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Abstract:

Large Language Models (LLMs) achieve remarkable performance
across diverse NLP tasks, yet suffer from critical reliability is-
sues including hallucinations and inconsistent outputs. Ensemble
methods emerge as promising solutions by combining predictions
from multiple models to improve robustness and performance.
However, current ensemble evaluation practices lack standardiza-
tion, hindering method comparison and reproducibility.

This work addresses two key challenges in LLM ensemble re-
search. First, we validate the Generation of Each token by LLMs as
a Classification (GAC) strategy by reproducing core results and ex-
tending evaluation to additional models and benchmarks. Our ex-
periments across MMLU, PIQA, ARC Challenge, and Winogrande
reveal that GAC’s effectiveness depends critically on performance
similarity between ensemble members, with uniform weighting
working best when models have comparable capabilities.

Second, we develop LLMEnsembleEval, the first standardized
framework for LLM ensemble evaluation that integrates with Im-
evaluation-harness. The modular architecture supports multi-
GPU deployment and enables systematic comparison of ensemble
strategies while maintaining reproducible protocols.

Our findings demonstrate that GAC consistently improves perfor-
mance on knowledge-intensive tasks like MMLU (gains of 0,1% to
3,6%) but shows mixed results on complex reasoning tasks, high-
lighting the need for task-specific strategies. The performance
similarity hypothesis show that ensembles work best with mod-
els of comparable capability.

LLMEnsembleEval provides the foundation for systematic eval-

uation of emerging ensemble strategies, potentially accelerating

progress toward more reliable and effective LLM systems.




Summary

Large Language Models (LLMs) have revolutionized natural language processing but suffer from critical
reliability issues including hallucinations, inconsistent outputs, and brittle behavior. Ensemble methods
have emerged as a promising solution by leveraging collective intelligence of multiple models to improve
robustness and performance. However, current ensemble evaluation practices lack standardization, mak-

ing it difficult to compare methods or reproduce findings across studies.

This project addresses two key challenges. First, we validate the Generation of Each token by LLMs as a
Classification (GAC) strategy by reproducing its core results and extending evaluation to additional mod-
els and benchmarks. Second, we develop LLMEnsembleEval, a standardized framework that integrates
ensemble evaluation with the widely-adopted lm-evaluation-harness, enabling systematic comparison of

ensemble methods.

Our key contributions include successfully reproducing the original GAC results with an average differ-
ence of +0,675% on MMLU and extending evaluation to seven models across four benchmarks (MMLU,
PIQA, ARC Challenge, and Winogrande). Through systematic analysis, we discover that GAC’s effective-
ness depends critically on performance similarity between ensemble members. Models with comparable
capabilities benefit more from uniform weighting than combinations with large performance gaps. We also
develop the first standardized library for LLM ensemble evaluation, featuring multi-GPU support, vocabu-

lary unification across different tokenizers, and seamless integration with existing evaluation frameworks.

Our experimental results reveal important patterns. GAC consistently improves performance on knowledge-
intensive tasks like MMLU (gains of 0,1% to 3,6%) but shows mixed results on complex reasoning tasks.
The most significant finding is the performance similarity hypothesis: ensembles combining models with
similar baseline performance consistently show improvements, while ensembles with large performance
gaps typically underperform. This suggests that uniform weighting dilutes stronger model predictions

with noise from weaker models, limiting beneficial diversity.

These findings have important implications for ensemble design. Rather than maximizing model diver-
sity. The limitations of static uniform weighting point toward adaptive ensemble strategies that adjust
weights based on model confidence and task characteristics. The LLMEnsembleEval framework provides
the foundation for systematic evaluation of emerging ensemble strategies, potentially accelerating progress

towards more reliable and effective LLM systems.
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1 Introduction

Large Language Models (LLMs) have revolutionized natural language processing, achieving performance
improvements across diverse tasks from text generation to complex reasoning [3] [9] [11]. These models,
trained on large amounts of text data, have achieved high performance on numerous benchmarks and
have become important in both research and practical applications. Their ability to understand context,
generate coherent responses and adapt to diverse tasks has positioned them as foundational technologies

in artificial intelligence.

Despite their capabilities, LLMs exhibit several critical limitations that hinder their reliable deployment
in real-world applications. These models are prone to hallucinations, generating plausible sounding but
factually incorrect information, and demonstrate brittle behavior where small changes in input can lead

to different outputs.

Ensemble methods for LLMs have emerged as a promising approach to address these issues by leveraging
collective intelligence of multiple models. Research has demonstrated that combining predictions from
multiple LLMs can improve robustness, reduce hallucinations and enhance the overall performance across
various benchmarks [4] [14]. These strategies aggregate diverse model outputs using various algorithms.
The underlying idea behind ensemble is that while individual models may fail in different ways, their com-
bined response can compensate for their individual weakness and provide more reliable results. Among
these approaches, the Generation of Each token by LLMs as a Classification (GAC) strategy has emerged
as one of the more recent and effective ensemble methods for LLMs, demonstrating performance improve-

ments across multiple benchmarks[17].

However, current evaluation practices for LLM ensembles lack standardization and reproducibility, which
significantly limits the fields progress. Most ensemble research implement custom evaluation approaches
rather than adopting existing frameworks like lm-evaluation-harness [13], making it difficult to compare
results across studies or reproduce findings. Papers frequently report benchmark findings without detail-
ing how ensemble outputs were scored and normalized, creating a barrier to meaningful scientific compar-
ison. While GAC explicitly reports using the Im-evaluation-harness for its experiments, even reproducing
the results remains challenging due to the complexity of coordinating multiple models and integrating
them with the standardized evaluation framework, which is designed to be used on single models from
the Huggingface website. There is therefore a need for standardized software library that simplifies the
process of implementation and evaluation of LLM ensembles, enabling researchers to focus on developing

novel ensemble approaches rather than building the evaluation infrastructure from scratch.
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1.1 Research Objectives

This project has two primary objectives:

« Validate the Generation of Each token by LLMs as a Classification ensembling strategy by repro-
ducing its core results using same models and evaluation tool. By replicating the performance gains
across established benchmarks, this project aims to assess the robustness and generalizability of the

original Generation of Each token by LLMs as a Classification approach.

« Develop a practical and reusable implementation that simplifies the process of ensembling and eval-
uating Large Language Models (LLMs). This involves integrating the ensemble workflow with the
Im-evaluation-harness framework. Enabling researchers to more easily adopt and benchmark en-

semble strategies without building custom implementation from scratch.
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2 Related Work

Recent advances in Large Language Models (LLMs) have inspired growing research on ensemble strate-
gies that aim to combine the strengths of multiple models. This chapter reviews recent ensemble strategies
for Large Language Models (LLMs), focusing on methods that combine token-level outputs from multiple
models. Additionally, we examine how these ensemble methods are typically evaluated, highlighting cur-
rent limitations in standardization and reproducibility. This review concludes by identifying key research

gaps that motivate the work presented in this thesis.

2.1 Ensemble Strategies for Large Language Models

Ensemble methods for LLMs operate by combining outputs from multiple models to improve performance,
robustness and reliability. Beyond the performance improvements, these approaches also target LLM limi-
tations including hallucinations, inconsistent outputs and brittle behavior when answering complex tasks.

Figure 1 illustrates the general concept of LLM ensembling.

v -~ T I
Ensemble | |
|
| |
| |
| LLM1 LLM 2 LLM 3 |
| |
| |
Input : ! Output
‘What is the capital of France? 4>| |—> Paris
Paris Marseille Paris

Figure 1: Overview of LLM Ensembles.

2.1.1 LLM’s Ensemble Strategies

Many different ensemble approaches have been proposed, each with different strategy for combining model

outputs:

Generation of each token by LLMs as a Classification (GAC) treats each token prediction as a clas-
sification task, combining probability distributions from multiple models to calculate the next token [17].
At each generation step, every model independently computes probabilities over its vocabulary. These
distributions are then aggregated through weighted averaging to create a unified probability distribution

for token selection.

UNIon Top-k Ensembling (UNITE) focuses only on the top-k most likely tokens from each model rather
than aligning entire vocabularies. This reduces computational processing while respecting each model’s
unique tokenization [4]. This approach creates a union of the most promising candidates across all models,

then renormalizes probabilities over this reduced set.
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SWEETSPAN operates at the span level, generating text spans from multiple models which are then
evaluated and selected based on quality metrics [14]. Each model candidate is generated on a shared
prefix, then perplexity scores are calculated. This approach balances the need for real-time adjustments

with the information required for accurate ensemble decisions.

Ensemble LLMs via Vocabulary Alignment (EVA) creates mappings between different model vocabu-
laries using overlapping tokens and uses semantic similarity to map unique tokens. This approach allows

for a projection to a unified vocabulary space for ensemble aggregation [15].

DeepEn fuses probability distributions for different LLMs at each decoding step [7]. The method handles
vocabulary differences by mapping distributions to a shared space, performing aggregation, then convert-

ing back to select the next token.

2.2 Evaluation of Large Language Models

Evaluating the performance of LLMs involves a combination of standardized benchmarks, performance
metrics and software tools designed to ensure compatibility and reproducibility. Most commonly, LLMs

are assessed on tasks that test reasoning, factual knowledge and commonsense understanding,.

2.2.1 Popular Benchmarks

Several benchmarks have emerged as standard tools to assess different capabilities of LLMs:

« MMLU tests knowledge across 57 academic subjects in a multiple-choice format [6].

Example:
Question: What is the capital of Canada?
Choices: (A) Toronto (B) Montreal (C) Ottawa (D) Vancouver

Answer: C
« GSMBK evaluates multi-step mathematical reasoning problems [5].

Example:
Question: If you buy 3 apples for $2 each and 2 bananas for $1 each,
how much did you spend?

Answer: 8
+ PIQA tests physical commonsense understanding [2].

Example:

Goal: To break a glass bottle...
Choice A: Throw it against a wall
Choice B: Wrap it in a towel

Correct: A
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+ TriviaQA focuses on factual question answering using open-domain knowledge [8].

Example:
Question: Who discovered penicillin?

Answer: Alexander Fleming

« ARC (AI2 Reasoning Challenge) and Winogrande test scientific and commonsense reasoning,

respectively [16, 12].

Winogrande Example:

Sentence: The trophy doesn’t fit into the suitcase because it 1is
too small.

Question: What is too small? (trophy/suitcase)

Answer: suitcase

These benchmarks vary in complexity, format and the type of reasoning they require from the LLM, which

makes them useful for stress-testing different aspects of LLM behavior.

2.2.2 Evaluation Metrics

Different tasks require different metrics, but the most commonly used ones include:

« Accuracy: Measures the percentage of correct answers in classification or multiple-choice tasks. It

is widely used in benchmarks.

« Perplexity: Used in language modeling tasks, perplexity quantifies how well a model predicts the
next word in a sequence. Lower perplexity indicates a better understanding of language structure

and context.

« Exact Match (EM): Used for tasks with a single correct textual output. EM checks whether the

model’s response exactly matches the reference answer.

« F1 Score: Balances precision and recall, especially useful when model outputs are partial matches

to the expected answer.

+ Log-likelihood: Captures the probability assigned by a model to a sequence of tokens, making it
particularly suitable for comparing model confidence or aggregating token-level outputs in ensem-
bles.

These metrics are task-dependent and often used together to provide more comprehensive assessment of

model’s performance.
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2.2.3 Im-evaluation-harness Framework

One of the most widely adopted open-source frameworks for evaluating large language models is the
Im-evaluation-harness, developed by EleutherAl This tool provides standardized implementations of
dataset loading, few-shot prompt formatting, model inference, and metric computation for over 40 popular
NLP benchmarks, including MMLU, PIQA, GSM8K, and HellaSwag.

The framework is tightly integrated with the Hugging Face ecosystem and was notably used to power the
Open LLM Leaderboard[1], which publicly ranked the performance of open-weight models across multiple
standardized tasks. Although the leaderboard is now archived, its reliance on Im-evaluation-harness

helped establish the tool as the standard for reproducible LLM evaluation in the open-source community:.

By default, Im-evaluation-harness supports evaluation of single models hosted on Hugging Face. How-
ever, its flexible architecture allows for integration of custom models, including ensemble methods, via a
wrapper class. This extensibility is leveraged in this project to enable ensemble evaluation, even though
native support for multi-model coordination and aggregation logic is not provided. As a result, mean-
ingful ensemble evaluation still requires additional engineering to conform to the framework’s expected

interfaces.

2.3 Limitations in Evaluating Ensembles of LLMs

Although the evaluation of single LLMs has matured significantly, the assessment of LLM ensembles re-
mains underdeveloped. Current literature on ensemble methods often lacks transparency, standardization,

and consistency in experimental setups.

2.4 Inconsistent Use of Models and Benchmarks

A major limitation in ensemble research is the lack of common evaluation setups. Different studies use

different:

« Model combinations (which vary in architecture and size)

« Benchmarks (often cherry-picked to favor the method and showcase improvements.)

« Metrics or task-specific adaptions (which are often undocumented)

This inconsistency severely limits the ability to compare results across papers or to draw generalized

conclusions about the effectiveness of ensemble strategies.

For example, while some papers evaluate their ensemble models on MMLU, others use completely different
benchmarks, with little justifications for these choices. Moreover, many papers do not mention critical
implementation details about scoring, normalization or token alignment, making it difficult reproducing

the results.
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2.4.1 Cherry-picking and Reporting Bias

Because ensemble performance often depends heavily on the combination of models used, some papers
selectively report only the most favorable results. This introduces the cherry-picking bias, where gains are
overstated and potential weakness is hidden. In this project, we later explore a wide range of model com-
binations to observe the ensemble effectiveness. These variations showcase the importance of evaluating

ensemble strategies comprehensively rather than selectively.

2.4.2 Need for Standardized Evaluation

While flexible frameworks like lm-evaluation-harness exist, they are rarely adopted in ensemble re-
search. Even when they are used such as the GAC paper [17]. Their native support for ensemble evalua-
tion is limited. This requires significant engineering to adapt the framework for multi-model coordination,

shared token handling and ensemble-specific scoring logic.

In this project, we address these issues by implementing an extensible ensemble evaluation pipeline within
the Im-evaluation-harness. This setup enables fair, consistent comparison of ensemble strategies (such
as GAC, UNITE, SWEETSPAN, and others) across standardized benchmarks and model combinations.



3 Methodology

This section presents the ensemble approach and evaluation methodology used in this project. We first
describe the GAC strategy in our ensemble implementation. We then outline the Im-evaluation-harness
framework, which provides a standardized platform for evaluating model performance across multiple

benchmarks.

3.1 Overview of GAC

The GAC ensemble strategy treats token generation as a classification problem where multiple models

contribute to predicting the next token at each step [17].

Token-Level Classification: At each generation step, GAC treats the prediction of the next token as a
classification task. Each model in the ensemble independently computes the probability distribution over
its entire vocabulary, representing the likelihood of each possible token being the correct next token given

the current context.

Probability Aggregation: The core of GAC lies in combining these individual probability distributions.
For models sharing the same tokenizer (such as models from the same family), probabilities can be di-
rectly averaged across the vocabulary positions. This aggregation process creates a unified probability

distribution that incorporates the collective knowledge of all ensemble members.

Handling Vocabulary Differences: When ensemble models use different tokenizers or vocabularies,
GAC faces the challenge of aligning probability distributions across incompatible token spaces. The method
addresses this by implementing vocabulary mapping strategies to enable meaningful probability combi-

nation.

Sequential Generation: Once the aggregated probability distribution is computed, GAC selects the token
with the highest combined probability. This token is added to the current sequence, and the process repeats
for the next position. Each model then uses the updated sequence to generate probability distributions for

the next token prediction.

Large Language

—»| Token Probabilities
odel
Input Prompt L iy ——m» Token Probabilities Ensemble Token Probabilities | T i e Yes—» OQutput Response
Model 2 highest probability

No

Large Language

Model _ —»| Token Probabilities

Figure 2: Overview of the GAC strategy.
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3.2 LLM Evaluation Framework

The Im-evaluation-harness framework provides standardized implementations for evaluating language
models across numerous benchmarks [13]. The framework is integrated with the Hugging Face ecosystem,

enabling evaluation of models hosted on Hugging Face.

Input Layer
F————————— - — - — = — - — - — = =
I

I
I
! I
: Datasets LLM Configuration | |
| I
I

I
I

I
I
‘e .
Framework layer
-—-———_——_———_ Y ______
| I
I . Frompt '
Task Loading = : » Model Interface |

I Formatting

| I
| T
| Results " Evaluation | Inference [
| Aggregation | Engine - Pipeline [
F.-. - _ ______ _ —_—_—_—___-—— I
Cutput Layer
Fr—-——-——-—=------¥ - - - - - - - —— -
I
! I
! Evaluation Reports and [
: Results Logs [
| I
I

Figure 3: Overview of the framework architecture.

As shown in the figure 3 the framework coordinates several key components to provide standardized

evaluation.

Inputs: The framework accepts datasets (such as MMLU, GSM8K and PIQA), LLM models (from hugging-

face or custom implementations), and configuration parameters (few-shot settings and batch sizes).

Core Processing: The framework handles task loading, prompt formatting and model interface manage-

ment for tokenization and inference. The evaluation engine computes metrics while the inference pipeline
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processes requests, with results aggregation normalizing scores across different tasks.

Outputs: The framework produces evaluation results and comprehensive reports with logs that ensure

reproducible configurations.

Key features include:

« Standardized benchmarks: Implementations of popular datasets (MMLU, GSM8K, HellaSwag,
etc.)

+ Consistent evaluation: Uniform scoring procedures across different tasks
+ Reproducible results: Standardized experimental setups that enable fair comparisons

+ Pre-configured model families: Built-in support for various model architectures (GPT, BERT,
LLAMA, etc.)

« Extensible design: Architecture that allows adding new benchmarks and models from beyond

Huggingface

Its pre-configured support for different model families significantly simplifies the evaluation process. Users
can evaluate models with minimal setup, as the framework handles model-specific configurations, tok-
enization, and inference procedures automatically. However, when working with custom models, we must
implement specific methods in a so-called wrapper class to ensure compatibility with the framework’s ex-
pected interfaces and achieve the same level of functionality as the pre-configured models. Furthermore,

the framework was also used as a foundation for the now archived Open LLM Leaderboard on huggingface.
[1]

While Im-evaluation-harness excels at evaluating individual models, it has inherent limitations when
working with ensembles. The framework is designed around single-model evaluation and lacks native sup-
port for ensemble coordination, aggregation logic, or multi-model response handling. The custom model
feature allows for ensemble integration, but requires implementing the necessary methods to represent

ensemble outputs as single model responses that respects the framework’s evaluation expectations.

By addressing the inconsistency problem in ensemble evaluation, the framework offers a reproducible
foundation for benchmarking. This allows researchers to focus on developing ensemble strategies rather

than building evaluation infrastructure from scratch.
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4 LLMEnsembleEval: A Multi-GPU LLM Ensemble Framework

To evaluate the GAC ensemble using the Im-evaluation-harness framework, we have developed LL-
MEnsembleEval, a comprehensive library designed around a modular architecture built around two main
components: the Ensemble class and the Wrapper class. This separation ensures flexibility, reusabil-
ity, and seamless integration with existing Hugging Face workflows while providing robust multi-GPU

support for efficient ensemble processing.

Figure 4 provides a conceptual overview of our library architecture, illustrating how multiple LLMs are

distributed across GPUS and integrated with the Im-evaluation-harness for standardized evaluation.

Input Layer
|— ______________________________ al
| |
| |
[ Ensemble Config Framework Config :
|
| Model Names Fewshot Settings I
| |
| Tokenizer Names Tasks [
| |
| GFPUs Batch_size |
| |
| |
-l |

Ensemble Layer Lm-evaluation-harness
__________________ A

) . . Framework Architecture
Vocabulary Union —» Mappings Union

)

Ensemble Processing«—  GPU Allocation

Resulis & Reports

‘Wrapper Layer

‘Wrapper Interface |—» Task Handlers

Figure 4: Overview of the conceptual LLMEnsembleEval architecture.
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The complete implementation of the library, including source code, is available on github: https://

github.com/blobod/LLMEnsembleEval.

4.1 Multi-GPU Architecture and Implementation

LLMEnsembleEval supports multi-GPU deployment to address the memory and computational require-
ments of loading multiple large language models simultaneously. The framework automatically distributes
models across available CUDA devices, enabling parallel inference while maintaining memory efficiency.
This architecture allows to experiment with larger model combinations that would exceed single-GPU

memory limits.

4.2 Ensemble Class

The Ensemble class contains the core logic for combining predictions from multiple Hugging Face models
at the token level. It handles three critical responsibilities: vocabulary unification, logit aggregation, and
maintaining Hugging Face compatibility.

Vocabulary Unification: The most challenging aspect of ensemble implementation is integrate different
tokenization schemes across models. For example, Qwen-1.5 uses ”_” as a whitespace prefix while Phi-
3-mini uses "G”. Without proper handling, tokens like ”_Answer” from one model would not align with

“GAnswer” from another, causing ensemble failures.

The solution involves constructing a union vocabulary across all models and creating mapping tables from
each model’s vocabulary to this shared space. The system detects the dominant whitespace prefix among

ensemble members and normalizes all tokens accordingly:

def _create_vocab(self):

33333

??””Create a UNION vocabulary with special handling for different tokenizer types.

# Detect dominant prefix (e.g., G or .)

# Normalize tokens using dominant prefix

# Add normalized tokens to union vocab

Listing 1: Create vocab method

The complete method implementation is provided in the Appendix 3.

Hugging Face Integration: The ensemble implements standard Hugging Face methods such as(generate,
save_pretrained, from_pretrained), allowing it to be used as a drop-in replacement for any individual

model in existing workflows.
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4.3 Wrapper Class

The Wrapper class serves as an adapter between the Ensemble and Im-evaluation-harness, implementing
the evaluation framework’s expected interface methods (loglikelihood, loglikelihood rolling, gener-

ate_until). This design allows the ensemble to be evaluated using the same protocols as individual models.

Interface Implementation: The wrapper retrieves token-level probabilities from the ensemble, processes
them according to harness requirements, and returns properly formatted results. For instance, the log-
likelihood method aggregates probabilities across the union vocabulary and converts them to the log-

likelihoods expected by the evaluation framework.

def loglikelihood(self, requests):

9333 33 9393 33

Calculate log-likelihood for a batch of requests.
if not requests:
return []

results = []

for idx, instance in enumerate(requests):

try:
# vValidate instance structure
if not (hasattr(instance, ) and isinstance(instance.args, tuple) and
len(instance.args) == 2):
results.append( (-float( ), False))
continue

context, continuation = instance.args
doc = getattr(instance, , =)
# Detect benchmark type and call appropriate handler
detected_type = self._detect_benchmark_from_instance(instance, debug=False)
if detected_type ==
log_prob, is_greedy = self._handle_piqga(context, continuation, doc,
debug=True)
elif detected_type ==
log_prob, is_greedy = self._handle_mmlu(context, continuation, doc,
debug=True)
elif detected_type ==

self. _handle_arc(context, continuation, doc, debug

log_prob, is_greedy
=True)
elif detected_type ==
log_prob, is_greedy = self._handle _winogrande(context, continuation, doc
, debug=True)
else:
# Raise error for unknown benchmark types to ensure proper handling
raise ValueError(f
£ )
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results.append((float(log_prob), is_greedy))

except Exception as e:
# Log error for debugging but continue processing
print (£ )
results.append((-float( ), False))

return results

Listing 2: Wrapper loglikelihood implementation

Benchmark-Specific Processing: Different evaluation tasks require specialized handling due to their
unique output formats and scoring methods. The wrapper implements task-specific processors for the

benchmarks used in this study:

+ _handle mmlu: Aggregates probabilities for multiple-choice answers across differently-tokenized

outputs
« _handle_piqa: Manages log-probability summing for multi-token completions

« _handle_lambada: Performs text cleaning and target token alignment

Extensibility: The modular design supports other ensemble strategies with minimal modification. Any
ensemble that implements the Hugging Face interface can utilize the existing wrapper, making the frame-

work broadly applicable beyond GAC.
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5 Results

In this section we present our experimental findings in two parts: first, we validate our implementation by

reproducing the original paper’s MMLU results using their exact models, then we demonstrate the broader

effectiveness of GAC by extending the evaluation to additional models and benchmarks.

5.1 Implementation Validation: Reproducing Original Results

To establish the credibility of our GAC implementation, we will first reproduce key results from the original
paper using their exact model combinations on MMLU with the same few-shot settings. This validation
ensures our ensemble framework correctly implements the GAC algorithm. For this, we chose 4 models:
Qwen1.5-14B-Chat, Phi-3-mini-4k-instruct, openchat_3.5 and Nous-Hermes-2-SOLAR-10.7B

MMLU Reproduction Results:

Model Combination Original Paper | Our Implementation | Difference
Qwen1.5-14B + Phi-3-mini 69,91% 71% +1,09%
Nous-Hermes + openchat_3.5 66,51% 66,77% +0,26%

Table 1: Direct comparison with original paper results on MMLU

Individual Model Baselines:

Model Original Paper | Our Measurement | Difference
Qwen1.5-14B-Chat 67,2% 66% +1,2%
Phi-3-mini-4k-instruct 67,11% 70% +2,89%
openchat 3.5 63,87% 63,67% +0,2%
Nous-Hermes-2-SOLAR-10.7B 64,88% 65,4% +0,52%

Table 2: Individual model performance on MMLU

Validation Summary: Our implementation achieves reasonable alignment with the original findings,

with an average difference of [+0,675%]. These minor variations could be the result of different handling

of models within our wrapper class.

5.2 Extended Evaluation: Demonstrating GAC Effectiveness

Having validated our implementation, we will now extend the evaluation to demonstrate that GAC im-

proves performance across multiple models and benchmarks.

Complete Model Set:

+ Original Paper Models: Qwen1.5-14B-Chat, Phi-3-mini-4k-instruct, openchat_3.5 and Nous-Hermes-

2-SOLAR-10.7B

+ Additional Models: Qwen3-1.7B-Base, Llama-3.2-1B-Instruct and gpt2-medium
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5.3 Benchmark Specific Analysis

+ Additional Benchmarks: PIQA[2], Arc Challenge[16] and Winogrande[12]

Individual Model Performance Across All Benchmarks:

GAC Ensemble Performance: All ensemble combinations use uniform 50-50 weighting between the two

Model MMLU | PIQA | Arc Challenge | Winogrande
Qwen1.5-14B-Chat 66% 75,4% 44,8% 68,9%
Phi-3-mini-4k-instruct 70% 79,9% 53,8% 73,4%
openchat_3.5 61,6% 81,5% 57,7% 64,4%
Nous-Hermes-2-SOLAR-10.7B 63,8% 81,6% 57,6% 78,1%
Qwen3-1.7B-Base 62,6% 75,8% 41,8% 64,4%
Llama-3.2-1B-Instruct 45,5% 74,4% 35,7% 54,3%
gpt2-medium 26,49% | 67,7% 21,5% 53,1%

Table 3: Baseline performance of the individual models across all benchmarks

models.

Ensemble Combination

MMLU

PIQA

Arc Challenge

Winogrande

Qwen1.5-14B + Phi-3-mini

71% [+1%]

79,5% [-0,4%]

50,5% [-3,3%]

74% [+0,6%]

Qwenl1.5-14B + openchat_3.5

68,8% [+2,8%]

80% [-1,5%]

50,8% [-6,9%]

71,9% [+3%]

Qwenl.5-14B + Nous-Hermes

69,6% [+3,6%]

80,6% [-1%]

50,9% [-6,7%]

74,7% [-3,2%]

Phi-3-mini + openchat_3.5

69,9% [-0,1%]

82,5% [+1%]

58,3% [+0,6%]

77,9% [+4,5%)

Phi-3-mini + Nous-Hermes

70,8% [+0,8%]

82,3% [+0,7%]

58,4% [+0,8%]

78,6% [+0,5%]

Nous-Hermes + openchat_3.5

66,7% [+2,9%]

82,2% [+0,6%]

56,6% [-1,1%]

77,9% [-0,2%]

Qwen3-1.7B + Qwen1.5-14B

68,6% [+2,6%]

77% [+1,2%]

45% [+0,2%]

69,7% [+0,8%]

Qwen3-1.7B + Llama-3.2-1B

61% [-1,6%]

76% [+0,2%]

41,3% [-0,5%]

64,7% [+0,3%]

gpt2-medium + Phi-3-mini

70,1% [+0,1%]

77,3% [-2,6%]

41,3% [-12,5%]

72,5% [-0,9%]

Table 4: GAC ensemble results across all tested combinations. Values in the bracket show the difference
compared to the best performing individual model in each ensemble.

5.3 Benchmark Specific Analysis

5.3.1 MMLU Performance

The GAC strategy consistently improves performance on MMLU across nearly all tested model combi-
nations, with gains ranging from 0,1% to 3,6% over the best individual model. This suggest particular
effectiveness for knowledge intensive, multiple-choice tasks where the ensemble can leverage the diverse

knowledge bases of different models.

5.3.2  PIQA Performance

Results on PIQA show mixed effectiveness. While some combinations achieve modest improvements
(+0,2% to +1,2%), others show minor degradation (-0,4% to -2,6%). The commonsense reasoning required

by PIQA appears to be more sensitive to the specific model combinations used. This suggests that the GAC
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token-level averaging may not always capture the nuanced reasoning patters needed for these tasks.

5.3.3 ARC Challenge Performance

ARC Challenge results reveal more pronounced limitations of GAC. Most combinations under perform
compared to their best individual model. The reason for this could be that the scientific reasoning tasks
within ARC Challenge were already challenging, as most of the individual models achieved below 60%
accuracy. The added complexity of token-level averaging appears to introduce more noise rather than

complementary knowledge which results in most of the combinations having lower results.

5.3.4 Winogrande Performance

Winogrande shows that most GAC combinations provided improvements over their base models. Notable
gains include +4,5% for Phi-3-mini + openchat_3.5 and +3% for Qwen1.5-14B + openchat_3.5, with 7 out of 9
combinations showing positive results. The few cases of lower results suggest that while GAC is generally
effective for commonsense reasoning tasks, the compatibility of the models’ reasoning approaches still

plays a role in the success of the ensemble.

5.4 Performance Patterns

The results reveal several observable patterns across benchmarks:

+ Ensembles with similar baseline performances (e.g., Phi-3-mini + openchat_3.5) generally show more

consistent improvements

+ Combinations with large performance gaps (e.g., gpt2-medium + Phi-3-mini) exhibit greater under-

performance

« Knowledge-intensive tasks (MMLU) show more consistent ensemble benefits than complex reason-
ing tasks (ARC Challenge)

The implications of these patterns for ensemble design and the underlying causes of performance varia-

tions are analyzed in detail in Discussion. 6
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6 Discussion
6.1 Key Findings

Implementation Validation: Our GAC implementation successfully reproduced the original paper’s
results with an average difference of -0, 675% on MMLU, demonstrating the correctness of our ensemble

framework. Minor variations likely come from differences in model handling within our wrapper class.

Performance Similarity Hypothesis: Building on the performance patterns observed in section 5.4, our
results suggest that GAC ensembles with uniform weights work most effectively when individual model

performances are similar.

When models have different capabilities, uniform averaging dilutes the stronger models prediction with
noise from the weaker model. In contrast, models with similar performance are more likely to make

complementary errors that can be corrected through ensemble averaging.

6.2 Model Diversity and Ensemble Error Analysis

Our findings align with the diversity-error framework established by Ortega et al. [10], which demon-
strates that ensemble success requires both low individual error and beneficial diversity among predictors.
However, our results extend this theory to the LLM domain, revealing task-specific patterns not previously

explored.

This relationship explains our mixed results. The theory demonstrates that for ensemble success, we need
both low average individual error and high beneficial diversity, where models make different types of

errors that can complement each other.

Our results suggest that when models have very different capability levels (gpt2-medium + Phi-3-mini),
the diversity may not be beneficial. The weaker model introduces more noise than complementary infor-
mation. As shown in their work, diversity decreases when predictors are highly correlated. We extend this

by showing that excessive performance gaps can also limit beneficial diversity.

In contrast, models with similar performance levels (Phi-3-mini + openchat_3.5) can achieve beneficial

diversity while maintaining low average error, aligning with the optimal balance described in the paper.
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6.3 Limitations

Benchmark-Specific Performance: The inconsistent performance across different benchmarks high-
lights a key limitation of GAC. While effective for tasks like MMLU, the strategy shows mixed results for
commonsense reasoning (PIQA) and struggles with complex reasoning tasks like ARC Challenge. This
suggests that ensemble strategies may need to be tailored for specific task types and not something that

can be applied universally.

Computational Overhead: Our implementation requires loading and maintaining multiple models si-
multaneously, which significantly increases memory requirements and inference time. The overall focus

was on the correctness rather than efficiency.

Uniform Weighting as a Fundamental Constraint Beyond the computational overhead already dis-
cussed, our results reveal fundamental limitations of GAC’s static 50-50 weighting approach that cannot
adapt to varying model capabilities or confidence levels. This becomes increasingly problematic as perfor-

mance disparities between ensemble members grow.
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7 Conclusion

This report advances LLM ensembles research through empirical validation of ensemble theory and devel-
opment of standardized evaluation tool. Our work demonstrates that GAC’s effectiveness depends criti-
cally on model similarity, with uniform weights working best when ensemble members have comparable

capabilities rather than requiring maximum diversity.

7.1 Key Contributions

We provide a comprehensive validation of the GAC strategy across multiple benchmarks, revealing strong
performance on knowledge-intensive tasks (MMLU) while highlighting limitations in complex reasoning
scenarios (Arc Challenge). Our findings demonstrate that performance similarity between ensemble mem-

bers significantly affects GAC effectiveness.

LLMEnsembleEval addresses a critical gap by providing the first standardized framework for LLM ensem-
ble evaluation. The modular design enables systematic comparison of ensemble methods while maintain-

ing reproducible evaluation protocols.

7.2 Future Directions

The limitations of static weights revealed in this work point towards adaptive ensemble strategies that
consider model confidence and task characteristics. Future research should explore performance clustering
for ensembles and develop methods that would distinguish beneficial diversity from the harmful one, across

different task types.

Our framework provides the foundation for systematic evaluation of emerging ensemble strategies like
UNITE, SWEETSPAN and EVA, potentially accelerating progress towards more reliable and effective LLM

ensemble strategies.
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8 Appendix

def _create_vocab(self):

??””Create a UNION vocabulary with special handling for different tokenizer types

93333

print (" [GAC _create_vocab] Creating improved UNION vocabulary...”)

# Initialize for the union vocabulary

self.union_vocab_set = set()

# Process each tokenizer to find dominant prefix type
g_prefix_count = 0

u_prefix_count = 0

for tokenizer in self.tokenizers:
vocab = tokenizer.get_vocab()
g_prefix_count += sum(token.startswith(”G”) for token in vocab)

u_prefix_count += sum(token.startswith(”_ ”) for token in vocab)

# Determine dominant prefix type
uses_g _prefix = g_prefix_count ;= u_prefix_count
print(f” Detected prefix types: G=-g_prefix_count , _=-u_prefix_count )

print (f” Using dominant prefix type: -’G’ if uses_g_prefix else ’_’7”)

# Process each tokenizer with normalized tokens
for i, tokenizer in enumerate(self.tokenizers):
try:
vocab = tokenizer.get_vocab()

normalized_tokens = set()

for token in vocab:
# Normalize tokens based on dominant prefix
if uses_g_prefix:
# Replace _ with G for consistency if this token uses
if token.startswith(” 7):
normalized = ”"G” + token[1:]
else:
normalized = token
else:
# Replace G with _ for consistency if this token uses G
if token.startswith(”G”):
normalized = 7 7 + token[1:]
else:

normalized = token




22 References
normalized_tokens.add(normalized)
# Add normalized tokens to union vocabulary
self.union_vocab_set.update(normalized_tokens)
except Exception as e:
print (£ )
# Create sorted list and mappings
self.union_vocab_list = sorted(list(self.union_vocab_set))
self.union_vocab_token_to_idx = -
token: idx for idx, token in enumerate(self.union_vocab_list)
self.union_vocab_idx_to_token = -
idx: token for token, idx in self.union_vocab_token_to_idx.items()
# Store the dominant prefix type for later use
self.uses_g_prefix = uses_g_prefix
print (£ )
if not self.union_vocab_list:
print( )
Listing 3: Whole create_vocab method
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