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Introduction 1
Structural-dynamics studies are particularly active in the wind-energy field. Researchers
must analyse highly stochastic aerodynamic and hydrodynamic loads, and many critical
components become difficult to inspect or repair after turbine commissioning. For this
reason, virtual numerical replicas [1] (termed Digital Twins) are developed to evaluate
component performance. When predictive algorithms are incorporated into these
twins, they provide probabilistic failure forecasts and enable maintenance planning that
shortens repair periods, decreases unplanned interventions, and improves spare-parts
logistics, thereby lowering costs. In such predictive-maintenance schemes, accurate
estimation of fatigue life is essential, especially for offshore turbines whose parts
experience continuous wind- and wave-induced cyclic loading. Detailed time-series
records ofmaterial stresses and other fatigue-relevant indicators supply the data required
to determine the remaining useful life of each structural element[2].

To make these precise models of wind turbine components, their precise dynamic
response must be captured. Using a few sensors at sparse locations, virtual sensing (VS)
can be used to estimate this response even where no sensor is placed [3]. That is usually
achieved by combining a Finite Element (FE) model of the component with the sensor
data. It is preferable to use accelerometer data only due to its convenience in structural
dynamics applications [4]. Onecommonstrategy forperformingVSusesModalExpansion
for this purpose, it has been successfully applied even with accelerometer measurement
only [5].

Some widely used strategies are based on the Kalman filter, which is a recursive Bayesian
estimator that blends a linear state-space model with Gaussian-noisy measurements to
deliverminimum-mean-square-error state estimates in real-time. The challengewith this
method is the fact that the forcesactingon the systemarenot knownandcannotbedirectly
measured; these are unknown inputs to the Kalman filter. This problem was tackled
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Group 612 1. Introduction

differently by the research community. Many use augmented state techniques to estimate
the unknown loads. In [6], such a filter was presented while the input force was modelled
as a random walk, and they identified a limitation of the method in estimating the
slow-changing parts of the load when using acceleration measurements only. This issue
was analysed by [4], where the stability of the filter was theoretically proved to be unstable
in that scenario. As a solution, the introduction of dummy position measurements to
render stableestimates isproposed. Anotherattempton improving the stabilityof thefilter
in input force and state identification when using accelerometer data only was proposed
in [7] where, instead of using a random walk model for the input forces, a stable dynamic
modelwasused to recover thedetectabilityof the systemandhenceobtaina stablefilter. In
particular, they obtain a state space representation of a process given a desired stationary
covariance matrix, hence a non-parametric Gaussian process model. To improve the
estimationof theAKF, [2]proposedamethod that consistsof adaptive tuningof theprocess
noise covariancematrix.

In a different research direction, to avoid the difficulties of finding an accurate model of
the inputs in practice [8] introduces amethod that does notmake any assumptions about
the load’s dynamics or statistical properties and offers an unbiased minimum variance
estimator of the input for every time step of the Kalman filter; the so called Gillijns De
Moore Filter filter (GDF). Thereafter, another approach was developed in [9] that uses a
Dual Kalman filter formulation, which avoids un-observability and rank deficiency issues
of the AKF and shows that by an adequate choice of noise covariancematrix of the input is
able to avoid drift which is reported by some authors when using the GDF filter.

Since wind turbines are subjected to distributed loads instead of point loads, the specific
scenario of estimating the distributed load is explored by trying to apply the GDF filter for
that purpose. But as an early development of themethods, they will be applied and tested
on a simple Finite element (FE) model of a beam. Due to time constraints, the method
was not applied to amore realisticmodel of thewind turbine blade orwith amore realistic
wind load.
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Problem Statement 2
The GDF filter is designed as an unbiased minimum variance estimator, this theoretical
property makes it attractive for input-state estimation. Moreover, the fact that no
assumption ismade on the dynamics or statistical properties of the inputmakes it flexible
andpractical to adapt to any scenario, especially if thenature of the load is not fully known.
Despite this, some challenges might arise when estimating dynamic distributed loads.

Themain assumptions the filter makes are:

• Plant and signal model

– Linear, time-varying, discrete-time:

xk+1 = Ak xk +Gk dk +wk

yk =Ck xk +Hk dk + vk

– Systemmatrices Ak ,Gk ,Ck , Hk known.
– Unknown input dk arbitrary (no prior model).

• Noise and initial state

– wk , vk : zero-mean, white, uncorrelated; covariancesQk ⪰ 0, Rk ≻ 0.
– Initial estimate x̂0 unbiased with known P x

0 ; x0 independent of {wℓ, vℓ}.
• Structural / identifiability

– Full-column rank: rank(Hk ) = m, where m is the number of measurements.
Implying that the number of sensors must be lower than the number of inputs
estimated.

– Observable (or detectable) pair (Ak ,Ck ).

Since a Finite Element (FE) model of the physical system will be used, the inputs
to be estimated will be equal to the number of free nodes. That means that if the
filter tries to estimate directly, for example, 14 nodal forces, it needs at least 14
sensors providing independent information about the inputs. This constraint on the
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Group 612 2. Problem Statement

minimum number of sensors needed makes the filter impractical for estimating a
distributed load a priori. Moreover, as modal reduced models are normally used in
structural dynamics applications, some extra numerical challenges will arise, and in
that regard, the work of [10] is used.

This leaves the problem statement as: Developing a method for estimating an
arbitrary dynamic distributed load with the Gillijns De Moore Filter while avoiding
an excessive amount of sensors and using accelerationmeasurements only
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Methods 3
The most essential theory used in this project is introduced in the first part of the
section as well as references to the appendix formore information. In the last part of
the section, the limitations of the GDF are discussed, which feature a discussion on
the limitations that appear when working with reduced-order models and the ones
that appear when estimating a distributed input. Finally, some proposed methods
using the GDF are proposed and described.

3.1 Elastic BeamModelling

Mechanical and structural systems can be modeled by discretizing the system with
finite element (FE) and enforcing the following governing equation:

[M ]{ü(t )}+ [C ]{u̇(t )}+ [K ]{u(t )} = { f (t )} (3.1)

where {u(t )} contains thedisplacement of each element. Thematrices correspond to:
the global mass [M ], the global damping [C ], and the global stiffness [K ].

However, using this representation can pose some computational and conditioning
problems since it requires dealing with a large state space of as many degrees of
freedomas freenodes. To simulate large systemsmodal analysis canbeused tofinda
more powerful representation that can be used to effectively reduce the dimensions
of the state space by choosing themost relevant modes.

3.1.1 Modal Analysis

Following the modal expansion theorem, the vector {u(t )} can be represented as a
superposition of mode shapes {φr }. Each mode will contribute to the response with
various degrees of intensity over time which is determined by its modal coordinate
qr (t ). These form a new basis for {u(t )} which is orthonormal.
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Group 612 3. Methods

{u(t )} = {φ1}q1(t )+ {φ2}q2(t )+·· ·+ {φn}qn(t ) = [Φ]{q(t )} (3.2)

By substituting this expression and pre-multiplying by {φr }T to achieve a similarity
transform, projecting the equation into the new basis, the system is represented
into an interesting structure. Due to the orthogonality of the new basis with respect
to [M ] and [D], the new matrices mr = {φr }T [M ]{φr }, kr = {φr }T [K ]{φr } and in some
cases cr = {φr }T [C ]{φr } become diagonal. This means that the new representation
presents decoupled states independent from each other. Eachmode is now a 1 DOF
spring-mass system. In this work, this representation will be used for simplicity.
More information in how to obtain this representation is found in the appendix A.

Introducing Damping

Depending on the type of damping used, the MDOF systems can be categorized as
[11]:

– Undamped system, when [C ] = 0
– Proportionally damped systems, with any of the following forms:

* Rayleigh damping, [C ] =β[K ]+γ[M ]
* Modal damping
* General proportional damping

– Non proportionally damped systems

For simplicity, the damped system is described as a proportionally damped system.
This is done to obtain uncoupled and damped modes of vibration. Specifically, the
method of obtaining the proportional damping via modal damping is chosen.

Modal damping is found based on the assumption

cr = {φr }T [C ]{φr } = di ag {2ζkωk } (3.3)

Under this assumption only the eigenvalues change and not the eigenvectors [11].
According to the formula, thedamping ratio ζk is applied to the kthmodeof vibration
(eigenvector). This leads to a characteristic polynomial per mode of the form

λ2 +2ζkωkλ+ω2
k = 0 (3.4)

By finding their roots one can find the eigenvalues associated with each eigenvector
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3.1. Elastic BeamModelling Aalborg Universitet

λ±k =−ζkωk ± i
√

1−ζ2
kωk (3.5)

3.1.2 Modal Decomposition of State-SpaceModels

In the previous part of this section, the modal analysis was introduced and the
power of describing the system inmodal coordinates was also presented. Due to the
convenience of representing the system in a state space model for state estimation,
the state spacemodel itself it is transformed intomodal coordinateswith a similarity
transform.

First, equation 3.1 is posed in state-space form by defining the state vector {x(t )} =
[{u(t )}T , {u̇(t )}T ]T with displacement and velocity of the elements. And the input
vector of forces { f (t )}.

By isolating ü in the equation 3.1 one obtains the derivative of the states of velocity
which is the lower row of equation 3.6.u̇(t )

ü(t )

=

 0 1

−M−1K −M−1C


u(t )

u̇(t )

+

 0

M−1

 f(t ) (3.6)

To transform it to amodal basis a similarity transform isneeded. This transformation
allows for changing the basis of the state space representation of the system.

z(t ) = ν−1x(t ) (3.7)

Where ν is the transformationmatrix. Specifically, if the aim is to represent the state
space in amodal basis, the columns of ν should be chosen as the eigenvectors of the

state matrix A (where x(t ) =

u(t )

u̇(t )

 and

A =

 0 I

−M−1K −M−1C

).

That is, let ν satisfy
Aν=Λν, (3.8)
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Group 612 3. Methods

where Λ is a diagonal matrix containing the eigenvalues of A.

Substituting x(t ) = νz(t ) into equation (3.6) gives

νż(t ) = A(νz(t ))+Bf(t ), (3.9)

with

B =

 0

M−1

 .

Multiplying both sides by ν−1 leads to

ż(t ) = ν−1 Aνz(t )+ν−1Bf(t ) =Λz(t )+ B̃f(t ), (3.10)

where B̃ = ν−1B .

Furthermore, the input matrix can be made in terms of the eigenvalues and
eigenvectors in the following way [12]

B̃ =

 I

−I

 (Λ̄− Λ̄∗)−1ν̄T F (3.11)

Summarizing, this similarity transformation converts the original state-space
representation into a modal form, in which the dynamics are decoupled. Each
modal coordinate in z(t ) evolves independently according to its corresponding
eigenvalue (contained in Λ). This decoupled (modal) form greatly simplifies the
analysis and control design of the system. Thesemodal coordinates are related to the
modal coordinates mentioned in the modal expansion theorem 3.2 by the following
expression z(t ) = [q(t ) q̇(t )]T .

However, not all modes need to be included in the final model. The importance
of each mode in the response depends on the nature of the excitation and more
specifically its spectral content. That means that modes appearing in frequencies
where the input has no or very little energy are not excited and can be disregarded.
By removing some of the least relevant modes modal reduction is performed; which
allows for a more efficient representation of the system.
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3.1. Elastic BeamModelling Aalborg Universitet

Measurementmodel

The measurements consist of acceleration measurements. The model itself can be
used to calculate the acceleration and using a matrix Ca can be used to select the
accelerations of the nodes of interest. As shown in equation 3.12, it leads to an
output/measurement model with a direct feedthroughmatrix.

y(t ) =Caü(t ) =Ca

[
−M−1K −M−1C

]
x(t )+Ca M−1f(t ) =C x(t )+Df(x) (3.12)

Performing the modal decomposition as in the dynamic model of the system, the
similarity transform is applied to go from the coordinates x(t ) to the coordinates z(t )

y(t ) =Cνz(t )+D f (t ) ≃ C̄ z(t )+ D̄f(t ) (3.13)

where C̄ and D̄ are modally reduced matrices. This is their definition in terms of the
included eigenvalues and eigenvectors.

C̄ =Ca

[
ν̄Λ̄2 ν̄(Λ̄∗)2

]
(3.14)

D̄ =Ca ν̄ν̄
T (3.15)

3.1.3 Discretization of a State Space System

Finding the equivalent discrete state space formulation of a continuous state space
comes down to finding thematrices Ad and Bd from equation 3.16.

x(n +1) = Ad x(n)+Bd u(n) (3.16)

Depending on the assumptionsmade, different techniques can be employed to find
these matrices. Here, the exact discretization method is employed, and the ZOH
assumption is made, which means that between samples the inputs are assumed
to be held constant. To construct the matrices, the solution of the continuous state
space in 3.17 is used. Essentially, the solution is computed by taking the previous
state as the initial condition and assuming a constant input during the sample
interval for every sample interval. That way, the dynamics are still continuous, and
the only inaccuracy comes from the fact that the input may not be constant during
the sample interval.
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Group 612 3. Methods

x(t ) = e At x(0)+
∫ t

0
e A(t−τ)Bu(τ)dτ (3.17)

Given the ZOH assumption, since the input is constant, it can be taken out from the
integration and the following Ad and Bd matrices can be obtained:

x((n +1)Ts) = e ATs︸︷︷︸
Ad

x(nTs)+
(∫ Ts

0
e Aτdτ

)
B︸ ︷︷ ︸

Bd

u(nTs) (3.18)

and after performing the integration:

Bd = (e ATs − I )A−1B (3.19)

Discretization of theModal Decomposed State-Space

In the previous section, the state-space formulation of the system was transformed
intomodal form. Fortunately, after the transformation, the dynamics are decoupled,
making A a diagonal matrix. This is advantageous as the matrix exponential of
a diagonal matrix simplifies to a diagonal matrix whose entries are the scalar
exponentials of the original diagonal elements. Therefore, Ad is simply:

eΛTs =



eλ1Ts

. . .

eλk Ts

eλ
∗
1 Ts

. . .

eλ
∗
k Ts



(3.20)

To obtain the Bd matrix, equation 3.19 is used where the continuos A matrix isΛ and
the continuous B matrix is given in equation 3.11.

However, in this basis, the modal coordinates are complex-valued. To obtain
real-valued states as zreal = [Re{z}, Im{z}]T , a similarity transform zreal = T̃ z can be
performed. Such a transformationmatrix is given in equation 3.21.
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3.1. Elastic BeamModelling Aalborg Universitet

T̃ = 1

2

I −i I

I i I

 (3.21)

After applying the transformation, the state matrix becomes T̃ −1 Ad T̃ , the input
matrix becomes T̃ −1Bd and theC matrix becomesC T̃ .

3.1.4 Discrete Model of a Distributed Input

Due to using a finite-element model, the inputs can only be applied to the nodes
and not within the elements. This requires the discretization of the distributed
load. Ideally, the equivalent discretized load should produce the same external
work as the distributed load for each possible displacement function that the shape
functions allow. Fortunately, such discretization is possible, and it is said to be
energy-consistent[13].

For an arbitrary virtual displacement δv(x) = [N ]δ{d} the external virtual work due to
the distributed traction q(x) is

δWext =
∫
Γ

q(x)δv(x)dΓ= δ{d}T
(∫
Γ

[N ]Tq(x)dΓ

)
, (3.22)

where Γ is the portion of the spatial domain where the distributed load is applied.

However, one must remember that the finite-element interpolation approximates
the displacement field along the loaded edge (or line element)

v(x) = [N ] {d}, (3.23)

where [N ] is the row matrix of shape functions Ni (x) and {d} is the column vector of
nodal degrees of freedom (DOF).

This leads to the following expression of the external virtual work from an unknown
nodal load vector { f }

δWnodal = δ{d}T { f }. (3.24)

Requiring δWext = δWnodal for every admissible δ{d} leads directly to the consistent
(energy-conjugate) nodal load vector

{ f } =
∫
Γ

[N ]T q(x)dΓ (3.25)
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Group 612 3. Methods

Component-wise,
fi =

∫
Γ

Ni (x) q(x)dΓ. (3.26)

In practice, the integral for each fi is evaluated on every element patch where Ni ̸= 0

and the results are summed during assembly. After that, all contributions from each
element are superimposed at the shared nodes. I.e., if two adjacent elements share a
node, their contributions accumulate, so the final global vector {F } contains the total
nodal forces that are energetically equivalent to the original distributed load; given
the assumed interpolation given by the shape functions.

3.1.5 Selecting the Number of Elements

The objective of the analysis is to find the minimal number of elements to divide
the beam to get a sufficiently accurate dynamical response for a particular load.
To do so, the acceleration measurement was computed for several seconds on the
free end of the beam, since all modes have significant participation in the motion
of that particular node. Note that only five modes of the beam are included due to
the nature of the excitation that the beam is subjected to, in this case, wind. The
response is measured from models with different numbers of elements. That way,
the relative root mean squared error (RRMSE) between the response of models with
a subsequent number of elements can be computed until the RRMSE falls below the
convergence criterion, signifying that increasing the number of elements would not
yield a significantly different response.
An example of a constantly distributed load in space but with white noise dynamics
is imposed on the beam model consisting of 4 modes. The test shows that with 8
elements, the RRMSE falls below the convergence criterion of 1% as figure 3.1 shows.
The RRMSE is 0.835%.

Figure 3.1: RRMSE between the acceleration responses of the end node ofmodels with a subsequent number
of elements. The threshold is 1% and is crossed at 8 elements.
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3.2 Input-state estimation for linear discrete-time systems
with direct feedthrough using the GDF

This section explains the estimator proposed by [8] together with a discussion about
its limitations when dealing with reduced-order models.

Havinga systemformulated in state-space form,where the systemmodel inequation
3.27 and themeasurement model in equation 3.28 are shown.

xk+1 = Ak xk +Gk dk +wk (3.27)

yk =Ck xk +Hk dk + vk (3.28)

Where the matrices Ak , Gk , Ck , Hk are known, the noise terms wk and vk

are uncorrelated with mean zero white noise terms (the case with correlated
measurement noise is discussed in A.1.1). The state is represented as xk , and the
unknown disturbance input as dk . The disturbance input can also be viewed as a
systematic error or bias term in the models, which directly affects both the system
model and themeasurement model.

The objective presented in the paper [8] is to find an optimal recursive filter that
estimates both the system state xk and the input based on the initial estimate x̂0 and
the sequence of measurements from y0 to yk , without any prior knowledge of the
input or its structure.

It isworth noting that due to the direct feedthrough, the estimation of dk canbedone
without a one-step delay since themeasurementwill contain the current value of the
unknown input.

To achieve this goal a certain recursive filter structure is proposed that consists in
three steps:

1. Time Update:
x̂k|k−1 = Ak−1x̂k−1|k−1 +Gk−1d̂k−1 (3.29)

2. Estimation of the unknown inputs:

d̂k = Mk (yk −Ck x̂k|k−1) (3.30)
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Group 612 3. Methods

3. Measurement Update:

x̂k|k = x̂k|k−1 +Lk (yk −Ck x̂k|k−1) (3.31)

This narrows down the problem to finding the unknown matrices Mk and Lk

such that a minimum variance unbiased estimator is found for both the states
and the unknown inputs.

3.2.1 Input Estimation

Focusing on the input estimation of equation 3.30. The innovation ỹk difference
between themeasurement and the predictedmeasurement is used for the following
property:

ỹk := yk −Ck x̂k|k−1 =Ck x̃k|k−1 +Hk dk +νk = Hk dk +ek (3.32)

Where an error term ek := Ck x̃k|k−1 + νk can be defined with the contribution of
the error from the state estimation and from the random noise νk . With this the
expectation of the innovation can be calculated and, as depicted in equation 3.33,
it is proportional to the expected value of dk . This proves that the innovation can be
used to obtain an unbiased input estimation.

E[ỹk ] = E[Hk dk ]+E[ek ] = HkE[dk ] (3.33)

Note that E[ek ] = 0 since the x̂k|k−1 is unbiased and the randomnoise νhasmean zero.

Using Least Squares (LS) one can find the ordinary least squares estimator d̂k for
the linear regression problem stated at 3.32 where the objective is to find the dk that
wouldminimize the cost function in equation 3.34.

argmin
dk

∥ỹk −Hk dk∥2 (3.34)

The estimator that satisfies this is d̂k = (Hk H T
k )−1H T

k ỹk which is the LS solution. This
requires that Mk = (Hk H T

k )−1H T
k which is the pseudo-inverse of Hk .

This estimator would be unbiased and minimum variance if the Gauss-Markov
assumptionweremet. However, the issue is that the error term ek likely hasV ar [ek ] ̸=
cI , which violates one of the assumptions and makes the innovation correlated. In
fact:
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R̃k := E[ek eT
k ] =Ck Pk|k−1C T

k +Rk ̸= cI . (3.35)

This implies that the estimator, even though it is unbiased, it is not necessarily
minimum variance. To overcome this issue, the problem can be framed as a
Generalized Least Squares problem [14] which first transforms the model to a
representation where the correlation in the measurements is eliminated and then
the ordinary least squares problem can be applied to this transformedmodel.

Define the whiteningmatrix as
Wk = R̃−1/2

k , (3.36)

which satisfies
Wk R̃kW T

k = I .

and leads to the whitening transform

ȳk = R̃−1/2
k ỹk , H̄k = R̃−1/2

k Hk , (3.37)

so that themodel becomes
ȳk = H̄k dk + ēk , (3.38)

with the transformed error term

ēk = R̃−1/2
k ek ,

which now satisfies
E[ēk ēT

k ] = cI .

In the whitened model (3.38), the ordinary least squares solution can be applied,
leading to the GLS estimator:

d̂k = (
H T

k R̃−1
k Hk

)−1
H T

k R̃−1
k ỹk . (3.39)

And therefore M∗ = (
H T

k R̃−1
k Hk

)−1
H T

k R̃−1
k will make the estimator both minimum

variance and unbiased.

In summary, the estimation of the unknown input dk is performed using the
innovation ỹk which, as shown in equation 3.32, is given by

ỹk = Hk dk +ek .
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Although a simple least squares solution

d̂k = (Hk H T
k )−1H T

k ỹk

provides an unbiased estimate, the presence of correlated noise (with covariance
R̃k = Ck Pk|k−1C T

k + Rk ̸= cI ) means that this estimator does not have minimum
variance. The GLS approach remedies this by transforming the model, effectively a
change of basis via thewhitening transformation in (3.37), so that the noise becomes
white, and theminimumvariance property is restored in the transformed space. The
resulting GLS estimator in (3.39) is thus the minimum-variance unbiased estimator
for dk .

3.2.2 Measurement Update

Similarly, the objective in the measurement update step is to find a matrix Lk that
produces an unbiased minimum variance estimate of the state. To ensure that the
estimate is unbiased it must cancel the bias term dk in

x̂k|k = x̂k|k−1 +Lk (yk −Ck x̂k|k−1) = (I −LkCk )x̃k|k−1 −Lk Hk dk −Lkνk (3.40)

whichmeans that
Lk Hk = 0 (3.41)

As discussed in [8], an MVU state estimator is obtained by determining the gain
matrix Lk that minimizes the trace of the covariance matrix of the estimation while
satisfying the unbiasedness constraint in 3.41. Where the covariance matrix is
presented in 3.42. Note that the trace of the covariance matrix corresponds to the
variance terms of the states’ prediction.

Pxk|k = (I −LkCk )Pxk|k−1 (I −LkCk )T +Lk Rk LT
k (3.42)

The solution yields the following equation:

Lk = Kk (I −Hk Mk ) (3.43)

where
Kk = Pxk|k−1C T

k R̃−1
k (3.44)
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the GDF Aalborg Universitet

3.2.3 Limitations of the Estimator

For the linear estimator to be unbiased, a necessary and sufficient condition is that
the rank of Hk is equal to the number of inputs, as discussed in [8]. This implies two
conditions:

– The number of sensors should be at least as great as the number of estimated
inputs.

– The columns of the direct feedthroughmatrix Hk must be linearly independent,
which implies that the regressors are linearly independent [14].

A lower number of independent measurements than inputs to estimate makes an
underdetermined system of equations. This means that there are infinite solutions.
Not having independent columnsmeans that not every input independently affects
the measurement, and therefore, they cannot be distinguished easily. Also known
as multicollinearity, it causes large variances and covariances on the least-squares
estimators of the regression coefficients [14].

The former condition limits the applicability by limiting the amount of forces
estimated to the number of sensors available. The latter directly limits theminimum
number ofmodes that need to be included in the reduced ordermodel of the system.
The effect of reducing the modes on the rank reduction of Hk is manifested as a
projectionmatrix to the subspace spannedby themodal coordinates in thedefinition
of the reduced version of Hk in equation 3.15. Therefore the rank of the reduced
Hk cannot be larger than the number of modes of the reduced order model. This
projection occurs because the acceleration measurement is calculated using the
reduced order model itself presented in equation 3.12.

Moreover, in [10] the numerical issues arising from applying this estimator to a
reduced order model in the context of structural dynamics were discussed and
tackled with some additions to the algorithm. The summary of the issues related to
the reduced order model can be summarized as follows:

– The number of inputs should not be greater than the number of modes (nd ≤
nmodes). If the condition is broken the matrix (

H T
k R̃−1

k Hk
)−1 in equation 3.39

becomes singular due to the rank deficiency of thematrix being inverted.
– The number ofmeasurements should not be greater than the number ofmodes
(ny ≤ nmodes). Otherwise, thematrix R̃−1

k becomes nearly singular.
– If ny ≥ mi n(nd ,nm) then HPxk|k H T becomes rank deficient.
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Table 3.1: Conditions for numerical stability in the UMV estimator (adapted from [10])

Condition Numerical Issue if Violated

nd ≤ nmodes
(
H T

k R̃−1
k Hk

)−1 becomes singular
ny ≤ nmodes R̃−1

k becomes ill-conditioned or singular
ny ≤ min(nd ,nmodes) HPxk|k H T becomes rank deficient

To avoid these, some additions to the original UMV estimator were proposed in
the paper. It involves using spectral truncation techniques, where the problematic
matrices are regularized by retaining only the dominant eigenmodes, and a
pseudo-inverse is performed insteadof an inverse. The result is that onlymeaningful
information is passed from one time step of the filter to the next one [10] and the
issues stated in table 3.1 are thus avoided. Nevertheless, violating these conditions
does not come without a degradation in performance.

Methodological Limitations for Distributed Input Estimation

Even though some numerical issues can bemitigated as previously discussed, some
of the limitations of the filter may present some challenges in the estimation of
distributed loads.

Its main limitations identified for estimating a distributed load are:

– Number of estimated forces should be smaller than or equal to the number of
measurements.

– Havingunderestimatednodal forceswhere thedistributed load is being applied
will be treated as process noise. Which poses twomain problems:
* The unestimated forces are not necessarily mean zero.
* If the inputs are treated as process noise and using the formulation that
uncorrelates the measurement and process noise A.1.1 the input matrix
associated to the unestimated forces must be included in the definition of
the covariance matrices where the process noise has an effect and leads
to its inversion i.e., the inversion of a non-square matrix as can be seen in
appendix C.2.

Consequently, an ideal method should allow the estimation of a reduced number
of forces that is enough to reconstruct the distributed load; avoiding the need for
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a large quantity of sensors and without leaving any unestimated nodal forces where
the distributed load is applied.

To validate the hypothetical impracticability of leaving unestimated forces, a setup
where some unestimated forces will also be constructed and subjected to the same
tests as the other methods.

3.3 ProposedMethods for Estimating Distributed Loads
with the GDF

Three different methods are proposed to deal with the aforementioned limitations.
The common feature among them is the avoidance of unestimated nodal forces.
Then, an extra method is proposed where some forces are left unestimated to
compare with the othermethods and validate if, in fact, the othermethods aremore
reliable.

– Estimationof themodal forces instead. And thenconverting themback tonodal
forces after the estimation is done.

– Making a coarser discretized FEM model and estimate all of the nodal forces
where the load is acting.

– Parameterizing the distributed input. Basis functions can be used to describe
the distributed input. The estimation then consists of estimating the amplitude
coefficient of each basis function.

Only in the third method is the spatial interpolation embedded into the estimation.
Therefore, offline spatial interpolationmust be performedon the other twomethods
to obtain an estimate of the continuous load.

3.3.1 Method 1

In this case, the estimator tries to estimate the modal forces instead and uses
them within the filter. That significantly reduces the number of forces needed
to be estimated to the number of modes and could provide a more stable filter
implementation. Moreover, it also changes theminimal required number of sensors
to be equal to or larger than the number of modes included.

Then, someor all the other forces canbe computed from the estimatedmodal forces.
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3.3.2 Method 2

Here, all nodal forces are estimated, but to do so, the number of elements of the
model has to be greatly reduced. And the sensors in the courser discretized model
should be placed in the same physical coordinate as the ones in the finer discretized
model that produced the response measured. The algorithm used to easily do so is
the following:

– Create the detailed beammodel:

* Define the number of elements as nE (e.g., 40 elements).
– Create the coarser beammodel for estimation:

* Use fewer elements than the detailedmodel.
* The number of elements must divide nE evenly (i.e., nE /n, where n is an
integer).

* Example: If nE = 40 and n = 4, the coarser model has 40/4 = 10 elements.
– Sensor placement: Sensors must be placed at the same physical location in
both the detailed and coarse models.
* Since in the coarsemodel the sensors are placed in every node of themodel
(except at the support) to have as many sensors as forces to estimate, the
problembecomes finding the equivalent location of the sensors in the finer
discretized model. The following formula can be used to relate the nodes
where the sensor is placed in the corase model to the nodes in the fine
model:

n f = (nc −1)n +1 (3.45)

where n f is the node where the sensor is placed on the fine model in the
same physical location as the node nc in the coarse model. Note that
the following relationship relates the number of nodes and elements nE =
nnodes −1

* Example:
· For nE = 40 and n = 4, possible sensor locations in the fine model are at
multiples of 4 (i.e., 4, 8, 12, ..., 40), avoiding node 1 if it is supported at
that node.
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3.3.3 Method 3

In this setup, the distributed load is approximated with basis functions.

qk (x) ≈
n∑

i=1
bi ,kφi (x) (3.46)

Then it is converted into equivalent discrete nodal forces using the energy equivalent
approach in section 3.1.4. After obtaining the equivalent nodal force vector for the
profile of each basis function, they can be conveniently stacked in a matrix and
multiplied by the vector of coefficients to obtain the approximation of the input by
linear combination.

dk ≈
[

fT
b1 fT

b2 . . . fT
bN

]


b1,k

b2,k

...

bN ,k


(3.47)

The benefit of thismethod is that the number of coefficients needed to be estimated
can be significantly reduced, at the cost of making assumptions about how the
distributed load behaves spatially.

The basis functions can be obtained either experimentally from data by performing
SVD on the spatio-temporal data and selecting the singular vectors associated with
spatial evolution, or by using another generic type of basis function associated with
a regressionmethod, such as polynomial regression.

3.3.4 Method D

This is the only one of the proposed methods that leaves some forces unestimated.
The model used by the method assumes that the distributed load is discretized in
bins where the load is constant within each bin. The error is then the error of the
approximation.

If the area of the distributed load is divided into rectangular bins with equal width,
the location of the equivalent load acts in the middle of the rectangle. The height of
the rectangle is the magnitude of the function at the middle point of the rectangle.
The smallest area segment that can be done is, in consequence, the area enclosed by
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3nodes. Thenabigger segmentwill consist of 5nodes, 7 nodes, 9 nodes, and so forth.
More generally, all the segment areas possible consist of the number of nodes given
by Nar ea = 3+2γwhere γ ∈Z+.

Knowing the size of the area segments the following empirical relationship can also
beobtained to check thepossible number of subdivisions that canbemade given the
number of nodes by using one of the subdivisions.

Nsubdi vi si ons =
Nnodes −1

Nar ea −1
(3.48)

Nsubdi vi si ons =
Nnodes −1

2(γ+1)
(3.49)

where γ ∈ Z+ and Nsubdi vi si ons ∈ Z+. From this relationship, it is clear that the
Nsubdi vi si ons is restricted and not all combinations of Nnodes and γ are valid. In fact,
since the number of elements Nnodes − 1 must be divisible by an even number, the
Nnodes must be odd.

The method will supposedly increase in how accurately it discretizes the load as
many equivalent forces are added. An example could be a beam with 50 elements,
which has 51 nodes, and it can be divided into 2, 4, 5, 10, and 20 areas of the same
width. A comparison of the response of the 50-element model with 12 modes is
shown in Figure 3.2 with the two ways of discretizing the input. The approximation
is almost exact at the low frequencies. However, this is only the case if the load is
constant or linearly increasing within the bins. If the function changes greatly in a
nonlinear fashion, the approximation of the magnitude coming from the difference
of the area of the rectangle and the real function over the beam will differ, and the
approximation will not be as precise.
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Figure 3.2: Comparison of the spectral content of themeasured acceleration of a 50-elementmodel subjected
to the load discretized with the energy-consistent discretization against the response to the even discretized
load (in 5 loads). TwelveModes are included in themodel.
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Test Design 4
To test the suitability of the proposed methods in estimating the distributed load
acting on the beam, different test setups must be constructed. The following points
are common to all test setups:

– To generate the measurement data, the model with the number of elements
found in section 3.1.5 is used to generate an accurate response when the first
five modes are considered. It is then subjected to the discretized load using
the energy-equivalent method described in section 3.1.4 as it is calculated to
produce the same equivalent external work as the original distributed load.

– Different types of load are estimated by combining spatial properties with
dynamic properties:
* Spatial properties: exponentially increasing.
* Dynamical properties: random smooth dynamics according to a GP (more
information in the appendix A.2.2) and white noise dynamics. The smooth
dynamics correspond to a more realistic scenario when considering a load
like wind, and the white noise dynamics are employed to excite all the
modes of the system and analyze its performance on this idealized case,
where the chosenmodes for themodel are greatly excited.

– The system is subjected to different levels ofmeasurement noise. And the short
and long term stability is experimentally evaluated.
* Measurement noise variance: additive noise of 0.1%, 1%, 5%and 10%of the
measurements variance.

– Only accelerationmeasurements are allowed.
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Figure 4.1:Distributed input that behaves spatially as an exponential function and dynamically as aGaussian
Process withMatré covariance with 0.5 length-scale and variance 10.

Fourmethods are tested, which consist of the three proposedmethods, which avoid
leaving unestimated forces, and themethodwhere some forces are left unestimated.
Then a proper comparison can be made between them to asses which one of
the methods performs best in the estimation of dynamic distributed loads. Two
acceptance tests are performed to asses if themethods are suitable for the estimation
of the two kinds of distributed load discussed with the different noise levels.

– Acceptance test 1: Can the proposed methods estimate a distributed load with
only accelerometermeasurementswhen allmodes of the reduced ordermodel are
greatly excited? (white noise dynamics)

* Check if the acceptance test applies for the following noise conditions:
(a) σv = 0.1%σY
(b) σv = 1%σY
(c) σv = 10%σY

– Acceptance test 2: Can the proposed methods estimate a distributed load with
only accelerometermeasurementswhen allmodes of the reduced ordermodel are
excited by a dynamically smooth function?

* Check if the acceptance test applies for the following noise conditions:
(a) σv = 0.1%σY
(b) σv = 1%σY
(c) σv = 10%σY
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Results 5
A series of experiments is carried out further to explore the strengths and limitations
of the proposed methods. Throughout the tests in this experiment, the model that
produces the data consists of 4 modes and 12 elements. However, in method 2, the
estimator has a model with 4 elements instead. Method 3 assumes that the load
behaves spatially as a 3rd degree polynomial.

5.1 Acceptance test 1

Comparison of Methods 1, 2, 3

Figures 5.1 5.2 correspond to the cases where the load with white noise dynamics
was estimatedwith noise with a 0.1% and 1% of variance of themeasured signal. It is
noticeable that estimating the load with white noise dynamics is significantly easier
for the estimator, and the estimations are significantly more robust to sensor noise
than the case of smooth dynamics.
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(a) Estimated force at node 1 (b) Estimated force at node 2

(c) Estimated force at node 3 (d) Estimated force at node 4

Figure 5.1: Estimation of all free nodal forces of a 4-element beammodel withmeasurementσv = 1%σY when
subjected to a load with white noise dynamics.

(a) Estimated force at node 1 (b) Estimated force at node 2

(c) Estimated force at node 3 (d) Estimated force at node 4

Figure5.2: Estimationof all freenodal forcesof a 4-elementbeammodelwithmeasurementσv = 10%σY when
subjected to a load with white noise dynamics.

Evaluation onMethod D

Thismethoduses amodelwith12elements and4modes, as themodel thatproduced
the data, but it only has 4 inputs. The appendix section D.1 contains the figures
regarding this test. During the test, a scaling issue appeared in the estimate and after
some inspection, it seemed that the resulting estimates have been attenuated by a
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factor that corresponds to the number of elements that each bin has. This happens
since the estimator estimates the forces of that bin as an aggregate force. Therefore,
a factor corresponding to the number of elements of the bin was introduced.

Byvisual inspection, it canbeconcluded that themethodpresents similar robustness
to noise as the other methods since it cannot widstand 10% noise, but it can handle
1% and 0.1%.

5.2 Acceptance test 2

The estimators’ performance in estimating a smooth load is evaluated with varying
levels of noise.

Comparison of Methods 1, 2, 3

Figures 5.3, 5.4 correspond to the cases where the load with smooth dynamics was
estimated with noise with a 0.1% and 1% of variance of themeasured signal.

(a) Estimated force at node 1 (b) Estimated force at node 2

(c) Estimated force at node 3 (d) Estimated force at node 4

Figure 5.3: Estimation of all free nodal forces of a 4-element beam model with measurement σv = 0.1%σY
when subjected to a load with smooth dynamics.
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(a) Estimated force at node 1 (b) Estimated force at node 2

(c) Estimated force at node 3 (d) Estimated force at node 4

Figure 5.4: Estimation of all free nodal forces of a 4-element beammodel withmeasurementσv = 1%σY when
subjected to a load with smooth dynamics.

Out of visual inspection, methods 2 and 3 clearly outperform method 1 in all tests,
whereas the most reliable method over the tested measurement noise levels is
method 2. The tests also show that if enough measurement noise is present, the
estimator can suffer from stability issues in the long term, as shown in figure 5.5.

Evaluation onMethod D

The appendix section D.1 contains the figures regarding this test. The scaling factor
is also added here.

Similarly to theother estimators, acceptable estimates canbeobtainedwithnoise up
to 1%. Withmild low-frequency deviations in the long term.

The result of the acceptance test is summarized in Table 5.1.

5.3 Other tests

Due to time constraints, a comparison with other estimators, such as an augmented
Kalman filter proposed in [7], was not possible. The main reason being the fact that
the estimator presented some issues when using accelerometer data only, although
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(a) Estimated force at node 1 (b) Estimated force at node 2

(c) Estimated force at node 3 (d) Estimated force at node 4

Figure 5.5: Estimation of all free nodal forces of a 4-element beam model with measurement σv = 0.1%σY
when subjected to a load with smooth dynamics in a longer period.

Acceptance-test item Method 1 Method 2 Method 3 Method D

1.a (σv = 0.1%σY ) ✓ ✓ ✓ ✓

1.b (σv = 1%σY ) ✓ ✓ ✓ ✓

1.c (σv = 10%σY ) ✗ ✓ ✓ ✓

2.a (σv = 0.1%σY ) ✓ ✓ ✓ ✓

2.b (σv = 1%σY ) ✗ ✓ ✗ ✗

2.c (σv = 10%σY ) ✗ ✗ ✗ ✗

Table 5.1: Pass (✓) or fail (✗) for each acceptance-test item across the four load-estimationmethods.

not enough troubleshooting was possible to determine wether it was an issue of
the method or of the implementation. In the appendix A.2 the implementation of
the augmented Kalman Filter with a latent force modelled as a Gaussian process
can be found which includes a section where the stability of the filter when only
using accelerometer data is discussed A.2.3. Using the Rauch-Tung-Striebel (RTS)
Smoother discussed in appendix A.3, some improved results can be obtained as
shown in figure 5.6; but only if position measurements are used, which is not the
objective of this work.
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0 0.5 1 1.5 2
time (s)

-0.2

-0.1

0

F
(N
)

Force
RTS prediction of the force

0 0.5 1 1.5 2
time (s)

-0.2

-0.1

0

0.1

F
(N
)

Force
KF prediction of the force

Figure 5.6: Estimation of the force acting on the last node with measurement σv = 0.1%σY . The estimate of
the RTS smoother is comparedwith the performance of the regular augmented Kalman Filter proposed in [7].
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Discussion & Conclusion 6
This work designed and implemented some methods, using the GDF, for the
estimation of a dynamic distributed load acting on a beam. In total, four methods
were proposed and tested with numerical simulations. Generally, the estimators
are more robust to measurement noise when the modes used in the model are
greatly excited. Out of all methods, Method 2 was the method that passed the most
acceptance tests, and specifically, it appears tobemore robust tomeasurementnoise
in the estimation of the smooth load. More target-specific testing is required with a
wind turbine blade model under realistic wind conditions to prove the suitability of
themethods for the application.
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Future Work 7
There are numerous directions to improve, they can be summarized in the following
points:

– Optimization of sensor placement if themethod allows it. Specifically, methods
1, 3, and D give freedom to the user to place the sensors on the beam.

– Optimizing the choice of basis functions for method 3.
– Test with a realistic simulation of a wind turbine blade and simulated wind.
– Exploiting spatial correlation in the KF and trying other methods.
– Exploring how other input-state estimation methods handle distributed load
estimation,

– Making a comparison of othermethods and theGDF to asseswhich one ismore
successful.
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Appendix A - Background

Theory A
A.1 Modal Analysis - Derivations

First, the undamped and unforced response of the system is analyzed. This
corresponds to setting the damping and external force to zero on the original
governing equation 3.1 which results in equation A.1.

[M ]{ü(t )}+ [K ]{u(t )} = 0 (A.1)

Finding a basis where each state is decoupled from each other, and therefore,
orthogonal to thematrix [M]and [K] is achievedbysolving thegeneralizedeigenvalue
problem.

[K ]φ=λ[M ]φ (A.2)

where the eigenvectors φ (or mode shapes) form the desired modal basis. In fact,
there is a physical interpretation of the obtained eigenvalues and eigenvectors.

Assume a harmonic solution to the undamped, unforced differential equation of the
form

u(t ) =φe jωt , (A.3)

where φ is a constant vector (the mode shape) and ω is the frequency of oscillation.
For the undamped, unforced system, the governing equation is

[M ]ü(t )+ [K ]u(t ) = 0. (A.4)

Substitute u(t ) =φe jωt into this equation. Noting that

ü(t ) =−ω2φe jωt , (A.5)

Page 36 of 56



A.1. Modal Analysis - Derivations Aalborg Universitet

we obtain:
[M ](−ω2φe jωt )+ [K ](φe jωt ) = 0. (A.6)

Factoring out the nonzero term e jωt yields:

−ω2[M ]φ+ [K ]φ= 0, (A.7)

which can be rearranged as:
[K ]φ=ω2[M ]φ. (A.8)

Comparing this result with the generalized eigenvalue in equation A.2, we see that

λ=ω2. (A.9)

Thus, the eigenvalues λ are the squares of the natural frequencies ω of the system.
This shows that each mode shape φ corresponds to a natural frequency, providing
a direct physical interpretation: when the system is disturbed, it oscillates naturally
at these frequencies, and each mode shape describes the corresponding pattern of
vibration.

A.1.1 UMVwith Correlated Process andMeasurement Noise

The filter explained in this section is optimal under the assumption that the process
noise and the measurement noise are uncorrelated with zero mean among other
assumptions. However, in some systems, these two noise sources are correlated.
Starting from the UMV kalman filter. A de-correlating framework can be used to
find a representationwhere the process noise is uncorrelated from themeasurement
noise. Such an approach is explained in [15]. This model can be used in the time
update step, thatway,with theprocessnoise successfullyuncorrelated the remaining
steps of the KF remain the same.
The dynamic model is modified by introducing a term; that does not violate the
equality since yk −Ck xk −Dk dk − vk = 0.

xk+1 = Ak xk + Gk dk + wk + Tk
(
yk − Ck xk − Dk dk − vk

) (A.10)

Furthermore, it can be modified so that a new definition of wk is uncorrelated with
the measurement noise vk with a proper choice of Tk . This new definition of wk is
denoted as w∗

k . The representation of the pseudo-process is

xk+1 = A∗
k xk + w∗

k + Tk yk +G∗
k dk (A.11)
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where
A∗

k = Ak − Tk Ck ,

w∗
k = wk − Tk vk ,

G∗
k =Gk − Tk Dk

(A.12)

A Tk that eliminates the correlation E[w∗
k vT

k ] = 0. Given

E[w∗
k vT

k ] = E[(wk −Tk vk )vT
k ] = S −Tk Rk , (A.13)

must be
Tk = Sk R−1

k (A.14)

That completes the definition of the uncorrelated process noise w∗
k with covariance

matrix

E[w∗
k w∗T

k ] = E[(wk −Tk vk )(wk −Tk vk )T ] =Q −Tk Rk T T
k =Q −Sk R−1

k ST
k (A.15)

The derivation of the covariancematrices in equation A.21 and A.23 can be found in
the appendix in equations C.1 and C.2. A defined Tk also completes the definition of
the pseudo-process where the process noise is uncorrelated from the measurement
noise.

Finally, themodified time step of the UMV Kalman filter can be presented

x̂k|k−1 = A∗
k−1x̂k−1|k−1 +G∗

k−1d̂k−1 +Tk−1 yk−1 (A.16)

with a modified error covariance matrix that includes the uncorrelated error w∗
k

instead

P x
k|k−1 = E[x̃k x̃T

k ]

=
[

A∗
k−1 G∗

k−1

]
E[x̃k−1 x̃T

k−1]

A∗T
k−1

G∗T
k−1

 + E[w∗
k w∗T

k ]

=
[

A∗
k−1 G∗

k−1

]P x
k|k−1 P xd

k

P d x
k P d

k


A∗T

k−1

G∗T
k−1

 + Q − Sk R−1
k ST

k .

(A.17)

The full derivation can be found in appendix equation C.3.
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A.1.2 GDFwith Correlated Process andMeasurement Noise - With
unkown forces as process noise

The filter explained in this section is optimal under the assumption that the process
noise and the measurement noise are uncorrelated with zero mean among other
assumptions. However, in some systems, these two noise sources are correlated.
Starting from the UMV kalman filter. A de-correlating framework can be used to
find a representationwhere the process noise is uncorrelated from themeasurement
noise. Such an approach is explained in [15]. This model can be used in the time
update step, thatway,with theprocessnoise successfullyuncorrelated the remaining
steps of the KF remain the same.
The dynamic model is modified by introducing a term; that does not violate the
equality since yk −Ck xk −Dk dk − vk = 0.

xk+1 = Ak xk + Gk dk + Ḡk wk + Tk
(
yk − Ck xk − Dk dk − vk

) (A.18)

Furthermore, it can be modified so that a new definition of wk is uncorrelated with
the measurement noise vk with a proper choice of Tk . This new definition of wk is
denoted as w∗

k . The representation of the pseudo-process is

xk+1 = A∗
k xk + w∗

k + Tk yk +G∗
k dk (A.19)

where
A∗

k = Ak − Tk Ck ,

w∗
k = Ḡwk − Tk vk ,

G∗
k =Gk − Tk Dk

(A.20)

A Tk that eliminates the correlation E[w∗
k vT

k ] = 0. Given

E[w∗
k vT

k ] = E[(Ḡk wk −Tk vk )vT
k ] = Ḡk Sk −Tk Rk , (A.21)

must be
Tk = Ḡk Sk R−1

k (A.22)

That completes the definition of the uncorrelated process noise w∗
k with covariance

matrix
E[w∗

k w∗T
k ] = E[(Ḡwk −Tk vk )(Ḡwk −Tk vk )T ] = ... (A.23)

The derivation of the covariancematrices in equation A.21 and A.23 can be found in
the appendix in equations C.1 and C.2. A defined Tk also completes the definition of
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the pseudo-process where the process noise is uncorrelated from the measurement
noise.

Finally, themodified time step of the UMV Kalman filter can be presented

x̂k|k−1 = A∗
k−1x̂k−1|k−1 +G∗

k−1d̂k−1 +Tk−1 yk−1 (A.24)

with a modified error covariance matrix that includes the uncorrelated error w∗
k

instead

P x
k|k−1 = E[x̃k x̃T

k ]

=
[

A∗
k−1 G∗

k−1

]
E[x̃k−1 x̃T

k−1]

A∗T
k−1

G∗T
k−1

 + E[w∗
k w∗T

k ]

=
[

A∗
k−1 G∗

k−1

]P x
k|k−1 P xd

k

P d x
k P d

k


A∗T

k−1

G∗T
k−1

 + Q − Sk R−1
k ST

k .

(A.25)

The full derivation can be found in the appendix equation C.3. Moreover, in the
appendix C, the equations for the case where the process noise consists of the
unestimated are found and derived.

A.2 Augmented State Framework for Input Estimation

Another method that could be used to estimate the input forces is to include them
as unknown states instead. This method also features the possibility of embedding
assumptions about the dynamics of the input if they are known.

A.2.1 Force without KnownDynamics

When the dynamics are unknown, the random walk assumption is usually imposed
on them. Thatmeans that a randomprocessdrives the loaddynamics. For simplicity,
a zeroth-order random walk is used where each force has the following dynamics
ḟ = w f where w f is assumed to be a Gaussian random process with zero mean and
variance σ2

f .
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A.2.2 Force with DynamicModel

In [16], amethodwaspresented to get a state space representationof a processwith a
particular stationary covariance matrix. Assuming that each force follows dynamics
such that its stationary covariancematrix is equal to theMatérn family of covariance
functionsof specified smoothness. The state-space equations for theMaternprocess
with p = 1 are:

dx(t )

d t
= Ax(t )+B w(t )

A =

 0 1

−λ2 −2λ

 , L =

0

1


where:

– x(t ) =

x1(t )

x2(t )

 is the state vector
– w(t ) is white noise with spectral density q given by [7]:

q = 12
p

3σ2

l 3

– λ=p
3/ℓ is the characteristic frequency (inverse length-scale)

– σ2 is the variance parameter
– ℓ is the length-scale parameter

Each force ismodeled using this state space formulation, whichmeans that the state
vector is composed of the force and its rate of change.
An augmented state space can be obtained by combining the system’s states and the
force-related states into a combined state vector.

x =



z

f1

ḟ1

...

fn

ḟn


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The augmented system given by [7] with the aforementioned dynamicmodel for the
forces. The augmented state matrix Aa is organized in the following way:

Aa =



Modal state matrix T̃ −1 AT̃

z ∈R2n

Force coupling

T̃ −1BS f ∈R2n×u

Zero block

0 ∈R2u×2n

Force dynamics

AF ∈R2u×2u


Where:
– z ∈R2n represents all modal states (both real and imaginary parts)
– T̃ −1 AT̃ ∈ R2n×2n is the block-diagonal modal state transition matrix in
continuous time, but after the transformation that turns it into real states.

– T̃ −1BS f ∈R2n×d is the real part of the input-to-modal coupling
– S f ∈Rd×2d selects only the force components (not their derivatives)
– AF ∈R2d×2d is the block-diagonal force dynamics matrix (Matern p=1)
– n = number of modes, d = number of inputs

After its construction, it is discretized using the ZOH assumption.
The Caug matrix must also be expanded to handle the new states by concatenating
the previously defined C̄ and D̄ and excluding the derivative of the forces with S f .
Then the Daug matrix is set to zero. This essentially constitutes a reformulation
of the sensor model used in the UMV estimator, and therefore it is equivalent
mathematically.

Ca =
[

C̄ D̄ S f

]
(A.26)

It is important to note that the spatial correlation between the forces is not exploited
in this case.

Discretization of the Augmented Kalman filter

Applying exact discretization with the ZOH assumption, the following discrete state
space representation is obtained:

xa
k = Fad xa

k−1 +w a
k−1

yk = Had xa
k + vk

(A.27)
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where:

– xa
k ∈R2n+2d is the discrete augmented state vector at time k

– Fad = e Aa∆t ∈R(2n+2d)×(2n+2d) is the discrete state matrix
– Had =Ca ∈Ry×(2n+2d) is the output matrix
– w a

k−1 =
[

w̃k−1 wk−1

]T

where the first term is the process noise from the states
and the second therm is a discrete zero-mean Gaussian white noise vector for
the force dynamics and has a covaraincematrix

Qd =
∫ ∆t

0
Ψ(∆t −τ)LqLTΨ(∆t −τ)T dτ (A.28)

whereΨ(τ) = e Aaτ. Therefore, the process noise of the augmented state is given
by:

Qa =Qd +



Qx 0 · · · 0

0 0 · · · 0

... ... . . . ...

0 0 · · · 0


(A.29)

A.2.3 Stability properties of the Augmented Kalman filter

In [7], the stability properties of both the randomwalk and the Gaussian prior latent
force function were discussed. Using the Popov-Belevitch-Hautus (PBH) criterion
which states that system is detectable if and only if the PBHmatrix

PB H =

sI − A

C

 (A.30)

is a full column-rank for all s ∈ C or the undetectable modes are stable
[<empty citation>]. Where A and C are the continuous state and output matrices,
respectively. This test was performed on both augmented state systems, and the
conclusion was that, for only acceleration measurements, the one that uses a
Gaussian prior latent force is the only one that is detectable due to the unobservable
modes being stable, contrary to the one using the randomwalkmodel. Detectability
is sufficient for the continuous algebraic Ricatti equation A.31 to have at least one

Page 43 of 56



Group 612 A. Appendix A - Background Theory

positive semidefinite solution P , resulting in a steady-state stable Kalman filter [15].
Since the Gaussian prior latent force is proven detectable, a stable Kalman filter is
granted by using this method.

−PC T R−1C P + AP +PAT +Q = 0 (A.31)

A.3 Fixed-Interval Smoothing

The standard Kalman filter estimates the state at a time step usingmeasurements up
to the current time step. However, better estimation results can be obtained if future
measurements are included. This is the idea behind optimal smoothing. Depending
on the typeof problem, adifferent algorithm is required; they canbe categorized into
[15]:

– Fixed-point smoother: Where the state at a fixed time step is constantly refined
with incomingmeasurements.

– Fixed-lag smoother: The system’s state is estimated with a fixed time lag in a
slidingwindow fashion. In otherwords, in every time step, the state is estimated
including N future samples.

– Fixed-interval smoother: Measurements are taken during a time interval, and
every state is estimated using all the available measurements.

In this work, a fixed-interval smoother called the Rauch, Tung, and Striebel (RTS)
smoother is performed offline after sufficient data is collected. Conceptually, the
fixed-interval smoother combines estimates of two independent estimators, one
performing a forward pass and another performing a backward pass. The forward
pass is performed by a standard Kalman filter, while the backward pass is handled by
a separate Kalman filter operating in reverse time. That’s exactly the idea behind the
forward-backward smoothing, however, the RTS smoother performs an equivalent
process while avoiding the explicit computations of the backwards estimates and
covariances, which results in improved computational efficiency.

It is worth noting that the estimation’s improvement due to smoothing is greater the
smaller themeasurement noise [15].
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A.4 Gaussian Process Regression

Finding or approximating the underlying function that produced the observed
data is typically done with regression. In many cases, this means assuming a
certain parametric function form and finding the parameters that best fit themodel.
However, parametric methods do not encode the uncertainty of the predictions
made by the model and its form is limited to the chosen model. Gaussian process
regression is a method that not only has more flexibility in the regression model
due to being non-parametric, but also gives an estimate of the uncertainty of its
predictions.

Since the underlying model that produced the data is unknown, when assuming a
certain parametric functional form, the uncertainty in the model is transferred to
the parameters themselves. One can try to maximize the likelihood which is the
probability of the data given theweights p(X , w), or the a posterior probability which
is the probability distribution over the weights given the data p(w, x). However, there
is a way to not focus on the probability distribution over the parameters but to focus
on the probability distribution over the functions themselves. The dependency of
the regression problemon the parameters is eliminated in the Bayesian approach by
marginalizingwoutwhenfindingdirectly theposterior probabilityP (y |xtest, X )of the
dataat the testpointsgiven theobserveddata. EquationA.32shows that theposterior
is, in fact, Gaussian if the prior is Gaussian. The GPR places a prior over functions,
assuming that function values followamultivariateGaussiandistribution. Insteadof
finding a single best function,we compute theposterior distributionover all possible
functions given the data. Then the mean function with confidence intervals can be
calculated whenmaking predictions.

P (y |xtest, X ) =
∫

w
P (y |xtest,w)P (w|X )dw = N (µ,Σ) (A.32)

This means that each sample from the multivariate Gaussian distribution
corresponds to an entire function, where the number of evaluation points matches
the dimensions of the Gaussian distribution. Although, in theory, the Gaussian
process is defined over an infinite-dimensional space, since a continuous function
has infinitely many points, we only evaluate it at a finite set of selected points. In
essence, we are sampling an entire function from the underlying stochastic process.
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Deciding on the mean function and covariance structure of the prior influences the
characteristics of the functions sampled fromtheGaussianprocess. Inparticular, the
covariance matrix, which defines how function values correlate across input points,
is determined by the choice of kernel. For instance, using a Radial Basis Function
(RBF) kernel results in smooth functions, as it encodes the assumption that function
values at nearby points are highly correlated.

Finally, the posterior can be updated when new evidence or data points are found.

A.4.1 Function-space Interpretation

First, the priory distribution over functions must be defined. Usually for notational
simplicity a zero mean function assumption over the distribution is taken; which
does notmean that the functions of the distribution have zeromean, it means that if
all the valuesof those functions are averagedout at aparticularpoint the resultwould
be zero [17]. Then the covariancematrix is specified using a kernel k(x, x ′), whichwill
encode the properties of the functions that will be sampled.

f ∼GP (0,k(x, x ′)) (A.33)

An example of such a process could be a simple Bayesian Linear Regression model
f (x) = φ(x)Tw where the transformation φ(x) can project the input into a higher
dimensional space so that more interesting functions than a liner function can be
obtained. And with prior w ∼ N (0,Σp ).Note that it is still linear with respect to the
parametersw [17]. It can also be viewed as a linear combination of basis functions.

E[ f (x)] =φ(x)T E[w] = 0 (A.34)

E[ f (x) f (x′)] =φ(x)T E[wwT ]φ(x′) =φ(x)TΣpφ(x′) = k(x,x′) (A.35)

Since working with infinite variables is impractical, a sample vector from the
distribution of functions can be defined and the covariance matrix can be obtained
element-wise from the kernel.

ftest ∼N ((0,K (X test , X test ))) (A.36)
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If some noisy data is obtained and modeled as y = f (x)+ ε, where ε is independent
identically distributedGaussian noisewith varianceσ2

n . A joint distribution between
the known data and the unknown test values whose value we want to find can be
stated

 y

ftest

∼N (0,

K (X , X )+σ2
nI K (X , X test )

K (X test , X ) K (X test , X test )

) (A.37)

To update the prior distribution of functionswith the knownnoisy data observations
and obtain a posterior distribution of functions, the joint Gaussian prior distribution
must be conditioned on the observations. Due to the joint distribution being
Gaussian the conditional probability distribution is also Gaussian and has the
following form

ftest |X test , X ,y∼N (K (X test , X )[K (X , X )+σ2
nI]−1y,K (X test , X test )−K (X test , X )[K (X , X )+σ2

nI]−1K (X , X test ))

(A.38)
Using the formula, the value of themean function over the posterior distribution can
be found for the test points xtest .
Thealgorithminalgorithm1 from[17] computes thepredictivemeanandcovariance
at the test inputs, and it also evaluates the logmarginal likelihood, which is essential
for hyperparameter optimization. A Cholesky factorization is employed to improve
numerical stability during the inversion of the covariance matrix and to efficiently
compute the log determinant required for the logmarginal likelihood.

A.4.2 Hyperparameter Optimization

The marginal likelihood is obtained by marginalizing over (or integrating out) the
latent function (noise-free) f:

p(y | X ,θ) =
∫

p(y | f, X ,θ) p(f | X ,θ)df, (A.39)

where θ represents the set of hyperparameters (e.g., the kernel parameters and the
noise variance σ2

n).
We assume that the observed data y is the sum of the latent function and Gaussian
noise, so that

y | f, X ,θ ∼ N (f,σ2
n I ).
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Algorithm 1 Predictions and logmarginal likelihood for Gaussian process regression
1: Input: Training inputs X , targets y , covariance function k(·, ·), noise variance σ2, test
inputs X∗

2: Output: Predictive mean f∗, predictive variance Var( f∗), log marginal likelihood
3: Ky ← k(X , X )+σ2I ▷ Compute the training covariancematrix
4: L ← chol(Ky ) ▷ Cholesky factorization: Ky = LL⊤

5: α← L⊤\(L\y) ▷ Solve Kyα= y via forward/backward substitution
6: f∗ ← k(X∗, X )α ▷ Predictive mean
7: V ← L\k(X , X∗) ▷ Intermediate for predictive variance
8: Var( f∗) ← k(X∗, X∗) − V ⊤V ▷ Predictive variance
9: log p(y | X ) ←−1

2 y⊤α − ∑
i

log(Li i ) − n
2 log(2π) ▷ Logmarginal likelihood

Similarly, the prior over the latent function is given by a Gaussian process with zero
mean and covariance defined by the kernel:

f | X ,θ ∼ N (0,K (X , X ;θ)).

Since both the likelihood and the prior are Gaussian, the integral in (1) can
be performed analytically, yielding a closed-form expression for the marginal
likelihood:

p(y | X ,θ) = N
(
y
∣∣∣0, K (X , X ;θ)+σ2

n I
)
.

Taking the logarithm, we obtain the logmarginal likelihood:

log p(y | X ,θ) =−1

2
y⊤

(
K (X , X ;θ)+σ2

n I
)−1

y− 1

2
log

∣∣∣K (X , X ;θ)+σ2
n I

∣∣∣− n

2
log(2π).

This logmarginal likelihood is thenmaximized with respect to the hyperparameters
θ (e.g., by gradient-based optimizationmethods) to find the values that best explain
the observed data.
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Derivation of the covariance matrix between the modified process and
measurement noise

E
[
w∗

k vT
k

]= E[(wk − Tk vk ) vk
]= E[wk vT

k − Tk vk vT
k

]= E[wk vT
k

]−TkE
[
vk vT

k

]= S − Tk Rk

(B.1)

Derivation of the covariancematrix of themodified process noise

E
[
w∗

k w∗T
k

]= E[(wk −Tk vk ) (wk −Tk vk )T ]
= E[wk wT

k

] − E
[
wk (Tk vk )T ] − E

[
Tk vk wT

k

] + E
[
Tk vk (Tk vk )T ]

= E[wk wT
k

] − E
[
wk vT

k

]
T T

k − Tk E
[
vk wT

k

] + Tk E
[
vk vT

k

]
T T

k

=Q − Sk T T
k − Tk ST

k + Tk Rk T T
k

=Q − Tk Rk T T
k − Tk (Tk Rk )T + Tk Rk T T

k

=Q −Tk Rk T T
k

=Q −Sk R−1
k ST

k

(B.2)

Derivation of the error covariancematrix of the time step prediction

P x
k|k−1 = E[x̃k x̃T

k ]

= E[(A∗
k x̃k−1 +G∗

k−1d̃k−1 +wk−1)(A∗
k x̃k−1 +G∗

k−1d̃k−1 +wk−1)T ]

=
[

A∗
k−1 G∗

k−1

]E[x̃k−1 x̃T
k−1] E[x̃k−1 d̃ T

k−1]

E[d̃k−1 x̃T
k−1] E[d̃k−1 d̃ T

k−1]


A∗T

k−1

G∗T
k−1

 + E[w∗
k w∗T

k ]

=
[

A∗
k−1 G∗

k−1

]P x
k|k−1 P xd

k

P d x
k P d

k


A∗T

k−1

G∗T
k−1

 + Q − Sk R−1
k ST

k .

(B.3)
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where

x̃k = xk−x̂k = A∗
k xk−1+G∗

k−1dk−1+Tk−1 yk−1+w∗
k−1−(A∗

k xk−1+G∗
k−1dk−1+Tk−1 yk−1) = A∗

k x̃k−1+G∗
k−1d̃k−1+w∗

k−1
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Derivation of the covariance matrix between the modified process and
measurement noise

E
[
w∗

k vT
k

]= E[(Ḡk wk − Tk vk ) vT
k

]= E[Ḡk wk vT
k − Tk vk vT

k

]= ḠkE
[
wk vT

k

]−TkE
[
vk vT

k

]= Ḡk S − Tk Rk

(C.1)

Derivation of the covariancematrix of themodified process noise

E
[
w∗

k w∗T
k

]= E[(Ḡk wk −Tk vk ) (Ḡk wk −Tk vk )T ]
= ḠkE

[
wk wT

k

]
ḠT

k − ḠkE
[
wk (Tk vk )T ] − E

[
Tk vk wT

k

]
ḠT

k + E
[
Tk vk (Tk vk )T ]

= ḠkE
[
wk wT

k

]
ḠT

k − ḠkE
[
wk vT

k

]
T T

k − Tk E
[
vk wT

k

]
ḠT

k + Tk E
[
vk vT

k

]
T T

k

= ḠkQḠT
k − Ḡk Sk T T

k − Tk ST
k ḠT

k + Tk Rk T T
k

= ḠkQḠT
k − ḠkḠ−1

k Tk Rk T T
k − Tk (Ḡ−1

k Tk Rk )T ḠT
k + Tk Rk T T

k

= ḠkQḠT
k − ḠkḠ−1

k Tk Rk T T
k − Tk RT

k Tk Ḡ−1T
k ḠT

k + Tk Rk T T
k

= ḠkQḠT
k − Tk Rk T T

k − Tk RT
k Tk + Tk Rk T T

k

= ḠkQḠT
k − Tk RT

k Tk

= ḠkQḠT
k − Ḡk Sk R−1

k Sk ḠT
k

(C.2)
Note that the inverse cannot be calculated if thematrix Ḡk is not square.
Derivation of the error covariancematrix of the time step prediction

P x
k|k−1 = E[x̃k x̃T

k ]

= E[(A∗
k x̃k−1 +G∗

k−1d̃k−1 +w∗
k−1)(A∗

k x̃k−1 +G∗
k−1d̃k−1 +w∗

k−1)T ]

=
[

A∗
k−1 G∗

k−1

]E[x̃k−1 x̃T
k−1] E[x̃k−1 d̃ T

k−1]

E[d̃k−1 x̃T
k−1] E[d̃k−1 d̃ T

k−1]


A∗T

k−1

G∗T
k−1

 + E[w∗
k w∗T

k ]

(C.3)
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where

x̃k = xk−x̂k = A∗
k xk−1+G∗

k−1dk−1+Tk−1 yk−1+w∗
k−1−(A∗

k xk−1+G∗
k−1dk−1+Tk−1 yk−1) = A∗

k x̃k−1+G∗
k−1d̃k−1+w∗

k−1
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Appendix D - Extra Figures D
D.1 Estimation of the force with white noise dynamics

(a) Estimated force at node 1

(b) Estimated force at node 2

(c) Estimated force at node 3

(d) Estimated force at node 4

Figure D.1: Estimation of all free nodal forces of a 4-element beammodel withmeasurement σv = 1%σY
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(a) Estimated force at node 1

(b) Estimated force at node 2

(c) Estimated force at node 3

(d) Estimated force at node 4

Figure D.2: Estimation of all free nodal forces of a 4-element beammodel withmeasurement σv = 10%σY

D.2 Estimation of the force with smooth dynamics
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D.2. Estimation of the force with smooth dynamics Aalborg Universitet

(a) Estimated force at node 1

(b) Estimated force at node 2

(c) Estimated force at node 3

(d) Estimated force at node 4

Figure D.3: Estimation of all free nodal forces of a 4-element beammodel withmeasurement σv = 0.1%σY
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(a) Estimated force at node 1

(b) Estimated force at node 2

(c) Estimated force at node 3

(d) Estimated force at node 4

Figure D.4: Estimation of all free nodal forces of a 4-element beammodel withmeasurement σv = 1%σY
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