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results showing reduced firmware sizes in
most cases. While the usability of the tool
remains an area for improvement, the find-
ings demonstrate that memory-aware link-
ing can significantly reduce update size and,
by extension, energy consumption during
firmware updates. Thus improving the life-
time operation of the devices.
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Introduction 1
Internet of Things (IoT) devices continue to increase in the billions. There are approximately
18 billion devices currently, and in 2030, it is expected to reach 40 billion. These devices aid
the modern world in everything from data collection to convenience. 80% of IoT devices
use either Wi-Fi (31%), Bluetooth (25%), or Cellular (21%) [1]. IoT devices can be found in
every field, from smart homes to industries such as the medical, infrastructure, agriculture,
maritime fields, etc. An improvement in any aspect might be huge when considering the scale
and variety of their use cases. [2]

The majority of IoTs are battery-powered, meaning that power consumption, or more precisely
the Energy Mangement (EM), focuses on the longevity of the devices by optimizing the sleep,
sampling, and sending of data. By introducing sleep cycles, efficient data processing, and use
communication protocols in an efficient manner, such that the individual devices’ lifetime
operation is considered. Some communication protocols like it have been made to be more
efficient and reduce energy usage by adjusting the transmission parameters. Other methods
of making the device more power efficient through communication to reduce overhead or
lowering the transmission frequency. These energy-efficient IoT devices have both in terms of
their hardware, software, and communication protocols been changed for the main purpose
of reducing the total power consumption [3]. However, because of all the ways of improving
efficiency, it reaches a point where each part’s optimization might limit other aspects in terms
of future changes.

To narrow the scope, remote environments where devices have limited bandwidth, such as
satellites, where the constraints imposed cannot be changed easily or would be too expensive
to mitigate. Given these challenges, it is crucial to minimize the time the device spends in
its active state, such as during data processing or updates. Updating, or rather, firmware
updates, which are low-level code that directly interacts with the hardware of the device, and
ensures that it performs its functions correctly, are key aspects to the longevity of the devices.
Regular firmware updates can help enhance security, enable new features, comply with newer
industry standards and regulations, as well as help device performance and increase its
lifespan as a result [4].

1.1 Initial Problem Statement

To conserve limited resources and battery life, it is essential to minimize the device’s active
time during processes like data handling or firmware updates. In remote environments, these
constraints make full firmware updates impractical.

How can firmware updates be optimized for devices with limited resources available?

1



Problem Analysis 2
Firstly, the different aspects of this problem will be identified and analyzed. Starting at a
higher level, by finding out which devices are usually used in these kinds of use cases. From
there, the different levels of performance and power usage is possible to narrow down and
analyze.

2.1 Low Energy Devices

Most IoT sensors are placed either in conditions where the temperature is strictly monitored or
to collect information about the area. With rapid growth and deployment of IoT devices across
a wide range of fields, from agriculture to aerospace, have brought significant attention to
their long-term maintainability, particularly in power-constrained and remote environments.
As discussed in the chapter 1: Introduction, these devices are often optimized to consume
as little energy as possible, which poses a major challenge when trying to apply firmware
updates that require extended active operation [3].
Ideally, these low-energy devices must be very efficient at every step, such that their opera-
tional life is prolonged. From a generalized perspective, the states of the device can be divided
into the three states:

• Wakeup state

• Processing state

• Standby state

A quick wakeup and processing state would be ideal while also balancing the usage with
how much energy is spent on it, such that a sort of equilibrium is found between power and
processing usage. Meanwhile, the standby state is mostly focused on maintaining low energy
usage. Firmware updates, however, disrupt this balance. They require sustained processing,
active communication, and storage writes all of which occur in the high-power states. There-
fore, even a single firmware update can significantly impact the device’s energy budget. Based
on this, minimizing the time spent in the processing state should be a priority [4].

2.1.1 The Need for Firmware Updates

Most of the embedded devices are placed such that they are meant to stay for a long time. So,
it would be natural to assume that they should never need an update. What are the reasons
firmware updates are necessary?

While many embedded IoT devices are designed for long-term deployment without inter-
vention, firmware updates remain essential for several reasons. Regular firmware updates
can mitigate security risks, system failures, and impact performance. Regular updates will

2



Page 3 of 54  Section 2.1 :  Low Energy Devices

enhance the security, fix bugs, and could also introduce new features if not enhancing the
existing ones. Lastly is compatibility, as the external devices that communicate with them can
change, which might require a change in the embedded device as well [5]. In remote and
resource-limited environments, applying these updates becomes particularly challenging,
not only because of energy constraints but also due to bandwidth limitations and the risks
associated with interrupting normal operation. This makes the need for efficient, reliable
update mechanisms more important than ever.

2.2 Update Methods

The term update is very broad; as such, it can, in the context of this report, be subdivided into
categories, which will provide an easy overview of the update process:

• Update mechanism

‣ A/B updates

‣ Rolling update

• Resource use

‣ Full update

‣ Delta update

‣ Binary Patching

• Update Execution Architecture

‣ Static Linking

‣ Positional Independt Coding (PIC)

‣ Dynamic Linking

‣ Segmented Linking (Linking Segmented Code)

• Distribution Channel

‣ Over the Air (OTA)

‣ Peer-to-Peer (P2P) Update

Update Mechanism
These subcategories can be useful for identifying what approach to take when discussing
future updates on embedded hardware. The first element regarding the update mechanism
is the A/B update, which uses a safety mechanism by having two slots: “A” and “B”, with both
slots containing an updated version. The slot with the newest update is the one running, while
the other slot includes an older version, so if the new version is faulty, there is still something
to fall back on. With A/B updates, the bootable dual partitioning system has the advantage of
a fail-safe [6].



Page 4 of 54  Section 2.2 :  Update Methods

Another update mechanism is the Rolling updates, depending on the ecosystem, this name
might differ, as some refer to them as phased or canary deployment as a reference to the canary
in the mines. This means that the update will be sent out in phases, so if something were to
go wrong, it would only affect a certain percentage of the devices. Using this method, it is
possible to test the reliability of a newly released update [7].

Resource Use
Resource use refers to the size of the update that needs to be sent. However, this can be subdi-
vided based on the specific method used to “make” the update. A full update is, as the name
suggests, the complete code sent. A delta update only sends the changes between the updated
version and the one currently running on the system. This makes delta updates more efficient
than the full update, as only the necessary parts of the code are sent to the devices. Binary
patching directly modifies the code without the need for source code and recompilation. It is
often used for fixing bugs or implementing a small feature.

Update Execution Architecture
The update execution architecture highlights how the updates are linked, loaded, and exe-
cuted, which plays a critical role in the system’s flexibility and performance.
To properly understand Dynamic Linking, it helps to contrast it with Static Linking. Static
linking combines all necessary libraries and dependencies into a single executable at compile
time. This makes the program self-contained and portable, but often results in larger file sizes
and longer build times due to full dependency inclusion.

Dynamic linking, by contrast, loads external libraries at runtime. This allows multiple pro-
grams to share the same library in memory, reducing both file size and update complexity,
especially when only the libraries change. Dynamic linking also supports modularity, making
it easier to update components without rebuilding the entire application [8], [9].
This is where PIC becomes essential as it allows code to be compiled and executed correctly
regardless of its memory address, which is a key part of dynamic linking. Since shared
libraries may be loaded at different addresses in different programs, PIC ensures they function
correctly without recompilation. PIC is also useful in modular embedded systems where code
must be loaded and relocated dynamically. The opposite of PIC is absolute code, which relies
on hardcoded addresses and is much less flexible for such purposes [10], [11].

The flexibility provided by PIC also plays a crucial role in systems that use segmented code
linking. In embedded systems, especially those with limited memory, code is often divided
into segments or modules that can be updated or loaded independently. Linking segmented
code involves resolving addresses across these separately compiled sections, which can be
challenging if addresses are fixed. By using PIC, each segment becomes relocatable, making
it easier to load modules into different memory locations without requiring changes to the
binary files. When combined with dynamic linking, segmented code can be loaded, replaced,
or updated on-the-fly, enabling modular firmware designs that support dynamic updates and
reduce downtime in constrained devices [12].
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Static Linking Dynamic Linking

Definition Everything is combined into a single file
at compile time.

External libraries are referenced at run-
time, when the program is loaded/exe-

cuted.

File Size Generally larger as a result of the com-
bination.

Smaller size, because of the external li-
braries dynamically linked at runtime.

Flexibility Less flexible because of larger file size,
which means a long compile time if an
update is needed, but more portable as
a result of everything contained in a

single file.

More flexible, as updates in the libraries
can be done without the need for recom-

piling the program.

Perfor;
mance

Faster program start and direct execu-
tion.

Slightly slower startup due to linking,
but overall minimal impact on perfor-

mance

Table 2.1: Summary Table of the main differences between Static and Dynamic Linking [8].

Distribution Channel
The Distribution channel refers to how the update is sent to each device. OTA delivers the
firmware update wirelessly via. networks such as Wi-Fi or cellular connections. This type of
update is very common for devices that are located in remote or hard-to-reach locations. Some
of the key benefits of using OTA are the scalability, as it facilitates updating large numbers of
devices simultaneously. However, there are also considerations such as security risks involved
and the reliance on a network connection. However, OTA updates can also enable a timely
patching against vulnerabilities because of its key benefits [13].

P2P updates take a decentralized approach, where the devices themselves share updates
directly with each other instead of solely relying on a central server. The key advantage of this
update type is its application in environments with limited connectivity. The P2P topology
has an increased complexity as a result of its flexibility and architecture. This means that
robust protocols for device discovery and communication as to not cause network congestion
or too much uptime for the individual devices. As such, aside from security considerations,
managing the version control for the devices is also essential [14], [15].

2.2.1 Scalability & Efficiency Tradeoff

Due to the constraints of these low-powered devices, there is likely a significant constraint on
available storage on the device. This means that the update also needs to be considered in the
context of the use case.
Making a device fully upgradable, with near infinite room for the firmware to expand into,
could easily seem excessive, if there is a 99.9% certainty that all that will ever be needed to
change is a couple of integer values, which will stay within the same size constraints anyway.
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2.3 State of the Art

This section explores the current State of the Art (SoA), which will give an insight into the
methods currently applied and discuss the advantages and disadvantages of these methods.
These methods might also need different metrics to evaluate their advantage, as such a table
will summarize the key takeaways for this project.

In this first paper, [16], Zephyr, an Real-Time Operating System (RTOS) ecosystem OS, is used
to compare against other solutions, such as scripting-based approaches and virtual machines.
However, it starts by categorizing the method for the update type into four distinct types:

• 1) Non-Volatile Memory Flashing (Full, Partial)

• 2) Dynamic Loading

• 3) Virtual Machine

• 4) Scripting

The first is also what has been referred to as an A/B update earlier in this report. Dynamic
loading often refers to approaches where PIC is used. With a loadable code, it is possible to
make changes without the need for a reboot, which does have the advantage of being very
efficient; however, if poorly implemented can cause the software to crash. The third type,
using Virtual Machines (VMs), in these solutions, the performance takes toll as there is an
inherent indirect memory management of the system. The fourth refers to the use of high-
level languages (Python or JavaScript) that then convert the language of the code to either
bytecode or machine code.

Their main solution is the “Dynamic App Loading for Zephyr” (DAL), where they essentially
create an Software Development Kit (SDK). Zephyr lacks native dynamic code loading, but
a community-developed solution, “DAL”, enables it via kernel syscalls and threads. DAL
isolates application code from the kernel, requiring custom syscalls for interaction. Apps are
written in C, compiled as PIC, and converted to a compact format (TINF). These are embedded
in firmware and loaded at runtime by a custom module that launches them as Zephyr threads.
As a proof-of-concept, DAL has limitations: Cortex-M only, static stack allocation, no standard
libraries, and no official support.

q3vm, is a lightweight C-based virtual machine from Quake III Arena. q3vm compiles C code
to bytecode, which is embedded in firmware and runs in isolation. It lacks kernel API and
standard library support, and its default stack size is too large for constrained devices, but it
is modifiable and well-documented.

uPy is a minimal Python 3.4 runtime for microcontrollers, enabling easy scripting with Zephyr
integration (GPIO, I2C, etc.). Scripts run in isolation but lack multi-interpreter support.
Widely used in industry, it is a strong candidate for exploring scripting in IoT.
These solutions are then tested against each other in some computational tasks, as well as
testing the update time and size of the update, and lastly, also checking the power consump-
tion. However, the key takeaways can be seen already in their first performance test
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Figure 2.1: Performance based on bubblesort, Fibonacci seq., and calculating a square root [16].

The paper makes a clear and concise conclusion of their findings: “Dynamic code loading proved
to be the best solution when performance is of significant importance, with a maximum penalty of
6x. All of the approaches showed massive reductions in the update time compared with the traditional
update mechanisms, with reductions around 30x due to the reduced file sizes. Power consumption tests
revealed no surprises where the solutions with higher overhead consumed more power[16].”

Another research paper [17] with a focus on a small, compact OS called “TinyOS”. Unlike the
objective in the previous paper [16], this paper focuses more on low-energy devices, while the
other paper was more targeted towards microcontrollers in general. The update method used
in the modified TinyOS is incremental and modular via the delta-based updates. The dynamic
TinyOS solution outperformed the base solution by improving the performance in terms of
updates, with the energy consumption and memory footprint, which resulted in a smaller
run-time overhead. However, the approach also offers flexibility as a result of the ability to
load modules dynamically.

The following research paper [18] looked at the most common methods currently being
researched for reprogramming embedded devices when deployed.
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Figure 2.2: The different OS’s and mechanisms examined in the research paper [18].

Depending on the use case, an argument could be made that each solution has a place, such
as VMs, where the CPU overhead is not ideal for power-saving devices. Other approaches,
like those used in Enix and SOS, have practical limitations due to hardware constraints or
high runtime costs. A major issue across most systems is the lack of OS protection, which
means a bad update can crash the whole device. Improving the reliability and safety of these
update mechanisms will be key to making them more widely usable in real-world embedded
systems.
Native code update methods that use relocatable code are the most efficient for long-term
use because they avoid runtime overhead once the update is loaded. However, they can still
introduce significant CPU costs when distributing updates across a network. Some systems,
like SenSpire, avoid this by pre-relocating code, but that only helps with single-device
updates.

The research paper [19] focuses on embedded devices with limited resources, with a focus
on dynamic code loading. PIC is the method used so that the code will run regardless of its
placement in memory, which is also referred to as dynamic linking. Non-PIC or static linking
is where addresses have already been reserved. The paper aimed to make an enhanced PIC
version, in which they succeeded with by both increasing the performance and minimizing
the code size.

The solution required customization of the assembler and linker tools to support the changed
“code” they refer to as the “data-text relative concept”. Usually, the compiler accesses the Global
Offset Table (GOT), which the authors replaced with “data-text-relative”, which reduces the
cost of memory by two lines for every time data is accessed. This results in only one instruction
being used, thereby performing better in the tests. In the evaluation, they used Dhrystone, a
benchmark designed to measure the CPU performance of embedded devices and as a way to
quantify their performance gains from their enchanced-PIC.

2.3.1 Summary

Based on these different research papers, highlighting and optimizing performance or update
methods for embedded devices will all be summarized in the following table Table 2.2.
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Paper Main Takeaway Update Method Metrics

Zephyr (2021)
[16]

Dynamic app loading using a
SDK, that enables efficient mod-
ular updates with low overhead.

Dynamic loading Overall: time, size,
Memory footprint:
Flash, RAM, power

consumption.

Dynamic
TinyOS (2010)

[17]

Modular, type-safe updates
with low overhead.

Delta update Latency, memory,
power

Run-Time Re-
programming

(2020) [18]

Relocatable code is best long-
term; VMs suit rapid changes.

Native code Energy consumption,
OS protection, CPU

costs

Bare-metal
(2018) [19]

Enchanced-PIC Static PIC + dy-
namic linking

Code size, Dhrystone
benchmark, e.g., CPU

performance

Table 2.2: Summary Table of the four research papers described in this section.

As seen in the Table 2.2, depending on the circumstances and goal of the project, the update
method, and the evaluation metrics, a wide variety of procedures are employed to optimize
a certain aspect. Although [18] does recommend only using VMs for short-term projects.

2.4 Fundamentals of Compilers

The C programming language is well known as one of the pillars of modern programming
because of its efficiency and how much it has been implemented. This fact is also true in the
world of embedded systems, which is why the report will be based around the C program-
ming language. Another crucial aspect is the ability to compile the code instead of languages
that are interpreted, such as Python.

2.4.1 Compiler

The compiler is, in essence, a translation process, although there is more to it as it can be
divided into three main processes: Preprocessing, Assembling, and Linking, which at the end
produces the executable output file as shown in the Figure 2.3. However, a few temporary files
are also created in these processes to help facilitate the transitions.
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Figure 2.3: The compilation order in C.

In the preprocessing stage, three main actions are performed. The first is the removal of all
the comments in the source file. Second is the inclusion of the code from the header files
with the .h files, which contain the function declarations and the macro definitions. Thirdly,
replace all macros with their values. All this combined creates the .i-file, which the compiler
processes [20].

In the compilation process, the code is translated to assembly code within the file type “.o”.
This assembly language acts as a low-level, human-readable instruction set for the processor,
using operations like mov, push, or jmp. The resulting .s file represents this translation that
forms the basis for the next step.

The assembler then takes over, converting, i.e., assembling the code into object code. The
object code represents pure machine code, i.e., binary. The binary output stored inside the .o
file, however, for external references such as calls to functions, has placeholders.

The final step is linking, where all the object files are consolidated and the references within
the files are resolved. In static linking, all the required code and the libraries used are bundled
directly into the final executable at compile time. This creates a self-contained file which easy
to deploy because of its simplicity and portability. The main disadvantage with this approach
is that if there were to be an update to any part, even a library, it would require a complete
recompilation as mentioned earlier, as well 2.2.0.3: Update Execution Architecture.

Dynamic linking utilizes a different approach in this step, which defers the inclusion of
these eternal libraries until runtime. The program instead contains symbolic references to the
shared libraries, which are loaded into memory based on need. This results in a reduced file
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and allows for faster updates, but also introduces more runtime overhead and a dependency
on having the correct versions of everything.

2.4.2 Memory Allocation

When looking further into how memory allocation works for variables and functions. Usually,
it is divided into five categories: stack, heap, Uninitialized data (Block Started by Symbol (BSS)),
initialized data, and text segment. A simple example of how location impacts the assembly
code would be whether a variable has been defined globally or locally. The memory allocation
is often shown, with one end representing the “high address” and the other “low address” as
seen in the Figure 2.4. High and low addresses refer to how they are stored in memory, such
that “0xFFFFFFFF” is a high address, while “0x00000000” is a low address.

Figure 2.4: The hierarchy of memory allocation in C.

The stack stores variables with short life spans, e.g., local variables within functions. Stack
allocation is where temporary data is stored, and it follows the LIFO principle. This principle
allows for quick allocation and deallocation of memory as a feature. This, in turn, makes it
efficient with function calls [21].

Heap memory is often referred to as free memory. It stores variables that need to be accessed
multiple times or have a longer life span. Unlike in the stack, where the compiler takes care of
the memory allocation automatically, the heap allocates and deallocates memory using built-
in functions such as malloc(), calloc(), realloc(), and free()  during program execution.
Heap memory is often used for data structures like trees, linked lists, and other types used
for dynamically allocated variables. The heap, therefore, offers some flexibility in terms of
memory block allocation [21].

The uninitialized data segment contains all the local variables defined statically. However, as
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seen in the Figure 2.4, the memory space allocated to them is initialized to zero at the start
of the program. The initialized data segment refers to static, often global, variables that have
been explicitly told to be initialized by the programmer and is stored in the binary. The code
segment stores the executable code as it contains the actual instructions of the program [22],
[23].

2.4.3 Firmware File Types

Although some file types have been briefly mentioned in the previous Fundamentals of
Compilers Section. However, this section explores the .elf, .hex, and .bin file types in more
depth. Other file types exist, but these are some of the most commonly used in this field with
embedded devices.

.elf

“Executable and Linkable Format”, otherwise known as ELF, which is used for storing
binaries, libraries, and core dumps in Linux and Unix-based systems. The ELF file is divided
into two parts, a header and the ELF data. The first part of the header starts with four unique
bytes: 0x7F 0x45 0x4c 0x46, which translates to the letters E, L, and F as the file’s identifier.
Inside the header, the program headers are located that provide the information for how the
segments of the executable file should be loaded into memory when the program executes.

The structure is similar to the one described earlier in Memory Allocation Figure 2.4, with some
of the common sections being the .text for the instructions, .data for storing the initialized
global and static variables, and the reserved space of the .bss for the uninitialized global and
static variables [24], [25].

.hex

.hex files are made up of hexadecimal data in ASCII text with addresses, data, and checksums.
It is also referred to as Intel HEX, because of the checksums within the file, it automatically
has a built-in error detection, and also contains the address information, however, the file size
is often larger than a .bin as a result of metadata and the ASCII encoding [25], [26].

.bin

The binary file (.bin) with a format of just raw binary numbers, and is more compact as there
is no overhead in the form of metadata or checksums. It is therefore often the .bin that is sent
when there is an OTA update [25], [26].

2.4.4 Tools

This subsection explores some of the most common tools for Delta updates. The two most
commonly used Xdelta3, and BSDiff, which utilizes two different approaches with their
respective encoding algorithm. Xdelta3 uses VCDIFF, which is a known data compression
algorithm, while BSDiff uses a suffix sorting combined with a custom-made diff algorithm
to detect similarities in the data. [27], [28], [29].
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2.5 Project Delimitation

This section summarizes the 2: Problem Analysis chapter, such that a more concise and clear
focus on the firmware update can be derived. Defining the objective, challenges, and assump-
tions for the firmware updates, and synthesizing these elements, leads to the creation of a
‘Final Problem Statement’.

2.5.1 Summary

At the start of the analysis, the focus was on low-energy devices and how devices might need
to conserve or make use of their time awake efficiently, such that only a small amount of the
battery was consumed, even with updates. With this in mind, understanding the different
aspects of updating methods was the next step. Based on this knowledge, researching the
current SoA and commenting on the tradeoff of these methods and their focus became the next
stepping stone. In the last part of the analysis, understanding how the compiler and memory
allocation were described, as well as discussing some of the common file types for firmware
updates.

Firmware updates are an essential part of the long-term “longevity” of these remote devices,
which are in bandwidth-limited areas. Since most of the devices are running on battery power,
efficient use of energy consumption is a crucial element, where the focus in this report lies in
creating a firmware update that does not require too much processing power or time.

2.5.2 The Objectives

In this project, a direct correlation between the file size for the update with the processing
and energy consumption is assumed. Based on this assumption, the objective is to reduce the
firmware update file size. However, as discussed in the SoA, although using dynamic linking
is preferred, it is not the easiest solution to make, which is why some opt for virtual machines.
The second objective should focus on Usability Factor as an ease of use, such that it will be
easier to make these firmware updates for embedded devices from the developer.

2.5.3 Memory Management

Delta Updates are a great tool for reducing the size of the update, which is why it is very
commonly used by others. However, depending on how the changes to the firmware are
applied, even a small change could cause changes to multiple lines, which causes the update
file to be larger than necessary. It might not even be the fault of the firmware developer, as it
can happen from changes to the compiler code itself, or from updates to the “base functions”
of a device. With everything normally just being stacked on top of each other, even a small
addition or removal of an array entry can offset most of the data in the program. This, of
course, in turn means that Delta Updates just notices that all of those memory-entries have
changed, ignoring that they might just be offset, and creates a large file with all the changes.
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2.5.4 Final Problem Statement

Based on all these challenges and assumptions, it is now possible to define the Final Problem
Statement with the following statement:

How can a system utilizing Memory Management to minimize data differences in firmware
versions, increase the efficiency of Delta Updates, be created in a developer;friendly
manner?



Solution Analysis 3
This chapter is used to set up the solution design, which includes the scenario expectations
of what operations can be performed. This will therefore also include the limitations or
constraints that might apply. At the end, these requirements will set for in a structured format
such that it will be easy to evaluate the solution in the later chapters.

3.1 Scenario Classifications

This first section is dedicated to the different scenarios for what a firmware update might
contain. The intention behind these scenarios is to incrementally increase the complexity of
the scenarios while also being similar to what an update might contain in reality.

Five basic update scenarios with increasing complexity/size will be described, for further
clarification on what exactly is needed for a possible solution to be able to do.

3.1.1 Scenario One ; Update a Variable

The first task is to update a variable, as that should be the simplest and easiest change to make.
The purpose of this change is to mimic the ability to create small changes in an embedded
device. This change could be an interval change in how often it should send some data.

3.1.2 Scenario Two ; Update an Array

In the second scenario, the focus is on updating an array, which also includes changing the size
of the array. By adding another entry to an array, a “new” memory location needs to be added
and taken into account. Depending on how it is implemented, it might impact larger parts
of the code allocations in memory as a result. Mitigating big changes in memory allocations
should be achievable, either by having a buffer zone or change the whole array’s placement
in memory to avoid larger changes.

3.1.3 Scenario Three ; Update a Function

Updating a function in the code poses another spike in complexity, as a change in a function
will likely change the size of the function and possibly also the addresses that the function
occupies, as hinted at in the previous scenario. Minimizing relocations should be a priority, as
this will impact the updated file size as it can create artificial changes in the sense that some
code has been relocated.

That is why scenario three of updating a function should ideally also be able to change the
whole function’s placement in memory, as that will that cause the least amount of changes to
the update file.

15
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3.1.4 Scenario Four ; Add a New Function

Similar to the previous scenario of changing a function, however, this scenario has the prereq-
uisite of having sufficient space in terms of memory. Adding a new function scenario is based
on the possibility that a device might need another feature, or maybe a law that would require
some sort of logging or authentication.

3.1.5 Scenario Five ; Change Function Calls

The fifth and final scenario looks at changing which functions are being called in the code.
This could be switching from one function to another, e.g., replacing a basic function with an
improved version or adding a call to a new logging feature. Even though the change might be
small in the code, it can potentially affect other parts, like the memory addresses where the
calls point to. These small address changes can cause extra updates in the binary, which might
increase the size of the update file. This scenario helps show how even simple changes in code
flow can have a bigger impact on how the update is applied to the device, as it essentially
demonstrates the redirecting for the flow of execution.

3.2 Solution Considerations

This section delves into the main considerations in regards to memory control, the approaches
with dynamic linking, following the Usability Factor aspect, and structured data. Based on
these thoughts behind these concepts, a System Design can be procured.

3.2.1 Memory Management & Dynamic Linking

By having more or full control of where everything in the program is placed in memory, it
is entirely in the hands of the developer how much is changed, and how. Full control over
memory placements (named as Memory Management going forward) not only makes sure that
you only need to transmit the actual difference, but keeping everything in the same place (as
much as possible) should also increase firmware robustness to some degree. In either case, you
are expected to know the location on the data currently on the device, but errors can always
occur, so taking out the potential randomness from data which is not under your control,
should improve the odds that whatever you are expecting in a specific address is actually
where you expect it to be, even if the device has missed a couple of updates.

Padding & Stacking
• Stacking

‣ Is memory efficient.

‣ Big risk of having to move things around.

• Padding:
‣ Creates headroom, when itself or its “downstairs neighbor” increases in size.

‣ Requires more available memory.

‣ Is still essentially Stacking, just with added buffer.
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With both of these basically being Stacking they both create an inherent problem with every-
thing shifting whenever something needs to move. This is of course based on the idea that they
keep adhering to their Stacking “nature”, instead of it just being from the very first version of
the firmware.

Backup & Repurpose
A way to be able to update a device could potentially be to keep constant track of exactly
where everything is on a binary level, and then creating a process which let you write to
specific addresses on the device. This way you can add the new code “behind” the old code,
and then just update the “Address File” to look at the new address. Using this approach you
can also have the “Address File” link back to the old version, in case of failure of some sort,
giving some rollback possibilities.
By keeping close track of memory-addresses you can make sure to add the code updates
“behind” the old code, and then just update the Dynamic Linking table to look at the new
address. Using this approach you can also have the Dynamic Linking table link back to the
old version, in case of failure of some sort, giving some rollback possibilities. Of course this
creates a never-ending tail of outdated code, which is a problem.

Then on the development side, to work around the never-ending tail, these addresses will be
tracked closely, so that you can repurpose old space in later updates, after having confirmed
that the newer version (which is stored elsewhere) is stable. At some point, an update to some
other part of the device will be able to be written where the outdated code from something
else was being stored.

As the chance of the new pieces of code taking up the exact same amount of space is close to
non-existent, this approach needs to meticulously keep track of both the beginning and the
end of the code, as the potential gaps in between used sections are supposed to be written to
when possible.

It also creates a problem where old segments can only be overwritten by new segments of
equal or smaller size, unless you have two unused segments besides each other, ready to be
overwritten. Then, creating the unfortunate potential of running out of space, not because it
is all being used, but because there is nowhere with a large enough “gap” for an update to
write to. This state of memory clutter can still be overcome by sending a complete firmware
in the old-fashioned manner, which is what this project is trying to avoid. At least having to
potentially send a full update once in a while is better than every time, unless you are looking
for a solution to this problem, because full updates is just plainly not possible for one reason
or another 1.

Shift & Append
With everything stored in an Dynamic Linking table, another approach could be a local defrag-
mentation of the device’s storage. Tracking the positions of everything closely, when updating
a functionality, it would be possible to just delete said functionality in memory, and then shift
all memory after it, to where the now deleted functionality used to be. If you then enter the
new code at the very end of the memory, the device would be back at a state where there was
no gaps in the memory at weird places.
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This approach needs you to update the address of every single part of the code that is being
shifted, and not just the code that is being updated. This creates a higher risk of critical failure,
although it arguably should not be too big of an issue, as the shift would be the same offset
for each section. Increasing in complexity if updating more than one thing at a time.

A Hybrid Approach
By making a hybrid between the two approaches above, you can optimize the wasted space
from Backup & Repurpose, and the high computation needs from Shift & Append. This comes at
the cost of more complexity, though, as you then need to keep track of important details from
either version.
It does potentially remove the need for keeping track of “broken pieces” from the Backup
& Repurpose approach, as it would be possible to just leave the pieces of code not needed
anymore, until space reaches whichever threshold is set for the device to run defragmentation.

Write updates to large enough available sections, if possible, or append if no large enough
outdated section is available. Then with defragmentation being “optional”, it creates a lot of
flexibility in potential setups, for different needs. There could just be certain thresholds on
when to defragment the device memory, like the first time an update is too large to fit in one
of the unused segments, a time interval, or it could be based off of manual triggers, being
sent out before an update. All of these come with their own drawbacks, which can be left
completely up to the developer of a specific device, depending on their needs and hardware.
But more options also comes with more complexity and with more things to go wrong.

3.2.2 Usability Factor

When the basis functionality of the system is in place, the project should attempt to make it
easier to develop firmware using this solution, and can be thought of as a part of the project
that focuses on the Quality of Life (QoL) of the solution. This is a wide topic which will be
divided into multiple sub-categories, as there can be many different aspects to making the
solution more intuitive, user-friendly, and better structured, including the potential use of
scripts and databases.

All of these categories will go under the umbrella term Usability Factor going forward, to make
it clearer that when wordings like “Ease of Use” and QoL are being used, that it is used in
more general terms.

File Structure
Hiding files that the developer does not need to use makes it clearer which files they need
to focus on, and makes it less overwhelming to get into. Thus, resulting in a better Usability
Factor, because of the simplification that will make it more manageable to use.

Code Syntax & Boilerplate
Working towards having easily readable syntax and clearly named “interactables” goes a long
way in making a system approachable by new developers, and the same applies to the amount
of boilerplate code necessary to use said system.



Page 19 of 54  Section 3.2 :  Solution Considerations

Automation
Building automation for pieces or the entirety of the solution, so the developer can better
focus on making an update, without being interrupted or confused by anything that does not
directly concern them. This could all be made from small scripts and Makefiles, to bigger auto-
mated “building platforms” which could potentially even hold the history for the firmware,
and take care of everything outside of the development of the actual functionality that the
developer wants to implement.

Flexibility
Instead of being forced to be used in just one way, strive to make as much as possible flexible
and reusable. Adding in options for several approaches to development, like freely choosing
Memory Allocation Padding (also enabling Stacking by setting it to 0).

Examples of possible flexibility options:

• Memory Allocation Padding

• Number of Backups

• Defragment Memory Trigger Options

• Defragment Memory Interval

• Easy add-in of microcontroller/board, for auto-including their default functions and
memory allocations

• Auto-compile several variants of the same code for several boards

• Auto-compile a series of programs, based on a list of scenarios and their changes

3.2.3 Structured Data

Storing Structured Data with different user-defined settings of the solution, storing the entire
Memory Allocation structure of an implementation, or even the entirety of the implementation
itself, is potentially a very powerful tool. This comes in many forms, with databases, JSON,
CSV, and XML likely being the most widely used approaches to storing the data. With
properly structured data, there is an almost limitless number of possibilities.

This can make it much easier to deal with many things, such as troubleshooting, building
functionality for a User Client GUI of some sort, or visualizing data for analysis. In an extreme
edge-case even enable to ability to pick and choose from all the earlier developments, avail-
able boards and option presets to make an “Easy-Bake Franken-Ware” that just works (maybe
even in a Drag’n’Drop GUI.)

With this flexibility in mind, including structured data in the solution seems like a rhetorical
question, especially considering the implications it can have on making the solution more
user-friendly in several ways. This will likely happen in the form of a database, for extra
flexibility in data arrangement and avoidance of potential read/write limitations from only
one process being able to handle a “physical file” at a time.
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3.3 Validation Specifications

Based on the focus of the project found in 2.5: Project Delimitation and the previous section
with the 3.2: Solution Considerations, the validation specification for the solution should be
defined in a manner that would make it easy to evaluate the success of the solution.

3.3.1 Update Optimization

Based on the overall scenarios described in 3.1: Scenario Classifications, assessment of update
optimizations should be based on how well the scenarios in the following tables have been
fulfilled.

Memory Management
To get the system running, the main functionality that everything else is build upon is being
able to put everything into a specific addresses in memory, so this is the obvious functionality
to begin with.

With the Memory Management scenarios (identified by the prefix M), all but the very first
scenario, will expect memory allocation is being controlled by system. All scenarios outside
of the Memory Management group are working under the same assumption.

Scenario Name Description

M1 Hold Symbol Put a variable or function in the program into a specific address.

M2 Move Variable Move a same-size variable to another address.

M3 Move Array Same as M2 but a bigger reallocation.

M4 Move Function Same as M2 and M3 but bigger yet again.

M5 Automatic Move The system automatically detects conflicts, and corrects.

Table 3.1: Summary table of different scales of memory reallocation.

While on a surface level it can seem a bit redundant to include M3 and M4 after having done
M2, but these are done also to look at the byte-differences of the compiled firmwares, both as
a sanity check and for context.

Firmware Functionality Changes
These tests (identified by the prefix F) is the natural next step, which represents common
changes a developer might make to a program in “normal development”.
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Scenario Name Description

F1 Update Variable Changing the value of a single variable.

F2 Update Array The F2 entries is about different array updates.

- F2a Move Entry Moving an entry to a different position of the array.

- F2b Add Entry Adding an entry, and thereby increasing size of the array.

F3 Update Function The F3 entries are about different updates of existing functions.

- F3a Reduced Size Reduced code size to represent optimization.

- F3b Increased Size Increased size of function. - Should trigger a compilation error

- F3c F3b +
Memory Move

Same as earlier scenario, but should now compile, as it has been
moved to a address with sufficient space.

F4 New Function The F4 entries are about adding new functions to the system.

- F4a Add Function Added a new function which is not used.

- F4b Use New Function Now the new function is used in the program.

F5 Code Postioning The F5 entries are the about positional changes in the code.

- F5a Variable Header Changing the position in the development code Header.

- F5b Variable Code Changing the position in the main development code.

- F5c Array Header Changing the position in the development code Header.

- F5d Array Code Changing the position in the main development code.

- F5e Function Header Changing the position in the development code Header.

- F5f Function Code Changing the position in the main development code.

F6 Code Comments The F6 entries are about comments in code and positions.

- F6a Global Scope Adding in a comment in the global scope.

- F6b In Function Adding in a comment in a function.

- F6c In Array Adding in a comment in an array between entries.

Table 3.2: Summary table of functionality change specifications.
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Dynamic Linking
These tests (identified by the prefix DL) is the last of the natural steps, before going onwards to
the the Usability Factor side of the project. These represent different functionalities tied with
Dynamic Linking, with the DL3 scenarios being for what will from this point be referred to as
Dynamic Sequencing. Those last two scenarios is for making it more efficient to add or change
the order of function-calls in the firmware, without having to make changes inside the main()
function and thereby “pushing function bytes around”.

Scenario Name Description

DL1 Add Function Add a new function to the Command Table. - Requires F4a

DL2 Use Function The new function is called via Command Table. - Requires DL1

DL3 Dynamic Run The DL3 entries are Dynamic Sequence changes.

- DL3a Change Sequence Changes the sequence in which one of the commands is called.

- DL3b Add Function Add new function to sequence of calls. - Requires DL1

Table 3.3: Summary table of general Dynamic Linking specific updates.

Size of the Update
As discussed in 2: Problem Analysis, the file size also impacts multiple aspects: the transmission
of the update, the computational cost for the embedded device to process the update, and
naturally, the file size itself. To evaluate the file size, Xdelta3 and bsdiff use two different
algorithms while also being commonly used 2.4.4: Tools.
The evaluation will be against Xdelta3, bsdiff and a pure binary code file, comparing it against
a version of the same firmware without the Memory Management aspect, which will be referred
to as the “Basic Linker”, with this project’s implementation being called “Custom Linker”.

3.3.2 Usability Factor

As discussed in the 2.5: Project Delimitation and in the previous section 3.2: Solution Consider-
ations, the second part of project’s focus is on the Usability Factor. Usability Factor will be set
up similarly to the different scenarios.

Level of Success
Even with the Usability Factor being an integral part of the project as a whole, the upcoming
sections will be approached on a subjective level of success. This was decided upon based
on the fact that even if it’s an integral part of the project, ease of use means nothing if the
solution can not fulfil the basic functionality that it was meant for. After the basic functionality
is present, the Usability Factor will be closely intertwined with most additional functionalities
being implemented over time. These Usability Factor aspects can thus be set up as seen in the
following tables: Table 3.4 Table 3.5.
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File Structure

Level Description Validation

1 Basic functionality of the project, but usage is confusing and unap-
proachable.

Fail

2 File structure to make it viable to pick up as a new developer. Partial Success

3 File structure to make it easy to pick up as a new developer. Success

4 Partial extern tooling of the solution, so developer can have mainly their
own files in their project, but might still be limited by some structure

rules.

Great Success

5 Fully external tooling of the solution, so the developer can write their
program almost just like they would write any program, not having to
care about the quirks of development for embedded devices, and just

“call” the tool when ready to compile.

Money Bags

Table 3.4: Table showing 5 levels of success of the code side of the Usability Factor

Code Syntax & Boilerplate

Level Description Validation

1 Basic functionality of the project, but it requires a lot of boilerplate code,
and usage is confusing and unapproachable.

Fail

2 Naming conventions and workflows are annoying but approachable,
with only some boilerplate code involved.

Partial Success

3 Level 1, but with automation for some of the more menial tasks - Or -
Naming conventions and workflows are intuitive with little to no boiler-

plate code needed.

Success

4 Automation takes care of most of the setup and processing needed to
work with this system, and naming conventions and workflows are

intuitive with little to no boilerplate code needed.

Great Success

5 Full automation of everything not related to the development of the
standalone functionality to be included in the firmware update, just from

using this system.

Money Bags

Table 3.5: Table showing 5 levels of success of the code side of the Usability Factor



Proposed Solution 4
This is where the proposed solution will be described, but even with this being the “actual”
design, there will still be some aspects that are described on a broader level. This is done as
the project has the potential to be almost a lifetime project, if the basic Memory Management
part just works, and having a large pool of achievements to reach is more educational than
reaching a preset milestone.

4.1 Memory Structure Approach

As the solution is meant to be as streamlined and system-agnostic as possible, a sort of
“build backwards” mentality was deemed a good approach. The idea behind it is that there
can be large variances between the different microcontrollers and system implementations on
how much “base data” is present, for whatever base-functionality they include. If memory is
populated in a conventional, stack-like manner, any customized data would likely reside at
different memory addresses across systems, even when using an otherwise identical program
on two different microcontrollers.

Moving everything to the back, and “building backwards” means that the implementation
can be at the exact same backwards offsets for every controller able to contain the program.
All of this is done via custom-written Linker Scripts, which the compiler is then asked to use
in the last step of compilation.

4.1.1 Quirks of Building Backwards

On a surface level, this does introduce a drawback for the .bin file type, as the file always will
always be the full size of the available memory of the controller (256KB in our case). But as
it’s supposed to be on the device to begin with, and this is all done to be able to only transfer
the actual difference, it becomes a non-issue, as all the empty space will not be transferred.

4.1.2 Padding vs. Stacking

This debate might not be needed for this design, as it is just a simple offset being added (or
not) to a memory address, it is very easy to control and change via simple “project preference”
setups at the most basic level of automation. Even with the main premise being purely to
reduce update file size, giving developers the flexibility to adapt their solution to their needs,
making it inconsequential.
And as much as the defragment approach is conceptually very interesting and potentially
powerful, it seems more like the sort of thing that the Bootloader and/or update tool needs to
account for, and not this system.
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4.2 Dynamic Linking

For Dynamic Linking, the most important thing is to always know all addresses of the table,
so with the “build backwards” approach in mind, the following solution seemed to make
the most sense. The implementation is made so that the very last possible memory address
able to contain an address (4 bytes of data), is meant to always be dedicated to holding the
address of where the actual table containing the function links is placed. This is not meant
for regular use, though, as it would be a waste of instructions to go to a pointer that shows
another pointer, which shows you what you want. But it gives a surefire way of creating a
fallback functionality, as it will always be known by the firmware, of where it can look for
functions, if something should go wrong. These benefits also help with things like variables
and constants.

So with the example of this project’s implemen-
tation, from the microcontroller used here:

• Flash memory starts at address 0x08000000

• 256 Kilobyte of Flash memory available,
meaning 0x40000 in Hex-decimal

• All addresses are 4 Bytes in size (or 8 Hex-
decimals)

This means that the very last Flash memory ad-
dress on the controller is 0x08040000, and with
the calculation 0x08040000 - 0x4 we know that
the last possible address for the Dynamic Link
Table Pointer is 0x0803FFFC.

The address which is pointed towards will then
hold an array with pointers to the actual func-
tions, which can then be run.

Outside the robustness of this approach, it can
also be beneficial for byte differences in updates,
as a function call can always point towards the
same Dynamic Linking table address, even if the
actual function has been moved.

Figure 4.1: Diagram showing samples of
memory addresses and “values” in

the implementation.

4.2.1 Dynamic Sequencing

As explained in 3.3.1.3: Dynamic Linking, adding Dynamic Sequencing functionality by creating
arrays containing “function calls” is a potential way of editing what functions are called
where, and the sequence in which it is done. Therefore, the system should include at least two
such arrays: a one-time running sequence at device boot-up, and a sequence to run indefinitely
inside a loop in main().
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4.3 Database

Based on the considerations in 3.2.3: Structured Data and a project scale that does not expect a
10-year development cycle, a data structure will be designed with scalability in mind, divided
into regions representing major development steps. It is unlikely that this project will need
(and thereby implement) all of them, but as it is a fairly quick process to plan, it is here to
illustrate the scalability and potential of this system design.

The different regions in the diagram are divided into color regions, each representing the
addition of a major functionality of the system, but it is by no means necessary to implement
in the represented order or combination. The implementation order of these will be almost
completely dependent on a preferred focus/needs on further development of the system.

The base functionality of Memory Management is in the Symbol, Symbol Version tables (which
could be combined if a simpler approach is wanted). Then what the group sees as most
important, “next step functionality”, is in the Firmware table, where general preferences for
building the firmware are stored. The Firmware table is not connected to the mentioned Symbol
tables, but it also does not need to be if all you want is “project preferences”. For context, the
Symbol naming is for all the possible defined variables, functions, and the like defined in the
program itself, that someone would want to grab onto and “manually” place in memory at
the position calculated by the system.

The color regions are as follows:

• Blue Region
Easy Preferences, Backup/Fallback Functionality & Code Building Automation.

• Purple Region
Version Control & Multiple Project Options.

• Golden Region
Easy compilation of a single firmware for several different devices, and full dependency-
fixing automation.

4.3.1 Structure Explanation

To keep it a bit short, this will mainly be explained at table level, as going through each indi-
vidual datapoint is not gonna do much for understanding the overall concept. There is also
a few tables which will be left out as their function should become kind of self-explanatory
when the context of the other connected tables has been clarified.

To get an overall part out of the way from the start, all tables with “Version” in their name are
solely there for version-history/backup functionality purposes. If those functionalities were
to never be wanted, they are just an unnecessary increase in complexity for the system, and
can just be merged with their “non-version” namesake. Knowing this, going forward, these
tables will be explained “as one”. This can be observed in the following Figure 4.2.
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Figure 4.2: Diagram of database structure.
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Secondly, there are a couple of tables in there just for good database practice of not holding
too many repeated values of “the same thing”. This includes the “Functionality” table, which
is meant for telling “Symbol Type” (Variable, Constant, Function, etc.), and the “Datatype”
table for Return Types (Int, Char, Float, etc.) of the a symbol. Lastly, it includes the “Dependancy
Type” table, meant for identifying the nature of a dependancy, in the sense that it could be at
compiler level, “code includes”, Linker Script includes, standard library includes, or whatever
else there might be.

Lastly, the tables with light nameplates (Figure 4.2). These are all “Many to Many” relational
tables, which are there for cases where the same type of interaction can happen many times, or
not at all, between the different tables/types, which for one reason or another need flexibility
in this kind. An easy example is the “Symbol Arguments” in the blue region, which is set up
that way to avoid creating a limitation on the number of parameters a function can have. So a
function with 3 parameters would have 3 separate entries in “Symbol Arguments”, one for each
argument, and another Symbol containing a variable/constant would not have any entries in
the “Symbol Arguments” table.

The more specific tables are:

• Symbol & Symbol Version
The mandatory first, and primary, table(s) of them all, when a database starts being
implemented. This is where the memory address and size for each Symbol is being held,
to be able to keep track of everything and potentially create automatic generation of the
Linker Scripts. It also contains fields for containing the actual value (even function code)
and other nice additions, if a high level of automation is wanted, where even the code-
base could be build for you.

• Firmware & Firmware Version
This is likely the second most important table(s), as it is the one(s) holding the prefer-
ences for a project/firmware, for being able to easily automate aspects like the amount
of fallback/backup versions, memory-padding, and the like.

• Device
For holding information on the different physical devices which is possible to develop
on, for easier Custom Linker building for the same firmware between different devices.

• Firmware Variant / FW Variant Version
For creating “collaboration” between firmware and device options, so building the same
firmware for several different device types can become as easy as “clicking a button”.

This is scalable all the way up to Easy-Bake Franken-Ware without the danger of having to delete
table data, as the next steps only interact with the former ones, without altering them. The
only possible exception is from the argument that in a very early version, building the blue
region only to keep track of memory addresses and preferences is overkill. If that approach is
preferred, all but the Symbol and Symbol Version tables could be removed, and the two tables
could be merged and trimmed in size.
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The regions are also not “rigid structures”, and separate functionalities from them can (within
reason) be added in other steps. For example, if code-build automation is more important
than the ability to have the same firmware easily compilable for different devices, the three
Dependency tables needed for Symbol Dependency can be added even before the purple region
is implemented.

4.3.2 Development Environment Scalability

The database implementation could be a local SQLite3 database to have a separate database
per project, for better project isolation, or just for smaller-scale development. Or a fully
fledged server-based database for larger development organizations who want/need a more
centralized approach that might even enable mixing and matching some partial software from
one project to another.

4.4 Automation

With a proper data structure in place, and a bit of scripting to extract Section and Symbol data
from the Object Files, the automation process should be fairly straightforward.

There are several available tools for analyzing compiled code, where it is just about finding
the one (or several in conjunction) with it’s output being consistent enough for a fairly simple
script to extract all the necessary data. From extracting the needed data, the script should
parse the data to the database to have maximum flexibility in what can be automated.

Then you can request the database for the rest of the necessary information, to start building
the underlying structure to build the program you want compiled. With additional informa-
tion being something like “project settings”, for if you for example want Dynamic Linking to be
enabled, or if Memory Padding is wanted, and how much padding there should be added. This
also potentially includes controller/board specific data, like where the boards Flash memory
is located, or even their full underlying compilation infrastructure, containing all their prede-
fined base-functionalities. But this last part is very likely very time-consuming to set up, and
is more written as a potential for the system if there were not a resource limitation set to a
semester’s worth of time.

When all the information needed is present, the script will start iterating through all the
Symbols it found present in the compiled program, calculate the memory addresses based on
padding offsets, statically size memory blocks, or whatever project preferences are present.
After all the preprocessing, the script will output a Linker Script to directly use for the last
step of the compilation. There will likely be more auto-generated files involved, for things
like supporting Dynamic Linking, but it largely depends on how far along the project will be
by the end.



Validation / Results 5
This chapter will analyze the results of the implementation in this project and attempt to
present them in a digestible manner for reflection.

5.1 Memory Management

As the main purpose of the project was to try
and minimize differences in firmware updates
by manually deciding where everything went in
memory, this part is the obvious first step of vali-
dation that needs to happen.

Represented in the diagram on the right is only
a few select examples from the implementation,
which were picked as they give an overall repre-
sentation of what is happening.

The notches on the top-left of each “memory
entry”, which is latching onto the Flash Memory
bar, is representing the actual address of the cor-
responding Symbol in memory. The text in bold
is an explanation of what is there, or an actual
Symbol name (if the first letter is not capitalized).
Lastly, whatever is written in the middle repre-
sents the data held by said Symbol.

As an example, first from the bottom is the very
last 4 bytes of Flash Memory (with the starting
address of 0x0803FFFC), where the proposed de-
sign designates to keep the address of where
the Dynamic Link Table starts. The value in the
specified address is then exactly that, another
address of where the Dynamic Link Table can be
found (0x0803D800), which can then be found in
the middle of the diagram, holding addresses to
the actual functions.

Figure 5.1: Diagram showing samples of
memory addresses and “values” in

the implementation.

Scenario M5, concerning automatic movement of a Symbol in case of overflow from an update
increasing the size of it was never reached, do to time constraints.
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5.2 Update Optimization

Memory Management via the project’s Custom Linker, was just the vessel to drive the key part
of this project, which was the optimization of the size of firmware updates. The performance
for the Custom Linker will be compared to the Basic Linker variant, which is a Linker Script that
outside of the Memory Management is identical to the Custom Linker. This was done to make
sure that variances in Linker Scripts from different development platforms, etc. would not be
able to skew the results, making them less meaningful. The baseline is a simple scenario that
sends variables as messages via. UART.

These results were then examined using the tools of bsdiff, Xdelta3, and the pure binary
difference (referred to as Byte Diff going forward) stored on the device. Three different
firmware file-formats (.bin, .elf, and .hex) will be run through all three of the comparisons,
for all the viable (and implemented) scenarios from 3.3: Validation Specifications, making it a
9-way comparison between the Custom Linker and Basic Linker versions, across 23 scenarios.
Generally, the .bin should be the smallest file as it is pure compiled code, while the other two
contain various amounts of metadata as mentioned earlier in 2.4.3: Firmware File Types.

The layout for the table of results (Figure 5.2) are as follows:

• Column 1: Has all the scenarios listed.

• Column 2: The file type used in the comparison on that row.

• Column 3;5: The differences in bytes for the Custom Linker variant.
‣ Compared to its own Custom Linker Baseline

• Column 6;8: The differences in bytes for the Basic Linker variant.
‣ Compared to its own Basic Linker Baseline

• Column 9;11: Percentile difference between the Custom Linker and Basic Linker

5.2.1 Overall

Most of the scenarios are improved with the Custom Linker approach compared to the Basic
Linker approach, which can easily be identified with the color coding, where green indicates
that the Custom Linker is better than the Basic Linker. The yellow color shows that the difference
was the same for the updated file in both versions.

Deceptive Memory Management Scenarios
With the color-coded size differences, it seems mostly with bsdiff and the move scenarios, where
the Basic Linker approach is more efficient, but this is deceptive, as the scenarios is specifically
about “controlling memory locations”, which is specifically not done with the Basic Linker
versions. These scenarios were included to check functionality, and for gaining information
on what a system like this would “cost” when having to move things around.
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Figure 5.2: A comparison of the different scenarios, held against the baseline.
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File-type Comparison
The simplest proof of earlier statement of .hex and .elf getting bloated by metadata, all the
way down to 1 byte, is from the first of the functional update scenarios (F1_int_change) where
the .bin has the lowest difference across the columns of methods used. In the third column of
“Byte Diff”(pure .bin), the int change is equivalent to one byte, where the .elf and .hex seem
to contain some metadata, which increases the size by one byte. This change might be small,
but when compared to many of the other scenarios, this difference scales quite excessively.

An extra interesting point of interest, is that a comment inside of an array, actually creates
a single byte of difference in the .elf file in scenario F5d. Becoming even more weird when
nothing happens from comments in other scopes (other F5 scenarios).

Deceptive Memory Management Scenarios
With the color-coded size differences, it seems mostly with bsdiff and the move scenarios, where
the Basic Linker approach is more efficient, but this is deceptive, as the scenarios is specifically
about “controlling memory locations”, which is specifically not done with the Basic Linker
versions. These scenarios were included to check functionality, and for gaining information
on what a system like this would “cost” when having to move things around.

3 Approaches to Running Functions
Three different versions of running newly added functions were implemented, where it
would be interesting to see what actual byte-difference they each cost to “activate”. From
time-constraints the calculations will be kept to only the most “pure” variants, using .bin and
Byte Diff.

• F4b - F4a (Pure code)
101026 - 20 = 10106

• DL2 -DL1 (Dynamic Linking)
10398 - 1291 = 9107

• DL3b - DL1 (Dynamic Sequence)
1419 - 1291 = 128

This shows that as hoped, the Dynamic Linking approach is very valid, especially if imple-
mented with Dynamic Sequencing functionality.

5.3 Usability Factor

For the validation of the Usability Factor, it can be a bit harder to measure or show, as it is
somewhat dependent on how “intuitive” the solution is to work with. The first part would
be to make it somewhat manageable and transparent by showing the File Structure, followed
by the Dynamic Linking and sequencing aspect of the code.
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5.3.1 File Structure

The current file structure is as follows:

  .
  ├── build
  │   ├── objects
  │   │   └── <all the object outputs>.o
  │   ├── resources
  │   │   └── <microcontroller specific files>
  │   │
  │   └── <compiled firmware>.bin /.elf /.hex
  │
  ├── control
  │   ├── available_commands.cpp    (Dynamic Sequencing)
  │   ├── loop_commands.cpp         (Dynamic Sequencing)
  │   └── startup_commands.cpp      (Dynamic Sequencing)
  │
  ├── command.cpp
  ├── command.hpp
  ├── controlled.c                  (Definition of User Symbols)
  ├── controlled.h                  (Declaration of User Symbols)
  ├── controlled.ld                 (Custom Linker Script)
  ├── general_setup.hpp               (USER CODE)
  ├── general_setup.cpp               (USER CODE)
  ├── linker.ld
  ├── main.cpp                        (USER CODE)
  └── makefile

The above structure is not taking project development-specific folders and files into account,
as these would not be present in scenario where a developer would be using the system. The
files without a description in brackets besides them, should not need to be interacted with
by the user/developer, and should arguably have been “hid away”. This is not the cleanest
structure for newcomers to approach, but not the worst either, and with a bit of guidance it
should be somewhat useable for users outside of this project.

The biggest plus to the current structure is that the 3 files for easy editing of available
commands for Dynamic Linking, and the two implemented Dynamic Sequencing arrays, are to
be found in their own separate folder.
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5.3.2 Dynamic Linking

In the following Figure 5.3, all the different commands available for use in the program via
Dynamic Linking are shown in the implementation.

Figure 5.3: The different shared libraries.

5.3.3 Dynamic Sequencing

Startup Sequence
On boot of a device, there is usually commands and initiations that needs to be run, which
can be done via this specific list of commands, which will be executed in the order that they
are in the array in this file. These will execute once, before the device enters the infinite loop
in main(). This list of commands can be seen below in Figure 5.4.

Figure 5.4: The initial commands run before entering the main loop.
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Loop Sequence
After entering the eternal loop in main(), the list (from Figure 5.5) below, will be executed in
order, over and over again.

Figure 5.5: This figure represents the main loop cycle for the program.



Discussion & Conclusion 6
6.1 Discussion

The discussion will mainly highlight some of the difficulties with the implementation and
with some of the limitations, both in terms of time constraints, but also partly due to the
linker script. Besides this, discussing the results would also be included here as well as the
“Future Work”.

6.1.1 Implementation

The first part of the discussion is focused on the implementation.

Database Implementation
Due to unforeseen complications in other parts of the project, the solution never reached a
state where the database came into play, and therefore never got implemented. The current
version of the system is at a point where the next step would be to make it more user-friendly
with some form of automation. The files that a user would need to interact with are now
somewhat easy to separate from the rest, making it easier to create scripts for automation
from structured data.

Memory Management Options
For the current state of the project implementation, “padding or no-padding” and similar
ideas have not been taken into account, as there was no automation and never really any
risk of the microcontroller running out of memory. It seemed like a waste of time to have to
meticulously calculate and pick addresses when it was just supposed to work on a basic level
before it supposedly became automated to some degree. As such, it was somewhat out of the
scope and therefore disregarded.

Linker Script Limitations
The current implementation of Dynamic Linking is an overly complicated variant that seems
to create more complications than it fixes. It is limited to 0 or 1 argument functions, based
on wanting to avoid boilerplate code and convoluted usage/syntax of the functionality. A
significant amount of time has been spent on Linker Script approaches that did not feel like
menial labor, which seems to not actually be possible with the current available compiler tool
set (from GNU Compiler Collection at least).
With one of the very next steps of development likely being automation of that particular
part, it feels like a waste of resources, and in hindsight implementation of a database to start
development of the automation would have arguably been a better use of time.
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Considering that all global variables and functions are visible as Symbols when analyzing a
compiled Object File, it seemed like the obvious choice to just use the Linker Script to grab hold
of those, and tell the linker to put them in a specific position in memory. This proved to be
more difficult than anticipated, if not impossible.

The implementation is done via Sections, which means to be regions holding several Symbols
that belong together as a sort of group, for one reason or the other. So to have complete control
of where everything is being held in memory, each and every variable and function get a
Section created for them in the Linker Script. This does not cost anything space-wise in the final
compiled binary, as all this info is not present, although the .elf or .hex file type variants do
hold information of those Sections. This is, as mentioned, because these two file types hold
more metadata.

Worse than the Linker Script being a bit messy to work with, there is a much larger
complication involved with this approach. It requires that you, in the code, when initializing
everything, explicitly tell it that this new thing is supposed to be put into this Section.

This is done by adding __attribute__((section(".section_to_put_it_into"))) behind the
name, which adds a ton of extra keystrokes for every single initialization of variables,
functions, and the like, but is also not very intuitive. Imagine having to convince someone
that it’s smarter for them to write:
int foo = 2;

They should be writing:
int foo __attribute__((section(".foo"))) = 2;

So this part instantly made it much more complicated to make a system where developers can
“just write code” like they are used to, and single-handedly made us have to consider file-
structure and general Usability Factor in a different light than earlier.

6.1.2 Results

This part is dedicated to some of the unusual results that were found, and what could cause
their respective outcomes.

Limitations of bsdiff & Xdelta3
By using these tools, it seems that there is an inherent minimum file size and some
overhead due to the metadata needed. This could clearly be determined by the baseline and
0a_sanity_check scenario, although most notable with Xdelta3, with all the file types being the
same size. However, it seems that this is also true for bsdiff, whose minimum size seemed to
be at least twice the size of Xdelta3 for the “small” changes.

Additionally, these versions were significantly larger than the pure Byte Diff version, and it
could seem like a natural next step for a solution like this project, would be to look into
creating a custom-made patcher. The overhead is of course from the fact that they need to
know where to put the data, but it could seem like there is much more data on top of that.
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With a system like this, there should be enough control of everything in memory, to be able
to reduce the metadata overhead of patch tools like Xdelta3 and bsdiff.

Comments in Code
During the testing, and how the code commenting affected the output files, which most would
assume would not result in anything different, as it has usually been taught that comments
are deleted from the final output file. However, that statement does not always hold true, as
it was found that if the comment were located in an array, this would impact the difference in
the delta update file.

6.1.3 Future Work

The next steps for the project should be concentrated on improving the Usability Factor aspects,
as the design of it has already been laid out in the 3: Solution Analysis, which makes it a natural
progression choice. With a project like this, there are quite a lot of directions for what the
focus should be long-term. It could lean towards a very flexible system that allows for various
options for more types of memory management.

Another subject which this report has not focused on is the security considerations for using
Delta Updates. This is another quite large direction in which the focus could be on adding
support for a cryptographic verification of patches and memory integrity checks, or focus
on secure delta update protocols to ensure tamper-resistance during transmission and appli-
cation.
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6.2 Conclusion

The primary goal of the project was to send a more “efficient” firmware update, which meant
focusing on minimizing the file size by having greater control over the memory, i.e., Memory
Management, with a secondary focus on Usability Factor, also often referred to as a QoL aspect
or developer-friendly.

Based on the analysis of how compilers 2.4: Fundamentals of Compilers, file types, different
methods, and approaches, such as the current SoA, helped shape the direction of using
Dynamic Linking with Delta Updates. With the scope narrowed to using these methods to
design and a Custom Linker that will help conserve the battery on low-energy devices located
remotely in bandwidth-limited areas.

By subdividing this goal into a part focused on the size of the update, and another on the
Usability Factor aspect based on the research, which also highlighted that as a major drawback
for why developers do not use a more efficient approach. To assess the problem, we assumed
that there was a direct correlation between the file size and the battery consumption needed
to process it.

To combat these restrictions, Memory Management combined with Dynamic Linking would
be needed to design a functioning Custom Linker that could create smaller file sizes against
some typical scenarios, which could be set up as a form of validation, which also included an
evaluation format for the Usability Factor.

The Custom Linker was implemented successfully, such that all the scenarios could be
achieved; however, concerning the Usability Factor requirements, it was lacking. Yet, with
the Memory Management in the Custom Linker proved to decrease the file size in most cases,
with the exception of the moving of code, and often when using bsdiff. However, if the focus
is on .bin files, then the Custom Linker could be considered a success in achieving a smaller
firmware file, thus lowering the battery usage required to apply the update.

Despite the shortcomings of the Usability Factor objective, a fully functioning Custom Linker has
been implemented and does function according to the outcome of the results by improving
the lifetime operation of the low-energy devices as a result of minimizing the file size.



List of Acronyms

BSS. Block Started by Symbol 11

Basic Linker. Project specific, identical comparison firmware, without @mm. 22, 31, 33, 49

Byte Diff. The amount of bytes inside a file that differs between two files. 31, 33, 38

Custom Linker. The project's solution. 22, 28, 31, 40, 49

Delta Update. Only transferring the data that differs, instead of a full program, during
updates.

39, 40

Dynamic Linking. Program and external libraries are separated,
and referenced at runtime.

5, 17, 22, 25, 33, 34, 35, 40, 52

Dynamic Sequencing. Having an array holding "function calls" to easily change
function-order of firmware.

22, 25, 33, 34

EM. Energy Mangement 1

GOT. Global Offset Table 8

IoT. Internet of Things 1, 2, 6

Linker Script. Used for configuration of the final step of compiling code,
which gives "locations" to everything

24, 28, 29, 31, 37, 38, 49

Memory Management. Controlling the specific addresses that things are put into
memory

16, 20, 22, 31, 40

OTA. Over the Air 3, 5, 12

P2P. Peer-to-Peer 3, 5

PIC. Positional Independt Coding 3, 4, 6, 8, 9

QoL. Quality of Life 18, 40

RTOS. Real-Time Operating System 6

SDK. Software Development Kit 6, 9

SoA. State of the Art 6, 13, 40

Symbol. Overall term for definitions in a program (variables, functions, etc.). 26, 28, 29, 30

Usability Factor. Wider term used to refer to the solutions' overall
ease of use.

13, 16, 18, 22, 23, 33, 38, 39, 40

VM. Virtual Machine 6, 8, 9

Wi;Fi 1, 5

Xdelta3. Commonly used tool for creating patch-files for @dl:pl. 22, 31, 38, 39

bsdiff. Commonly used tool for creating patch-files for @dl:pl. 22, 31, 33, 38, 39, 40
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Appendix A
A.1 Memory Addresses

Figure A.1: A printout of the different sections and their addresses of the baseline firmware.
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Figure A.2: A printout of controlled_value1 being held on address 0x0803BEEF in memory.

A.2 Firmware Functionality Changes

Figure A.3: A printout of compilation error from not having enough space.



Validation Run Setup B
This is a walkthrough on how the different scenarios specifically differ in the validation
process, and how to “get them there”.

B.1 0 ; Baseline

Well… it’s the baseline… what is there to say?
Make sure that everything is “back in order”, before changing to a new scenario, unless the
formers steps are needed for the next step.

File Specifics

• main.cpp
‣ Before main loop, make sure the call of command greet is commented out

• controlled.c

‣ controlled_value3
– Value of 0x8420

‣ controlled_array
– Commented out at the top

– Baseline contains 3 values

– 998123 is last entry

‣ int main_loop_interval
– Commented out at the top

Commented in at the bottom

‣ int main_loop_interval
– Commented out at the top

Commented in at the bottom

• general_setup.cpp
‣ greet

– Commented out (is for F4a)

‣ init_usb_uart()
– Commented out at the top

Commented in around the middle

‣ uart_send_hex
– Looks like
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  // general_setup.cpp
  void uart_send_hex(uint32_t value) {
      
      uart_send_char('0');
      uart_send_char('x');
      
      for (int i = 7; i >= 0; i--) {
          uint8_t nibble = (value >> (i * 4)) & 0xF;
          uart_send_char(nibble < 10 ? '0' + nibble : 'A' + nibble -
10);
      }
      
      uart_send_new_line();
  }

• general_setup.hpp
‣ void greet(void* msg)

– Commented out at the bottom (is for F4a)

‣ static int not_used
– Commented out at the top

Commented in at the bottom

‣ void init_usb_uart()
– Commented out at the top

Commented in at the bottom

• base_linker.ld
‣ Commented out:

– .controlled_value1      0x0803BEEF : {KEEP(*(.controlled_value1)) }

• controlled.ld
‣ Addresses Fixed as:

– .controlled_value1     0x0803F804    : {KEEP(*(.controlled_value1))}

– .controlled_array1     0x0803F900    : {KEEP(*(.controlled_array1))}

– .uart_send_hex  0x08010164 : {KEEP(*(.uart_send_hex))}   > COMMAND_TABLE

‣ Commented out:
– /* .greet          0x080103D8 : {KEEP(*(.greet))}         > COMMAND_TABLE */

• startup_commands.cpp
‣ send_string with “Init done!”

– Present, and is first command to run

‣ greet
– Commented out (is for F4c & S2)

• available_coamands.cpp
‣ greet

– Commented out (is for F4c)

Potentially compile a second one as a sanity check.
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B.2 Memory Address Control

Remember for these, in the comparison table, that the BL version isn’t using the Linker Script,
so when they’re shown as being far more efficient, it’s because they’re not actually moving
anything around.

B.2.1 M1 ; Hold Symbol

As all other scenarios are done using a lot of held addresses in the Custom Linker, this is done
in the Linker Script for the Basic Linker.

• base_linker.ld
‣ Addresses Fixed as (bottom of file):

– .controlled_value1      0x0803BEEF : {KEEP(*(.controlled_value1)) }

This is holding on (and moving) an int with the value of 0x8420 so it’s supposedly 4 bytes that
is changed. Although, with the original memory position being empty now, the last 0 is likely
not changed, and it should be 3 bytes. Times two of course, as it’s moved from somewhere to
somewhere else.

B.2.2 M2 ; Move Variable

• controlled.ld
‣ Addresses Fixed as:

– .controlled_value1      0x0803F800 : {KEEP(*(.controlled_value1)) }

Same Byte “behaviour” as explained for M1 should be seen here.

B.2.3 M3 ; Move Array

• controlled.ld
‣ Addresses Fixed as:

– .controlled_array1      0x0803F908 : {KEEP(*(.controlled_array1)) }

B.2.4 M4 ; Move Function

• controlled.ld - This part is technically the M3 scenario
‣ Addresses Updated as:

– .uart_send_hex  0x080103f0 : {KEEP(*(.uart_send_hex)) }   > COMMAND_TABLE

B.2.5 M5 ; Automatic Move

Automation is not implemented, so isn’t present here.
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B.3 Functional Updates

B.3.1 F1 ; Single Value Update

• controlled.c
‣ controlled_value3 (Swap value 0x8420 with 0x8720)

B.3.2 F2 ; Array Updates

F2a - Swap Item
• controlled.c

‣ controlled_array (3 values, 998123 in the middle)

F2b - Add Item
• controlled.c

‣ controlled_array (4 values, 998123 is last, before new entry, new entry is 5324)

B.3.3 F3 ; Function Updates

F3a - Smaller Function
This version is smaller than the original.

• general_setup.cpp
‣ uart_send_hex

Change uart_send_hex into:

  // general_setup.cpp
  void uart_send_hex(uint32_t value) {
      
      char hex_buffer[10];
      int_to_hexstring(value, hex_buffer);
  
      uart_send_string(hex_buffer);
  }

F3b - Larger Function
This version is LARGER than the original.
And therefore needs to be moved in memory, which is isn’t being, meaning that compilation
should fail.

• general_setup.cpp
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‣ uart_send_hex

Change uart_send_hex into:
// general_setup.cpp
void uart_send_hex(uint32_t value) {
    
    char hex_buffer[10];
    int_to_hexstring(value, hex_buffer);

    uart_send_string(hex_buffer);
    uart_send_string("In Hex thingy");
    
    uart_send_char('0');
    uart_send_char('x');
    
    for (int i = 7; i >= 0; i--) {
        uint8_t nibble = (value >> (i * 4)) & 0xF;
        uart_send_char(nibble < 10 ? '0' + nibble : 'A' + nibble - 10);
    }
    
    uart_send_new_line();
}

F3c (and M3) - Larger Function
Requires F3b

The larger version from F3b needs to be moved in memory, and should then be able to compile
again.

• controlled.ld - This part is technically the M3 scenario
‣ Addresses Updated as:

– .uart_send_hex  0x080103f0 : {KEEP(*(.uart_send_hex)) }   > COMMAND_TABLE

B.3.4 F4 ; Add New Function

F4a - Add Function Link
• general_setup.hpp

‣ Commented in:
– void greet(void* msg)

• general_setup.cpp
‣ Commented in the entire function of:

– void greet(void* msg)

• controlled.ld
‣ Commented in:

– .greet          0x080103D8 : {KEEP(*(.greet))}          > COMMAND_TABLE
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F4b - Use New Function
This is for “in code” use, and not using Dynamic Linking.

• main.cpp
‣ Before main loop, make sure the call of function greet is commented in, so it’s used

by the program.
– greet("Fiskepinde");                 //  Scenario F4b

OBS! There’s a Dynamic Linking version close by, pick the right one.

B.3.5 F5 ; Code Positioning

Move Symbols around in code to be earlier/later positions in a header or “real code” file, to
see compiled byte behavior.

F5a - Variable Header
Defining variables in headers is bad practise, so none of the implementation’s header-files
contain variable definitions which are used, so this variable is there, just for testing purposes
(actually being used despite the name).

• general_setup.hpp
‣ Almost top of the file, comment in:

– static int not_used = 666;     // F5a

‣ Around middle of the file, outcomment:
– static int not_used = 666;     // Baseline

F5b - Variable Code
• controlled.c

‣ Around the top of the file, comment in:
– const

int main_loop_interval __attribute__((section(".main_loop_interval")))
= 1500000;     // F5b Scenario

‣ At the bottom of the file, outcomment:
– const

int main_loop_interval __attribute__((section(".main_loop_interval")))
= 1500000;     // Baseline

F5c - Array Header
Did not have time to go through the same pain as making a use for a “header variable” in F5a,
so this did not happen…

F5d - Array Code
• controlled.c

‣ At the top of the file, comment in the full array:
– const int

controlled_array1[4] __attribute__((section(".controlled_array1")))

‣ Around top of the file, outcomment in the full array:
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– const int
controlled_array1[4] __attribute__((section(".controlled_array1")))

F5e - Function Header
• general_setup.hpp

‣ Almost top of the file, comment in:
– void init_usb_uart() __attribute__((section(".init_usb_uart")));     //

F5e

‣ Around middle of the file, outcomment:
– void init_usb_uart() __attribute__((section(".init_usb_uart")));     //

Baseline

F5f - Function Code
• general_setup.cpp

‣ Almost top of the file, comment in the entire function of:
– void init_usb_uart()     // F5f

‣ Around middle of the file, outcomment the entire function of:
– void init_usb_uart()     // Baseline

B.3.6 F6 ; Code Comments

As you can’t just outcomment comments, these scenarios will have to be made with actually
cutting out the complete line in code.

F6a - Global Scope
• main.cpp

‣ // Test comment
– Somewhere outside of functions

F6b - Function Scope
• main.cpp

‣ // Test comment
– Somewhere inside of main()

F6c - Function Scope
• controlled.c

‣ controlled_array (3 values, added // 5324 at third entry)

B.4 Dynamic Linking

DL1 - Add Function to Command Table
Requires F4a

• general_setup.hpp
‣ Commented in:
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– void greet(void* msg)

• general_setup.cpp
‣ Commented in the entire function of:

– void greet(void* msg)

• controlled.ld
‣ Commented in:

– .greet          0x080103D8 : {KEEP(*(.greet))}          > COMMAND_TABLE

• available_commands.cpp
‣ greet is commented in as the last on the list.

DL2 - Use Function from Command Table
Requires DL1
This is for “in code” use, and not the Sequence Controlled lists.

• main.cpp
‣ Before main loop, make sure the call of function greet is commented in, so it’s used

by the program.
– call_command("greet", (void*)"Fiskepinde");  //  Scenario DL2

OBS! There’s a non-dynamic version close by, pick the right one.

B.4.1 DL3a ; Change Sequence of Commands

• startup_commands.cpp
‣ send_string with “Init done!” present, and is last command list

– Remember to comment out the identical one further up

B.4.2 DL3b ; Add New Function to Sequence

Requires DL1

• startup_commands.cpp
‣ greet is commented in as the third last of the list.
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