
Summary

This thesis addresses a persistent and underexplored challenge in Natural Language Interfaces to Databases (NLIDB): schema-induced
ambiguity (SIA). While existing NL2SQL systems have achieved high benchmark performance with the help of large language models
(LLMs) and schema-linking techniques, they remain vulnerable to failure in real-world applications, where database schemas often contain
overlapping elements and inconsistent naming. These conditions give rise to SIA—ambiguity that occurs when parts of natural language
plausibly refer to multiple schema elements (tables, columns, joins, or precomputed aggregates). Unlike lexical or linguistic ambiguity, SIA
arises from the interaction between the user’s question and the structure of the underlying schema. To formalize this, we adopt a taxonomy
of four common SIA types: column ambiguity (e.g., synonyms or polysemy like "capacity" mapping to either seating or standing capacity),
table ambiguity (overlapping semantic roles between tables), join ambiguity (unclear join paths in vertically partitioned schemas), and
precomputed aggregate ambiguity (e.g., “total sales” referring to either an aggregated value or a static column).

To address this issue, we introduce GATekeeper, a schema-aware system designed to proactively detect SIA before query generation.
GATekeeper consists of four distinct components: (1) a node relevance predictor using a fine-tuned BERT cross-encoder, (2) a contextual
embedder to construct rich representations of schema elements in relation to the question, (3) a representation module that builds a graph
from these elements using schema structure, and (4) a graph-based classifier that outputs a binary ambiguity prediction. The graph encodes
tables and columns as nodes, and their relationships as edges. Each node’s features are derived from BERT-encoded embeddings, capturing
interactions between the NL question and schema elements. The final output indicates whether the input question exhibits SIA.

We evaluate GATekeeper on multiple datasets, including the AmbiQT-annotated Spider dataset, BIRD-Bench, and TrialBench. In in-domain
settings, GATekeeper outperforms a GPT-4.1-based zero-shot baseline by a substantial margin, with an F1 score of 0.753 versus 0.552. Ablation
studies show that while graph structure contributes to performance, the model’s success primarily stems from the contextual embeddings
generated by the BERT cross-encoder. Even when schema edges are randomized, GATekeeper retains high performance, suggesting that
most of the semantic signal is captured in the embeddings. When these embeddings are removed, model performance drops significantly.

GATekeeper struggles with generalisation to unseen schemas. In cross-domain evaluation on BIRD-Bench, the model over-predicts ambiguity,
flagging nearly all queries as ambiguous. However, few-shot adaptation using as few as 12 in-domain examples significantly improves
performance, outperforming GPT-4.1. This result suggests that while GATekeeper’s inductive bias is brittle, it is also adaptable. Integrating
ambiguity detection into a full NL2SQL pipeline further demonstrates its value: execution accuracy improved from 14.7% to 22.1% by
preemptively filtering ambiguous queries.

GATekeeper shows that explicit, schema-aware ambiguity detection is both feasible and valuable. Its architecture offers a foundation for
more robust NL2SQL systems capable of handling the messy reality of production databases. While in-domain performance is strong, broader
deployment will require training on more diverse schemas and principled approaches to few-shot adaptation. This thesis lays the groundwork
for future work in ambiguity resolution, potentially involving user-guided clarification or hybrid systems that combine detection with
interactive disambiguation.

This page is intended as a standalone summary. The main paper begins on the next page.

GATekeeper: Detecting Schema-Induced Ambiguity in Natural
Language Interfaces to Databases

Jacob Skadborg
jskadb20@studen.aau.dk

Department of Computer Science, Aalborg University
Aalborg, Denmark

Martin Mortensen
mksm20@student.aau.dk

Department of Computer Science, Aalborg University
Aalborg, Denmark

Abstract
Natural Language to SQL (NL2SQL) systems translate natural lan-
guage questions into executable SQL queries, enabling non-technical
users to interact with databases. While recent advances in large
language models (LLMs) and schema-aware techniques have driven
performance on benchmarks such as Spider and BIRD, existing
systems continue to struggle with ambiguity—particularly when
queries admit multiple valid interpretations due to overlapping
schema elements. This issue, termed Schema-Induced Ambiguity
(SIA), arises when natural language tokens ambiguously refer to
multiple tables, columns, or relations. SIA is especially common in
real-world databases, where evolving and denormalised schemas
diverge from the clean structure typically found in academic bench-
marks.

Current approaches address ambiguity only implicitly or par-
tially. LLMs can reduce lexical ambiguity, but fail to reliably detect
structural ambiguities without explicit schema reasoning. More-
over, few systems are designed to proactively identify SIA before
generating a query, leading to silent failures and misinterpretations.
To address this gap, we propose a two-step detection framework: a
fine-tuned BERT cross-encoder identifies schema elements likely to
be involved in the intended query, followed by a Graph Attention
Network (GAT) operating over the induced subgraph to predict
the presence of ambiguity. Our method outperforms baseline ap-
proaches in-domain, yet generalisation to unseen schemas remains
limited, as evidenced by performance drops on BIRD-bench and
Trial-Bench. Nonetheless, in-context training demonstrates strong
potential for scaling ambiguity detection. While this work focuses
exclusively on schema-induced sources, future extensions must
address other forms of ambiguity to ensure reliability in production
deployments. Code available at: https://github.com/P10-NLIDB.

1 Introduction
Natural Language (NL) to SQL (NL2SQL) systems aim to convert
users’ natural language questions into SQL queries, thus enabling
intuitive database interactions for non-technical users. Recent ad-
vances in large language models (LLMs), including GPT-4, Llama,
and CodeT5, along with sophisticated schema-linking methods,
have substantially enhanced NL2SQL accuracy and robustness,
achieving impressive benchmark results on datasets like Spider
[28], BIRD [11], andWikiSQL [31] [10, 14, 29, 32].

Modern NL2SQL solutions leverage LLMs via either in-context
prompting [15] or supervised fine-tuning [10], supplemented by
schema linking improvements [23], structured decoding [20], and

ensemble or agent-based approaches [8]. Techniques such as retrieval-
augmented generation (RAG) [26], conversational dialogue frame-
works [27], and grammar-constrained decoding [12] have led to
impressive results on benchmarks like Spider and BIRD.

Despite these advances, existing NL2SQL systems struggle with
ambiguity—particularly schema-induced ambiguity (SIA), where
parts of a question correspond to multiple plausible schema ele-
ments. This problem is common in real-world databases, which
are often denormalised, loosely structured, or extended over time,
introducing overlapping column names, redundant joins, and incon-
sistent naming conventions. Benchmark datasets, by contrast, typi-
cally feature clean andwell-normalised schemas, under-representing
such ambiguity and obscuring system limitations.

Ambiguity remains one of themost pressing challenges inNL2SQL
[7, 10, 14]. It arises from the inherent imprecision of NL, contrasted
with the strict semantic requirements of SQL. SIA is particularly
problematic because current systems often guess mappings without
explicitly identifying the ambiguity. This can lead to hallucinations,
misinterpretations, or logically incorrect queries—errors that are
hard to detect and explain post-hoc.

Current NL2SQL systems offer partial solutions for detecting
SIA. LLMs effectively reduce lexical ambiguities by recognising
paraphrases and uncommon phrasing, frequently mapping diverse
user expressions to common intents. However, deeper schema-
related ambiguities, often remain undetected due to insufficient
contextual understanding, lack of schema-awareness, or inherent
complexities in the schema.

Existing systems fall short in two critical ways. First, many im-
plicitly guess the correct interpretation without flagging ambiguity,
leading to silent errors that are difficult to trace or correct. Second,
while some approaches incorporate schema structure or mapping
heuristics, they rarely include explicit ambiguity detection mech-
anisms. As a result, ambiguity is often handled reactively—if at
all—and only after incorrect queries are generated.

There is a clear need for methods that proactively identify SIA
before query generation. As noted by Floratou et al. [7], ambiguity
remains a fundamental and under-addressed limitation in current
NL2SQL systems. Our work directly targets this gap.

Our method named GATekeeper focuses primarily on the detec-
tion of SIA in NL questions. This is achieved through a two-step
process. First, we identify the most likely schema elements involved
in the corresponding SQL query using a fine-tuned BERT cross-
encoder. Next, we construct a graph consisting of these schema
elements, embedding each with the final hidden state from the
cross-encoder. This graph is then processed by a fine-tuned Graph
Attention Network (GAT), which outputs a score in the range [0,1],

Skadborg et al.

where values closer to 1 indicate higher ambiguity and values near
0 suggest the question is unambiguous.

Our results show that the model performs well in-domain, i.e.,
when applied to database schemas seen during training, outper-
forming state-of-the-art baselines. However, its generalisation to
unseen schemas is limited. On manually annotated benchmarks
such as BIRD-bench and Trial-Bench, performance drops signifi-
cantly. In particular, on BIRD-bench, the model lags well behind
GPT-4.1, highlighting a key weakness in schema generalisation.

Training with in-context examples demonstrates the model’s
strong potential to detect ambiguous queries, offering a promising
direction for mitigating ambiguity in NL2SQL systems. However,
this only addresses SIA. Questions that are ambiguous due to other
factors, such as linguistic underspecification or semantic vagueness
unrelated to the schema, remain out of scope. Future work will
need to extend ambiguity detection beyond SIA sources to improve
robustness in real-world applications.

2 Related Work
In this section, we review prior research on ambiguity in NL2SQL,
structured around two core areas: (1) ambiguity arising from factors
outside the schema (e.g., linguistic ambiguity) and (2) established
ambiguity detection and resolution methods.

2.1 Linguistic Ambiguity in Natural Language
Questions

In contrast to SIA, many ambiguities arise from properties of NL
itself, independent of any particular database schema. Such linguis-
tic ambiguities include phenomena like lexical polysemy, pronoun
coreference, syntactic ambiguity, and underspecified context. For ex-
ample, a user question may use an ambiguous word (e.g., “bank” as
a financial institution vs. river bank) or omit crucial context (“Who
is the president?” without specifying a country or organisation),
leading to multiple interpretations even if the database schema is
perfectly clear. These forms of ambiguity have been widely recog-
nised in the broader NL interface and question-answering literature.
Alharbi et al. [1], for instance, identify lexical semantic ambiguity
in NL questions as a key challenge for question answering systems,
noting that words with multiple meanings can confuse automated
interpretation. Their work proposes an ontology-driven approach
(the CKCO framework) to resolve such ambiguities by mapping
terms to domain concepts, illustrating a taxonomy of ambiguity
types focused onword-sense and intent ambiguities in NL questions.
More generally, Floratou et al. [7] emphasise that many NL2SQL
errors originate from linguistic underspecification—the question
itself is incomplete or too imprecise, irrespective of schema. Re-
cent surveys and studies of text-to-SQL with LLMs concur that
handling these non-schema ambiguities remains an open problem
[10, 14]. Outside of the database domain, researchers have devel-
oped taxonomies and methods to detect when a user’s query is
ambiguous and requires clarification. For example, Zhang and Choi
[30] focus on identifying ambiguous user intents in NL questions,
proposing to clarify when necessary by automatically detecting
uncertainty in the query’s intent and prompting for clarification.
Such work treats ambiguity as a property of the question (e.g. an
NL question having multiple possible answers or interpretations)

rather than of the schema, and it complements schema-centric
taxonomies by addressing linguistic sources of confusion. In sum-
mary, ambiguity taxonomies beyond the schema tend to classify
types of language ambiguity (lexical, semantic, contextual, etc.) and
have led to techniques for disambiguation that leverage context or
interactive clarification.

2.2 Ambiguity Detection Methodologies
A range of methodologies have been proposed to detect or mitigate
ambiguity in NL2SQL systems, differing in how they conceptualise
ambiguity and whether they operate proactively (flagging ambigu-
ity before or during query generation), reactively (handling ambigu-
ity post hoc), or through user interaction. Broadly, these approaches
fall into three main families: probabilistic uncertainty estimation,
ontology-based disambiguation, and schema-aware structural mod-
eling.

One prominent line of work leverages uncertainty estimation to
detect ambiguity by identifying low-confidence schema alignments.
Zhang et al.[30] use entropy-based metrics to quantify uncertainty.
This probabilistic method is effective at flagging low-confidence
mappings, especially for linguistic or intent ambiguity, but it is made
for general question answering and therefore lacks grounding in
database semantics.

Ontology-based approaches incorporate domain-specific map-
pings between words and schema elements. A representative ex-
ample is the CKCO framework [1], which uses a curated ontol-
ogy to map lexical items in user questions to database concepts.
These methods improve ambiguity detection by resolving polysemy
and synonymy in domain-specific contexts. However, they depend
heavily on manually engineered ontologies, which limits scalabil-
ity across schemas or domains. This trade-off between precision
and generalisability remains a core limitation of ontology-based
strategies.

A third class of methods targets structural modeling, where am-
biguity is addressed through schema-aware neural architectures.
For instance, RASAT [17] introduces relational attention mecha-
nisms into sequence-to-sequence parsers, allowing the model to
attend to table and column relationships during decoding. Simi-
larly, RAT-SQL [23] enhances text-to-SQL parsing with schema
linking via relation-aware transformers. These models can disam-
biguate between competing schema elements more effectively than
schema-agnostic baselines, but they do so implicitly—by improving
alignment and decoding quality—rather than targeting ambiguity
detection as a standalone objective. As such, they may resolve some
schema-induced ambiguity as a byproduct of better modeling but
still fail to explicitly flag ambiguous cases when schema alignment
fails.

A further methodological distinction is whether user interaction
is involved in the resolution process. Interactive systems, such as
AmbiQT [3], surface top-𝑘 candidate SQL queries and prompt the
user to choose the correct interpretation, transforming ambiguity
resolution into a human-in-the-loop task. While effective, this ap-
proach assumes user availability and introduces latency. In contrast,
non-interactive approaches seek to identify and handle ambiguity
autonomously. While relatively few systems focus explicitly on this,

GATekeeper: Detecting Schema-Induced Ambiguity in Natural Language Interfaces to Databases

recent benchmarks such as AmbiQT and AMBROSIA [18] have en-
abled new research in this space. These benchmarks annotate NL
questions with known ambiguities—schema-induced in the case of
AmbiQT, and linguistic or syntactic in AMBROSIA—and serve as
training and evaluation grounds for ambiguity detectors.

Importantly, these benchmarks do not themselves provide detec-
tion models, but their annotations have catalysed the development
of models focused specifically on ambiguity detection. However, ro-
bust schema-aware ambiguity detection, particularly in a proactive,
automatic fashion, remains an emerging area. Most current solu-
tions still handle ambiguity reactively or indirectly, and few models
are designed to detect ambiguity as a first-class task. This leaves
the field open for systems that explicitly identify schema-induced
ambiguity prior to SQL generation, offering a critical foundation
for reliable, ambiguity-aware database querying. Refer to Table 1
for a final overview of methods discussed and relevant to ambiguity
detection.

2.3 Summary
Although prior research has investigated various strategies for
ambiguity resolution and interactive clarification in NL2SQL sys-
tems, explicit detection of ambiguity—particularly schema-induced
ambiguity—as a standalone capability remains underexplored.While
many existing models improve schema alignment implicitly, they
typically do not identify or address ambiguity directly. This gap
motivates our work: we focus on the proactive detection of SIA,
aiming to build systems that not only generate SQL queries but also
recognise when a question is inherently ambiguous with respect
to the schema. By making ambiguity explicit, our approach lays a
critical foundation for more robust disambiguation strategies and
improved query accuracy, paving the way for robust and more
reliable NLIDB.

3 Preliminaries
This section introduces the core concept underpinning our work,
schema-induced ambiguity (SIA) in NL2SQL systems. Understanding
the nature of these ambiguities is essential, as they form the basis
for our annotation strategy and model architecture.

3.1 Schema-Induced Ambiguity
Ambiguity in NL2SQL queries arises predominantly due to interac-
tions between NL questions and database schema design decisions.
This means that even though the question it self does not seem
linguistically ambiguous, multiple interpretations of how to answer
the question can occur when considering a specific schema. Bhaskar
et al. [3] present a detailed taxonomy categorising SIA into four
distinct classes. We present the classes, and figure 1 illustrates the
problems:

• Column Ambiguity (C): Lexical ambiguity arising from
synonyms or polysemous column names (e.g., "capacity"
mapping to standing_capacity or seating_capacity).

• Table Ambiguity (T): Semantic overlaps among differ-
ent tables representing similar concepts (e.g., Artist vs.
Performer).

• Join Ambiguity (J): Ambiguity caused by vertically parti-
tioned tables, where necessary joins to retrieve complete in-
formation are unclear (e.g., Employee and Employee_details).

• Precomputed Aggregate (P): Ambiguity due to under-
specified aggregation requirements (e.g., "total sales" could
imply a precomputed column or the aggregation SUM()).

We adopt this taxonomy and coin it schema induced ambigui-
ties (SIA). This issue is often accelerated in production databases,
which, over time, have deviated from their original, well-defined
normalised form.

3.2 Problem Formulation
The input to a NL2SQL system consists of a NL question 𝑄 and a
database schema 𝐷 , and the system’s goal is to predict the corre-
sponding SQL query that answers 𝑄 .

We define the database schema as a structured set 𝐷 =𝑇∪𝐶
representing schema components of a target database which con-
tains a set of tables 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡 |𝑇 | }, where each table 𝑡𝑖 is
associated with a set of columns 𝐶𝑖 = {𝑐𝑖,1, 𝑐𝑖,2, . . . , 𝑐𝑖, |𝐶𝑖 | },∀𝑖 =

1, 2, . . . , |𝑇 |, such that 𝐶 =
|𝑇 |⋃
𝑖=1
𝐶𝑖 . We refer to a single schema el-

ement (either a table or a column) as 𝑑 ∈ 𝐷 . We define 𝑃𝐾 =

{𝑘1, . . . , 𝑘 |𝐾 | } where 𝑘𝑖 ⊆ 𝐶𝑖 as the set of primary keys, where
each 𝑘𝑖 defines the primary key of table 𝑡𝑖 , and 𝐹𝐾 = {𝑓1, . . . , 𝑓 |𝐹 | }
as the set of foreign keys, where 𝑓𝑘 = (𝑐𝑖,𝑠 , 𝑐 𝑗,𝑝) indicates that
column 𝑐𝑖,𝑠 of the table 𝑡𝑖 references the column 𝑐 𝑗,𝑝 of the table 𝑡 𝑗 .

A key challenge in this setting is SIA, as described in 3.1. The
input to solve this issue is the same— 𝑄 and 𝐷 , and the task is
to accurately detect SIA without requiring full SQL generation—
enabling systems to flag or handle ambiguous questions early in
the pipeline. We formulate this as a binary classification problem:
given a question-schema pair (𝑄, 𝐷), determine whether𝑄 exhibits
schema item ambiguity with respect to 𝐷 . Specifically, we aim to
define a function

𝑓 : (𝑄,𝐷) ↦→ {0, 1} (1)

where 𝑓 (𝑄,𝐷) = 1 if 𝑄 contains at least one instance of SIA, and
𝑓 (𝑄, 𝐷) = 0 otherwise.

4 Methodology
Our objective is to determine whether a NL question posed over a
relational database schema is ambiguous, in the specific sense of
admitting multiple valid interpretations due to SIA. To this end, we
design a modular system, called GATekeeper, composed of distinct
components, each responsible for a targeted aspect of the overall
task.

The system has the following modules:
Node Relevance Prediction: A Predictor module evaluates

every schema element 𝑑 ∈ 𝑇 ∪ 𝐶 with respect to 𝑄 , assigning
a relevance score 𝑃 (𝑑) ∈ [0, 1], which is the output. This score
reflects the likelihood that the element is involved in answering
the question.

Node Embedding: The Embedder constructs contextual embed-
dings for each schema element. Each embedding 𝑥𝑑 captures the
interaction between𝑄 and the element 𝑑 , incorporating both lexical
and relational information. This embedding is used as the features

Skadborg et al.

Table 1: Features of existing NL2SQL benchmarks are categorised into measures and scope, with each benchmark marked as
either including (+) or excluding (-) a given feature

Method Domain Detection Technique Explicit / Implicit Schema-aware? Resolution vs. Detection Type of Ambiguity Handled
AmbiQT[3] NL2SQL Ambiguity detection module Explicit No Both (Detection & Resolution) Lexical & semantic ambiguities
RAT-SQL[23] NL2SQL Relation-aware self-attention Implicit Yes Resolution Schema linking errors
RASAT[17] NL2SQL Schema-guided disambiguation via attention mechanisms Implicit Yes Resolution Structural ambiguities
CKCO[1] NLQA Contextual keyword and concept matching Explicit No Resolution Intent ambiguities
Intent-Sim[30] NLQA Similarity-based intent recognition Explicit No Resolution Ambiguous user intents
FANDA [13] NL2SQL (Multi-turn) Context-aware detection using dialogue history Explicit No Both (Detection & Resolution) Context-dependent follow-up ambiguities
XiYan-SQL [8] NL2SQL Multi-generator ensemble with in-context learning and supervised fine-tuning Implicit Yes Resolution Semantic, Structural, Syntactical ambiguities
CHASE-SQL [16] NL2SQL Multi-path reasoning Implicit Yes Resolution Semantic, Structural, Logical ambiguities

Figure 1: An example of how a schema design can create SIA for each type of SIA

of each node during classification. The output is the embedding of
each schema element {𝑒𝑑 }𝑑∈𝐷 .

Representation Construction: This module encodes schema
relationships (e.g., belongs-to, foreign key, primary key) and serves
as the structural context for further reasoning. Schema elements
are nodes and schema relationships are edges. The output is a graph
G.

Ambiguity Classification: The Ambiguity Classifier takes as
input the graph G along with node embeddings 𝑥 , and uses a graph
based classifier to assess the global coherence of the question with
the selected schema elements. The classifier outputs a binary label—
YES if the question is ambiguous, NO otherwise.

Each module operates independently but interfaces with the oth-
ers through shared representations (e.g., node scores, embeddings,
and structural graphs). This modular design enables precise control
over each stage and facilitates targeted evaluation and ablation.

Figure 2 provides a high-level view of this modular structure.
The subsequent subsections describe the individual modules and
their interactions in more detail.

4.1 Preprocessing
The initial input comprises a NL question 𝑄 and the associated
database schema 𝐷 (i.e the database that the question is being

asked for). We preprocess both the 𝑄 and 𝐷 to normalise their
representations before constructing the interaction graphs. This
ensures consistency and facilitates accurate alignment between
linguistic and structural elements.

For 𝐷 , we perform text normalisation - the tables and columns
are tokenized, lemmatized and lowercased using the Stanza NLP
toolkit, this ensures consistent schema representations and reduces
lexical variance during matching. Furthermore, relations among
tables (foreign key and primary key links) and columns (same-table
relations and foreign key columns) are computed and stored in
a relational matrix. These steps yield a processed schema with
standardised names and a matrix of schema relations.

For𝑄 , all quotation symbols are standardised to reduce tokenisa-
tion variability; for instance, What are the first name and last name
of all “candidates”? becomes What are the first name and last name
of all "candidates"? before further processing. The question is then
tokenised, lemmatised, and lowercased; for example, candidates be-
comes candidate, while the sentence is split into individual tokens
such as ["what", "are", "the", "first", "name", "and", "last", "name", "of",
"all", """, "candidate", """, "?"].

GATekeeper: Detecting Schema-Induced Ambiguity in Natural Language Interfaces to Databases

Figure 2: Overview of the ambiguity detection method. 𝑇,𝐶 denote tables and columns in the database schema. 𝑃𝐾, 𝐹𝐾 denotes
primary and foreign key relations. Given a question 𝑄 , the Predictor scores each schema element. A graph G is generated
and elements are embedded. The ambiguity classifier uses both the graph structure and embeddings to make a final binary
prediction.

4.2 Node Relevance Prediction
This part of the method is responsible for identifying which tables
and columns are likely involved in any SQL generated to answer an
incoming NL question. A prediction of relevant tables and columns
serves two critical purposes: (1) it constrains the search space for
query generation by focusing on schema elements pertinent to
the question, and (2) it provides essential signals for downstream
modules to disambiguate references and construct semantically
accurate queries.

To train a model to predict table and column relevance, we first
construct a training dataset. For each question-query pair in a
NL2SQL dataset (e.g., Spider or BIRD), we generate positive and
negative examples. The set of positive examples for a question 𝑄 ,
denoted as 𝑃𝑜𝑠 (𝑄), consists of the tables and columns referenced
in the gold SQL query corresponding to 𝑄 . Specifically, the parser
extracts:

• a list of tables that are referenced in the gold query, and
• a dictionary where each key is a table name and the corre-

sponding value is the set of columns from that table that
appear in the gold query.

The set of negative examples, denoted as 𝑁𝑒𝑔(𝑄), is constructed
by randomly sampling schema elements that do not appear in the
gold SQL query. To ensure that the training set remains balanced
and does not bias the model toward predicting irrelevance, we
sample an equal number of negative and positive examples for each
question-query pair.

During training, we assign a binary label to each (question,
schema element) pair based on membership in 𝑃𝑜𝑠 (𝑄) or 𝑁𝑒𝑔(𝑄):

𝑟 (𝑄,𝑑) =
{
1 if 𝑑 ∈ 𝑃𝑜𝑠 (𝑄)
0 if 𝑑 ∈ 𝑁𝑒𝑔(𝑄)

(2)

Each (question, schema) pair is fed into a BERT cross-encoder
as:

[𝐶𝐿𝑆]𝑄 [𝑆𝐸𝑃]𝑑 [𝑆𝐸𝑃]

𝐶𝐿𝑆 is a special token placed at the very beginning of every se-
quence, where 𝑆𝐸𝑃 indicates seperators between the different seg-
ments of the sequence—in this example, the separator between
the natural language question, and the schema elements that are
being scored. The BERT cross encoder uses a small regression head
that maps the [𝐶𝐿𝑆] token output to a scalar score, between 0
and 1. At inference time, we run the question against every can-
didate element, apply a sigmoid to the raw logits (vector of raw
non-normalised predictions) to obtain scores in [0, 1] as seen in
Figure 3.

The output of the cross-encoder BERT model is a prediction of
the relevance of each schema element given 𝑄 . A threshold 𝜃 ∈
[0, 1] can be applied on the predicted score to determine whether a
schema element is considered relevant.

4.3 Node Embedding
Once the relevant schema elements have been predicted through
the previous step, we construct contextualized embeddings for each
element. These embeddings, denoted as 𝑒𝑑 ∈ ℜ𝐻 , capture both
the lexical semantics and the predicted relevance of each schema
element 𝑑 ∈ 𝐷 with respect to 𝑄 .

Each embedding 𝑒𝑑 is derived by encoding a triplet consisting
of the question 𝑄 , the schema element 𝑑 , and a relevance indicator

Skadborg et al.

𝑅𝑑 ∈ {0, 1}, a value of 1 indicates that the schema element is rele-
vant to answering the question, while 0 denotes that it is irrelevant.
The input sequence is formatted as:

[𝐶𝐿𝑆]𝑄 [𝑆𝐸𝑃]𝑑 [𝑆𝐸𝑃]𝑅𝑑 [𝑆𝐸𝑃]
and passed through a BERT-based encoder. The final hidden state

of the [CLS] token is extracted as the embedding:

𝑒𝑑 = 𝐵𝐸𝑅𝑇𝐶𝐿𝑆 (𝑄,𝑑, 𝑅𝑑)
These embeddings {𝑒𝑑 }𝑑∈𝐷 serve as the contextualised repre-

sentations of schema elements and will be used as node features in
subsequent components of the model.

4.4 Graph Construction
We build a directed graph G = (𝑉 , 𝐸) to represent the structural and
semantic relationships within the database schema, which serves as
the foundation for graph-based reasoning in the final classification
step.

The set of nodes 𝑉 corresponds to all schema elements:

𝑉 = 𝑇 ∪𝐶 = {𝑡1, 𝑡2 . . . 𝑡 |𝑇 | } ∪
|𝑇 |⋃
𝑖=1

𝐶𝑖 (3)

That is, each table 𝑡𝑖 ∈ 𝑇 and each column 𝑐𝑖, 𝑗 ∈ 𝐶𝑖 for all 𝑖 ∈ [1, |𝑇 |]
are represented as nodes in the graph. The set of directed edges 𝐸
encodes three types of relational structures present in the schema:

𝐸 = 𝐸𝑏𝑒𝑙𝑜𝑛𝑔𝑠 ∪ 𝐸𝑝𝑘 ∪ 𝐸𝑓 𝑘 (4)

where:
• 𝐸𝑏𝑒𝑙𝑜𝑛𝑔𝑠 = {(𝑐𝑖 𝑗 , 𝑡𝑖) |𝑐𝑖 𝑗 ∈ 𝐶𝑖 } encodes belongs-to relation-

ships between columns and the tables they reside in.
• 𝐸𝑃𝐾 = {(𝑡𝑖 , 𝑘𝑖) |𝑘𝑖 ∈ 𝐶𝑖 is the primary key of 𝑡𝑖 } encodes

primary key relationships from each table to its designated
primary key column(s), as specified in the set 𝑃𝐾 .

• 𝐸𝐹𝐾 = (𝑐𝑎, 𝑐𝑏) | (𝑐𝑎, 𝑐𝑏) ∈ 𝐹 encodes foreign key relation-
ships where column 𝑐𝑎 references column 𝑐𝑏 in another (or
the same) table, as defined in the set 𝐹𝐾 .

Each node in G is initialised with its generated corresponding
contextual embedding, capturing both its relevance to the input
question and its schema semantics. The resulting graph structure
allows a GNN to reason jointly over question-aware node features
and schema connectivity, enabling effective detection of schema
item ambiguity in natural language questions.

4.5 Graph-based Classification
We frame schema ambiguity detection as a graph-level classification
task and employ a multi-layer Graph Attention Network (GAT) to
propagate and aggregate information over the constructed schema
graph [22]. Standard Graph Neural Networks (GNNs) operate by
iteratively updating each node’s embedding based on a fixed ag-
gregation of its neighbours’ representations. GAT extends this by
incorporating learnable attention weights, which dynamically mod-
ulate the influence of neighbouring nodes during message passing.

In GAT, each node 𝑣 updates its representation at layer 𝑙 by
attending to its neighbours N(𝑣). The updated embedding is com-
puted as:

NL Question 𝑞1
, Schema Element 𝑒1

[CLS] q [SEP] e1 [SEP]

BERT
cross-encoder {0.47 : 𝑒1 }

Figure 3: BERT cross-encoder used to weigh (predict) schema
elements; - every schema element in the database is weighed
against the NL question

ℎ
(𝑙)
𝑣 = 𝜎

©­«
∑︁

𝑢∈N(𝑣)
𝛼
(𝑙)
𝑣𝑢𝑊

(𝑙)ℎ (𝑙−1)𝑢
ª®¬ (5)

where ℎ (0)𝑣 = 𝑒𝑣 is the initial contextualised embedding of node
𝑣 ,𝑊 (𝑙) is a learnable projection matrix, 𝜎 is a non-linear activation
function, and 𝛼 (𝑙)

𝑣𝑢 is the attention coefficient between node 𝑣 and
its neighbour 𝑢, defined as:

𝛼
(𝑙)
𝑣𝑢 =

exp(LeakyReLU(𝑎⊤ [𝑊 (𝑙)ℎ (𝑙−1)𝑣 ∥𝑊 (𝑙)ℎ (𝑙−1)𝑢]))∑
𝑘∈N(𝑣) exp(LeakyReLU(𝑎⊤ [𝑊 (𝑙)ℎ (𝑙−1)𝑣 ∥𝑊 (𝑙)ℎ (𝑙−1)

𝑘
]))
(6)

Here, 𝑎 is a learnable weight vector and ∥ denotes vector con-
catenation. This mechanism allows the model to assign different
importance to each neighbouring node.

To improve expressiveness and stabilise learning, GAT uses
multi-head attention [5], where 𝐾 independent attention mech-
anisms are applied in parallel and their outputs are either concate-
nated or averaged.

After𝐿 GAT layers, we obtain the final node embeddings {ℎ (𝐿)𝑣 }𝑣∈𝑉 ,
which encode both structural and contextual relevance, weighted by
attention. These node embeddings are aggregated via mean pooling
to produce a graph-level representation:

𝑧𝑄 =
1
|𝑉 |

∑︁
𝑣∈𝑉

ℎ
(𝐿)
𝑣 (7)

The pooled vector 𝑧𝑄 serves as a summarised representation of
the entire schema graph. It is computed as the mean of the final
node embeddings, each of which integrates attention-weighted
information from its neighbours. As such, nodes that receive greater
attention contribute more prominently to 𝑧𝑄 , allowing the model
to focus on the most relevant schema elements when predicting
ambiguity. This pooled vector is passed through a feed-forward
classification layer to obtain the ambiguity score:

𝑓 (𝑄,𝐷) = 𝜎 (𝑊𝑧𝑄 + 𝑏) (8)
A final binary prediction is made using a threshold 𝜃 :

𝑦 =

{
1 if 𝑓 (𝑄, 𝐷) ≥ 𝜃
0 otherwise

(9)

GATekeeper: Detecting Schema-Induced Ambiguity in Natural Language Interfaces to Databases

5 Experiments
To evaluate the effectiveness of our SIA detection model GATe-
keeper, we design experiments that address model accuracy, model
ablations, domain generalisation, training diversity, and down-
stream impact on NL2SQL execution. These experiments are moti-
vated by distinct research questions as seen in table 2.

Table 2: Index of experiments conducted in this study, in-
cluding core research questions and references to relevant
sections and tables.

Experiment Research Question

Baseline Experi-
ment

Is GATekeeper able to classify SIA?

Impact of Graph
Structure

Howmuch does GATekeeper’s performance
depend on the structure of the input graph,
as opposed to its node features?

Role of Contextual
Node Embeddings

What is the impact on ambiguity detection
performance when replacing rich contex-
tual node embeddings with simplified scalar
relevance scores?

Comparison: GAT
vs. Standard GNN

Does GAT attention lead to better ambiguity
detection performance than uniform aggre-
gation in standard GNNs?

Effect of Training
Domain Diversity

Does training on data from multiple do-
mains improve performance on in-domain
ambiguity detection?

Generalisation
Across Domains

How well does GATekeeper generalise to
unseen domains or schemas, and can few-
shot adaptation improve its performance?

Downstream Im-
pact on NL2SQL
Execution

Does incorporating ambiguity detection
into a full NL2SQL pipeline improve exe-
cution accuracy by reducing query failures?

5.1 Datasets and Annotation
We utilize four complementary datasets, selected to capture diverse
aspects of SIA in NL2SQL tasks. Together, these datasets span syn-
thetic, controlled, and real-world ambiguity scenarios, enabling ro-
bust model training and thorough evaluation across varying schema
complexities and ambiguity types.

The AmbiQT-flagged Spider dataset [3] serves as our primary
pretraining resource. It is derived from the original Spider bench-
mark, a widely used large-scale NL2SQL dataset featuring complex
queries over a diverse set of relational schemas. While Spider was
not designed with ambiguity in mind, the AmbiQT methodology
retroactively annotates its questions with weak ambiguity labels,
enabling the study of SIA at scale. Although these labels are not
manually verified, they provide sufficient supervision for large-
scale training, thanks to the richness and variety of the underlying
schemas.

The BIRD-Bench dataset is a modified version of the BIRD[11]
benchmark, curated to introduce ambiguity in a controlled and
reproducible manner. We manually inject ambiguity by modifying
NL questions to include lexically or semantically overloaded terms,

and by altering database schemas to introduce overlapping table
and column names—following the SIA definitions.

The AMBROSIA dataset is a curated benchmark designed to
evaluate NL2SQL systems under linguistically ambiguous input
conditions. AMBROSIA focuses on ambiguity arising solely from
NL interpretation, independent of schema design, meaning this is
not SIA. Following the taxonomy introduced by Saparina et al. [18],
AMBROSIA introduces three distinct ambiguity types: scope ambi-
guity, attachment ambiguity, and vagueness. These ambiguities are
injected by modifying NL questions to contain quantifier scoping
conflicts, syntactic attachment uncertainty, or context-dependent
lexical imprecision. Each ambiguous question is paired with multi-
ple valid interpretations and associated SQL queries.

The TrialBench dataset consists of real-world clinical trial
queries drawn from enterprise applications at Novo Nordisk. Tri-
alBench reflects authentic schema complexity, including features
such as denormalisation, inconsistent naming conventions, and a
schema that has evolved over time.

To supervise GATekeeper, we employ a structured, taxonomy-
driven annotation scheme. Every NL question is labeled as either
ambiguous or unambiguous with respect to its schema.

Each dataset is split into training, validation, and test sets using
an 80/10/10 split with same distribution of labels to maintain the
balance between ambiguous and unambiguous examples across
splits. This ensures consistency and comparability in downstream
evaluation. AmbiQT provides both training and testing sets, so we
use those.

5.2 Experimental Setup
All models are implemented in PyTorch, with HuggingFace Trans-
formers used for BERT components and PyTorch Geometric for
GAT implementation [2, 24].

We train all ambiguity classifiers using binary cross-entropy loss,
with each NL question labeled as either ambiguous or unambiguous.
For ambiguous questions, additional fine-grained labels per the SIA
taxonomy are included but not directly supervised.

All models are trained using the AmbiQT training split. We
perform a parameter sweep over learning rates 1e-2, 1e-3, 1e-4,
hidden dimensions 64, 128, 256, GAT attention heads 2, 4, 8, andGAT
layers 2, 3, 4 using the validation F1 score as the primary selection
criterion. Early stopping with a patience of 40 epochs is applied
to prevent overfitting. All models are evaluated on the AmbiQT
validation and test splits, as well as on the out-of-distribution BIRD
(annotated).

We report precision, recall, and F1 score for all experiments.
Given the tradeoff between recall and precision in ambiguity detec-
tion, we use macro F1 as the primary evaluation metric and rank
models by their best F1 score on the validation set. High recall
ensures that most truly ambiguous questions are identified, but
may lead to over-detection—flagging queries that are actually un-
ambiguous. Conversely, high precision minimizes false positives,
reducing unnecessary interruptions in downstream systems, but
may come at the cost of under-detection—failing to catch all am-
biguous cases. The optimal balance depends on deployment context:
systems prioritizing safety or correctness may prefer high recall,

Skadborg et al.

Table 3: Distribution of ambiguity labels across AmbiQT training data, BIRD annotated benchmark, and AMBROSIA dataset,
and total number of databases, tables, columns, SQL functions, and joins.

Dataset Ambiguous Not Ambiguous Ambiguous (%) DBs Tbls Cols Avg Tbls Avg Cols Avg Funcs Avg Joins

AmbiQT (Train) 3909 4451 46.75% 166 873 4497 5.2 27.1 0.47 0.59
BIRD (Annotated) 90 39 69.77% 2 22 135 11.0 67.5 0.67 0.48
AMBROSIA 1277 2965 30.10% 1064 5345 21249 5.0 20.0 0.54 1.40

while user-facing applications may value high precision to avoid
burdening users with unwarranted clarification requests.

All experiments are run on a single Macbook Air M1 8Gb. Each
training run takes approximately 200 minutes for GATekeeper and
100 minutes for BERT-only baselines. In total, we run over 80 hy-
perparameter configurations across model variants and datasets.

5.3 Baseline Results
We compare GATekeeper against a GPT-4.1-based zero-shot clas-
sifier, prompted with the schema and NL question, and asked to
predict whether the question is ambiguous with respect to the
schema. Results are summarised in Table 4.

GATekeeper outperforms GPT-4.1 in F1 score, with a substantial
gap on (0.753 vs. 0.552). While GPT-4.1 achieves relatively high pre-
cision (0.621), its recall remains consistently low (0.497), indicating
a tendency to under-predict ambiguity. In contrast, GATekeeper
both balances precision and recall more effectively and outperforms
GPT-4.1 in all measured metrics in-contex, benefiting from both
structured supervision and contextual embeddings.

These results suggest that zero-shot LLMs, despite their broad
generalisation capabilities, strugglewith fine-grained schema-sensitive
ambiguity detection. Supervised models like GATekeeper can learn
dataset-specific decision boundaries and schema-question interac-
tions that general-purpose LLMs fail to capture.

The decision to use GPT-4.1 as the baseline stems from the ab-
sence of any purpose-built solution specifically designed to address
the task of identifying SIA. While systems such as AmbiQT[3] and
ODIN[21] do engage with SIA to some extent, they do not explicitly
evaluate their models’ ability to detect it. Instead, their focus lies
in assessing how well the models generate queries in response to
SIA-related prompts, measuring the resulting execution accuracy
of their methods (does the generated query produce the correct
result when executed against the database).

5.4 GATekeeper Graph Structure
To assess how much GATekeeper relies on graph structure ver-
sus node features, we ran two ablations: (1) replacing schema-
derived edges with random ones. We maintain the original set
of schema nodes and their embeddings, but we replace the rela-
tionally grounded schema edges with random edges—we test with
0.5 edges per node and 2 edges per node. (2) removing the graph
entirely in favour of a BERT-only classifier as seen in Table 4.

Performance dropped only slightly under random edge condi-
tions (F1: 0.723/0.690 vs. 0.753), with even higher precision than the
full model. This suggests that GATekeeper’s contextual BERT em-
beddings carry enough semantic and relational signal to drive clas-
sification. Since these embeddings already reflect question-schema

interactions, the GAT primarily acts as a shallow aggregator rather
than a structure-sensitive learner.

This behaviour reflects a known pattern in recent GNN literature:
when input features are rich (e.g., from pretrained languagemodels),
graph structure contributes little. Especially in shallow networks,
message passing adds marginal value if long-range dependencies
are already embedded in node features. Studies in recommender
systems[9], NLP[19], and general graph studies[4, 6], report simi-
lar findings, even random or fully connected graphs can perform
competitively in such settings.

Several factors likely amplify this effect in our setting. First,
GATekeeper uses only 2 layers of GAT, limiting themodel’s capacity
to capture higher-order structural patterns, but preventing over-
smoothing. Second, the schemas in AmbiQT are relatively clean and
normalised, meaning many ambiguous cases are lexically evident
and do not require deep structural disambiguation.

The BERT-only classifier achieves a lower F1 score (0.701), but the
highest recall among all models (0.768). This supports the interpre-
tation that strong node features alone can detect many ambiguous
cases, but tend to cause over-prediction, reducing precision. The
GAT, even when using random edges, moderates this tendency
slightly. This may be due to the GAT’s architectural constraints: it
aggregates information from local neighbourhoods and applies the
same parameters across all nodes. Even when the edge structure is
uninformative, this consistent aggregation acts as a form of regu-
larisation, helping the model make more conservative predictions.

In summary, GATekeeper’s performance appears to rely primar-
ily on the strength of its contextual node embeddings, which already
encode rich semantic and relational information. In this setting,
the GAT functions mainly as a shallow aggregator, with limited
dependence on schema structure. This suggests that in relatively
clean and well-structured databases, explicit graph connectivity
contributes only marginally to ambiguity detection, though its role
may be more pronounced in complex or denormalised schemas.

5.5 GATekeeper Feature Embeddings
We set up a test where we skip the Node Embedding module, and
instead use the output from the prediction module as features for
the nodes. I.e., the features of each node are the predicted likelihood
that the node is relevant to the question.

As shown in Table 4, this leads to a substantial drop in perfor-
mance.

The scalar relevance scores provide only coarse signals, lacking
the semantic detail needed for effective ambiguity detection. With-
out the high-dimensional, question-aware embeddings from the
full model, the GAT cannot distinguish subtle cases of ambiguity.

GATekeeper: Detecting Schema-Induced Ambiguity in Natural Language Interfaces to Databases

Table 4: Ambiguity detection performance comparison across model types, ablation studies on graph structure, and embedding
strategies. GATekeeper consistently outperforms other configurations, with results indicating that contextual embeddings are
more critical than graph structure in this setting.

Category Model Accuracy Precision Recall F1 Score

Graph Architecture GATekeeper(GNN) 0.690 0.765 0.715 0.733

Embedding Ablation GATekeeper - No embeddings 0.421 0.505 0.417 0.439

Base Performance

GPT-4.1 (No Fine-tuning) 0.500 0.621 0.497 0.552
BERT Classifier (No Graph) 0.593 0.645 0.768 0.701
Random Edges (0.5 per node) 0.668 0.817 0.598 0.690
Random Edges (2 per node) 0.692 0.817 0.649 0.723
GATekeeper 0.702 0.775 0.732 0.753

These results confirm that GATekeeper relies heavily on the
representational depth of its learned node features. When those are
replaced with simplified inputs, the model’s ability to reason about
ambiguity degrades significantly.

We also ran parameter sweeps across multiple configurations of
both GAT and standard GNNmodels. Across the board, GATmodels
consistently outperformed their GNN counterparts, as shown in
Table4. The results reported reflect the strongest configuration from
each model type.

The GAT’s advantage likely stems from its ability to assign adap-
tive attention weights to neighbouring nodes, enabling more selec-
tive and context-sensitive aggregation. In contrast, standard GNNs
treat all neighbours uniformly, which may dilute important signals.
This suggests that attention mechanisms offer a small benefit for
SIA detection, even when input features are already strong.

5.6 Effect of Training Domain Diversity
We evaluate the impact of domain diversity in training data. Specif-
ically, we test whether training on multiple domains leads to signif-
icantly better performance on in domain questions.

For this, we train two separate models: one using only AmbiQT
and another using a combination of AmbiQT and Ambrosia [18].
Both models are evaluated on AmbiQT test set.

As shown in Table5, adding a second training domain, yields
only marginal differences in performance on the AmbiQT test set.
The single-domain model trained solely on AmbiQT slightly out-
performs the multi-domain variant, but this performance is within
training variability. Our interpretation is that the signals captured
by the GATekeeper methodology is already well represented in
AmbiQT. Consequently, additional training from data in Ambrosia
does not offer significant returns because it does not introduce
qualitatively different signals for detecting SIA with GATekeeper.

5.7 Cross-Domain Generalisation
We evaluate the model’s ability to generalise across domains. Since
SIA stems from structural overlaps—such as repeated column names
or ambiguous joins—we hypothesize that these patterns will trans-
fer across domains regardless of domain-specific vocabulary.

We train GATekeeper on AmbiQT and evaluate it on BIRD-
Bench.

The results seen in Table 5 highlights two key findings. Firstly,
GATekeeper fails to generalise in cross-domain settings, despite
structural commonalities in SIA.When trained on both ambiQT and
Ambrosia, the model achieves high preicison but very low recall,
indicating that it struggles to identify ambiguous cases outside its
training domain. Conversely, in single-domain training (AmbiQT
only), it achieves perfect recall by trivially predicting all examples as
ambiguous, this also leads to seemingly strong accuracy, precision
and F1, but this is merely a product of a dataset imbalance, rather
than meaningful generalisation.

Secondly, a few-shot adaptation dramatically improves model
performance. When provided with just a small number (12) of
in-context examples from the target domain (BIRD-Bench), GATe-
keeper surpasses GPT-4.1 in both F1 score and overall balanace
between precision and recall. This suggests that the model’s induc-
tive bias, while brittle in isolation, can be steered effectively with
minial domain-specific supervision.

These results highlight the limitations of relying solely on archi-
tectural modeling for schema-level generalisation. When the model
encounters schema structures it has not seen during training, such
as unfamiliar table layouts, naming conventions, or join patterns,
it tends to treat most queries as ambiguous, leading to widespread
over-flagging. In practice, this means that structural complexity or
novelty can trigger false positives, as seen in BIRD-BENCH whose
schemas are significantly more complex than those in AmbiQT.
This sensitivity to unseen schema configurations suggests that few-
shot learning may offer a practical and efficient way to adapt SIA
detectors across diverse database environments.

5.8 Downstream Impact on NL2SQL Execution
As a use-case demonstration, we evaluate the practical benefit of
incorporating ambiguity detection into a full NL2SQL pipeline,
the particular NL2SQL solution we have chosen in this use-case
is OpenSearch[25]. It is one of the highest-scoring open-source
models on the BIRD benchmark. Its strong performance makes it a
suitable candidate for evaluating the practical impact of integrating
ambiguity detection into end-to-end SQL execution.

This experiment evaluates the hypothesis that ambiguity de-
tection can improve end-to-end SQL execution accuracy by pre-
emptively flagging problematic queries. We run two versions of an

Skadborg et al.

Table 5: Performance comparison of GATekeeper and baselines on two evaluation sets: AmbiQT (left) and BIRD-Bench (right).
Models vary in training scope (single-domain vs. cross-domain) and evaluation setup (zero-shot, few-shot, LLM baselines).

Training Domain Model Evaluated on AmbiQT Evaluated on BIRD-Bench

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

Single-domain GATekeeper (AmbiQT only) 0.709 0.775 0.732 0.753 0.620 0.620 1.000 0.765
Cross-domain GATekeeper (AmbiQT + Ambrosia) 0.699 0.770 0.733 0.751 0.357 0.640 0.178 0.278

GPT-4.1 (in-context) - - - - 0.5504 0.796 0.478 0.597
GATekeeper (Few-Shot, BIRD only) - - - - 0.674 0.773 0.756 0.764

NL2SQL system—one standard and one augmented with our ambi-
guity detector—on a dataset known to contain ambiguous queries
(BIRD-Bench). In the augmented version, queries identified as am-
biguous are either filtered out in our experiment, but could also be
rerouted to resolution mechanisms in future implementations. We
compare SQL execution accuracy across the full dataset and within
the subset of queries flagged as ambiguous.

The experimental results in Table 6 show the effects of incor-
porating ambiguity detection into an end-to-end NL2SQL system.
Without ambiguity detection, the system attempted execution on
all 129 queries, achieving 19 correct results and incurring 110 exe-
cution failures. In contrast, the ambiguity-aware variant executed
only 76 queries—having filtered out 53 identified as ambiguous—
but maintained a comparable number of correct outputs (17) while
reducing execution failures to 59.

This suggests a marked improvement in execution accuracy.
Specifically, the success rate increased from 14.7% (19/129) to 22.1%
(17/77), reflecting a 7.4 percentage point improvement in execu-
tion accuracy. Although the absolute number of correct executions
decreased slightly, this decline is outweighed by the substantial
reduction in incorrect executions.

These results highlight a fundamental trade-off introduced by
ambiguity detection: coverage versus robustness.While the baseline
system executes all inputs regardless of quality, the augmented
system adopts a conservative strategy, filtering uncertain inputs
to ensure higher quality execution. In scenarios where precision
is more critical than recall—such as in production systems with
user-facing outputs—this trade-off is advantageous.

Furthermore, the filtered queries represent an opportunity rather
than a loss: although skipped in this experiment, they could be redi-
rected in future work to clarification modules, fallback strategies,
or human-in-the-loop review systems. Thus, ambiguity detection
acts not as a rejection mechanism, but as a decision-making layer
that enables safer NL2SQL operation.

It is important to note, however, that these results are inherently
sensitive to the design of the evaluation datasets—specifically, how
aggressively ambiguous the input questions are constructed. A
more lenient ambiguity detector or a dataset with fewer genuinely
ambiguous queries could shift the balance between filtered and
retained queries, potentially altering both precision and coverage
outcomes. This underscores the need to carefully align ambiguity
detection thresholds with downstream performance goals and user
expectations.

Overall, the integration of ambiguity detection improves the
robustness of the system by reducing execution errors, and estab-
lishes a promising path for deploying NL2SQL systems in settings
that demand high reliability.

Table 6: Comparison of SQL execution results with and with-
out ambiguity detection. Skipped queries in the augmented
pipeline correspond to those flagged as ambiguous.

System Total Correct Incorrect Skipped

OpenSearch 129 19 110 0
OpenSearch + GATekeeper 129 17 59 53

6 Conclusion
This work tackles the under-addressed yet essential problem of
proactively detecting SIA in NL2SQL systems. Our method, GATe-
keeper, leverages Graph Attention Networks and semantically rich
BERT embeddings to model schema-question interactions, offering
structural awareness and improved interpretability over conven-
tional text-only models. When trained on a single domain (Am-
biQT), GATekeeper decisively outperforms GPT-4.1 in ambiguity
detection accuracy, validating the benefit of modeling the schema-
question interaction. However, cross-domain performance remains
limited. Schema complexity and distributional shifts in datasets such
as BIRD lead to high recall but poor precision, due to the model
over-predicting ambiguity in unfamiliar schema environments. We
show that the embeddings derived from BERT play a vital role
in the model’s performance, removing them causes a significant
drop in all metrics. While training on additional domains yields
only marginal improvements in generalisation, few-shot adapta-
tion significantly boosts performance—outperforming GPT-4.1 even
with as few as 12 examples. This indicates that GATekeeper’s in-
ductive bias is steerable and that minimal supervision can enable
domain transfer. Incorporating GATekeeper into an end-to-end
NL2SQL system demonstrates the potential benefit of SIA detection
for downstream tasks. By flagging ambiguous queries before SQL
generation, it helps prevent execution errors and enables selective
handling strategies—such as clarification or fallback—ultimately
improving system robustness. Taken together, our findings paint
a clear but qualified picture, schema-aware ambiguity detection is
viable and effective in-domain, but brittle out-of-domain. Robust
production deployment will require broader training diversity and
principled few-shot adaptation.

GATekeeper: Detecting Schema-Induced Ambiguity in Natural Language Interfaces to Databases

7 Future Work
A current limitation of our evaluation is the absence of direct com-
parison to other ambiguity detection models, as SIA classification
remains an underexplored task. Most prior work in the NL2SQL
domain focuses on full query generation and evaluates systems
using execution accuracy or exact match, without isolating ambi-
guity detection as a distinct subtask. However, as of writing, sev-
eral related efforts–—particularly around ambiguity-aware NL2SQL
generation–—are in pre-release or under review. These may offer
valuable points of reference, and indirect comparisons based on
execution performance and reported handling of ambiguous in-
puts could be conducted once such methods are formally published.
We hope our work helps establish a foundation for such targeted
evaluations in the future.

This work uses the schema-question relation to identify SIA.
However, while detection is a necessary foundation, it does not
solve the SIA problem alone. Ambiguity resolution could build upon
this work to create interactions with users to clarify intent. This
involves two key components: (i) presenting the detected ambiguity
in a clear and interpretable manner, and (ii) enabling users to disam-
biguate questions interactively, for example by pruning irrelevant
schema elements from the underlying graph representation.

Some existing approaches rely on oracle-stylemechanisms, where
LLMs attempt to reformulate or resolve the ambiguity autonomously.
However, this reintroduces many of the same issues that motivated
this work: opacity, inconsistency, and lack of user agency.

Ultimately, effective ambiguity resolution will likely require
hybrid approaches—combining model-driven detection with user-
guided clarification—to ensure that systems behave reliably in real-
world, high-stakes settings.

Acknowledgement
We thank Novo Nordisk, and in particular Henning Pontoppidan
Föh and Rasmus Stenholt, for their invaluable assistance with
data provision, gold query generation, and support throughout
this project. We also extend our gratitude to our advisors Daniele
Dell’Aglio, Juan Manuel Rodriguez and Matteo Lissandrini for their
guidance and insights, which have been instrumental in shaping
this work.

References
[1] Omar Alharbi, Shaidah Jusoh, and Norita Md Norwawi. 2012. Handling Ambi-

guity Problems of Natural Language Interface for Question Answering. IJCSI
International Journal of Computer Science Issues 9 (05 2012), 17–25.

[2] JasonAnsel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael
Voznesensky, Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan,
Anjali Chourdia, Will Constable, Alban Desmaison, Zachary DeVito, Elias Ellison,
Will Feng, Jiong Gong, Michael Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej
Kalambarkar, Laurent Kirsch, Michael Lazos, Mario Lezcano, Yanbo Liang, Jason
Liang, Yinghai Lu, CK Luk, Bert Maher, Yunjie Pan, Christian Puhrsch, Matthias
Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Michael Suo, Phil Tillet,
Eikan Wang, Xiaodong Wang, William Wen, Shunting Zhang, Xu Zhao, Keren
Zhou, Richard Zou, Ajit Mathews, Gregory Chanan, Peng Wu, and Soumith
Chintala. 2024. PyTorch 2: Faster Machine Learning Through Dynamic Python
Bytecode Transformation and Graph Compilation. In Proceedings of the 29th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2 (ASPLOS ’24). ACM. https://doi.org/10.1145/
3620665.3640366

[3] Adithya Bhaskar, Tushar Tomar, Ashutosh Sathe, and Sunita Sarawagi. 2023.
Benchmarking and Improving Text-to-SQL Generation under Ambiguity.
arXiv:2310.13659 [cs.CL] https://arxiv.org/abs/2310.13659

[4] Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawel-
czyk, and Gjergji Kasneci. 2021. Deep Neural Networks and Tabular Data: A
Survey. CoRR abs/2110.01889 (2021). arXiv:2110.01889 https://arxiv.org/abs/
2110.01889

[5] Jean-Baptiste Cordonnier, Andreas Loukas, and Martin Jaggi. 2021. Multi-Head
Attention: Collaborate Instead of Concatenate. arXiv:2006.16362 [cs.LG] https:
//arxiv.org/abs/2006.16362

[6] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. 2019. A
Fair Comparison of Graph Neural Networks for Graph Classification. CoRR
abs/1912.09893 (2019). arXiv:1912.09893 http://arxiv.org/abs/1912.09893

[7] Avrilia Floratou, Fotis Psallidas, Fuheng Zhao, Shaleen Deep, Gunther Hagleither,
Wangda Tan, Joyce Cahoon, Rana Alotaibi, Jordan Henkel, Abhik Singla, et al.
2024. NL2SQL is a solved problem... Not!. In 14th Annual Conference on Innovative
Data Systems Research (CIDR 2024). CIDR.

[8] Yingqi Gao, Yifu Liu, Xiaoxia Li, Xiaorong Shi, Yin Zhu, Yiming Wang, Shiqi
Li, Wei Li, Yuntao Hong, Zhiling Luo, et al. 2024. Xiyan-sql: A multi-generator
ensemble framework for text-to-sql. arXiv preprint arXiv:2411.08599 (2024).

[9] Mingxuan Ju, William Shiao, Zhichun Guo, Yanfang Ye, Yozen Liu, Neil Shah, and
Tong Zhao. 2024. How Does Message Passing Improve Collaborative Filtering?
arXiv:2404.08660 [cs.IR] https://arxiv.org/abs/2404.08660

[10] Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li, and Nan Tang. 2024.
The dawn of natural language to SQL: are we fully ready? arXiv preprint
arXiv:2406.01265 (2024).

[11] Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin
Wang, Bowen Qin, Ruiying Geng, Nan Huo, Xuanhe Zhou, Ma Chen-
hao, Guoliang Li, Kevin Chang, Fei Huang, Reynold Cheng, and Yong-
bin Li. 2023. Can LLM Already Serve as A Database Interface? A BIg
Bench for Large-Scale Database Grounded Text-to-SQLs. In Advances in
Neural Information Processing Systems, A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (Eds.), Vol. 36. Curran Associates,
Inc., 42330–42357. https://proceedings.neurips.cc/paper_files/paper/2023/file/
83fc8fab1710363050bbd1d4b8cc0021-Paper-Datasets_and_Benchmarks.pdf

[12] Kevin Lin, Ben Bogin, Mark Neumann, Jonathan Berant, and Matt Gardner. 2019.
Grammar-based neural text-to-sql generation. arXiv preprint arXiv:1905.13326
(2019).

[13] Qian Liu, Bei Chen, Jian-Guang Lou, Ge Jin, andDongmei Zhang. 2019. FANDA: A
Novel Approach to Perform Follow-up Query Analysis. arXiv:1901.08259 [cs.CL]
https://arxiv.org/abs/1901.08259

[14] Xinyu Liu, Shuyu Shen, Boyan Li, Peixian Ma, Runzhi Jiang, Yuxin Zhang, Ju Fan,
Guoliang Li, Nan Tang, and Yuyu Luo. 2024. A Survey of NL2SQL with Large Lan-
guage Models: Where are we, and where are we going? arXiv:2408.05109 [cs.DB]
https://arxiv.org/abs/2408.05109

[15] Dai Quoc Nguyen, Cong Duy Vu Hoang, Duy Vu, Gioacchino Tangari,
Thanh Tien Vu, Don Dharmasiri, Yuan-Fang Li, and Long Duong. 2025. SQ-
Long: Enhanced NL2SQL for Longer Contexts with LLMs. arXiv preprint
arXiv:2502.16747 (2025).

[16] Mohammadreza Pourreza, Hailong Li, Ruoxi Sun, Yeounoh Chung, Shayan Talaei,
Gaurav Tarlok Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and Sercan O. Arik.
2024. CHASE-SQL: Multi-Path Reasoning and Preference Optimized Candidate
Selection in Text-to-SQL. arXiv:2410.01943 [cs.LG] https://arxiv.org/abs/2410.
01943

[17] Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan, Yu Cheng, Chenghu Zhou,
Xinbing Wang, Quanshi Zhang, and Zhouhan Lin. 2022. RASAT: Integrating
Relational Structures into Pretrained Seq2Seq Model for Text-to-SQL. In Pro-
ceedings of the 2022 Conference on Empirical Methods in Natural Language Pro-
cessing, Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (Eds.). Association
for Computational Linguistics, Abu Dhabi, United Arab Emirates, 3215–3229.
https://doi.org/10.18653/v1/2022.emnlp-main.211

[18] Irina Saparina and Mirella Lapata. 2024. AMBROSIA: A Benchmark for Parsing
Ambiguous Questions into Database Queries. arXiv:2406.19073 [cs.CL] https:
//arxiv.org/abs/2406.19073

[19] Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan Titov. 2020. Interpreting
Graph Neural Networks for NLP With Differentiable Edge Masking. CoRR
abs/2010.00577 (2020). arXiv:2010.00577 https://arxiv.org/abs/2010.00577

[20] Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. 2021. PICARD:
Parsing incrementally for constrained auto-regressive decoding from language
models. arXiv preprint arXiv:2109.05093 (2021).

[21] Kapil Vaidya, Abishek Sankararaman, Jialin Ding, Chuan Lei, Xiao Qin, Bal-
akrishnan Narayanaswamy, and Tim Kraska. 2025. ODIN: A NL2SQL Rec-
ommender to Handle Schema Ambiguity. arXiv:2505.19302 [cs.DB] https:
//arxiv.org/abs/2505.19302

[22] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. 2018. Graph Attention Networks.
arXiv:1710.10903 [stat.ML] https://arxiv.org/abs/1710.10903

[23] Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew
Richardson. 2021. RAT-SQL: Relation-Aware Schema Encoding and Linking for
Text-to-SQL Parsers. arXiv:1911.04942 [cs.CL] https://arxiv.org/abs/1911.04942

https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3620665.3640366
https://arxiv.org/abs/2310.13659
https://arxiv.org/abs/2310.13659
https://arxiv.org/abs/2110.01889
https://arxiv.org/abs/2110.01889
https://arxiv.org/abs/2110.01889
https://arxiv.org/abs/2006.16362
https://arxiv.org/abs/2006.16362
https://arxiv.org/abs/2006.16362
https://arxiv.org/abs/1912.09893
http://arxiv.org/abs/1912.09893
https://arxiv.org/abs/2404.08660
https://arxiv.org/abs/2404.08660
https://proceedings.neurips.cc/paper_files/paper/2023/file/83fc8fab1710363050bbd1d4b8cc0021-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/83fc8fab1710363050bbd1d4b8cc0021-Paper-Datasets_and_Benchmarks.pdf
https://arxiv.org/abs/1901.08259
https://arxiv.org/abs/1901.08259
https://arxiv.org/abs/2408.05109
https://arxiv.org/abs/2408.05109
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://doi.org/10.18653/v1/2022.emnlp-main.211
https://arxiv.org/abs/2406.19073
https://arxiv.org/abs/2406.19073
https://arxiv.org/abs/2406.19073
https://arxiv.org/abs/2010.00577
https://arxiv.org/abs/2010.00577
https://arxiv.org/abs/2505.19302
https://arxiv.org/abs/2505.19302
https://arxiv.org/abs/2505.19302
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1911.04942
https://arxiv.org/abs/1911.04942

Skadborg et al.

[24] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
towicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jer-
nite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020. HuggingFace’s Transform-
ers: State-of-the-art Natural Language Processing. arXiv:1910.03771 [cs.CL]
https://arxiv.org/abs/1910.03771

[25] Xiangjin Xie, Guangwei Xu, Lingyan Zhao, and Ruijie Guo. 2025. OpenSearch-
SQL: Enhancing Text-to-SQL with Dynamic Few-shot and Consistency Align-
ment. arXiv:2502.14913 [cs.CL] https://arxiv.org/abs/2502.14913

[26] ShichengXu, Liang Pang,Mo Yu, FandongMeng, Huawei Shen, Xueqi Cheng, and
Jie Zhou. 2024. Unsupervised information refinement training of large language
models for retrieval-augmented generation. arXiv preprint arXiv:2402.18150
(2024).

[27] Tao Yu, Rui Zhang, He Yang Er, Suyi Li, Eric Xue, Bo Pang, Xi Victoria
Lin, Yi Chern Tan, Tianze Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga,
Sungrok Shim, Tao Chen, Alexander Fabbri, Zifan Li, Luyao Chen, Yuwen
Zhang, Shreya Dixit, Vincent Zhang, Caiming Xiong, Richard Socher, Walter S
Lasecki, and Dragomir Radev. 2019. CoSQL: A Conversational Text-to-SQL
Challenge Towards Cross-Domain Natural Language Interfaces to Databases.

arXiv:1909.05378 [cs.CL] https://arxiv.org/abs/1909.05378
[28] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li,

James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2019. Spider: A Large-Scale Human-Labeled Dataset for Complex and
Cross-Domain Semantic Parsing and Text-to-SQL Task. arXiv:1809.08887 [cs.CL]
https://arxiv.org/abs/1809.08887

[29] Kun Zhang, XieXiong Lin, Yuanzhuo Wang, Xin Zhang, Fei Sun, Cen Jianhe,
Hexiang Tan, Xuhui Jiang, and Huawei Shen. 2023. ReFSQL: A Retrieval-
Augmentation Framework for Text-to-SQL Generation. In The 2023 Conference
on Empirical Methods in Natural Language Processing. https://openreview.net/
forum?id=zWGDn1AmRH

[30] Michael JQ Zhang and Eunsol Choi. 2024. ClarifyWhenNecessary: ResolvingAm-
biguity with Language Models. https://openreview.net/forum?id=XgdNdoZ1Hc

[31] Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL: Generating
Structured Queries from Natural Language using Reinforcement Learning. CoRR
abs/1709.00103 (2017).

[32] Xiaohu Zhu, Qian Li, Lizhen Cui, and Yongkang Liu. 2024. Large language
model enhanced text-to-sql generation: A survey. arXiv preprint arXiv:2410.06011
(2024).

https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/2502.14913
https://arxiv.org/abs/2502.14913
https://arxiv.org/abs/1909.05378
https://arxiv.org/abs/1909.05378
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1809.08887
https://openreview.net/forum?id=zWGDn1AmRH
https://openreview.net/forum?id=zWGDn1AmRH
https://openreview.net/forum?id=XgdNdoZ1Hc

	Abstract
	1 Introduction
	2 Related Work
	2.1 Linguistic Ambiguity in Natural Language Questions
	2.2 Ambiguity Detection Methodologies
	2.3 Summary

	3 Preliminaries
	3.1 Schema-Induced Ambiguity
	3.2 Problem Formulation

	4 Methodology
	4.1 Preprocessing
	4.2 Node Relevance Prediction
	4.3 Node Embedding
	4.4 Graph Construction
	4.5 Graph-based Classification

	5 Experiments
	5.1 Datasets and Annotation
	5.2 Experimental Setup
	5.3 Baseline Results
	5.4 GATekeeper Graph Structure
	5.5 GATekeeper Feature Embeddings
	5.6 Effect of Training Domain Diversity
	5.7 Cross-Domain Generalisation
	5.8 Downstream Impact on NL2SQL Execution

	6 Conclusion
	7 Future Work
	References

