SUMMARY

This project presents a novel distributed algorithm called Heuristic Meeting-based Patrolling (HMP) for multi-robot
patrolling in environments with limited communication and potential robot failures. The algorithm enhances a reactive
strategy by introducing periodic synchronization meetings among robots at shared locations to coordinate tasks, detect
failures, and reassign responsibilities.

The environment is partitioned so that each robot is assigned a subregion to patrol. Meetings occur at strategically
chosen points, allowing robots to share status and reorganize patrolling duties if a robot becomes unresponsive. A critical
feature of HMP is fault tolerance: when a robot fails, others detect the failure via missed meetings and adapt by taking
over its area. The algorithm includes mechanisms for rescheduling meetings, load balancing (annealing), and prioritizing
tasks to maintain efficiency even after faults.

Multiple HMP variants were implemented and tested using the Multi-Agent Exploration & Patrolling Simulator in
simulated maps (e.g., building and cave layouts), and their performance was compared against existing strategies like
Conscientious Reactive, Heuristic Conscientious Reactive, Single Cycle, and Expected Reactive. Metrics included average
and worst idleness—how long areas go unvisited. Results showed HMP performs competitively under normal conditions
and robustly adapts under failure scenarios. However, limitations were found in meeting time scheduling, which in some
cases caused cascading failures.

The study concludes by suggesting future improvements in adaptive scheduling and dynamic partitioning to enhance
HMP’s robustness and performance further.

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE 1

Distributed Multi-Robot Partition-based
Patrolling with Fault Tolerance

Puvikaran Santhirasegaram (psanth20)* - Mads Beyer Mogensen (mmogen20)* - Henrik van Peet
(hvanpe20)*
*E-mail: @student.aau.dk
Department of Computer Science, Aalborg University, 9220 Aalborg @st, DK

Abstract—

Patrolling tasks in multi-robot systems are essential for applications such as surveillance and monitoring, where minimizing the time
between visits to any given location is critical. This project presents Heuristic Meeting-based Patrolling (HMP), a novel distributed and
fault-tolerant algorithm designed to efficiently patrol partitioned environments with limited communication. Building on the Heuristic
Conscientious Reactive (HCR) strategy and incorporating periodic synchronization meetings, HMP enables decentralized coordination
and dynamic fault recovery through minimal communication. Robots exchange information at shared meeting points, enabling detection

of failures and redistribution of responsibilities. We evaluate HMP and its simplified variants in various simulated environments using
the Multi-Agent Exploration and Patrolling Simulator (MAEPS). The results demonstrate that HMP offers strong performance under
both normal and fault conditions, comparative to state-of-the-art patrolling strategies in terms of idleness metrics. However, we also
identify limitations in meeting scheduling under certain fault conditions, which can cause cascading failures. Based on these findings,
we discuss potential improvements for future work, including enhanced meeting scheduling and adaptive partitioning strategies.

Theme: P10 — Specialisation in Distributed Systems
Project Period: 01-02-2025 — 13-06-2025

Project Group: cs-25-ds-10-17

Page number:[T0]

Date of completion: June 13, 2025

Index Terms—Multi-robot systems, Patrolling, MAEPS, Partitioning.

1 INTRODUCTION

ATROLLING with multi-robot systems is a critical task
P in applications like surveillance and monitoring, where
minimizing the time any location goes unvisited is key.
Many existing algorithms assume ideal conditions—such
as full communication and no failures—which limits their
practical use.

In this paper, we propose [Heuristic Meeting-based Pa-|
a distributed and fault-tolerant patrolling
algorithm based on partitioning the environment and coor-
dinating robots through scheduled meetings. Building on
the [Heuristic Conscientious Reactive [1] (HCR)| strategy
and drawing inspiration from the synchronization system
developed in [8]. Our approach enables robots to patrol local
areas efficiently while meeting periodically to exchange in-
formation and detect failures. The required communication
range is minimal, due to the robots meeting together at
meeting points to communicate. We introduce variants of
the algorithm with different fault-handling strategies and
evaluate them in simulation across various map types and
failure scenarios.

2 RELATED WORK

Several studies have investigated the use of a multi-robot
system for patrolling an area [25| 15]. Patrolling algorithms
can be broadly classified into the following categories:

cyclic strategies, distributed coordination, centralized co-
ordination, stigmergy-based methods, and learning-based
approaches. This section reviews related work following the
same order.

In [10], cyclic path generation in combination with event
handling is explored. The paper claims its algorithms to
be robust and specifies what to do in case of robot failure,
however, it does not discuss how to detect robot failure.

Cyclic strategies are also used in [23], where two pa-
trolling strategies are proposed that incorporate vertex
weighting. Both strategies utilize a cyclic path combined
with a stop-go mechanism; however, neither is capable of
handling robot failures.

[SingleCycle [2] (SC)| is a cycle algorithm, which calcu-
lates the TSP-path for the vertices and follows this cycle.

Caraballo et al. [5] investigate how multi-robot systems
can achieve fault-tolerant terrain patrol despite limited com-
munication range. The study focused on creating cyclic area
partitions and synchronizing the robots based on the timing
of their closest encounters. It also explored the impact of
various ”“shifting” strategies, where robots take over adja-
cent partitions when needed.

Random Reactive [18] (RR)| randomly walks the graph
from vertex to vertex. The |[Conscientious Reactive [18] (CR)|
algorithm prioritizes visiting the neighboring vertex with
the highest “idleness” (time since last visit). is an
extension of [CR] that also takes the distance into account

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE 2

in addition to the idleness when deciding which vertex to
visit next.

Portugal et al. [27] proposed two distributed multi-
robot patrol algorithms based on a Bayesian framework:
the Greedy Bayesian Strategy (GBS) and the State Ex-
change Bayesian Strategy (SEBS). GBS directs each robot
to independently maximize its local utility—defined as
the ratio of instantaneous idleness to the estimated travel
time—without requiring communication with other robots.
In contrast, SEBS enhances decision-making by allowing
robots to exchange their intended movements with nearby
peers, thereby accounting for the presence and actions of
other robots. This coordination typically results in supe-
rior performance compared to GBS and earlier distributed
strategies, primarily by reducing inter-robot conflicts. How-
ever, SEBS’s effectiveness can degrade when the number
of robots varies dynamically, as it relies on parameters
that are sensitive to the robot population size. Building
on the concept of declaring intention, Yan and Zhang [32]
developed a similar approach called [Expected Reactive [32]]
that minimizes dependency on such parameters, but
with equal performance to SEBS.

Patrolling strategies that are centralized or require global
communication between agents clashes with real-world lim-
itations and are therefore not considered in this paper [2, 6].

Another direction of patrolling algorithms stores infor-
mation in the map, referred to as stigmergy, markers, or
flags. This requires robots to be equipped with some kind of
information storage device and capable of deploying those
on the map. We will not focus on these types of algorithms,
such as Reactive with Flags from [1], and other stigmergy
patrolling algorithms, [33, 4,12, 13, 9.

A number patrolling algorithms have also been devel-
oped which make use of reinforcement learning, but the
robots may not have the onboard compute to support
running reinforcement learning or neural network-based
policies, which is why these are not covered in this paper
[21} 22} |24, |26, 29].

Extensive research has been conducted on distributed
reactive algorithms, particularly focusing on reducing robot
interference through intention sharing, assuming a limited
communication range. Several studies have also explored
the development of cyclic patrolling strategies. In the con-
text of cyclic pathing, the integration of synchronized in-
formation systems into multi-robot patrolling has been ex-
plored. However, the use of reactive strategies incorporating
synchronization points for information sharing—similar to
a synchronized information system—has not yet been ex-
plored.

3 PROBLEM FORMULATION

In this work, we consider a team of £ > 0 identical robots,
each capable of sensing, communication, and movement.
The following combined assumptions apply to both the
robots’ capabilities and the characteristics of the environ-
ment to be patrolled.

To maintain realism, we assume that robots have a
limited communication range with reliable communication.
Additionally, robot failures are considered possible, as this

reflects real-world conditions — a system unable to tolerate
such failures would be inherently fragile.

For sensing, we assume that full coverage of the envi-
ronment can be achieved by simultaneously placing robots
at a set of n vertices within the configuration space. That
is, if there are k available robots, and n = k, each robot is
positioned at one of the n vertices, and their combined sen-
sor footprints would entirely cover the environment. Each
of these vertices is essential for complete coverage. Since
n > k, at least one robot must visit multiple viewpoints
over time to ensure continuous monitoring of the entire
environment. We assume a limited sensing (visibility) range,
which is factored into the generation of vertices used to
cover the environment during patrol.

The area to be patrolled is modeled as an undirected,
connected graph G = (V, E) where V represents the set of
vertices to be visited by the robots and £ C V xV represents
the set of edges between the vertices. Each edge is weighted
by the time it takes to travel between its nodesﬂ

¢;,; is the cost of edge (3, j) (1)

This graph serves as the topological map for the patrolling
task and is assumed to be known in advance for the robots.

For efficient patrolling of the environment, the vertices
are divided into a set of assignments denoted A C 2V
to distribute the workload among the robots. Hence, an
assignment a; is a subset of V. All vertices must be a part of
at least one assignment:

V= a @)
a; €A
Ideally, assignments consist of neighboring vertices.
Each robot has local knowledge of the other robots” assign-
ments. This is modeled as the following mapping;:

a:A—=R 3)

Initially, the mapping is bijective, a robot has only one
assignment and vice-versa. Once a robot becomes faulty,
and hence unable to patrol, its assignment is reassigned
to another active robot. As a result, the mapping becomes
non-injective (a single robot may be responsible for multiple
assignments), but it must remain surjective to ensure that all
assignments, thus all vertices, continue to be patrolled.

In this work, the evaluation metric used to compare the
patrolling algorithms is the instantaneous graph idleness
and the worst graph idleness. These evaluation metrics are
some of the most used in the field of studying patrolling
algorithms [28, (15, 19]

The instantaneous vertex idleness (or simply idleness) of
a vertex v at time ¢ is defined:

iv (t) =1 —tiast (4)

where t;,s¢ is the last time v was visited. In other words,
the instantaneous graph idleness is the duration for which
vertex v has remained unvisited. Given the instantaneous
vertex idleness, the instantaneous graph idleness at tick ¢ is

given as:
Lvev io(t)

IG(t) = |V|

©)

1. ¢;; =0, and ¢; ; = c; ; as the graph is undirected.

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE 3

Symbol Explanation
G = (V,E) The patrolling graph
v The set of vertices
E CV xV Theset of edges
Ci,j Travel time between vertex ¢ and j
R Set of robots
A Set of assignments
a: A— R Mapping of assignment to robot
Ar Set of assignments robot r patrols
tnow Current time
tiast Last time vertex v was visited
v (1) Instantanous idleness of vertex v at time ¢
Ig(t) Instantanous idleness of graph G at time ¢
Ic Average idleness of graph G over period T'
IWg Worst idleness of graph G in period T’
MCV Set of meeting points
Mnext The next meeting time of meeting m
Mmneztnext The next meeting time of meeting m after mnezt
Ry CR Set of robots that should attend meeting m
D, Max travel time between 2 vertices in assignment a
AT Min time between two meetings in assignhment a
Aggin Min time between two meetings in any assignment
Gy Meeting graph
c(m) The color of meeting m
Teyele Meeting cycle
ply Robot r’s meeting time proposal

TABLE 1: Symbol Reference

That is, the average idleness across all vertices at that
moment. The average idleness of graph G over period T is
computed as the mean of the instantaneous graph idleness
values across the period T, defined as:

T — EI:O IG(t)
“ 7]

The worst idleness of graph G, IW¢, over period T'
represents the maximum instantaneous vertex idleness ob-
served during period T

Wea =

(6)

iy (T 7
ueVI}loagxthZU() @)
This paper aims to develop a multi-robot patrolling strat-
egy which minimizes the average idleness and the worst
idleness in this problem setting.

4 HMP PATROLLING

In this section we propose a new algorithm inspired by [8].
The fundamental idea is to create a synchronized system
like [8], but instead of covering the area through cyclic
paths, we modify it by adding meetings and constraining
its next vertex method by only walking freely, if it does
not immediately have to head to a meeting. The following
subsections describe the different parts of the algorithm in
more depth.

(a) Original graph: All vertices are con-
nected to each other, but for readability
only some edges are shown.

| n

NN

(| ‘/
2 o f
(b) I;artitioned graph

‘\ /\ SN

o e | A ‘\f/ f

(c) Partitions are connected together with
shared vertices (meeting points).

Fig. 1: Partitioning and Meeting Point Generation. These
graphs are for illustration purposes. Real results might
differ.

4.1 Meeting

Given that each robot is patrolling a distinct area of the
environment, if a robot becomes faulty, its assigned area
will be unpatrolled. Furthermore, due to the limited com-
munication range, robots can not detect fault or coordinate
with other active robots over long distance. To strengthen
the connection between robots, certain v € V are designated
as meeting point between several robots. These meeting
points M serve as a spot to share information amongst the
robots attending the meeting and detect faulty robots, as
they would not be able to attend. A each meeting m the next
two meeting times are agreed upon. For a meeting m, the
next two meeting times are denoted as M y,ez; and Mpeatnest-
Hence, mpeqt is the next meeting time for meeting m, and
Mpextnest 15 the next meeting time for meeting m after
Mpext. Additionally, R,,, € R denotes the set of robots that
should attend the meeting m.

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE 4

/ AN

| g Z |

(a) Meeting graph

(b) Colored meeting graph

Fig. 2: Graph transformations showing the simplified meet-
ing structure (left) and original colored partitioning (right)

4.2 Initial Step

Before the patrolling can begin, each robot must know the
set of assignments .4 and the mapping « in order to identify
its area to patrol. Additionally, the robots must know when
and where the initial meetings are held. This involves three
steps.

4.2.1 Partition graph

To create A, G is partitioned into P = {p1,p2, -, P[]},
where each partition p; C V. This means that the assign-
ment a; corresponds to p;. Any partition algorithm can be
used for this part. In this work, we chose the partitioning
algorithm that was implemented by the other master group
. The partitioning algorithm is the K-way partitioning al-
gorithm that uses spectral bisection algorithm, both defined
in [16].

In this case, the K would be | R|. An example of this step
is represented in the transition from to an graph
[Figure 1b|that is partition.

4.2.2 Meeting point generation

A meeting m is held between robot r; with a; and r;
with a; at a vertex selected from the intersection of their
respective assignments a; and a;. That is, if the sets of
vertices in a; and a; have a non-empty intersection, one
of these shared vertices is chosen as the meeting point. In
cases a; N a; = 0, a meeting can still be arranged if the
assignments are adjacent. Specifically, a meeting is possible
if there exists an edge between any vertex assigned to robot
7 and any vertex assigned to robot j in the reduced graph
Grnn. The reduced graph Gryny = (V,Ernn) shares
the same vertices v as (G, but contains a subset of the
edges E from G. Ernp is constructed using the reverse
nearest neighbors (RNN) method. That is, an undirected
edge (v;,v;) € Ernn exists if v; is the nearest neighbor
of v;, or vice versa. Hence, given that v,, € a; and v, € a;
, if there is exists an edge (vy,v,) € Ernn, either v, or v,
becomes the meeting point between a; and a;. The decision
for selecting a meeting point among v,, or v, is based on a;
and a;.If |a;] > |a;|, then v, is selected as the meeting point.
Furthermore, v, is added to a;. This strategy gives priority
to the larger assignment, further reducing the load on that

assignment. illustrates the result of the meeting
point generation from derived

4.2.3 Meeting time generation

The first initial meeting times Mycqyr and Mpeztnest for
m € M need to be assigned. A key consideration is to ensure
that the meeting times are synchronized to prevent conflicts
- no robot should attend multiple meetings simultaneously
at different vertices. Furthermore, the interval between con-
secutive meetings must be carefully decided. If the interval
is too short, the robot may not have sufficient time to patrol
its assigned area effectively while also attending meetings.
Conversely, if the interval is too long, the detection of faulty
robots may be delayed, leading to inefficiencies in the global
patrolling performance. Furthermore, the interval also de-
pends on the robots” assignment. An assignment covering
a larger area typically requires longer intervals between
meetings to adequately patrol the area. On the other hand,
if a robot is involved in many meetings, shorter intervals
may be preferable. In such cases, the robot naturally patrols
its area while moving between various meeting points, and
by the time the robot returns to the same meeting point, it
should have sufficiently covered its assigned area.

Hence, we have defined the minimum meeting interval
At for a; to be:

. a;
AL = il 1. D; 8
' [MH ' ®
This ensures that there is time to visit all vertices in a assign-
ment between two consecutive meetings for m. M,, is the
set of meetings in assignment a;. D; denotes the maximum
shortest-path time between any two distinct vertices within
a;, and is given as follows:
D; = max c;; ©)
uFv

Given the minimum meeting intervals, the globally

meeting intervals AtZ;% ., is given as:
AtZin = max At (10)

i€l

Given A" . weneed to schedule such that no robot is
attending two meetings simultaneously at different vertices.
This scheduling constraint can be modeled as a vertex
coloring problem, more specifically, finding the chromatic
number of the meeting graph Gy = (M, Ear) [31]. Each
node in G represents m € M. An undirected edge
(m;, m;) € Ep exists if there is at least one robot that must

attend both meetings m; and m;. illustrates the
meeting graph derived from [Figure 1¢

By applying a vertex coloring algorithm to G, each
m € M is assigned a color ¢(m) € N such that adjacent
nodes receive different colors. In this work, we have chosen
the Welsh-Powell algorithm [17]. Each color index corre-
sponds to a distinct time in the meeting cycle. A meeting
cycle Teycie is defined as the duration between two consecu-
tive attendances at the same meeting point. By mapping the
color indices to meeting times, My, for m is given by:

min

Mpext = AL opar - C(m) (11

shows the resulting colored graph of the meet-
ing graph in Hence, the meeting time Myeptnext

for meeting m is:

(12)

Mpextnext = Mneat + Tcycle

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE 5

where
T, = max m 13
cycle me]}\} next ()
That is, the highest m,,c,; among the meetings defines the
meeting cycle.

4.3 Patrolling mechanism
Given that the robot knows its assignment and the meeting

it must attend, outlines the robot’s core behav-
ior.

While the robot is not participating in a meeting, it
patrols its assigned area. To determine the vertex v to patrol
in lines 2 and 9 in we apply the logic from
Unlike pre-computed routes, this approach simplifies
the annealing of vertices, as it eliminates the need to re-
compute routes each time the robot’s assignments change.
Additionally, since the interval between consecutive meet-
ings at m may vary, relying on pre-computed routes requires
recalculations after each meeting.

At the beginning of and after the robot has

attended a meeting, the next meeting m is determined. As
shown on lines 5-7 in the algorithm checks
whether the robot can visit v before proceeding to m. If that
is not possible, it should go straight to the m, otherwise
it misses the meeting m. If possible, the robot moves to v,
and when reaching v, it marks v as being visited, and the

execution of [Algorithm 1| continues.

Algorithm 1 Main Patrolling algorithm

1: r ¢ this robot

2: m < NEXTMEETING()

3: v <~ NEXTSUGGESTEDVERTEX()

4: loop

5: vy <— ESTIMATETRAVELTIME(r, v)
6: my¢ < ESTIMATETRAVELTIME(v, m)
7: if tnow + v + My < Mpext then

8: MOVETO(v)

9: v < NEXTSUGGESTEDVERTEX()
10: else
11: MOVETO(m)
12: ATTENDMEETING(7, m)
13: m < NEXTMEETING()
14: end if
15: end loop

4.4 Finding the Next Meeting

This section describes how NextMeet ing works.

When deciding which meeting point to visit next, all
meeting points are put into 1 of 3 priorities, with priority
1 being the highest and 3 the lowest:

Priority 1 mpeq: has passedﬂ but m,eztnezt has not. This is
top priority as this allows the robot to report that it is
still alive and patrolling its assignments.

Priority 2 m,,¢.+ has not passed and thus my,czinert has also
not passed.

2. To determine whether or not the time has passed, travel time is
also taking into account. That means if we cannot get there in time we
say that it has passed.

Algorithm 2 AttendMeeting(r, m)

: Rezpected — Rm \ r
: BROADCASTATTENDING(r, ™M)
Rttending < RECEIVEATTENDING(r, m)
: while Rerpected 7é Rattcnding A tnow < Mpext do
Wait for 1 tick
BROADCASTATTENDING(r, m)
Rttending < RECEIVEATTENDING(r, m)
end while
: NEGOTIATENEXTMEETING()
- if Rexpected 7é Rattending then
HANDLEMISSINGROBOTS(Rcppected \ Rattending)
: end if
: DOANNEALING()

O XN

[Y
W N PO

Priority 3 Both mpest and Mpextneat has passed. This is
the lowest priority as the robot’s obligations with these
meeting points cannot be met.

The next meeting point is determined by these priorities.
The meeting point in each priority is chosen based on the
minimum of the revelant time for that priority (either myex:
OF Mpextnest-) HOWever, a lower-pritority meeting point is
chosen when there is time to visit it before visiting a higher
priority meeting point.

4.5 Agreeing on Next Meeting Times

This describes how NegotiateNextMeeting works.

Whenever robots meet at a meeting point, they have to
decide the Mmyeptnest meeting time. Each robot r proposes
a time (pt,) for the meeting point, which is the earliest
time the robot can attend the meeting, taking all of its
other meetings into consideration. They use the following
equation, where M, is the set of meeting points robot r has,
and A, is the assignments robot r patrols:

pt, = mMax Myestnest + E A
meM,. i
€A,

(14)

R, is the set of robots that attend meeting m. The next
next meeting time is decided by choosing the maximum
proposed meeting time:

(15)
(16)

Mnpext = Mnextnext

Mnpeztnect = MaAX Ply
r€R,

4.5.1 Renegotiation

Sometimes both Mpeqzt and Myepinest Need to be renegoti-
ated. This happens when one or multiple robots participat-
ing in the meeting are taking over an assignment, or the
robot is visiting a priority 3 meeting.

When a robot is taking over an assignment, it will have
to tell its neighbors that the next meeting time must be
rescheduled as it has to visit the assignment it is taking over,
and it must have the time for this. It will also tell the robots
at every meeting that the m,¢4nc4+ Meeting time is not good
and must be renegotiated. Fault detection and handling will
be described in the following section.

When a robot is visiting a priority 3 meeting it assumes
that no other robot will be there at the meeting, as no usable
meeting time information is available.

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE 6

In both of these cases we need to figure out a new my, ey
and Mpegtnest- This works the same as when doing a normal
agreement, but instead of setting Mmpextnest, Mnear i set
instead.

Mpext = TIgaX Dty (17)

Setting Myeatnest t0 Mpexrt + 10 ensures a quick nego-
tiation of a real meeting time. However, this approach is
somewhat ad hoc and may warrant a more robust solution.

This will be expanded on in[section 7}

4.6 Fault-detection and handling

Whenever a robot does not show up the meeting point,
another robot will begin to take over its assignment. Here
the robot with the lowest id that is not currently taking over
another robot’s assignments is selected. If no such robot can
be found, the missing robot is ignored. It will most likely be
taken care of next meeting time.

When a robot begins to take over another robot’s as-
signments, it first goes to all its current meeting points in
its assignments and forces them to renegotate the meeting
times, so there is time to visit the assignments that the robot
is taking over. This is explained in [subsubsection 4.5.1}

When hitting the meeting point that originally had the
missing robot, it checks if another robot with a lower robot
id has already taken over the assignments. If this is the
case, the robot abandons taking over the assignments, and
continues as normal. Otherwise, it will visit the new meeting
points in the overtaking assignments.

4.7 Meeting Early

The process can be optimized by holding the meeting if
every robot is there early. When a robot is at a meeting
point early, it continuously broadcasts a message, saying it
is at the meeting point and at what time it expects the other
robots to be there at. If all robots arrive before the agreed-
upon meeting time, the meeting is held early. Otherwise, the
meeting is held at the planned meeting time.

4.8 Annealing

It is inefficient when a robot has many assignments com-
pared to its peers. This will increase the worst idleness.

To mitigate this, when the robots meet, they compare
how many assignments they have. If a robot has 2 or more
assignments than another, it gives a assignment to that
robot. This spreads out the assignments which will decrease
the worst idleness. This uses the same mechanism as fault-
detection and handling in how assignments are taken over.

4.9 Other HMP Variants

We have also developed three variations of the al-
gorithm, drawing inspiration from the strategies presented

in [8] and [5]. These variants are [HMP Random Takeover|
HMP-RT)| [HMP Quasi-random Takeover (HMP-QT)| and
HMP Immediate Takeover (HMP-IT) all of which do not

coordinate with their own neighbors before taking over an
adjacent assignment, and always hold meetings at a fixed
interval (Atg%). In [HMP-RT} during a meeting, regard-

less of whether any robot is missing, each robot randomly

(a) Screenshot of a 50x50 build-
ing map.

(b) Screenshot of a 50x50
cave map.

Fig. 3: Map types available in MAEPS.

selects one of the assignments associated with the meeting
point to patrol, which may include the assignment it is
currently in. In if a robot is missing during a
meeting, there is a 50% chance that the other robot will
either take over the missing robot’s assignment or stay
in its current assignment. Finally, behaves as its
name suggests: it immediately takes over a neighboring
assignment if the corresponding robot is missing. These
three variants are studied to evaluate the performance of
more simplistic versions of[HMP} Due to their fixed meeting
interval, no priorities are required [subsection 4.4} neither
is NegotiateNextMeeting |subsection 4.5, and robots
switch between assignments based on a decision-strategy
(random, quasi or immediate) instead of using annealing

In addition to the takeover variants a new variant with
a wholly different approach was developed. This variant
called [HMP Single Meeting Point (HMP-SMP)| modifies the
meeting point placement algorithm, and how to determine
when to visit the meeting. It works by only placing a
single meeting point at the vertex which is the closest to
all assignments. The meeting is then held at a fixed interval
(Atzin). When a robot dies, its assignments are taken over
by the robot with the least amount of assignments. As the
fixed meeting interval does not change, the meeting point
might be visited multiple times before all vertices in a robots
assignment is visited.

5 EXPERIMENTS

Here, we present the results of experiments carried out
using the [Multi-Agent Exploration & Patrolling Simulator]

(MAEPS), which has been extended to have all the features
required for this paper, the implementation details can
be found in Appendix [A] These experiments evaluate the
expected performance of the algorithms proposed in this

study described in For comparison the experi-
ments are also run with the following algorithms from other

implemented as it act as the baseline for the proposed

algorithms, described in [section 4}

We use two types of maps, building maps and cave

maps, as illustrated in [Figure 3|

5.1

Communication between robots is line-of-sight. If a robot
cannot directly see another robot, they cannot communicate.

Communication

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE 7

However, if robot a can see robot b and b can see robot ¢, but
¢ cannot see a, then a and ¢ can still communicate. This is
because the robots function as relays.

5.2 Repeated Executions and Metric Values

For each simulation configuration we have run 100 simula-
tions using the seeds 1 to 100 for the map generation. For
each of the metrics (average idleness and worst idleness),
we computed their values for every execution. We then
averaged these values across all seeds to represent the
performance of the given simulation configuration.

5.3 Analysis Procedure

In the following subsections, we analyze the results from
different perspectives.

Firstly, in [subsubsection 5.4.1} experiments are conduct
with different map sizes and robot count. This provides
information about the ratio between the map size and
the robot count, which is used to determine the standard
parameters for the subsequent experiments. The objective is
to identify an optimal number of robots per map size that
provides a fair baseline for all compared algorithms. This
ensures no algorithm is more favored. The optimal num-
ber of robots is evaluated qualitatively, where diminishing
returns on worst idleness is too great.

Secondly, in [subsubsection 5.4.2) we analyze the per-
formance of the algorithms using the standard parameters
showing their performance for each tick in a no faulty
condition.

Lastly, in section [subsubsection 5.4.3} the fault tolerance
of the algorithm is assessed. This is done by killing robots at
specific times. We have chosen 4 different scenarios in which
different amount of robots are killed. The first scenario tests
killing a single robot. The second scenario kills two robots
with breathing room between faults. Third scenario kills
two robots right after each other, testing how the algorithm
handles multiple simultaneous robot failures. Last scenario
kills three robots with breathing room. The exact parameters
are as follows:

1) Kills a robot at tick 75000

2) Kills a robot at tick 75000, and 150000

3) Kills a robot at tick 150000 and 150150

4) Kills a robot at tick 75000, 150000, and 225000

5.4 Experiment Results
5.4.1 Experiment 1: Standard Parameters

As explained in Appendix [C|the performance of the simula-
tor is highly dependent on map size. Therefore, choosing
a map size that allows, in reasonable time, to run the
experiments on a wide range of seeds, is paramount. Here
we chosen a map size of 150 as bigger map sizes become
computationally infeasible with the combinational complex-
ity that our experiments have. For the robot count, we
assessed that 8 robots marked the spot where diminishing
returns became significant based on[Figure 14{and [Figure 15|
Therefore, the standard parameters were determined to be a
map size of 150x150 and a robot count of 8.

8,000 |-
» 6,000 |
5
[
ks
= 4,000|
z
o
= D e e Ao oo G A oS S
2,000 - T . .
0 [[{0\ [{0\ |
N o N N o)
Tick ©
:\/Q
— PHCR —— CR — ER Simplified
HMP — HCR—— HMP-IT

HMP-QT — SC —— HMP-SMP

Fig. 4: Experiment 2: Worst Idleness over time on the Build-
ing Map

5.4.2 Experiment 2: Performance Comparison In No Fault
Settings

Using the standard parameters found in experiment 1, this
experiment evaluates the performance of the algorithms in
a non-faulty setting. This experiment runs with 50 seeds
for both the BuildingMap and CaveMap. shows
the worst idleness of each algorithm on the building map.
Some algorithms are excluded from the figure, such as Ran-
dom reactive, due to a significantly higher worst idleness.
Furthermore, displays results only up to 200,000
ticks, as all algorithms have reached a stable state by that
point, and the worst idleness values no longer change
significantly. This exclusion provides a clearer comparison
view. A simplified version with the cave map is not shown
here, as it is very similar to the building map. The full results

of experiment 2 are provided in and [19]in
Appendix D}

The experiment shows that in non-faulty conditions,
that the algorithm competes with and even beats the
reactive algorithms. [PHCR| beats everyone as expected as it
stays within its partition.

5.4.3 Experiment 3: Fault Tolerance

In this experiment, we evaluate how the algorithms perform
in faulty conditions. Like the previous experiment, some
algorithms has been omitted because their worst idleness
made the figures unreadable. The full results of this exper-
iment can be seen in figures 20| through [B5] The algo-
rithm does seem to cope with faults, returning to baseline
after a considerate amount of time. This is especially evident
in where the algorithm cannot recover in time
before another fault, but does seem to be going down after
the 3rd fault. The worst idleness does spike considerably,
but on the cave map it does beat most if not all

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE 8

10
[
4 [
(92}
]
=
2
=z
Z 2
59l
=
O [
| | | | | | |
NS N v qjo B
Tick o
.\/Q
—— CR ——ER Simplified — HMP
HCR —— HMPIT — SC
HMP-SMP - Fault

Fig. 5: Experiment 3: Worst Idleness over time on the Build-
ing Map on with fault at tick 75000, 150000, and 225000

algorithms, when it has fully recovered from the fault. The
HMP-IT| performed the best of the “takeover”-variants, but
still performed worse than all the other algorithms except

RRI

6 DiIsSCUSSION

does not work as expected. This is due to how they
schedule meeting times in the case where they need both a
NeW Mpegt and Myepinest, Which places both meeting times
next to each other. The problem with this is that if a fault
is detected when meeting at that meeting point, there is no
time to go to the neighbors and tell them that it is going
to take longer. This introduces a cascading failure where
robots constantly are not showing up to the meetings they
are supposed to show up at. These failures then exacerbates
the problem as when the robots tell their neighbors they
are going to take longer they have to agree on both a new
Mpert ANA My erinest, Which would schedule them next to
each other. For any robot its meetings must all be visited
once before they can be visited again. That is if a robot has
meeting points z, and y the following sequence is illegal:
zyyx. A legal sequence would be zyxy.

The “takeover”-variants, which are simplified versions
of performed poorly in faulty conditions, a lot
worse than and all other algorithms except
This proves the effectiveness of the priorities of meet-
ings, Negot iateNextMeeting method and annealing de-

scribed in

-10%

Worst Idleness

Q N v
Tick o
.\/Q
—— CR ——ER Simplified — HMP
HCR —— HMPIT — SC
HMP-SMP - Fault

Fig. 6: Experiment 3: Worst Idleness over time on the Cave
Map on with fault at tick 75000, 150000, and 225000

7 CONCLUSION & FUTURE WORK

We have developed a novel distributed, and fault-tolerant
patrolling algorithm. The algorithm does effectively pa-
trol in faulty-conditions, but it does need a considerable
recovery time before the worst idleness goes back down
to pre-fault idleness. The algorithms performs comparably
to existing state-of-the-art distributed reactive and cyclic
algorithms. However, there is still room for improvement.

As discussed in does not work as ex-
pected due to it mangling the meeting order, by scheduling
Mpext aNd Mpegtneqst right next to each other. To fix this,
the algorithm must be able to schedule the meetings in such
a way that the sequence always remains legal, or that it
eventually will become legal.

[HMP-SMP|could be improved by recalculating partitions
whenever a dead robot is detected. This would ensure that
a robot does not have way more work than any other, which
would improve the worst idleness. This also fixes the issue
where the meeting point might be visited multiple times
before a robot has visited all vertices in its assignment.

ACKNOWLEDGMENTS

We would like to express our sincere gratitude to Michele
Albano, Giovanni Bacci and Timothy Robert Merritt for su-
pervising this project and providing invaluable insights and
expertise that were essential to achieving the objectives of
this paper. We are also thankful for the continuous feedback
and support received throughout the course of the project.
We would like to thank the masters group consisting
of Casper Nyvang Serensen, Christian Ziegler Sejersen and

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE 9

Jakob Meyer Olsen, for their contributions to the MAEPS
project, some of which we have incorporated into our paper.
To clarify the distinction between our work and theirs, we
have marked any code originally developed by them with
an f.

Al tools were utilized during the development of this
work. Grammarly[14] was employed for proofreading,
while ChatGPT[20] and GitHub Copilot[11] assisted with
code writing and debugging.

The complete source code for this project is available on
GitHub: |https://github.com/cs-24-sw-9-xx/MAEPS|

REFERENCES

[1] A Almeida et al. “Combining idleness and distance to
design heuristic agents for the patrolling task”. In: II
Brazilian Workshop in Games and Digital Entertainment.
2003, pp. 33-40.

[2] Alessandro Almeida et al. “Recent Advances on
Multi-agent Patrolling”. In: Advances in Artificial In-
telligence — SBIA 2004. Ed. by Ana L. C. Bazzan and
Sofiane Labidi. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 474-483. ISBN: 978-3-540-28645-
5.

[3] Burst Compiler Manual — Compilation. Version Num-
ber: 1.8. Unity Technologies. URL: https: / / docs.
unity3d . com / Packages / com . unity. burst@1.8 /
manual/compilation.html.

[4] Giorgio Cannata and Antonio Sgorbissa. “A minimal-
ist algorithm for multirobot continuous coverage”. In:
IEEE Transactions on Robotics 27.2 (2011). Publisher:
IEEE, pp. 297-312.

[5] Luis E. Caraballo et al. “Stochastic strategies for pa-
trolling a terrain with a synchronized multi-robot sys-
tem”. In: European Journal of Operational Research 301.3
(2022), pp. 1099-1116. 1SSN: 0377-2217. DOI: https:/ /
doi.org /10.1016 /j.ejor.2021.11.049. URL: https:
/ / www . sciencedirect . com / science / article / pii /
50377221721010006.

[6] Y.Chevaleyre. “Theoretical analysis of the multi-agent
patrolling problem”. In: Proceedings. IEEE/WIC/ACM
International Conference on Intelligent Agent Technology,
2004. (IAT 2004). Sept. 2004, pp. 302-308. DoTI: [10.
1109 /1AT.2004.1342959, URL: https:/ /ieeexplore.ieee.
org/document/1342959 /?arnumber=1342959 (visited
on 10/10/2024).

[7] Nicos Christofides. “Worst-case analysis of a new
heuristic for the travelling salesman problem”. In:
Operations Research Forum. Vol. 3. Issue: 1. Springer,
2022, p. 20.

[8] Jose-Miguel Diaz-Banez et al. “A General Framework
for Synchronizing a Team of Robots Under Commu-
nication Constraints”. In: IEEE Transactions on Robotics
33.3 (June 2017). Conference Name: IEEE Transactions
on Robotics, pp. 748-755. 1SSN: 1941-0468. DOI: [10.
1109 / TRO.2017.2676123. URL: https:/ / ieeexplore.
ieee.org / document / 7888572 / 2arnumber = 7888572
(visited on 10/15/2024).

[9]

(10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

[22]

(23]

Shigeo Doi. “Proposal and evaluation of a
pheromone-based algorithm for the patrolling
problem in dynamic environments”. In: 2013 IEEE
Symposium on Swarm Intelligence (SIS). 1EEE, 2013,
pp- 48-55.

Yehuda Elmaliach, Noa Agmon, and Gal A Kaminka.
“Multi-robot area patrol under frequency constraints”.
In: Annals of Mathematics and Artificial Intelligence 57
(2009). Publisher: Springer, pp. 293-320. 1SSN: 1012-
2443,

Github Inc. GitHub Copilot. en. 2025. URL: https:/ /
github.com/features/copilot (visited on 01/16/2025).
Arnaud Glad et al. “Self-Organization of Patrolling-
Ant Algorithms”. In: 2009 Third IEEE International
Conference on Self-Adaptive and Self-Organizing Systems.
2009, pp. 61-70. DOI:|10.1109/SAS0.2009.39.

Arnaud Glad et al. “Theoretical study of ant-based
algorithms for multi-agent patrolling”. In: ECAI 2008.
I0S press, 2008, pp. 626—630.

Grammarly Inc. Grammarly. en-US. URL: https: / /
www.grammarly.com/| (visited on 01/16/2025).

Li Huang et al. “A survey of multi-robot regular
and adversarial patrolling”. In: IEEE/CAA Journal of
Automatica Sinica 6.4 (July 2019), pp. 894-903. ISSN:
2329-9274. DOI:10.1109/JAS.2019.1911537.

Pavla Kabelikova. “Graph Partitioning Using Spectral
Methods”. en. PhD thesis. Ostrava, Czech Republic:
Technical University of Ostrava, May 2006.

Velin Kralev and Radoslava Kraleva. “A comparative
analysis between two heuristic algorithms for the
graph vertex coloring problem”. eng. In: International
journal of electrical and computer engineering (Malacca,
Malacca) 13.3 (2023), pp. 2981-2989. 1SSN: 2088-8708.
Aydano Machado et al. “Multi-agent movement co-
ordination in patrolling”. In: Proceedings of the 3rd
International Conference on Computer and Game. 2002,
pp. 155-170.

Aydano Machado et al. “Multi-agent Patrolling: An
Empirical Analysis of Alternative Architectures”. In:
Multi-Agent-Based Simulation II. Ed. by Jaime Simao
Sichman, Frangcois Bousquet, and Paul Davidsson.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003,
pp. 155-170. ISBN: 978-3-540-36483-2.

OpenAl ChatGPT. en-US. URL: https:/ /openai.com/
index/chatgpt/|(visited on 01/16/2025).

Mehdi Othmani-Guibourg, Amal El Fallah-
Seghrouchni, and Jean-Loup Farges. “LSTM
Path-Maker: a new LSTM-based strategy for the
multi-agent patrolling”. eng. In: Proceedings of the
52nd Hawaii International Conference on System Sciences,
pp. 616-625.

Mehdi Othmani-Guibourg, Amal El Fallah-
Seghrouchni, and Jean-Loup Farges. “Path Generation
with LSTM Recurrent Neural Networks in the
context of the Multi-agent Patrolling”. In: 2018 IEEE
30th International Conference on Tools with Artificial
Intelligence (ICTAI). IEEE, 2018, pp. 430-437.

F. Pasqualetti,]. W. Durham, and F. Bullo. “Coopera-
tive Patrolling via Weighted Tours: Performance Anal-
ysis and Distributed Algorithms”. eng. In: IEEE trans-

https://docs.unity3d.com/Packages/com.unity.burst@1.8/manual/compilation.html
https://docs.unity3d.com/Packages/com.unity.burst@1.8/manual/compilation.html
https://docs.unity3d.com/Packages/com.unity.burst@1.8/manual/compilation.html
https://doi.org/https://doi.org/10.1016/j.ejor.2021.11.049
https://doi.org/https://doi.org/10.1016/j.ejor.2021.11.049
https://www.sciencedirect.com/science/article/pii/S0377221721010006
https://www.sciencedirect.com/science/article/pii/S0377221721010006
https://www.sciencedirect.com/science/article/pii/S0377221721010006
https://doi.org/10.1109/IAT.2004.1342959
https://doi.org/10.1109/IAT.2004.1342959
https://ieeexplore.ieee.org/document/1342959/?arnumber=1342959
https://ieeexplore.ieee.org/document/1342959/?arnumber=1342959
https://doi.org/10.1109/TRO.2017.2676123
https://doi.org/10.1109/TRO.2017.2676123
https://ieeexplore.ieee.org/document/7888572/?arnumber=7888572
https://ieeexplore.ieee.org/document/7888572/?arnumber=7888572
https://github.com/features/copilot
https://github.com/features/copilot
https://doi.org/10.1109/SASO.2009.39
https://www.grammarly.com/
https://www.grammarly.com/
https://doi.org/10.1109/JAS.2019.1911537
https://openai.com/index/chatgpt/
https://openai.com/index/chatgpt/

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE

[24]

(25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

actions on robotics 28.5 (2012). Place: PISCATAWAY
Publisher: IEEE, pp. 1181-1188. 1SSN: 1552-3098.
David Portugal, Micael S Couceiro, and Rui P Rocha.
“Applying Bayesian learning to multi-robot patrol”.
In: 2013 IEEE International Symposium on Safety, Secu-
rity, and Rescue Robotics (SSRR). IEEE, 2013, pp. 1-6.
David Portugal, Rui Rocha, and Luis M. Camarinha-
Matos. “A Survey on Multi-robot Patrolling Algo-
rithms”. eng. In: IFIP Advances in Information and
Communication Technology. Vol. 349. IFIP Advances in
Information and Communication Technology. ISSN:
1868-4238. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2011, pp. 139-146. ISBN: 3-642-19169-X.

David Portugal and Rui P Rocha. “Cooperative multi-
robot patrol with Bayesian learning”. In: Autonomous
Robots 40.5 (2016). Publisher: Springer, pp. 929-953.
David Portugal and Rui P. Rocha. “Distributed multi-
robot patrol: A scalable and fault-tolerant frame-
work”. In: Robotics and Autonomous Systems 61.12 (Dec.
2013), pp. 1572-1587. 1SSN: 0921-8890. DOI: 10.1016/j.
robot.2013.06.011. URL: https:/ / www.sciencedirect.
com/science/article/pii/S0921889013001206.

David Portugal and Rui P. Rocha. “Multi-robot pa-
trolling algorithms: examining performance and scala-
bility”. eng. In: Advanced robotics 27.5 (2013). Publisher:
Routledge, pp. 325-336. 1SSN: 0169-1864.

Hugo Santana et al. “Multi-agent patrolling with rein-
forcement learning”. In: Autonomous Agents and Mul-
tingent Systems, International Joint Conference on. Vol. 4.
IEEE Computer Society, 2004, pp. 1122-1129.

Strato - High-Performance Computing at Aalborg Univer-
sity. URL: https:/ / hpc.aau.dk / strato/| (visited on
06/06/2025).

Arthur T. White. “Chapter 8 - Map-Coloring Prob-
lems”. In: Graphs of Groups on Surfaces. Ed. by Arthur T.
White. Vol. 188. North-Holland Mathematics Studies.
ISSN: 0304-0208. North-Holland, 2001, pp. 89-106.
DOI: https:/ /doi.org/10.1016 /S0304-0208(01)80009-
8. URL: https:/ / www.sciencedirect.com / science /
article/pii/S0304020801800098!

Chuanbo Yan and Tao Zhang. “Multi-robot patrol:
A distributed algorithm based on expected
idleness”. English. In: International Journal of
Advanced Robotic ~ Systems 13.6 (Dec. 2016).
_eprint: https://doi.org/10.1177/1729881416663666,
p. 1729881416663666. 1SSN: 17298806. DOI: 10.1177 /
1729881416663666, URL: https:/ / doi.org /10.1177 /
1729881416663666.

Vladimir Yanovski, Israel A. Wagner, and Alfred M.
Bruckstein. “A distributed ant algorithm for effi-
ciently patrolling a network”. eng. In: Algorithmica
37.3 (2003). Place: NEW YORK Publisher: Springer
Nature, pp. 165-186. 1SSN: 0178-4617.

https://doi.org/10.1016/j.robot.2013.06.011
https://doi.org/10.1016/j.robot.2013.06.011
https://www.sciencedirect.com/science/article/pii/S0921889013001206
https://www.sciencedirect.com/science/article/pii/S0921889013001206
https://hpc.aau.dk/strato/
https://doi.org/https://doi.org/10.1016/S0304-0208(01)80009-8
https://doi.org/https://doi.org/10.1016/S0304-0208(01)80009-8
https://www.sciencedirect.com/science/article/pii/S0304020801800098
https://www.sciencedirect.com/science/article/pii/S0304020801800098
https://doi.org/10.1177/1729881416663666
https://doi.org/10.1177/1729881416663666
https://doi.org/10.1177/1729881416663666
https://doi.org/10.1177/1729881416663666

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE 11

APPENDIX A
IMPLEMENTATION

A.1 Implement new Line-of-sight Algorithm

A new line-of-sight algorithm was implemented for use in the waypoint (vertex) generation process. It has been optimized
to utilize a bitmap and is designed to run as a Burst job using the Burst Compiler [3], which compiles directly to optimized
machine code. This new algorithm also enables multithreading. Additionally, the algorithm has been extended to support
a maximum visibility distance.

A.2 Implement Patrolling Algorithms

Multiple patrolling algorithms have been implemented to be used for comparison with the algorithms we developed. The
algorithms implemented from other papers are: [5C [ERl Two versions of [SC| have been implemented, one
based on an exact TSP solver and another using christofides, [7].

A.3 Implement HMPPatrolling and its variants

The different [HMP}based algorithms described in [section 4 have been implemented. The implementation can be found at
[https:/ /github.com/cs-24-sw-9-xx/MAEPS /tree/main/ Assets /Scripts / Algorithms /Patrolling/HMPPatrolling Algorithms|

A.4 Make PatrollingAlgorithm Component based

The PatrollingAlgorithm class has been refactored to a component-based architecture, allowing for easily extending
the base algorithm using components. One such component is the CollisionRecoveryComponent, which as the name
implies recovers the robot from a collision state. The component structure has been refactored to allow components to
consist of other components. This was not just a code refactoring, but also an architecture refactoring. Additionally, using
C# generators, wait conditions, such as wait for n logic ticks, or wait for a specific robot state, can be used to wait for
the condition before continuing execution. This greatly reduces or completely eliminates the need for building bespoke
state-machines. Implementing this was also a prerequisite for allowing the component-based architecture.

A.5 User Interface

The user interface has gained new features and a few old features have been removed. The current version of the

visualization modes can be seen in

Visualization

All Robots Selected Robot

Mone

i Destroy
1ap

Highlight
s

Robots

Communi
H

Fig. 7: Screenshot of the visualization mode button panel in

Two buttons named “Vertices” colors” have been added. The one on the “All Robots” side highlights which partitions
a vertex is assigned to, additionally robots are colored corresponding to which partitions they belong to. This was
implemented to assist in debugging the partitioning and patrolling algorithms that use partitioning and proved very
useful, a screenshot demonstrating this feature can be seen in

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE 12

—=

I e
=4

—=

Fig. 8: Screenshot of the all robot vertices’ colors visualization mode in [MAEPS| Vertices with multiple colors belong to
multiple partitions.

Three buttons have been added on the “Selected Robot” side. The “Destroy” button destroys a robot, simulating robot
failure. The “Communication Range” highlights a robots communication range, as seen in [Figure 9|

|

/
w7 O~

Fig. 9: Screenshot of the single robot communication range visualization mode in [MAEPS| Here LOS is used as
communication range algorithm.

The robot coverage visualization mode has been removed, since it doesn’t make much sense for patrolling, since the
vertices are guaranteed to have LOS of the entire map. So, the waypoint heatmap is the patrolling equivalent of the
coverage heatmap.

Due to the logging of csv data for experiments and the addition of the data-processor, the gui tool to build a graph
during runtime has become obsolete, and has been removed since it heavily impacted the runtime performance.

A.6 Add VirtualStigmergy Component

A VirtualStigmergy component has been constructed for key-value storage and sharing. It is possible to specify a
marker type which enables differentiating stigmergies with the same key and value types. The VirtualStigmergy only
accept types that are unable to smuggle information. If the virtual stigmergy was able to pass references to for instance
other robots, then they could share information through state directly without going through the communication manager
and virtual stigmergy.

A.7 Performance Optimizations and Refactoring

A lot of refactoring and runtime optimization has been done since last semester. The experiments would not have been
practically possible without these optimizations.

o The project’s version of unity has been updated to 6000.0.37f1.

o Map configs have been refactored to have a base class. Previously, CaveMapConfig and BuildingMapConfig had
nothing in common, making them difficult to work with regarding making experiments.

o The tests have been sped up, as they were taking a lot of time (multiple minutes) to complete.

o We enabled il2cpp for builds to make optimized builds for running the experiments.

o We parallelized the optimized builds and the test steps in the GitHub Actions.

o We refactored the SimulationMapBuilder, such that a map builder could easily be substituted, which allowed us
to make a special map builder which could construct a map from a string or a text file, which proved very useful for
speeding up tests.

o GitHub Actions have been set up to make a dedicated server build and upload this as an artifact. In the code all
GUI-related code was marked, such that the project can be compiled without the GUI-components, which is required
to make a headless build.

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE 13

e The code stripping level was set to maximum. This required us to refactor any code that used reflection, since reflection
is incompatible with this level.

o The waypoint generator has been changed to penalize waypoints close to walls, as these could sometimes cause
collisions and unusual robot behavior. A cache for the waypoint generation has also been made.

« Where possible,[MAEPS now uses bitmaps instead of Bool [, 1, which use less memory and are faster.

o Meshes were used in map generation and visualization modes. These meshes have to be disposed properly in order
to free this memory, otherwise there is a memory leak. Destroying the Unity objects that owned these meshes did not
properly dispose of them. This memory leak caused a lot of trouble during development and especially during the
running of experiments until we finally found and fixed this leak.

o We fixed the Line2D intersection which is used in RayTracingMap. Previously, it didn’t work with 90-degree angles,
and the previous group added small floating-point values as a workaround.

o Where possible memory allocation on the heap has been avoided or minimized. For instance, ArrayPool<T> is used
where arrays are frequently created and destroyed. This resulted in significantly less memory pressure on the garbage
collector.

o The calculation of the Adjacency Matrix has been optimized by using symmetry, reducing the time complexity
from N2 to 0.5 - N2, with N being the number of robots.

o The calculation of the Distance Matrix, which consists of the distances between all vertex pairs, has been optimized
by running breadth-first search in parallel using multithreading.

o Benchmarks have been added for both the building and the cave map generators, which has been used to verify
optimizations. No benchmark results for the map generations are included in this paper, but note that a benchmark
for the start-up time of a scenario can be found in Appendix [C]which map generation is part of.

o A new waypoint connector has been added called Al1ConnectedWaypoint sConnector, which as the name implies,
connects all vertices to all other vertices, making it a complete graph.

A.8 A* Improvements

A custom A* implementation has been made, since it is faster than converting the map to the type required by the library.
The A* algorithm is slightly penalized for tiles close to walls, since robots can sometimes collide with walls. Also, direction
changes are slightly penalized, resulting in fewer turns, since the robots come to a full stop just to turn slightly. This avoids
“zigzag” paths.

A.9 Work for Running Experiments

Our experiments were run on the AAU Cloud [30], and a guide has been created explaining to how to run an experiment
on a virtual machine and how to run it on AAU Strato. The guide can be found here: (Guide_VirtualMachine.md|}

Since Unity API methods cannot be used by different threads, we created a workaround for parallelization by spawning
multiple instances of the simulator using a bash script. The run script takes multiple command-line arguments, such as
which experiment to run and the range of instances to run, allowing an experiment to be split across different servers.

A script has been created for downloading an optimized build generated by GitHub Actions and stored as a GitHub
artifact. This script allows specifying the workflow ID from which to download the build. This enables downloading the
optimized build from branches other than main.

After encountering bugs that caused simulations to get stuck and therefore never finish, blocking any remaining
simulations from being run, a MaxLogicTicks parameter was added to the simulator. This parameter makes the
SimulationManager abort any scenario that takes too long and continue with the next scenario. Additionally, the run
script pipes the output from each instance into a combined output.log file for debugging. Each log entry contains the
current time and instance ID. After completing the experiment, the script greps the output.log to check for scenarios that
did not finish before reaching MaxLogicTicks, as well as any exceptions.

A.10 Data-Logging

Extensive logging has been set up. The existing csv file writer used a library, but this has been removed and replaced
with the custom csv writer, since the library used reflection was cannot be used in combination with code stripping. The
experiment data is structured into “data/experiment/scenario-name/data-here”, where the raw data for each vertex is put
into a subfolder since there are typically many of them. The csv data logged for a patrolling scenario is for each tick the:

¢ ReceivedMessageCount

¢ SentMessageCount

o Graphldleness

o WorstGraphldleness

o TotalDistanceTraveled

o CompletedCycles, a cycle being the minimum amount of times any vertex has been visited.

o AverageGraphldleness

o NumberOfRobots, the current amount of robots, this changes if a robot is destroyed through the gui-button or fault-

injection.

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE 14

A.11 Data-Processor
A data-processor has been created for handling the data of the experiments. This involves combining data across
parameters, such as calculating the average result across multiple seeds. The data-processor also support the plotting

of data as boxplots and line graph.

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE 15

APPENDIX B
PROJECT MANAGEMENT

Time Management

Our previous semester’s time plan, as can be seen in [Figure 10} accurately estimated the literature review, problem setting,
and initial implementation phases. However, as can be seen in |Figure 11]it significantly underestimated the time required
for collaborative improvements, primarily due to more features being needed by both groups and extensive time spent
optimizing the performance of MAEPS], which can be read about in Appendix [A]

Testing and evaluation also consumed far more time than we had planned. A significant portion of the necessary
functionality for this phase was shared between both groups, and has therefore also been marked as collaborative
improvements. This included, for instance, experiment data logging, the experiment runner (with scripts and command-
line argument capabilities for experiment selection), the data processor (for aggregating across seeds and plotting graphs),
and a guide for executing experiments on AAU starto, [30].

The algorithm design phase likewise exceeded its allocated time. This was partly due to the difficulty in transforming
our abstract idea into a concrete computational problem. Additionally, our initial concept proved unable to handle transient
failures. After brainstorming ways to make our idea fully fault tolerant, we made variations of the base algorithm using
these new ideas for fault handling strategies, as described in[section 4} which is the final reason why this step spanned such
a long period. To streamline the process, we opted to implement the algorithm concurrently with its design, a strategy that
effectively helped us discern what worked and what didn’t.

Apart from initial literature notes and the early conceptualization of our idea (and its later transformation into a
computational problem), very little thesis writing occurred until the project’s later stages. This delay was a direct result
of the aforementioned stages taking longer than anticipated, coupled with difficulties encountered during experiment
execution—specifically, issues with runtime performance and a few bugs. These challenges effectively pushed back the
collaborative improvement and test/evaluation phases, consequently delaying the thesis writing.

Literature Review
Collaborative Improvements
Problem Setting
Implement Problem Setting

Algorithm Design |

Algorithm Implementation I
Implement other Patrolling Algorithms |
Tests and Evaulation I
Write Thesis . ________________|
Buffer I

Fig. 10: Gantt Diagram for the Master Thesis A. (plan)

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE

Algorithm Design

Algorithm Implementation

Implement other Patrolling Algorithms
Test and Evaluation

Write Thesis

16
© © “ © © © © © “ © “ © ©
& & & & P& & S S &S &
RN\ U O R L\ SRR\ R CHRA USSR D GO U L R
SO SRS A SO S S (AR N S S GO CHS GRS SRS SR A A CH
Literature Review [N
Collaborative Improvements
Problem Setting [N
Implement Problem Setting]

Fig. 11: Gantt Diagram for the Master Thesis A. (actual time spent)

Task Management Framework

We adopted a Kanban board as our task management framework to provide a clear visual representation of our project’s
workflow, aiding in task management, progress tracking and helping us see what the other team members are currently

working on. As illustrated in[Figure 12} our board is divided into the following columns:

» Backlog: This column captures all tasks that have been identified but not yet scheduled for implementation.

» To Do: Tasks that have been selected for implementation but not yet started are moved to this column. This serves
the queue of work to be done in the current week.

as

o In Progress: Tasks that are currently being worked on are placed in this column. It provides visibility into what team

members are actively engaged in.
o Done: Tasks that have been completed and reviewed successfully are moved to this column.

O Backlog 0 Estimate:0 QO Todo 0/5 @ Estimate:0 QO InProgress 0/5 | Estimate:0 O Done 40

This item hasn't been started

Estimate: 0

This is actively being worked on This has been completed

1 3 MAEPS #425 r.y
Records the travel time (ticks) from vertex A to
vertex B

(© MAEPS #211 []
Implement existing distributed patrolling
algorithms

G) MAEPS #205

Maore waypoint connection algorithms

Fig. 12: Picture of the Kanban board.

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE 17

APPENDIX C
MAEPS STARTUP BENCHMARK

An experiment was conducted to explore the performance of the startup process of the MAEPS simulator for a patrolling
scenario. The startup mainly consists of:

 Generating the tile-map.

o Generating waypoint/vertices.

 Optionally, partitioning.

o Connecting waypoint/vertices.

For these results, the ReverseNearestNeighborGenerator was used, which does not do parti-

tioning. The experiment was carried out using this version of MAEPS: |https://github.com/cs-24-sw-9-|
xx/MAEPS /commit/9d6cd8662e665cf5cbbcdeb1161b210572200953) It was run on a 16 vCPU machine on AAU strato [30].

Map size | Time in seconds Map size | Time in seconds
50 0.12 50 0.1
100 0.5 100 0.44
150 1.65 150 1.36
200 3.75 200 3.43
250 9.8 250 8.57
300 23.1 300 19.23
350 39.99 350 40.22
400 80.9 400 74.75
450 149.5 450 139.5
500 234.6 500 273.4
550 515.1 550 455.8
600 655.9 600 765.2
650 1124.8 650 1154.7
700 1655.8 700 1910.2
TABLE 2: Start-up time for a building map scenario. TABLE 3: Start-up time for a cave map scenario.
1
10% b E 10% £ E
%) | 1 . L]
! 2L - 2| N
g 10 U
o = | Qo = 3
|9 . - O [|
() [|] L -
(2] 9]
£ 10'p g g 10'p 4
) B & o F e
E I] E I :
2 100 & E =100 E E
10_1 E E 1071 ; é
EL | | | | | | | .| Ll | | | | | | | |
0 100 200 300 400 500 600 70 0 100 200 300 400 500 600 70
Map size Map size
(a) Building map (b) Cave map

Fig. 13: The start-up time of a scenario for the two map types.

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE

APPENDIX D
EXPERIMENT DATA AND PLOTS

Worst Idleness

2.5

1.5

0.5

-10°

| | | | | | |
N N ¥ > \Q \% \}9 ,\b
Tick
—— CR ——ER-Simplified — HMP
HCR —— HMP-IT —— PHCR
HMP-QT — RR —— HMP-RT
— SC —— HMP-SMP

Fig. 14: Experiment 1: Building Map - Map size 150

18

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE

109
I I I I I I I
3 [
2.5
2 -
n
9]
=
2
S 151
= 1
0.5
O [
| | | | | | |
N v > S T S S
Tick
—— CR —— ER-Simplified — HMP
HCR —— HMP-IT —— PHCR
HMP-QT — RR —— HMP-RT
— SC —— HMP-SMP

Fig. 15: Experiment 1: Cave Map - Map size 150

19

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE

Worst Idleness

0.8

0.6

0.4

0.2

Tick °
f\,Q
—— PHCR — CR ——ER Simplified
HMP —— HCR HMP-IT
HMP-QT — RR HMP-RT
— SC ——HMP-SMP

Fig. 16: Experiment 2: Worst Idleness over time on the Building Map

20

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE

Worst Idleness

-10%

T

Tick o
>
—— PHCR — CR ——ER Simplified
HMP —— HCR —— HMP-IT
HMP-QT— RR —— HMP-RT
— SC ——HMP-SMP

Fig. 17: Experiment 2: Worst Idleness over time on the Cave Map

21

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE

1.2

0.8

0.6

Average Idleness

0.4

0.2

0
q}l | %l %l %l | | b‘/l %l %l | | Bl %l (bl N
Iy NN N N S RN RN S R)
Tick o
S
—— PHCR — CR ——ER Simplified
HMP HCR HMP-IT
HMP-QT — RR HMP-RT
— SC ——HMP-SMP

-10%

T

Fig. 18: Experiment 2: Average Idleness over time on the Building Map

22

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE

-10%

T T T T T T T T T T T T T T T T

0.8

0.6

0.4

Average Idleness

0.2

N NESEENUEEENCEEEN NTONTONT N voaT 0 g
Tick o
.\,Q
—— PHCR — CR ——ER Simplified
HMP —— HCR HMP-IT
HMP-QT— RR HMP-RT
— SC ——HMP-SMP

Fig. 19: Experiment 2: Average Idleness over time on the Cave Map

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE

-10°
T T T T T T T T T T T T T T T T T

1.6

1.4

1.2

g 1
<
2

S 0.8F

= 0.6

04

0.2

0 -

%l Ql
/Q' -
Tick o
:\,Q
—— CR ——ER Simplified — HMP
HCR —— HMPIT — HMP-QT
RR —— HMP-RT — SC
—— HMP-SMP ------ Fault

Fig. 20: Experiment 3: Worst Idleness over time on the Building Map on with fault at tick 75000

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE

Worst Idleness

-10°
1.2F7 T T T T T T T T T T T T T T T 7
1+ i
0.8 |
0.6 - i
04 % i
0.2 i
0 i
3 N
N o
Tick %
:\,Q
— CR —— ER Simplified — HMP
HCR HMP-IT —— HMP-QT
—_— RR HMP-RT — SC
—— HMP-SMP ------ Fault

Fig. 21: Experiment 3: Worst Idleness over time on the Cave Map on with fault at tick 75000

25

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE

-10°
T T T T T T T T T T T T T T T T T T
1.5
)]
)
5 1
=
=
0.5
0
%l Ql | %l ('Ol %l | | %l %l %l | | b‘/l Q)l %l {bl |
S NN N R AN SN R S LA LR S oY
Tick o
:\9
— CR —— ER Simplified — HMP
HCR —— HMP-IT —— HMP-QT
RR —— HMP-RT — SC
—— HMP-SMP - ----- Fault

Fig. 22: Experiment 3: Worst Idleness over time on the Building Map on with fault at tick 75000,150000

26

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE

-10°

T T T T T T T

1.2

Worst Idleness
(an)
(@)
I

of e ‘ |
%l Ql | %l (‘Ol %l | | (‘01 %l | | b‘/l %l %l {bl |
S NN NN R LN NN R S R IR gV
Tick o
:\,Q
CR —ER Simplified — HMP
HCR —— HMPIT — HMP-QT
RR —— HMP-RT SC
—— HMP-SMP -+ Fault

Fig. 23: Experiment 3: Worst Idleness over time on the Cave Map on with fault at tick 75000,150000

27

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE

-10°

T T T T T T T T T T T T T T T T T T
1.6 - : s
1.4 =
1.2 =
e]

o
2

S 0.8F s
Z 06 =
041 |
0.2 |
0 - |

%l Ql Il %l ('Ol %l Il Il %l %l %l Il Il b‘/l Q)l %l {bl Il

S AN IR N A N N T S, oY

Tick o
:\,Q
—— CR ——ER Simplified — HMP
HCR —— HMP-IIT —— HMP-QT
RR —— HMP-RT — SC
—— HMP-SMP - ----- Fault

Fig. 24: Experiment 3: Worst Idleness over time on the Building Map on with fault at tick 150000,150150

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE

-10°
T T T T T T T T T T T T T T T T T
1.2
1 -
w 0.8
&
o
2
S 0.6}
= 04
0.2
0 -
%l Ql q}l
/Q' -
Tick o
:\,Q
—— CR ——ER Simplified — HMP
HCR —— HMP-IT — HMP-QT
RR —— HMP-RT — SC
—— HMP-SMP ------ Fault

Fig. 25: Experiment 3: Worst Idleness over time on the Cave Map on with fault at tick 150000,150150

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE

-10°
T T T T T T T T T T T T T T T T T T
1.5 -
)]
)
g 1 1
=z
=
0.5 N
0 - |
%l Ql q}l
/Q' -
Tick o
:\,Q
—— CR ——ER Simplified — HMP
HCR —— HMPIT — HMP-QT
RR —— HMP-RT — SC
—— HMP-SMP ------ Fault

Fig. 26: Experiment 3: Worst Idleness over time on the Building Map on with fault at tick 75000,150000,225000

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE

-10°

T T T T T T T T

1.2 : : : |

Worst Idleness
(an)
(@)
I
|

0 [-
%l Ql q)l %l (‘Ol %l | q)l %l Q)l %l q)l %l b‘/l %l %l {bl q}l
D NENEIN I RN RSN R v a7 a0 o %
Tick o
:\,Q

—— CR ——ER Simplified — HMP

HCR —— HMP-IT — HMP-QT
—— RR —— HMPRT — SC
—— HMP-SMP -+ Fault

Fig. 27: Experiment 3: Worst Idleness over time on the Cave Map on with fault at tick 75000,150000,225000

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE

-10%

T T T T T T T

1.5F

Average Idleness
—
[

0.5
of
q}l Ql | %l %l %l | | %l %l | | Bl Col %l “31 |
BN NN N N RN R S R oY
Tick o
.\/Q
CR — ER Simplified — HMP
HCR —— HMPIT — HMP-QT
RR —— HMP-RT SC
—— HMP-SMP - Fault

Fig. 28: Experiment 3: Average Idleness over time on the Building Map on with fault at tick 75000

32

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE

-10%
T T T T T T T T T T T T T T T T T

1.4 =

1.2 =

1, |
w0
5}
=1
2L 0.8 |
i)
)
)
S 0.6 |
4
<

041} |

0.2 |

O - .

q}l Ql Il %l %l %l Il Il b‘/l %l Il Il B} Col (bl %l Il
BN NARNARNC IR VAN SR SN T LA R, oY
Tick o
.\/Q
—— CR ——ER Simplified — HMP
HCR —— HMP-IIT —— HMP-QT
RR —— HMP-RT —— SC
—— HMP-SMP - ----- Fault

Fig. 29: Experiment 3: Average Idleness over time on the Cave Map on with fault at tick 75000

33

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE

-10*
T T T T T T T T T T T T T T T T T T
20 :
L5 :
0 :
8 :
=1 :
2 .
< :
5 1+ : i
o0 :
(4] :
< :
z e
0.5 |
0 - .
q}l Ql | %l %l %l | | b‘/l Q)l %l | | Bl Col (bl %l |
N Qq’ INUEENTEEENE > xq’ NTONTON v qfl’ QY o %‘W»
Tick o
.\,Q
CR ——ER Simplified — HMP
HCR HMP-IT —— HMP-QT
RR HMP-RT SC
—— HMP-SMP ------ Fault

Fig. 30: Experiment 3: Average Idleness over time on the Building Map on with fault at tick 75000,150000

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE

-10*
1 6 T T T T T T T T T T T T T T T T T T
1.4
1.2
@ 1
(9]
=1
2
< 0.8
)
)
(4]
§ 0.6
<
0.4
0.2
0
q}l |
/Q' ".)c}
Tick o
.\/Q
—— CR ——ER Simplified — HMP
HCR —— HMPIT — HMP-QT
RR —— HMP-RT — SC
—— HMP-SMP ------ Fault

Fig. 31: Experiment 3: Average Idleness over time on the Cave Map on with fault at tick 75000,150000

35

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE

-10%

T T T T T T T T T T T T T T T T T T

1.5F

Average Idleness
—
[

0.5

)
.\/Q
CR — ER Simplified — HMP
HCR —— HMPIT — HMP-QT
RR —— HMP-RT SC
—— HMP-SMP - Fault

Fig. 32: Experiment 3: Average Idleness over time on the Building Map on with fault at tick 150000,150150

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE

-10*
1 6 T T T T T T T T T T T T T T T T T T
1.4
1.2
@ 1
(9]
=1
2
< 0.8
)
)
(4]
§ 0.6
<
0.4
0.2
0
q}l |
/Q' ".)c}
Tick o
.\/Q
—— CR ——ER Simplified — HMP
HCR —— HMPIT — HMP-QT
RR —— HMP-RT — SC
—— HMP-SMP ------ Fault

Fig. 33: Experiment 3: Average Idleness over time on the Cave Map on with fault at tick 150000,150150

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE

-10*
T T T T T T T T T T T T T T T T T T
25 -
2 [.|
(9]
&
§ 1.5 B
=
Q)
o0
]
§ 1F .
<
0.5 -
0f — 1
q}l Ql | %l %l %l | | b‘/l %l %l | | Bl Col (bl %l |
/Q NN N RN AN R N R S S S 2
Tick o
N
CR —ER Simplified — HMP
HCR —— HMP-IT — HMP-QT
RR — HMP-RT —— SC
—— HMP-SMP -~ Fault

Fig. 34: Experiment 3: Average Idleness over time on the Building Map on with fault at tick 75000,150000,225000

DISTRIBUTED MULTI-ROBOT PARTITION-BASED PATROLLING WITH FAULT TOLERANCE

-10*
T T T T T T T T T T T T T T T T T T
1.6 - 5
1.4 5
1.2} : :
5 1) |
= :
= : : :
= 0.8} 5 5 : 2
) . : o
o0 : : :
06 : ; :
g Uor g : :]
< | | |
0.4 | -]
0.2 T 1
0 [-
q}l Ql | B} %l %l | | b‘/l Q)l %l | | B} Col (bl %l |
/Q NN N RN AN R N R S S S 2
Tick ©
N
—— CR ——ER Simplified — HMP
HCR — HMP-IT — HMP-QT
RR — HMP-RT —— SC
—— HMP-SMP - Fault

Fig. 35: Experiment 3: Average Idleness over time on the Cave Map on with fault at tick 75000,150000,225000

	Introduction
	Related work
	Problem Formulation
	HMP Patrolling
	Meeting
	Initial Step
	Partition graph
	Meeting point generation
	Meeting time generation

	Patrolling mechanism
	Finding the Next Meeting
	Agreeing on Next Meeting Times
	Renegotiation

	Fault-detection and handling
	Meeting Early
	Annealing
	Other HMP Variants

	Experiments
	Communication
	Repeated Executions and Metric Values
	Analysis Procedure
	Experiment Results
	Experiment 1: Standard Parameters
	Experiment 2: Performance Comparison In No Fault Settings
	Experiment 3: Fault Tolerance

	Discussion
	Conclusion & Future Work
	Appendix A: Implementation
	Implement new Line-of-sight Algorithm
	Implement Patrolling Algorithms
	Implement HMPPatrolling and its variants
	Make PatrollingAlgorithm Component based
	User Interface
	Add VirtualStigmergy Component
	Performance Optimizations and Refactoring
	A* Improvements
	Work for Running Experiments
	Data-Logging
	Data-Processor

	Appendix B: Project Management
	Appendix C: MAEPS Startup Benchmark
	Appendix D: Experiment Data and Plots

