From Heightmaps to Cameras:
Teacher-Student Reinforcement Learning
for Rover Navigation

Master’s thesis

By Thomas Schou Sgrensen

Aalborg Universitet
Det Tekniske Fakultet for IT og Design

AALBORG UNIVERSITY
STUDENT REPORT

Title:
From Heightmaps to Cameras: Teacher-
Student Reinforcement Learning for Rover

Navigation

Theme:
Thesis

Project Period:
February 2024 - June 2024

Project Group:
Group 1066

Participant(s):

Thomas Schou Sdgrensen 20204534

Supervisor(s):
Simon Bggh
Anton Bjgrndahl Mortensen

Copies: 1
Page Numbers: 69

Date of Completion:
4. June 2025

The Technological Faculty for IT og Design
Niels Jernes Vej 10, 9220 Aalborg @st
http://www.aau.dk

Abstract:

This thesis investigates a DAgger-based
teacher-student framework for transferring
navigation behavior from a policy trained
on privileged heightmap input to one using
noisy RGB-D observations. The goal is to
support learning under realistic sensor condi-
tions, where reinforcement learning on RGB-
D data remains challenging due to its partial
and high-dimensional nature. A simulation
pipeline was extended to enable separate sen-
sor inputs for teacher and student using the
RobuROC4 platform. While the student in-
creasingly aligned with the teacher’s actions,
it failed to generalize or perform the task
effectively. This is attributed to memory-
bound dataset handling and limited rollout
diversity. The findings suggest that teacher-
student imitation learning holds promise for
sensor modality transfer, but depends on

scalable infrastructure capable of supporting

large and diverse training datasets.

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement

with the author.

http://www.aau.dk

Acknowledgments

I would like to express my sincere gratitude to Associate Professor Simon Bggh and PhD student
Anton Bjgrndahl Mortensen for their invaluable guidance, support, and supervision throughout
this thesis. I would also like to thank Aalborg University for providing the facilities and re-

sources necessary to carry out the work presented in this project.

Aalborg University, 4. June 2025

Thomas Schou Sgrensen

tssa20 @student.aau.dk

Contents

1 Introduction

2 Problem analysis
2.1 Reinforcement Learning fundamentals
2.2 Background
23 Relatedwork

3 Problem Formulation
3.1 Project Objectives e

4 Implementation
4.1 Model implementation
4.2 Introducing RGB-D as sensorinput

4.3 Teacher-student framework implementation

5 Testing and evaluation
5.1 Testing Framework
5.2 Introduction of New Hardware Platforms
5.3 RGB-Dinputmodality,

5.4 Teacher-student training
6 Discussion

7 Conclusion

7.1 Future work

Bibliography

24
24

26
26
33
41

49
49
51
57
61

66

68
68

70

Introduction

The current plan of NASA’s Artemis program aims at returning humans to the Moon by 2027
[1]. Building upon this milestone, the broader roadmap envisions humans setting foot on Mars
by 2030 [2], [3]. With the successful Artemis I mission in 2022, the future of space exploration
is one step closer to creating a more permanent presence in space. Artemis II, the second mis-
sion, intends to send a crewed craft near the Moon by 2026 [2]. With the Artemis program,
scientific efforts are focused on developing technologies for lunar exploration and habitation,
with significant investments from multiple space agencies and associations. These efforts are
aimed at advancing technologies for exploring, preparing, settling and utilizing the lunar sur-
face. The Moon is intended as a stepping stone for further deeper space exploration, with the
current goal being Mars. It also provides a platform for developing and testing technologies

intended for future missions to Mars.

To realize these ambitions, both NASA and the European Space Agency (ESA) emphasize the
need for advanced robotic systems capable of autonomous operation in extreme and unstruc-
tured environments [4], [5]. In particular, preparing the lunar surface for habitation and infras-
tructure, including landing pads, shelters and equipment foundations, requires robotic systems
with advanced sensing, mobility and decision-making capabilities [6]. Neither direct human
nor teleoperated execution of these tasks is feasible due to communication delays, terrain un-

predictability and mission constraints.

Reinforcement learning (RL), a machine learning technique, is increasingly being explored for
its ability to support autonomous decision-making in complex environments [7], [8]. RL allows
agents to learn optimal behaviors through trial-and-error interaction with their environment.
However, applying RL in mission-critical systems where human intervention is not possible,
raises concerns not only about safety, interpretability, and verification, but also about sim-to-real
transfer, as the system must function autonomously in unfamiliar environments [9], [10]. These
issues must be addressed for a robotic agent to operate reliably in space and in extraterrestrial
contexts.

Mortensen et al. [11] propose a hybrid teacher-student reinforcement learning approach, in-
spired by the Learning by Cheating method introduced by Chen et al. [12], to reduce the
sim-to-real gap. Learning by Cheating is a two-stage imitation learning architecture in which a
teacher agent is trained using privileged information (e.g., perfect sensor data or ground-truth
obstacle positions in simulation). A student agent is then trained to imitate the teacher’s de-
cisions using more realistic, constrained inputs (e.g. raw camera data) [12]. Building on this
paradigm, Mortensen and Bggh developed the RLRoverLab framework [13], [14], a modular

1 of 73

CHAPTER 1. INTRODUCTION

Figure 1.1: Illustratory image of a robot model in a Mars-like terrain inside an Isaac Sim simulation.

RL suite for planetary rover simulation and RL policy development, illustrated in Figure 1.1.

In its current implementation, Motensen et al. employs the same sensor modality, specifically
heightmaps, for both the teacher and student agents. The use of similar sensor inputs for both
student and teacher simplifies the imitation learning process. However, in domains such as
lunar and Martian exploration, where sensor availability is limited, an investigation of using
other sensor inputs could offer additional insights into more realistic and robust sim-to-real
transfer [11], [13], [15].

Building on the RLRoverLab framework and prior RL robotics research at Aalborg University
[16], [17], this thesis extends the work of Mortensen et al. [11] by investigating the effects of
using different sensor inputs for teacher and for student agents. This establishes the possibility
of utilizing existing policies in training complex or observation redundant agents. Separating
sensor inputs can potentially improve output policy robustness and enhance sim-to-sim and sim-
to-real transferability. In doing so, this work can contribute to the development of scalable and
safety-aware reinforcement learning methods for terrain exploration and preparation in support
of NASA’s Artemis and ESA’s Terrae Novae programs [4], [S].

Initial problem statement

Based on these findings and research, it is evident that further research and development is
required in order to bridge the sim-to-real gap and achieve the collective goals of the space
agencies. With these goals and associated challenges in mind, the following problem statement
is formulated:

”How does using separate sensor inputs in a teacher-student framework influence
training efficiency, sim-to-sim and sim-to-real transferability of autonomous navi-

gation policies for extraterrestrial rover missions?”

20f 73

Problem analysis

Building on this motivation and the formulated problem statement, this chapter provides the
necessary theoretical foundation for further investigating the RL framework and RL training
approach presented by Mortensen et al. [11], [13]. Given that the aim is developing RL training
strategies for extraterrestrial navigation tasks, it is essential to first understand the structure
of RL problems and the methods used to solve them. Therefore, this chapter begins with an
introduction to RL, covering the fundamental theory, learning objectives, and selected actor-

critic methods relevant to this work.

Following this, the core ideas behind the teacher-student learning paradigm are introduced,
starting with the foundation laid in the Learning by Cheating framework, and then exploring the
teacher-student approach in greater detail to establish a basis for its extension. Building upon
the background, a review of recent reinforcement learning approaches for navigation based on
RGB and depth sensing is conducted, with a particular focus on their potential for sim-to-real
transferability. The review further examines key components of the RL framework, such as
observation modalities, action spaces, reward functions, and sensor configurations, to identify
effective learning strategies for vision-based agents. The chapter concludes by exploring neural
network architectures for vision-based navigation, with the aim of establishing a robust and

transferable policy network.

2.1 Reinforcement Learning fundamentals

In order to address the issues associated with rover navigation and surface preparation within
the bounds of RL it is essential to establish a theoretical foundation, as presented here in a brief
overview of the fundamentals of Reinforcement Learning. Additionally, this leads to a more
informed discussion of the methods proposed by Mortensen et. al. Given the expansive and
complex nature of RL the following overview is limited to the relevant concepts, with the aim
of preserving both clarity and brevity. The overview is based on the Book; “Reinforcement

Learning: An Introduction” by Sutton and Barto [18] as well as a review by Levine et. al. [19].

Foundation and Ideas of Reinforcement Learning

RL is a subfield of machine learning that formalizes decision-making through interaction with
an environment. It relies on building experience through trial-and-error, thereby optimizing a
behavior over time. By definition, RL closely resembles human learning paradigms due to the
action-feedback or sensorimotor behavior that humans have, e.g. touching a hot stove resulting

in pain. These inputs shape future behavior through stimulus-response.

3of 73

CHAPTER 2. PROBLEM ANALYSIS

At the core, RL is a framework consisting of an agent which learns to make decisions within
a set environment. The environment is defined by a set of states (S) that represent various
situations the agent may encounter, including the initial state dy. Each state (s € S) contains
information observable to the agent. Based on this information, the agent can choose between
a set of available actions (A(s) C A). The choice of action (a € A) is governed by a policy
((als)), which maps states to the probability of taking certain actions (p(als),Va € A(s)).
When an action is taken, the environment responds by transitioning to a new state and providing
a scalar reward signal, depending on the resulting state (r(s,a,s")). This reward may be negative

and positive, depending on the outcome. An illustration of this framework can be seen in

Figure 2.1.
e O 1) S €11V 1] O N e
State
\ Y
Agent
I Environment
Policy
A
3 A
Action

Figure 2.1: An illustration of the basic RL framework.

To improve the behavior of the agent over time, the policy must adapt accordingly. The agent
can refine its policy using various learning algorithms, but before these can be applied, it is nec-
essary to define a formal framework in which the learning process is situated. In reinforcement

learning, this framework is typically modeled as a Markov Decision Process (MDP).

Markov Decision Processes (MDPs)

The conceptual framework of RL, as defined previously, is based on a set of states S, which must
include the initial state dp. Furthermore, it presents a set of actions A and a reward function for
taking specific actions r(s,a,s’). Lastly, it provides the concept of choosing actions based on
some probability distribution p(als) Va € A(s). In simple terms, this provides the foundation
for an MDP and can therefore be modeled as such. For more realistic contexts another approach
is to utilize Partially-Observed Markov Decision processes (POMDPs). In general, an MDP as-
sumes that the agent has full knowledge of the state of the environment, such as in a game of
tic-tac-toe by knowing which fields contain which playing pieces, whereas POMDPs assume
that the agent only has partial knowledge. The latter is often used in real contexts as many
systems utilize imperfect sensors which in part only provides a fraction of information about

the environment. Both of these frameworks are defined as:

40f73

CHAPTER 2. PROBLEM ANALYSIS

Definition 2.1.1 (Markov Decision Process) The Markov decision process (MDP) is defined
as a tuple M = (S, A, T ,do,r,7), where S is the set of states s € S, which can be both discrete
or continuous. A is the set of available actions a € A, which can also be both discrete or
continuous. T defines the conditional probability distribution of the form T (s;y1|s;,a;), also
known as the dynamics of the MDP. dy defines the initial state distribution dy(sg). r: S x A — R
or as defined earlier r(s,a,s') defines the reward function, while y : (0,1] is the scalar discount

factor for rewards, that defines the value of actions over time.

Definition 2.1.2 (Partially-Observed Markov Decision Process) The partially-observed Markov
decision process (POMDP) is defined as a tuple M = (S, A,0,T ,do,E,r,y, where S, where
S, A, T ,dy,r and y are defined as before. O is a set of observations, where each observation is
given by o € Om and E is an emission function, which defines the distribution E(oy|s;), or the

probability of receiving a certain observation o; at a particular state s;.

For the sake of simplicity and brevity, the MDP Definition 2.1.1 is used for the remainder of this
theoretical explanation. Central to RL is the goal of learning some optimal policy, here denoted
7*, that maximizes the expected return for all trajectories. For this purpose, a trajectory 7 is
here defined as a sequence of state-action pairs T = {so,a0,51,a1,...,54,ay } for some trajectory
horizon H. Thus, by this definition, the probability density function of some trajectory, here 7,
anchored in some policy 7 is defined as:

H
px(T) = do(s0) Hn(af’SI)T(SH—l |s¢.ar) 2.1)

t=0
Where dy represents the initial state distribution and ¢ denotes the discrete time step. This
probability density function can then be utilized in definition of the optimization problem for

some agent can then be defined as:

H
n* =argmaxE..p (1) [Z }/tr(st,a,)] (2.2)
T =0

Where 7 represents the sequence of a trajectory and p(7) denotes the probability of a trajectory
sequence given some policy 7. This problem can be divided into two parts, the optimization
problem and the objective function, each denoting a critical part of adapting the behavior of an
agent. The optimization problem defines the process through which the agent updates its policy
in order to improve performance, while the objective function quantifies the goal the agent aims

to achieve. The optimization problem is defined as:

Sof 73

CHAPTER 2. PROBLEM ANALYSIS

" =argmaxJ(T) (2.3)

T
And the objective function is defined as the expected return of all future rewards given some
trajectory 7 under some policy 7. In other words, the assumed outcome r of taking actions

ao, - . .ayg, with some discount factor v:

J(m) =Erpy(c [Z;/ s,,a,] (2.4)

With both the objective function and optimization problem defined the remaining issue is defin-
ing algorithms which can be utilized in learning the optimal policy 7*. There exists a multitude
of approaches, depending on the architecture of the environment and the observations available
to the agent. The following section explores a few of the approaches available. While many
fundamental methods assume complete knowledge of the environment, these are omitted here

for relevance and brevity.

Policy optimization and Actor-critic methods

Algorithms designed for this purpose are generally categorized as either value-based, policy-
based, or a combination of the two. Value-based methods focus on estimating value functions,
such as V*(s;) or Q*(s;,a,), which reflect the expected return under a given policy. In con-
trast, policy-based methods directly optimize the policy 7y (a;|s;) by ascending the gradient of

expected return with respect to its parameters.

In the context of methods for learning an optimal policy, another important distinction is be-
tween the prediction and control problems. The prediction problem involves estimating the
value function vz(s) for a fixed policy 7, thereby evaluating the policy. Contrarily, the control
problem is directly concerned with learning the optimal policy 7%, and is part of the focus of
this section. A classical policy-based solution is policy gradients, which is a more direct opti-
mization method that optimizes the policy & by computing the gradient of the expected reward,
with regard to the policy parameters 0. This method is defined as:

Vo (T9) =Erp(n) Zyvelogne(a,m 27/ r(sp,ap) _e(;i’l (2.5)

t=0
~ baseline

future expected reward

Where 7y is a policy parameterized by 6 and b(s;) represents the baseline. The baseline, in

this case, is utilized in reducing the variance of the gradient estimate. The equation, consisting

6 of 73

CHAPTER 2. PROBLEM ANALYSIS

of the future expected reward and the baseline is known as the Advantage function, denoted as
A(s,a;) and is defined as:

A(ss,ar) Z;/ r(sp,apn) —b(s;) (2.6)

This function can be estimated either through Monte Carlo sampling or by employing a sep-
arate neural network, commonly referred to as the critic, as utilized in actor-critic methods.
Actor-critic methods address the dual objectives of policy optimization and policy evaluation

by maintaining two distinct learning components:

* The Actor estimates the parameterized policy by using the estimates from the critic to
optimize the policy using Equation 2.5.

* The Critic estimates the parameterized value function (either state-value V (s;) or action-
value Q(s;,a,)), thereby providing the advantage function A(s;,qa,), which can then be uti-

lized in optimizing the policy.

To better understand the role of the critic in estimating long-term returns, we next define the
value functions more formally. To enable the RL framework to learn beyond any immediate re-
wards (greedy policies) a function estimating the expected long-term return (cumulative future
rewards) starting from state s, is required. This is known as the state-value function, denoted
V*(s;). Additionally, another function describing the value of taking action « in a state s fol-
lowing a policy 7. This function is known as the action-value function (or Q-function) and is

denoted Q*(s;,a;). The definitions of each using the Bellmann optimality equations are:

V*(sy) = r(se,ar) + yglea.‘i(EslNT(SrH\Shat) V*(s141)] 2.7)
Q" (styar) = r(st,ar) + YEy T (5,1 s1a0) I}}af‘Q*@tH’atH) (2.8)
1+

Depending on the application, a finite MDP can be solved by estimating either Q*(s;,a;) or
V*(s¢). The actor-critic architecture enables the agent to simultaneously evaluate and improve
its behavior, making actor-critic methods a powerful and general approach to policy optimiza-
tion. Moreover, since the critic uses bootstrapped estimates and the actor optimizes a differ-
entiable policy, the method is both more sample-efficient and suitable for continuous action
spaces. The critic network contributes by estimating either the state-value or action-value func-

tion. This is done by using regression to minimize the loss function for V*(s;):

1 N
crmc - _N Z ||V¢ St S;,a[) +YV¢ (St+l))||2 (29)

7of73

CHAPTER 2. PROBLEM ANALYSIS

With ¢ being the parameter for the value function. In order to optimize the policy, using V*(s;)

to estimate the advantage function A(s;,a,), which in this context is defined as:

A(st,ar) = r(se,an) + W (s141) =V (s1) (2.10)

Which can then be utilized in Equation 2.5 to obtain the policy gradient for the actor network. In
general, ngt (s7+1) is considered easier for neural networks to estimate since it only depends on
a single condition. However, using the state-value function V7 (s, 1) assumes that the next ac-
tion is drawn from the current policy 7. Unlike on-policy methods, off-policy approaches use
experience collected from a different behavior policy 7y ,,, which invalidates the estimate due
to a policy mismatch. Instead the action-value function Qg (st,a;) can be used, which is more
suitable for off-policy RL, which is beyond the scope of this section, as it depends on sampled
data D = {s;,a;,r(st,a;), 841}, that does not depend on a specific policy. This is crucial, since
the action-value function does not depend on the state-action pairs originating from a specific
policy. For estimating the action-value function Qg (s,a¢), the sampled data is used in recalcu-
lating it, by assuming the current policy 7g. Here the sampled action a,4 ~ g (a,+1|s;+1) can

be recalculated to bootstrap future return. This leads to the critic loss function:

N
Leritic =5 ZHQ¢ sevar) — (r(se.ar) + YOf (sr+1,a41) | (2.11)

Where both Qg and the policy g are updated iteratively. The policy gradient is then reformu-
lated as:

Vod (T0) = Byt ayeraarsy) [Vglog o (ay) OF (s ar) (2.12)

This formulation ensures consistency between the critic and the actor by using current param-
eters ¢ and 6, enabling stable learning in the off-policy regime. Building on this foundation,
several widely-used actor-critic algorithms have been developed, each implementing the under-
lying principles in distinct ways to improve stability, efficiency, and generalization in various
settings. Notable examples include:

* PPO (Proximal Policy Optimization): Introduces a clipped surrogate objective to con-

strain policy updates, improving training stability while retaining simplicity. [20]

* TRPO (Trust Region Policy Optimization): Optimizes policies with a constraint on the
KL divergence between successive policies, providing strong theoretical guarantees at the

cost of increased complexity. [21]

* RPO (Robust Policy Optimization): Refers to a class of methods aimed at learning poli-

8 of 73

CHAPTER 2. PROBLEM ANALYSIS

cies that generalize across uncertain or variable environments by optimizing performance

under worst-case scenarios. [22]

* SAC (Soft Actor-Critic): An off-policy algorithm based on the maximum entropy frame-
work, encouraging diverse and robust policies by maximizing both expected return and
policy entropy. [23]

* TD3 (Twin Delayed DDPG): An off-policy deterministic algorithm that reduces overesti-
mation bias through the use of double critics, target smoothing, and delayed policy updates.
[24]

These algorithms are typically implemented within the framework of deep reinforcement learn-
ing, where both the actor and the critic are represented by neural networks. This allows them to
approximate complex value functions and policies from high-dimensional sensory input, such
as images or proprioceptive data. These algorithms highlight the flexibility of the actor-critic
paradigm, differing in whether they operate on-policy or off-policy, how they manage stability,
and the strategies they use for exploration. These foundational elements serve as the basis for
more advanced reinforcement learning techniques applied in real-world robotics scenarios, in-
cluding the work by Mortensen et al. The following sections explore practical applications of

these concepts, specifically in rover navigation.

2.2 Background

Efficient navigation and surface interaction are critical challenges in applying RL to autonomous
extraterrestrial rovers. To address the difficulty of learning complex behaviors in sparse envi-
ronments with limited real-world data availability, recent work has explored structured training
setups that guide the learning process. One such approach is Learning by Cheating, introduced
by Chen et al. [12], which leverages privileged information during training to accelerate policy
learning. Building on this idea, Mortensen et al. [11] proposed a teacher-student framework
tailored to the domain of extraterrestrial rover navigation. In this framework, a teacher pol-
icy with access to high-level planning data trains a student policy that operates under realistic

constraints.

While the teacher-student framework is not available in the current implementation of RLRover-
Lab, this simulation framework, developed by Mortensen and Bggh [13], provides a modular
and extensible platform designed to support the development and evaluation of reinforcement
learning strategies for planetary rover navigation. The following sections briefly review the core
ideas behind these contributions.

2.2.1 Learning-by-cheating

Deploying machine learning-based control systems in robotics often rely on training within
simulation due to the challenges of acquiring large-scale real-world data. However, the gap

90f73

CHAPTER 2. PROBLEM ANALYSIS

between simulation and reality, known as the sim-to-real gap, can lead to degraded performance
when transferring trained agents to physical environments, due to the differences in dynamics,

sensor noise and environmental complexity [10].

An approach presented by Chen et al. [12] introduces a two-stage imitation learning framework
aimed at addressing the sim-to-real gap in autonomous systems. The core idea is to decompose
policy learning into two separate stages: first, a privileged agent is trained to imitate expert
demonstrations using full access to high-level environmental information in simulation (e.g.,
object states, maps and signals), which would not be available in real-world deployment. This
agent is used to generate expert trajectories. Secondly, a sensorimotor agent is trained to imitate
these trajectories using only realistic inputs, such as raw camera data. The term “cheating”

originates from the privileged agent’s access to full state observations [12].

This approach is implemented in the CARLA simulator [25] for autonomous driving tasks.
The privileged agent outputs driving waypoints using a ResNet18 backbone, which are then
used to train a sensorimotor agent that operates under more realistic input conditions processed
through a ResNet34 backbone. Training is conducted using both Behavior Cloning (BC) and the
Data Aggregation (DAgger) [26] algorithm for comparison. BC is an offline imitation learning
method, where the student policy is trained on a fixed dataset of trajectories generated by an
expert policy. In contrast, DAgger is an on-policy method in which the expert is queried during
training, allowing the dataset to be iteratively expanded with states encountered by the student.
This two-stage process improves generalization and significantly reduces the sim-to-real gap.
The architecture is illustrated in Figure 2.2. [12]

command ¢ - = command ¢
spesd v projection speed v
, | W[H |~ - s |

- ~ NN | 3 .
e B H >
B H ol ool m

(a) Privileged agent (b) Sensorimotor agent

Figure 2.2: The agent architectures used by Chen et. al. (a) The privileged agent receives a complete
perspective of the environment from which a heatmap is produced that is passed through a soft-argmax
layer (SA), providing waypoints for all commands. The input commands selects one conditional branch.
The waypoints produced by this, is then passed on to a low-level controller that outputs the actions. (b)
The sensorimotor agent receives raw sensor inputs from a front-facing camera. It produces waypoints
centered in the camera frame. Waypoints are then selected based on the command, projected into the
vehicle frame and passed on to the low-level controller. Taken from [12].

The learning by Cheating paradigm provides a structured way to decouple task-level reasoning

from raw perception, which Mortensen et al. [11] also draws inspiration from. Their work

10 of 73

CHAPTER 2. PROBLEM ANALYSIS

adapts this two-stage approach to the RL domain, which is discussed in the following section.
Furthermore, vision-based input modalities align more closely with the sensor configurations
typically available in extraterrestrial missions. Consequently, RGB-D sensing is adopted in this
thesis to provide both visual and spatial information.

2.2.2 Teacher-student

While the previous approach follows a traditional imitation learning pipeline, the method pro-
posed by Mortensen et al. [11] introduces a two-stage RL framework that draws from the
Learning by Cheating paradigm by Chen et al. [12]. This framework is specifically designed
to enhance sim-to-real transferability in mapless navigation tasks, particularly within planetary
rover missions where policies must operate robustly under severe environmental uncertainty

and sensory noise.

The first stage focuses on learning an optimal policy for navigation in simulation using priv-
ileged, noise-free information. The teacher policy receives proprioceptive inputs, including
the Euclidean distance to the goal d(x,y) and the heading angle 6,,,. Additionally, the agent
is given access to two exteroceptive modalities: a dense local heightmap of and a sparse,
medium-range heightmap of. Each heightmap is processed by a dedicated Multi-Layer Per-
ceptron (MLP)-based encoder, denoted e; and e, each composed of two fully connected layers
with sizes [60,20] and LeakyReL U activations. These produce latent representations /¢ and I,
respectively. These latents are concatenated with the proprioceptive input and passed through a
policy MLP head defined as:

MLPyyjicy : [512,256, 128] Z20%LY,

Action Mean (2.13)
The policy is optimized using PPO, modeling a Gaussian distribution pig(a;|o;) to enable
stochastic exploration. The architecture of the teacher framework is illustrated in Figure 2.3. In
this stage, the teacher learns high-quality behavior by leveraging ideal, noise-free observations

from simulation.

11 0f 73

CHAPTER 2. PROBLEM ANALYSIS

l’ i’ y ™
Heightmap encoders MLP
' Splice | ' Concat
. Proprioceptive
Encoder 1

Laaky Leaky
RelU RelU

128

256

512

Figure 2.3: Illustration of the teacher framework. Taken from [11]

In the second stage, a student policy is trained to imitate the teacher’s behavior using obser-
vations corrupted by realistic noise. The student architecture is showcased in Figure 2.4. The
noise model includes perturbed data from proprioceptive and exteroceptive inputs using stochas-
tic noise. This introduces Gaussian noise with multiple levels of deviation, fixed sensor offsets
simulating drift, and occlusions implemented by masking out a subset of the heightmap data.

) e |
[Heightmap encoders MLP

Y

'~ splice

lM“ Belief encoder

Encoder 1
Encoder 0 [1
l..l I L -
Lol .
i A |
attention =
r > g-l 512
. J

_ J \ J

h 4
(o

Bt
=

. RNN xfa|s @

\

J

7
if
=

{

Figure 2.4: Illustration of the student framework. Taken from [11]

In order to alleviate this degradation in observations, the student network employs a belief en-
coder constructed around a Gated Recurring Unit (GRU) to form a temporal model. At each
timestep, the perturbed inputs and the previous hidden state 4, are processed as:

12 of 73

CHAPTER 2. PROBLEM ANALYSIS

X\, hy = GRU (0! ,I° 1% ;) (2.14)

To selectively modulate the influence of the latent GRU features, an attention gate AG is applied

to x;. This gate is computed as:

AG = 6(eq(x)) (2.15)

Where e, is a 4-layer MLP that modulates how much of the original latent features are passed
through. The belief state is computed by combining the GRU output with the gated latent fea-

tures:

x = ep(x) + [, ©AG (2.16)

Here, ¢, is another 4-layer MLP with increasing layer sizes [128,256,512,1024], and ® denotes
the element-wise Hadamard product. The final belief state x; is concatenated with the proprio-
ceptive input and passed through a final MLP head to produce deterministic action outputs:

o = MLPstudent (Xt, 0}0) (2-17)

The student policy is effectively trained in a supervised learning manner, minimizing the mean
squared error (MSE) (squared L2-norm) between its predicted actions and the ground truth ac-
tions generated by the teacher policy:

Estudent — Hatstudent . atteacher‘ |% (218)

This two-stage training paradigm effectively decouples the acquisition of optimal behavior from
the challenge of robustness to observation noise. The teacher is focused on exploiting perfect,
simulated information to learn an optimal strategy, while the student learns to denoise and
generalize from imperfect, noisy sensory inputs. The training process is conducted using the
NVIDIA Isaac Sim [27] platform for physically realistic, GPU-accelerated simulation of plan-
etary terrain, with support for high-fidelity heightmap rendering and terrain interaction. The
agent itself is implemented using the skrl [28] reinforcement learning framework, which inte-
grates with Isaac Gym [6]. The teacher policy is trained using on-policy optimization via PPO

[20], leveraging this parallelized infrastructure to accelerate convergence.

13 of 73

CHAPTER 2. PROBLEM ANALYSIS

As demonstrated in the paper, this architecture significantly improves sim-to-real transfer per-
formance by leveraging both domain randomization and temporal modeling. However, the
approach does not explore sensor decoupling, the concept of training the teacher and student
with different sensor modalities or observation types. Particularly in the context of surface
preparation and navigation on extraterrestrial bodies, this might improve deployment robust-
ness since sensor configurations and capabilities differ significantly between Earth and other
celestial bodies. Furthermore, in contrast to Chen et al., who apply the DAgger framework
for behavioral cloning, Mortensen et al. train their GRU-based student policy using supervised
learning. DAgger could potentially be used to improve the generalizability of agents trained
with this approach.

2.2.3 RLRoverLab - A framework

Building on this approach, RLRoverLab is an open-source reinforcement learning suite devel-
oped by Mortensen and Bggh [13], specifically designed for planetary rover simulation and
training. The suite provides an accessible, modular framework for developing, training, and
benchmarking RL algorithms. It is built on NVIDIA’s Isaac Lab framework, leveraging Isaac
Sim’s GPU-accelerated physics engine, and, at the time of writing, supports the skrl RL library
[28]. In addition, it includes pre-trained policies, terrain assets, and rover models to support

rapid experimentation and evaluation.

The suite provides a comprehensive set of features, making it a versatile platform for reinforce-
ment learning in planetary rover applications. It includes a range of terrain environments, such
as hilly and obstacle-laden landscapes, allowing for evaluation under increasing complexity
and partial observability. The framework comes with pre-integrated rover models, including a
high-fidelity AAU rover inspired by NASA’s Perseverance and the 3D-printable ExoMy rover,
compatible with multiple control schemes. These models are illustrated in Figure 2.5

14 of 73

CHAPTER 2. PROBLEM ANALYSIS

Figure 2.5: Depiction of the rover models currently available in RLRoverLab, from the left; Exomy
[29], AAU rover, simplified AAU rover.

To support diverse robotic platforms, the suite currently offers Ackermann steering. The princi-
ples of Ackermann can be seen in Figure 2.6. Furthermore, it includes pre-defined task environ-
ments for both navigation and grasping, implemented through the OpenAl Gym API [30] that
retains the comparability with the major RL frameworks. This collective functionality enables
support for a variety of RL solutions. Lastly, this suite also includes benchmarking tools and
pre-trained policies for standardized evaluation across algorithms, such as PPO [20], TRPO [21]
and TD3 [24], thus enhancing reproducibility and fair comparison between learning strategies.

15 of 73

CHAPTER 2. PROBLEM ANALYSIS

i \ : Centre of tuming circle

Figure 2.6: Illustration of the Ackermann steering principle. The key principle in Ackermann steering
is that the geometry of the steering linkage (typically forming a trapezoid), here denoted ABCD, ensures
that the front wheels follow concentric circular paths during a turn. This means each wheel is aligned
to be perpendicular to a shared turning center point I, reducing tire slip and improving maneuverability
[31]. Taken from [32]

This framework is supported by detailed documentation, including structured installation guides,
implementation details, benchmarking results and development instructions, all hosted on its
GitHub repository. Due to the suite’s highly configurable and easy-to-use foundation, RL-
RoverLab presents an ideal platform for experimental research in the sim-to-real transfer and
sensor decoupling strategies and is therefore also considered an ideal platform for development

in this project.

2.3 Related work

While the previously discussed approach contributes to improving sim-to-real transfer, a vari-
ety of alternative methods are also being actively explored. Nevertheless, the sim-to-real gap
remains a critical challenge, particularly for autonomous navigation in extraterrestrial environ-
ments. Transferring policies from simulation to real-world deployment exposes them to numer-
ous sources of error: environmental variability, sensor noise, and actuation inaccuracies often
lead to degraded performance. As a result, recent research has focused on developing learning
systems capable of generalizing across domains, enhancing navigation safety, and coping with
unstructured or dynamic terrains [10].

Several studies have explored RL for navigation in simulated lunar environments, where terrain
complexity and sensor uncertainty pose significant challenges. Yu et al. [33] propose an end-
to-end path planning framework for lunar rovers, employing PPO due to its sample efficiency
and implementation simplicity. The system architecture consists of a CNN encoding the data

from a depth image, a lidar 2D-pointcloud and proprioceptive and target data. Then deep neural

16 of 73

https://github.com/abmoRobotics/RLRoverLab

CHAPTER 2. PROBLEM ANALYSIS

networks (DNNs) is used to infer the non-linear approximation of value and policy functions
to effectively realize the path planning of the lunar rover, Figure 2.7 showcases the architecture

utilized in the implementation.

Deep image su Conv2d_1 Conv2d_2 Conv2d 3 < FC2
(4x80x80) 32|84 6442 64131 HCRI &
ReLU ReLU ReLU 256 RelU

ReLU
—— action_prob

merge FC_out

/ 5:(52) S 10
FC 4 " softmax
16 7 /
: ReLU :
LIDAR point °3:’2“|";°|';1 C&"I";Tf o
FC_3 . FC_
cloudlS 232180} ReLU ReLU p / 256
RelLU 1 % RelLU
) FC_5
Legend @ 512

Layer name
Filter size | kernel_size | Stride Length
Activation fuction

Rover/ target (e

state s;3(4)

Figure 2.7: Illustration of the DNN architecture used by Yu et al. [33]

Yu et al. employs a reward function explicitly shaped by terrain slip and predicted slippage.
It is trained on high-fidelity simulated lunar environments, and curriculum learning is used to
gradually increase the complexity of the environments to improve adaptability in the agent.
The purpose of this approach is to increase policy safety and generalizability across varying
terrain topographies. Focusing on a similar issue is the SAC-based learning-based end-to-end
navigation approach for planetary exploration rovers (LEN-PER) proposed by Feng et al. [34].
This approach uses a sequence of RGB and Depth images alongside proprioceptive, including
wheel-terrain interactions, where the former is passed through individual CNNs and the latter
is passed to an MLP encoder. All feature-terms are then concatenated into a feature vector then

passed to the policy optimization module, as illustrated in Figure 2.8.

17 of 73

CHAPTER 2. PROBLEM ANALYSIS

Perceptual Feature Extraction

------------------- -4 Loss }-t-- = Decoder <---y;----- -H Loss
] Policy Optimization
CNN
Encoder A
Environment Depth image sequence T ?(_ b -gL
i e/
Wheel-terrain interaction = MLP i ./ Critic 1
Rover locomotion state | Encoder _ I S
1]
Rover - / Actor :
CNN , : LR n
—» Altention ——» ¥ ——
~
g Encoder E fr < \ .
g Color image ' 5 N7 Actign a;
= P \ ! =
= [e ¥ Loss #---- pecoder '
-------- A

—

Figure 2.8: Illustration of the end-to-end navigation architecture used by Feng et al. The blue-
highlighted network extracts perceptual features from depth images, color images, and proprioceptive
states. The red module is the SAC-based policy that outputs control commands. Modules indicated by
dashed lines are used only during training. Taken from [34].

The system utilizes the wheel-terrain interaction prediction (WTIP) module to predict slip rates
on various terrains, to further enhance navigation capabilities and safety in extraterrestrial set-
tings. A Mars-analog site is used to verify the approach’s capabilities in handling the unstruc-
tured environments found on both the Lunar and Martian surfaces. The action space used for
this solution is, similarly to Yu et al. linear and angular velocities. Continuing the extraterres-
trial approach is a solution proposed by Park and Chung [35] focusing on a failure-safe motion
planning method for a four-wheeled, two-steering lunar rover. The framework proposed, acts on
cases such as actuator failure, ensuring continuous PointGoal navigation accuracy. The method
utilizes Deep Q-Network (DQN) for path planning and prediction of and compensation for lost
mobility. The system utilizes a discretized action space to reduce training time, allowing the
selection of forward, left and right. For the reward function, a high focus was attributed to
distance deviation from the path, angular deviation from the goal direction and the distance to
the goal. The experiments were conducted in a 2D simulation evaluated in a flat test-bed.

An approach not specifically designed for extraterrestrial missions is a unknown rough terrain
point-goal navigation strategy proposed by Zhang [36] aimed at urban search and rescue mis-
sions. This approach uses Depth data, estimated robot positions in an elevation map as inputs
into a A3C-based pipeline. The pipeline uses a custom NN framework. Depth images and ele-
vation maps (from ROS2 Octomap) are processed through identical convolutional and pooling
layers. The elevation map output is combined element-wise with 3D orientation data, which
is first passed through a fully connected layer and reshaped. The resulting feature map goes
through an additional convolutional layer. All feature vectors are then concatenated and passed

to an LSTM, followed by policy optimization. The reward function focuses on navigational suc-

18 of 73

CHAPTER 2. PROBLEM ANALYSIS

Original Original Flipped

a 1 turn_left turn_left turn_right turn_right turn_left
pose AX, AY, AZ, Ag) (AX, AY, AZ, Af) (-AX, AY, AZ, -Af) -AX, -AY, -AZ, -A) (AX, -AY, -AZ, A8
Input Augmentations Output

Figure 2.9: Illustration of the applied augmentation for each RGB-D input. Each input is both flipped
and swapped to increase generalizability in environments where mapping is infeasible. Taken from [37]

cess and failure- and collision avoidance and time-limitation. A discrete action space was used
during training, limited to forward/backward movement and left/right turns. The terrain-based

approach randomizes the terrain, thus enhancing the generalization to varied terrains.

Beyond the more classical map-based strategies, Partsey et al. [37] explores whether mapping
is necessary for point-goal navigation. In this context, Partsey et al. presents a drop-in approach
where the agent is first trained with privileged localization ground truth from a GPS and com-
pass sensor array. During evaluation, GPS and compass data are replaced with noisy RGB-D
input, using only the depth channel for ego-motion estimation. The approach employs a nav-
igation policy alongside a visual odometry (VO) module. The policy is implemented using a
two-layer LSTM and a half-width ResNet50 encoder within a Decentralized Distributed PPO
(DD-PPO) framework. The reward function encourages progress and successful goal comple-
tion. The discrete action space includes four actions: move forward 0.25m, stop, turn left,
and turn right. To improve generalization during training, observation inputs are augmented by

flipping and swapping the input images as illustrated in Figure 2.9.

Although not RL-based, Egan and Goktogan [38] propose a terrain classification system de-
signed specifically for Mars-like environments. Their approach uses a CNN trained on RGB
imagery from the Mars Analog MAAS Lab to perform semantic segmentation of traversable
terrain classes. This output is fused with geometric obstacle data to generate traversability
maps for rover path planning. The model is trained and validated on both synthetic and real
Mars imagery, with a focus on on-board inference and computational efficiency, supporting

autonomous decision-making without ground intervention.

19 of 73

CHAPTER 2. PROBLEM ANALYSIS

Table 2.1: Overview of RL studies in robot navigation

Paper RL algo. Actions Observations Rewards Citation

Zhang A3C Discrete RGB-D, elevation Goal success, col- [36]
movement map, IMU lision and slippage
commands penalties

Park and DQN Discrete steer- Local states, prox- Mobility mainte- [35]

Chung ing and drive imity sensing nance, slippage
commands avoidance, target

reaching

Yu et al. PPO Continuous ve- RGB, Lidar Progress reward, [33]
locity and an- collision and slip-
gular control page penalties

Fengetal. SAC Continuous ve- RGB-D, wheel- Slippage reduction, [34]
locity and an- terrain interaction, hazard avoidance,
gular control vehicle pose goal reaching

Partsey et DD-PPO Discrete RGB-D, visual Goal success, effi- [37]

al. movement odometry cient travel distance
commands

Egan and - - RGB images, depth Traversability cost [38]

Goktogan maps minimization

Across the reviewed literature, PPO or similar analogs are the most commonly adopted RL
algorithm, primarily due to their balance between sample efficiency and training stability. Ob-
servation spaces are typically constructed around RGB-D inputs and elevation data, while ac-
tion spaces tend to remain discrete to ensure robustness and interpretability. Reward functions
are consistently shaped to promote goal completion and penalize collisions or unstable terrain
traversal, reflecting a clear emphasis on safety and sim-to-real transferability. DRL is employed
throughout, enabling the processing of high-dimensional inputs such as RGB and depth im-
ages through integrated neural network architectures. Accordingly, the design and integration

of such networks must be examined more closely.

2.3.1 Neural networks for planetary navigation

Hu et al. [39] present a system for cluttered rough terrain navigation using elevation maps gener-
ated from fused RGB-D, IMU, and 3D LiDAR data. The elevation maps are processed through
a convolutional encoder consisting of four convolutional layers with max-pooling. Orientation
data is passed through a fully connected layer and merged with the elevation feature map, which
is subsequently processed by a final convolutional layer. The resulting feature representation

20 of 73

CHAPTER 2. PROBLEM ANALYSIS

is passed through an LSTM layer, followed by two fully connected layers that produce the
navigation action and state-value estimate, as illustrated in Figure 2.10. This type of shallow
network architecture ensures a lower computational cost, improving viability in real-time use

on resource constrained platforms.

Inputs

T T 1 CONY F= 44, | Navigation

LSRR | iy FCL |-»(paax |-p| o

$=1,P=0 Action
L — 1

¥ X
CONV F=7x7, . CONV F=6x, CONV F=sis, | | CONV F=dud,
5=1,P=0 5=1,P=0 s=1p=0 [s=1p=0 e — —| FL
¥ man paaling
v v v v _.

Elevat | LSTM " State-value
Elevaticn Map | ; State-value
00x200x1 n2 22 2 = =2 Recurrent —"® Estimate

max pooling max pooling max poaling max pooling Layer

Figure 2.10: Illustration of the NN architecture used by Hu et al. Taken from [39]

Expanding on lightweight encoders, Zhang [36] proposes a system for point-goal navigation
in rough 3D terrain that integrates depth images, elevation maps, and 3D orientation as input
modalities. Elevation and depth inputs are processed independently through separate convolu-
tional encoders, each consisting of four convolutional and four pooling layers. The elevation
map features are fused element-wise with orientation features, which are first passed through a
fully connected layer and reshaped. The resulting feature map is further processed by a shared
convolutional layer before being merged with the depth image features. The combined repre-
sentation is passed through an LSTM recurrent layer to capture temporal context, followed by
fully connected actor and critic heads for policy learning. Despite the multi-branch design, the
network remains relatively shallow, making it computationally efficient and suitable for onboard
real-time deployment in resource-constrained field robots.

Yu et al. [33] present a multi-modal policy architecture designed for autonomous rover nav-
igation, incorporating depth images, LiDAR point clouds, and rover/target state inputs. The
network follows a three-branch design: depth images are processed via a 2D CNN with three
convolutional layers and two fully connected layers, LiDAR point cloud data is passed through
a CNN followed by two fully connected layers, and rover state vectors are fed directly into
a fully connected layer. The resulting feature vectors from all branches are concatenated and
processed through three additional fully connected layers to produce a distribution over actions
using a softmax output. Feng et al. [34] similarly propose a sensor fusion architecture for safe
rover navigation in deformable and uncertain terrain. The system processes depth image se-
quences and RGB frames through separate CNN encoders, each followed by attention modules.
The depth stream incorporates a temporal dimension and passes features through an LSTM to
capture short-term motion cues. In parallel, wheel-terrain interaction data and rover locomotion
states are encoded using an MLP. All feature amps are concatenated and passed to the SAC

policy optimization module. Furthermore, features are passed on to the WTIP to estimate slip.

In a more vision-centric system, Tang et al. [40] present Geo-Nav, combining monocular

21 of 73

CHAPTER 2. PROBLEM ANALYSIS

RGB input with self-supervised depth predictions. A ResNetl8 backbone, pre-trained on Im-
ageNet, encodes RGB features, while a secondary encoder processes depth maps. These are
fused through a custom Cross-Modality Pyramid Fusion (CPF) module. This architecture im-
proves navigation in texture-poor or visually ambiguous scenarios, and real-time performance
is demonstrated in simulation. While not RL-based, the system offers insights into fusion strate-
gies applicable to DRL pipelines handling RGB-D data. Finally, Egan and Goktogan [38] pro-
pose a compact CNN for terrain classification trained on RGB imagery from the Mars Analog
MAAS Lab. The output is combined with geometric obstacle detection to form traversability
maps. The architecture is optimized for real-time operation on rover-class hardware, and al-
though not RL-based, it addresses planetary navigation from a perception and autonomy stand-
point, offering relevant insight into low-complexity, mission-suitable architectures. The main

architectural characteristics of the reviewed systems are summarized in Table 2.2.

Table 2.2: Summary of NN architectures employed for navigation and visual processing.

Authors NN Type Custom or Pre- Size/Notes Citation
Existing trained
Hu et al. CNN + Custom No Lightweight encoder [39]
LSTM with four CNN + one
FC + LSTM layers
Zhang Dual CNN + Custom No Independent eleva- [36]
LSTM + FC tion/depth branches;

shallow design for

real-time use
Yu et al. CNN + MLP Custom No Three-branch structure: [33]
depth, LiDAR, and

rover state input

Fengetal. nCNN + MLP Custom No Multi-stream encoder [34]
+ LSTM + with temporal depth
Attention stream; attention and

slip estimation

Tang etal. ResNetl8 + Existing + Yes ResNet18 backbone + [40]
Fusion Custom custom cross-modality
fusion; RGB-D pro-
cessing
Egan and

Continued on next page

22 of 73

CHAPTER 2. PROBLEM ANALYSIS

Authors NN Type Custom or Pre- Size/Notes Citation
Existing trained
Goktogan CNN Custom No Compact CNN for [38]

RGB terrain classifi-
cation; optimized for

rover hardware

Across these approaches, the design of neural network architectures is closely aligned with
the structure and complexity of the input modalities. Lightweight CNNs are often favored
for RGB-D processing in resource-constrained settings, while dual-branch and fusion-based
designs support multi-modal integration where required. These architectural choices reflect
the practical challenges of processing high-dimensional data within RL pipelines intended for

real-world or planetary deployment.

2.3.2 Summary

This section has reviewed relevant RL approaches and architectural strategies for autonomous
navigation in rough and planetary terrain. Among the studies surveyed, PPO appears as the
most widely adopted RL algorithm, selected in the majority of cases for its practical balance
between implementation simplicity, sample efficiency, and stable convergence. Based on this,
PPO is a viable option for implementation of this solution. From an architectural standpoint,
convolutional encoders are the most common method for processing high-dimensional visual
inputs, particularly RGB and depth inputs. Several systems utilize ResNet-based backbones
to encode RGB-D or RGB-derived observations, either trained from scratch or initialized from
pre-trained weights. Although these models vary in depth, ResNet18 appears frequently due to
its balance between feature extraction capacity and computational efficiency. In this thesis, a
pre-trained ResNet18 encoder is adopted to reduce training time, benefit from general-purpose
visual features, and align with methods that demonstrated strong performance in simulation-
based navigation tasks. Together PPO and ResNetl18 form a stable foundation for processing
RGB-D input in a RL framework.

23 of 73

Problem Formulation

Based on the preliminary research on relevant literature and the established challenges related
to the issue, objectives can be established for the final proposed solution. Due to the inherent
ambiguity of the problem in this thesis, instead of requirements, objectives are formed for the
proposed solution. Thus, this chapter presents the final problem statement and the derived

objectives based on the insights gained through the previous research.

Final problem statement
Building on the analysis of the theoretical foundation and implementation of the teacher-student
framework, as well as insights from alternative approaches aimed at mitigating the sim-to-real

gap, the following problem statement is formulated:

“"How does employing heightmap observations for the teacher policy and RGB-D
input for the student policy within a DAgger-based teacher-student framework influ-
ence learning efficiency, simulated performance, and sim-to-real transferability in

reinforcement learning for mobile robot navigation?”

3.1 Project Objectives

Based on the research question and prior work, the following objectives are defined. Each is
further divided into sub-objectives to provide a clearer structure for development and evaluation.

The models introduced are based on available hardware platforms at Aalborg University.
1. Integrate existing mobile robots into the RLRoverLab framework.

l.a Integrate the RobuROC4, Summit XL, and Leo Rover as new assets.

1.b Calibrate each asset’s physical properties, including kinematic constraints.

l.c Implement a Skidsteering controller for the new assets.

1.d Validate asset integrity to ensure realistic behaviors in simulation.

2. Train one or more new assets with the existing heightmap approach using PPO.

2.a Further validate the integrity of the models by training with the existing heightmap
approach in RLRoverLab.

2.b Verify and benchmark performance metrics to ensure effective navigation in existing

environments within the RLRoverLab simulation.
3. Implement and integrate RGB-D observations in existing RLRoverLab architecture.

24 of 73

CHAPTER 3. PROBLEM FORMULATION

3.a Extend the RLRoverLab simulation environment by integrating RGB camera-based

observations into the RL training pipeline.
3.b Utilize the choosen ResNetl8 model to process images semantically for obstacle
avoidance and terrain type recognition.
4. Train and test one or more agents based on new RGB-D sensor observations.
4.a Train one or more RL agents using the RGB-D adapted framework.

4.b Train one or more RL agents using noisy RGB-D inputs based on the adapted frame-

work for comparisson.

4.c Evaluate agents through the simulated scenarios, comparing their performance on

tasks, including obstacle avoidance and terrain navigation.

5. Train one or more agents with an adapted teacher-student framework.

5.a Extend the RLRoverLab simulation environment to support DAgger-based teacher-
student training, based on the learning by cheating method proposed by Chen et al.
[12]

5.b Train one or more agents using the heightmap-trained agents as a teacher and the

student having noisy RGB-D sensor inputs.

5.c Evaluate the trained agents in different tasks, such as obstacle avoidance and pointgoal
navigation, and compare with agents trained solely on RGB-D inputs and heightmap

inputs.
6. Evaluate the robustness and real-world transferability of RL agents trained using the
teacher-student approach.

6.a Evaluate the performance of trained policy or policies through deployment on their

corresponding physical rover platform(s).

6.b Test the navigation and obstacle avoidance capabilities of the policy in a set environ-

ment without prior knowledge.

6.c Based on this experiment, propose adjustments to improve the performance of simulation-

trained RL agents to practical lunar missions.

25 0of 73

Implementation

Building upon the objectives and system design outlined in the previous chapters, this chapter
presents the practical implementations in the RL framework RLRoverLab. The implementation
presented in this Chapter mainly builds on top of the existing RLRoverLab suite. The focus
points covered here is the modeling and integration of new models including development of
a new control scheme and tuning of parameters, implementation of the RGB-D input modality
into the framework and development of teacher-student framework with sensor modality sepa-
ration. The following sections cover these focus points sequentially. The final implementation
can be found at: https://github.com/Blueguardian/RLRoverLab_fork.

4.1 Model implementation

Although RLRoverLab provides a few preconfigured robotic models, these represent only a
limited subset of potential agents. For the purpose of this thesis and in regards to Objective 1a,
four additional robotic models were integrated into the framework. These include two commer-
cially available platforms; The Leo Rover by Fictionlab and the RB-Summit by Robotnik. In
addition the RobuROC4 by Robosoft, which is no longer in production is included in both a

full-featured and a simplified representation, the latter being derived from a prior project [41].

The newer models were obtained in Universal Robot Description Format (URDF) from their
respective Github repositories (Leo rover and RB-Summit) and imported into Isaac Sim using
the built-in URDF importer. This tool converts URDF files into Universal Scene Description
(USD) assets, which are compatible with the RLRoverLab pipeline. For the RobuROC4, no
public URDF is available, thus a new model was created, supplemented by the simplified ver-

sion. All four models are shown in Figure 4.1.

26 of 73

https://github.com/Blueguardian/RLRoverLab_fork
https://www.leorover.tech/the-rover#more
https://robotnik.eu/products/mobile-robots/rb-summit/#tab-1719493667-2-712efd2-e506
https://github.com/LeoRover/leo_common
https://github.com/RobotnikAutomation/summit_xl_common

CHAPTER 4. IMPLEMENTATION

Figure 4.1: Depiction of the used models. From the left; Leo rover, RB Summit XL, RobuROC4
simplified, RobuROC4.

Before import, all URDF files are modified to remove unsupported or unnecessary elements,
such as gazebo-specific tags or redundant collision definitions. The URDF import utility in Isaac
Sim, depicted in Figure 4.2 is further used in choosing a drive type and configuration along with
other parameters. For all models, the following import settings are applied: moveable base is
enabled, the joint configurations are set to use natural frequency, drive types are defined as

force drives and all joints are configured for velocity control.

27 of 73

CHAPTER 4. IMPLEMENTATION

- summit_x|.urdf

~ Options

(0 Createin Stage (8 Referenced Model

USD Output

() Moveable Base (® Static Base

Default Density 00

B 'gnere Mimic

() stiffness (@ Natural Frequency

() Acceleration (8 Force

Name

1 FL_Driv

B Collision From Visuals
{ijl Convex Hull i:jl Convex Decompaosition
-Collision

ylinders with Capsules

pported Files (*.fbx, *.obj, ...)

Figure 4.2: Depiction of the URDF import user interface.

Since the new models differ kinematically from those already present in RLRoverLab, being
four-wheel skid-steered platforms, a new control scheme is required. The following section

introduces the skid-steering control structure developed for this purpose.

4.1.1 Controlling the new models

To support the control of these models within RLRoverLab as required by Objective lc, a new
ActionTerm is implemented. It builds upon the joint and drive detection logic from the existing
Ackermann Steering ActionTerm, but introduces new parameters and control, specific to skid-

steering

In real-world applications, the motion of skid-steered robots depends heavily on terrain friction.

28 of 73

CHAPTER 4. IMPLEMENTATION

Since Isaac Sim does not expose floor or terrain friction coefficients directly to the agent, and
learning them through training is effectively more robust, the control is simplified to a differ-
ential drive form. This approach uses linear and angular velocity commands from the policy to
compute individual wheel velocity as follows:

b
)
V—Z’ wR:L (4.1)
r

RSN
e

where:
* @ and g are the angular velocities of the left and right wheels, respectively.
* vis the input linear velocity of the robot’s center.
* o is the input angular velocity.
* b is the track width, i.e. the distance between the left and right wheels.
* ris the radius of the wheels.

The corresponding Python implementation used in RLRoverLab is shown in Snippet 4.1.1

def skid_steer_simple(vx, omega, cfg, device):
track_width = cfg.track_width
wheel_r = cfg.wheel_radius
vel_left = (vx - omega * track_width / 2) / wheel_r
vel_right = (vx + omega * track_width / 2) / wheel_r
wheel_vel = torch.stack([vel_left, vel_left, vel_right, vel_right], dim=1)

return wheel_vel

Snippet 4.1.1: Snippet of the Skidsteering control

The SkidSteering controller requires the wheel radius and track width, all of which are speci-
fied per model, including the existing; scale and offset that are applied to each action. These
parameters are presented in the following section.

4.1.2 Implementation in RLRoverlab

The original implementation of RLRoverLab requires manual configuration and Gymnasium
registration for new assets. To streamline this process and promote a more modular and central-

ized architecture, an automated integration system is introduced.

This system uses Python’s type metaclass in conjunction with a set of YAML configura-
tion files, robot_default, sensors_default, terrain default and training default. A

python script reads and parses these files and extracts parameters for each asset. these are then

29 of 73

CHAPTER 4. IMPLEMENTATION

used to define a ArticulationCfg object, which holds the USD path and other model-specific

settings described in more detail in subsection 4.1.3.

The configuration data is compiled into a dictionary and passed to the metaclass type to dy-

namically generate parts of environment classes. A fragment of this implementation is shown

in Snippet 4.1.2

def

_generate_cfgs(self):

robot_cfg = self._load_yaml(folder / "configs" / "robot_default.yaml")
training_cfg = self._load_yaml(folder / "configs" / "training_default.yaml")
Generate or fetch class mname

class_name = self._class_name(folder, robot_cfg)

{

: f"Configuration for {folder.name} rover environement.",

attributes

n

_doc__"

"__post_init__": post_init_gen(robot_cfg,

- self._articulation_cfg(robot_cfg), self._action_cfg(robot_cfg))

}
cls = type(class_name, (self.parent_class, self.__class__), attributes)
cls = configclass(cls)

env_cfgs[class_name] = cls

return env_cfgs

Snippet 4.1.2: Part of the implementation of the configuration generator for assets in RLRoverLab

To register the generated environments with Gymnasium, a custom registar class is used. It

maps each environment class to a Gymnasium ID based on folder names or task names defined

in the configuration. This functionality is illustrated in Snippet 4.1.3.

300f 73

CHAPTER 4. IMPLEMENTATION

class GymEnvRegistrar:

def register_envs(self):
env_id = f"{env_folder.name}-v0" if not "task_name" in learning_config

— else learning_config.get("task_name")+"-vO"

gym.register(
id=env_id,
entry_point='rover_envs.envs.navigation.entrypoints:RoverEnv',
disable_env_checker=True,
kwargs={
"env_cfg_entry_point": env_config_class,
"best_model_path": Path(env_folder,
<~ "policies/best_agent.pt") .absolute().as_posix(),
"get_agent_fn'": get_agent,
"skrl_cfgs": skrl_configs,

1,

Snippet 4.1.3: Part of the implementation of the gymnasium reigstration class, which registers each new
configuration into gymnasium.

To reduce the risk of missing configuration files when adding new models, a directory watchdog
monitors the asset directory. When a new folder is added, it automatically copies in the required
configuration files, if they are not already present. The method utilized in this functionality is
showcased in Snippet 4.1.4

310f73

CHAPTER 4. IMPLEMENTATION

def on_created(self, event):
if not event.is_directory:

return

config_path = Path(event.src_path) / "configs"
if not config_path.exists():
try:
shutil.copytree(self._CONFIGS_DIR, config_path, dirs_exist_ok=True)
os.chown(config_path, self._CONFIG_DIR_STAT.st_uid,
— self._CONFIG_DIR_STAT.st_gid)
for file in config_path.rglob("*"):
os.chown(file, self._CONFIG_FILES_STAT.st_uid,
. self._CONFIG_FILES_STAT.st_gid)

except Exception as e:

self.paths_dirs.append(event.src_path)

Snippet 4.1.4: Part of the implementation of the directory watchdog that ensures default configuration
files are copied when a new asset is added.

From here, each model can then be tuned with the parameters found through testing directly in

Isaac Sim. These are presented in the following section.

4.1.3 Model parameter tuning

To ensure appropriate physical behavior during simulation and to accomplish Objective 1b, the
drive parameters of each model are tuned manually in the Isaac Sim user interface. Param-
eters such as velocity limits, effort limits, damping, and stiffness are iteratively and empiri-
cally adjusted until satisfactory performance is observed. The desired performance includes
the capability to execute turn-in-place while maintaining robust traversal across sloped terrain.
Additionally, motion dynamics should be smooth and adequately damped to minimize body os-
cillations and prevent instability or toppling. Once validated, these values are inserted directly
into the configuration files used by RLRoverLab for each model. These values are presented

below for each model, alongside the SkidSteering control parameter values.

Table 4.1: Leo Rover — Drive and Control Param- Table 4.2: RB Summit XL — Drive and Control

eters Parameters
Drive Parameters Control Parameters Drive Parameters Control Parameters
Effort limit 20 Scale [3.0, 3.0] Effort limit 100 Scale [3.0, 4.0]
Velocity limit 10 Offset [0.01, 0.0] Velocity limit 12 Offset [0.01, 0.0]
Damping 9000.0 | Track width 0.359 m Damping 9000.0 | Track width ~ 0.470 m
Stiffness 5.0 Wheel radius 0.065 m Stiffness 15.0 Wheel radius 0.1175 m

32 0f 73

CHAPTER 4. IMPLEMENTATION

Table 4.3: RobuROC4 — Drive and Control Pa-
rameters

Table 4.4: RobuROC4 (Simplified) — Drive and
Control Parameters

Drive Parameters Control Parameters Drive Parameters ‘ Control Parameters
Effort limit 800 Scale [0.6, 1.0] Effort limit 800 Scale [0.6, 0.9]
Velocity limit 6 Offset [0.01, 0.01] Velocity limit 10 Offset [0.01, 0.0]

Damping 7000.0 | Track width ~ 0.690 m
Stiffness 5.0 Wheel radius 0.280 m

Damping 6500.0 | Track width ~ 0.690 m
Stiffness 5.0 Wheel radius 0.280 m

The testing and evaluation of the implemented models in their current form are presented in
section 5.2. In alignment with the focus of this thesis and the objectives outlined in section 3.1,
RGB-D functionality with ResNet18-based feature extraction is required. The following section

presents the implementation of this functionality within the RLRoverLab framework.

4.2 Introducing RGB-D as sensor input

To support RGB-D input for the newly added assets in accordance with Objectives 3a and 3b, a
simulated RGB-D camera model is integrated into the agent’s sensor configuration. In parallel,
a new policy model, incorporating a ResNetl8-based encoder, is implemented as part of the
existing policy collection to handle the high-dimensional visual input. The following sections

detail the implementation and configuration of both components.

4.2.1 Camera integration

The camera model used during training and simulation is implemented as an instance of Isaac
Lab’s Tiled_Camera, which is optimized for manager-based environments such as the one used
in RLRoverLab [42]. To reflect realistic deployment, the camera is front-mounted with a wide
field of view, ensuring obstacle visibility during navigation. Its configuration is shown in Snip-
pet4.2.1.

33 0f 73

CHAPTER 4. IMPLEMENTATION

tiled_camera: TiledCameraCfg = TiledCameraCfg(
prim_path="{ENV_REGEX_NS}/.*/Main_Body/Cameral",
depth_clipping_behavior='max',
data_types=["rgb", "depth"],
width=100, height=100,
spawn=sim_utils.PinholeCameraCfg(
focal_length=18.00, focus_distance=400.0,
horizontal_aperture=32.000, clipping_range=(0.1, 10.0)
),
offset=TiledCameraCfg.0ffsetCfg(
pos=(0.55, 0.0, 0.6),
rot=(0.5, 0.5, -0.5, -0.5),

convention="parent"

Snippet 4.2.1: Implementation of the camera model in the RoverSceneCfg

The camera parameters are selected with consideration to both memory usage and visual infor-
mation, based on empirical testing for multi-agent training scalability. While the Tiled_Camera
supports a range of rendering outputs, including direct image segmentation, only the rgb and
depth modalities are used, for realism. An example of the output from the raw camera data can
be seen in Figures 4.3 and 4.4.

Figure 4.3: An example of the raw RGB output of Figure 4.4: An example of the raw depth output of
the camera model the camera model

As seen, these outputs retain sufficient information for spatial awareness, despite the lower res-
olution. However, because simulation-based sensors are deterministic and lack measurement
noise by default, a set of sensor noise models is integrated: a Gaussian noise model for RGB
data and a Redwood-inspired noise model for depth, to simulate noise as seen in real-world

34 of 73

CHAPTER 4. IMPLEMENTATION

sensors. While Isaac Lab provides a Gaussian noise model, it is aimed for normalized images,
thus a separate class is implemented to account for RGB uint8 format, with the same base func-
tionality. For depth a a separate model is implemented to simulate depth sensor noise, inspired
by the characteristics of the Redwood dataset, the introduced model is defined as follows. Let d
denote the noisy depth value, d’ the jittered depth, n ~ A/ (0, 1) a standard normal variable, and

s, o, and m denote the scale factor, exponential rate, and noise multiplier, respectively. Then:

ci:d’+m-s-(e“d’—1)-n 4.2)

Jittering refers to the spatial perturbation of the sampling location in the image. Rather than
using the original pixel at (x,y), a nearby pixel within a +2 window is randomly selected to
simulate spatial uncertainty. The neighboring pixel coordinates are clamped to the image size
to account for edge-cases. Jittering is introduced to simulate calibration errors, depth discon-
tinuities and temporal aliasing. The parameters for both the Gaussian and Redwood-inspired
models are defined in Tables 4.5 and 4.6 respectively.

Table 4.5: Gaussian Noise Model Parameters Table 4.6: Redwood-Inspired Noise Model Pa-

(RGB) rameters (Depth)
Parameter Value Parameter Value
Mean 5.0 Scale 0.1
Standard deviation 10.0 Exponent 0.3
Operation add Max depth 10.0 m

Noise multiplier 1.0
Operation add

The mean and standard deviation parameters for the Gaussian noise model are chosen to also
simulate mild oversaturation effects due to lighting conditions. The parameters used in depth
noise modeling are chosen to simulate a similar curve as observed by Teichman et al. [43]
for depth dependant noise. The resulting curve from the depth noise parameters yields a depth

noise standard deviation curve as seen in Figure 4.5

350f 73

CHAPTER 4. IMPLEMENTATION

Redwood-Style Exponential Depth Noise

2.00

—— MNoise Std Dev

1754

1.50 A

1.25 A

1.00 +

0.75

Standard Deviation

0.50

0.25 4

0.00

T T T T T
2 4 6 8 10
Depth (m)

Figure 4.5: Exponential noise standard deviation curve resulting from the parameters used in the depth
model, a sample is randomly picked from this and added to the rendered depth from the camera model.

The resulting images after applying this noise, analog to those seen as raw outputs of the RGB
and depth, can be seen in Figures 4.6 and 4.7.

Figure 4.6: An example of the noisy RGB output Figure 4.7: An example of the noisy depth output
of the camera model as a result of added noise of the camera model as a result of added noise

To handle the outputs of the camera, an observation processing function is implemented for both
depth and RGB modalities. This function retrieves and preprocesses the rendered data during
simulation. Both inputs are converted to channel-first (BCHW) format to ensure compatibility
with neural network processing, and RGB data is converted to a tensor if initially provided as a
NumPy array. The implementation can be seen in Snippet 4.2.2.

36 of 73

CHAPTER 4. IMPLEMENTATION

def image(env, sensor_cfg, data_type):
sensor = env.scene.sensors.get(sensor_cfg.name)
output = sensor.data.output.get(data_type)
if data_type == "rgb":
try:
if not isinstance(output, torch.Tensor):
output = torch.from_numpy(output)
output = output.to(torch.float32)
output = output.permute(0, 3, 1, 2) # BCHW
return output
except Exception as e:
print (£" [ERROR RGB] Failed to process RGB output: {e}")
return torch.zeros((1, 3, 100, 100), dtype=torch.float32,
< device=env.device)
elif data_type == "depth":
try:
depth = sensor.data.output["depth"]
depth = depth.permute(0, 3, 1, 2)
return depth
except Exception as e:
print (f" [ERROR] Failed to handle depth output: {e}")
return torch.zeros((1, 1, 100, 100), dtype=torch.float32,
< device=env.device)
else:
print (£" [ERROR] Unknown data_type: {data_typel}")
return torch.zeros((1, 3, 100, 100), dtype=torch.float32, device=env.device)

Snippet 4.2.2: Implementation of the observation term function to retrieve data from the camera.

The data is subsequently passed through the observation manager to the policy model. To
interpret this high-dimensional visual input, a policy model is implemented using the required
ResNet18 network in an encoder for the RGB modality.

4.2.2 ResNet18 Policy Model

To ensure architectural parity with the approach used by Mortensen et al. [11], a comparable
policy model is implemented within the existing framework. While the original model from
Mortensen et al. is based on a bimodal input structure with two separate heightmaps providing
spase and dense spatial data, the implementation in RLRoverLab instead uses a single encoder
processing a single dense heightmap. This serves as the baseline implementation, shown in
Figure 4.8.

37 of 73

CHAPTER 4. IMPLEMENTATION

Input processing MLP head
Splice Concat

Linear
vel

. Angular
vel

. |
128

160

Leaky ReLU
Leaky ReLU
Leaky ReLU

gncodet

peigima® 256

Figure 4.8: An illustration of the heightmap-based policy model. The observation input is divided into
proprioceptive data and a heightmap image. The heightmap is processed using a VGG-style encoder
consisting of convolutional and fully connected layers. The resulting feature vector is concatenated with
the proprioceptive input and passed through an MLP head, which outputs linear and angular velocity
commands.

For RGB-D input, a similar architecture is employed but extended to include two encoders;
one for RGB input, using ResNet18 with pre-trained ImageNet-V1 weights, and utilizing the

existing heigtmap encoder for depth. The architecture is illustrated in Figure 4.9.

38 of 73

CHAPTER 4. IMPLEMENTATION

Input processing MLP head
Splice Concat

Leaky RelLU
Leaky RelLU
Leaky RelLU

Linear
vel

. Angular
vel

128

160

Figure 4.9: An illustration of the RGB-D-based policy model. The observation input is divided into
proprioceptive data, a depth image, and an RGB image. The depth input is processed using the same
encoder as the heightmap, while the RGB input is processed using a ResNet18 encoder followed by
similarly structured dense layers. The resulting feature vectors are concatenated with the proprioceptive
input and passed through an MLP head, which outputs linear and angular velocity commands.

As illustrated, the policy model integrates both RGB and depth encoders, with the resulting
feature vectors concatenated alongside proprioceptive input and passed through an MLP head.
The MLP structure is retained from the original heightmap-based policy model to maintain ar-
chitectural comparability. For the encoders, the heightmap encoder is reused for depth encoding
due to the similarity in spatial input, while the RGB encoder utilizes a ResNet18 model from
the Pytorch library [44]. The ResNetl18 model uses pre-trained weights from ImageNet-V1,
eleminating the need for initial perception training. Furthermore, the model is frozen to sim-
plify training. The neural network used in depth encoding employs a leaky Rectified Linear
Unit (leaky-ReLU) as activation function as in the original implementation. Similarly the RGB
encoder utilizes leaky-ReLLU for activation in the fully connected layers. The implementation
of this RGB encoder can be seen in Snippet 4.2.3.

39 0of 73

CHAPTER 4. IMPLEMENTATION

class ResnetEncoder (nn.Module) :
def __init__(self, in_channels, encoder_features=[80, 60],
< encoder_activation="leaky_relu"):
super () . __init__Q)
weights = ResNet18_Weights.DEFAULT
self .resnet = resnetl18(weights=weights, progress=True).eval()
self .transform = weights.transforms(antialias=True)
self.flatten = nn.Flatten()
for param in self.resnet.parameters():
param.requires_grad = False
self.output_encoder = nn.ModuleList ()
in_features = 1000
for feature in encoder_features:
self.output_encoder.append(nn.Linear(in_features, feature))
self.output_encoder.append(get_activation(encoder_activation))
in_features = feature
self.out_features = encoder_features[-1]
def forward(self, x):
x_transformed = torch.stack([self.transform(x[i]) for i in
- range(x.shape[0])], dim=0)
with torch.no_grad():
x = self.resnet(x_transformed)
x = self.flatten(x)
for layer in self.output_encoder:
x = layer(x)

return X

Snippet 4.2.3: Implementation of the RGB encoder for the policy model.

To accommodate the multiple modalities introduced by the RGB-D input, the observation space
of the environment is restructured from a flattened format to a dictionary-based format using
Gymnasium’s Dict space. This change allows the policy model to access and process RGB,
depth, and proprioceptive data independently, without requiring manual slicing of observation
tensors. Each modality is retrieved using distinct observation terms defined in the observation
manager, enabling improved clarity in data handling. With the RGB-D observation pipeline
fully integrated into the simulation framework, the next step involves leveraging this setup
within an imitation learning paradigm. An imitation framework, based on the approach used by
Chen et al. [12], is implemented to enable student policies using RGB-D input to learn from

expert demonstrations derived from heightmap-based policies.

40 of 73

CHAPTER 4. IMPLEMENTATION

4.3 Teacher-student framework implementation

In accordance with Objective 5, the simulation pipeline is extended to support a teacher-student
training paradigm. This setup is inspired by the framework proposed by Chen et al. [12], in
which a privileged agent with access to ground-truth information trains a vision-based agent
through imitation. This pipeline is implemented as a separate package which intertwines with
the original implementation through the train. py script. The approach used in this implemen-
tation decomposes the learning process into two stages: first, training an expert agent, in this
case on heightmap observations, and secondly, using this expert to supervise a student agent
trained on high-dimensional, noisy RGB-D input, by labeling the student’s observations with
corrective actions. A general conceptual illustration of the teacher-student framework can be
seen in Figure 4.10.

Privileged inputs Realistic input

(E.g. full env state) (E.g. RGB)
Expert policy Student policy
(Pre-trained) (To be trained)

{—Supemised a:iptimiz.aticmT

Figure 4.10: Conceptual illustration of the teacher-student framework. The teacher policy is pre-trained
on privileged observations and is used to supervise the optimization of the student policy, which is trained
on realistic inputs such as noisy RGB data.

To implement this imitation-based supervision approach, a DAgger algorithm is employed us-
ing the Imitation library, based on Stable Baselines3 (SB3), [45], [46]. For context, DAgger
improves upon regular Behavior Cloning (BC) by addressing the sensitivity to distributional
shift. Whereas BC relies on a fixed or static dataset of expert demonstrations collected in isola-
tion, DAgger allows the student to act in the environment while querying the expert for correct
actions. These interactions are aggregated into an expanding dataset, alloing the student to adapt
to an expanding variety of states, resulting in more robust behavior transfer. The Imitation
library is selected for its built-in SimpleDAggerTrainer implementation, thereby eleminating
the need to design and implement a custom DAgger pipeline.

41 of 73

CHAPTER 4. IMPLEMENTATION

The following sections describe the integration of this framework into RLRoverLab, including
wrapping the environment to support separate student and expert observations, setting up the

expert policy model and configuring the training pipeline.

4.3.1 Wrapping the Gymnasium environment

To facilitate integration with the Imitation framework, it is beneficial to adapt the environment
structure from RLRoverLab to retain the observations obtained by the expert policy. This in-
cludes adopting its Gymnasium-based interface and the mechanisms for action execution in sim-
ulation. To support this integration, a set of wrappers are implemented to bridge the expectations
of the Imitation framework with the RLRoverLab infrastructure. The SimpleDAggerTrainer
requires the environment to follow SB3 conventions. To this end, the RLRoverLab environ-
ment is wrapped using a series of lightweight modules that enforce finite action bounds, flatten
observation dictionaries into SB3-compatible vectors, and perform the necessary conversions
between NumPy arrays and Torch tensors. A shared base environment is split into two views,
one for the expert and one for the student, allowing both policies to interact with a common
simulation context while receiving appropriately processed observations. The implementation

of this wrapping and splitting is shown in Snippet 4.3.1.

def make_shared_vecenv(task_name, cfg, video=False):

base = gym.make(task_name, cfg=cfg, viewport=video)

base FiniteActionBox(base)

base = NumpyToTorchAction(base, device="cuda:0")

def _build_expert():
env = FlattenPolicyObs(base, TEACHER_KEYS + STUDENT_KEYS)
env = TorchTensorToNumpy (env)

return env

def _build_student():
env = FlattenPolicyObs(base, TEACHER_KEYS + STUDENT_KEYS)
env = StudentIdentity(env)

return env

vec_expert = DummyVecEnv([_build_expert])
DummyVecEnv ([_build_student])

vec_student

Snippet 4.3.1: Implementation of the teacher-student environement splitting.

The wrapped environment serves to bridge differences in data representation between the Imi-
tation framework and the Torch-based RLRoverLab simulation. While the simulation expects
Torch tensors for actions and outputs Torch.tensor observations, the Imitation framework oper-

ates through SB3-style interfaces, where environments and policies communicate using NumPy

42 of 73

CHAPTER 4. IMPLEMENTATION

arrays. To ensure compatibility and efficient use of system memory, particularly since transi-
tions are stored in NumPy format in system memory during DAgger training, the environment
performs bi-directional conversion at its interfaces. Observations are flattened to satisfy the
input format of SB3 policies, and actions are bounded and converted to Torch before being
passed to the simulator. A single environment instance is used to serve both student and ex-
pert views, maintaining consistent simulation state while preserving their distinct observation
modalities: the student operates on noisy RGB-D input, while the expert is queried using clean

proprioceptive and heightmap data.

While SimpleDAggerTrainer expects a vectorized environment, the vectorization approach
used in RLRoverLab via Isaac Lab’s SkrlVecEnvWrapper is not directly compatible. Skr-
1VecEnvWrapper enables vectorization by spawning multiple agents within a single simulation
instance, and sharing a single terrain asset. In contrast, the Imitation framework requires vector-
ization through Gymnasium or SB3 utilities, such as DummyVecEnv, which replicate the entire
environment configuration for each instance. This results in multiple agents being instanti-
ated across individual terrain instances, significantly increasing memory usage and initialization
overhead due to redundant terrain loading. Thus, to satisfy the Imitation framework’s interface
requirements without compromising memory constraints or simulation fidelity, the environment
is wrapped using SB3’s DummyVecEnv, which emulates a vectorized interface while preserving

single-instance execution.

The student and action environment views are wrapped such that they accommodate the Imita-
tion framework requirements, while the simulation environment remains within the RLRover-
Lab framework. With the Isaac Lab-based Gymnasium environment adapted to support the
SB3-based Imitation framework, the next step is to address compatibility at the policy level. As
the expert policies are trained within RLRoverLab using skrl, they do not natively conform to
SB3’s policy interface. To make them callable within the Imitation framework, an additional

adaptation is required to expose them through an SB3-compatible wrapper.

4.3.2 Porting expert policy to SB3

Since the expert policy is trained using skrl within the RLRoverLab framework, it does not
conform to the SB3 policy interface expected by the Imitation framework. To enable compati-
bility with SimpleDAggerTrainer, the expert policy is wrapped in a custom subclass of SB3’s
BasePolicy, allowing it to be queried using the standard .predict method. The wrapper in-
stantiates the original GaussianNeuralNetworkConv model and loads the pretrained weights
from the skrl training pipeline. To ensure the expert policy receives the correct input repre-
sentation, a mapping from the flattened observation vector to the expert’s expected input is
constructed using index slices defined during environment preprocessing. Only teacher-specific
observation terms are extracted and assembled into a clean input vector before being passed to
the policy network. This allows the model to operate exactly as it did during training, while pre-

43 of 73

CHAPTER 4. IMPLEMENTATION

senting a compatible interface to the Imitation library. The initialization of the expert network

can be seen in Snippet 4.3.2.

def _predict(self, obs: np.ndarray, deterministic: bool = True):
if obs.ndim == 1:
obs = obs[None, :]
flat = torch.as_tensor(obs, device=self.device)
flat = flat.index_select(-1, self.teacher_indices.to(flat.device))
clean = torch.cat([flat[..., :5], flat[..., 5:]1], dim=-1)
assert clean.shape[-1] == 10_206
with torch.no_grad():
mean, log_std, _ = self.net({"states": clean})

if deterministic:
act = mean

else:
std

log_std.exp()

torch.randn_like (mean)

eps
act = torch.tanh(mean + eps * std)

return act

Snippet 4.3.2: Implementation of the instantiation of the RLRoverLab GaussianNeuralNetworkConv
policy network in the SB3-based expert policy.

To satisty the interface constraints of the BC context in which the expert is used the _predict
method is implemented to convert incoming observations to Torch tensors, extract the relevant
indices, and forward them through the model. Depending on whether deterministic or stochastic
actions are requested, the wrapper either returns the network mean or samples from the mod-
eled distribution. The resulting actions are returned in NumPy format to conform with SB3

expectations. This implementation is shown in Snippet 4.3.3.

44 of 73

CHAPTER 4. IMPLEMENTATION

self.net = GaussianNeuralNetworkConv(
observation_space = spaces.Box(-np.inf, np.inf, shape=(10206,),
— dtype=np.float32),
action_space = spaces.Box(low=-1, high=1, shape=(2,),

- dtype=np.float32),

device self.device,

mlp_input_size =5,
encoder_input_size= 10201,
encoder_layers = [8, 16, 32, 64],
encoder_activation= "leaky_relu",
mlp_layers=[256, 160, 128],
mlp_activation="leaky_relu",

) .to(self.device)

Snippet 4.3.3: Implementation of the override of _predict method from BasePolicy.

These slices originate from the flattening logic in the FlattenPolicyQObs wrapper, which stores
a mapping of observation terms to their vector indices during environment preprocessing. By
preserving the original skrl architecture and weights, this approach allows seamless expert pol-
icy reuse in the Imitation framework, avoiding the need for retraining or architectural transla-
tion. With both the environment and the expert policy now fully wrapped and aligned with SB3
and Imitation framework expectations, the final step is to configure the SimpleDAggerTrainer
to integrate these components into a functional training loop.

4.3.3 Configuring the DAgger trainer

To configure the SimpleDAggerTrainer, each of its required components must be instantiated
with appropriate parameters. A custom student policy is implemented directly in SB3 to ensure
compatability with the Imitation framework and to facilitate integration with the surrounding
infrastructure. The design deliberately aligns with the skrl-based RGB-D policy used in RL-
RoverLab, supporting comparability and enabling a more direct conversion back to skrl format
for evaluation, such as with Weights and Biases (Wandb) [47].

Central to this compatability is a custom feature extractor, SB3_GaussianNeuralNetworkConvResNet,
implemented as a subclass of BaseFeaturesExtractor. This module replicates the encoder
structure from RLRoverLab’s policy, ensuring architectural consistency in the extracted feature
representation across frameworks. The remaining fully connected layers responsible for gener-

ating policy and value outputs are defined via the net_arch parameter at policy instantiation.

The complete policy structure used by SB3 can be seen in 4.11.

45 of 73

CHAPTER 4. IMPLEMENTATION

obs features_extractor net_arch

7

|
|
|
|
|
|
|
|
|
Observation| |
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
Feotures |
|

|

|

|

|

|

|

|

|

Fu“t/-Qonneg-i'eA _9 action or value

/

can be Panﬁa“y shared

shared by defaul+ between actor/eritic

between actor/eritic networks for on-pohcy
networks algoriﬂms

Figure 4.11: Illstration of the policy structure used by SB3, the observations (obs) is passed through a
policy network (features_extractor), which then passes the output to a fully connected network (net_arch)
tailored to output to the correct action shape. Adapted from [48].

This reflects the SB3’s actor-critic design, where shared feature representations are passed to
both policy and value heads. In this implementation, the actor and critic share the same feature
extractor and multilayer perceptron (MLP), consistent with RLRoverLab’s policy structure. The

configuration of the student policy is shown in Snippet 4.3.4.

46 of 73

CHAPTER 4. IMPLEMENTATION

student_alg = PPO(

policy = "MultiInputPolicy",
env = vec_student,

device = device,

verbose =1,

policy_kwargs = dict(

features_extractor_class = SB3_GaussianNeuralNetworkConvResNet,
features_extractor_kwargs = dict(

encoder_layers = [8, 16, 32, 64],

encoder_activation = ("leaky_relu", "leaky_relu"),

Mapping info (generated by FlattenPolicyObs)

key_slices vec_student .key_slices,

key_shapes vec_student .key_shapes,

),
net_arch = [256, 160, 128],

activation_fn = torch.nn.LeakyReLU

Snippet 4.3.4: Implementation of the initialization of the student policy as a PPO agent in SB3 format.

The MLP configuration reproduces the structure and activation functions used in the original
skrl RGB-D model, preserving model depth. With the student policy fully defined, it is wrapped
in a BC trainer, a required component by the SimpleDAggerTrainer. The BC trainer is respon-
sible for updating the student using expert-labeled transitions collected during rollouts, tereby
enabling imitation learning in a supervised manner. Once both the expert and student compo-

nents are configured, the SimpleDAggerTrainer is instantiated, as show in Snippet 4.3.5.

dagger = SimpleDAggerTrainer(
venv = vec_expert,

expert_policy = expert_policy,

bc_trainer = bc_trainer,
scratch_dir = logdir,
ng = np.random.default_rng(0),

beta_schedule = lambda _: 1.0,

Snippet 4.3.5: Initialization of the SimpleDAggerTrainer object.

Here, the expert policy and environment are passed directly, while the student policy is embed-
ded via the bc_trainer. The beta_schedule is set to a constant value of 1, ensuring the expert

is always queried for supervision during training. Finally, a minimal conversion script was im-

47 of 73

CHAPTER 4. IMPLEMENTATION

plemented to enable evaluation of the SB3-based DAgger policy within the SKRL framework.
With all components of the training pipeline configured and integrated, an additional consid-
eration is made to ensure the environment setup remains isolated. This separation maintains a
clear boundary between the teacher-student pipeline and the original RLRoverLab configura-

tion, preventing unnecessary coupling between the two.

4.3.4 Ensuring environment detachment

To maintain a clear separation between the teacher-student framework and the original RL-
RoverLab implementation, the environment configuration is reproduced within the Imitation
framework, minimizing dependencies and potential inconsistencies. With the exception of se-
lected imports from the other framework and the RLRoverLab policy collection, as well as the

integration point within the central train. py script, the two systems remain distinct.

Within the Imitation framework, similarly to the implementation mentioned in subsection 4.1.2,

the environment configuration is generated dynamically for each model using a structured con-
figuration pipeline. This process is driven by three YAML files agent_config, environment_config,
and learning config, which define the respective components of the simulation setup. These
configurations are parsed and composed into a unified configuration object used to instanti-

ate the environment, allowing centralized and transparent control over model-specific settings.

With all components integrated and the environment configuration encapsulated, the framework

is now prepared for systematic evaluation. The next chapter presents the testing procedures and
analyses aligned with the objectives outlined in section 3.1.

48 of 73

Testing and evaluation

To assess the viability and effectiveness of the proposed method, the evaluations defined in
section 3.1 are conducted using the integrated models. These evaluations enable an analysis
of performance in both simulation and real-world deployment. To ensure reproducibility, all
experimental configurations are documented in detail, here including the parameters used. The
following sections describe the test rig, the individual testing scenarios and the evaluations of

these. The tests are described sequentially in accordance with the objectives.

5.1 Testing Framework

All simulations and training procedures presented in this thesis are conducted on a single ma-
chine to ensure comparability between experiments and support reproducibility. All training is
performed inside the Docker container provided by RLRoverLab. The testing rig is equipped

with the following hardware specifications:

* Operating System: Ubuntu 22.04.5 LTS (x86_64)

* Kernel Version: 6.8.0-58-generic

* CPU: Intel Core 19-12900KF (12th Gen, 24 cores)

* GPU: NVIDIA GeForce RTX 3090 Ti 24 GB VRAM

e System Memory: 64 GB DDR5 RAM
This hardware configuration allows for high-fidelity parallel training of reinforcement learning
policies and efficient processing of high-dimensional sensory data. In all experiments, PPO is
used as the core learning algorithm, consistent with the standard configuration in RLRoverLab.
To ensure stable learning performance across rover models, the original hyperparameters from

RLRoverLab are used consistently throughout training and evaluation. These are summarized
in Table 5.1.

Table 5.1: Hyperparameters used in all testing scenarios.

Optimization Training Configuration
learning rate 1.0e —4 | rollouts (n_steps) 60
discount_factor (y) 0.99 learning epochs (n_epochs) 4
lambda (1) 0.95 mini_batches 60
ratio_clip 0.2 grad norm_clip 0.5
value_clip 0.2 k1l threshold 0.008
entropy_loss_scale 0.0 value_loss_scale 1.0

49 of 73

CHAPTER 5. TESTING AND EVALUATION

In addition to a fixed training configuration, all policies share the same reward function. This
reward formulation is inherited from RLRoverLab and designed to encourage safe and efficient
navigation. It consists of seven components, including three terminal rewards that are applied
upon episode completion. The overall reward is computed as follows:

Ttotal = Tdist + Tose + Vdirec + Thead + Trel_ori + Ldone * (rsuccess +Trar + ”collision) (5.1)

where 1,4,,, indicates episode termination, triggering one of the terminal rewards depending
on the termination condition. Each reward term is scaled by its associated weight prior to

aggregation, as summarized in Table 5.2.

Table 5.2: Reward Components with Definitions, Weights, and Variables

Reward Definition Weight Where
i 1 1
Distance to Target : 5.0 d: distance to target, Tya: max episode
. 2 g P
T'dist 14+0.11- HdH Tmax length
2. Jrem d <tA|0] <0.1
FreaChe()i Target { T 14112) 6l 50 Tiem: timesteps left, 7: distance threshold,
success 0, otherwise 0: Relative goal orientation error
1.0, ||d|>71 . . .
Far From Target {]2 _ 2.0 ||d||2: Euclidean distance to target, 7: dis-
T'far 0, otherwise tance threshold
. . . 1 1
Relative goal orientation . 5.0 ld||2: Euclidean distance to goal, 6: angle
T'rel_ori (1+||d||2)(1+|9|) Tmax to goal
L9 19) > 2.0
Angle to target Tinax ’ 6] A -1.5 6: Relative goal angle error
Tdirec 0, otherwise
. . A 2 A® 212
Oscillation Penalty MA > 0.05 -0.05 Av: linear diff, Aw: angular diff between
Fosc Tnax steps
- i 0.4 - max(—v,0
Heading constraint 04-max(-v,0) -0.5 v: linear velocity
Thead Tnax
isi 1.0 F T
COH'IS'IOH Penalty { > |IEll >' -3.0 ||F||: net contact force, T: collision force
Tcollision 0, otherwise threshold

This reward structure is designed to balance goal-seeking behavior with stability and safety.
Rewards such as Distance to Target, Reached Target, and Relative Goal Orientation guide
the agent toward the goal while promoting alignment in both position and heading. Conversely,
penalties like Far from Target, Angle to Target, Heading Constraint, and Oscillation dis-
courage inefficient, unstable, or non-purposeful behavior. Finally, the Collision penalty en-

50 of 73

CHAPTER 5. TESTING AND EVALUATION

forces safety by penalizing contact with obstacles. These components collectively shape the
reward signal to balance goal-directed motion, stability, and safety during learning. To evalu-
ate performance under realistic conditions, all policies are trained for 300,000 iterations on a
Mars-analog terrain provided by the RLRoverLab framework. This training horizon was cho-
sen empirically based on the time required to complete a full training run and to support stable
learning, particularly when using high-dimensional observation spaces such as RGB-D input.
The terrain, shown in Figure 5.1, spans a large simulated area and includes varied elevation,
slope irregularities, and scattered obstacles which presents sufficient complexity to evaluate
navigation performance under varied terrain conditions.

Figure 5.1: Depiction of the simulated mars terrain utilized in training.

The use of a fixed training regime, unified reward structure, and shared terrain environment
ensures consistency and comparability across all experimental scenarios presented in this thesis.
The following sections presents the results in the sequential order of the objectives presented in

section 3.1.

5.2 Introduction of New Hardware Platforms

To address objectives 1d, 2a and 2b, a test is conducted to evaluate the viability of the newly
added models and analyze their behavioral performance. For this purpose, the existing RL-
RoverLab policy model utilizing the heightmap input, depicted in Figure 5.2, is employed to
verify the suitability of the models in training using the drive and control parameters defined in
4.1.

510f73

CHAPTER 5. TESTING AND EVALUATION

Figure 5.2: Visualization of the heightmap sensor modality in simulation. A 5 X 5 m area with 0.05 m
resolution is projected onto the terrain and transformed into the robot’s frame for local perception and
processing.

For each model, a policy is trained with 512 agents for 300,000 timesteps to ensure training
robustness. The resulting mean reward is compared to that of Mortensen [14], as showcased
in Figure 5.3 under 7 X 7 Resolution 5cm, CNN: Type 2. Although the resolution differs
slightly from that used in RLRoverLab, this configuration represents the most appropriate point
of comparison available. In addition, each policy is evaluated through an analysis of the train-
ing performance metrics, specifically target reaching consistency, collision frequency and action
smoothness, to ensure alignment with expected real-world performance. Lastly, the functional
performance of each policy is evaluated through visual inspection of the model policy in simu-

lation.

Different CNN Architectures

1.5
—
c
o
s 1.0+
'
T
-
g 0.5+
Q
-4
3
0.0

=]
b
Q.
w .
- —0.5] Observation Space
© = 7X7M, Resolution 10cm, CNN: Type 1
"6 7X7M, Resolution 5cm, CNN: Type 1
= —— 7X7M, Resolution 5¢cm, CNN: Type 2

-1.0— T T T T T T T T

0 5000 10000 15000 20000 25000 30000 35000 40000

Step

Figure 5.3: Rewards attained by Mortensen in [14].

52 0f 73

CHAPTER 5. TESTING AND EVALUATION

The training of each policy is conducted in the RLRoverLab framework, with no changes, such
that it matches with the setup used in training the AAUMarsRover model. The following section

presents the results of this testing and the behavioral analysis of each model.

5.2.1 Results and analysis

The mean training results for each model are presented in Figure 5.4 for the entire training
horizon. From this a trend can be extracted to suggest the viability of each of the models ac-
cording to Objective 1d. As can be seen both the Summit and Leo Rover, perform similarly to
the results presented from Mortensen, albeit delayed, they appear stable. The two RobuROC4
models perform slightly worse and plateau early, which may reflect limitations in their parame-
ter configurations or underlying model dynamics. Building on these overall performance trends,
the subsequent analysis focuses on specific behavioral outcomes, beginning with goal-reaching

consistency.
Reward / Total reward (mean)
Leo Rover == RobuROC4 = RobuROC4_Simple = Summit XL

1.5

1 —
0.5

0 |
-0.5

global_step
50k 100k 150k 200k 250k

Figure 5.4: Mean total reward over 300,000 training steps for the RB Summit, RobuROC4, simplified
RobuROC4, and Leo Rover models, all trained with heightmap inputs. The graph shows how each
model’s reward develops over time for comparison.

To support the following analysis, the videos below capture the behavior of fixed policies during

post-training evaluation and do not reflect ongoing learning.
* Summit video: https://youtu.be/an286Nccul
* Leo Rover video: https://youtu.be/eUEGS PmYsQ
* RobuROC4 video: https://youtu.be/rqOJoziLt8w

* RobuROC4 Simple video: https://youtu.be/rqOJoziL.t8w

53 0f 73

https://youtu.be/an286Ncc9uI
https://youtu.be/eUEGS_PmYsQ
https://youtu.be/rqOJoziLt8w
https://youtu.be/rqOJoziLt8w

CHAPTER 5. TESTING AND EVALUATION

In general, the behavior of all models indicates a stable trajectory toward goal attainment, as
shown in Figure 5.6. While the Summit outperforms the other models, its resulting behavior is
not entirely optimal; it has learned to exploit backward motion to achieve an early alignment
with the target orientation, thereby exhibiting a preference for reverse velocity. This behavior
can be seen it its associated video. Although the heightmap input provides visual information in
the area surrounding the agent, such environmental awareness cannot be guaranteed in extrater-
restrial contexts, therefore, this behavior is not considered desirable. However, it does exhibit
strong performance in executing turn-in-place maneuvers, which contributes to its ability to
align with the target orientation efficiently. Similarly, the Leo Rover performs well overall,
but also exhibits unintended behavior, particularly during turning maneuvers as can be seen in
the associated video. Its rocker joints respond excessively to external forces and friction, re-
sulting in unrealistic dynamics, including tipping over and exaggerated motion showcased in
Figure 5.5.

Figure 5.5: Depiction of the exaggerated movement seen during turning maneauvers for the Leo Rover,
taken in Isaac Sim. As can be seen the rocker joints reach the limits in opposite directions while per-
forming turning maneauvers.

Although the Simple RobuROC4 model performs worse in terms of overall performance, it still
demonstrates consistent behavior. However, it shares the Summit’s unintended preference for
reverse velocity. Additionally, it struggles with turning on sloped or uneven terrain, leading to
increased time required for goal alignment. Finally, the more complex RobuROC4 model also
exhibits difficulties with turning and, overall, performs similarly to the simpler variant. How-
ever, it does not display the unintended behaviors observed in the other models, and therefore
aligns more closely with the intended, realistic behavior.

54 of 73

CHAPTER 5. TESTING AND EVALUATION

Info / Episode_Reward/reached_target
Leo Rover == RobuROC4 = RobuROC4_Simple = Summit XL

0.01
0.008
0.006
0.004

0.002
global_step

50k 100k 150k 200k 250k

Figure 5.6: Target-reaching success over 300,000 training steps for the RB Summit, RobuROC4, sim-
plified RobuROC4, and Leo Rover models. The graph indicates how consistently each model reaches
the goal throughout training through the size and consistency of the reward.

While goal completion is important, safety remains a primary concern in extraterrestrial mis-
sions. In this context, safety is defined as the avoidance of collisions with obstacles. As shown
in Figure 5.7, all models exhibit a near-zero collision penalty, indicating reliable obstacle avoid-
ance throughout training. Minor collisions do occur, which is to be expected, as the inherent
characteristics of skid-steering, particularly during turning on sloped or uneven terrain, can lead
to slipping and occasional contact with obstacles. This is especially evident in the RobuROC4
models, where turning often requires slight back-and-forth motion, increasing the likelihood of
such incidents.

550f73

CHAPTER 5. TESTING AND EVALUATION

Info / Episode_Reward/collision
Leo Rover == RobuROC4 = RobuROC4_Simple = Summit XL

K/—-’A’
-0.001

-0.002

-0.003

global_step

50k 100k 150k 200k 250k

Figure 5.7: Collision penalty over 300,000 training steps for the RB Summit, RobuROC4, simplified
RobuROC4, and Leo Rover models. The graph reflects how often each agent collides with obstacles in
the environment through the size and consistency of the reward.

Another critical performance metric is the smoothness of actions, as sudden or oscillatory move-
ments can pose risks in extraterrestrial environments. Most models converge toward minimal
action changes, resulting in smoother trajectories and motion. However, the RobuROC4 mod-
els exhibit an early plateau and fail to fully minimize oscillations, as shown in Figure 5.8. This
is likely attributable to their bulky, compact design, which complicates turning, particularly on
inclined surfaces, and leads to the characteristic back-and-forth motion observed during maneu-
vers, further contributing to persistent oscillatory behavior.

56 of 73

CHAPTER 5. TESTING AND EVALUATION

Info / Episode_Reward/oscillation

Leo Rover == RobuROC4 = RobuROC4_Simple = Summit XL
—e
-0.001
\
-0.002
-0.003
-0.004
global_step
50k 100k 150k 200k 250k

Figure 5.8: Penalty for large action changes over 300,000 training steps for the RB Summit, RobuROC4,
simplified RobuROC4, and Leo Rover models. The graph reflects how often and to what extent each
agent exhibits erratic or unstable movements during training.

Overall, the models demonstrate reasonable performance, with most negative outcomes primar-
ily attributed to the limitations of the skid-steering control scheme, particularly in relation to the
high-friction terrain. While the Summit and Leo Rover achieved strong performance metrics,
their behavior during evaluation was suboptimal. The simplified RobuROC4 model exhibited
similar behavioral issues, along with lower performance metrics. Although the more complex
RobuROC4 model performed below average in overall performance, it was the only one to
demonstrate realistic and consistent behavior. Although the other models may perform differ-
ently under future testing conditions, the RobuROC4 model is selected for continued evaluation
due to its realistic and consistent behavioral characteristics, despite its below-average perfor-
mance metric. Thus, with the initial evaluation of the models completed, the following tests
the viability and efficiency of training policies with direct RGB-D input in both clean and noisy

formats.

5.3 RGB-D input modality

Building on the previous evaluation, this section investigates the feasibility of using RGB-D
data as a standalone input modality, analogous to the previously tested heightmap, for training
agents in navigation tasks. In line with Objective 4, the aim is to assess whether RGB-D input

enables effective learning and whether this holds under the presence of realistic sensor noise.

The evaluation focuses on two main aspects: the agent’s ability to learn navigation tasks using
RGB-D input, from a front-facing simulated camera, under both clean and noisy conditions, and

57 of 73

CHAPTER 5. TESTING AND EVALUATION

a comparison of training and behavioral performance relative to the heightmap-based approach
under equivalent training conditions. For this test, the RGB-D encoder, presented in subsec-
tion 4.2.2, is used as the policy model, with each policy trained for 300,000 timesteps. Due to
GPU memory limitations, the number of parallel agents is reduced to 256. Lastly, to prevent
interference during evaluation, agent visibility is disabled, ensuring that the simulated cameras
do not capture other agents in the environment. The results and behavioral comparisons are

presented in the following section.

5.3.1 Results and analysis

The mean training performance for each model is shown in Figure 5.9. Evidently, neither pol-
icy achieves a mean reward above zero throughout training. This consistently low performance
suggests that learning directly from RGB-D input is significantly more difficult than from the
heightmap representation used previously. Several potential causes may contribute to this out-
come, including previously identified issues and the complexity or redundancy of RGB-D fea-
tures, which can hinder effective optimization. Despite the lack of convergence, the following
analysis examines specific behavioral outcomes to further assess policy performance, beginning

with goal-reaching consistency.

Reward / Total reward (mean)
— RobuROC4 - RGB-D Noisy = RobuROC4 - RGB-D Clean

1.5

-0.5
global_step

50k 100k 150k 200k 250k

Figure 5.9: Mean total reward over 300,000 training steps for the RobuROC4 model using clean and
noisy RGB-D inputs. The graph shows how the reward evolves over time for each input modality.

As in the previous test, the following two videos support the behavioral analysis by providing
a visual reference of policy behavior after training, illustrating agent performance without the

influence of continued learning.

* RobuROC4; Clean RGB-D input: https://youtu.be/55M80YyUHac

58 of 73

https://youtu.be/55M80YyUHac

CHAPTER 5. TESTING AND EVALUATION

* RobuROC4; Noisy RGB-D input: https://youtu.be/KamLWRok-j4

Overall, neither policy consistently exhibits goal-reaching behavior, as reflected in Figure 5.10.
Both policies tend to remain near their initial positions while performing turning maneuvers
in place, a behavior also visible in the video recordings. This may be the result of a number
of factors, including tuning the hyperparameters for this purpose, optimizing the ResNetl8
encoder and tuning the model parameters to enhance the turning capabilities of the RobuROC4

model.

Info / Episode_Reward/reached_target
— RobuROC4 - RGB-D Noisy = RobuROC4 - RGB-D Clean

0.0003
0.00025
0.0002
0.00015

|
0.0001 }
|

0.00005
L global_step
2

50k 100k 150k 200k 250k

Figure 5.10: Target-reaching success over 300,000 training steps for the RobuROC4 model using clean
and noisy RGB-D inputs. The graph shows how the reward associated with goal-reaching evolves over
time for each input modality.

As a consequence of the agents not moving away from the initial position, they receive very
few penalties for collisions, as illustrated in Figure 5.11. This is likely due to them rarely
coming into contact with obstacles with the exhibited behavior. The collisions that do occur are
likely due occasional cases, such as when turning on sloped terrain, where slippage may lead to

unintended contact.

59 of 73

https://youtu.be/KamLWRok-j4

CHAPTER 5. TESTING AND EVALUATION

Info / Episode_Reward/collision
— RobuROC4 - RGB-D Noisy = RobuROC4 - RGB-D Clean

-0.001
-0.0015
-0.002
-0.0025 {
-0.003

-0.0035
global_step

50k 100k 150k 200k 250k

Figure 5.11: Collision penalty over 300,000 training steps for the RobuROC4 model using clean and
noisy RGB-D inputs. The graph shows how collision-related penalties evolve over time for each input
modality.

Similarly, with regard to oscillatory behavior, the agents learn to execute turning maneuvers
smoothly, thereby maintaining a low penalty for large changes in actions. However, in the
video of Noisy RGB-D trained policy, the agent act more erratically. Thus this penalty still

applies pressure in regards to not performing excessive and erratic movements.

60 of 73

CHAPTER 5. TESTING AND EVALUATION

Info / Episode_Reward/oscillation
= RobuROC4 - RGB-D Noisy == RobuROC4 - RGB-D Clean

-0.001

-0.002

-0.003

-0.004

global_step

50k 100k 150k 200k 250k

Figure 5.12: Penalty for large action changes over 300,000 training steps for the RobuROC4 model
using clean and noisy RGB-D inputs. The graph reflects how often and to what extent each policy
exhibits erratic or unstable movements during training.

In conclusion, neither of the policies learned behaviors that consistently resulted in successful
task completion or demonstrated safety awareness. The results suggest that while using RGB-D
as a standalone input modality for reinforcement learning is not necessarily infeasible, it may
require further tuning of training parameters or policy models to achieve stable and consistent
convergence toward desired behaviors. Despite the limitations observed in this test, the results
offer useful insights for refining the training process. With the feasibility of training directly
on RGB-D input explored, the following test investigates the viability of using a DAgger-based

teacher-student approach can improve training efficiency and stability and better convergence.

5.4 Teacher-student training

Building on the previous tests, this section evaluates the viability of a teacher-student training
approach, where a policy trained with privileged input, specifically a noise-free heightmap in-
put, is used to supervise the learning of a student policy that relies on noisy RGB-D input from
the same front-mounted camera as in the previous test. In accordance with Objective 5, the
focus is on assessing how effectively the behavior learned by the teacher can be transferred to
the student, despite the difference in sensor input and the added challenge of input noise.

For this purpose the implemented Imitation DAgger framework is employed to train a stu-
dent policy using the trained RobuROC4 policy from the first test in section 5.2. All con-
figurations of the environment are retained and the policy network utilizes the implemented
SB3_GaussianNeuralNetworkConvResNet policy network for the student policy, which re-

61 of 73

CHAPTER 5. TESTING AND EVALUATION

sembles the original skrl policy model for RGB-D inputs. The teacher keeps the original policy
model from the RLRoverLab framework. The student is trained for a minimum of 10,000
timesteps, with the BC framework training for at least two epochs. This is due to memory
constraints and limitations within the implementation of the DAgger trainer. After training, the
resulting student policy is converted to skrl format and evaluated evaluated deterministically
for 50,000 steps using 64 parallel agents, to establish a consistent performance baseline. The

following section presents and analyzes the results.

5.4.1 Results

The output of the DAgger training is shown in Figures 5.13 and 5.14, reflecting logs from the
SB3-based training process. While mean episodic rewards decline over time, the probability of
selecting the teacher’s action (prob_true_act) steadily increases. This suggests that the student
is gradually aligning with the teacher’s behavior at an action level, but fails to generalize this
behavior effectively during full rollouts.

| batch_size | 32 | | batch_size | 32 I
bc/			bc/	
batch	0		batch	500
ent_loss	-0.00284		ent_loss	-0.00308
entropy	2.84 [entropy	3.08		
epoch	0 1 epoch	1		
12_1loss	0		12_1loss	O
12_norm	7.53e+03		12_norm	7.69e+03
loss	218		loss	36.9 I
neglogp	218 [neglogp	36.9		
prob_true_act	1.49e-16		prob_true_act	1.87e-15
samples_so_far	32 [1 samples_so_far	16032 I		
rollout/			rollout/ I	

return_max	0.126		return_max	-0.556
return_mean	-0.256 [return_mean	-1.06		
return_min	-0.406		return_min	-1.83
return_std	0.206 [return_std	0.442		

Figure 5.13: Initial output of rollout training from Figure 5.14: Final output of rollout training from
the DAgger training. the DAgger training.

Evaluation in skrl supports the trend seen during training. As shown in Figure 5.15, the resulting
policy maintains a negative mean reward throughout evaluation. Given the short training dura-
tion and the nature of the dataset-based supervision, the policy does not demonstrate meaningful
improvement over time. Despite the lack of meaningful improvement, the following analysis

examines the policies’ behavioral outcomes, again starting with goal-reaching.

62 of 73

CHAPTER 5. TESTING AND EVALUATION

Reward / Total reward (mean)
=— RobuROC4 - DAgger

1.5

d

e

-0.5 e

global_step

10k 20k 30k 40k 50k

Figure 5.15: Mean total reward over 50,000 evaluation steps for the RobuROC4 model trained using
DAgger. The graph shows how the reward evolves over time for each input modality.

To support the behavioral analysis, a video of post-training behavior is provided: https://youtu.
be/i6-hTXRRgZM. As seen in the recording, the agent primarily performs localized rotations
and minor exploratory motion, without forming consistent trajectories toward the goal. This is
reflected in Figure 5.16, where the goal-reaching success remains effectively zero throughout
evaluation. The initial spike is attributed to agents spawning directly on the goal, a common

and expected outcome in randomized placements.

63 of 73

https://youtu.be/i6-hTXRRqZM
https://youtu.be/i6-hTXRRqZM

CHAPTER 5. TESTING AND EVALUATION

Info / Episode_Reward/reached_target
=— RobuROC4 - DAgger @

0.002
0.0015

0.001 '

0.0005
. global_step

10k 20k 30k 40k 50k

Figure 5.16: Target-reaching success over 50,000 evaluation steps for the RobuROC4 model trained
using DAgger. The graph shows how the reward associated with goal-reaching evolves over time for
each input modality.

As a consequence of this behavior, the agent receives slightly higher penalties for collisions
than earlier tests, as shown in Figure 5.17. While it remains localized in the same area, it tends
to explore more than the RGB-D tests. This results in significantly more collisions and a higher
penalty.

Info / Episode_Reward/collision
=— RobuROC4 - DAgger @

-0.0005
-0.001
-0.0015
-0.002
-0.0025

lobal_st
-0.003 S

10k 20k 30k 40k 50k

Figure 5.17: Collision penalty over 50,000 evaluation steps for the RobuROC4 model trained using
DAgger. The graph shows how collision-related penalties evolve over time for each input modality.

64 of 73

CHAPTER 5. TESTING AND EVALUATION

Contrarily, for the oscillation penalty, the agent appears to have adopted the teacher’s smooth
action trajectory, resulting in consistently low penalties for oscillatory behavior, as shown in
Figure 5.18.

Info / Episode_Reward/oscillation
=— RobuROC4 - DAgger @

' \\‘\»MMW
-0.000002
-0.000004
-0.000006
-0.000008
-0.00001

-0.000012

-0.000014 global_step

10k 20k 30k 40k 50k

Figure 5.18: Penalty for large action changes over 50,000 evaluation steps for the RobuROC4 model
trained using DAgger. The graph reflects how often and to what extent each policy exhibits erratic or
unstable movements during training.

In summary, while the student policy trained using DAgger shows increasing alignment with
the teacher at the action-selection level, this does not translate into functional behavior during
evaluation. The agent remains mostly localized, fails to pursue goals, and exhibits minimal
interaction with the environment. However, the retention of smooth control patterns from the
teacher indicates that some aspects of behavior are preserved. Due to the outcome of this, there
is no academic reason for testing it on a physical platform, therefore the testing of Objective 6 is
excluded. Thus, these findings conclude the testing phase and lay the groundwork for the sub-
sequent discussion, which reflects on the broader implications, limitations, and interpretability

of the results.

65 of 73

Discussion

The results presented in Chapter 5 collectively inform the viability of transferring behavior be-
tween sensor modalities through a teacher-student framework. Central to this exploration is the
question of whether a policy trained with privileged input, in this case a noise-free heightmap,
can effectively supervise the learning of a policy relying on noisier, more realistic RGB-D in-
put. To contextualize this final test, preceding experiments focused on validating the simulation
pipeline, tuning robot models, and assessing the difficulty of training policies directly from
RGB-D data. These tests were designed as a sequential process, gradually building towards the

evaluation of cross-modality policy transfer under realistic and constrained conditions.

The first set of tests concluded that none of the evaluated robot models achieved satisfactory
results across both task and behavioral metrics. While the Summit and Leo Rover models
achieve significantly better task performance than the RobuROC4 models, their in-simulation
behavior does not align with expectations for safety-oriented navigation, particularly in the case
of the Leo Rover, whose behavior appears unrealistic during turning maneuvers. In contrast,
the RobuROC4 models performs significantly worse on performance metrics. However, the
more complex RobuROC4 model demonstrates better general behavioral characteristics, albeit
still lacking in task performance. These shortcomings likely stem from suboptimal parameter
tuning, particularly related to damping, stiffness, and the action scaling applied to each model’s
control output. These parameters directly influence how effectively a model can respond to
terrain friction and execute precise movements. Additionally, RobuROC4 models exhibited
specific control issues, such as an inability to turn in place effectively, which may be linked
to misconfigured physical parameters like frack_width and wheel_radius, regardless of being
based on the physical platforms. In contrast, the other tested models, such as Summit and
Leo Rover, did not show the same difficulty with in-place rotation. Despite these limitations,
RobuROC4 was selected for the remaining tests, as it demonstrated forward-oriented movement
and relatively stable behavior, even though it did not meet the thresholds for success in terms of

total mean reward.

The second set of test examined whether RGB-D input, combined with proprioceptive data,
could serve as a viable standalone modality for reinforcement learning. In contrast to heightmap-
based training, policies trained using RGB-D struggled to achieve neither meaningful task per-
formance nor significant behavioral traits. This highlighted the difficulty of extracting spatially
coherent policies from high-dimensional, limited field-of-view input. Both clean and noisy
RGB-D variants were tested, with the noisy input exhibiting marginal improvements, compared
to the clean input, in several evaluation metrics, likely due to the use of a ResNet18 backbone

pretrained on ImageNet, which may generalize better to realistic noise patterns than to idealized

66 of 73

CHAPTER 6. DISCUSSION

simulated data. The subsequent test therefore focused on policy transfer using a teacher-student
framework, where a model trained with privileged heightmap input supervises learning under
RGB-D observations.

The DAgger-based teacher-student experiment aimed to improve policy learning under RGB-D
observations by leveraging supervision from a heightmap-trained expert. In this setup, the ex-
pert policy remained in a supervisory role and only processed the privileged inputs that it was
originally trained on. The student, in turn, received corrective action labels directly from the
expert, preserving the Learning by Cheating formulation in which the student learns exclusively
from privileged supervision without direct access to privileged observations. Despite this archi-
tecture, the resulting student policy failed to generalize effectively. While action-level imitation
improved over time, as reflected by the increasing prob_true_act metric, the learned behavior
remained largely meaningless and directionless, with the agent showing no goal-seeking behav-
ior during evaluation. These shortcomings are primarily attributed to practical constraints in the
current implementation rather than conceptual limitations of the DAgger approach itself. The
implementation restricted training to a single agent and a small number of student-environment
interactions, due to the high memory usage of the Imitation framework, which loads the entire
dataset into system memory. Additionally, behavioral cloning was limited to two epochs per
iteration, further constraining the student’s exposure to the collected supervision data. As a re-
sult, the student policy was trained on a relatively small and narrow dataset, reducing its ability

to generalize across the full range of observed states.

A more scalable implementation, fully integrated into the skrl-based vectorized training pipeline
of RLRoverLab, would allow parallel agent training with broader environmental coverage. This
would likely yield a more diverse and representative dataset, improving the robustness of the
learned policy. Two key limitations in the current setup hinder this potential. First, incompati-
bility between the SkrlVecEnvWrapper and the vectorization strategy expected by the Imitation
framework restricted training to a single agent through DummyVecEnv. This reduced the di-
versity of encountered states during rollouts. Second, the Imitation framework stores the entire
dataset in system memory, which constrains the overall training duration and volume of usable
data.

Addressing these constraints would significantly enhance the practicality of DAgger in this set-
ting. Enabling data streaming from disk would lift memory restrictions, allowing for extended
training runs and greater dataset variety. Additionally, incorporating on-policy expert query-
ing during rollouts with episodic transition saving would increase the range of state distribu-
tions covered during training. Together, these improvements point toward a custom skrl-based
DAgger trainer as a more scalable and effective foundation for learning robust policies under

high-dimensional, noisy sensor input.

67 of 73

Conclusion

The results presented in this thesis demonstrate the successful integration of four new robotic
models into the RLRoverLab framework. Each model completed a full training cycle, allowing
for direct performance comparisons across existing and new models. While the models varied
in their ability to meet task-related objectives, all exhibited distinct and interpretable behav-
iors. Some models achieved higher scores in performance metrics, while others showed more
consistent and safety-aligned movement patterns, particularly in terms of directional preference
and reduced erratic motion. Similarly, training with RGB-D as a standalone input modality
proved substantially more difficult. The combination of high-dimensional visual input and lim-
ited spatial coverage posed a significant challenge for policy optimization. These difficulties
underscore the constraints of learning directly from RGB-D input under the tested conditions.
Consequently, methods that incorporate structured supervision, such as imitation learning from
privileged inputs, become increasingly important when working with constrained sensory rep-
resentations.

In this context, the DAgger-based teacher-student framework was used to explore whether poli-
cies trained with privileged heightmap input could guide the learning of policies operating solely
under noisy RGB-D observations. While the student policy failed to generalize to effective goal-
directed behavior, the experiment confirmed the conceptual soundness of the framework. The
architectural separation between the teacher and student was maintained throughout, ensuring
that learning relied strictly on behavioral supervision without access to the teacher’s privileged
observations. This outcome is primarily attributed to limitations in the implementation of the
current Imitation-based setup. Training was constrained by single-agent rollouts, static datasets
stored entirely in memory, and limited training epochs per iteration. These factors severely re-
stricted the diversity and representativeness of training data, impeding the student’s ability to
learn generalizable behavior.

These findings suggest that transferring behavior between separate sensor input modalities re-
mains conceptually viable, assuming sufficient support from the training infrastructure. The
experiments illustrate that the teacher-student framework can be implemented in settings with
mismatched observation spaces, even if the resulting student performance was limited. This
establishes a foundation for future work aimed at refining the implementation and scaling the

training process to better support imitation learning under constrained sensor conditions.

7.1 Future work

To fully realize the potential of DAgger-based imitation learning within realistic robotic training

environments, future work should prioritize the development of a custom DAgger trainer tai-

68 of 73

CHAPTER 7. CONCLUSION

lored to the RLRoverLab and skrl frameworks. The current reliance on the Imitation framework
imposes architectural and performance constraints that limit training scale, agent parallelism,
and dataset diversity. A custom implementation would enable tighter integration with RLRover-
Lab’s vectorized training pipeline, allowing simultaneous training of multiple agents in shared
simulation contexts. This would significantly increase the range of explored states during roll-

outs, improving the broadness of the collected data.

Additional, the solution should incorporate memory-safe or memory-aware management of
transition buffers. The current in-memory dataset handling restricts training duration and scal-
ability, particularly with high-dimensional input such as RGB-D. A revised pipeline should
support efficient on-disk storage and sequential and selective streaming to accommodate large
transition datasets without exhausting system resources and forming an early bias. These im-
provements could support longer training runs, larger agent populations, and richer training

distributions.

69 of 73

Bibliography

[1]

(2]

[4]

[5]

[7]

[10]

NASA, Artemis iii - nasa, Dec. 2024.

URL: https://www.nasa.gov/mission/artemis-iii/, Retrieved: 15-02-2025.

NASA, Nasa’s lunar exploration program overview, NASA Publication, Sep. 2020.
URL: https://www.nasa.gov/wp-content/uploads/2020/12/artemis_plan-20200921.pdf?
emrc=f43185.

NASA, Artemis i, Mar. 2024.

URL: https://www.nasa.gov/mission/artemis-i/, (Retrieved: 22-02-2024).

NASA, Nasa’s plan for sustained lunar exploration and development, NASA Publication,
Aug. 2020.

URL: https://www.nasa.gov/wp-content/uploads/2020/08/a_sustained_lunar_presence
nspc_report4220final.pdf?emrc=5aa8ef.

T. E. S. Agency, Terrae novae 2030+ strategy roadmap, ESA Publication, Unclassified,
2022.

URL: https://esamultimedia.esa.int/docs/HRE/Terrae_Novae 2030+ strategy roadmap.
pdf.

NASA, Nasa technology roadmaps ta 4: Robotics and autonomous systems, NASA Pub-
lication, 2015.

URL: https://www.nasa.gov/wp - content/uploads/2016/08/2015_nasa_technology_
roadmaps_ta_4 robotics_and_autonomous_systems_final.pdf.

V. Wiberg, E. Wallin, T. Nordfjell, and M. Servin, Control of rough terrain vehicles us-
ing deep reinforcement learning, IEEE Robotics and Automation Letters, vol. 7, no. 1,
pp- 390-397, 2022. po1: 10.1109/LRA.2021.3126904.

G. Kulathunga, A reinforcement learning based path planning approach in 3d environ-
ment, Procedia Computer Science, vol. 212, pp. 152-160, 2022, 11th International Young
Scientist Conference on Computational Science, ISSN: 1877-0509. DOI: https://doi.org/
10.1016/j.procs.2022.10.217.

URL: https://www.sciencedirect.com/science/article/pii/S1877050922016891.

T. Sakai and T. Nagai, Explainable autonomous robots: A survey and perspective, Ad-
vanced Robotics, vol. 36, no. 5-6, pp. 219-238, 2022. por: 10.1080/01691864.2022.
2029720. eprint: https://doi.org/10.1080/01691864.2022.2029720.

URL: https://doi.org/10.1080/01691864.2022.2029720.

W. Zhao, J. P. Queralta, and T. Westerlund, Sim-to-real transfer in deep reinforcement
learning for robotics: A survey, in 2020 IEEE Symposium Series on Computational In-
telligence (SSCI), 2020, pp. 737-744. DOI: 10.1109/SSCI47803.2020.9308468.

70 of 73

https://www.nasa.gov/mission/artemis-iii/
https://www.nasa.gov/wp-content/uploads/2020/12/artemis_plan-20200921.pdf?emrc=f43185
https://www.nasa.gov/wp-content/uploads/2020/12/artemis_plan-20200921.pdf?emrc=f43185
https://www.nasa.gov/mission/artemis-i/
https://www.nasa.gov/wp-content/uploads/2020/08/a_sustained_lunar_presence_nspc_report4220final.pdf?emrc=5aa8ef
https://www.nasa.gov/wp-content/uploads/2020/08/a_sustained_lunar_presence_nspc_report4220final.pdf?emrc=5aa8ef
https://esamultimedia.esa.int/docs/HRE/Terrae_Novae_2030+strategy_roadmap.pdf
https://esamultimedia.esa.int/docs/HRE/Terrae_Novae_2030+strategy_roadmap.pdf
https://www.nasa.gov/wp-content/uploads/2016/08/2015_nasa_technology_roadmaps_ta_4_robotics_and_autonomous_systems_final.pdf
https://www.nasa.gov/wp-content/uploads/2016/08/2015_nasa_technology_roadmaps_ta_4_robotics_and_autonomous_systems_final.pdf
https://doi.org/10.1109/LRA.2021.3126904
https://doi.org/https://doi.org/10.1016/j.procs.2022.10.217
https://doi.org/https://doi.org/10.1016/j.procs.2022.10.217
https://www.sciencedirect.com/science/article/pii/S1877050922016891
https://doi.org/10.1080/01691864.2022.2029720
https://doi.org/10.1080/01691864.2022.2029720
https://doi.org/10.1080/01691864.2022.2029720
https://doi.org/10.1080/01691864.2022.2029720
https://doi.org/10.1109/SSCI47803.2020.9308468

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

A. B. Mortensen, E. T. Pedersen, L. V. Benedicto, L. Burg, M. R. Madsen, and S. Bggh,
Teacher-student reinforcement learning for mapless navigation using a planetary space
rover, 2023.

URL: https://arxiv.org/abs/2309.12807.

D. Chen, B. Zhou, V. Koltun, and P. Krdhenbiihl, Learning by cheating, in Proceedings
of the Conference on Robot Learning, L. P. Kaelbling, D. Kragic, and K. Sugiura, Eds.,
ser. Proceedings of Machine Learning Research, vol. 100, PMLR, 2020, pp. 66-75.
URL: https://proceedings.mlr.press/v100/chen20a.html.

A. B. Mortensen and S. Bggh, Rlroverlab: An advanced reinforcement learning suite
for planetary rover simulation and training, in 2024 International Conference on Space
Robotics (iSpaRo), 2024, pp. 273-277. DOI: 10.1109/iSpaR060631.2024.10687686.

A. B. Mortensen, From simulation to space: Advancing planetary space robotics with
machine learning, M.S. thesis, Aalborg University, 2024.

A. Ellery, Rover vision—fundamentals, in Planetary Rovers: Robotic Exploration of the
Solar System. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 199-262, ISBN:
978-3-642-03259-2. poI: 10.1007/978-3-642-03259-2_6.

URL: https://doi.org/10.1007/978-3-642-03259-2_6.

A. B. Andersen and M. W. Jgrgensen, Reinforcement learning for robotic rock grasp
learning in off-earth space environments, 2022.

URL: https ://projekter. aau . dk / projekter/ files / 473992583 / Paper___Reinforcement_
Learning_for_Robotic_Rock_Grasp_Learning_in_Off_Earth_Space_Environments.pdf.

A. Orsula, S. Bggh, M. Olivares-Mendez, and C. Martinez, Learning to grasp on the
moon from 3d octree observations with deep reinforcement learning, in 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2022, pp. 4112—
4119. por: 10.1109/IROS47612.2022.9981661.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, Second. The
MIT Press, 2018.

URL: http://incompleteideas.net/book/the-book-2nd.html.

S. Levine, A. Kumar, G. Tucker, and J. Fu, Offline reinforcement learning: Tutorial,
review, and perspectives on open problems, 2020. arXiv: 2005.01643 [cs.LG].

URL: https://arxiv.org/abs/2005.01643.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, Proximal policy opti-
mization algorithms, 2017. arXiv: 1707.06347 [cs.LG].

URL: https://arxiv.org/abs/1707.06347.

J. Schulman, S. Levine, P. Moritz, M. 1. Jordan, and P. Abbeel, Trust region policy opti-
mization, 2017. arXiv: 1502.05477 [cs.LG].

URL: https://arxiv.org/abs/1502.05477.

71 of 73

https://arxiv.org/abs/2309.12807
https://proceedings.mlr.press/v100/chen20a.html
https://doi.org/10.1109/iSpaRo60631.2024.10687686
https://doi.org/10.1007/978-3-642-03259-2_6
https://doi.org/10.1007/978-3-642-03259-2_6
https://projekter.aau.dk/projekter/files/473992583/Paper___Reinforcement_Learning_for_Robotic_Rock_Grasp_Learning_in_Off_Earth_Space_Environments.pdf
https://projekter.aau.dk/projekter/files/473992583/Paper___Reinforcement_Learning_for_Robotic_Rock_Grasp_Learning_in_Off_Earth_Space_Environments.pdf
https://doi.org/10.1109/IROS47612.2022.9981661
http://incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477

BIBLIOGRAPHY

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

M. M. Rahman and Y. Xue, Robust policy optimization in deep reinforcement learning,
2022. arXiv: 2212.07536 [cs.LG].

URL: https://arxiv.org/abs/2212.07536.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor, 2018. arXiv: 1801.01290
[cs.LG].

URL: https://arxiv.org/abs/1801.01290.

S. Fujimoto, H. van Hoof, and D. Meger, Addressing function approximation error in
actor-critic methods, 2018. arXiv: 1802.09477 [cs.AI].

URL: https://arxiv.org/abs/1802.09477.

A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, Carla: An open urban
driving simulator, in Conference on robot learning, PMLR, 2017, pp. 1-16.

S. Ross, G. J. Gordon, and J. A. Bagnell, A reduction of imitation learning and structured
prediction to no-regret online learning, 2011. arXiv: 1011.0686 [cs.LG].

URL: https://arxiv.org/abs/1011.0686.

N. Corporation, Nvidia isaac sim, 2025.

URL: https://developer.nvidia.com/isaac/sim, (Retrieved: 08-04-2025).

A. Serrano-Muioz, D. Chrysostomou, S. Bggh, and N. Arana-Arexolaleiba, Skrl: Mod-
ular and flexible library for reinforcement learning, Journal of Machine Learning Re-
search, vol. 24, no. 254, pp. 1-9, 2023.

URL: http://jmlr.org/papers/v24/23-0112.html.

M. Voellmy and M. Ehrhardt, Exomy: A low cost 3d printed rover, Oct. 2020.

G. Brockman, V. Cheung, L. Pettersson, et al., Openai gym, cite arxiv:1606.01540, 2016.
URL: http://arxiv.org/abs/1606.01540.

V. Murali, A. Ramananda, S. Pandit, and N. H, Design and development of four-wheel
steering for all terrain vehicle (a.t.v), vol. 7, pp. 1660—1668, Dec. 2020.

E. Byte, Study of ackerman’s steering gear mechanism, 2023.

URL: https://www.engineeringbyte.com/study-of-ackermans-steering- gear-mechanism,
(Retrieved: 04-05-2025).

X. Yu, P. Wang, and Z. Zhang, Learning-based end-to-end path planning for lunar rovers
with safety constraints, Sensors, vol. 21, no. 3, p. 796, 2021. poI: 10.3390/s21030796.
W. Feng, L. Ding, R. Zhou, et al., Learning-based end-to-end navigation for planetary
rovers considering non-geometric hazards, IEEE Robotics and Automation Letters, vol. 8,
no. 7, pp. 4084—4091, 2023. port: 10.1109/LRA.2023.3281261.

B.-J. Park and H.-J. Chung, Deep reinforcement learning-based failure-safe motion plan-
ning for a 4-wheeled 2-steering lunar rover, Aerospace, vol. 10, no. 3, p. 219, 2023. DOI:
10.3390/aerospace10030219.

K. Zhang, Autonomous mobile robot navigation in 3d rough terrain using deep reinforce-
ment learning, Master’s Thesis, University of Toronto, 2020.

72 of 73

https://arxiv.org/abs/2212.07536
https://arxiv.org/abs/2212.07536
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1802.09477
https://arxiv.org/abs/1802.09477
https://arxiv.org/abs/1011.0686
https://arxiv.org/abs/1011.0686
https://developer.nvidia.com/isaac/sim
http://jmlr.org/papers/v24/23-0112.html
http://arxiv.org/abs/1606.01540
https://www.engineeringbyte.com/study-of-ackermans-steering-gear-mechanism
https://doi.org/10.3390/s21030796
https://doi.org/10.1109/LRA.2023.3281261
https://doi.org/10.3390/aerospace10030219

BIBLIOGRAPHY

[37] R. Partsey, E. Wijmans, N. Yokoyama, O. Dobosevych, D. Batra, and O. Maksymets, Is
mapping necessary for realistic pointgoal navigation?, in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp. 17232-17 241.

[38] R. Egan and A. H. Goktogan, Deep learning based terrain classification for traversabil-
ity analysis, path planning and control of a mars rover, in Australasian Conference on
Robotics and Automation (ACRA-2021), Melbourne, Australia, 2021.

[39] H. Hu, K. Zhang, A. H. Tan, M. Ruan, C. Agia, and G. Nejat, A sim-to-real pipeline for
deep reinforcement learning for autonomous robot navigation in cluttered rough terrain,
IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 6569-6576, 2021.

[40] T. Tang, H. Du, X. Yu, and Y. Yang, Monocular camera-based point-goal navigation by
learning depth channel and cross-modality pyramid fusion, in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 36, 2022, pp. 5422-5430.

[41] T. S. Sgrensen, J. W. Wagner, and C. Z. G. Hostens, System and tool design for lunar
regolith manipulation, Aalborg Universitet, Project Report, 2024.

[42] T.I. L. P. Developers, Camera, 2025.

URL: https://isaac-sim.github.io/IsaacL.ab/main/source/overview/core-concepts/sensors/
camera.html, (Retrieved: 22-05-2025).

[43] A. Teichman, S. Miller, and S. Thrun, Unsupervised intrinsic calibration of depth sensors
via slam. In Robotics: Science and systems, Citeseer, vol. 248, 2013, p. 3.

[44] J. Ansel, E. Yang, H. He, et al., PyTorch 2: Faster Machine Learning Through Dynamic
Python Bytecode Transformation and Graph Compilation, in 29th ACM International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, Volume 2 (ASPLOS ’24), ACM, Apr. 2024. DOTI: 10.1145/3620665.3640366.

URL: https://docs.pytorch.org/assets/pytorch2-2.pdf.

[45] A. Gleave, M. Taufeeque, J. Rocamonde, et al., Imitation: Clean imitation learning im-
plementations, arXiv:2211.11972v1 [cs.LG], 2022. arXiv: 2211.11972 [cs.LG].
URL: https://arxiv.org/abs/2211.11972.

[46] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann, Stable-
baselines3: Reliable reinforcement learning implementations, Journal of Machine Learn-
ing Research, vol. 22, no. 268, pp. 1-8, 2021.

URL: http://jmlr.org/papers/v22/20-1364.html.

[47] L.Biewald, Experiment tracking with weights and biases, Software available from wandb.com,
2020.

URL: https://www.wandb.com/.

[48] S. Baselines3, Policy networks, 2025.

URL: https://stable- baselines3 .readthedocs.i0/en/master/guide/custom_policy. html,
(Retrieved: 31-05-2025).

73 of 73

https://isaac-sim.github.io/IsaacLab/main/source/overview/core-concepts/sensors/camera.html
https://isaac-sim.github.io/IsaacLab/main/source/overview/core-concepts/sensors/camera.html
https://doi.org/10.1145/3620665.3640366
https://docs.pytorch.org/assets/pytorch2-2.pdf
https://arxiv.org/abs/2211.11972
https://arxiv.org/abs/2211.11972
http://jmlr.org/papers/v22/20-1364.html
https://www.wandb.com/
https://stable-baselines3.readthedocs.io/en/master/guide/custom_policy.html

	Front page
	English title page
	Introduction
	Problem analysis
	Reinforcement Learning fundamentals
	Background
	Related work

	Problem Formulation
	Project Objectives

	Implementation
	Model implementation
	Introducing RGB-D as sensor input
	Teacher-student framework implementation

	Testing and evaluation
	Testing Framework
	Introduction of New Hardware Platforms
	RGB-D input modality
	Teacher-student training

	Discussion
	Conclusion
	Future work

	Bibliography

