SUMMARY

In a time where cloud computing is increasing in popularity, it is important to consider the environmental
impact which occurs as a result. Many industry leaders are aware of the environmental effects and are pledging
to save energy and minimize carbon emissions where possible.

The motivation behind this paper is to investigate which potential savings in energy and carbon emissions
can be implemented by extending the Kubernetes scheduler, which is a popular tool for the orchestration of
workloads and servers. The increase of Artificial Intelligence aligns with the need for more computational power
and data centers. As a result, orchestration platforms such as Kubernetes could potentially have a positive impact
in reducing the energy used from the main grid in computations by providing it with more knowledge about
the current state of renewable energy in its scheduling process.

In our contribution, we propose a system architecture for simulating data centers as part of a microgrid
by extending an existing microgrid simulation framework to work in real time, utilizing KWOK to simulate
nodes and pods, and provide a worktrace runner to emulate realistic worktraces. Additionally, a Kubernetes
Scheduling Framework Plugin is proposed which aims to utilize renewable energy available, by using the state
of the microgrids in its scoring.

By looking at realistic simulated solar data from the Technical University of Denmark, we have utilized a
microgrid simulation framework to study the effects of our contribution in real time. We are able to study the
effects of introducing renewable energy production and storage as knowledge for the scheduler to select the
most optimal node and reducing the non-renewable energy used. Furthermore, a method of evaluation can be
done by providing a real worktrace containing scheduled jobs, resource usage and computation time, and thus
it is possible to compare and evaluate against the default Kubernetes schedulers performance.

We have created a system architecture that allows running realistic worktraces on a Kubernetes cluster with
simulated nodes and pods, combined with a real time microgrid simulation that updates its state accordingly.
This is achieved using Kubernetes WithOut Kubelet (KWOK), which makes it possible to have a Kubernetes
cluster with normal control components, but simulate the nodes and pods. Using the Kubernetes Scheduling
Framework, we have created a plugin that gets the current state of each nodes associated microgrid, and uses
that information in the scheduling decision. When a pod has been scheduled, the plugin informs the microgrid
simulation using the same APIL.

The goal of our scheduling plugin was to utilize renewable energy when available, by giving a higher score
to nodes on microgrids with high current renewable output and battery charge. This was tested by running a two
week long simulation based upon a worktrace provided by Azure with ~ 900 nodes. Our proposed Kubernetes
plugin was able to utilize 20.34% more renewable energy in the microgrid compared to the default Kubernetes
scheduler. This is however a single example of scheduling plugin designed with a very specific goal in mind.
Permutations or different potential alternative goals are discussed in Future Works, as this project could be

extended and improved in many different ways.

Renewable Kubernetes Scheduling Simulating
Microgrids With Nodes

Simon Malgo Pronk Andersen, Laurits Christian Bang Mumberg
Department of Computer Science
Aalborg University, Denmark
smpa2(0 @student.aau.dk
Imumbe19 @student.aau.dk

Abstract—Data centers are expected to consume 3 — 13% of
the global electricity in 2030. Thus, different measures such as
reducing the PUE value and utilizing renewable energy sources
should be explored to limit the environmental impact of cloud
computing. By configuring data centers as microgrids, where they
are able to operate both in connected and disconnected mode
from the main grid, utilizing electrical storage and renewable
energy production, carbon reductions might be possible. Workload
schedulers, by default, are not yet fitted with the capabilities of
knowing the source of energy and thus cannot act accordingly.

Therefore, we propose a way of using the Scheduling Frame-
work for Kubernetes to create a plugin that takes these factors
into consideration when scheduling a workload. Additionally, we
propose a framework for simulating microgrids and nodes, where
the effects of scheduling are observable.

By simulating a large number of microgrids and configuring
them with servers (also known in this paper as nodes), our plugin
determines the best possible microgrid with regard to renewable
energy production and battery charge to schedule a workload.
The workload is then run on the simulated node, updating the
energy consumption in the microgrid in real time.

Based on a real Azure worktrace used in our experiments,
we have shown that our proposed plugin is able to utilize 20.34%
more renewable energy in comparison with the default Kubernetes
scheduler. Further study could introduce different workload types
and specific hardware requirements, a non-heterogeneous node
specification or different, better-fitting renewable energy sources
tailored to the geographical region.

Index Terms—Kubernetes Scheduling, Scheduling Framework,
Microgrids, Microgrid Simulation, Cloud Computing, Renewable
Energy, Kubernetes Plugin

I. INTRODUCTION

Data centers were estimated to consume 1.1 — 1.5% of the
global electricity which amounts to 203 — 273T'Wh in 2010
[1]. In comparison to 2010, it is expected that the electricity
consumption of data centers in regard to the global electricity
is expected to grow between 3 — 13% in 2030 [2].

Most data centers are already operating with a Power Usage
Effectiveness (PUE) value of near 1.0 which leaves little to
no room for PUE improvements [3]. As such, looking for
optimizations in the energy source [4] could be the next
step to lessen the environmental impact of cloud computing.
By imagining data centers as part of microgrids, the energy
consumed could become more environmentally friendly due to
the reliance of renewable energy sources.

In our preliminary research paper [5], we explored the po-
tential for an environmentally friendly scheduling policy using
a custom plugin for Kubernetes and microgrids.

The results of our preliminary study were not without their
limitations, due to the quality of the microgrid simulation and
experiments conducted. However it served as a proof-of-concept
and laid the foundation for future research into scheduling
workloads in Kubernetes through combining data centers and
microgrids in a more renewable way.

Our study makes the following contributions.

1) Microgrid Simulation Framework. We have extended
and used the open-source framework python-microgrid [6],
[7] which can simulate a number of running microgrids.
Our extension allows the addition of configurable modules
called nodes to each microgrid which can have dynamic
power consumption in correlation to the workload sched-
uled on said node.

2) Scheduling Framework Plugin. We have created a Ku-
bernetes plugin that utilizes the microgrid state received
from the simulation to make scheduling decisions based
upon renewable energy availability and battery. Addition-
ally, the plugin posts information about scheduled jobs to
the simulator to keep it updated in real time.

3) Evaluate Solution with Workload Trace from Azure.
Using a workload trace from Azure with clearly defined
hardware specifications, we distribute data centers across
152 simulated microgrids and run the trace on a KWOK
cluster to investigate the effects of our plugin.

II. PRELIMINARIES!
A. Microgrid
As per the U.S. Department of Energy, a microgrid is defined:

... as a group of interconnected loads and distributed
energy resources within clearly defined electrical
boundaries that acts as a single controllable entity
with respect to the grid. [8], [9]

Microgrids can vary in size, ranging from a single residential
home with a small generation capacity, to a large community
of hundreds residential homes with a very large generation
capacity [10]. A unique feature of microgrids is the ability
to switch between being connected to the energy grid or
completely isolated relying on its own power generation [10].

I'Subsection II-A and Subsection II-C are re-used background information from
the preliminary research by Andersen et al. [5].

B. Data Centers

Like microgrids, data centers also vary in size depending
on their hardware configuration and type of workloads. Artifi-
cial Intelligence (Al) requires more computational power [11]
than hosting a simple web application and naturally requires
additional hardware resources. A Cloud Native Computing
Foundation (CNCF) project like Kepler [12] which can monitor
power consumption of a cluster can be utilized but only after
the data center is set up.

Enterprise Infrastructure Planning Tools (EIPTS) [13] can
assist when designing data centers by providing estimates for
power usage at both idle and 0 — 100% resource utilization of
different workload types and hardware configurations.

1) Energy Source: When data centers consume electricity
from the grid, the environmental impact of the electricity can
be significantly different based on how it is produced. This is
supported by Figure 9 in Appendix B, where we can see the
percentage of renewable energy sources in the grid compared to
the carbon intensity for each region. The carbon intensity is the
gCOseq/kW h meaning the amount of COs created per kW h.
Therefore, to make data centers more environmentally friendly,
measures such as choosing providers that provide electricity
from sustainable sources can be taken rather than relying on the
uncertainties of the grid. Additional local measures can also be
taken, such as installing and using Photovoltaic Panels (PVs)
to power the data center which can make it less reliant on the
grid when local renewable energy is available.

C. Kubernetes

Kubernetes [14] is an open source container orchestration
tool originally developed at Google, but now maintained by
the CNCF [15]. It takes care of a lot of the work needed to
run a distributed system, including configuration, scaling and
self-healing [16]. It utilizes the concept of containers, which
are software packages containing everything needed to run
an application including the code, the required runtime and
libraries, making them independent of the hosts infrastructure.
In Kubernetes, these containers are deployed to nodes as pods,
where a pod contains one or more containers. Kubernetes is
dependent on a few essential components where some run on
the node and others on the main control plane. The components
on the control plane manage the overall state of the cluster,
with each of them having their own set of responsibilities. The
component that is of the biggest interest to this project is the
scheduler [17]. The scheduler is responsible for binding unas-
signed pods to nodes, which is also referred to as scheduling
within Kubernetes.

D. Extending the Scheduler

The Kubernetes scheduler can be extended in a variety of
ways [18]. In the preliminary study, these ways were explored
to find the best match for this project. Extending the scheduler
with a plugin using the scheduling framework was deemed to be
the best option, due to its support from the Kubernetes SIG, its
ability to still use functionality from the default scheduler, and
variety of extension points [19]. In addition, it allows assigning

a high weight to our plugin, while still letting default plugins
influence the score when the state of multiple microgrids are
very similar.

E. Problem Statement

By simulating data centers as part of microgrids G =
{G1,G3,...,G;} in different geographical regions where G; is
a single microgrid containing at least one node, is it possible,
using the scheduling framework to create an intelligent schedul-
ing plugin with a scoring algorithm that utilizes the renewable
energy state of microgrids and a real-life workload trace.

The goal of this paper is to extend the preliminary research
done by Andersen et al. [5] by greatly scaling the experiment,
using realistic data, and making the microgrid simulation update
in real time based upon the workload.

III. METHODOLOGY

Our Methodology section is structured as follows, Sub-
section III-A introduces the microgrid simulation framework
utilized in our experiments. Subsection III-B, Subsection III-C
and Subsection III-D introduce the dataset utilized for our re-
newable energy production used in our microgrids, and how we
sized the renewable generation installations for each microgrid
and their energy storage. In Subsection III-E we cover how
we utilized Kubernetes Without Kubelet (KWOK) to simulate
nodes and pods, which we use in our workload experiments.
Finally, Subsection III-F highlights the entire architecture of
our experiment setup, and covers how each part is connected.

A. Python Microgrid Simulation

In our preliminary research, we discussed two software to
simulate a microgrid, namely python-microgrid [6], [7] and
Homer Energy Pro [20]. The latter worked fine as an intro-
ductory tool for microgrids and how they should be configured
for non-electrical engineers. However, the pitfalls of using this
tool were primarily:

1) The location specific weather data used in the configured
renewable energy source was outdated.

2) The simulation could not run in real-time and thus the
effects of scheduling a workload could not be observed
on the battery state.

3) The microgrid could only be configured with approved
modules from Homer, which meant that our need for
custom modules such as servers with varying electricity
consumption was not supported.

As such we have decided to use the open-source framework
python-microgrid, where we have the opportunity of adding
our custom modules to represent a node, which can dynami-
cally affect the battery state through the simulation. Another
advantage of using python-microgrid over Homer Energy Pro,
is the ability to run the simulation in real-time. This makes it
possible to observe the changes and impact our node has on
the microgrid whenever it receives a workload.

Onshore Regions - Fixed south facing

0.18

% Froa FROS

FRO7
FROG

FROLFROZ oy

st £S04,

01 :
“esos 50508 : LolKoo e 0.14

Figure 1. Overview of installation regions with mean annual utilization value
[23].

B. Renewable and Carbon Emission Data

To ensure that our renewable energy module can produce
realistic results in the microgrid, realistic data is necessary. Re-
newable energy sources can be volatile due to the dynamically
changing weather and can as such create data variance, which
aligns with our need of having varying data, which in our case
will be used for distributing workloads.

To this end, we have opted to use a data set from a collection
tied to the Technical University of Denmark (DTU) [21], [22],
which includes solar data across the European region. Thus we
consider and model PVs as the renewable source in this study.
The specific data set [23] we utilize from DTU spans over 38
years from January 1% 1982 to December 1% 2019 consisting of
hourly solar data across 49 countries and 152 regions (Figure 1)
in percentages ranging from 0.0 — 1.0, where the values are
equal to the current utilization, with 1.0 being the maximum
possible output. The utilization value is defined as a percentage
of the maximum output of a renewable energy source which is
produced at a given time. The mean value of the utilization can
be seen in the y-axis in Figure 1, which is higher on average in
the more sunny regions of the south. Due to the sheer length of
the dataset, it has been pruned to only contain data from January
1%t 2016 to December 1% 2019 and transformed to 10-minute
intervals using forward fill. In total, there are 17761 data points
for each region where each row contains a timestamp and the
utilization value at that timestamp. The utilization value of four
random regions over a 3-day period can be seen visualized in
Figure 2.

Figure 2. A 3-day utilization value variation for regions FR03, DKW1, AT02,
and ES10.

C. Renewable Generation Capacity

In our case, we want to define the generation installations for
each region in the data set?. This is due to our need of selecting
the appropriate installation capacity to sustain the consumed
electricity of our workloads. Each microgrid is in our case
configured with a PV which is responsible for the renewable
energy production. Several nodes are configured such that their
power consumption ranges from 120 — 370W for each node,
totaling a load of 720 —2200W in each microgrid which should
be partially sustained by the PV.

The utilization value is denoted as the variable UV and the
data set assumes a generic PV module. Based on the daily
energy consumption of our nodes and the UV rarely nears
1.0, we have defined the maximum generation capacity (FPp,)
of the PV being 600W for each node with the maximum
possible output being 3600W. Thus, the calculation of how
much renewable power (Watts) is generated at a given time, e.g.
Total Generation Capacity (TGC) can be seen in Equation 1.

TGC = UV x Py, (1)

D. Energy Storage

As renewable energy production with PVs can be quite
stochastic, it is important to consider storage systems which
can save the renewable energy for later, if it is not consumed
immediately. Thus we have also decided to implement an
electrical battery storage in each microgrid in the simulation.
Correctly sizing the battery can be challenging, due to the
multiple variables involved. However, the following Equation 2
from [24] introduces a formula in Ampere-hours (Ahr) for
exactly this purpose.

Ad x K L
Mot = e Nia x DoD 5V, @

In Equation 2 [24], A, is the number of autonomous days,
meaning days where the battery can supply energy without
relying or recharging from the renewable source or grid. Ep,
is the estimated daily energy demand, Np.. is the battery
efficiency, N;,, is the inverter efficiency. Depth of Discharge

2Excluding regions ending with 00 as this is a country-level aggregation [23]
(except the regions with a single installation) and Ukraine due to lack of
recent data.

Simulation Environment

4 N

Microgrid

Renewable Module

Worktrace runner i(fLoad worktrace

Database
T\ Y % Node Module
-
Generate jobs L\ \ Consume power _ _ _
L ™ -~ <«—Retrieve workload(s)

Cluster

oL

Control Plane \

-
-
-
-
=
-
/

Battery Module

-
-
-

-
Consume power
.- A A

1

1

1

1

1

1

\

GET Latest Microgrid State

Update Microgrid State API

~d

Simulated Node

POST Scheduled Jobs

Insert workload(s)————

Flask API

Figure 3. System Architecture

(DoD) is the allowed percentage of the battery which is
discharged compared to the maximum capacity and V; is the
system voltage.

Based on Equation 2, we have defined the variables in the
formula as the following. A4 is defined by the average job
length in our workload trace [25], which is 10.2 hours ~ 0.24
days. E, is defined as the daily maximum power consumption
of our nodes, which is 2184W x 24h and is thus 524161 h.
Npgtt 1s set to 0.9 and N;,,, is set to 1.0 due to it not being
definable in the python-microgrid library. The DoD is defined
as 0.6 while the V; is configured to 230 volts. As such, the
battery capacity can be calculated as seen in Equation 3.

0.24 % 52416
101.20 Ahr ~ 23296.TWh —
0L29ARr ~ 28206.TWh = -0 05062030 O

For simplicity and to understand the reasoning behind the
scheduling choices, we utilize a homogeneous microgrid ar-
chitecture which includes a fixed battery size disregarding
geographical location and utilization values. For future research,
the effects of having varying battery sizes could be a topic to
explore, as we introduce in Subsection VIII-D.

E. KWOK and Simulated Pods

KWOK is as the name implies a toolkit for running clusters
with simulated nodes and pods [26]. It is maintained by the
Kubernetes SIG, and was created with the goal of having a
lightweight platform for large scale Kubernetes experiments.
It is compatible with all tools that use the normal Kubernetes
Application Programming Interface (API) like kubectl, but also
third party libraries such as the python Kubernetes client library
[27].

KWOK simulates the lifetime of pods and nodes using stages.
Each stage represents a part of the life cycle, with pods having
stages for being pending, running, completed to name a few.
These stages are defined in YAML as a Kubernetes resource,
primarily consisting of a selecfor and a next field. The selector
contains conditions that need to be met for the stage to take
effect. Changes are then applied based upon what is specified in
next. Stages can vary in complexity, with KWOK providing a
few default options. Simulating pod failure is also possible, with
the possibility of giving stages a chance to apply, if multiple
meet the conditions.

Additionally, it is possible to set a delay from when a selector
matches, to when the changes in next are applied. To make it

possible for us to simulate an existing work trace, we have
added a delay between the default running and succeeded
stages. The delay length is read from an annotation on each
specific pod, which allows us at pod creation to define how
long we want it to run.

F. System Architecture

To grant a better understanding and overview of our architec-
ture, the following subsections will explain the design choices
supported by Figure 3 which visualizes the overall architecture.

1) Kubernetes Plugin: The plugin is primarily responsible
for assigning the simulated jobs to the simulated nodes. It
utilizes two of the available extension points. The first one is
Score, which is where nodes are ranked based upon the state of
the microgrid they are a part of. This information is accessed
through the Flask API. The second extension point is PostBind.
This is the very last endpoint in the scheduling cycle, and is
called after a pod has been successfully bound to a node. This
is purely an informational endpoint, as no more decisions can
be made. It is used to inform the Flask API that a pod has been
assigned to a node, which should result in a new entry into the
database. Algorithm 1 highlights the pseudocode for our plugin.
On line 1, the prerequisites for scoring are defined. Line 3-5
gets the information about all microgrids G, the location of
the candidate node N and finally the information about the
microgrid (G;) at the location (/) of the node (N). Line 7
calculates the relative difference (Rg;7f) in renewable energy
production and energy consumption of a microgrid (G;). Line
9 calculates a score via a sigmoid function, which clamps the
result between 0 — 100, due to Kubernetes needing a score in
this range. Line 11 is where the weight (w) is defined and line
12 is where the final score is calculated and returned.

Algorithm 1 Pseudocode for Scheduling Framework Plugin
1: Given: pod P to schedule, candidate node N
2: function SCORE(N, P)
3: G < API Call

4: [< N labels[”location”]
5: G+ G[l]
6:
G .renewable— G| .load

7 Raipr < =G qoaa

8:

. 100
9: load_score + Tote ® Fairy
10:
11: w < 0.5 > Weight can be set between 0-1

12 score « load_score - w + Gy.battery - (1 — w)
return score
13: end function

2) API & Database: To create and maintain an information
link between our scheduler and the microgrid simulation, we
have created a Flask [28] API. As a result, whenever a workload
gets scheduled to the appropriate simulated node in KWOK, the
workload is also scheduled on the appropriate simulated node
in the microgrid. This is due to our API, which is responsible
for the identical representation of nodes in both KWOK and
the microgrid. Additionally, the API always expose the current

state of all microgrids, which can be retrieved and used by
the scheduling process. To store the scheduled workloads, we
utilize a SQLite [29] database, where each scheduled job is
stored.

3) Worktrace Runner: The worktrace runner is a python
script that creates jobs through the kubeapi-server using the
Kubernetes client library [27]. It contains a function that starts
a simulated job given a name, a running duration, and resource
requirements for the CPU and memory. Combining this with
a parser for a given worktrace makes it possible to emulate a
cluster doing real work.

4) Microgrid Simulation: Each simulated microgrid is lo-
cated in each region in Figure 1, to accommodate the renewable
energy data that is used. As such, we have a total of 152 sim-
ulated microgrids containing a data center with 6 nodes, where
each simulated microgrid is configured with the components
and their amount in Table I based on the python-microgrid
framework.

In total, there are 912 simulated nodes (each with an 16-core
processor and 128 GB of RDIMM) distributed across the 152
simulated microgrids, resulting in 6 simulated nodes in each
data center. The technical specification of the nodes can be
found in Appendix C. The simulation structure can be defined
as the following.

a) Simulation Initialization: Load the renewable energy
data set, and initialize the different modules from the library
which each microgrid will be configured with. Then all micro-
grids are created for each region.

b) Simulation Run: Happens in time steps, where the
time between each step is configurable. The simulation per
microgrid can be divided into 5 parts for each time step.

1) Retrieve the scheduled jobs, if any, from the database.
2) Run the jobs in the appropriate node in the microgrid for
the specified completion time and consume the electricity

Table 1
MICROGRID COMPONENT OVERVIEW

Component | Description

The ISO 3166 A-2 [30] code
for the country and region
number.

Microgrid Location

Battery Module (1#) The configured battery mod-

ule.

Node Module (6#) The nodes which will run
scheduled jobs and consume

energy.

Renewable Energy Module (1#) | The renewable energy source
which will generate power to
the microgrid and charge the

battery.

Grid Connection (1#) The main grid which pow-
ers the microgrid and charge
the battery whenever the re-
newable production is insuf-

ficient.

in the microgrid accordingly.

3) Expose the current status of the microgrid through an
API which will be used by the scheduler for the future
workloads.

4) Log the current and previous states of the microgrid to a
CSV-file.

5) Go to the next time step and repeat the process indefinitely.
c) Simulation End: This occurs whenever the data sets

used in the simulation reaches their end, is manually stopped or
a critical error crashes the simulation. In all cases the simulation
should be restarted.

The detailed specification for the simulated microgrid can be

found in Appendix A.

IV. EXPERIMENTS

In the following section we will cover the experiments
conducted based on our Section II Preliminaries and Section III
Methodology. More concretely, we will first cover the worktrace
which was used for all experiments in Subsection I'V-A.

A. Azure Worktrace

Azure provides two sanitized worktraces recorded in 2017
and 2019 of Virtual Machine (VM) workloads at one geograph-
ical region. They are accompanied by a paper that explores the
possibility of predicting characteristics of VMs to better utilize
resources [25].

The worktrace is useful to us because of its size, but also
the amount of relevant data it contains. It includes timestamps
for the start and end, memory- and CPU requirements, and
information about the average and peak CPU utilization. By
aggregating the average CPU utilization for all jobs running on
a simulated node, combined with energy consumption statistics
for appropriate hardware, we hope to be able to make a rough
but feasible estimation on each nodes energy consumption. This
amount is then fed to the microgrid simulator to update its state.
Figure 4 highlights some of the important characteristics of the
worktrace which we are interested in. Figure 4a displays the
number of active VMs over time in the worktrace, Figure 4b
displays the distribution of VM lifetimes in minutes, with a
larger number of them having a relatively short lifetime and
finally Figure 4c is the average CPU utilization of VMs over
time in the worktrace.

The paper includes information about a simulated run they
performed to evaluate their predictions. It states that they ran
336k VM arrivals in a cluster of 880 servers with 16 cores and
112 GBs of RAM over a period of 1 month. By modeling our
experiment setup based on this, we hope to achieve a realistic
hardware-to-workload ratio.

B. Running The Experiment

The experiment contains two weights that can be configured
to affect the simulation behavior. The first of these is the weight
of the scheduler plugin, compared to the other default plugins.
This decides how important the result of each plugin is in the
scheduling decision, by multiplying their score with the weight.
For our experiment run, this value was set to 10, giving our
plugin a big influence on the decision. The second weight is

—— Number of Active VMs

40000

30000

20000

Number of VMs

10000

o 100 200 300 400 500 600 700
Time (hours)

(a) The number of VMs over time.

0

== VM Lifetime Distribution

Number of VMs
3, 3

u

10000 20000 30000 40000
VM Lifetime (minutes)

(b) Distribution of VM lifetimes.

—— Avg. CPU of Active VMs

N B
o o

]
o

Average CPU Usage (%)

0 100 200 300 400 500 600 700
Time (hours)

(c) Average CPU utilization of VMs.

Figure 4. Azure VM Worktrace Characteristics

responsible for balancing the relation between renewable energy
and the batteries State of Charge (SOC) when scoring. This
can be seen in Algorithm 1 on line 11 and 12 as w. Like the
example, the weight is set to 0.5 in the actual simulation run.

In the accompanying paper to the worktrace, the amount of
jobs is scaled down to 20%, while keeping the same distribution
of jobs. This is then run on 880 nodes. In our experiment the
worktrace is similarly scaled, but we instead use 912 nodes
to evenly distribute them across the 152 microgrids having six
nodes each.

It is possible to change the speed of the experiment by
changing the speed of both the microgrid simulator and the
worktrace runner, in addition to proportionally changing the
running time of the jobs. This enables simulating multiple days
in a single day, while still staying true to the work trace, with the

® Scheduling Framework Plugin 29
A Default Scheduler

280K

(Wi
S
S

»

\‘; Wy % Ly
3
2
g & " ™
Z 260 £y G e 's
g
- "q S
ty A) N
% "
250K booup ot A s, +r
A o B o o R iy e M
* % 4 qi“i& %‘ k3 “‘é&" Ao A S ' N *
i A V% Ae Ay

240K

00 25 50 75 10.0 12,
Average Renewable Energy Generated (%)

Figure 5. Total Node Load and Average Renewable Generation for Country
Codes.

£ A
£
:
ﬁ 10 %
g = W v
55 Py
R
% * a ? i e
s
§ 0 O m‘f ey L -
8 . L3 T
H s % et e
2
g

L3

75 10.0 125 15.0 175
Average Renewable Energy Generated (%)

Figure 6. Total Node Load Difference between Plugin and Scheduler.

resources of the host PC and the speed of Kubernetes control
plane components being the limiting factor. The experiment
was run on a MacBook with an M1 Max CPU and 48 GB of
RAM available to Docker with a speed of 30x real time. The
simulation ran for 11.2 hours, which results in 336 simulated
hours or two weeks.

C. Experiment Results

In our experiments we have evaluated our proposed Kuber-
netes plugin using the scheduling framework against the default
Kubernetes scheduler running the same worktrace.

1) State of a Microgrid: Figure 8 shows the state of a
microgrid during the simulated two weeks. Each bump in
renewable energy production matches the beginning of a new
day. Everything is denoted in Watts except for the battery, which
is a percentage between 0 — 100 indicating its SOC.

2) Renewable Generation Utilization: To understand the re-
lationship between our nodes load and the renewable generation
of our microgrids, we have plotted some of the results of
our experiments. Figure 5 shows that our plugin prioritizes
the renewable energy production of a microgrid in a region
when scheduling a job, as we covered in Section III-F1. In
Figure 6 we can see the percent difference of jobs scheduled for
each country code, which for countries with greater renewable
generation is between 0.14% to 17.42% and for the countries
with a lower renewable generation is between —8.49% to
—0.02%

Likewise in Figure 7, it is shown that using our plugin the
total electricity export to the grid during the experiment was

1.081.619Wh compared to the default scheduler which was
1.357.732Wh with a difference of 276.113Wh. As a result,
we are utilizing 20.34% more renewable energy in comparison
to the default Kubernetes scheduler.

—— Default Scheduler
—~ Scheduling Framework Plugin

&
2

Total Grid Export (Wh)
s
2

0 250 500 750 1000 1250 1500 1750 2000
Time (10-minute intervals)

Figure 7. Grid Export for Plugin and Default Scheduler

V. DISCUSSION

When scheduling a job, the scheduler has currently no
information about the job length or what the resource utilization
average might be. For the scheduler there is no difference
between a quick 10 second job, and a job that might run for
multiple days with a high CPU utilization. This could be one
of the reasons why some countries stick out in Figure 5 If a
job is scheduled at night, only the battery has influence on the
score, which allows big multi-day jobs to end up on microgrids
with low amounts of renewable energy.

As Figure 7 highlights, we see the improvements appear in
periodic bumps, followed by a flat line. This is because the only
renewable energy source in our experiment is PV, which can
only produce power during the day. This gives the scheduler
a limited time frame in which the microgrids are significantly
different, which could be extended by adding alternative sources
of renewable energy. This can also be observed in Figure 8,
where the node load spikes when available renewable energy
is high. This increase in load is caused by the additional jobs
being scheduled to nodes in that grid. The opposite can be
seen on days when significantly less solar energy is available.
On those days, other microgrids with better PV conditions are
being prioritized.

It is worth mentioning that these improvements to renewable
energy usage are only possible because of an abundance of
nodes, which allows some of them to be idle in days with
low renewable energy production. However, these idle nodes
still use power, so finding a balance between two should be
explored in the future.

VI. RELATED WORKS

Rao et al. [31], propose an energy-aware scheduling al-
gorithm to reduce the energy consumption in a Kubernetes
cluster. The goal of their study is to create an algorithm
that is able to reduce the energy consumed by considering
energy consumptions of pods, CPU, communication latency and
PUE of nodes while adhering to the Service Level Agreement
(SLA). Their experimental results using said algorithm are the

TR10 - Battery, Grid, PV, and Total Node Load

Watts

SRR,

1000.16 -

= 100
Metric

Grid Export
—— Grid Import
—— Renewable Current (Watts)
--- Total Node Load
—— State of Charge (%)

e P g—

State of Charge (%)

i

M

il

Ul

i
1]

—
T

1000 1250 1500 1750

Time (10-minute intervals)

Figure 8. Detailed State of TR10 Microgrid

reduction of energy consumption by at least 5% compared to
the default scheduling algorithm. The approach they utilize
is different from ours, due to their approach containing only
two geographically different data centers with a total of 6
nodes. We focus on the utilization of renewable energy and the
carbon reductions thereof, while having a scalable and modular
microgrid and data center simulation, with 152 data centers
located in microgrids and disregard communication latency and
the PUE of data centers.

In a similar article Kaur et al. [32], propose an energy
efficient Kubernetes scheduler called KEIDS. The goal of
their study is to define the problem of energy efficiency
as a Multi-Objective Optimization Problem (MOOP), which
ensures maximum usage of green energy and overall energy
minimization for a minimal carbon footprint. By evaluating
KEIDS against existing Kubernetes schedulers with a real-time
Google worktrace, they achieve 14.42% improved energy usage
and a carbon footprint rate reduction of 47%. They rewrite
the default Kubernetes scheduler to solve said problem, which
differs from our contribution, though it shares a similar goal of
maximizing the usage of renewable energy and reducing carbon
emissions.They utilize four geographically scattered clusters,
each with a renewable energy source. However, they do not
consider energy storage such as batteries, to save renewable
energy when it cannot be immediately consumed. Even with a
similar goals, our approach is more resilient to changes in the
default Kubernetes scheduler, since the scheduling framework
is out-of-tree, whereas KEIDS would need to introduce every
future change into their own scheduler.

A carbon emission-aware job scheduler for Kubernetes was
proposed by Piontek et al. [33]. Both the default scheduler

and their proposed solution was evaluated with real-world
workloads with different CPU utilization and C'O5 emissions.
By shifting non-critical jobs in time in combination with an
algorithm which predicts future CO5 emissions, they were able
to decrease emissions by an average of 1.3% in comparison to
the default scheduler while still adhering to the SLA for all jobs.
Their approach to decrease carbon emissions are fundamentally
different from ours. We utilize the scheduler framework, which
is different from using the scheduler extender solution as it
relies solely on REST. With a similar goal of reducing the
carbon emission from the grid, we focus on scheduling jobs
to get the best utilization of renewable energy, rather than time
shifting jobs.

Hanafy et al. [34] propose a greedy algorithm implemented in
Kubernetes in which resource allocation for scheduled jobs are
dynamically changed based on the carbon cost of the grid. By
doing so they take advantage of the temporal elasticity of batch
jobs which in turn results in carbon savings. The algorithm
is evaluated using a real-world machine learning training and
shows carbon savings of 51% by temporal shifting compared to
a carbon-agnostic execution which will run the job instantly and
37% over a suspend-resume policy. They utilize the elasticity
of jobs like the previous study, and temporally shifts jobs and
allocate more/less resources based on the state of the grid. This
is a different approach from us, due to the fact that our approach
does not spatially or temporally shift jobs after they have been
scheduled, but rather schedule a job based on the best fitting
node with our prioritized requirements. Another large difference
in our studies, is the fact that we focus on utilizing local
renewable energy production and storage to reduce the carbon
intensity of the computation while they are solely relying on

the grid and the carbon intensity thereof.

Researchers have explored ways to reduce both the carbon
emission and electricity cost in data centers. In an article
by Dou et al. [35], they introduce an optimization problem
which is solved by a workload scheduling algorithm called
CECM with no future knowledge of the system state. CECM
compromises between electricity cost and the performance of
delay tolerant workloads. By evaluating their algorithm with
real-life workload traces, they were able to reduce electricity
costs of 9.26% and increase the usage of local renewable
energy sources in the data center. Compared to our study,
their goal is to reduce electricity costs in the data center by
utilizing local renewable energy sources and temporal shifting
delay tolerant workloads with the side-effect of reducing carbon
emissions. This is similar to our study, where we also utilize
local renewable energy but our primary focus is reducing carbon
emissions where reducing electricity cost is a side-effect.

VII. CONCLUSION

We have managed to extend our preliminary research [5] by
utilizing and extending the python-microgrid framework to up
scale the amount of microgrid locations, implemented a node
module for scheduling and employ realistic weather data. Our
proposed Kubernetes plugin using the scheduling framework
has successfully used the renewable production and battery
state in its scheduling of workloads to appropriately select
the most fitting microgrid. Our proposed contribution has been
evaluated against the default Kubernetes scheduler with a real
worktrace from Azure and have managed to achieve an increase
in renewable energy utilization of 20.34%. At last, we list some
of the future research directions which have not been studied
in this paper and could be interesting to explore.

VIII. FUTURE WORKS

In the following section we will cover some of the fields of
research which was not covered in this paper and thus can be
further explored.

A. Introducing Carbon Intensity

At the moment, the scheduler aims to maximize the amount
of renewable energy consumed by nodes by prioritizing nodes
in microgrids with high current renewable energy production.
Because the only renewable source in our experiment is PVs,
some countries with known low carbon intensity are being
down prioritized, as illustrated by the case of Norway (NO)
in Figure 6, as solar power may not be optimally suited for
their geographical location. By exposing the real time carbon
intensity of the main grid connected to each microgrid through
the API, the scheduling algorithm could use it in its decision
making. This could especially make a difference during the
night where PVs is unavailable, unless the geographical space
is expanded to include vastly different timezones.

B. Mixed Renewable Generation

A noteworthy topic to research further, is the effect of
introducing different renewable energy sources such as wind
or nuclear. Due to PVs being more volatile, as shown in the

data in Figure 2, we see that there are longer periods with
no renewable generation available. In our case, this meant that
we could employ the use of electrical battery storage, which
could be utilized whenever the production was low. As such, a
less volatile renewable source in terms of production such as
a small nuclear reactor, could provide the reduction in carbon
emissions and reduce the energy drawn from the main grid for
more environmentally friendly data centers. Another alternative
which would be interesting to explore, could be combining one
or more renewable energy sources in a single data center, for
instance both utilizing PVs and wind turbines if the location
supports it.

C. Different Workload Types

In our proposed solution, we assume a homogeneous work-
load type and server configuration, which is utilizing the CPU
of the server. By introducing servers in the data centers with
different hardware specifications, to handle workloads such
as memory or GPU intensive, the scheduler could take these
into consideration when scheduling different workloads. GPU
intensive workload types such as Al training, which can utilize
time shifting or suspend-resume techniques could exploit the
periods in renewable energy production when the servers would
otherwise need to consume power from the battery or the main
grid. Thus the impact of not having homogeneous servers, and
the potential difference in power consumption could be valuable
when planning renewable energy sources which the data center
could consume energy from.

D. Different Energy Storage Sizing

As we just discussed with our server configuration in Sub-
section VIII-C, our contribution also assumes a homogeneous
microgrid configuration. This meant that for the microgrid
locations where the utilization value of the PVs was low, the
battery was over sized and thus is not able to be fully charged
given a lack of surplus energy. To combat this, it could be
interesting to look at the regions in Figure 1 with a utilization
value under 0.14 and downscale the capacity of the configured
batteries. Likewise, it could be interesting to research whether
or not it is possible to achieve even greater reductions in carbon
emissions and energy drawn from the main grid, by scaling up
the batteries capacity in the regions with a utilization value over
0.14.

E. Optimizing for Price

As a result of our scheduler scoring algorithm, its primary
goal is to minimize the amount of energy exported to the grid.
At the moment, all energy exported is considered equally “bad”
in our experiment setup, but that might not reflect a real life
scenario. In practice, the current energy market price may be
varying at different microgrids, and could be taken into account
by extending the scoring algorithm, by for example down-
prioritizing nodes where it makes financial sense to sell back to
the grid at that moment. By adding this aspect to the simulation,
one could explore if, and how much money could be saved.

F. Simulation Performance

As mentioned in Subsection IV-A, the Azure worktrace
contains data for an entire month. We did however run into
performance issues around the 20 day mark, with the KWOK
cluster struggling to keep up with the rate that jobs were
being scheduled. By observing the Docker resource monitor,
it is clear to see that our setup reaches the threshold of both
CPU and memory after prolonged running time. Running the
simulation on better hardware might allow for bigger and longer
simulations, which could potentially give more realistic results.
it might also be possible to optimize parts of the scheduler to
run more efficiently, saving the resources available.

G. Exploring Permutations

We have simulated and evaluated the result of a single experi-
ment setup based upon the Azure worktrace and accompanying
paper [25]. In the future, it would be interesting to explore
the effects of changes in our setup. What would be the result
of having double the amounts of available nodes, or only half?
Same goes for the size of the batteries, or the renewable sources
at the microgrids. Additionally, the value of the weight in the
scoring as seen on line 11-12 in Algorithm 1 could be tweaked,
to explore if a better default value exists.

ACKNOWLEDGMENT

We would like to thank Michele Albano who helped us as
our shepherd and supervisor during the project. Additionally,
a big thanks to Hessam Golmohamadi, for proof-reading
and giving feedback on the specification and understanding of
microgrids and other energy-related questions we encountered.

[1]

[2]

[3]

[7]

[8]
[9]

REFERENCES
E. Masanet, A. Shehabi, N. Lei, S. Smith, and J. Koomey,
“Recalibrating global data center energy-use estimates,” Science,

vol. 367, no. 6481, pp. 984-986, 2020. [Online]. Available: https:
/Iwww.science.org/doi/abs/10.1126/science.aba3758

A. Andrae and T. Edler, “On global electricity usage of communication
technology: Trends to 2030,” Challenges (Basel), vol. 6, no. 1, pp. 117-
157, 2015.

W. A. Hanafy, Q. Liang, N. Bashir, A. Souza, D. Irwin, and P. Shenoy,
“Going green for less green: Optimizing the cost of reducing cloud
carbon emissions,” in Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3, ser. ASPLOS ’24. New York, NY, USA:
Association for Computing Machinery, 2024, p. 479-496. [Online].
Available: https://doi.org/10.1145/3620666.3651374

S. Mizani and A. Yazdani, “Optimal design and operation of a grid-
connected microgrid,” in 2009 IEEE Electrical Power ‘& Energy Confer-
ence (EPEC), 2009, pp. 1-6.

L. C. B. Mumberg and S. M. P. Andersen, “Towards renewable kubernetes
scheduling for microgrids using custom plugin,” 2025.

G. Henri, T. Levent, A. Halev, R. Alami, and P. Cordier, “pymgrid: An
open-source python microgrid simulator for applied artificial intelligence
research,” 2020. [Online]. Available: https://arxiv.org/abs/2011.08004
“ahalev/python-microgrid: python-microgrid is a python library to
generate and simulate a large number of microgrids.” [Online;
accessed 2025-04-11]. [Online]. Available: https://github.com/ahalev/
python-microgrid

D. Ton and M. Smith, “The u.s. department of energy’s microgrid
initiative,” The Electricity Journal, vol. 25, p. 84-94, 10 2012.

A. G. Amanda McGrath, “What is a microgrid? — ibm,” [Online;
accessed 2024-12-12]. [Online]. Available: https://www.ibm.com/topics/
microgrid

10

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

(28]

[29]

[30]

(31]

[32]

D. o. E. United States, “Microgrid overview — grid deployment
office,” January 2024, [Online; accessed 2024-12-12]. [Online]. Avail-
able: https://www.energy.gov/sites/default/files/2024-02/46060_DOE_
GDO_Microgrid_Overview_Fact_Sheet_ RELEASE_508.pdf
“Announcing the stargate project openai,” [Online; ac-
cessed 2025-05-05]. [Online]. Available: https://openai.com/index/
announcing-the- stargate-project/

“Kepler — cncf,” 5 2025, [Online; accessed 2025-05-26]. [Online].
Available: https://www.cncf.io/projects/kepler/

D. T. US, “Dell technologies — enterprise infrastructure planning
tool,” [Online; accessed 2025-05-05]. [Online]. Available: https:
/Iwww.dell.com/calc
“Kubernetes,” [Online;
https://kubernetes.io/
“Who we are — cncf,” [Online; accessed 2025-05-05].
Available: https://www.cncf.io/about/who-we-are/

“Why you need kubernetes and what it can do — kubernetes,” [Online;
accessed 2024-12-12]. [Online]. Available: https://kubernetes.io/docs/
concepts/overview/#why-you-need-kubernetes-and- what-can-it-do
“Kubernetes scheduler kubernetes,” [Online; accessed 2024-
12-23]. [Online]. Available: https://kubernetes.io/docs/concepts/
scheduling-eviction/kube-scheduler/

“Kepler — cncf,” 12 2023, [Online; accessed 2025-05-29]. [On-
line]. Available: https://kubernetes.io/docs/concepts/extend-kubernetes/
#scheduling-extensions

“Scheduling framework kubernetes,” [Online; accessed
2024-12-23]. [Online]. Available: https://kubernetes.io/docs/concepts/
scheduling-eviction/scheduling-framework/

“Homer - hybrid renewable and distributed generation system design
software,” [Online; accessed 2025-04-11]. [Online]. Available: https:
/fhomerenergy.com/products/pro/index.html

J. P. Murcia, M. J. Koivisto, G. Luzia, B. T. Olsen, A. N.
Hahmann, P. E. Sgrensen, and M. Als, “Validation of european-
scale simulated wind speed and wind generation time series,”
Applied Energy, vol. 305, p. 117794, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0306261921011296

M. J. Koivisto and J. P. M. Leon, “Pan-european wind and solar
generation time series (pecd 2021 update),” [Online; accessed 2025-
04-22]. [Online]. Available: https://data.dtu.dk/collections/Pan- European_
wind_and_solar_generation_time_series_ PECD_2021_update_/5939581
——, “Solar pv generation time series (pecd 2021 up-
date),” 5 2022, [Online; accessed 2025-04-22]. [Online].
Available: https://data.dtu.dk/articles/dataset/Solar_PV_generation_time_
series_ PECD_2021_update_/19727239

A. Ogunjuyigbe, T. Ayodele, and O. Akinola, “Optimal allocation
and sizing of pv/wind/split-diesel/battery hybrid energy system for
minimizing life cycle cost, carbon emission and dump energy of
remote residential building,” Applied Energy, vol. 171, pp. 153-171,
2016. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0306261916303713

E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura,
and R. Bianchini, “Resource central: Understanding and predicting
workloads for improved resource management in large cloud platforms,”
in Proceedings of the 26th Symposium on Operating Systems
Principles, ser. SOSP ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 153-167. [Online]. Available:
https://doi.org/10.1145/3132747.3132772

K. SIG, “Kubernetes with out kubelet,” 6 2024, [Online; accessed
2025-05-29]. [Online]. Available: https://kwok.sigs.k8s.io/
“Python client library,” [Online; accessed 2025-05-29].
Available: https://github.com/kubernetes-client/python
“Welcome to flask — flask documentation (3.1.x),” [Online; accessed
2025-05-22]. [Online]. Available: https:/flask.palletsprojects.com/en/
stable/

“Sqlite home page,” [Online; accessed 2025-05-22]. [Online]. Available:
https://www.sqlite.org/

C. to Wikimedia projects, “List of iso 3166 country codes -
wikipedia,” 9 2018, [Online; accessed 2025-04-25]. [Online]. Available:
https://en.wikipedia.org/wiki/List_of_ISO_3166_country_codes

W. Rao and H. Li, “Energy-aware scheduling algorithm for microservices
in kubernetes clouds,” Journal of Grid Computing, vol. 23, 2024.
[Online]. Available: https:/link-springer-com.zorac.aub.aau.dk/article/10.
1007/s10723-024-09788-w

K. Kaur, S. Garg, G. Kaddoum, S. H. Ahmed, and M. Atiquzzaman,
“Keids: Kubernetes-based energy and interference driven scheduler for

accessed 2025-04-07]. [Online]. Available:

[Online].

[Online].

https://www.science.org/doi/abs/10.1126/science.aba3758
https://www.science.org/doi/abs/10.1126/science.aba3758
https://doi.org/10.1145/3620666.3651374
https://arxiv.org/abs/2011.08004
https://github.com/ahalev/python-microgrid
https://github.com/ahalev/python-microgrid
https://www.ibm.com/topics/microgrid
https://www.ibm.com/topics/microgrid
https://www.energy.gov/sites/default/files/2024-02/46060_DOE_GDO_Microgrid_Overview_Fact_Sheet_RELEASE_508.pdf
https://www.energy.gov/sites/default/files/2024-02/46060_DOE_GDO_Microgrid_Overview_Fact_Sheet_RELEASE_508.pdf
https://openai.com/index/announcing-the-stargate-project/
https://openai.com/index/announcing-the-stargate-project/
https://www.cncf.io/projects/kepler/
https://www.dell.com/calc
https://www.dell.com/calc
https://kubernetes.io/
https://www.cncf.io/about/who-we-are/
https://kubernetes.io/docs/concepts/overview/#why-you-need-kubernetes-and-what-can-it-do
https://kubernetes.io/docs/concepts/overview/#why-you-need-kubernetes-and-what-can-it-do
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/extend-kubernetes/#scheduling-extensions
https://kubernetes.io/docs/concepts/extend-kubernetes/#scheduling-extensions
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://homerenergy.com/products/pro/index.html
https://homerenergy.com/products/pro/index.html
https://www.sciencedirect.com/science/article/pii/S0306261921011296
https://data.dtu.dk/collections/Pan-European_wind_and_solar_generation_time_series_PECD_2021_update_/5939581
https://data.dtu.dk/collections/Pan-European_wind_and_solar_generation_time_series_PECD_2021_update_/5939581
https://data.dtu.dk/articles/dataset/Solar_PV_generation_time_series_PECD_2021_update_/19727239
https://data.dtu.dk/articles/dataset/Solar_PV_generation_time_series_PECD_2021_update_/19727239
https://www.sciencedirect.com/science/article/pii/S0306261916303713
https://www.sciencedirect.com/science/article/pii/S0306261916303713
https://doi.org/10.1145/3132747.3132772
https://kwok.sigs.k8s.io/
https://github.com/kubernetes-client/python
https://flask.palletsprojects.com/en/stable/
https://flask.palletsprojects.com/en/stable/
https://www.sqlite.org/
https://en.wikipedia.org/wiki/List_of_ISO_3166_country_codes
https://link-springer-com.zorac.aub.aau.dk/article/10.1007/s10723-024-09788-w
https://link-springer-com.zorac.aub.aau.dk/article/10.1007/s10723-024-09788-w

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

industrial iot in edge-cloud ecosystem,” IEEE Internet of Things Journal,
vol. 7, no. 5, pp. 4228-4237, May 2020.

T. Piontek, K. Haghshenas, and M. Aiello, “Carbon emission-aware job
scheduling for kubernetes deployments,” The Journal of supercomputing,
vol. 80, no. 1, pp. 549-569, 2024.

W. A. Hanafy, Q. Liang, N. Bashir, D. Irwin, and P. Shenoy, “Car-
bonscaler: Leveraging cloud workload elasticity for optimizing carbon-
efficiency,” Proceedings of the ACM on measurement and analysis of
computing systems, vol. 7, no. 3, pp. 1-28, 2023.

H. Dou, Y. Qi, W. Wei, and H. Song, “Carbon-aware electricity cost min-
imization for sustainable data centers,” IEEE transactions on sustainable
computing, vol. 2, no. 2, pp. 211-223, 2017.

“Fully managed container solution — amazon elastic container service
(amazon ecs) - amazon web services,” [Online; accessed 2025-04-07].
[Online]. Available: https://aws.amazon.com/ecs/

“Cloud run — google cloud,” [Online; accessed 2025-04-07]. [Online].
Available: https://cloud.google.com/run

S. H. Valerie Silverthorne, “Cloud native 2024: Approaching a decade of
code, cloud, and change,” The Linux Foundation, March 2025. [Online].
Available: https://www.cncf.io/reports/cncf-annual-survey-2024/

M. S. Mahmoud, “Microgrid control problems and related issues,” in
Microgrid. United Kingdom: Elsevier Science & Technology, 2016, pp.
1-42.

“Extending kubernetes — kubernetes,” citehttps://kubernetes.io/docs/
concepts/extend-kubernetes/, (Accessed on 10/01/2025).
“Scheduling framework — kubernetes,” [Online; accessed

2024-12-23]. [Online]. Available: https://kubernetes.io/docs/concepts/
scheduling-eviction/scheduling- framework/#interfaces

“Scheduling plugins — kubernetes,” https://kubernetes.io/docs/reference/
scheduling/config/#scheduling-plugins, (Accessed on 10/01/2025).
“pymgrid.modules.batterymodule — pymgrid 1.4.1 doc-
umentation,” [Online; accessed 2025-04-30]. [Online].
Available: https://python-microgrid.readthedocs.io/en/latest/reference/api/
modules/pymgrid.modules.BatteryModule.html
“pymgrid.modules.renewablemodule =~ — pymgrid 14.1 doc-
umentation,” [Online; accessed 2025-04-30]. [Online].
Available: https://python-microgrid.readthedocs.io/en/latest/reference/api/
modules/pymgrid.modules.RenewableModule.html
“pymgrid.modules.gridmodule — pymgrid 14.1 doc-
umentation,” [Online; accessed 2025-04-30]. [Online].
Available: https://python-microgrid.readthedocs.io/en/latest/reference/api/
modules/pymgrid.modules.GridModule.html

T. Sukprasert, A. Souza, N. Bashir, D. Irwin, and P. Shenoy, “On the
limitations of carbon-aware temporal and spatial workload shifting in
the cloud,” in Proceedings of the Nineteenth European Conference on
Computer Systems, ser. EuroSys *24. New York, NY, USA: Association
for Computing Machinery, 2024, p. 924-941. [Online]. Available:
https://doi.org/10.1145/3627703.3650079

11

https://aws.amazon.com/ecs/
https://cloud.google.com/run
https://www.cncf.io/reports/cncf-annual-survey-2024/
cite https://kubernetes.io/docs/concepts/extend-kubernetes/
cite https://kubernetes.io/docs/concepts/extend-kubernetes/
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/#interfaces
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/#interfaces
https://kubernetes.io/docs/reference/scheduling/config/#scheduling-plugins
https://kubernetes.io/docs/reference/scheduling/config/#scheduling-plugins
https://python-microgrid.readthedocs.io/en/latest/reference/api/modules/pymgrid.modules.BatteryModule.html
https://python-microgrid.readthedocs.io/en/latest/reference/api/modules/pymgrid.modules.BatteryModule.html
https://python-microgrid.readthedocs.io/en/latest/reference/api/modules/pymgrid.modules.RenewableModule.html
https://python-microgrid.readthedocs.io/en/latest/reference/api/modules/pymgrid.modules.RenewableModule.html
https://python-microgrid.readthedocs.io/en/latest/reference/api/modules/pymgrid.modules.GridModule.html
https://python-microgrid.readthedocs.io/en/latest/reference/api/modules/pymgrid.modules.GridModule.html
https://doi.org/10.1145/3627703.3650079

APPENDIX A
PYTHON MICROGRID CONFIGURATION

As can be seen in our Github repository, each component in the microgrid is configured with the following settings in the code.
The battery module, renewable energy module, grid connection module are all default implementations of the library components.
The node module is our custom configuration of the load module, such that it is able to act as a node and dynamically shift the
consumption rate based on the scheduled jobs.

Table II
BATTERY MODULE CONFIGURATION

Battery Module | Description (From python-microgrid documentation [43).) | Configured Value

0 Wh

min_capacity Minimum energy that must be contained in the battery.

max_capacity

Maximum energy that can be contained in the battery. If | 23296.7 Wh
soc=1, capacity is at this maximum.

max_charge Maximum amount the battery can be charged in one step. | 2329.67 Wh

max_discharge Maximum amount the battery can be discharged in one | 2329.67 Wh
step.

efficiency Efficiency of the battery. | 90 %

init_soc Initial state of charge of the battery. \ 50 %

Table IIT
NODE MODULE CONFIGURATION

Node Module

Description | Configured Value

Default Power Consumption | The default power consumption for each node when | 120 watts

no workload is running.

Table IV
RENEWABLE ENERGY CONFIGURATION

Renewable Energy Module | Description (From python-microgrid documentation

[44].)

Configured Value

times_series Time series of renewable production, which is turned

from 1-hour intervals to 10-minute intervals.

solarPV_10min.csv

final_step

Length of time_series data. \ solarPV_10min.csv

Table V
GRID CONNECTION CONFIGURATION

Grid Connection Module | Description (From python-microgrid documentation | Configured Value

[45].)
max_import Maximum import at any time step. | 100000 Wh
max_export Maximum export at any time step. \ 100000 Wh

time_series

Time series data of import price, export price and co2 | (import_price, export_price, co2-data.csv)
per kWh, converted to Wh.

12

APPENDIX B
RENEWABLE ENERGY PERCENTAGE OF GRIDS ACROSS REGIONS

The following figure is based on the carbon emission data from Electricity Maps, which we discussed in Subsection II-B1 and
Subsection III-B.

I%%

% "o
P[i‘ “@
S5 %
e .)
g 60 % 2 Hy
s OO W e
: v o
§% K ® T o
: ® "o Sy o
g 30 B 5% Mgy
" o B %
Y % Pe e
15 %
5 ‘s
0 e
0 g0 160 240 320 400 480 560 640

Average Carbon Intensity (gCO2/k\Wh)

Figure 9. Renewable Energy Percentage / Carbon Intensity across all regions.

13

In order to configure each node as realistically as possible, we utilized Dells Infrastructure Planning tool [13]. This choice was
also based on the fact that the tool is able to estimate the power consumption both at idle and with 0 — 100% CPU utilization.
To match the specifications of the servers in the workload trace from Azure [25], we have decided to mimic their setup in our
own configuration. As a result, we had a choice between 5 or 6 nodes per data center in each microgrid, which meant having
either 760 or 912 servers. We went with 6 nodes per data center, where each node has its power consumption modeled after a
PowerEdge R660 Server, where the only modification in the tool is the removal of the additional processor and the addition of
more RAM meaning that there is a total of 128 GB RDIMM memory instead of the default 64 GB. The exported solution in
JSON can be found in the Github repository® under the python-microgrid-simulation/dell-eipt folder files and imported into the

Dell EIPT.
350
§ 300
=
S
g 250
2
[
o
O
5 200
z
o
(a9
150
100

APPENDIX C
NODE TECHNICAL CONFIGURATION

Power Consumption vs CPU Ultilization

—e— Transactional Workload
----1dle

—— Computational Workload
------- Memory Intensive Workload —
----- Max Potential Power

CPU Utilization (%)

Figure 10. Power consumption based on CPU utilization for PowerEdge R660 [13].

3https://github.com/simonmpa/kubernetes-microgrid-research/

14

	Introduction
	Preliminaries
	Microgrid
	Data Centers
	Energy Source

	Kubernetes
	Extending the Scheduler
	Problem Statement

	Methodology
	Python Microgrid Simulation
	Renewable and Carbon Emission Data
	Renewable Generation Capacity
	Energy Storage
	KWOK and Simulated Pods
	System Architecture
	Kubernetes Plugin
	API & Database
	Worktrace Runner
	Microgrid Simulation

	Experiments
	Azure Worktrace
	Running The Experiment
	Experiment Results
	State of a Microgrid
	Renewable Generation Utilization

	Discussion
	Related works
	Conclusion
	Future Works
	Introducing Carbon Intensity
	Mixed Renewable Generation
	Different Workload Types
	Different Energy Storage Sizing
	Optimizing for Price
	Simulation Performance
	Exploring Permutations

	References
	Appendix A: Python Microgrid Configuration
	Appendix B: Renewable Energy Percentage of Grids Across Regions
	Appendix C: Node Technical Configuration

