponds to a thread/core on the physical
CPU (depending on whether simultaneous multithreading is
enabled). This allows cloud service providers to distribute
the hardware computation power among recipients [31]. A
Resource Request is the CPU and memory allocation that
a pod requests from Kubernetes. As such it is critical for
good data that the Resource Requests are well recorded, and
omitting them lets Kubernetes allocate dynamically, which can
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Name Description Default value
size Size of the workload i.e. matrix size 10x10
period The testing period 86400s
scale up Percentage to scale up 50%
scale down Percentage to scale down 20%
min replicas Minimum amount of replicas for the deployment 1
max replicas Maximum amount of replicas for the deployment 10
workload configs A list of configurations for n deployments [(50,2000,”mapped”)]
forecaster remote config Config for optionally running forecaster remotely None
deployment settings Autoscaler database overrides {}

TABLE VII: System Test Parameters.

severely impact the results of our evaluation. Measuring the
millicores used during tests allows us to compare the default
HPA’s ability to scale with the proposed Autoscaling system,
based on how well they minimize this specific metric. Finally
this portion of the implementation serves as the primary way
the predictive Autoscaling system, HPA, and workloads are
deployed to our testing cluster, meaning it acts as our deploy-
ment pipeline. The tests are conducted with the parameters
shown in Table VII (p. 13). The resource requests of the pods
are listed in Section C (p. 19).

V. RESULTS AND EVALUATION

A. Dataset

The model tuning was attempted using two similar datasets,
one with minutely data and the same dataset aggregated by
hour. The models tuned on the minutely data show differing
results, some models performing well, while some models did
not. The models tuned on hourly data were generally able to
capture the patterns better. While tuning each of individual
dataset we plotted the forecasts on top of the training data.
In Figure 13 (p. 14) an example of both data aggregations
can be seen overlaid by a single weeks forecast. As can be
seen in the figure both the model trained on the minutely and
hourly data are able to capture the general patterns, but the
hourly aggregated data seems to capture the patterns better.
Although, proving promising results for multiple models for
both datasets, the hourly being the better one, we decided that
it would be more optimal to use the models which were trained
as a part of [23], since these perform very well on minutely
data. If we were to use the models trained on the hourly data,
we would leave some of the more fine-grained inference to the
models interpolation capabilities, which could perhaps neglect
important data points.

B. Evaluation

We attempted to carry out the training on one of the worker
nodes described in Table IV (p. 6), but experienced that
the model training became slow, especially for the PyTorch
Models, since the resources (no GPU) of these nodes are not
sufficient for these types of models. We shifted the model
training to the machine on which the models were initially
trained, described in Table III (p. 5), which allowed us to
utilize cuda and GPUs. This proved efficient and optimized the
model training time from around 10 minutes to three minutes
for the slowest model (ExponentialSmoothing), while other
models train within seconds.

C. Base case

The base case is a test where there is NO autoscaling applied
to the cluster, which verifies the need for autoscaling. If we
take a look at the results show in Figure 14 (p. 14) we can
see that the response times in the 95th percentile really shows
the need for scaling. While the response times in Figure 14a
(p. 14) mostly fall between zero and one second, we can also
see that when the system is under a much higher load, the
response times start to increase, where most response times
falls between one and five seconds with as slow response times
as 14 seconds as shown in Figure 14b (p. 14), which means
that with a high system load, the need for scaling becomes
much more apparent.

D. Comparison of the Predictive Autoscaling system and HPA

In this section we will be presenting and comparing the
results of our Autoscaling system, and the Kubernetes HPA.

1) Response times: If we take a look in regards to the 95th
percentile response times of the HPA we can see that it gen-
erally lies between almost instant and one second while some
requests takes as much as three seconds for the sinusoidal
workload while up to four seconds on the real workload trace.
If we compare that to our Autoscaling system we can see that
it mostly follows the same pattern for the sinusoidal workload
as well as the real workload trace. We can however see that
the amount of requests that take one second is significantly
lower than the HPA and the slowest response time of the test
application with our Autoscaling system is also no more than
around one second. If we look at Table VIII (p. 17) we can see
that the test of our system shows that it outperforms the HPA
when it comes to average response time in the 95th percentile,
with about 20.53% in the workload trace and 13.93% in the
workload with a sinusoidal curve. We can also see for the
workload trace that the percentage of requests between zero
and one second is roughly equivalent, while decreasing the
amount of requests above one second by 95.28%. In addition
to this, the response time of the application does not go much
higher than one second with our Autoscaling system running.
If we take a look at the different response time ranges for
the sinusoidal workload the amount of requests is like the
workload trace roughly equivalent in the zero to one second
range, while reducing the amount of request above one second
by 93%, and also eliminating response times much longer than
one second.

2) Node power usage: The power usage of our Autoscaling
system is around 3% higher than that of the Kubernetes HPA,
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(a) Minutely aggregated data. (b) Hourly aggregated data.

Fig. 13: Comparison between forecasts from minutely and hourly aggregated data.

(a) Results from base case test with the sinusoidal workload. (b) Results from base-case test with the real workload trace.

Fig. 14: Results from base-case tests.

which means that our solution does not add too much compu-
tational overhead to the system compared to that of the HPA.
It is however important to note that this is the power usage
of the cluster, which does not include the Forecaster, hence
the power usage of our system would possibly be significantly
higher since the Forecaster is the most computationally heavy

part of our system.

3) Pod Count: If we take a look at the results for the
Kubernetes HPA as shown in Figure 15 (p. 15) we can
see that the pod count generally follows the curve of the
incoming requests in both workloads, where it rises to three
pods during peak load and one pod during the lowest load. If
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(a) Results for Ground Truth on the sinusoidal workload. (b) Result for Ground Truth on the real workload trace.

Fig. 15: Results for the Ground Truth tests (HPA).

(a) Results for our system using the sinusoidal workload. (b) Result for our system using the real workload trace.

Fig. 16: Results of the test on our Autoscaling system.
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we compare this to the test of our Autoscaling system as shown
in Figure 16 (p. 15) we can see that for the workload trace,
our system roughly follows the same pattern, with a difference
being the beginning of the rise in load, where our systems
prediction was a bit off and therefore scaled incrementally to
10 pods, but after retraining came down to the same level as
the HPA. If we then look at the sinusoidal workload, we can
see that it also follows roughly the same pattern as the HPA,
but fluctuates a bit more during the rise towards the peak load.
If we then take a look at the average pod count in Table VIII
(p. 17), we can observe that both the sinusoidal as well as
the workload trace, have very similar pod counts compared to
that of the HPA, where it only uses between 2% and 5% more
pods respectively.

E. RMSE and model choice

As discussed in III-J, the RMSE should be considered for
the forecasts, therefore in this section we will evaluate the
RMSE and compare it to the RMSE of the same models in our
preliminary research. In table IX the chosen model(s) is shown
along the average RMSE value for the duration of that test. If
we compare the RMSE of the models to that of our preliminary
research [23] we can see that the RMSE of the TCN model
used on the sinusoidal workload was 59.44% lower than the
previous results of the same model. The FFT model used on
the workload trace, however performed around 53.74% worse
than it did in the preliminary research, while still having a very
low RMSE. In addition to this, even though all the models kept
being retrained, the same model was chosen for both traces
on all forecasts during the duration of the test.

VI. DISCUSSION

Our Autoscaling system, including ML pipeline, model
training and deployment, is able to scale the deployments be-
fore the loads increases, minimizing the average response time
by between 13.95% and 20.53% compared to the HPA, while
lowering the response times above 1 second with between
93% and 95.28%. The Autoscaling system selects the same
models forecast continuously for the same deployment, but the
selected model differs between workloads. The Autoscaling
system exhibits an average pod count of between a 2% to 5%
increase compared to the Kubernetes HPA.

As confirmed above, the proposed Autoscaling system out-
performs the Kubernetes HPA, but some things to consider
include: For deployments with highly stochastic workloads,
which appears to produce seemingly random historical data, it
may be difficult for the models to recognize a pattern, which
can potentially degrade the performance of the Autoscaling
system, which also explains why the workload trace test
ended up using the FFT model since this excels in cases like
that. Further training and a broader time frame may help the
baseline models recognize the patterns with time. Furthermore,
the performance of the models, and thus the ability to scale
accordingly may be limited for certain deployments, until
enough historical data has been acquired and the models have
had time to recognize the patterns for the specific deployment.
The complexity of our system may explain the generally larger

power usage. Since the model training and tuning requires a
fair amount of computational power this may introduce a com-
putational overhead in maintaining the models and updating
the forecasts. This may be a problem for edge clusters with
limited hardware, since this can increase the model training
time and in the worst case inhibit the training process. This
is especially prominent for the PyTorch- and Neural Network
models, since these have much better efficiency in the presence
of a GPU. If a GPU is not available, these may take a long time
to train. This could be solved by pinning the ML deployments
to a node with more computational power, or a GPU. Noisy
data with a large granularity can make it hard to predict small
steps into the future, due to the stochastic nature of such data,
which can fluctuate a lot during short periods of time, resulting
in patterns only becoming visible when inspected in a broader
perspective or perhaps not at all. As a result the Autoscaling
system should only be enabled for deployments which exhibit
clear seasonality and patterns. The Forecaster supports true
ensembling using the Darts ensembling methods, but is not
yet supported as an endpoint in our API, since this requires
careful model selection, as to which models should actually
comprise the ensemble model. A naive way to decide which
models to use in the ensemble model, is by simply selecting
the top three compatible best-performing models as candidates.
Since all models are trained continuously regardless, these
can be used as candidate models for the ensemble model.
Since the ensemble model in Darts have the same methods
as the regular models, it can be also be saved in the database,
and thus compete along the other models, as ensembling does
not always guarantee a better forecast [32]. This also allows
for multi-level ensembling, where ensemble models are used
as candidate models for new ensemble models [33]. When
deciding which model performs the best, we only consider
the RMSE. Considering other error metrics such as MAPE,
MAE and SMAPE to provide a more robust performance
measurement could be considered. The different metrics could
then be weighted and added together to get a single error
metric which considers all the error metrics. The Autoscaling
system provides forecasts from different models which is,
due to the fact that different models are chosen for different
workloads, a solid addition to the system. However, the first
model chosen persists throughout the entire test, which imply
that the historical data, may be slightly influenced by the
models forecast and thus the scaling decision. Since our test
applications takes a short amount of time to spin up, the HPA
can relatively quickly recover from the under-provisioning, but
if the pod creation time was larger our Autoscaling system
may prove even better with regards to the response time,
since the HPA’s pod creation delay is more influential. The
power consumption of the Autoscaling system is slightly larger
than that of the HPA, which is understandable since this is
directly tied to the slightly higher pod count. In addition,
the complexity of the Autoscaling system may further add to
the increased power consumption. Since the measured power
consumption only considers the cluster, and the model training
takes place on a separate machine outside the cluster, this may
be larger than what is measured, and does thus not truly reflect
the actual power consumption of the Autoscaling system.
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Test Response Time (s) Avg. Pods Avg. Watts % (0–1) (s) % (1–2) (s) % (>2) (s)
HPA sinusoidal 0.01385 2.5006 38.5748 99.8146 0.1790 0.0064
HPA workload trace 0.01450 2.7612 38.5734 99.8050 0.1918 0.0032
Our autoscaling (sinusoidal) 0.01192 2.6246 39.7131 99.9870 0.0129 0
Our autoscaling (trace) 0.01203 2.8088 39.7130 99.9907 0.0092 0
Base case (sinusoidal) 0.11899 1.0000 35.9998 92.9697 5.1089 1.9213
Base case (trace) 0.02674 1.0000 35.9988 98.7565 1.2052 0.0383

TABLE VIII: Average response time, pod count, power usage, and latency distribution by workload.

Test Avg. Error (RMSE) Model Chosen
Our autoscaling (sinusoidal) 0.11907315587761118 TCN
Our autoscaling (trace) 0.1204161519889773 FFT

TABLE IX: Error metric and selected forecasting model for
each workload scenario.

VII. CONCLUSION

This thesis presented a comprehensive approach to predic-
tive autoscaling in Kubernetes environments using machine
learning time series forecasting models. The research in this
paper demonstrates that anticipating resource demands and
proactively adjusting resources can significantly improve the
performance compared to current solutions such as the HPA.
We developed and evaluated a complete Autoscaling system,
that act as a custom Kubernetes controller for predictive scal-
ing, and established a methodology for evaluating autoscaling
systems. Our results show that our predictive Autoscaling
system reduces the average response time by between 13.93%
and 20.53% while reducing the amount of requests above
one second by between 93% and 95.28% depending on
the workload according to our testing. It also shows very
promising results in terms of adaptability since the system
was able to outperform the HPA on the sinusoidal workload
which it had not been pre-trained on. The system has been
designed with Kubernetes as well as production readiness in
mind, incorporating monitoring, and integration capabilities
with the broader Kubernetes ecosystem as well as the use of
as few dependencies as possible. While some limitations exist,
particularly for applications with highly unpredictable work-
loads, the benefits of predictive autoscaling is very promising
for an array of different applications running in Kubernetes. As
the amount of containerized applications continue to increase
and the complexity of cloud application architectures also
increases, predictive resource management will become more
and more important for maintaining performance, efficiency
and cost-effectiveness. Our system shows that it is possible to
improve the QoS significantly while only using slightly more
power compared to the HPA, but more testing is still needed
to validate this further, due to the nature of ML as well as
the variance in cloud applications. Our contribution with this
research represents a significant step toward realizing the full
potential of predictive autoscaling, to provide more elasticity to
cloud systems, while also being open source and reproducible.

A. Future work

In the following section, various future improvements to the
Autoscaling system will be discussed.

1) More testing: While our tests show very promising
results we limited our investigations to a single test case due
to time constraints. In the future we would like to conduct a
variety of different tests of the system. For instance, it would
be highly beneficial to expose the system to tests with even
more varying workloads, harder to predict workloads, longer
test periods, as well as tests with scaling of a different test
application that could for instance take much longer to start
up, to further validate the robustness and adaptability of the
Autoscaling system.

2) Meta model: train a model to select the best model:
In our current solution we have implemented a method for
selecting the best forecast, where we get a forecast from all
available models and then we select the best model based on
the RMSE. Instead of taking this approach a meta model could
be trained that received all the forecasts from the models,
and then made various error calculations as well as looked
at historical data to determine the best forecast provided by
the models, making the forecast selection more precise.

3) Feature selection: To further improve the precision of
the forecasts as well as the training time, we would in the
future also like to implement feature selection provided by
the already implemented tuning functionality. The feature se-
lection works by, ranking the hyperparameters by importance
for the tuning. This makes it possible to narrow the hyperpa-
rameter search space by excluding less important parameters
and therefore decrease the tuning time while also minimizing
the possibility of the models spending too much time tuning
hyperparameters that do nothing.

4) Seasonal models: It would also be interesting to look
into having various models for different seasons. Since loads
on different deployments tends to follow various patterns
depending on different parts of the week, and also different
parts of the year, it could improve the performance of the
system to have different models that are trained specifically
on for instance weekdays and weekends or various weeks
during the year where there is more or less traffic than usual.
This would mean that when a certain part of the week or
year arrives, the system would select the appropriately trained
model for this season, hence make the forecasts more precise.

5) Implement self retuning: While we have provided the
backend functionality in the Forecaster to retune the hyper-
parameters of the models, due to time constraints we didn’t
implement the functionality for the user to issue a model
retuning manually from the GUI. The retuning differs from
the retraining process by working with completely new model
instances. The process simply carry out the search for optimal
hyperparameters again. This should function as a fallback,
should the performance of the models not increase solely
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by retraining. In the future we would like to implement this
feature, to make the forecasts from the models even more
precise.

6) Vertical Autoscaling: Like our preliminary research [23]
mentioned it would be interesting to train a model choosing
between horizontal and vertical scaling. After selecting which
way to scale, another set of models could be used to predict
the actual values, which could be beneficial since it is much
faster to do vertical scaling and also if sudden unpredictable
spikes occur, the system would be able to quickly vertically
scale all the already running pods to accommodate this.

7) Distributed retraining: To allow for even faster retrain-
ing of the models, it could be beneficial, if available, to utilize
multiple GPU’s to retrain the models during deployment.
This could be done in a way where the training part of the
Forecaster is abstracted away and deployed on one or more
machines that has one or multiple GPU’s available while
still keeping the forecasting part of the Forecaster in the
cluster. This would allow for creating a queue where the
Forecaster could request retraining of the models for a certain
deployment, and then it would get done when the GPU’s
on one of the machines is available, while still providing
new forecasts from the models in their existing states. This
would also scale very nicely, since the retraining simply would
happen when the GPU’s are available.

8) Take Power Usage into Account: Our preliminary re-
search also mentions taking power usage into account. It
would be interesting, to see if the models would be able to
predict the CPU usage and determine the least amount of pods
necessary for the amount of incoming requests to minimize
the power usage, and make the Autoscaling system a more
environmentally friendly option than current solutions.

9) Overall system complexity: The predictive Autoscaling
system has a lot of communication which can be avoided if
the architecture is designed using more robust patterns. If this
project were to have a third iteration, the SQL database and
the repeated API calls to Prometheus and the Forecaster could
be avoided by designing the system around an event-based
database like Apache Kafka and have both the Autoscaler
and the Forecaster consume and produce on topics rather than
sending API calls and checking status codes constantly. The
system would effectively act the same but the complexity of
our code would be considerably reduced with the absence of
a traditional database and predefined scaling, forecasting and
training timing.

10) GUI Extensions / Improvements:
• Deploying the GUI in the same container as the API is

not ideal in production environments, where it should be
deployed separately to allow for load balancing. For our
use case, we consider it to be sufficient, since independent
scaling of the backend and frontend would not contribute
further to our test cases than concurrent scaling does.

• In the future we would also like to provide the possibility
to view the forecasts in the frontend by different time
windows, such that the user would be able to select
between a variety of different windows and by doing that
obtaining more fine-grained knowledge of the behavior
of the system. The GUI could be further extended by

displaying previous time windows with the historical data
displayed along the forecast, such that the user is able to
gain insight in the forecasting performance and verify
whether it is sufficient or if some of the settings should
perhaps be modified.

• The GUI could further include a hyperparameter configu-
ration page for each deployment, where the user is able to
define the hyperparameter search space themselves. This
could, if configured correctly, reduce the time it takes to
tune by reducing the search space or simply leaving out
parameters which are known to be indifferent.

11) Usability Tests: In the future we would also like to
test the usability of the frontend. Currently it provides only the
features we thought ourselves would be relevant as well as the
design we thought works well that has been implemented, but
it would be very beneficial to make some usability tests with
actual system administrators which could provide valuable
insights into how a great user interface would be, if this was
to be an actual product.

PROCESS

From our past experiences from our preliminary research
[23] we chose a different approach for managing the project,
to make the project progress more smooth. We choose to
use a mix of daily check-ins from scrum as well as setting
and planning various milestones throughout the semester. We
had a status meeting at the end of each month where we
looked at what we had accomplished and how the state of
the development was. We then planned the upcoming monthly
milestone where the next steps in development would be
discussed and prioritized in order to full fill our problem
statement. We used again a Kanban board in GitHub which
can be seen in Figure 17 (p. 19) where we made an issue
representing the milestone, and then added issues from our
backlog to that milestone. We also made a Gantt chart which
can be seen in Figure 18 (p. 19) where all the milestones for
the entire work period could be seen. In addition to this we
tried to prioritize the different issues by both importance and
time-frame, which meant that the planning was much easier
than last semester. This worked out great, and we were able
to reach all of our milestones. However, the act of trying
to predict the time-frame turned out to quite difficult in the
beginning and we were often finished with the milestone
earlier than expected. This however got better during the
semester and we were able to match the amount of work much
better to the milestones as time went on. This process allowed
us to make very good progress all throughout the semester.
However at different points we encountered that some of the
tasks made, was very large which meant that some of the group
members encountered some idle time waiting for the task to be
finished. So in the future we would choose a similar process,
but make sure that the tasks made were smaller such that we
could take advantage of all the group members at all times.
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Fig. 17: A screenshot of the Kanban board used during the semester.

Fig. 18: A screenshot of our Gantt chart.
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APPENDIX A
SOURCE CODE

The source-code for the system, as well as the tests,
datasets for results, generator etc. can be found here:
https://github.com/orgs/aau-p9s/repositories

APPENDIX B
RAM USAGE WHEN TRAINING

We have tested the simultaneous training of all the models
on two different deployments on a Lenovo Thinkpad P14S
Gen 5 with 32 GB of RAM, the peak memory usage can be
seen in: Figure 19 (p. 20).

APPENDIX C
SYSTEM TESTS RESOURCE REQUESTS

The system tests was conducted on a cluster consisting of
pods with resource requests listed in Table X (p. 20).
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Fig. 19: RAM usage when training the models of two deployments.

Pod vCPU Memory Pod counts
Generator 500m 1000Mb n
API 500m 100Mb n * m
Autoscaler 500m 1000Mb 1
Forecaster unlimited* unlimited* 1

TABLE X: System tests resource requests (n = workload type
count, m = workload api replicas) *system dependant
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