
Mandatory Resume

Process mining enables organizations to get insights about their business process executions. Among
the key tasks in process mining, process discovery is a central task that aims to construct interpretable
process models that reflect recorded behavior, as process models serve as the baseline for many other
tasks. These models are evaluated along four quality dimensions: fitness, precision, generalization,
and simplicity. While recent state-of-the-art discovery methods, such as Inductive Miner and Split
Miner, are efficient and widely adopted, they lack the ability to balance the four quality dimensions.
In contrast, genetic algorithms offer flexibility and potential for modeling complex dependencies,
but have historically lagged in both performance and adoption due to their slow convergence and
limited scalability.

We revisit the genetic approach to process discovery and propose a new genetic process discovery
algorithm named Genetic Tree Miner (GTM). The GTM algorithm is designed to efficiently explore
the process model search space while maintaining high-quality model output, and with a significant
speed-up in discovery time compared to other genetic-based discovery algorithms. Several improve-
ments distinguish GTM from prior genetic-based techniques. The population of process models in
the GTM is represented as process trees because of their clear hierarchical structure, which ensures
soundness. To push the initial population towards high-quality models, we create individuals by
sublog samples combined with discovery via the inductive miner. This approach provides individual
process models with some correct behavior instead of complete randomness, but still ensures popu-
lation diversity by the sublog samples. This approach intends to facilitate fast convergence towards
an acceptable process model.

One of the main reasons for genetic algorithms’ known low performance is due to the objective
function evaluation, which is a time-consuming step. To accelerate the evaluation step, we introduce
a C++ implementation of fitness and precision metrics, which yields objective function evaluation
speedup compared to traditional Java/Python-based tools. Another technique to lower the computa-
tionally expensive task of objective function evaluation is a log sampling strategy that filters the event
log depending on the number of unique traces in order to balance the accuracy and computational
costs. The search for better process models works by performing crossovers and tailored mutation
operations. Crossovers are done by swapping subtrees of two process trees, and mutations can ei-
ther be repositioning an activity leaf, removing a subtree, changing an operator type, or inserting
an activity as a loop. In our crossover and mutation implementation, we ensure both model validity
and variety. To guide the search, we implement a refined objective function where we emphasize
a balance of fitness, precision, and two simplicity metrics to avoid overly complex and overfitted
process models. The GTM includes various hyperparameters, and we intend to propose a robust
default set of hyperparameter values that are applicable across diverse event logs. This is done by
using Bayesian Optimization of the hyperparameters performed on three event logs, and using these
results to identify the default values.

Through an extensive experimental evaluation on 13 publicly available real-life event logs, we
benchmark GTM against Inductive Miner and Split Miner. Results show that GTM consistently
outperforms both methods in terms of F1-score, achieving competitive performance on fitness and
precision while maintaining reasonable simplicity. GTM-10 (10-second timeout) already surpasses
Inductive Miner in most cases; with increased time (GTM-60 and GTM-300), GTM dominates on
F1-score and performs on par in generalization. Our results demonstrate that genetic algorithms
remain a viable and competitive strategy for process discovery, provided that evaluation, genera-
tion, and search strategies are carefully optimized. The GTM successfully narrows the gap between
flexibility and efficiency in genetic process discovery. We provide open-source access to the GTM
implementation, including datasets, benchmarking scripts, and documentation.

All You Need Is Evolution: Rethinking Genetic Algorithms for
Process Discovery

Jeppe Berg Axelsen, Frederik Hecter Kowalski, and Richard Nygård

Aalborg University

Keywords: process discovery · genetic algorithms · empirical evaluation.

Abstract. Process mining focuses on deriving accurate and understandable process models
from event logs, with the goal of balancing key quality dimensions: fitness, precision, gener-
ality, and simplicity. Genetic algorithms have shown promise in navigating this trade-off due
to their ability to explore a wide search space. However, traditional genetic process discov-
ery approaches often suffer from long convergence times and typically fall short when com-
pared to state-of-the-art algorithms such as the Inductive Miner and Split Miner. We revisit
genetic process discovery and propose a novel enhancement to the evolutionary framework that
significantly improves both its efficiency and effectiveness. Our approach introduces improve-
ments such as the ability to generate good initial populations, highly efficient fitness estimation,
and adaptive log filtering, which accelerates convergence and guides the search toward higher-
quality models. Through extensive evaluation on benchmark event logs, we demonstrate that
our enhanced genetic algorithm achieves competitive performance, producing process models
that rival those discovered by leading algorithms in terms of fitness, precision, and structural
quality. These results suggest that, with the right improvements, genetic approaches can play a
valuable role in the process discovery toolbox.

1 Introduction

In today’s data-driven world, many businesses increasingly generate and store vast amounts of data
during the execution of their real-world business processes. This data contains valuable insights
into how the processes are actually executed, which can differ from how they are intended to work.
Therefore, this data contains information which have the potential to help improve these processes
and enable a business to become more efficient. These potentials can be achieved using techniques
from process mining [1], which is a field that bridges the gap between data science and process
science. The process mining techniques can help reconstruct process flows, identify bottlenecks,
detect deviations, and recommend improvements.

One of the main tasks in process mining is process discovery [1, p. 163], which we provide an
overview of in Figure 1. The starting point is an interaction between a real-world process and a
software system. The system captures the execution of a process and stores the information as event
logs, which contain detailed records of each activity performed. An event log serves as the input
to a process discovery algorithm, which aims to derive a process model that reflects the real-world
process flow. A process model serves as a basis for further process analysis tasks, so the discov-
ery algorithm’s ability to derive a high-quality process model is crucial. Many algorithms exist for
process discovery, but they face different challenges such as dealing with noise, complexity, concur-
rency, and incomplete data. These challenges make the process discovery a field where researching
and developing better algorithms is still relevant.

Real World

Software Systems

Event Logs

Process Model

Interacts

Data
Logging

Discovery

Models

Fig. 1: Overview of process discovery elements and their relations.

Genetic algorithms (GAs) [2], which are used for search and optimization problems in large and
complex solution spaces, have already been used for discovering process models, but have been
criticized for their slow performance due to expensive computational operations. As a result, these
types of algorithms are often underrepresented in benchmark competitions alongside more modern
discovery methods, such as the Inductive Miner (IM) [3] and Split Miner (SM) [4].

We introduce a refined genetic algorithm for process discovery, Genetic Tree Miner (GTM), which
is enhanced in terms of speed and performance. Our optimizations of the genetic approach enable
GTM to be a competitive discovery algorithm compared to IM and SM on commonly used bench-
mark event logs. A key optimization is that we implemented a faster approach to calculate fitness
and precision metrics in C++ rather than using Python and Java tools. To search for better process
models, we focus on fitness [5], precision [6], and a refined simplicity metric. We find a single set of
hyperparameters for the GTM, using Bayesian Optimization [7] techniques. We ensure that all activ-
ities recorded in the event log are represented in the discovered model. The results of our benchmark
test show that GTM is a competitive algorithm, and that GAs in general are relevant in the research
for better process discovery algorithms.

1.1 Related Work

Early process discovery approaches extract simple control-flow patterns from logs. One of the first
process discovery algorithms developed was the α-algorithm [8]. It analyzes directly follows re-
lationships in the event log to construct a Petri net by identifying patterns such as sequence, con-
currency, and choice. While its theoretical foundation is simple and sound, Alpha Miner struggles
with noise, infrequent behavior, and non-free-choice constructs, often producing unsound or overly
simplistic models in real-life logs.

Later, the Heuristic Miner [9] was introduced. Heuristic Miner addresses some of the limitations
of the α-algorithm by incorporating frequency-based heuristics. It computes dependency measures
between activities to construct a more robust process model, capable of handling incomplete and
imprecise logs. The Heuristic Miner has been shown to produce relatively good fitness and precision
on noisy logs, but it has difficulties producing sound and simple models.

Page 2 of 40

ILP Miner [10] frames process discovery as an optimization problem, utilizing integer linear pro-
gramming to derive Petri nets that perfectly reproduce the event log. This approach guarantees
soundness and fitting precision under the assumption that the event log is complete. However, ILP
Miner suffers from high computational complexity and poor scalability to large or noisy logs [11].

This leads us to the state-of-the-art methods, which are both efficient and provide guarantees on the
structure of the mined models. The most recognized process discovery algorithm is the IM [3], which
constructs block-structured process trees by recursively splitting the DFG of the event log, which is
constructed using frequency thresholds. Its core strength lies in its guarantee of soundness: the re-
sulting model is always deadlock-free and complete by construction. This makes IM particularly
suited for applications where semantic correctness and replayability are crucial. IM also handles in-
frequent behavior gracefully by allowing configurable noise thresholds during log splitting. Another
core strength of the IM is that the discovered model is fitting. In recent years, the SM [4] [12] has
been emerging as a reliable process discovery algorithm designed to balance model quality in terms
of fitness, precision, generalization, and simplicity. It begins by constructing a DFG from the event
log, filtering infrequent behavior based on configurable thresholds. It then applies a gateway-splitting
procedure to identify and differentiate between exclusive choices and parallel branches, enabling SM
to discover good and well-balanced process models. If the DFG is acyclic, SM guarantees the pro-
duction of a sound process model; however, if the DFG is cyclic, only a deadlock-free process model
is guaranteed.

The use of GAs for the process discovery problem has been investigated [13–17]. The pioneering
work [13] showed the initial applications of GAs to process discovery; nevertheless, it fails to show
the practical applications on real-life event logs. An extension of this work is the Evolutionary Tree
Miner (ETM) [14], which is a flexible algorithm allowing the user to guide the discovered process
tree by weighting the four quality measures. ETM uses process trees as the internal representation
and therefore guarantees sound workflow nets. ETM introduces node mutation, subtree removal, and
node addition. However, they provide a limited evaluation of ETM compared to other methods on
a broad variety of real-life event logs. An evaluation of ETM on real-life eventlogs [4], shows that
even after 60 minutes of running time, the ETM struggles to produce well-balanced process models.

In contrast to ETM and other Genetic-based process discovery approaches, our method introduces
several innovations that enhance performance, scalability, and model quality. It is often the case in
GAs that the objective function evaluation is the most time-consuming part. To mitigate this, we
provide efficient and fast fitness and precision implementation in C++, offering significant runtime
improvements over previous tools developed in Java or Python. Additionally, we introduce a mu-
tation specifically designed to capture simple self-loop behaviors. Our objective function is refined
by removing the generalization metric and improving the simplicity component to more effectively
penalize unnecessary model complexity. We conduct a hyperparameter search using Bayesian Op-
timization [7] to find suitable and robust hyperparameter values that can be used by the end user.
Unlike some existing approaches, our method avoids caching of intermediate process trees, which
simplifies the architecture and reduces memory usage. We also ensure that every activity in the event
log is uniquely represented in the discovered model, preventing activity omission. Furthermore, we
refrain from reducing the process tree after discovery, allowing both beneficial and potentially prob-
lematic constructs to remain visible for inspection. Collectively, these contributions lead to a more
efficient and effective genetic approach to process discovery, as demonstrated through a comprehen-
sive evaluation on real-life event logs.

Page 3 of 40

2 Background

In this section, we present an overview of relevant concepts to establish a foundation for our process
discovery algorithm. This includes key concepts of process mining, process model representations,
and quality measures commonly used to evaluate discovered process models.

2.1 Event Logs

A fundamental concept in process mining is the event log, which contains records of executions of
real-world business processes. Each trace in the log corresponds to a single instance of the process
and is a sequence of events, where each event includes at least an activity label, a case identifier, and
a timestamp. We define an abstraction of an event log, which captures the essential structure of an
event log while omitting timestamps and additional attributes such as resources.

Definition 1 (Simple event log). [1] Let A be a set of activity names. The simple trace π is a
sequence of activities, i.e., π ∈ A+. A simple event log L is a multi-set of traces over A, i.e.,
L ∈ B(A+).

An example of a simple event log is shown in Figure 2a, illustrating three traces with different
activity sequences.

2.2 Petri Nets

In the context of process mining, Petri nets [18] play a central role as the target model for repre-
senting discovered process behavior. Their semantics support formal reasoning, making it possible
to verify properties such as soundness, precision, and fitness with respect to observed event data.

Definition 2 (Petri Net). [1] Let A be a finite set of observable activities such that τ ̸∈ A. A (la-
belled) Petri net is a four-tuple N = (P, T, F, ℓ) where

– P is a finite set of places,

– T is a finite set of transitions such that P ∩ T = ∅,

– F ⊆ (P × T) ∪ (T × P) is a set of directed arcs, and

– ℓ : T → A∪{τ} is a labelling function assigning activity names to transitions; here τ represents
the silent (unobservable) activity.

We extend the labelling function from Definition 2 to sequences of transitions, such that ℓ(t0t1 . . . tn) =
ℓ(t0)ℓ(t1) . . . ℓ(tn) where we define ℓ(τ) = ϵ as the empty string. It allows us to relate entire execu-
tion traces of a Petri net to the observed traces in the event log. This is essential when evaluating a
Petri net to see how well it represents the behavior in its corresponding event log.

In order to formally reason about the dynamic behavior of systems modeled by Petri nets, it is
essential to specify not only the net structure but also the current distribution of tokens across its
places. This leads to the concept of a marked Petri net, which extends a Petri net with a marking
function that captures the state of the system.

Definition 3 (Marked Petri Net). A marked Petri net is a pair (N,M) where N = (P, T, F, ℓ) is a
Petri net and where M : P → N0 is a marking assigning a number of tokens to each place.

Page 4 of 40

Case ID Activity Timestamp

1 a 08:34
1 b 08:45
2 a 09:02
2 c 09:15
2 d 09:30
2 d 09:45
3 a 10:05
3 d 10:15
3 d 10:25
3 c 10:35

(a) Event log example repre-
senting the set of traces L =
{ab, acdd, addc}

→

a ×

c

d

b∧

(b) Process tree describing the
language ab+ ad∗cd∗, black box
depicts the τ action

a

bcd

(c) A sound WF-net with the same
trace language as the process tree
(filled transitions have label τ)

Fig. 2: Event log, its process tree model and the corresponding Petri net

The marking M represents the state of the Petri net at a given point in time by specifying the number
of tokens in each place.

Definition 4 (Subset of a Marking). Given a marking M , a marking M ′ is a subset of M if

∀p ∈ P, M ′(p) ≤ M(p).

We denote this as M ′ ⊆ M .

The evolution of a marked Petri net is governed by the firing rule of transitions, which consume and
produce tokens according to the flow relation F and the current marking. This can be formulated as
follows:

Definition 5 (Firing Rule). A transition t ∈ T can fire in a marking M and reach a marking M ′,
written M [t⟩M ′, if (i) M(p) > 0 for every p ∈ P such that (p, t) ∈ F (t is enabled in M) and (ii)
M ′(p) = M(p)− F (p, t) + F (t, p) where F (x, y) = 1 if (x, y) ∈ F , otherwise F (x, y) = 0.

For a sequence of transitions t0, t1, . . . , tn ∈ T , we write M0[t0t1 . . . tn⟩Mn (or simply M0 →∗

Mn if we are not interested in transition names) if there are markings M1, . . . ,Mn−1 such that
Mi[ti⟩Mi+1 for all i, 0 ≤ i < n.

To facilitate reasoning about the structure and behavior of Petri nets, it is useful to introduce the
notions of preset and postset of a transition.

Definition 6 (Preset and Postset of a transition). [5] The preset of a transition, •t, is the set of all
places p ∈ P such that (p, t) ∈ F . The postset of a transition, t•, is the set of all places p ∈ P such
that (t, p) ∈ F .

Intuitively, the preset •t consists of all input places from which a transition consumes tokens when
it fires, while the postset t• includes all output places to which tokens are produced. These sets
are fundamental in analyzing the flow of tokens and the causal relationships between events in the
modeled process. Traces describe the observable behavior of a Petri net by recording sequences of
executed activities. A trace corresponds to a sequence of transitions that can be fired from the initial
marking, and whose labels form the observed activity sequence.

Page 5 of 40

Definition 7 (Trace of a Petri Net). A sequence of activities π ∈ A∗ is a trace of a marked Petri net
(N,M0) if there is a firing sequence of transitions t0, t1, . . . , tn ∈ T such that M0[t0t1 . . . tn⟩Mn

for some marking Mn and ℓ(t0t1 . . . tn) = π. A trace is said to be complete if it cannot be extended
to a longer trace.

To model complete processes with well-defined starting and ending points, the notion of a workflow
net (WF-net) is often used. A WF-net ensures that every component of the Petri net contributes to
the execution of a process from an initial to a final state. Soundness further guarantees desirable
behavioral properties, such as proper completion and absence of deadlocks or leftover tokens.

Definition 8 (Sound WF-net). A Petri net N = (P, T, F, ℓ) is a WF-net if

– P contains a unique start place i with no ingoing arcs,

– P contains a unique end place o with no outgoing arcs,

– all transitions and places are on some path from i to o.

Let Mi be the initial marking where Mi(i) = 1 and Mf be the final marking where Mf (o) = 1 and
all other places in Mi and Mf have no other tokens. A WF-net is sound if

– M →∗ Mf for all markings M where Mi →∗ M , and

– Mi →∗ M and M(o) ≥ 1 then M = Mf , and

– Mi →∗ M for all places p then M(p) ≤ 1.

The Petri net in Figure 2c is an example of a sound WF-net. This ensures that, starting from the
initial marking, the process can always reach proper completion, and that no extraneous tokens or
deadlocks remain at the end of execution.

Definition 9 (Language of a WF-net). Given a sound WF-net N , its language T is the set of all
activity sequences in A∗ for which there exists a firing sequence of transitions leading from the initial
marking Mi to the final marking Mf . Formally,

T (N,Mi,Mf) = {ℓ(t0 . . . tn) | t0, . . . , tn ∈ T, Mi[t0 . . . tn⟩Mf}.

In Figure 2c, the set of complete traces of the net can be described by the regular expression ab +
ad∗cd∗.

2.3 Process Trees

An alternative model representation is the process tree [19], which has a hierarchical structure and
guarantees soundness by design. Definition 10 inductively defines the set of process trees P , together
with the set of traces T (Q) ⊆ 2A

∗
generated by the process tree Q ∈ P .

Definition 10 (Process tree). Let A be a finite set of activities with τ /∈ A. The set of process trees
P over A is the smallest set such that τ ∈ P where T (τ) = {ϵ}, a ∈ P for any a ∈ A where
T (a) = {a} and if Q1, . . . , Qn ∈ P for n ≥ 2 then

– Q ≡→(Q1, . . . , Qn) ∈ P (sequential composition) where T (Q) = T (Q1) ◦ . . . ◦ T (Qn),

Page 6 of 40

– Q ≡ ×(Q1, . . . , Qn) ∈ P (choice operator) where T (Q) = T (Q1) ∪ . . . ∪ T (Qn),

– Q ≡ ∧(Q1, . . . , Qn) ∈ P (parallel composition) where T (Q) = T (Q1) ⋄ . . . ⋄ T (Qn),

– Q ≡ ⃝(Q1, . . . , Qn) ∈ P (loop operator) where T (Q) = T (Q1) ◦
(
(T (Q2)∪ . . .∪T (Qn)) ◦

T (Q1)
)∗

.

Here ◦, ∪, and ∗ are the classical composition, union, respectively. Kleene star operations on
languages, and the shuffle (interleaving) operator ⋄ used in parallel composition is defined as
aw ⋄ a′w′ = {a ◦ (w ⋄ a′w′)} ∪ {a′ ◦ (aw ⋄ w′)} for a, a′ ∈ A and w,w′ ∈ A∗, where w ⋄ ϵ =
ϵ ⋄ w = {w}. It is extended to languages as follows: L ⋄ L′ =

⋃
w∈L,w′∈L′

w ⋄ w′.

An example of a process tree (in the standard graphical notation) is given in Figure 2b. The trace
language includes all the traces from the log L depicted in Figure 2a. It is well known [20] that for
every process tree Q ∈ P there is a sound WF-net (N) such that T (Q) = T (N,Mi,Mf). Figure 2c
shows such a WF-net converted from the process tree in Figure 2b.

2.4 Process Model Quality Metrics

When evaluating the quality of a discovered process model, it is essential to adopt a multidimen-
sional perspective. A model’s usefulness cannot be determined by a single criterion alone, as dif-
ferent metrics capture different aspects of quality. We can evaluate process models using the widely
recognized: fitness, simplicity, precision, and generalization. Fitness measures how much of the ob-
served behavior in the event log can be reproduced by the process model, where high fitness indicates
that the model can reproduce most of the behavior in the event log. Fitness alone cannot be used to
evaluate performance. An overly complex model that includes every trace in the event log has perfect
fitness but limited use in practice. Simplicity measures the structural complexity of a model and fa-
vors the simplest possible models, whereas simpler models are preferred because they are easier for
humans to interpret. Precision quantifies the amount of extra behavior the model allows other than
what is observed, whereas models allowing too much behavior should be penalized by this dimen-
sion. Precision is closely related to the generalization dimension as it deals with a model’s ability
to generalize to new, unseen behavior not included in the event log. Since event logs only contain
positive examples, the model should ideally allow for unseen behavior [1]. Many different measures
have been proposed to calculate these four dimensions. We will here present the ones implemented
in the PM4PY library [21], which we proceed to detail.

Fitness Fitness can be measured using token-based replay. Token-based replay assesses fitness by
replaying each trace on the Petri net, penalizing any discrepancy between the trace and the Petri net.
Replaying a trace yields four token counts: consumed, produced, missing, and remaining tokens.
Following the firing rule, whenever a transition is fired in a Petri net, a token is consumed from
each input place, and a new token is produced for each output place. Missing tokens are inserted
whenever they are needed to replay a trace. The remaining tokens are the ones left in the Petri net
after replaying the trace.

Definition 11 (Log-level Fitness). Let L denote an event log and N denote a Petri Net. The log-
level fitness of N is:

F (L,N) =
1

2

(
1−

∑
π∈L m(π,N)∑
π∈L c(π,N)

)
+

1

2

(
1−

∑
π∈L r(π,N)∑
π∈L p(π,N)

)
,

where m, c, r, and p represent:

Page 7 of 40

– m(π,N): The number of missing tokens during the execution of π in N ,

– c(π,N): The number of consumed tokens during the execution of π in N ,

– r(π,N): The number of remaining tokens after the execution of π in N ,

– p(π,N): The number of produced tokens during the execution of π in N .

A fitness score of F (L,N) = 1 indicates perfect alignment between the L and N , meaning that N
fully explains all behavior observed in L without any missing or remaining tokens.

When evaluating fitness, it is important to account for silent transitions, which are transitions in a
Petri net that do not correspond to any observable event in the log. These transitions play a crucial
role in modeling routing behavior, such as parallelism, choice, and loops, without requiring a cor-
responding activity in the event log. They are used to guide the model’s token flow to enable the
replay of visible transitions. However, incorrect or excessive use of silent transitions can result in
additional missing or remaining tokens, thus negatively impacting the fitness score. Consequently,
although silent transitions are not matched to events, they still influence fitness by affecting the
structural alignment between the trace and the model.

Precision Precision can be measured by comparing the state space of a Petri net execution while
replaying a log. The precision measure presented in [6] uses the notion of escaping edges, which
represents behavior permitted by the model but not reflected in the log.

Definition 12 (Direct Successor Function). Let A be the set of all activities. Define the function

Γ (L) : A∗ → P(A)

such that for any prefix π ∈ A∗, the value Γ (L)(π) is the set of activities that directly follow the
prefix π in at least one trace of the event log L. Formally,

Γ (L)(π) = {a ∈ A | π ◦ a ◦ π′ ∈ L}.

Definition 13 (Precision). Let L be an event log, π be a trace in L, and N be a WF-net. Precision
for log L and WF-net N is defined as:

P(L,N) = 1−
∑|L|

i=1

∑|π|+1
j=1 |Sij \ Γ (L)(π1 ◦ . . . ◦ πj)|∑|L|

i=1

∑|π|+1
j=1 |Sij |

Where, Mij is the marking after replaying j event of trace πi in the log and Sij is the number of
enabled transitions in marking Mij , formally: Sij = {t ∈ T | Mij(•t) > 0}

When P (L,N) = 1, the model perfectly describes the behavior in the log (no escaping edges) and
allows for no additional behavior. Vice versa, when P (L,N) nears 0, the model allows an increasing
amount of behavior not observed in the log.

Page 8 of 40

Generalization A generalization measure captures the behavior of the model beyond the observed
traces.

Definition 14 (Generalization Measure). [22] Let T be the set of transitions in a process model.
For each transition t ∈ T , let ξ(t) denote the number of times transition t has been executed in the
event log. The generalization of the process model is defined as

Q = 1−

∑
t∈T

(√
ξ(t)

)−1

| T |
.

Definition 14 is based on the intuition that a model is generic if all transitions in the model are
frequently fired. Hence, a high generalization means the process model is less specific to the event
log and allows a lot of unobserved behavior.

Simplicity Simplicity is a measure of complexity uncoupled from observed behavior and thus
merely accounts for the process model’s structure. The goal of simplicity is to balance model com-
plexity with the ability to represent the observed event log accurately. A simpler model is often
preferred because it is easier to interpret, maintain, and communicate to stakeholders. There exist
many different ways of computing the simplicity of a model, e.g., the number of edges and behav-
ioral complexity. We use a specific simplicity detailed in [23]. This simplicity measure attributes
complexity to the number of AND-splits and OR-splits. Consequently, a Petri net with many such
constructs receives a low simplicity.

3 C++ Implementation of Existing Fitness and Precision Metrics

In this section, we introduce the algorithmic details on how to calculate the variant of fitness in [5]
and precision in [6] using Petri nets, including how to deal with silent transitions. We implement
both in C++ to improve their respective runtimes over their implementations in the PM4PY Python
library.

Algorithm 1 demonstrates the calculation of fitness for a single Petri net and event log. The algorithm
initializes token-based replay and starts iterating over the activities in each trace in the event log.
First, it identifies the transition that corresponds to the activity aj . Regarding ℓ−1, if ℓ is not injective,
the algorithm can be extended to make a random choice between the ambiguous transitions or use
other more sophisticated techniques. If some transition, t, cannot fire, the algorithm attempts to move
tokens into places in the preset of t by firing silent transitions. As detailed in Algorithm 3 that shows
silent transitions handling, the set of places with no tokens in the preset of t is denoted as δ, and
the set of places with at least one token, that are not in the preset of t, is denoted as λ. Algorithm 3
attempts to move tokens from λ to δ through the shortest possible silent transition paths until t is
enabled or the maximum iteration limit is reached. If t is enabled, it is fired; otherwise, missing
tokens are inserted at places in the preset of t and τ -transitions are reverted. Afterwards, trace replay
continues and the token counts are updated according to Definition 11. Algorithm 1 terminates once
all traces have been replayed and returns the fitness score.

Page 9 of 40

Algorithm 1 Fitness
Require: Marked Petri net: N = (P, T, F, ℓ,Mi), final marking: Mf , event log: L
1: Initialize missing, remaining, produced, consumed← 0
2: for π = a1a2 . . . am ∈ L do
3: Mcurr ←Mi

4: produced← produced +Σp∈PMi(p)
5: for j = 1 to m do
6: t← ℓ−1(aj) // If ℓ is not injective pick a random transition such that ℓ(t) = aj

7: if ∃p ∈ •t. Mcurr(p) = 0 then
8: Find t1 . . . tn ∈ T ∗ s.t. ℓ(t1) = ℓ(t2) = . . . = ℓ(tn) = τ and Mcurr[t1 . . . tnt⟩ // Algorithm 3
9: if Mcurr[t1 . . . tkt⟩Mnew for some marking Mnew then

10: Mcurr ←Mnew

11: consumed← consumed +
∑n

k=1 | •tk |
12: produced← produced +

∑n
k=1 | tk• |

13: else
14: for p ∈ •t do
15: if Mcurr(p) = 0 then
16: Mcurr(p) = 1
17: missing← missing +1
18: end if
19: end for
20: end if
21: end if
22: Mcurr[t⟩Mnew

23: Mcurr ←Mnew

24: consumed← consumed + |•t|
25: produced← produced + |t•|
26: end for
27: if not Mf ⊆Mcurr then
28: if exists t1 . . . tn ∈ T ∗ s.t. ℓ(t1) = ℓ(t2) = . . . = ℓ(tn) = τ and Mcurr[t1 . . . tnt⟩M ′ and

Mf ⊆M ′ then
29: // Algorithm 3
30: Mcurr ←M ′

31: consumed← consumed +
∑n

k=1 | •tk |
32: produced← produced +

∑n
k=1 | tk• |

33: else
34: for p ∈Mf do
35: if Mcurr(p) = 0 then
36: Mcurr(p) = 1
37: missing← missing +1
38: end if
39: end for
40: end if
41: end if
42: consumed← consumed + Σp∈PMf (p)
43: remaining← remaining + Σp∈P (Mcurr(p)−Mf (p))
44: end for
45: fitness← 0.5 · (1− missing

consumed
) + 0.5 · (1− remaining

produced
)

46: return fitness

Page 10 of 40

Algorithm 2 Precision
Require: Marked Petri net: N = (P, T, F, ℓ,Mi), final marking: Mf , event log: L
1: Initialize esc_edges, allowed_tasks← 0
2: for π = a1a2 . . . am ∈ L do
3: Mcurr ←Mi

4: for j = 1 to m do
5: t← ℓ−1(aj) // If ℓ is not injective pick a random transition such that ℓ(t) = aj

6: if ∃p ∈ •t. Mcurr(p) = 0 then
7: if exists t1 . . . tn ∈ T ∗ s.t. ℓ(t1) = ℓ(t2) = . . . = ℓ(tn) = τ and Mcurr[t1 . . . tnt⟩Mnew then
8: // Algorithm 3
9: Mcurr ←Mnew

10: else
11: Break the for-loop and continue on line 2.
12: end if
13: end if
14: allowed_tasks← allowed_tasks + |{t ∈ T | ∀p ∈ •t,Mcurr(p) > 0}|
15: esc_edges← esc_edges + |{t ∈ T | ∀p ∈ •t,Mcurr(p) > 0} \ Γ (L)[a1 . . . aj−1]|
16: Mcurr[t⟩Mnew

17: Mcurr ←Mnew

18: end for
19: end for
20: return 1− esc_edges

allowed_tasks

Algorithm 3 Finding sequences of silent transitions that enable transition t

Require: Marked Petri net: N = (P, T, F, ℓ,Mcurr), transition: t
1: iterations← 0
2: max_iterations← 10
3: πfinal ← ϵ
4: repeat
5: δ ← {p ∈ •t |Mcurr(p) = 0} // Set of places in •t that are missing tokens
6: λ← {p ∈ P |Mcurr(p) > 0 ∧ p /∈ •t} // Set of places with a surplus of tokens
7: firing_sequences ← all sequences of transitions that are on some shortest path, going through τ -

transitions only, between some place in λ to some place in δ
8: if exists π ∈ firing_sequences s.t. Mcurr[π⟩Mnew then
9: Mcurr ←Mnew

10: πfinal ← πfinal ◦ π
11: else
12: return ϵ // No firing sequence was identified
13: end if
14: iterations← iterations +1
15: if iterations > max_iterations then
16: return ϵ
17: end if
18: until δ = ∅
19: return πfinal

Page 11 of 40

0 5k 10k 15k
0

20

40

60

80

100

120

Number of Unique Traces

Sp
ee

d
U

p
(F

TR
 /

PM
4P

Y
)

(a) Speed-up of fitness in C++ when compared
to PM4PY implementation in Python. Each point
shows the speed-up on a single event log.

0 5k 10k 15k
0

20

40

60

80

100

120

Number of Unique Traces

Sp
ee

d
U

p
(F

TR
 /

PM
4P

Y
)

(b) Speed-up of precision in C++ when compared
to PM4PY implementation in Python. Each point
shows the speed-up on a single event log.

Fig. 3

Algorithm 2 outlines the algorithmic procedure for calculating precision for a given Petri net and
event log. Similarly to fitness, it relies on token-based replay and silent transition handling as de-
scribed in Algorithm 3. At each event in a trace, the algorithm determines the number of allowed
tasks and escaping edges. As defined in Definition 13, the number of allowed tasks corresponds to
the number of enabled transitions in the current marking. Additionally, a prefix map (Definition 12)
is precomputed over the event log, and when given some trace prefix, it returns the set of activities
that directly follow this prefix in at least one trace in the event log. The difference between the set
returned by the prefix map and the set of allowed tasks yields the escaping edges that, together, are
used to compute precision. The algorithm terminates once all traces have been replayed and returns
the resulting precision score.

We test the speed-up of fitness and precision on 13 different event logs. Figure 3a shows the speed-
up on fitness compared to PM4PY, revealing that we are at least one order of magnitude faster on
all event logs. We achieve even higher speed-ups in precision, as shown in Figure 3b. Importantly,
the speed-up scales with the size of the event logs. For example, on the biggest event log, which has
more than 15.000 unique traces, we achieve a speed-up of more than 120x.

Lastly, we argue that a specific detail in PM4PY’s implementation of fitness may lead to an unin-
tended inflation in fitness. We illustrate this detail with the Petri net shown in Figure 4a with k = 0
and by replaying the trace a. Initially, both PM4PY and our algorithms obtain the firing sequence
τ1τ2τ3 and marking M = (p2 : 1), (p5 : 1) before having to insert a missing token. After reaching
M , no more silent transitions can be fired due to the missing token in p4, and a token is inserted into
p6 such that a is enabled and subsequently fired. The discrepancy occurs as PM4PY proceeds from
the marking M and thus includes the produced and consumed tokens connected with firing τ1τ2τ3.
We argue that the marking and token counts should be reverted, in this case to the initial marking,
after failing to enable a via silent transitions. Consequently, PM4PY returns a fitness of 0.73 based
on the token counts p = 5, c = 5, m = 1, r = 1, whereas we return 0.5 based on the token counts
c = 2, p = 2, m = 1, r = 1, demonstrating the inflated consumed and produced token counts. The
implication of this detail is shown in Figure 4b, where it is clear that fitness increases as k silent
transitions are added to the WF-net, resulting in an erroneously high fitness. In contrast, we return
consistent results regardless of k.

Page 12 of 40

f

a

p6

p5p4

b

p2

i

p3

 silent transitions

(a) WF-net with k silent transi-
tions used for illustrating fitness
with trace a.

0 10 20 30 40

0.5

0.6

0.7

0.8

0.9

1
PM4PY FTR

Fi
tn
es
s

(b) Growth of fitness as a function of k silent transitions in the WF-
net (Figure 4a) when replaying trace a.

Fig. 4

4 Genetic Tree Miner

In this section, we describe the core structure of our genetic algorithm for process discovery. Inspired
by genetic algorithms, our method evolves a population of candidate solutions through selection,
crossover, and mutation. We propose enhancements to the generation, objective function evalua-
tion, and alter steps to improve both efficiency and model quality. An overview of our algorithm is
provided in Figure 5 and detailed in Algorithm 4.

4.1 General Approach

In our approach, illustrated in Figure 5, we adopt the overall structure of genetically motivated algo-
rithms [2]: from the input event log, we produce an initial population of process trees on which we
evaluate a given objective function, and until we reach a stagnation criterion or a timeout, we select
a number of the best elite individuals and modify the remaining ones in order to form a new popu-
lation and repeat the whole process. We introduce several modifications to its internal mechanisms,
including redesigning the building blocks for generating process trees, objective function evaluation,
selection, and change. Each block plays a crucial role in the algorithm’s ability to discover an accept-
able process model and its overall run time. Hence, the purpose of our modifications is to improve
on these parameters.

Algorithm 4 depicts the details of our genetic algorithm. It repeatedly computes a new generation
by creating a new population of candidates from the previous generation. Based on a given objective
function, we first select a percentage of the best-performing individuals as an elite set, which we
move directly into the new population. A new population also includes some new randomly gen-
erated trees. The remaining candidates are created by a tournament selection [24] on the recently

Page 13 of 40

Generate Process
Trees

Evaluate

Select

Change

No

Yes

Elite

New Population

Best Result

Event Log

Initial Population

Stop?

Algorithm 4 Genetic Tree Miner
1: P1 ← generate POPULATION_SIZE individuals
2: elite_count← POPULATION_SIZE× ELITE_RATE
3: random_count← POPULATION_SIZE× RANDOM_CREATION_RATE
4: tournament_count← POPULATION_SIZE× TOURNAMENT_RATE
5: tournament_size← POPULATION_SIZE× TOURNAMENT_SIZE_RATE
6: for i = 1 to NUM_GENERATIONS do
7: survivors← elite_count best performing individuals in Pi

8: new_individuals← generate random_count individuals
9: Pi+1 ← survivors ∪ new_individuals

10: for j = 1 to tournament_count do
11: tournament ← randomly select tournament_size individuals

from Pi

12: parent1, parent2← two best individuals from tournament
13: child← do crossover with parent1 and parent2
14: child← mutate child with MUTATION_PROBABILITY
15: Pi+1 ← Pi+1 ∪ {child}
16: end for
17: end for
18: return best individual in PNUM_GENERATIONS

Fig. 5: General overview and pseudocode of the GTM algorithm.

evaluated population: We randomly select a number of individuals for a tournament, and pick the
two best individuals from the tournament based on the objective function and perform a crossover
(see Section 4.3) followed by a random mutation (see Section 4.4). The child is then added to the
new population, and the process is repeated until we reach the number of individuals required for
the full population.

4.2 Initial Population

To generate an initial population of process trees, we create a subset of traces from the event log by
randomly selecting a small percentage (initial sampling rate) of the traces in the event log. We treat
the subset of traces as an event log and use it to discover a process tree by the IM. We guarantee
the coverability of all activities in each subset by including an additional number of traces until all
activities are present in the subset. Repeating this process several times, we obtain a population of
process trees discovered on different aspects of the event log. In this way, we preserve diversity in
the initial population as well as a fast method to create the initial population.

4.3 Crossover

A crossover involves two process trees identified using the tournament selection. We randomly select
a subtree in each of the process trees and swap these subtrees, leading to two new children as depicted
in Figure 6. For each child, we remove duplicate activities and randomly insert missing activities.
Then we check if the children are valid according to the process tree definition. If the first child or
second child is a valid process tree, this is returned (left child has a priority). If none of the children
are a valid process tree, we randomly return one of the parents.

Page 14 of 40

∧ × ∧

a b c d

a

c

b

×

d

∧

a b

∧

c

b

×

d

a ×

c d

1. Select random subtrees

b

3. Remove duplicate
activity

4. Not a valid
process tree

5. Insert missing
activity

6. Is a valid process
tree

2. Swap subtrees

Fig. 6: Crossover example showing subtree exchange between two parent process trees. Grey and
green indicate the selected subtrees; dashed lines show removed elements, and blue indicates inserted
elements.

4.4 Mutations

To apply a mutation operation to a process tree, we randomly perform one of the following four
mutation strategies as depicted in Figure 7, showing how the possible mutations transform the pro-
cess tree of the valid child from the crossover example in Figure 6. Leaf replacement repositions
one of the randomly selected activity nodes to a different position in the process tree. Operator swap
randomly selects an operator node in the process tree and changes it to another randomly chosen
operator. Subtree removal selects a random subtree in the process tree and removes it; then we create
a new random tree with the activities from the removed subtree and insert it at a random point of the
process tree. Loop addition selects a random activity node and changes it to a simple loop operator,
adding the activity node and a τ activity node to the loop operator.

4.5 Fitness Estimation

In the objective function evaluation step, we measure the fitness, precision, refined simplicity, and
simplicity of each candidate process tree with an objective function, which is a weighted average of
these measures. The computation of fitness and precision is a time-consuming step in the algorithm,
so minimizing the computation time is a major focus in our implementation. To speed up the compu-
tation of the objective function for every individual, we utilize a subset of the event log. How large
a subset depends on the number of unique traces and is dictated by f(t) = 0.5987 · e−2.251×10−4·t,
where t is the number of unique traces. This ensures that on the smaller logs we consider about

Page 15 of 40

a ×

c

b

O

d

Loop addition

a×

c

b

d

a ∧ b a b

Leaf replacement Operator swap Subtree removal

O

cd

a

×

c d

c d d

Fig. 7: Examples of mutation operations on the process tree resulting from Figure 6. Dashed lines
indicate removed elements, and blue indicates inserted elements.

60% of unique traces, and on the larger logs we consider only about 5%. The function is shown in
Figure 8, where the datasets that will be used later for benchmarking GTM are annotated. To en-
sure the coverability of all activities in the subset, we include an additional number of traces until
all activities are present in the subset by selecting the most frequent traces containing the missing
activities.

Sepsis

2012

2017

2020-pl

2019

2013-cp

0 5k 10k 15k

0%

10%

20%

30%

40%

50%

60%

Loading [MathJax]/extensions/MathMenu.js

Fig. 8: The function f(t) = 0.5987 · e−2.251×10−4·t which is used to calculate the filtering of the
event log. Each point represents an event log and its filtering percentage.

4.6 Stopping Criteria

To ensure that the search process remains computationally feasible and does not run indefinitely,
we define a set of stopping criteria that are checked after each generation. The most critical of
these is a maximum allowed duration. When the predefined time limit is exceeded, the search is
terminated regardless of the current population state. This criterion ensures timely termination. In
addition to the time limit, we incorporate a stagnation-based criterion, which halts the optimization
if the objective score does not improve beyond a small threshold ϵ = 0.01 for a given number of
consecutive generations. These two criteria, duration and stagnation, are combined to ensure that
the search is both effective and efficient, adapting dynamically to the progress of the optimization
process.

Page 16 of 40

Fig. 9: Bayesian Optimization results on three event logs: 2013-cp, 2012, and Sepsis. The red dotted
line highlights the proposed values for each hyperparameter.

4.7 Hyperparameters

Identifying suitable hyperparameters of genetic algorithms is a non-trivial task and their values play a
crucial role for the performance of GTM; hence, we propose a set of default hyperparameter values
for the user by running Bayesian Optimization (BO), as implemented in the Optuna library [25],
on three event logs from the BPI Challenge [26]: 2013-cp [27], 2012 [28] and Sepsis [29]. BO
optimizes the objective function, which is a weighted sum of four quality metrics: fitness (weight
0.5), precision (weight 0.3), simplicity (weight 0.1), and refined simplicity (weight 0.1), defined as
max{0, 1 − #places

100 }. The results are depicted in Figure 9, and each black line represents the set
of values that achieved the maximal objective score after 18 hours of running BO. Note that each
axis displays the possible ranges in which the BO algorithm could search. A general tendency forms
across the three event logs, indicating that a fixed set of values generalizes across all event logs.
Based on the results, we propose the hyperparameter values highlighted with the red dotted line:
0.25 (tournament size rate), 0.8 (mutation probability), 0.5 (tournament rate), 0.1 (random creation
rate), 0.4 (elite rate), 30 (population size), and 0.001 (initial sampling rate). We choose a lower
population size and a reduced initial sampling rate than those suggested by the BO algorithm to
speed up computation and to ensure rich diversity in the initial population, respectively, which has
been shown to be beneficial [17].

5 Experimental Setup and Benchmarking

This section presents the experimental setup used to benchmark our proposed discovery method.
We describe the event logs for benchmarking, quality measures, and baseline methods used for
comparison. Furthermore, we outline implementation details and configurations of GTM to ensure
reproducibility. Finally, we present the results of the performance benchmark.

5.1 Experimental Setup

To evaluate the performance and robustness of the proposed discovery method, we conduct our
experiments on 13 diverse real-life event logs [26] commonly used for benchmarking in process

Page 17 of 40

Event Log
Unique
Traces

Traces
Average

Trace Length
Unique

Activities

2020-rfp [30] 89 6.886 5 19
2020-dd [31] 99 10.500 5 17
2013-op [32] 108 819 2 3
2013-cp [27] 183 1.487 4 4
2020-ptc [33] 202 2.099 8 29
RTF [34] 231 150.370 3 11
2020-id [35] 753 6.449 11 34
Sepsis [29] 846 1.050 14 16
2020-pl [36] 1.478 7.065 12 51
2013-i [37] 1.511 7.554 8 4
2012 [28] 4.366 13.087 20 23
2019 [38] 11.028 226.561 6 42
2017 [39] 15.930 31.509 38 26

Table 1: Overview of event log benchmark

mining research. No pre-processing or filtering was applied to the event logs except for 2019. The
log is filtered by 10% due to size limitations in the commercial tool Apromore, which provides
the implementation of SM. Additional information about the event logs is available in Table 1. We
compare the performance of the process discovery algorithms using the variants of fitness, precision,
generalization, and simplicity presented in Section 2 and as implemented in PM4PY.

To evaluate the effectiveness of GTM, we compare it against two widely-used algorithms: IM [3]
and SM [4]. The IM is implemented in PM4PY, and we use the default configuration provided in the
library. Regarding SM, we employ the commercially available implementation of SM in Apromore1

with its default parameters. These two methods are chosen due to their strong performance and
frequent use in both academic and commercial settings.

All experiments are conducted on a laptop equipped with an Apple M2 3.49 GHz, 16 GB of RAM,
and running macOS Sequoia 15.4.1 using Python 3.13 and PM4PY 2.7.15.2. No multiprocessing
is utilized, and GTM and IM are run on the same hardware. SM is run on Apromore servers, and
no timing information is provided; however, other studies show that process discovery using SM is
several times faster than using IM [4].

GTM is run with a stagnation limit of 50 generations with less than 1% improvement. We adopt
the naming convention GTM-X, where X denotes the maximum allowed runtime in seconds. The
objective function is composed of C++ fitness (0.5 weight), C++ precision (0.3 weight), PM4PY
simplicity (0.1 weight), and our own simplicity measure (weight 0.1). To account for stochasticity
in GTM, each GTM-X configuration is executed five times, and the median values across these runs
are reported. Lastly, we provide all relevant source code, datasets, and instructions for reproducing
the results in a public GitHub repository [40].

5.2 Results

Table 3 presents a comprehensive benchmark of GTM, IM, and SM on all event logs, highlighting
the strengths and trade-offs of each approach. The aggregated results are shown in Table 2. GTM-10

1 http://apromore.org/

Page 18 of 40

Discovery
Method

Accuracy
Generalization Simplicity Objective

Score Time (s)
F1-score Fitness Precision

GTM-10 0.78 0.96 0.73 0.94 0.69 0.84 8.62
GTM-60 0.91 0.95 0.90 0.92 0.70 0.89 35.34

GTM-300 0.97 0.97 0.98 0.92 0.68 0.93 100.05
IM 0.51 0.99 0.39 0.90 0.62 0.66 7.44
SM 0.80 0.70 0.94 0.91 0.78 0.80 -

Table 2: Aggregated results of reported values in Table 3.

results are reported for all event logs, GTM-60 results are reported for those event logs where GTM-
10 fails to converge within its time limit, and, in turn, GTM-300 results are reported for event logs
where GTM-60 fails to converge within its time limit.

All GTM configurations consistently outperform IM and SM on F1-score. Generally, we see that IM
exhibits high fitness but tends to yield low precision. In contrast, SM generally achieves near-perfect
precision but with reduced fitness. GTM instead provides a balanced trade-off between precision and
fitness as evidenced by its superior F1-scores. GTM-10 beats IM on F1-score on all logs with only a
slight increase in average runtime of 1.18 seconds. Although GTM-10 does fall behind SM on some
of the larger and more complex logs, this deficit is quickly eliminated when GTM is given a higher
time limit. Specifically, GTM-10 performs better than IM and SM on 8 out of 13 logs, GTM-60 on
12 out of 13 logs for and GTM-300 is better on all 13 logs.

With respect to generalization, all methods exhibit comparable performance, as reflected by their
average scores, which differ by no more than 0.04. In the simplicity dimension, SM performs very
well demonstrated by its simplicity being the highest on 12 out of 13 event logs. This is also reflected
in the average simplicity in Table 2, where SM is noticeably better than the two other methods,
however, often at the expense of lower fitness compared to both GTM and IM.

In summary, GTM-10 outperforms IM and competes with SM on most logs. GTM-60 achieves the
most balanced performance at the expense of longer (but acceptable) running times compared to IM
and SM. GTM-300 performs significantly better on the F1-score on the largest logs compared to any
of the other miners. In addition, GTM is more than an order of magnitude faster than the previous
approaches based on genetic algorithms [4].

Page 19 of 40

Log Name Discovery
Method

Accuracy Generalization Simplicity Objective
Score Time (s)

F1-score Fitness Precision

2013-op
GTM-10 0.96 0.95 0.97 0.96 0.82 0.95 1.15

IM 0.95 1.00 0.91 0.93 0.69 0.83 0.01
SM 0.82 0.70 0.99 0.96 1.00 0.85 -

2020-dd
GTM-10 0.97 0.97 0.97 0.89 0.69 0.92 8.68

IM 0.56 1.00 0.39 0.85 0.60 0.75 1.21
SM 0.91 0.92 0.89 0.82 0.67 0.88 -

RTF
GTM-10 0.97 0.95 1.00 0.99 0.80 0.94 9.86

IM 0.77 1.00 0.63 0.97 0.62 0.63 0.63
SM 0.88 0.79 0.99 0.99 0.92 0.87 -

2020-rfp
GTM-10 0.99 0.98 1.00 0.87 0.60 0.93 10.0
GTM-60 0.99 0.99 1.00 0.89 0.62 0.94 10.17

IM 0.50 1.00 0.33 0.87 0.60 0.73 0.07
SM 0.82 0.83 0.82 0.81 0.66 0.81 -

2020-ptc

GTM-10 0.99 0.98 1.00 0.93 0.65 0.91 10.01
GTM-60 0.99 0.98 1.00 0.93 0.64 0.92 39.52

IM 0.27 0.99 0.16 0.89 0.59 0.59 0.29
SM 0.76 0.64 0.96 0.88 0.70 0.76 -

2013-i

GTM-10 0.97 0.97 0.98 0.96 0.79 0.95 10.02
GTM-60 0.97 0.97 0.98 0.96 0.79 0.95 22.24

IM 0.77 1.00 0.63 0.87 0.67 0.79 0.13
SM 0.87 0.77 1.00 0.92 0.85 0.84 -

2020-id

GTM-10 0.54 0.96 0.38 0.90 0.62 0.71 10.03
GTM-60 0.91 0.92 0.90 0.91 0.65 0.86 60.01
GTM-300 0.99 0.98 1.00 0.92 0.62 0.92 160.02

IM 0.38 0.97 0.23 0.88 0.62 0.51 0.49
SM 0.85 0.76 0.97 0.90 0.66 0.82 -

2020-pl

GTM-10 0.31 0.97 0.19 0.91 0.60 0.65 10.12
GTM-60 0.92 0.86 0.99 0.88 0.59 0.80 60.09
GTM-300 0.98 0.97 1.00 0.87 0.54 0.90 300.09

IM 0.18 1.00 0.10 0.86 0.59 0.52 4.6
SM 0.81 0.70 0.96 0.86 0.65 0.77 -

2019

GTM-10 0.49 0.97 0.32 0.95 0.61 0.66 10.07
GTM-60 0.55 0.97 0.38 0.94 0.59 0.72 60.02
GTM-300 0.99 0.99 1.00 0.94 0.54 0.92 271.74

IM 0.38 1.00 0.23 0.92 0.59 0.56 36.17
SM 0.68 0.51 1.00 0.91 0.73 0.70 -

2017

GTM-10 0.50 0.95 0.34 0.98 0.66 0.77 10.03
GTM-60 0.92 0.94 0.90 0.95 0.66 0.88 60.02
GTM-300 0.89 0.99 0.80 0.99 0.65 0.87 106.66

IM 0.26 1.00 0.15 0.95 0.63 0.63 42.99
SM 0.76 0.71 0.80 0.95 0.73 0.75 -

2013-cp
GTM-10 0.95 0.91 1.00 0.93 0.85 0.94 2.2

IM 0.89 1.00 0.79 0.88 0.66 0.86 0.02
SM 0.76 0.62 0.99 0.92 1.00 0.81 -

Sepsis

GTM-10 0.97 0.97 0.97 0.92 0.65 0.92 10.01
GTM-60 0.99 0.98 0.99 0.95 0.71 0.94 53.12

IM 0.49 1.00 0.32 0.90 0.62 0.66 0.22
SM 0.81 0.69 0.98 0.92 0.79 0.81 -

2012

GTM-10 0.55 0.95 0.39 0.98 0.67 0.74 10.0
GTM-60 0.78 0.94 0.67 0.90 0.66 0.84 60.05
GTM-300 0.96 0.93 1.00 0.98 0.77 0.92 300.07

IM 0.24 0.97 0.14 0.95 0.61 0.56 9.93
SM 0.64 0.49 0.92 0.98 0.82 0.68 -

Table 3: Performance comparison of process discovery methods. All process discovery methods use
default parameters (and only the last three logs in the table were used to identify GTM’s default
parameters).

5.3 Convergence and Stability

2013-i

2020-ptc

2020-rfp

2020-dd

2020-id

Sepsis
*2020-pl

2013-op

RTF
2019

2013-cp

2017
*2012

80

85

90

95

100

Dataset

O
bj

ec
tiv

e
Sc

or
e

Loading [MathJax]/extensions/MathMenu.js

(a) Objective score for five distinct runs with GTM-
300; the stars mark the event logs where stagnation
was not achieved within the 300-second time limit.

2020-ptc

Sepsis
2019

2013-op

2013-cp

2020-dd

2020-rfp

2013-i

2020-pl

2017
2020-id

RTF
2012

80

85

90

95

100 Sampled Default

Dataset

O
bj

ec
tiv

e
Sc

or
e

Loading [MathJax]/extensions/MathMenu.js

(b) Objective score for 10 distinct runs with GTM-
300 using varying hyperparameters. The red solid
points denote GTM-300 with default values.

Fig. 10

GTM is inherently stochastic due to randomness in tournament selection, crossover, and mutation,
and may yield different results when run repeatedly. We therefore evaluate its consistency by running
GTM-300 five times on each event log. The results are observed in Figure 10a. Each point shows
the objective score of a distinct run, and the x-axis is sorted in ascending order by the size of the
objective scores’ interquartile range. On 11 out of 13 event logs, the variance in objective score is
negligible. A higher variance can be observed on two of the three largest event logs, indicating some
correlation between the log size and variance. Hence, the stochastic properties of GTM remain a
potential weakness compared to deterministic algorithms such as IM and SM, which yield consistent
results when run repeatedly.

In Figure 10b, we extend the robustness evaluation by examining GTM’s sensitivity to hyperparam-
eter changes. Specifically, we vary the default hyperparameters by up to 10%, adjust the population
size by up to 5, and subsequently run GTM-300 10 times on the sampled configurations on each log.
Ideally, GTM should be robust to such variations and provide stable performance as long as reason-
able values are chosen. Overall, we see stable performance with few fluctuations and instabilities.
On some logs, performance even improves as a result of the changes, suggesting that fine-tuning
hyperparameters for specific logs could yield better results.

A potential explanation for the correlation between log size and variance in objective scores is pro-
vided in Figure 11a. On smaller event logs, GTM converges within the first 50 generations and
quickly reaches the stagnation limit, resulting in consistent and stable performance. In contrast, on
larger logs, the objective score improves continuously up to the 300th generation. Observe also Fig-
ure 11b showing that GTM does not converge within 300 seconds on the largest logs and continues to
improve after the time limit. These results suggest that increasing the timit could help GTM achieve
a more stable performance on larger event logs.

5.4 Objective Function Sensitivity Analysis and Decomposition

A key advantage of GTM over established process discovery algorithms such as IM and SM is the
possibility to tailor the objective function to specific process discovery quality criteria. It remains

Page 21 of 40

0 50 100 150 200 250 300

50

60

70

80

90

100

2013-i (2.6) 2013-cp (27.5) Sepsis (2.9) 2020-dd (18.4)
2020-rfp (15.4) 2020-ptc (5.6) RTF (24.0) 2012 (0.6)
2020-id (1.5) 2013-op (38.3) 2019 (1.2) 2020-pl (0.5)
2017 (1.9)

Generation

O
bj

ec
tiv

e
Sc

or
e

Loading [MathJax]/extensions/MathMenu.js

(a) Convergence of GTM on all event logs. The paren-
theses for each log specify the number of generations
per second.

1 10 100 1000

50

60

70

80

90

100

2013-i Sepsis 2013-cp 2020-dd 2020-rfp 2020-ptc
RTF 2012 2020-id 2013-op 2019 2020-pl
2017

Time (seconds)

O
bj

ec
tiv

e
Sc

or
e

Loading [MathJax]/extensions/MathMenu.js

(b) Convergence behavior of GTM across all event
logs as a function of runtime.

0 50 100 150 200 250 300
50

60

70

80

90

100

Precision
Fitness
Simplicity
Refined Simplicity

Generation

Sc
or
e

Loading [MathJax]/extensions/MathMenu.js

(c) Decomposition of the objective function over 300
generations. Each line is the mean of the respective
metric scores across all event logs.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
80

85

90

95

100

Precision
Fitness
Simplicity
Refined Simplicity

Weight Share

Sc
or

e

Loading [MathJax]/extensions/MathMenu.js

(d) Mean score across all event logs for the respective
metrics. A weight share is the assigned weight for a
specific metric while the other metrics are assigned to
an equal share of the remaining weight (weights sum
to 1).

Fig. 11

to be shown that GTM actually produces outputs accordingly to changes in the objective function.
Figure 11d demonstrates the development of each metric when given increasingly larger weight
shares. Starting from a weight of 25% up to 100%, there is a clear tendency for quality metrics to
improve as their weights in the objective function increase, with precision being the only exception,
as it remains high regardless of its weight, indicating an inherent bias towards process models with
high precision. Thus, GTM successfully optimizes fitness, refined simplicity, and simplicity.

We further decompose the objective function in Figure 11c to better understand the underlying mech-
anisms driving GTM’s overall performance during the evolutionary process. The lines are the mean
over all event logs and show the (unweighted) score of a metric for the best tree in each generation.
Notably, GTM initializes with almost perfect fitness, likely due to IM trees in the initial population.
As a side effect of the IM trees, precision is initially low but quickly improves within the first 100
generations. While refined simplicity slowly improves, simplicity remains almost constant through-
out the generations, probably due to its low weight.

Page 22 of 40

0 50 100 150 200 250 300
55

60

65

70

75

80

85

90

95

100

Random Tree Generator

IM Tree Generator

Generation

O
bj

ec
tiv

e
Sc

or
e

Loading [MathJax]/extensions/MathMenu.js

Fig. 12: Convergence of GTM Initial Population vs. Random Initial Population. A line represents the
mean objective score across all event logs.

5.5 Impact of Initial Population

One could dispute the actual effectiveness of GTM and argue that most of its high performance origi-
nates from using IM-produced process trees in the initial population. We disprove this by comparing
the convergence rate using randomly generated trees in the initial population to the default initial
population method. The advantage of the default method is evident by Figure 12; GTM achieves
better objective scores in the early generations, which we just saw is particularly useful for larger
logs due to the slower convergence rates, yet it also demonstrates that we propose well-performing
crossover and mutation changes that guarantee convergence even without injecting IM generated
process trees into the initial generation.

Page 23 of 40

6 Conclusion

We presented GTM, a novel and sound process discovery method that leverages evolutionary search
to construct high-quality process models. Our method is designed to be highly flexible, allowing it
to adapt to a wide range of process structures, and produces sound models by design. Compared to
previous genetic approaches such as ETM, GTM achieves superior performance with significantly
reduced computation times—over an order of magnitude faster—making it practically viable for
real-world usage. GTM advances genetic process discovery through a highly efficient C++-based
fitness implementation, a novel self-loop mutation operator, and a refined objective function that
better penalizes model complexity.

The results show that GTM-60 achieves the highest F1-score on the majority of logs under con-
strained runtime settings. It consistently outperforms both IM and SM in terms of overall model
accuracy while maintaining competitive simplicity and generalization. This indicates that GTM is
well-suited for diverse process mining scenarios where both performance and interpretability are
critical.

To foster reproducibility and contribute to the process mining community, we have open-sourced
all source code, event logs, and evaluation scripts in a public GitHub repository [40]. Furthermore,
we will make our contributions available to PM4PY by creating a pull request fixing the identified
issues with fitness estimation.

For future work, investigating adaptive strategies for dynamically tuning hyperparameters based on
characteristics of the input event log. Additionally, exploring online adjustment of these parameters
during the discovery run to improve convergence speed and model quality. Overall, GTM represents
a significant step forward in the design of evolutionary process discovery methods and provides a
strong foundation for further research and application.

7 Acknowledgments

We want to express our sincere gratitude to Jiří Srba for his invaluable guidance, feedback, and
support throughout the development of this thesis and the related paper currently under submission
to a conference.

Parts of this text were refined at the sentence level using AI-based tools to improve clarity and style.
All technical content, research contributions, and substantive ideas remain exclusively those of the
authors, except where otherwise noted.

8 Bibliographical Remarks

Parts of this thesis build upon work carried out during a previous semester project [41]. Specifically,
Figure 1, Figure 2, and the text in Section 2.4 (shorter and modified version) are taken from [41].
The following definitions—Definition 2, 3, 5, 7, 8, 9, and 10— together with other minor text mod-
ifications, were reviewed and refined by the supervisor during the preparation of the conference
submission. The students drafted the first version of all the definitions and text. Similarly, Section 4
was shortened and streamlined in direct collaboration with the supervisor.

Page 24 of 40

References
1. Wil van der Aalst. Process Mining: Data Science in Action. Springer Berlin Heidelberg, 2016. URL:

http://dx.doi.org/10.1007/978-3-662-49851-4, doi:10.1007/978-3-662-49851-4.
2. Ana Karla A. de Medeiros, A. J. M. M. Weijters, and Wil M. P. van der Aalst. Genetic process mining: An

experimental evaluation. Data Mining and Knowledge Discovery, 14(2):245–304, 2007. doi:10.1007/
s10618-006-0061-7.

3. Sander Leemans, Dirk Fahland, and Wil Aalst. Process and deviation exploration with inductive visual
miner. CEUR Workshop Proceedings, 1295:46, 01 2014.

4. Adriano Augusto, Raffaele Conforti, Marlon Dumas, Marcello La Rosa, and Artem Polyvyanyy. Split
miner: automated discovery of accurate and simple business process models from event logs. Knowledge
and Information Systems, 59, 05 2019. doi:10.1007/s10115-018-1214-x.

5. Alessandro Berti and Wil M.P. van der Aalst. Reviving token-based replay: Increasing speed while im-
proving diagnostics. In ATAED@Petri Nets/ACSD, 2019. URL: https://api.semanticscholar.org/
CorpusID:190004028.

6. Jorge Muñoz-Gama and Josep Carmona. A fresh look at precision in process conformance. In Richard
Hull, Jan Mendling, and Stefan Tai, editors, Business Process Management. BPM 2010, volume 6336 of
Lecture Notes in Computer Science, pages 211–226. Springer, Berlin, Heidelberg, 2010. doi:10.1007/
978-3-642-15618-2_16.

7. Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine learning
algorithms, 2012. URL: https://arxiv.org/abs/1206.2944, arXiv:1206.2944.

8. W. van der Aalst, T. Weijters, and L. Maruster. Workflow mining: discovering process models from event
logs. IEEE Transactions on Knowledge and Data Engineering, 16(9):1128–1142, 2004. doi:10.1109/
TKDE.2004.47.

9. A. Weijters, Wil Aalst, and Alves Medeiros. Process mining with the heuristics miner-algorithm. Cirp
Annals-manufacturing Technology - CIRP ANN-MANUF TECHNOL, 166, 01 2006.

10. J. M. E. M. van der Werf, B. F. van Dongen, C. A. J. Hurkens, and A. Serebrenik. Process discovery using
integer linear programming. In Kees M. van Hee and Rüdiger Valk, editors, Applications and Theory of
Petri Nets, pages 368–387, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

11. H. M. W. Verbeek and Wil M. P. van der Aalst. Decomposed process mining: The ilp case. In Fabiana
Fournier and Jan Mendling, editors, Business Process Management Workshops, pages 264–276, Cham,
2015. Springer International Publishing.

12. Adriano Augusto, Marlon Dumas, and Marcello La Rosa. Automated discovery of process models with true
concurrency and inclusive choices, 2021. URL: https://arxiv.org/abs/2105.06016, arXiv:2105.
06016.

13. Wil Aalst, Ana Medeiros, and A. Weijters. Genetic process mining. volume 14, pages 48–69, 06 2005.
doi:10.1007/11494744_5.

14. J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst. A genetic algorithm for discovering process
trees. In 2012 IEEE Congress on Evolutionary Computation, pages 1–8, 2012. doi:10.1109/CEC.2012.
6256458.

15. M.L. Eck, van, J.C.A.M. Buijs, and B.F. Dongen, van. Genetic process mining: Alignment-based pro-
cess model mutation. In F. Fournier and J. Mendling, editors, Business Process Management Work-
shops (BPM 2014 International Workshops, Eindhoven, The Netherlands, September 7-8, 2014, Revised
Papers), Lecture Notes in Business Information Processing, pages 291–303, Germany, 2015. Springer.
doi:10.1007/978-3-319-15895-2_25.

16. Thomas Molka, David Redlich, Wasif Gilani, Xiao-Jun Zeng, and Marc Drobek. Evolutionary compu-
tation based discovery of hierarchical business process models. In Witold Abramowicz, editor, Business
Information Systems, pages 191–204, Cham, 2015. Springer International Publishing.

17. Thomas Molka, David Redlich, Marc Drobek, Xiao-Jun Zeng, and Wasif Gilani. Diversity guided evolu-
tionary mining of hierarchical process models. GECCO ’15, page 1247–1254, New York, NY, USA, 2015.
Association for Computing Machinery. doi:10.1145/2739480.2754765.

18. C. A. Petri. Kommunikation mit automaten. 1962. URL: https://api.semanticscholar.org/
CorpusID:117254333.

Page 25 of 40

http://dx.doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/s10618-006-0061-7
https://doi.org/10.1007/s10618-006-0061-7
https://doi.org/10.1007/s10115-018-1214-x
https://api.semanticscholar.org/CorpusID:190004028
https://api.semanticscholar.org/CorpusID:190004028
https://doi.org/10.1007/978-3-642-15618-2_16
https://doi.org/10.1007/978-3-642-15618-2_16
https://arxiv.org/abs/1206.2944
https://arxiv.org/abs/1206.2944
https://doi.org/10.1109/TKDE.2004.47
https://doi.org/10.1109/TKDE.2004.47
https://arxiv.org/abs/2105.06016
https://arxiv.org/abs/2105.06016
https://arxiv.org/abs/2105.06016
https://doi.org/10.1007/11494744_5
https://doi.org/10.1109/CEC.2012.6256458
https://doi.org/10.1109/CEC.2012.6256458
https://doi.org/10.1007/978-3-319-15895-2_25
https://doi.org/10.1145/2739480.2754765
https://api.semanticscholar.org/CorpusID:117254333
https://api.semanticscholar.org/CorpusID:117254333

19. Sander J. J. Leemans, Dirk Fahland, and Wil M. P. van der Aalst. Discovering block-structured process
models from event logs - a constructive approach. In José-Manuel Colom and Jörg Desel, editors, Applica-
tion and Theory of Petri Nets and Concurrency, pages 311–329, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

20. Sebastiaan J. van Zelst. Translating workflow nets to process trees: An algorithmic approach. CoRR,
abs/2004.08213, 2020. URL: https://arxiv.org/abs/2004.08213, arXiv:2004.08213.

21. Alessandro Berti, Sebastiaan van Zelst, and Daniel Schuster. PM4Py: A process mining library for Python.
Software Impacts, 17:100556, 2023. URL: https://www.sciencedirect.com/science/article/pii/
S2665963823000933, doi:10.1016/j.simpa.2023.100556.

22. Joos C. A. M. Buijs, Boudewijn F. van Dongen, and Wil M.P. van der Aalst. Quality dimensions in process
discovery: The importance of fitness, precision, generalization and simplicity. Int. J. Cooperative Inf. Syst.,
23, 2014. URL: https://api.semanticscholar.org/CorpusID:17410482.

23. Borja Vázquez-Barreiros, Manuel Mucientes, and Manuel Lama. Prodigen: Mining complete, precise
and minimal structure process models with a genetic algorithm. Information Sciences, 294:315–333, 2015.
URL: https://www.sciencedirect.com/science/article/pii/S0020025514009694, doi:10.1016/
j.ins.2014.09.057.

24. Brad L Miller, David E Goldberg, et al. Genetic algorithms, tournament selection, and the effects of noise.
Complex systems, 9(3):193–212, 1995.

25. Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A next-
generation hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, 2019.

26. Task Force on Process Mining. Event logs - task force on process mining, n.d. Accessed: 2025-05-22.
URL: https://www.tf-pm.org/resources/logs.

27. Ward Steeman. Bpi challenge 2013, closed problems, 2013. URL: https://data.4tu.nl/
articles/dataset/BPI_Challenge_2013_closed_problems/12714476/1, doi:10.4121/uuid:
c2c3b154-ab26-4b31-a0e8-8f2350ddac11.

28. Boudewijn van Dongen. Bpi challenge 2012, 2012. URL: https://data.4tu.nl/articles/dataset/
BPI_Challenge_2012/12689204/1, doi:10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f.

29. Felix Mannhardt. Sepsis cases - event log, 2016. URL: https://data.4tu.
nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639/1, doi:10.4121/uuid:
915d2bfb-7e84-49ad-a286-dc35f063a460.

30. Boudewijn van Dongen. Bpi challenge 2020: Request for payment, 2020. URL: https://data.4tu.nl/
articles/dataset/BPI_Challenge_2020_Request_For_Payment/12706886/1, doi:10.4121/uuid:
895b26fb-6f25-46eb-9e48-0dca26fcd030.

31. Boudewijn van Dongen. Bpi challenge 2020: Domestic declarations, 2020. URL: https://
data.4tu.nl/articles/dataset/BPI_Challenge_2020_Domestic_Declarations/12692543/1, doi:
10.4121/uuid:3f422315-ed9d-4882-891f-e180b5b4feb5.

32. Ward Steeman. Bpi challenge 2013, open problems, 2013. URL: https://data.4tu.nl/
articles/dataset/BPI_Challenge_2013_open_problems/12688556/1, doi:10.4121/uuid:
3537c19d-6c64-4b1d-815d-915ab0e479da.

33. Boudewijn van Dongen. Bpi challenge 2020: Prepaid travel costs, 2020. URL: https://data.4tu.nl/
articles/dataset/BPI_Challenge_2020_Prepaid_Travel_Costs/12696722/1, doi:10.4121/uuid:
5d2fe5e1-f91f-4a3b-ad9b-9e4126870165.

34. M. (Massimiliano) de Leoni and Felix Mannhardt. Road traffic fine management process,
2015. URL: https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_Management_Process/
12683249/1, doi:10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5.

35. Boudewijn van Dongen. Bpi challenge 2020: International declarations, 2020. URL: https://data.
4tu.nl/articles/dataset/BPI_Challenge_2020_International_Declarations/12687374/1, doi:
10.4121/uuid:2bbf8f6a-fc50-48eb-aa9e-c4ea5ef7e8c5.

36. Boudewijn van Dongen. Bpi challenge 2020: Travel permit data, 2020. URL: https://data.
4tu.nl/articles/dataset/BPI_Challenge_2020_Travel_Permit_Data/12718178/1, doi:10.4121/
uuid:ea03d361-a7cd-4f5e-83d8-5fbdf0362550.

37. Ward Steeman. Bpi challenge 2013, incidents, 2013. URL: https://data.4tu.nl/
articles/dataset/BPI_Challenge_2013_incidents/12693914/1, doi:10.4121/uuid:
500573e6-accc-4b0c-9576-aa5468b10cee.

Page 26 of 40

https://arxiv.org/abs/2004.08213
https://arxiv.org/abs/2004.08213
https://www.sciencedirect.com/science/article/pii/S2665963823000933
https://www.sciencedirect.com/science/article/pii/S2665963823000933
https://doi.org/10.1016/j.simpa.2023.100556
https://api.semanticscholar.org/CorpusID:17410482
https://www.sciencedirect.com/science/article/pii/S0020025514009694
https://doi.org/10.1016/j.ins.2014.09.057
https://doi.org/10.1016/j.ins.2014.09.057
https://www.tf-pm.org/resources/logs
https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_closed_problems/12714476/1
https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_closed_problems/12714476/1
https://doi.org/10.4121/uuid:c2c3b154-ab26-4b31-a0e8-8f2350ddac11
https://doi.org/10.4121/uuid:c2c3b154-ab26-4b31-a0e8-8f2350ddac11
https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204/1
https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204/1
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639/1
https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639/1
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://data.4tu.nl/articles/dataset/BPI_Challenge_2020_Request_For_Payment/12706886/1
https://data.4tu.nl/articles/dataset/BPI_Challenge_2020_Request_For_Payment/12706886/1
https://doi.org/10.4121/uuid:895b26fb-6f25-46eb-9e48-0dca26fcd030
https://doi.org/10.4121/uuid:895b26fb-6f25-46eb-9e48-0dca26fcd030
https://data.4tu.nl/articles/dataset/BPI_Challenge_2020_Domestic_Declarations/12692543/1
https://data.4tu.nl/articles/dataset/BPI_Challenge_2020_Domestic_Declarations/12692543/1
https://doi.org/10.4121/uuid:3f422315-ed9d-4882-891f-e180b5b4feb5
https://doi.org/10.4121/uuid:3f422315-ed9d-4882-891f-e180b5b4feb5
https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_open_problems/12688556/1
https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_open_problems/12688556/1
https://doi.org/10.4121/uuid:3537c19d-6c64-4b1d-815d-915ab0e479da
https://doi.org/10.4121/uuid:3537c19d-6c64-4b1d-815d-915ab0e479da
https://data.4tu.nl/articles/dataset/BPI_Challenge_2020_Prepaid_Travel_Costs/12696722/1
https://data.4tu.nl/articles/dataset/BPI_Challenge_2020_Prepaid_Travel_Costs/12696722/1
https://doi.org/10.4121/uuid:5d2fe5e1-f91f-4a3b-ad9b-9e4126870165
https://doi.org/10.4121/uuid:5d2fe5e1-f91f-4a3b-ad9b-9e4126870165
https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_Management_Process/12683249/1
https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_Management_Process/12683249/1
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://data.4tu.nl/articles/dataset/BPI_Challenge_2020_International_Declarations/12687374/1
https://data.4tu.nl/articles/dataset/BPI_Challenge_2020_International_Declarations/12687374/1
https://doi.org/10.4121/uuid:2bbf8f6a-fc50-48eb-aa9e-c4ea5ef7e8c5
https://doi.org/10.4121/uuid:2bbf8f6a-fc50-48eb-aa9e-c4ea5ef7e8c5
https://data.4tu.nl/articles/dataset/BPI_Challenge_2020_Travel_Permit_Data/12718178/1
https://data.4tu.nl/articles/dataset/BPI_Challenge_2020_Travel_Permit_Data/12718178/1
https://doi.org/10.4121/uuid:ea03d361-a7cd-4f5e-83d8-5fbdf0362550
https://doi.org/10.4121/uuid:ea03d361-a7cd-4f5e-83d8-5fbdf0362550
https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_incidents/12693914/1
https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_incidents/12693914/1
https://doi.org/10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee
https://doi.org/10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee

38. Boudewijn van Dongen. Bpi challenge 2019, 2019. URL: https://data.4tu.nl/articles/dataset/
BPI_Challenge_2019/12715853/1, doi:10.4121/uuid:d06aff4b-79f0-45e6-8ec8-e19730c248f1.

39. Boudewijn van Dongen. Bpi challenge 2017, 2017. URL: https://data.4tu.nl/articles/dataset/
BPI_Challenge_2017/12696884/1, doi:10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b.

40. Genetic tree miner. https://github.com/jaxels20/genetic-tree-miner-thesis, 2025. Accessed:
2025-05-20.

41. Axelsen, Kowalski, and Nygård. Aau miner: Leveraging graph neural networks for process discovery.
Semester project submitted at AAU, Department of Computer Science, January 2025.

Page 27 of 40

https://data.4tu.nl/articles/dataset/BPI_Challenge_2019/12715853/1
https://data.4tu.nl/articles/dataset/BPI_Challenge_2019/12715853/1
https://doi.org/10.4121/uuid:d06aff4b-79f0-45e6-8ec8-e19730c248f1
https://data.4tu.nl/articles/dataset/BPI_Challenge_2017/12696884/1
https://data.4tu.nl/articles/dataset/BPI_Challenge_2017/12696884/1
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://github.com/jaxels20/genetic-tree-miner-thesis

A Discovered Petri Nets on 2020-rfp

p_23

tau_9

p_24

Request For Payment FOR_APPROVAL by ADMINISTRATIONtau_7Request For Payment REJECTED by SUPERVISOR Request For Payment REJECTED by PRE_APPROVER Request For Payment REJECTED by ADMINISTRATION Request For Payment FINAL_APPROVED by DIRECTOR Request For Payment REJECTED by EMPLOYEE

p_14

tau_15 Request For Payment REJECTED by MISSING

sink

p_27

Request For Payment APPROVED by ADMINISTRATIONtau_6

p_30

Request For Payment SUBMITTED by EMPLOYEEPayment Handledtau_13

p_29

tau_17

p_6

tau_1 tau_8

p_13

tau_0Request Payment Request For Payment FINAL_APPROVED by SUPERVISOR

p_8

Request For Payment FOR_APPROVAL by SUPERVISOR tau_16

p_16

Request For Payment APPROVED by BUDGET OWNER Request For Payment REJECTED by BUDGET OWNER tau_4Request For Payment APPROVED by PRE_APPROVER

p_7

tau_18

p_11

tau_3

p_26

tau_14

source

Request For Payment SAVED by EMPLOYEE

p_15

tau_10

p_5

tau_11

p_17

Request For Payment APPROVED by SUPERVISORtau_12

p_12

tau_2Request For Payment FINAL_APPROVED by BUDGET OWNER

p_31

tau_5

GTM-60:

F1 = 0.99
F = 0.99
P = 1.00
G = 0.89
S = 0.62

OF = 0.94

p_3

Request For Payment SAVED by EMPLOYEE Request For Payment FOR_APPROVAL by SUPERVISOR tau_31

p_11

Request For Payment REJECTED by MISSING

p_12

tau_19 tau_30

p_29

tau_21

p_36

tau_25

source

tau_18

tau_27

sink

p_20

Request For Payment SUBMITTED by EMPLOYEE

p_21

Request For Payment FOR_APPROVAL by ADMINISTRATION tau_20

p_27

tau_28 Request For Payment REJECTED by EMPLOYEE

p_28

Request For Payment APPROVED by ADMINISTRATIONtau_22

p_35

Request For Payment APPROVED by SUPERVISOR

p_5

tau_0

p_16

tau_17

tau_24

p_32

Request For Payment REJECTED by SUPERVISORtau_16

p_15

tau_2

p_8

Request For Payment FINAL_APPROVED by BUDGET OWNER tau_26

p_10

p_7

p_9

tau_3

tau_4

p_19

tau_6

tau_8

p_25

Request For Payment REJECTED by ADMINISTRATION

tau_7

tau_11

Request For Payment REJECTED by PRE_APPROVER

tau_13

p_26

tau_9

p_38

p_4

Payment Handledtau_1

p_17

tau_5

p_18

tau_23 tau_29

p_24

p_34

Request Payment tau_12

p_37

Request For Payment FINAL_APPROVED by DIRECTOR

p_23

Request For Payment FINAL_APPROVED by SUPERVISORtau_10

p_30

Request For Payment APPROVED by BUDGET OWNER

Request For Payment REJECTED by BUDGET OWNER

Request For Payment APPROVED by PRE_APPROVER

tau_14

tau_15

p_31

IM:

F1 = 0.50
F = 1.00
P = 0.33
G = 0.87
S = 0.60

OF = 0.73

ent_node1

Request For Payment REJECTED by MISSING

ent_node2

Request Payment

exi_node28

Request For Payment APPROVED by PRE_APPROVER Request For Payment REJECTED by ADMINISTRATIONRequest For Payment FOR_APPROVAL by ADMINISTRATION Request For Payment REJECTED by PRE_APPROVER Request For Payment APPROVED by ADMINISTRATION

ent_node29

Request For Payment SUBMITTED by EMPLOYEE

sink

exi_node22

Request For Payment SAVED by EMPLOYEE

tau_2

ent_node8

Request For Payment FINAL_APPROVED by DIRECTOR

exi_node3

Request For Payment APPROVED by SUPERVISOR

Request For Payment FOR_APPROVAL by SUPERVISOR

Request For Payment APPROVED by BUDGET OWNER

Request For Payment FINAL_APPROVED by BUDGET OWNER

Request For Payment REJECTED by BUDGET OWNERRequest For Payment REJECTED by SUPERVISOR

ent_node18

Request For Payment FINAL_APPROVED by SUPERVISOR

ent_node12

tau_0

ent_node15

Request For Payment REJECTED by EMPLOYEE

ent_node23

Payment Handled

source

tau_1

SM:

F1 = 0.82
F = 0.83
P = 0.82
G = 0.81
S = 0.66

OF = 0.81

Page 28 of 40

B Discovered Petri Nets - 2020-dd

p_36

tau_15

p_19

tau_28

p_34

tau_11 tau_22

p_5

tau_12

Declaration FOR_APPROVAL by SUPERVISOR

Declaration REJECTED by ADMINISTRATION

Declaration APPROVED by PRE_APPROVER

Declaration FOR_APPROVAL by PRE_APPROVER

p_18

tau_1tau_2

Declaration APPROVED by BUDGET OWNER

p_37

Payment Handledtau_27

p_27

tau_21

p_10

Declaration REJECTED by BUDGET OWNER

sink

p_17

tau_25

p_3

Declaration SAVED by EMPLOYEE

tau_20

p_28

tau_0tau_19 Declaration FOR_APPROVAL by ADMINISTRATION

p_32

tau_5

p_6

Declaration SUBMITTED by EMPLOYEE

p_21

tau_14 Declaration REJECTED by EMPLOYEE

p_30

tau_8

p_7

tau_18 Declaration REJECTED by PRE_APPROVER

p_33

tau_23

p_14

tau_29

p_25

Request Payment

p_20

tau_3

p_24

Declaration FINAL_APPROVED by SUPERVISOR

p_4

tau_16

p_15

tau_6

p_12

tau_4

p_29

tau_7

p_16

tau_17 tau_24

p_13

Declaration REJECTED by SUPERVISORtau_10 Declaration APPROVED by ADMINISTRATION

p_31

Declaration REJECTED by MISSINGtau_9 tau_26

source

tau_13

GTM-10:

F1 = 0.97
F = 0.97
P = 0.97
G = 0.89
S = 0.69

OF = 0.92

p_6

Declaration REJECTED by EMPLOYEE

p_7

tau_17tau_23

p_19

Request Payment Declaration FOR_APPROVAL by PRE_APPROVER tau_21 Declaration FOR_APPROVAL by SUPERVISOR

p_22

Declaration REJECTED by PRE_APPROVER

Declaration REJECTED by ADMINISTRATION tau_10

tau_20

p_26

Declaration APPROVED by ADMINISTRATION tau_15

p_17

tau_7

tau_8

p_18

tau_24

p_20

tau_19

p_21

tau_11tau_12

p_11

Payment Handled tau_16

p_13

p_10

tau_3

p_12

tau_22

tau_25

source

tau_13 Declaration SAVED by EMPLOYEE

p_5

sink

p_23

Declaration SUBMITTED by EMPLOYEE

p_24

tau_1 Declaration FOR_APPROVAL by ADMINISTRATION

p_4

tau_4

tau_5

p_14

Declaration REJECTED by MISSING

p_15

tau_9tau_18

p_28

tau_6 Declaration APPROVED by PRE_APPROVER

Declaration REJECTED by BUDGET OWNER

Declaration APPROVED by BUDGET OWNER

p_29

tau_14

p_3

tau_0

tau_2

p_27 p_30

Declaration FINAL_APPROVED by SUPERVISOR Declaration REJECTED by SUPERVISOR

IM:

F1 = 0.56
F = 1.00
P = 0.39
G = 0.85
S = 0.60

OF = 0.75

ent_node22

Payment Handled

exi_node3

Declaration SAVED by EMPLOYEE

tau_1

ent_node16

Declaration REJECTED by MISSING

exi_node28

Declaration APPROVED by ADMINISTRATIONDeclaration FOR_APPROVAL by SUPERVISOR Declaration FOR_APPROVAL by PRE_APPROVER

Declaration REJECTED by PRE_APPROVERDeclaration APPROVED by PRE_APPROVER

Declaration FOR_APPROVAL by ADMINISTRATION

Declaration REJECTED by ADMINISTRATION

ent_node12

tau_0

ent_node23

Request Payment

ent_node25

Declaration FINAL_APPROVED by SUPERVISOR

exi_node7

Declaration REJECTED by BUDGET OWNERDeclaration REJECTED by SUPERVISORDeclaration APPROVED by BUDGET OWNER

ent_node10

Declaration REJECTED by EMPLOYEE

sink

ent_node9

Declaration SUBMITTED by EMPLOYEE

source

tau_2

SM:

F1 = 0.91
F = 0.92
P = 0.89
G = 0.82
S = 0.67

OF = 0.88

Page 29 of 40

C Discovered Petri Nets - 2013-op

source

tau_6

p_5

tau_1

p_6

Queuedtau_2

p_7

Accepted

sink

p_12

tau_4

p_8

tau_0 tau_5

p_13

Completedtau_3

GTM-10:

F1 = 0.96
F = 0.95
P = 0.97
G = 0.96
S = 0.82

OF = 0.95

p_6

tau_10

p_12

tau_7

tau_8

p_5

tau_9 tau_11

sink

p_18

tau_6

p_14

Completed

p_15

tau_0tau_13

p_7

Accepted

p_8

tau_1tau_2

source

tau_14

p_17

tau_15

tau_16

p_19

Queued

p_20

tau_4tau_12

p_10

tau_3

tau_5

p_11

p_13

IM:

F1 = 0.95
F = 1.00
P = 0.91
G = 0.93
S = 0.69

OF = 0.83

exi_node5

CompletedQueued

source

tau_0

sinkent_node0

Accepted

SM:

F1 = 0.82
F = 0.70
P = 0.99
G = 0.96
S = 1.00

OF = 0.85

Page 30 of 40

D Discovered Petri Nets - 2013-cp

source

Unmatched

p_6

tau_1

p_7

Completed Queued Accepted

p_8

tau_0

sink

GTM-10:

F1 = 0.95
F = 0.91
P = 1.00
G = 0.93
S = 0.85

OF = 0.94

p_22

tau_9

p_24

tau_3tau_12

p_10

tau_0

tau_1

p_23

Queued

source

tau_4

p_21

tau_2

tau_14

p_7

Completed

p_8

tau_5

tau_6

p_14

Accepted

p_15

tau_7

tau_13

p_20

p_17

tau_8

tau_10

p_18

sink

p_11

p_19

Unmatchedtau_11

IM:

F1 = 0.89
F = 1.00
P = 0.79
G = 0.88
S = 0.66

OF = 0.86

source

tau_0

exi_node4

QueuedUnmatched

sink

ent_node6

Accepted

ent_node0

Completed

SM:

F1 = 0.76
F = 0.62
P = 0.99
G = 0.92
S = 1.00

OF = 0.81

Page 31 of 40

E Discovered Petri Nets - 2020-ptc

p_14

tau_12 Request For Payment REJECTED by EMPLOYEE

p_37

tau_4

p_41

tau_6 Request For Payment APPROVED by PRE_APPROVER Request For Payment FINAL_APPROVED by SUPERVISORPermit APPROVED by BUDGET OWNER

p_16

Request For Payment REJECTED by SUPERVISOR

tau_1

Request For Payment REJECTED by ADMINISTRATION

Permit REJECTED by ADMINISTRATION

Permit APPROVED by ADMINISTRATION

Request For Payment REJECTED by PRE_APPROVER

tau_10

Permit FINAL_APPROVED by DIRECTOR

Permit FINAL_APPROVED by SUPERVISOR

Request For Payment REJECTED by BUDGET OWNER

p_22

tau_17 Permit APPROVED by PRE_APPROVER

p_23

tau_21

p_15

tau_9

p_10

Permit REJECTED by MISSING

p_8

Permit REJECTED by SUPERVISOR

p_27

tau_13

p_17

tau_18

p_32

tau_5 Payment Handled

p_24

Request For Payment APPROVED by ADMINISTRATION

tau_3 Request For Payment APPROVED by SUPERVISORtau_19

p_28

tau_8 Request For Payment REJECTED by MISSING

p_38

Request For Payment FINAL_APPROVED by DIRECTOR

sink

p_20

tau_15

p_4

tau_2

p_39

Permit REJECTED by EMPLOYEERequest For Payment APPROVED by BUDGET OWNER tau_25

p_18

tau_14

p_31

tau_20

p_35

tau_11 Request Payment

p_42

tau_16

source

tau_22

p_40

tau_24

p_34

tau_7

p_19

Request For Payment SUBMITTED by EMPLOYEE Permit REJECTED by PRE_APPROVER tau_23

p_5

Permit APPROVED by SUPERVISOR

p_13

tau_0

p_3

Request For Payment SAVED by EMPLOYEE

Permit SUBMITTED by EMPLOYEE

p_9

Permit REJECTED by BUDGET OWNER

GTM-60:

F1 = 0.99
F = 0.98
P = 1.00
G = 0.93
S = 0.64

OF = 0.92

p_12

Request For Payment REJECTED by MISSING tau_38

p_15

tau_12 Request For Payment REJECTED by EMPLOYEE

p_22

tau_17

tau_51

p_23

tau_1 Permit REJECTED by PRE_APPROVER Permit APPROVED by ADMINISTRATIONPermit REJECTED by ADMINISTRATION

p_28

tau_9

tau_36

p_36

tau_18

tau_48

p_37

tau_29

p_57

tau_14

p_11

tau_44

p_20

tau_5

Permit SUBMITTED by EMPLOYEE

Request For Payment SAVED by EMPLOYEE

p_21

tau_0 tau_56

p_33

tau_11Request For Payment REJECTED by BUDGET OWNER

p_35

p_56

Request Paymenttau_46

p_7

Permit REJECTED by MISSING

p_8

tau_30tau_57

p_34

Permit FINAL_APPROVED by DIRECTORtau_58

p_54

Request For Payment FINAL_APPROVED by SUPERVISOR

tau_27 Request For Payment APPROVED by SUPERVISOR

p_55

Request For Payment FINAL_APPROVED by DIRECTOR

p_41

tau_31

tau_41

tau_45

p_42

tau_3

p_43

tau_10

tau_55

p_47

tau_16

tau_20

tau_49

p_48

tau_50

p_52

Permit REJECTED by BUDGET OWNERtau_32

p_53

tau_4

source

tau_15

p_6

p_13

tau_25

p_14

tau_8tau_43

p_26

tau_2

tau_7 Permit APPROVED by PRE_APPROVER

p_27

tau_35

p_40

p_44

Request For Payment APPROVED by PRE_APPROVERtau_53 Request For Payment APPROVED by BUDGET OWNER

p_46

p_51

p_19

Request For Payment REJECTED by PRE_APPROVERtau_59

p_25

p_31

tau_13

tau_21

p_32

tau_52

p_39

Permit APPROVED by SUPERVISOR tau_33

p_45

tau_19Permit REJECTED by SUPERVISOR

p_50

Request For Payment SUBMITTED by EMPLOYEEtau_34

p_62

tau_24 Permit REJECTED by EMPLOYEE

p_63

tau_54

sink

p_5

tau_39 tau_47

p_18

tau_40

p_24

tau_6 Permit FINAL_APPROVED by SUPERVISOR

p_30

p_61

p_16

p_29

Permit APPROVED by BUDGET OWNERtau_26

p_38

tau_23

tau_37

p_49

Request For Payment REJECTED by ADMINISTRATION tau_22Request For Payment APPROVED by ADMINISTRATION

p_58

Payment Handledtau_42

p_59

p_60

Request For Payment REJECTED by SUPERVISOR tau_28

IM:

F1 = 0.27
F = 0.99
P = 0.16
G = 0.89
S = 0.59

OF = 0.59

exi_node0

Request For Payment REJECTED by PRE_APPROVER

Request For Payment REJECTED by ADMINISTRATIONRequest For Payment APPROVED by ADMINISTRATIONRequest For Payment APPROVED by PRE_APPROVER

ent_node34

Permit REJECTED by EMPLOYEE

ent_node26

Payment Handled

exi_node4

Request For Payment APPROVED by BUDGET OWNER Request For Payment REJECTED by SUPERVISOR Request For Payment REJECTED by BUDGET OWNERRequest For Payment APPROVED by SUPERVISOR

ent_node22

Permit SUBMITTED by EMPLOYEE

ent_node27

Permit REJECTED by MISSING

ent_node15

Request For Payment REJECTED by EMPLOYEE

source

tau_1

ent_node23

tau_0

ent_node7

Request For Payment FINAL_APPROVED by SUPERVISOR

ent_node10

Permit FINAL_APPROVED by DIRECTOR

ent_node6

Permit FINAL_APPROVED by SUPERVISOR

ent_node39

Request For Payment SUBMITTED by EMPLOYEE

exi_node32

Permit REJECTED by SUPERVISORPermit APPROVED by SUPERVISOR

Permit APPROVED by BUDGET OWNER

Permit REJECTED by BUDGET OWNER

ent_node37

Request For Payment REJECTED by MISSING

sink

ent_node36

Request For Payment FINAL_APPROVED by DIRECTOR

exi_node11

Permit APPROVED by ADMINISTRATIONPermit REJECTED by PRE_APPROVER Permit APPROVED by PRE_APPROVERPermit REJECTED by ADMINISTRATION

ent_node2

Request Payment

ent_node1

Request For Payment SAVED by EMPLOYEE

SM:

F1 = 0.76
F = 0.64
P = 0.96
G = 0.88
S = 0.70

OF = 0.76

Page 32 of 40

F Discovered Petri Nets - RTF

source

Create Fine

p_5

Insert Fine Notification

p_27

tau_7

p_9

Add penalty

p_19

tau_4

sink

p_28

tau_2 Send for Credit Collection

p_7

tau_1

p_10

tau_9

p_20

tau_6 Appeal to Judge

p_4

Send Fine

p_14

tau_5

p_24

Payment

p_6

tau_8 Insert Date Appeal to Prefecture

p_13

tau_0

Send Appeal to Prefecture

p_16

Receive Result Appeal from Prefecture

p_23

tau_3

p_17

Notify Result Appeal to Offender

GTM-10:
F1 = 0.97
F = 0.95
P = 1.00
G = 0.99
S = 0.80

OF = 0.94

p_5

tau_9

sink

p_16

tau_6

tau_11

p_17

tau_16

p_19

tau_12

p_27

tau_7

tau_14

p_28

tau_21

p_30

tau_15

p_4

tau_10 Send Appeal to Prefecture

p_10

Send for Credit Collection tau_20

p_12

p_18

Send Fine

p_22

tau_13

p_25

Add penaltytau_19

p_26p_29

tau_1Appeal to Judge

p_9

p_11

tau_17

tau_18

p_24

p_7

p_23

Receive Result Appeal from Prefecturetau_22

source

Create Fine

p_13

Payment

p_14

tau_2tau_5

p_21

p_20

Insert Fine Notification

tau_3

tau_4

p_6

tau_0 Insert Date Appeal to Prefecture

p_31

Notify Result Appeal to Offendertau_8

p_32

IM:

F1 = 0.77
F = 1.00
P = 0.63
G = 0.97
S = 0.62

OF = 0.63

source

Create Fine

ent_node0

Notify Result Appeal to Offender

ent_node8

Receive Result Appeal from Prefecture

sink

ent_node1

Send Fine

ent_node6

Insert Fine Notification

exi_node11

Send Appeal to Prefecture

Send for Credit Collection

ent_node10

Add penalty

ent_node13

Payment

exi_node15

Insert Date Appeal to Prefecture Appeal to Judge

ent_node5

tau_0

SM:

F1 = 0.88
F = 0.79
P = 0.99
G = 0.99
S = 0.92

OF = 0.87

Page 33 of 40

G Discovered Petri Nets - 2020-id

p_33

tau_4

p_30

Declaration REJECTED by BUDGET OWNER

p_10

Payment Handled

p_5

Start trip

p_35

tau_7

p_37

tau_0

p_32

Declaration REJECTED by SUPERVISORtau_13

p_17

tau_20

p_25

tau_1

p_11

Declaration REJECTED by MISSING

p_20

tau_6

p_34

Permit APPROVED by ADMINISTRATIONPermit REJECTED by ADMINISTRATION Declaration REJECTED by PRE_APPROVERtau_15 Declaration REJECTED by ADMINISTRATION

p_13

Permit REJECTED by PRE_APPROVER

p_27

tau_10

p_28

tau_9

p_16

Permit APPROVED by PRE_APPROVER tau_2 Declaration APPROVED by SUPERVISOR Declaration FINAL_APPROVED by DIRECTOR Declaration APPROVED by BUDGET OWNERPermit FINAL_APPROVED by SUPERVISOR Permit REJECTED by SUPERVISOR Declaration FINAL_APPROVED by SUPERVISOR tau_17

p_12

Permit REJECTED by MISSING tau_14

p_18

tau_12

Declaration SUBMITTED by EMPLOYEE

p_38

Send Remindertau_19

p_15

tau_11

p_31

Permit REJECTED by BUDGET OWNER

p_8

Request Payment

p_24

Permit FINAL_APPROVED by DIRECTOR

Permit APPROVED by SUPERVISOR

Permit APPROVED by BUDGET OWNER

Declaration REJECTED by DIRECTOR

tau_5

Permit REJECTED by EMPLOYEE

End trip

tau_18

Declaration REJECTED by EMPLOYEE

source

Permit SUBMITTED by EMPLOYEE

p_9

tau_3 Declaration SAVED by EMPLOYEE

sink

p_29

Permit REJECTED by DIRECTOR

p_23

tau_16

p_26

Declaration APPROVED by PRE_APPROVERDeclaration APPROVED by ADMINISTRATIONtau_8

GTM-300:

F1 = 0.99
F = 0.98
P = 1.00
G = 0.92
S = 0.62

OF = 0.92

p_12

tau_39 tau_94

p_34

tau_55tau_95

p_51

tau_16

tau_84

p_115

tau_32 tau_73

p_42

Permit FINAL_APPROVED by SUPERVISORtau_88

p_77

tau_66 tau_87

p_43

tau_19

tau_92

p_78

Permit REJECTED by BUDGET OWNER

p_15

tau_42

p_32

tau_17

tau_38

p_10 p_30

tau_53

tau_64

p_35

tau_1

tau_24

p_83

tau_10tau_54

sink

p_24

tau_21

tau_45

p_86

tau_5Permit REJECTED by DIRECTOR

p_95

tau_34

p_25

tau_8

tau_28

p_65

tau_7

tau_30

tau_37

p_93

p_121

tau_46

p_113

tau_51

p_7

End trip

p_11

Permit REJECTED by MISSING

p_17

tau_15

tau_35p_33

tau_43

p_114

Declaration FINAL_APPROVED by DIRECTOR

p_6

p_119

p_54

tau_29tau_70

p_109

tau_23 tau_80

p_111

p_82

Permit REJECTED by ADMINISTRATION

p_46

tau_36tau_76

p_81

tau_68

tau_93

p_85

Permit APPROVED by BUDGET OWNER

p_99

tau_44

p_75

tau_33

tau_58

tau_60

p_97

p_100

tau_31

Declaration REJECTED by SUPERVISOR

tau_79

p_107

Declaration REJECTED by DIRECTOR

Declaration FINAL_APPROVED by SUPERVISOR

tau_50

tau_89

p_38

tau_41 tau_83

p_52

tau_61

p_63

tau_40

tau_85

p_49

tau_67

p_105

Declaration APPROVED by SUPERVISORtau_63

p_28

tau_47tau_91

p_44 p_68

tau_62

tau_90

source

tau_81

p_16

tau_27Declaration SAVED by EMPLOYEE

p_41

tau_69

p_14

tau_14

tau_59

p_20

tau_0 tau_57

p_36

p_53

Permit REJECTED by EMPLOYEE

p_91

tau_74tau_77

p_31

tau_75

p_9

tau_52 tau_71

p_26 p_45

Permit APPROVED by SUPERVISOR

p_59

Permit REJECTED by SUPERVISOR

p_66

p_94

tau_20

Declaration REJECTED by PRE_APPROVER

p_23

tau_82

p_73

tau_12

tau_65

p_8

p_18p_37

Permit APPROVED by PRE_APPROVER

p_62

Permit SUBMITTED by EMPLOYEE

p_92

Declaration REJECTED by EMPLOYEEtau_78

p_103

tau_6 tau_49

p_27

Declaration SUBMITTED by EMPLOYEE

p_67

Permit REJECTED by PRE_APPROVER

p_120

Payment Handled

p_79

tau_22 tau_72

p_112

tau_56

tau_86

p_5

Start trip

p_19

Send Reminder

p_90

tau_9

p_96

tau_11 Declaration APPROVED by ADMINISTRATION

p_108

tau_18

p_118

Request Payment tau_96

p_110

tau_4 Declaration REJECTED by MISSING

p_58

tau_13

p_76

p_98

tau_3

Declaration REJECTED by BUDGET OWNER

tau_25

tau_48

Declaration APPROVED by PRE_APPROVER

p_101

tau_26 Declaration APPROVED by BUDGET OWNER

p_72

Permit APPROVED by ADMINISTRATION

p_50

tau_2Permit FINAL_APPROVED by DIRECTOR

p_102

Declaration REJECTED by ADMINISTRATION

p_106

IM:

F1 = 0.38
F = 0.97
P = 0.23
G = 0.88
S = 0.62

OF = 0.51

sink

ent_node33

Declaration REJECTED by MISSING

ent_node41

tau_1

ent_node3

Declaration SUBMITTED by EMPLOYEE

exi_node35

Permit REJECTED by MISSING

Payment Handled

ent_node11

Request Payment

exi_node6

Declaration APPROVED by SUPERVISOR

Declaration REJECTED by SUPERVISOR

Declaration REJECTED by BUDGET OWNERDeclaration APPROVED by BUDGET OWNER

source

tau_0

ent_node47

Declaration REJECTED by EMPLOYEE

exi_node10

Permit REJECTED by DIRECTORPermit FINAL_APPROVED by DIRECTOR

ent_node22

Permit SUBMITTED by EMPLOYEE

ent_node24

Start trip

exi_node28

Permit APPROVED by PRE_APPROVER

Permit REJECTED by PRE_APPROVER Permit REJECTED by ADMINISTRATION

Permit APPROVED by ADMINISTRATION

exi_node7

Send ReminderDeclaration SAVED by EMPLOYEE

ent_node45

Declaration FINAL_APPROVED by SUPERVISOR

ent_node17

End trip

ent_node12

Permit FINAL_APPROVED by SUPERVISOR

exi_node13

Permit APPROVED by SUPERVISOR

Permit REJECTED by SUPERVISOR

Permit APPROVED by BUDGET OWNER Permit REJECTED by BUDGET OWNER

ent_node32

Permit REJECTED by EMPLOYEE

exi_node55

Declaration REJECTED by DIRECTORDeclaration FINAL_APPROVED by DIRECTOR

exi_node5

Declaration APPROVED by ADMINISTRATIONDeclaration APPROVED by PRE_APPROVER

Declaration REJECTED by PRE_APPROVERDeclaration REJECTED by ADMINISTRATION

SM:

F1 = 0.85
F = 0.76
P = 0.97
G = 0.90
S = 0.66

OF = 0.82

Page 34 of 40

H Discovered Petri Nets - Sepsis

p_12

tau_2Return ER

p_8

Release B tau_5 Release E

p_15

tau_0LacticAcid

p_13

tau_4

source

ER Triage

p_7

tau_10

p_14

tau_11

p_21

Admission IC

p_24

Release D

p_9

tau_3

p_17

Leucocytes tau_9

p_16

tau_7

sink

p_3

ER Sepsis Triage

p_10

IV Liquid Admission NC Release A tau_8CRP

p_20

tau_1

p_23

ER Registration

p_22

Release C

p_11

IV Antibiotics tau_6

GTM-60:

F1 = 0.99
F = 0.98
P = 0.99
G = 0.95
S = 0.71

OF = 0.94

p_22

Leucocytes

p_23

tau_19 tau_29

p_37

Release A tau_33

p_39

tau_21

p_44

ER Triage

p_45

tau_23 tau_32

p_36

tau_6

p_38

tau_22

ER Sepsis Triage

p_10

ER Registration

p_11

tau_1

p_30

tau_30

tau_31

p_31p_6

p_25

tau_3

tau_4

p_26

source

tau_5

p_5

tau_0

tau_2

p_19

Release C tau_28 Release E Release D

p_21

p_40

tau_9 IV Antibiotics

p_43

tau_24

tau_25

p_47

Admission IC

p_48

tau_10 tau_16

p_51

p_18

tau_13

p_20

tau_7

tau_8

p_42

p_14

Release B tau_12

p_16p_32

LacticAcid

p_33

tau_15tau_20

sink

p_7

Admission NC

p_8

tau_17 tau_26

p_13

p_15

Return ER tau_14

p_27

CRP

p_28

tau_18 tau_27

p_50

tau_11 IV Liquid

IM:

F1 = 0.49
F = 1.00
P = 0.32
G = 0.90
S = 0.62

OF = 0.66

ent_node14

Return ER

ent_node21

IV Liquid

ent_node13

ER Triage

exi_node18

Admission IC

Admission NC

ent_node20

CRP

ent_node4

LacticAcid

ent_node3

ER Sepsis Triage

ent_node9

IV Antibiotics

sink

ent_node2

tau_0

source

ER Registration

exi_node15

Release A

Release E

Release B

Release D

Release C

ent_node10

Leucocytes

SM:

F1 = 0.81
F = 0.69
P = 0.98
G = 0.92
S = 0.79

OF = 0.81

Page 35 of 40

I Discovered Petri Nets - 2020-pl

p_29

tau_23Declaration APPROVED by BUDGET OWNER

p_28

Permit FINAL_APPROVED by SUPERVISOR Declaration FINAL_APPROVED by SUPERVISOR tau_19 tau_40Request For Payment REJECTED by EMPLOYEE

p_36

Declaration REJECTED by ADMINISTRATION Declaration REJECTED by PRE_APPROVERPermit REJECTED by BUDGET OWNER tau_34

p_9

tau_21

p_13

tau_24

p_23

tau_2

p_46

Declaration FINAL_APPROVED by DIRECTORDeclaration REJECTED by DIRECTOR

p_37

tau_4

tau_11 Declaration REJECTED by SUPERVISORtau_37

Send Reminder

p_39

tau_1

tau_30

p_38

tau_38

p_32

tau_7 Declaration REJECTED by MISSING Request For Payment APPROVED by PRE_APPROVERRequest For Payment APPROVED by BUDGET OWNER

p_19

tau_13 Permit REJECTED by EMPLOYEE

p_41

Declaration REJECTED by BUDGET OWNER Request For Payment APPROVED by ADMINISTRATIONtau_43

tau_44

p_43

tau_9 Declaration APPROVED by PRE_APPROVERDeclaration REJECTED by EMPLOYEE

p_45

Declaration APPROVED by SUPERVISOR

p_48

Declaration APPROVED by ADMINISTRATION

p_17

tau_8 Permit APPROVED by BUDGET OWNER

p_18

tau_3 tau_27Request For Payment SAVED by EMPLOYEE Permit FINAL_APPROVED by DIRECTORPermit APPROVED by PRE_APPROVER

p_21

tau_26

p_40

tau_15

p_12

End trip

p_25

tau_0 Request For Payment SUBMITTED by EMPLOYEE tau_28

p_42

tau_20 tau_39

sink

p_5

Request For Payment REJECTED by BUDGET OWNER

p_16

tau_6Permit FOR_APPROVAL by ADMINISTRATION

p_52

tau_42

p_22

Request For Payment REJECTED by PRE_APPROVER Permit REJECTED by DIRECTOR tau_36

p_49

tau_14 tau_32

p_51

tau_16

p_27

tau_5

p_10

Start trip

p_15

p_30

Declaration SUBMITTED by EMPLOYEEtau_35

p_53

Declaration SAVED by EMPLOYEE tau_33

p_6

Permit FOR_APPROVAL by SUPERVISOR Request For Payment REJECTED by ADMINISTRATION Request For Payment REJECTED by SUPERVISORtau_10

Permit REJECTED by MISSING

Request For Payment REJECTED by MISSING

tau_31

p_14

Request For Payment FINAL_APPROVED by DIRECTOR

Request For Payment APPROVED by SUPERVISOR

tau_17

tau_22

source

Permit SAVED by EMPLOYEE

p_24

tau_18Payment Handled Request Payment

p_33

Request For Payment FINAL_APPROVED by SUPERVISOR tau_25

p_20

Permit APPROVED by ADMINISTRATIONPermit SUBMITTED by EMPLOYEE

tau_12

Permit REJECTED by PRE_APPROVER tau_29Permit REJECTED by SUPERVISOR

Permit REJECTED by ADMINISTRATION tau_41 Permit APPROVED by SUPERVISOR

GTM-300:

F1 = 0.98
F = 0.97
P = 1.00
G = 0.87
S = 0.54

OF = 0.90

p_6

tau_0

p_14

tau_10 Permit FOR_APPROVAL by ADMINISTRATION

p_59

tau_77

p_65

Declaration REJECTED by SUPERVISOR

Request For Payment REJECTED by EMPLOYEE Declaration REJECTED by MISSING

tau_37

Permit REJECTED by MISSING

Declaration SAVED by EMPLOYEE

tau_66

Request For Payment FINAL_APPROVED by SUPERVISOR

p_98

tau_33tau_90

p_113

tau_49

p_28

tau_15

tau_104

p_54

Request For Payment APPROVED by ADMINISTRATION

p_72

tau_1 tau_47

p_60

Request For Payment REJECTED by BUDGET OWNER

p_110

tau_40tau_98

p_26

tau_6 tau_51

p_46

tau_8tau_107

p_50

tau_7tau_52

p_69

tau_31

p_43

tau_69

p_96

tau_26

p_115

Declaration REJECTED by ADMINISTRATION

p_64

tau_34tau_92

p_67

p_9

tau_67

tau_109

p_22

tau_68

tau_100

p_39

Permit REJECTED by DIRECTORtau_93

p_78

tau_22Declaration APPROVED by BUDGET OWNER

p_103

Declaration SUBMITTED by EMPLOYEE

p_70

tau_71

p_76

tau_21

tau_87

p_97

Declaration REJECTED by PRE_APPROVER

p_41

tau_50tau_115

p_71

Declaration REJECTED by BUDGET OWNER

p_102

tau_17 tau_91

p_108

p_24

tau_39

tau_103

p_74

Declaration APPROVED by SUPERVISOR tau_48

p_109

Request Payment

p_11

Permit SUBMITTED by EMPLOYEE

p_25

Permit REJECTED by PRE_APPROVER

p_45

Permit APPROVED by ADMINISTRATION

Permit FINAL_APPROVED by SUPERVISOR

Permit FINAL_APPROVED by DIRECTOR

Request For Payment SUBMITTED by EMPLOYEE

Permit APPROVED by SUPERVISOR

Permit REJECTED by SUPERVISOR

Permit REJECTED by ADMINISTRATION

p_49

Request For Payment APPROVED by PRE_APPROVER

p_87

tau_32 tau_82

p_92

tau_2

tau_53

tau_59

p_63

tau_3

Request For Payment SAVED by EMPLOYEE

Permit APPROVED by BUDGET OWNER

Request For Payment REJECTED by SUPERVISOR

tau_63

Request For Payment APPROVED by BUDGET OWNER

Request For Payment REJECTED by ADMINISTRATION

Request For Payment FINAL_APPROVED by DIRECTOR

Request For Payment APPROVED by SUPERVISOR

p_31

tau_35tau_85

p_37

tau_42 tau_108

p_57

tau_30

tau_56

tau_62

p_80

tau_57

p_82

tau_36 tau_88

p_90

Declaration REJECTED by EMPLOYEE tau_58

p_52

tau_29

tau_61

p_17

tau_14

tau_43

p_34

tau_73

p_85

p_29

p_16

tau_24

p_40

tau_45

p_47

tau_72

tau_76

p_35

tau_13 Permit FOR_APPROVAL by SUPERVISORPermit SAVED by EMPLOYEE

p_86

Declaration APPROVED by PRE_APPROVER

p_89

tau_25

tau_83

p_100

tau_54

tau_97

p_20

tau_78tau_110

p_30

Send Reminder

p_36

Permit APPROVED by PRE_APPROVER tau_44

p_68

tau_64

tau_86

tau_96

p_81

Declaration FINAL_APPROVED by SUPERVISOR

sink

p_95

tau_60

tau_89

p_106

tau_79 Payment Handled

p_5

Start trip

p_66

Declaration APPROVED by ADMINISTRATION tau_95

p_7

End trip

p_18

p_42

tau_38Permit REJECTED by BUDGET OWNER

p_77

tau_112

p_112

Declaration FINAL_APPROVED by DIRECTORtau_74

p_10

p_12

tau_23tau_99

p_55

tau_18tau_80

p_61

tau_19 tau_81

p_75

p_114

tau_28

tau_46 Request For Payment REJECTED by MISSING

p_101

p_107

tau_65

tau_114

p_23

p_38

tau_94

p_48

Request For Payment REJECTED by PRE_APPROVERtau_70

tau_101

p_84

tau_12

tau_102

p_93

tau_4

p_58

tau_111

p_19

Permit REJECTED by EMPLOYEE

p_44

tau_5 tau_55

p_91

p_116

tau_20 tau_75

p_53

p_79

tau_106

tau_113

source

tau_9

p_8

p_33

tau_11

tau_16

tau_105

p_94

tau_41 Declaration REJECTED by DIRECTOR

p_104

tau_27tau_84

IM:

F1 = 0.18
F = 1.00
P = 0.10
G = 0.86
S = 0.59

OF = 0.52

ent_node19

Payment Handled

exi_node6

Declaration APPROVED by ADMINISTRATION

Declaration APPROVED by PRE_APPROVERDeclaration REJECTED by ADMINISTRATIONDeclaration REJECTED by PRE_APPROVER

exi_node77

Permit REJECTED by MISSINGDeclaration SAVED by EMPLOYEE

ent_node34

Declaration REJECTED by EMPLOYEE

exi_node38

Permit FINAL_APPROVED by DIRECTOR Permit REJECTED by DIRECTOR

ent_node39

Request For Payment FINAL_APPROVED by SUPERVISOR

ent_node66

Request Payment

exi_node54

Declaration APPROVED by SUPERVISOR

Declaration REJECTED by SUPERVISOR

Declaration APPROVED by BUDGET OWNER

Declaration REJECTED by BUDGET OWNER

exi_node71

Permit REJECTED by BUDGET OWNER

Permit APPROVED by BUDGET OWNER Permit REJECTED by SUPERVISORPermit APPROVED by SUPERVISOR

exi_node51

Request For Payment REJECTED by BUDGET OWNER Request For Payment REJECTED by SUPERVISOR Request For Payment APPROVED by BUDGET OWNERRequest For Payment APPROVED by SUPERVISOR

source

tau_3

ent_node36

Request For Payment SUBMITTED by EMPLOYEE

ent_node74

Permit SUBMITTED by EMPLOYEE

exi_node16

Request For Payment REJECTED by ADMINISTRATION Request For Payment APPROVED by PRE_APPROVERRequest For Payment APPROVED by ADMINISTRATIONRequest For Payment REJECTED by PRE_APPROVER

ent_node29

tau_2

ent_node63

Request For Payment FINAL_APPROVED by DIRECTOR

exi_node80

Declaration FINAL_APPROVED by DIRECTORDeclaration REJECTED by DIRECTOR

ent_node46

Declaration SUBMITTED by EMPLOYEE

ent_node47

Declaration REJECTED by MISSING

ent_node2

Permit FOR_APPROVAL by SUPERVISOR

ent_node27

Permit REJECTED by EMPLOYEE

ent_node20

Send Reminder

sink

exi_node30

Permit FOR_APPROVAL by ADMINISTRATION Permit REJECTED by PRE_APPROVER

Permit APPROVED by PRE_APPROVER Permit REJECTED by ADMINISTRATIONPermit APPROVED by ADMINISTRATION

exi_node44

tau_1Permit SAVED by EMPLOYEE

ent_node7

Start trip

ent_node61

Declaration FINAL_APPROVED by SUPERVISOR

ent_node69

Request For Payment REJECTED by MISSING

ent_node78

End trip

exi_node14

Request For Payment SAVED by EMPLOYEE tau_0

ent_node33

Permit FINAL_APPROVED by SUPERVISOR

ent_node58

Request For Payment REJECTED by EMPLOYEE

SM:

F1 = 0.81
F = 0.70
P = 0.96
G = 0.86
S = 0.65

OF = 0.77

Page 36 of 40

J Discovered Petri Nets - 2013-i

p_13

Accepted

p_11

Unmatchedtau_7

p_8

tau_5 Queued

p_10

tau_4

p_16

Completed

p_17

tau_0 tau_2

sink

p_14

tau_3 tau_6

source

tau_1

p_7

tau_8

GTM-60:

F1 = 0.97
F = 0.97
P = 0.98
G = 0.96
S = 0.79

OF = 0.95

p_11

tau_2

p_13

tau_12

source

tau_17

sink

p_7

Accepted

p_8

tau_5tau_8

p_12

tau_13

tau_14

p_19

Unmatched tau_18

p_10

tau_9

tau_11

p_14

Completed

p_15

tau_0tau_6

p_20

Queued

p_21

tau_1tau_7

p_6

p_5

tau_3 tau_4

p_17

tau_10

tau_15

tau_16

p_18

IM:

F1 = 0.77
F = 1.00
P = 0.63
G = 0.87
S = 0.67

OF = 0.79

exi_node0

QueuedCompleted

source

tau_0

ent_node1

Accepted

sink

exi_node8

Unmatchedtau_1

SM:

F1 = 0.87
F = 0.77
P = 1.00
G = 0.92
S = 0.85

OF = 0.84

Page 37 of 40

K Discovered Petri Nets - 2012

p_32

O_CREATED

p_43

tau_2 O_SELECTED

p_21

tau_0 A_ACTIVATEDW_Valideren aanvraag W_Nabellen offertes O_DECLINED

p_23

W_Nabellen incomplete dossierstau_9

p_42

tau_5

sink

p_29

O_SENT_BACK O_CANCELLED

p_35

W_Completeren aanvraagO_ACCEPTED A_APPROVED

p_5

W_Beoordelen fraude

p_7

A_DECLINED

p_41

A_PREACCEPTED

p_6

W_Wijzigen contractgegevens

source

A_SUBMITTED

p_22

tau_3

p_34

tau_4

p_15

A_CANCELLED

p_11

W_Afhandelen leads

p_12

A_ACCEPTEDtau_6

p_4

A_PARTLYSUBMITTED

p_36

tau_7

p_31

A_REGISTERED

p_16

A_FINALIZED

p_20

tau_8

p_25

tau_1

p_28

O_SENT

GTM-300:

F1 = 0.96
F = 0.93
P = 1.00
G = 0.98
S = 0.77

OF = 0.92

sink

p_11

W_Completeren aanvraag

p_20

tau_9 tau_36

p_26

tau_25tau_34

p_31

W_Nabellen incomplete dossiers

p_32

tau_3 tau_24

p_38

tau_32

p_44

O_ACCEPTEDtau_16

p_51

tau_44

p_54

tau_30

p_6

W_Beoordelen fraude W_Afhandelen leads A_PREACCEPTED tau_20

p_15

tau_29

p_37

tau_6 tau_48

p_50

A_ACTIVATED

p_53

tau_7A_DECLINED

p_10

p_12

tau_10 tau_33

p_16

tau_11

tau_40

p_18

source

A_SUBMITTED

p_4

A_PARTLYSUBMITTED

p_7

tau_1tau_28

p_9

tau_8

tau_19

p_19

O_SELECTED

p_34

tau_15

tau_43

tau_47

p_36

O_CANCELLEDtau_49

p_49p_30

tau_13

p_39

W_Valideren aanvraag

p_40

tau_14 tau_39

p_48

A_REGISTERED

p_8

tau_18 tau_26

p_29

tau_23tau_38

p_52

O_SENT_BACKtau_45

p_14

A_ACCEPTED tau_35

tau_41

p_17

tau_22

tau_42

p_22

A_FINALIZED tau_31

p_24

tau_37

p_46

A_APPROVED

p_47

p_57

tau_2O_DECLINED

p_58

p_25

tau_12

O_CREATED

A_CANCELLED

p_27

tau_0

tau_21

p_28

O_SENT

p_35

p_42

tau_4

tau_17 tau_27

tau_46

p_43

p_45

p_55

tau_5W_Nabellen offertes

p_56

IM:

F1 = 0.24
F = 0.97
P = 0.14
G = 0.95
S = 0.61

OF = 0.56

exi_node19

A_REGISTERED A_APPROVED

exi_node7

O_ACCEPTED W_Nabellen incomplete dossiers

ent_node12

O_CREATED

exi_node8

A_ACCEPTED

A_CANCELLED

source

A_SUBMITTED

ent_node16

A_ACTIVATED

ent_node1

A_PREACCEPTED

ent_node14

tau_1

ent_node30

A_PARTLYSUBMITTED

ent_node15

O_SELECTED

exi_node27

W_Afhandelen leadsW_Beoordelen fraude

sink

exi_node22

O_DECLINED

tau_0

ent_node11

W_Nabellen offertes

ent_node24

O_SENT

ent_node17

A_FINALIZED

ent_node33

W_Completeren aanvraag

exi_node0

O_CANCELLEDO_SENT_BACK

ent_node28

W_Valideren aanvraag

ent_node35

A_DECLINED

SM:
F1 = 0.64
F = 0.49
P = 0.92
G = 0.98
S = 0.82

OF = 0.68

Page 38 of 40

L Discovered Petri Nets - 2019

p_22

Delete Purchase Order Item tau_16

p_36

tau_1Cancel Subsequent Invoice SRM_ Deleted

p_21

tau_21

p_16

Reactivate Purchase Order Item tau_8 Remove Payment Block SRM_ IncompleteChange Delivery Indicator Change Currency

p_8

Cancel Invoice Receipt tau_9

p_11

tau_5 Update Order Confirmation

p_20

SRM_ Created

Cancel Goods Receipt SRM_ Awaiting Approval

tau_6

Set Payment Block

Change Rejection Indicator

tau_12 SRM_ Document Completed SRM_ Complete

Change Storage Location

Release Purchase Order

p_32

tau_13

sink

p_33

SRM_ In Transfer to Execution Syst. tau_15

p_6

Record Subsequent Invoice

p_13

tau_17 Clear Invoice

p_3

Create Purchase Order Item

p_35

tau_10

p_38

tau_3

p_7

Release Purchase Requisition

p_15

tau_0 Change Approval for Purchase Order

p_25

SRM_ Held tau_18

p_17

Change Final Invoice Indicator tau_19

p_23

tau_7 Vendor creates debit memo

p_28

tau_20

p_14

Change PriceBlock Purchase Order Item SRM_ Ordered Vendor creates invoice Change payment term tau_11tau_14

p_37

tau_4

p_18

Receive Order Confirmationtau_22

source

Create Purchase Requisition Item

p_27

SRM_ Change was Transmitted Record Invoice Receipt tau_2 SRM_ Transfer Failed (E.Sys.) SRM_ Transaction CompletedRecord Goods Receipt Record Service Entry Sheet Change Quantity

GTM-300:

F1 = 0.99
F = 0.99
P = 1.00
G = 0.94
S = 0.54

OF = 0.92

p_46

SRM_ In Transfer to Execution Syst.

p_55

tau_30tau_85

p_92

tau_32 tau_89

p_86

tau_12

tau_44tau_84

p_10

tau_81

p_71

tau_19

p_58

tau_24

p_69

p_81

tau_14

tau_88

p_53

p_12

p_22

Change Rejection Indicator

sink

p_65

tau_36

tau_39

tau_86

p_72

Vendor creates invoicetau_69

p_77

tau_11 tau_53

p_34

Change Final Invoice Indicator SRM_ Complete

Update Order Confirmation

Change Quantity Vendor creates debit memo

Receive Order Confirmation

Change Storage Location

Record Service Entry Sheet

Change Currency

Reactivate Purchase Order Item

Change Delivery Indicator

tau_73

Release Purchase Order

Change Price

Block Purchase Order Item Change Approval for Purchase Order

Change payment term

p_43

tau_22 tau_61

p_59

SRM_ Deletedtau_4

p_20

tau_82

p_36

tau_54tau_70

p_41

Record Invoice Receipttau_67 Cancel Goods Receipt

p_54

Clear Invoice

p_60

tau_18

tau_27

p_91

Record Subsequent Invoice

p_13

tau_8

tau_25

p_28

tau_17 tau_55

p_38

SRM_ Transfer Failed (E.Sys.)tau_49

p_19

tau_0

tau_20

tau_51

p_21

tau_76

p_39

SRM_ Document Completedtau_33

p_73

tau_13

tau_65 p_80

tau_40

p_49

tau_1

tau_38

tau_42

p_75

p_26

tau_46

p_44

tau_23tau_41

p_89

tau_28tau_74

p_84

tau_31tau_77

p_76

Remove Payment Block

p_7

tau_16

tau_45

p_37

SRM_ Awaiting Approval

p_27

SRM_ Created

p_87

tau_60

p_15

p_70

SRM_ Change was Transmitted

tau_58

tau_64

p_82

p_57

tau_48

tau_62

p_68

SRM_ Ordered tau_63

p_9

Create Purchase Requisition Item tau_71

p_14

tau_75 tau_78

source

tau_50

p_8

tau_80

p_23

tau_5tau_52

p_52

tau_43

tau_68

p_88

Set Payment Block

p_83

Cancel Subsequent Invoice

p_11

tau_35

tau_37Release Purchase Requisition

p_61

tau_79

p_63

tau_9tau_56

p_17

tau_7 tau_26

p_35

tau_15

p_42

tau_83

p_47

tau_10tau_57

p_6

p_40

p_66

p_79

tau_34

tau_87

p_32

tau_21

p_50

tau_3

p_62

Cancel Invoice Receipt

p_74

tau_2

tau_66

p_16

Delete Purchase Order Item

p_30

tau_29SRM_ Incomplete

p_33

SRM_ Held

p_45

p_25

tau_6

tau_72

p_67

Record Goods Receipttau_59

p_5

Create Purchase Order Item

p_51

SRM_ Transaction Completed tau_47

IM:

F1 = 0.38
F = 1.00
P = 0.23
G = 0.92
S = 0.59

OF = 0.56

ent_node4

SRM_ Complete

exi_node41

tau_0 Record Subsequent Invoice

ent_node18

Change Final Invoice Indicator

source

tau_1

exi_node12

SRM_ Change was TransmittedSRM_ Deleted

exi_node33

Set Payment Block

Cancel Invoice ReceiptRemove Payment Block

ent_node47

Change Price

ent_node17

Change Approval for Purchase Order

ent_node16

Release Purchase Requisition

ent_node29

Reactivate Purchase Order Item

ent_node22

Vendor creates debit memo

ent_node10

SRM_ In Transfer to Execution Syst.

exi_node3

SRM_ Ordered

SRM_ Transaction Completed

SRM_ Transfer Failed (E.Sys.)

ent_node48

Vendor creates invoice

ent_node39

SRM_ Held

ent_node6

Record Goods Receipt

exi_node56

Record Service Entry SheetRecord Invoice Receipt

ent_node27

SRM_ Awaiting Approval

ent_node31

SRM_ Document Completed

exi_node28

Change Storage Location

Cancel Goods Receipt

Receive Order Confirmation Change Quantity

Change payment term

Block Purchase Order Item

Release Purchase Order Delete Purchase Order Item

ent_node2

Update Order Confirmation

ent_node36

Create Purchase Order Item

ent_node24

Clear Invoice

ent_node46

Change Currency

ent_node51

tau_2

sink

ent_node57

SRM_ Incomplete

ent_node38

Change Delivery Indicator

exi_node40

SRM_ CreatedCreate Purchase Requisition Item

ent_node19

Change Rejection Indicator

ent_node55

Cancel Subsequent Invoice

SM:

F1 = 0.68
F = 0.51
P = 1.00
G = 0.91
S = 0.73

OF = 0.70

Page 39 of 40

M Discovered Petri Nets - 2017

p_18

tau_8

p_10

tau_2A_Concept

p_20

tau_5

p_19

O_Cancelled tau_10

p_12

O_Create Offer

p_24

A_Pending

p_34

tau_0

p_21

O_Sent (online only) A_ValidatingO_Returned

tau_15 p_22

A_DeniedO_Accepted

tau_13

p_23

tau_3A_Incomplete

sink

p_15

tau_6W_Assess potential fraud

p_33

tau_7

source

A_Create Application

p_17

O_Created

A_Complete

tau_4

O_Sent (mail and online)

W_Call after offers tau_14

p_25

O_Refused

p_16

tau_9 W_Personal Loan collection

p_13

A_Accepted

p_32

tau_12

p_31

W_Validate application W_Call incomplete files

p_3

A_Submitted

p_26

W_Shortened completion

p_6

W_Handle leads

p_30

tau_1

p_9

W_Complete application

p_35

A_Cancelledtau_11

GTM-300:

F1 = 0.89
F = 0.99
P = 0.80
G = 0.99
S = 0.65

OF = 0.87

sink

p_5

tau_18

p_27

tau_26

p_34

O_Cancelled

tau_16

O_Sent (online only)

tau_31

tau_35

O_Sent (mail and online)

p_35

tau_32 tau_57

p_50

tau_10 O_Create Offertau_22

W_Shortened completion

A_Denied

tau_54

p_56

O_Refused

p_57

tau_14 tau_46

p_7

tau_38

p_17

tau_30

p_26

tau_45

tau_55

p_45

W_Call incomplete files

p_46

tau_1 tau_28

p_51

A_Incomplete

p_52

tau_2tau_29

p_54

O_Created

p_15

tau_8

tau_20

p_18

W_Handle leads

p_19

tau_33 tau_58

p_60

O_Returned

p_61

tau_36 tau_60

p_65

tau_24 tau_56

p_11

p_42

tau_23

tau_42

p_59

tau_25

O_Accepted

p_63

A_Pending

p_10

tau_0

tau_48

p_25

tau_11

tau_44

p_28

W_Call after offers

p_29

tau_9tau_34

p_48

tau_41

tau_49

tau_52

p_49

tau_19

p_55

tau_5

tau_50

p_4

tau_27 A_Submitted

p_21

tau_47

p_23

W_Complete application

p_24

tau_7 tau_53

p_44

source

A_Create Application

p_6

A_Accepted

p_9

p_22

tau_6

p_33

tau_3

tau_17

p_37

A_Cancelled tau_59

p_40

A_Validating tau_21

p_43

tau_37

tau_51

p_64

W_Personal Loan collection

p_8

A_Concept

p_12

W_Assess potential fraud

p_13

tau_13 tau_43

p_31

tau_15 A_Complete

p_32

p_36

tau_4

tau_40

p_38

W_Validate application

p_39

tau_12 tau_39

IM:

F1 = 0.26
F = 1.00
P = 0.15
G = 0.95
S = 0.63

OF = 0.63

ent_node35

W_Complete application

exi_node15

A_Incompletetau_1

ent_node16

O_Refused

ent_node26

O_Created

ent_node6

W_Shortened completion

ent_node28

O_Create Offer

ent_node12

W_Call after offers

ent_node8

W_Call incomplete files

exi_node4

tau_0 A_Accepted A_Concept

ent_node25

W_Validate application

source

A_Create Application

ent_node32

O_Cancelled

ent_node27

A_Submitted

ent_node1

W_Handle leads

ent_node34

O_Returned

sink ent_node24

A_Pending

exi_node18

O_Sent (mail and online)O_Sent (online only)

exi_node14

A_Cancelled

tau_2

A_Complete

exi_node29

A_DeniedA_Validating O_AcceptedW_Personal Loan collection W_Assess potential fraud

SM:

F1 = 0.76
F = 0.71
P = 0.80
G = 0.95
S = 0.73

OF = 0.75

Page 40 of 40

	All You Need Is Evolution: Rethinking Genetic Algorithms for Process Discovery

