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Abstract 

This thesis investigates the impact of geopolitical risk, specifically the Russia–Ukraine war, on 

European energy markets. Using a combination of time-varying connectedness analysis, 

GARCH-based volatility modelling, and predictive linear regression, we explore how 

geopolitical shocks affect return dynamics, volatility transmission, and short-term 

predictability across both stocks and commodity assets. Our analysis covers a sample of 

affected energy assets and a robustness group of unaffected assets, allowing for a comparative 

evaluation of conflict-driven versus broader market effects. 

The results show that volatility connectedness increased significantly following the outbreak 

of the war, with energy firms and commodities acting as primary transmitters of shocks. Return 

connectedness also rose, though to a lesser extent, and was more irregular in nature. In contrast, 

unaffected assets displayed stable, low levels of connectedness and showed minimal sensitivity 

to geopolitical developments. Predictive regressions revealed that lagged returns held 

consistent forecasting power, while connectedness measures, GARCH volatility, and the 

Geopolitical Risk Index provided limited predictive value for short-term returns. 

Overall, the findings suggest that geopolitical risk reshapes market interdependencies more 

through volatility and structural connectedness than through return direction. The study 

highlights the importance of distinguishing between risk transmission and return predictability 

and contributes to a growing body of work on how geopolitical uncertainty influences financial 

systems in real time. 
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1. Introduction 

In recent years, geopolitical tensions have become a growing source of uncertainty in global 

financial markets. Unlike traditional market risks such as inflation or interest rate changes, 

geopolitical events are often sudden, difficult to predict, and capable of triggering widespread 

volatility. Markets tend to respond rapidly to news of political unrest, military conflicts, and 

policy shifts, as investors reassess risk and adjust their portfolios. For sectors closely tied to 

global trade and energy supply, like oil, gas, and utilities, these shocks can have immediate and 

heavy impacts. 

We are especially interested in how these geopolitical developments affect financial returns 

and volatility through mechanisms such as investor sentiment, supply chain disruption, and 

macroeconomic uncertainty. Previous studies have shown that such events can transfer risk 

across assets and regions, increasing correlations and changing market dynamics (Diebold & 

Yilmaz, 2012). As global markets become more interconnected, the influence of geopolitical 

shocks is no longer limited to specific countries or regions, instead they ripple through sectors, 

affecting prices, risk assessment, and capital flows. From a financial research perspective, this 

creates a need to better understand how geopolitical risk affects asset behaviour, especially that 

there is value in exploring how this form of uncertainty transmits between commodities and 

equity markets, and how investors respond across different sections of the financial world. Our 

motivation for this thesis stems from the need to analyse this relationship in a timely and sector-

specific context, focusing on energy markets, which have historically been among the most 

sensitive to geopolitical events. With most past papers focusing on oil and gas, we also decided 

to explore the renewable energy market and metals tied to the energy market. These assets are 

historically mostly unexplored in the context of spillovers and geopolitical events in research 

papers, giving us the fuel to charter into unexplored areas of this subject. 

To see the spillover effects analysed in our thesis, we think it’s important to see the key 

geopolitical developments in the years preceding Russia’s full-scale invasion of Ukraine. In 

early 2021, Russia conducted a major military buildup near Ukraine’s borders and in Crimea, 

triggering concern among NATO members. Although the troops were partially withdrawn in 

April, much of the equipment remained in place. During this period, diplomatic engagement, 

such as the June 2021 Geneva summit between Presidents Biden and Putin, failed to produce 

de-escalation. On 12 July 2021, President Putin published an essay asserting that Russians and 
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Ukrainians were ‘one people,’ effectively denying Ukraine’s sovereignty. In response, Ukraine 

declared its first ‘Day of Ukrainian Statehood’ on July 28, reinforcing its independent national 

identity. In late 2021, Russia began a second, more extensive troop buildup, while Western 

intelligence began warning of an imminent invasion. Diplomatic talks in early 2022 collapsed, 

and in February, shelling in Donbas surged significantly. On February 21, 2022, President Putin 

recognized the separatist regions of Donetsk and Luhansk as independent states and sent in 

Russian forces under the guise of peacekeeping. These developments concluded in the launch 

of a full-scale invasion on February 24, 2022, marking the start of a new and more destructive 

phase in the conflict. (BBC, 2022; NATO, 2022; OSCE, 2022; U.S. Department of State, 

2022). 

The start of the war on February 24, 2022, marked a pivotal moment in modern history. Once 

the conflict began, it immediately triggered panic across global markets. European countries 

especially were directly impacted due to their energy dependence on Russian oil and gas. The 

conflict not only disrupted supply chains but also sparked a wave of sanctions, fuelling 

uncertainty and volatility in financial markets. What makes this event especially relevant for 

our thesis is its timing and magnitude. Coming shortly after the COVID-19 recovery phase, the 

war added new layers of geopolitical and economic stress. Several key events shaped the early 

phase of the war: the imposition of SWIFT sanctions on Russian banks, massive energy price 

surges, and Europe’s scramble to rethink its energy security strategy. As noted by Tong (2024), 

the war acted as a contractionary supply shock, resulting in a spike in inflation, systemic 

financial stress, and price shocks across energy and commodity markets.  

In financial markets, the war led to a marked rise in volatility and connectedness among assets, 

particularly in the energy and equity sectors. According to Sio-Chong U et al. (2024), volatility 

spillovers from the Ruble and Russian markets surged following the SWIFT sanctions, leading 

to longer-lasting instability across asset classes. The immediate reaction in Europe was 

especially strong, given its heavy reliance on Russian energy exports and the proximity of the 

conflict. The war also triggered a heightened focus on geopolitical risk indices, such as the one 

developed by Caldara and Iacoviello (2022), which recorded sharp spikes in investor attention 

to global political instability. Umar et al. (2022) observe that during this period, European 

equities and energy-related assets acted as both transmitters and receivers of volatility, 

illustrating the far-reaching impact of the conflict. 
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By focusing our thesis on this critical moment in history, we aim to assess how geopolitical 

shocks affect financial market behaviour in real time which is an area that remains 

underexplored in high-frequency, sector-specific studies. The Russia–Ukraine war offers a 

timely and relevant case to study the transmission of geopolitical risk through return, volatility, 

and connectedness metrics. Although there is a growing list of literature exploring how 

geopolitical risk affects financial markets, a lot of the existing research either focuses on broad 

market indices or analyses long-term effects. Studies like Assaf et al. (2023) and Wang et al. 

(2023) shows that the Russia–Ukraine conflict had significant impacts on global equity and 

commodity markets, yet these analyses often emphasize aggregate market behaviour rather 

than asset-level dynamics. Moreover, many previous studies rely on fixed-parameter models 

or rolling-window approaches, which do not fully capture how the effects of a geopolitical 

shock evolve over time. Another noticeable gap in the literature is the limited focus on 

European energy markets at a daily frequency. While several papers investigate volatility 

spillovers during geopolitical events, few consider both firm-level equities and energy 

commodities together in the same framework.  

Our thesis aim is to focus on these limitations. By applying a time-varying framework to model 

connectedness between the GPR index and a diverse group of European energy-related assets, 

we can observe how transmission patterns change through different stages of the conflict. 

Furthermore, by including a predictive regression, we explore whether geopolitical risk and 

market connectedness can be used to predict asset returns, something that is quite 

underexplored in the literature. In this way, our study contributes to the field by offering a more 

dynamic and predictive perspective on geopolitical risk and financial market behaviour during 

one of the most disruptive events in recent history. 

The main goal of our thesis is to examine how the Russia–Ukraine war affects European energy 

markets through return and volatility spillovers. We aim to understand not just whether these 

markets were impacted, but how the intensity and direction of connectedness changed over 

time in response to rising geopolitical tension. To do this, we focus on a group of affected 

assets, including both energy commodities and stocks, as well as a set of unaffected assets used 

for comparison. Our research focuses on two key questions. First, we ask to what extent did 

geopolitical risk contribute to changes in return and volatility connectedness within European 

energy markets during the Russia–Ukraine conflict, and secondly can connectedness measures 

and geopolitical risk indicators help predict short-term returns across assets. 
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To answer these questions, we apply a Time-Varying Parameter Vector Autoregression (TVP-

VAR) model with Generalized Forecast Error Variance Decomposition (GFEVD) to estimate 

return and volatility connectedness over time. In addition, we use a univariate GARCH model 

to extract volatility, and we do a predictive regression analysis to evaluate whether past 

connectedness and geopolitical risk have any predictive power in finding future asset returns. 

This framework allows us to study both the structure of spillovers and the predictive content 

of geopolitical uncertainty.  

This thesis is structured into five main chapters. Following this introduction, Chapter 2 presents 

the literature review, where we discuss key academic work on volatility spillovers, 

connectedness measures, and the economic consequences of geopolitical risk, with a special 

focus on studies related to the Russia–Ukraine war. Chapter 3 outlines the methodology, 

describing how we processed the data, estimated time-varying connectedness using the TVP-

VAR model, calculated volatility using GARCH models and used the outcome of these two 

models in our predictive regression models. Chapter 4 show the results of our analysis. We 

report on the evolution of return and volatility spillovers, comparisons between affected and 

unaffected assets, and the outcomes of our predictive regressions. These results are supported 

with visualizations and tables show how financial markets responded overtime. In Chapter 5, 

we interpret and discuss the results, connecting them to the literature and providing insight into 

what the findings suggest for theory and practice. Finally, Chapter 6 concludes the thesis by 

summarizing the main findings, acknowledging limitations, and offering suggestions for future 

research.   
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2. Literature Review 

As global tensions and unexpected shocks have challenged the stability and security of 

European energy markets, understanding how geopolitical events influence these markets is of 

vital importance. Our literature review outlines the key theoretical and empirical findings on 

the role of geopolitical risk in financial markets, with a particular focus on asset prices, 

volatility spillovers, and predictive dynamics. Given the Russia–Ukraine War as the central 

geopolitical event in our empirical analysis, we ground our discussion in the framework 

established by Caldara and Iacoviello (2022), whose Geopolitical Risk Index (GPRD) has 

become foundational in quantifying geopolitical uncertainty. The review is structured to cover 

various asset classes, including conventional and renewable energy, healthcare equities, and 

agricultural commodities, while also addressing the broader implications of GPR on market 

connectedness and predictability. 

The chapter is structured as follows: Section 2.1. investigates GPR’s effects on different asset 

classes, beginning with conventional energy markets which is followed by a sector over 

renewable energy markets. Section 2.1.3. discusses sectors typically considered ‘unaffected’ 

by geopolitical shocks, namely healthcare and agriculture. Here, we synthesize recent studies 

that challenge this assumption, identifying conditional vulnerabilities and emphasizing the role 

of regional dependencies and global trade structures. Section 2.1.5. turns to the predictive 

power of GPR, where research is divided on whether GPR can forecast asset returns or merely 

increases volatility, particularly during crises. Section 2.2. focuses on volatility spillovers and 

market connectedness. We highlight the importance of directional and asymmetric spillovers, 

particularly from oil to equities, and discuss how methodological advancements such as the 

vector multiplicative error model (vMEM-X) and quantile coherency networks improve our 

understanding of these dynamics. Section 2.3. discusses the use of Time-Varying Parameter 

Vector Autoregression (TVP-VAR) models, which allow researchers to capture structural 

breaks and evolving interdependencies. Finally, Section 2.4. introduces predictive time series 

regression models and the statistical challenges they face when incorporating predictors like 

GPR, emphasizing methods for improving forecast accuracy. 
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2.1. Geopolitical Risk in Financial Markets 

Geopolitical risk is of upmost importance for our paper, as it builds the foundation of our 

empirical research where we look at how the Ukraine-Russia War as our geopolitical risk event 

affects the European financial markets. More specifically, we incorporate the Geopolitical Risk 

Index (GPRD) from Caldara and Iacoviello (2022). Hence, the authors provide a seminal 

indicator to quantify geopolitical risk through a sentiment analysis of newspapers and enable 

further research like ours to be conducted based on the index. Their findings suggest that GPR 

shocks are associated with lower firm-level investment, heightened macroeconomic volatility, 

and larger downside risks for the growth of the gross domestic product of an economy. 

Furthermore, do they show that these effects are stronger on companies in exposed industries. 

(Caldara & Iacoviello, 2022)  

2.1.1. Conventional Energy Markets 

Conventional energy, defined as fossil fuel-based sources such as coal, oil, and natural gas 

(Rao et al., 2023), is particularly exposed to geopolitical disturbances due to its strategic 

importance and uneven global distribution. Among these, oil markets stand out for their 

immediate and often pronounced reactions to geopolitical shocks, making them a focal point 

in recent empirical research. 

Berkman et al. (2010) develop a crisis index based on international political events as a 

predecessor to the GPRD (Caldara & Iacoviello, 2022) and interpret them as rare disasters. 

They show that such crises significantly reduce stock returns and increase volatility. 

Additionally, no significant connection between crisis risk and future market returns were 

found. However, they do find support for the argument that crisis risk is already priced as 

industries exposed to higher crisis risk receive higher returns on average. Furthermore, the 

study shows a positive correlation of earnings-price ratio and dividend yield with crisis risk. 

(Berkman et al., 2010) However, Zhang et al. (2022) suggest that there is in fact a connection 

between geopolitical risk and future stock returns. The authors examine further effects of GPR 

on oil markets and introduce an indicator which is derived from the GPR from Caldara & 

Iacoviello (2022) to predict oil prices. In contrast to Berkman et al. (2010), their results indicate 

that GPR trends have a significantly negative impact on global crude oil demand. Thus, when 

a geopolitical risk event occurs, the oil price will drop (Zhang et al., 2022). Antonakakis et al. 

(2017) provide a long-run historical analysis using monthly data from 1899 to 2016, revealing 

that geopolitical risk exerts a statistically significant and negative impact on oil returns and oil 
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market volatility, while the effect on stock markets is milder and more delayed. Primarily their 

results show that the oil market reacts immediately to spikes in geopolitical tension. Moreover, 

GPR indirectly influences the time-varying correlation between oil and stock markets, offering 

diversification benefits under heightened uncertainty. (Antonakakis et al., 2017) To a similar 

conclusion came Caldara and Iacoviello (2022) who highlight the impact geopolitical risk has 

on petroleum markets and precious metals as these industries are especially negatively affected 

by geopolitical risk. Additionally, Xu et al. (2024) analyse the transmission of volatility across 

markets and find that stock markets are net transmitters of volatility, whereas oil markets are 

net receivers when macroeconomic shocks are excluded. When included, however, they show 

that these shocks have a bigger impact on crude oil markets than others (Xu et al., 2024), which 

is in accordance with the overall opinion of science as argued before. 

All in all, the reviewed literature provides evidence that geopolitical risk is not merely a 

background condition but a direct and quantifiable driver of volatility and returns in 

conventional energy markets, particularly for oil. Across studies, the one main trend that can 

be identified is that oil markets are more acutely sensitive to geopolitical shocks than other 

financial assets. 

2.1.2. Renewable Energy Markets 

Within financial markets, renewable energy (RE) has emerged as a distinct asset class that is 

both driven by and reactive to geopolitical dynamics. While much of the literature on 

geopolitical risk has focused on traditional energy markets, recent research reveals that 

renewable energy investments and stock performance are increasingly exposed to geopolitical 

forces.  

As one of the first empirical investigations incorporating the effects of GPR on renewable 

energy, Yang et al. (2020) show that while GPR exerts significant risk spillovers, these are 

generally smaller than those from stock and oil market uncertainties. Interestingly, GPR 

exhibits relatively symmetric effects on renewable markets across different market states (bull 

and bear markets). A foundational insight is offered by Su et al. (2021), who examine the 

relationship between geopolitical risk and renewable energy. Based on a rolling-window 

framework, they identify a mutual causality between the two. Geopolitical risks, such as trade 

disputes and rare metal competition, stimulate investment in renewables due to concerns over 

energy security. On the other hand, the growth of RE can reduce geopolitical risks by 

decentralizing energy production and reducing fossil fuel dependencies. Thus, with greater 
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investment in renewable energy, economies can make themselves independent of conventional 

energy exporting countries as no import of fossil fuel is required. Additionally, the global 

climate would benefit from that and with reduced geopolitical risk this effect might be even 

enforced. (Su et al., 2021) Hence, a lower GPR means lesser conflicts will end up in a military 

engagement, which results in less destruction of the environment and lower carbon emissions 

from war machinery. However, this relationship is currently disputed in research. There are 

many studies supporting the argument that higher geopolitical risk, thus higher militarisation, 

increases CO2 emissions and vice versa (inter alia: Jorgensen et al., 2010; Bildirici & 

Gokmenoglu, 2019; Anser et al., 2021; Bildirici, 2020). Conversely, Zhao et al. (2021) find an 

asymmetry in the relationship between RE and GPR, meaning higher GPR does not deduce 

higher RE investments. Alqahtani and Taillard (2019) find a negative correlation between GPR 

and carbon emissions and highlight that shocks stemming from RE investments do not 

influence oil prices. Lastly, Flouros et al. (2022) also describe a negative effect on RE 

production resulting from geopolitical risk regardless of which estimator is being used.  

2.1.3. Healthcare Equities & Agricultural Commodities 

The impact of geopolitical risk on the healthcare and agricultural sector is analysed as part of 

our robustness check and will be referred to as unaffected assets in our paper. Therefore, do we 

want to provide an overview of the existing research in the following. However, not much 

research has been done exploring the effects of GPR on healthcare or agriculture assets. While 

agricultural commodities still show some research, healthcare or pharmaceutical equities 

literature is basically non-existent.   

To give an overview, both Ukraine and Russia are major corn producers and exporters and rank 

7th and 11th in the global corn production, respectively. Furthermore, is Russia the 9th largest 

producer of beef, the 5th for butter, and the 7th for eggs. (Food and Agriculture Organization 

of the United Nations, 2025; U.S. Department of Agriculture [USDA], 2025) Thus, to have 

these two countries in a war has major implication on the production of agricultural goods. 

Especially Ukraine is affected and does produce 34% less grain today than it did in 2021-2022 

as less crops are planted. (Braun, 2025) 

The effects geopolitical risk has on food is explored by Sohag et al. (2022) who distinguish 

between Eastern and Western Europe, showing that GPR increases food inflation in Western 

Europe in the long-term. Albeit, short-term effects may even be negative in Eastern Europe, 

suggesting that GPR reduces food prices in the east. The authors argue that these effects are 
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due to a lack of measures handling geopolitical risk. They further establish that the Russia-

Ukraine War magnifies food inflation through energy cost spillovers. Complementing these 

regional insights, Dai et al. (2024) and Goyal et al. (2024) show significant GPR effects on 

agricultural commodity market volatility and future prices. Dai et al. (2024) find that GPR 

significantly affects international agricultural markets by increasing volatility and dampening 

return predictability, especially in the long term. They discover also that GPR has a negative 

effect on the corn market volatility in Europe. Additionally, wheat and corn markets are 

vulnerable to geopolitical risks stemming from different combinations of globally influential 

economies involved in their production, import, and export activities. (Dai et al., 2024) On the 

other hand, do Goyal et al. (2024) observe a significant effect of GPR on corn and soybean 

future prices. Furthermore, do they indicate similar results to Sohaug et al. (2022) that an 

increase in oil prices stemming from the Ukraine-Russia conflict indirectly affects agricultural 

commodity prices. On the contrary, the findings of Mo et al. (2023) underscore that food and 

agricultural raw materials are not significantly affected by GPR while energy commodities are. 

Thus, the authors argue that geopolitical events do not influence non-energy sectors. (Mo et 

al., 2023) This is partly echoed by Hudecová and Rajčániová (2023) who identify no long-term 

connection between corn, cotton, lumber, dairy, and some other grains. However, the do find 

evidence of an asymmetric effect on rapeseed, sugar, sunflower oil, and wheat stemming from 

geopolitical risk. (Hudecová and Rajčániová, 2023) Turning to healthcare, as previously 

mentioned we could not find any related research about the healthcare sector. Merely, Ali et 

al. (2023) show a positive, yet statistically unsignificant, effect on returns in the healthcare 

sector.  

2.1.4. Predictive Power of Geopolitical Risk 

Research has analysed the relationship between geopolitical risk and energy assets and 

conclude that conventional energy, especially oil assets, as well as renewable energy are to 

some degree impacted by GPR. However, there is discussion whether geopolitical risk hold 

any predictive power on stock prices.  

Ma et al. (2022) provide the strongest support for GPR’s predictive power. Using a century-

long dataset and a rolling-window out-of-sample forecast framework, they find that the 

geopolitical threats index introduced by Caldara and Iacoviello (2022) significantly predicts 

excess U.S. stock returns, especially during economic expansions. Their results show that GPR 

outperforms traditional macroeconomic predictors and improves portfolio allocation, 



   

 

 10 

suggesting robust economic value. In contrast, Apergis et al. (2018) find no evidence that GPR 

predicts stock returns of global defence companies using nonparametric methods. However, 

they report that GPR does significantly affect volatility, particularly realised volatility, in 50 % 

of the sample. This distinction between return and volatility predictability is echoed in 

Chatziantoniou et al. (2025), who show that GPR subcomponents (terror threats and acts) 

improve the explanatory power of sectoral volatility models, though their effect on returns 

remains limited. Furthermore, Balcilar et al. (2018) examine the BRICS markets and find that 

GPR impacts volatility spillovers more strongly than returns, with country-specific 

heterogeneity. Similarly, Plakandaras et al. (2018), focusing on emerging markets, report that 

GPR fails to predict stock returns, oil, or exchange rates, while gold is being the only 

consistently responsive asset. On the other hand, Demirer et al. (2018) find that rare disaster 

risks (as a proxy for GPR) strongly predict both returns and volatility in oil markets, especially 

at lower quantiles. This suggests that standard linear models may systematically understate 

GPR’s predictive role, missing key nonlinear and tail-risk dynamics. Antonakakis et al. (2017) 

confirm this sectoral divergence. Their results show that GPR significantly affects oil markets 

but not stock returns, implying that commodity markets, especially oil, are more reactive to 

geopolitical shifts. Alqahtani and Taillard (2019) contribute to this argument by showing that 

shocks stemming from GPR do not influence oil prices and that there is neither causality nor 

any impact of GPR on oil returns.  

Thus, it can be observed that science did not yet reach a consensus if GPR does hold any 

predictive power. However, there is a trend that GPR exhibits a higher impact on volatility than 

it does on (stock) returns.  

 

2.2. Spillovers and Market Connectedness 

Volatility spillovers refer to the transmission of shocks and uncertainty from one asset or 

market to another, potentially causing effects across financial systems. These underlying forces 

are especially obvious in periods of geopolitical tension and macroeconomic instability, where 

interconnectedness among assets such as oil, stocks, bonds, and commodities become more 

apparent (Diebold & Yilmaz, 2012; Smales, 2021). One famous bit of literature investigates 

the Influence of geopolitical risk on financial markets. Smales (2021), using the Caldara and 

Iacoviello (2022) GPR index, shows that GPR significantly impacts oil price volatility and, to 

a lesser extent, stock market volatility. Specifically, Increases In geopolitical risk tend to drive 
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oil prices up and stock prices down, suggesting a strong supply-side influence on oil and 

broader sentiment-driven reactions in equity markets. This response highlights an asymmetric 

spillover dynamic, where oil markets absorb most geopolitical disturbances and transmit 

volatility to stocks in the long term. 

The persistence of volatility in oil markets, coupled with their tendency to react more intensely 

to localized shocks, highlights a unique feature of commodity-linked spillovers. Smales (2021) 

finds that while both oil and equity markets exhibit short-term bidirectional volatility 

spillovers, long-term spillovers primarily go from oil to equities. This relationship explains the 

systemic role of energy markets in shaping global risk perceptions. Adding to this, Xu et al. 

(2024) introduced a framework to assess spillovers under the influence of macroeconomic 

shocks. Using a vector Multiplicative Error Model with exogenous variables (vMEM-X), they 

distinguish between internal volatility spillovers within financial markets and those driven by 

macroeconomic conditions such as inflation, interest rates, and economic policy uncertainty. 

Their findings reveal that the stock market often acts as the dominant transmitter of volatility, 

particularly toward the crude oil market. However, when macroeconomic variables are 

introduced, the strength of this transmission reduces—suggesting that macro-level changes 

largely drive observed spillovers. 

This approach offers a new way for evaluating causality in volatility transmission. Contrary to 

earlier VAR- and GARCH-based models, which assume mutual relationships, the vMEM-X 

treats macroeconomic shocks as external drivers. This exogeneity assumption aligns with 

studies by Bali et al. (2014) and Yang and Zhou (2017), which show that financial markets 

respond strongly to policy-induced uncertainty and interest rate fluctuations but rarely 

influences these macro variables in return. Xu et al. (2024) also find that oil and stock markets 

are more sensitive to macroeconomic conditions compared to bonds and gold. While crude oil 

has the highest spillover from inflation shocks and term spread changes, confirming its role as 

an Indicator of global economic sentiment. In contrast, bonds and gold display relatively quiet 

responses, supporting their characterization as safe assets (Baur & Lucey, 2010). 

Earlier studies had already laid the groundwork for spillover research. Diebold and Yilmaz 

(2009, 2012) developed measures to quantify spillover effects in multivariate settings. 

GARCH-based models further refined this by accounting for volatility clustering, though they 

struggled with dimensionality and asymmetry. Despite the progress, challenges remain in 

isolating the exact channels of spillover transmission. For example, the observed co-movement 
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between oil and equity markets could reflect both direct transmission and shared exposure to 

latent macroeconomic shocks. Xu et al. (2024) acknowledge this by decomposing spillovers 

into those caused by internal dynamics and those triggered externally. Their impulse response 

analysis further shows that macroeconomic shocks have longer-lasting effects on volatility than 

financial market shocks—a critical insight for investors and policymakers alike. 

In summary, the literature underscores that volatility spillovers are both context- and asset-

specific. Geopolitical and macroeconomic shocks remain powerful triggers of financial market 

turbulence, with oil and equities bearing the brunt of the impact. Methodological innovations 

such as the Dynamic Conditional Correlation (DCC) and Vector Multiplicative Error Model 

with Exogenous Variables (vMEM-X) models have enhanced our understanding of these 

complex dynamics, offering more precise tools for measuring interconnectedness. Going 

forward, integrating high-frequency data, event-specific dummy variables, and more granular 

sectoral analysis could further refine our grasp of spillover behaviour across global markets. 

The concept of market connectedness shows how financial markets influence one another 

through interdependencies that evolve over time. This interconnectedness becomes important 

during times of economic or geopolitical shocks, as changes in one market can spread to others, 

expanding risk and limiting diversification opportunities. Recent literature has deepened the 

understanding of how commodities, equities, currencies, and other asset classes are connected, 

both in normal periods and under shock periods. 

Awartani et al. (2016) provide a detailed analysis of the connectedness between crude oil and 

various financial markets using implied volatility indices. Their findings reveal that oil is a 

significant transmitter of volatility, especially toward equity markets, with directional 

connectedness from oil to equities reaching as high as 20.4%. This directional nature highlights 

the asymmetry in market relationships where oil tends to drive changes in other markets more 

than it is influenced by them. Adding to this, Li et al. (2024) use a TVP-VAR model to 

understand global market connectedness during the Russia–Ukraine conflict. Their results 

show that geopolitical crises can lead to a structural shift in financial linkages, with low-

frequency (long-term) components dominating total connectedness during crises. The stock 

and currency markets first acted as major risk transmitters, whereas the commodity markets 

became key risk receivers.  
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Khalfaoui et al. (2021) approached connectedness through a fresh method, quantile coherency 

networks, to explore dependencies between energy and nonenergy commodities. They find that 

these markets are only weakly connected under normal conditions but show stronger 

movements during economical and geopolitical shocks. This frequency- and quantile-specific 

approach allows for a fresh short-term trading-based spillovers from longer-term structural 

connectedness. The heterogeneity in connectedness is further emphasized by Bagirov and 

Mateus (2021), who examine volatility transmissions between petroleum prices and equity 

indices in petroleum-exporting countries and importing countries. They apply a VAR-GARCH 

model to demonstrate that the strength and direction of volatility spillovers vary a lot across 

economic sectors. This underscores how national energy profiles and economic structures 

shape the nature of financial interdependence. 

Sectoral analysis of connectedness is also highlighted in Bagirov and Mateus (2019). They 

reveal that oil price shocks affect different sectors in different ways, while sectors such as 

technology or healthcare are less sensitive. The study further shows that listed oil and gas 

companies’ financial performance is significantly linked to oil prices, reinforcing their role as 

transmission nodes in market networks. A critical takeaway from these studies is the context-

specific nature of market connectedness. Connectedness increases during crises, shifts in 

direction depending on the origin of shocks, and varies in intensity across markets and sectors. 

For instance, during the Russia–Ukraine conflict, the German stock market emerged as a 

primary source of global spillovers, while the commodity markets played a more passive role 

(Li et al., 2024).  

Methodologically, the field has moved beyond static models toward time-varying, quantile-

based, and network-based approaches. The adoption of the TVP-VAR framework by Li et al. 

(2024) allows for capturing the changing structure of financial linkages, while the quantile 

coherency method used by Khalfaoui et al. (2021) provides a finer understanding of tail risks. 

These advances enable researchers and policymakers to better anticipate and manage systemic 

risks, especially when making diversified portfolios or assessing financial stability. 

In conclusion, market connectedness is a complex phenomenon shaped by global events, 

economic structures, and asset characteristics. The literature demonstrates that while energy 

markets often serve as big sources of spillovers, their impact is not equal across sectors and 

time horizons. As the financial landscape becomes more integrated and sensitive to cross-
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border shocks, understanding the evolving patterns of connectedness is essential for effective 

risk management and investment strategy. 

 

2.3. Prior Studies Using TVP-VAR 

Time-Varying Parameter Vector Autoregressions have emerged as a powerful tool for studying 

interdependencies across financial markets, particularly when those relationships change over 

time. Traditional fixed-parameter VAR models often fall short in capturing structural changes 

or sudden market events, making TVP-VAR a natural choice for analysing volatility spillovers 

and market connectedness in periods of crisis or transition. 

The foundational Idea of VAR models Is to capture the linear Interdependencies among 

multiple time series. A standard VAR(p) model of an N-dimensional vector yt is represented 

as: 

 

where εt ~ N(0, Σ) is a vector of error terms and Φi are coefficient matrices. However, this 

framework assumes time-invariant coefficients Φi, which is often unrealistic in financial 

markets, especially around events like the Global Financial Crisis or geopolitical shocks such 

as the Russia–Ukraine conflict. 

TVP-VAR models generalize this framework by allowing parameters to evolve over time:  

 

This setup is usually estimated using the Kalman filter, with parameter evolution modelled 

as:    

where vt captures the stochastic changes in coefficients. 

Antonakakis et al. (2020) highlight several benefits of using TVP-VAR for dynamic 

connectedness analysis. Most notably, unlike rolling-window VARs, TVP-VAR avoids 

random window size choices and reduces observation loss. It also handles outliers better due 

to its probabilistic updating through the Kalman filter. These features allow researchers to trace 

the time-varying behaviour of financial interconnectedness more precisely, especially in 

turbulent periods. 
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The dynamic connectedness framework, originally by Diebold and Yilmaz (2012, 2014), 

measures how much of a variable’s forecast error variance is due to shocks from itself versus 

from others in the system. This is achieved via generalized forecast error variance 

decompositions, which are ordering-invariant and suitable for systems with correlated 

innovations. 

Given a moving average (MA) representation of the VAR  

 

the GFEVD for variable I due to shocks in variable j over H-steps ahead is: 

 

where ei is a selection vector and Σ is the variance-covariance matrix of εt. This measure is 

normalized to obtain: 

  

From this, four connectedness measures follow: 

1. Total Connectedness Index (TCI):  

2. Directional connectedness from others to i:  

 

3. Directional connectedness from I to others:  
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4. Net connectedness of i:  

 

These measures allow researchers to identify not just the strength but also the direction of 

volatility transmission across markets. 

Historically, TVP-VAR has been applied successfully to understand periods of heightened 

market stress. Gabauer and Gupta (2018) use it to show how economic policy uncertainty, 

especially monetary policy uncertainty, spreads between the U.S. and Japan, particularly during 

the Fukushima disaster. Similarly, Antonakakis et al. (2020) shows its robustness and 

sensitivity advantages over rolling-window methods. 

Despite the added computational complexity and the need for careful selection of priors and 

forgetting factors, TVP-VAR offers many advantages in modelling evolving systems. Its 

flexibility makes it increasingly popular in applied macro-finance research. 

In conclusion, TVP-VAR frameworks represent a significant advancement for researchers 

analysing dynamic relationships in finance. Their ability to handle structural shifts and produce 

interpretable connectedness metrics makes them vital in understanding interconnected 

financial systems. 

 

2.4. Predictive Time Series Regression 

Predictive time series regression models aim to forecast future values of a dependent variable 

using its own past values and one or more variables. These models are widely used in 

macroeconomics and finance to understand and forecast asset prices, GDP growth, inflation, 

and interest rates. Unlike standard time series models such as AutoRegressive Integrated 

Moving Average (ARIMA), which only uses lags of the dependent variable, predictive 

regressions use external regressors that are believed to have predictive power. Campbell and 

Thompson (2008) provide a foundational example of predictive time series regression in the 

context of equity returns. They argue that variables like dividend-price ratios, earnings yields, 

and term spreads show time-varying predictive power for stock returns. Their approach 

involves regressing future returns on current predictor variables, typically in the form: 
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where yt+h is the value of the dependent variable h periods ahead, and xt is the predictor 

observed at time t. The performance of such models often varies over time, encouraging 

researchers to find structural instability, parameter uncertainty, and the robustness of 

inferences. 

One common issue in predictive regressions is persistence in the predictor variable, which can 

lead to biased or fake inferences. Stambaugh (1999) shows that when the predictor xt is highly 

persistent and correlated with the error term, standard Ordinary Least Squares (OLS) inference 

becomes invalid. This has motivated the development of bias-corrected estimators and robust 

inference methods, such as bootstrapping or local-to-unity asymptotic. Another advancement 

in the field involves out-of-sample forecast evaluation. Clark and West (2007) introduce a test 

that compares nested models, showing that in small samples, the mean squared prediction error 

difference can favour a model with additional predictors even when the null hypothesis of no 

predictive content Is true. Their test is now widely used to prove the usefulness of predictive 

regressions beyond in-sample fit. 

Despite these innovations, predictive power remains elusive and often unstable. Researchers 

increasingly recognize the importance of structural breaks, nonlinear relationships, and 

changing economic regimes. Time-varying coefficient models and model averaging have been 

proposed as solutions to adapt to shifting predictive relationships (Rapach & Zhou, 2013).  
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3. Methodology 

In this section, we will discuss in depth of how our analysis took place and give a 

comprehensive step by step guide on how we tackled the research question and hypotheses, 

along with running contingencies and looking in the future of the energy market. 

 

3.1. Overview of Research Design 

We explore in this thesis how geopolitical risk affects the European energy markets, focusing 

on the period surrounding the start of the Russia–Ukraine war. The conflict has created a 

platform to study how uncertainty starting from political events spills over into financial 

markets. Our thesis applies a structured empirical approach, combining time-varying 

connectedness analysis and predictive modelling to assess both the evolution of spillover 

dynamics and their impact on asset behaviour. 

Our thesis stems from the idea that financial markets are not static. Relationships between 

different assets and economic indicators shift over time, especially during periods of 

geopolitical tension. Conventional models often assume a static relationship between variables, 

which limits their usefulness when shocks happen. This research addresses the limitation by 

using a Time-Varying Parameter Vector Autoregressive model (TVP-VAR), which allows 

model parameters to change over time. This helps in capturing the evolving nature of risk, 

focusing on before and after the start of the Russia–Ukraine war. The core objective is to 

understand how geopolitical uncertainty, captured through the Geopolitical Risk Index, affects 

selected European energy-related assets. This includes not only commodity prices such as 

Brent crude oil and natural gas but also the equity prices of major energy firms operating within 

Europe. The analysis is structured to identify whether these assets behave as economic shock 

receivers or transmitters during the examined period. 

Our thesis process follows a step-by-step design, beginning with the collection and 

transformation of daily price data for a set of affected assets and the GPR index. To prepare 

the data for modelling, financial asset prices are first log-transformed to see the daily 

percentage returns. The GPR index, which measures geopolitical tension based on newspaper 

coverage and online news, is also logged. Once the transformations are done, the series are 

tested for stationarity to see whether they are suitable for VAR-based modelling. Stationary 

time series are critical in VAR frameworks to avoid false relationships and unstable results. 
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After data preparation, the next step was estimating the TVP-VAR model. This model captures 

the changing relationships between the GPR index and the selected assets over time. Unlike 

static or rolling VAR models, TVP-VAR does not rely on fixed parameters or arbitrarily chosen 

windows. Instead, it uses a Bayesian estimation method with forgetting factors, allowing the 

model to give more weight to recent data while still learning from the past. From there, the 

model generates several connectedness measures. The Total Connectedness Index (TCI) gives 

an overall picture of how interconnected the system is at each point in time. Directional 

connectedness measures show how much each variable contributes to or absorbs shocks from 

the rest of the system, coming from the “TO” and “FROM” connectedness metrics. The 

difference between the two provides the NET Connectedness, used to track the dominant 

behaviour of each asset. To examine how the war influenced these dynamics, the data is shown 

through pre- and post-invasion periods, using February 24, 2022, as the cut-off point to allow 

a comparison of the behaviour of energy markets during normal periods versus periods of 

heightened geopolitical stress. By tracking changes in connectedness before and after the war, 

the model highlights the change in the relationship between assets and the GPR index. 

As a robustness check, we also did the same analysis on a set of unaffected assets such as 

healthcare stocks and agricultural commodities. The reasoning behind this is to show weaker 

or no response to geopolitical risk and see if their inclusion helps validate the results found in 

the main sample. In addition, a second connectedness model is done using GARCH-based 

volatility series to evaluate whether volatility spillovers mirror return spillovers. Finally, a 

simple predictive regression is conducted to assess whether connectedness, volatility and 

geopolitical risk can help forecast future asset returns. 

 

3.2. Justification for Methodological Choices 

The choice of this analysis is driven by the need to accurately capture the dynamic and 

directional nature of spillovers in financial markets during the Russia–Ukraine War. Hence a 

Time-Varying Parameter Vector Autoregression framework combined with Generalized 

Forecast Error Variance Decomposition was chosen. Traditional VAR models with fixed 

parameters often fail to reflect structural breaks or regime shifts that are typical during crisis 

periods. In contrast, the TVP-VAR framework allows model parameters to evolve over time, 

offering a more flexible and realistic representation of the market. As highlighted by 

Antonakakis et al. (2020), the dynamic nature of this method makes it suitable for tracking how 
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interlinkages among variables change in response to external shocks such as geopolitical 

events. 

The GFEVD methodology developed by Pesaran and Shin (1998) and employed in a dynamic 

setting by Diebold and Yilmaz (2012, 2014), was chosen for its order-invariant properties. This 

is particularly important in high-frequency financial data where variable ordering can 

significantly influence Cholesky-based decompositions. GFEVD, by contrast, treats each 

variable symmetrically, which ensures the robustness and credibility of directional spillover 

estimates. Since we included a range of energy market variables and the GPR Index, the 

neutrality in variable treatment helps protect the empirical validity of the results. We estimate 

the TVP-VAR model using a Bayesian approach, where the Kalman filter is applied to 

recursively update the time-varying coefficients over time, conditional on the observed data 

and prior assumptions. This allows for efficient tracking of structural changes and increases 

the model’s ability to accommodate new information. Moreover, the rolling window approach 

previously used in Diebold and Yilmaz (2014) was avoided to prevent potential biases from 

arbitrary window length choices. 

 

3.3. Data and Sample Selection 

Starting with the collection of data, we decided to choose assets of different classes and from 

different countries to have our analysis as comprehensive as possible. Our decision to choose 

both stocks and commodities was to get a broad picture of how far a geopolitical shock can 

spillover. 

3.3.1. Geopolitical Risk Index (GPRD) 

The primary source of geopolitical uncertainty in our thesis is captured through the Geopolitical 

Risk Index, developed by Caldara and Iacoviello (2022). The index is sourced from 

https://www.matteoiacoviello.com/gpr.htm and is widely used in economic and financial 

research for its transparent methodology and historical consistency. It measures the intensity 

of geopolitical tensions by analysing news article content and assigning standardized risk 

scores across time. This is why the GPRD index is treated as a key input to identify how the 

war affects financial assets with varying exposure to energy markets.  

https://www.matteoiacoviello.com/gpr.htm
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3.3.2. Affected Asset Group 

The affected asset group consists of commodities, utility companies, energy firms, and precious 

metals that are expected to react strongly to geopolitical risk particularly when it threatens 

supply chains and pricing. This group includes: 

• Commodities: Brent Crude Oil, Diesel, Dutch Natural Gas, and Heating Oil 

• Energy Firms and Utilities: Equinor, Repsol, Shell, TotalEnergies, Fortum, Ørsted, 

RWE, Verbund 

• Metals: Aluminium, Cobalt, Copper, Nickel 

These assets were selected based on their role in the European energy market and their 

historical sensitivity to disruptions in global supply and political risk. Their prices reflect not 

only internal financial dynamics but also geopolitical narratives, making them suitable 

candidates for spillover analysis. 

3.3.3. Data Sources and Time Frame 

Daily price data for all assets were extracted from FactSet, with the timeline spanning from 

February 1st, 2021, to March 1st, 2023, offering over two years of daily observations. This 

period was chosen to provide sufficient data both before and after the start of the Russia–

Ukraine war on February 24th, 2022.  

 

3.4. Data Transformation and Preprocessing 

Before estimating the TVP-VAR model, we took several pre-processing steps to ensure the 

data were clean, consistent, and suitable for time series analysis. This section will explain how 

missing values were addressed, how variables were transformed, and how stationarity was 

tested and achieved. 

3.4.1. Cleaning and Filling 

The data of the assets had multiple empty values given the presence of public holidays and 

different trading days across different countries which need to be filled and fixed in order to 

start our analysis. To do this, all series were first aligned with the dates of the GPRD index 

which resemble all weekdays for the two-year timeframe. This was done on excel using a 

simple IF(ISNA(VLOOKUP)) formula, aligning GPRD dates with asset dates and having the 

empty values be shown as zero for filling. Where data was missing for a given asset but 

available for others on the same day, the missing values were filled using a forward-filling 
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approach. We used a moving average approximation with a time window of the last seven days 

prior to the missing value, ensuring that the continuity of each time series was maintained 

without changing the trend. This approach was chosen over listwise deletion or backward-

filling to avoid introducing artificial shocks or inconsistencies into the returns.  

3.4.2. Log Transformation 

To prepare the data for modelling, all asset prices were transformed into logarithmic percentage 

returns. This was done using the transformation: 

rt =100×diff(log(xt )) 

This log-difference transformation has two main benefits. First, it stabilizes the variance of the 

data, reducing the impact of extreme values and making the time series more homoscedastic. 

Second, it approximates the continuously compounded return, which is standard in financial 

time series analysis and improves comparability across assets.  

3.4.3. Stationarity Testing 

Once the transformations were applied, the next step was to verify that all variables met the 

stationarity requirement necessary for vector autoregressive modelling. Two well-established 

unit root tests were applied: the Augmented Dickey-Fuller (ADF) test and the Phillips-Perron 

(PP) test. Both tests were used to check whether the series had a unit root, i.e., whether they 

were non-stationary. The ADF test accounts for autocorrelation in the time series by adding 

lagged difference terms, while the PP test corrects for serial correlation and heteroskedasticity 

using non-parametric methods. Using both tests provides a robust validation of stationarity 

assumptions. 

 

3.5. Model Setup: TVP-VAR Estimation 

With the data cleaned, transformed and tested, it was time to start working on our TVP-VAR 

model to see spillovers and connectedness. 

3.5.1. Preparing the Data Matrix: zoo Object Creation 

After data transformation and cleaning, the dataset was structured as a zoo object in R, which 

is required by the ConnectednessApproach package (created by Antonakakis et al., 2020) we 

used for our TVP-VAR model. The zoo format ensures that each variable is indexed by time, 

allowing the model to treat all series as synchronized daily observations. This is crucial for 
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consistent lagging, forecasting, and decomposition in time series estimation. The final zoo 

matrix contained the differenced log returns of 16 affected assets along with the first-

differenced GPRD index. A similar matrix was later created for the robustness check using 

unaffected assets. 

3.5.2. Model Framework and Lag Length 

A lag length of four (nlag = 4) was chosen. This decision is based on two factors: the structure 

of daily financial data and prior empirical evidence. As stated in Zhou et al., 2020, responses 

to geopolitical risk shocks are strongest around the 4th lag and tend to diminish at higher lags. 

A four-day lag strikes a balance between capturing meaningful short-term dynamics and 

avoiding overfitting, especially given the high frequency of the data.  

3.5.3. Forecast Horizon and Window Size 

The forecast horizon was set to 10 days (nfore = 10). This allows the model to capture both 

immediate and slightly delayed responses to shocks, which is essential for understanding 

volatility transmission in periods of uncertainty. A 10-day horizon also ensures compatibility 

with the GFEVD. The window size was fixed at 100 observations, which defines the sample 

length used to update the model over time. This rolling window makes sure that the model 

remains responsive to recent changes while maintaining enough data for a stable estimation. In 

periods of market stress, shorter windows would be too reactive, and longer ones might smooth 

over important shifts. 

3.5.4. Prior Specification and Estimation Method 

The model uses a Bayesian prior, done with the BayesPrior function. This prior is taken from 

the early part of the sample and serves as the starting point for the Kalman filter, which updates 

the time-varying parameters throughout the estimation. The Bayesian prior is preferred because 

it allows the model to incorporate initial beliefs about the system while using these beliefs as 

new data become available. 

Two important forgetting factors were used, as used by Koop and Korobilis (2014), denoted as 

κ₁ (kappa1) and κ₂ (kappa2), to control the rate at which the model updates its parameter 

estimates: 

• κ₁ = 0.99 controls the evolution of the coefficient matrices. A high value means that the 

model updates slowly, giving more weight to past relationships and allowing for 

smoother transitions in market behaviour. 
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• κ₂ = 0.96 governs the evolution of the variance-covariance matrix, which captures the 

volatility dynamics. A slightly lower value for κ₂ allows the model to respond more 

quickly to sudden changes in volatility. 

These settings are consistent with best practices in financial applications of TVP-VAR models, 

as discussed by Antonakakis et al. (2020). They allow the model to remain stable without being 

too slow to adapt to sharp changes. 

3.5.5. Model Estimation Process 

Once the prior, lag structure, and decomposition settings are specified, the TVP-VAR model 

was estimated using the ConnectednessApproach package in R. The model produces a series 

of dynamic connectedness measures, including: 

• Total Connectedness Index (TCI) 

• Directional “TO” and “FROM” Connectedness 

• Net Connectedness 

• Forecast Error Variance Decomposition (FEVD) Matrix 

These outputs form the core of the connectedness analysis and are further used in robustness 

checks, volatility modelling, and predictive regressions described in the following sections 

after chapter 3.6. 

3.5.6. Justification for Time-Varying Parameters 

The choice of a time-varying framework over a static or rolling-window VAR is fixed in its 

ability to flexibly capture evolving spillover dynamics without losing observations. Unlike 

rolling-window approaches that require arbitrary window selections and waste data at the start 

of the sample, the TVP-VAR model regularly updates parameters using the full sample. 

Moreover, using GFEVD instead of Cholesky-based variance decomposition avoids the 

problem of variable ordering. The GFEVD treats all variables symmetrically and captures the 

correlation structure in the residuals without the need for orthogonalization. This ensures that 

the connectedness results are robust and not driven by arbitrary modelling decisions. 

 

3.6. Robustness Check: Unaffected Assets 

To validate the findings of the main analysis and ensure that the observed spillover effects are 

not simply reflective of broader market dynamics, we did a robustness check using a separate 

group of assets that we thought to be unaffected by geopolitical risk in the energy sector. This 
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additional step was taken to help us confirm whether the geopolitical spillovers identified in 

the affected asset group are specific to energy-related markets, or whether similar patterns are 

seen in seemingly unrelated sectors. The purpose of including a robustness check is twofold. 

First, it provides a benchmark for comparison: if the unaffected assets show significantly lower 

levels of connectedness to the GPRD, this will support the conclusion that the energy sector 

was more sensitive to the Russia–Ukraine war. Second, it tests the consistency of the TVP-

VAR framework itself, by verifying that it does not generate artificial connectedness patterns 

in assets that should, by theory, be insulated from such events. 

The unaffected asset group consists of equities from large European healthcare and 

pharmaceutical firms, as well as prices of core agricultural commodities: 

• Healthcare and Pharma companies: AstraZeneca, Bayer, Novartis, Novo Nordisk 

• Food Commodities: Beef, Butter, Corn, Eggs 

These assets were chosen for their historically defensive behaviour and low direct exposure to 

geopolitical disruptions. While broader economic uncertainty may influence these markets to 

some degree, they were not expected to exhibit the same pattern of spillovers from GPRD as 

energy-related assets. 

 

3.7. GARCH-Based Volatility Estimation 

In addition to analysing return spillovers using the TVP-VAR framework, we also see volatility 

spillovers by modelling and comparing the time-varying volatility of each asset. The purpose 

of this second layer of analysis is to determine whether the volatility of affected assets is also 

influenced by geopolitical risk, and to test whether these volatility linkages are alike or different 

from return-based connectedness.  Return-based connectedness captures how price movements 

in one asset influence others, but it does not directly show fluctuations in risk or uncertainty. 

Since studies show that geopolitical events increase market volatility (inter alia: Apergis et al., 

2018; Balcilar et al., 2018; Chatziantoniou et al., 2025), it is important to assess and verify 

whether the volatility patterns of energy assets also replicate exposure to geopolitical risk. 

Modelling volatility separately helps identify whether certain assets act as volatility 

transmitters or absorbers, independent of their return movements. 
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3.7.1. Model Specification 

To achieve this, a univariate GARCH(1,1) model was applied to each asset in both the affected 

and unaffected groups. The GARCH framework was well-suited for financial time series as it 

accounts for volatility clustering. 

For each asset, a GARCH(1,1) model is estimated using the following settings: 

• Model Type: Standard GARCH (sGARCH) 

• ARMA Order: (0, 0) – no mean component included 

• Distribution: Student t-distribution  

• Mean Structure: Mean included = FALSE  

The choice of a simple GARCH(1,1) structure is deliberate. While more complex models exist, 

the standard form was enough for estimating daily volatility series in a consistent manner. 

Additionally, we employ the Jarque-Bera test to look for autocorrelation in the variables. Due 

to strong non-normality, we make use of the student-t distribution which better reflects the 

heavy tails that are usually found in asset return distributions, especially during crisis periods.  

3.7.2. Estimation and Volatility Matrix Construction 

The GARCH model was applied to each asset individually using a looped estimation routine 

for each point in time. For each time series: 

1. The model is fitted to the log return series. 

2. The estimated conditional standard deviation (volatility) is extracted. 

3. These volatility series are compiled into a matrix, where each column represents a 

single asset’s daily volatility values. 

This process results in a new zoo matrix of volatility, which replaces the return matrix used in 

the earlier TVP-VAR estimation. The GPRD index is added to this matrix as an external series, 

preserving the original modelling logic. 

3.7.3. Volatility TVP-VAR Analysis 

Once the volatility matrix is complete, the same TVP-VAR estimation procedure is applied to 

this dataset. This includes the same lag length (4), forecast horizon (10), window size (100), 

Bayesian prior, and forgetting factors. The output yields connectedness measures based on the 

forecast error variance of volatility, rather than returns. 
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The resulting indicators, TCI, TO, FROM, and NET, reveal how volatility is transmitted 

between the GPRD and energy markets over time. These results are later compared to those 

from the return-based model to assess whether volatility behaves similarly or differently. 

3.8. Predictive Regression Analysis 

In the final stage of our thesis, a predictive regression framework was used to test whether key 

indicators can help forecast the next day returns of the affected assets. This works well with 

the spillover analysis by evaluating the predictive power of the transmission mechanisms 

already observed in the TVP-VAR results. 

3.8.1. Model Structure and Variables 

The dependent variable yt is the log return of each asset at time t as a matrix. The independent 

variables include: 

• x1: Log return at time t−1 

• x2: NET connectedness at time t−1 

• x3: NET volatility at time t−1 

• x4: Log value of the GPRD index at time t−1 

This setup allows for the inclusion of both financial (return and volatility) and macro-political 

(geopolitical risk) predictors, along with the connectedness metric derived from the TVP-VAR. 

The regression is run as a matrix of all affected assets, keeping identical specifications for 

comparability and processing efficient. 

3.8.2. Model Estimation Approach 

A standard Ordinary Least Squares (OLS) regression was used to ensure interpretability and 

transparency in measuring the relationship between asset returns and the four lagged predictors. 

Since financial time series often exhibit non-normal errors and autocorrelation, several 

diagnostic tests and corrections were implemented to validate the results. 

3.8.3. Diagnostic Testing and Justification 

To ensure robustness and reliability, the following statistical tests were applied to the residuals 

of the model: 

• Jarque-Bera (JB) Test: Assesses whether the residuals are normally distributed.  

• Breusch-Pagan (BP) Test: Tests for heteroskedasticity, i.e., whether the variance of the 

residuals is constant across time.  
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• Breusch-Godfrey (BG) Test: Checks for autocorrelation in the residuals.  

• Variance Inflation Factor (VIF): Used to detect multicollinearity among predictors.  

The diagnostic tests confirmed some deviations from ideal conditions existed, which were 

expected in financial time series, leading us to fix for the possible heteroskedasticity and 

autocorrelation.  Newey-West standard errors were applied to all coefficient estimates which 

adjusts the standard errors to remain consistent even when the assumptions of homoskedasticity 

and no autocorrelation are violated. 

3.8.4. Output and Interpretation Framework 

The key output for the regression included the coefficient estimates and p-values for all four 

predictors. The final regression results were compiled into structured tables showing the 

Newey-West-adjusted estimates, as well as the results of the diagnostic tests (JB, BP, BG) and 

VIF scores. These outputs enable side-by-side comparison across different assets and are 

discussed in detail in the next chapter. 
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4. Empirical Results 

This chapter presents the empirical findings from our analysis of return and volatility spillovers, 

as well as the predictive regression models developed to assess short-term return behavior. The 

analysis is structured to first explore descriptive statistics, followed by connectedness results 

for returns and volatilities, and finally the regression-based evaluation of return predictability. 

 

4.1. Results Connectedness - Affected Returns 

In the following, the descriptive statistics, correlation matrix, and connectedness table of 

affected returns are analysed and put into context.  

4.1.1. Descriptive Statistics - Returns 

Before analysing the dynamic connectedness results, it is important to look at the underlying 

characteristics of the data. This provides us an overview of the dataset and lets us identify 

normal distribution and stationarity of the data. 

Table 1 presents the descriptive statistics for the daily log returns of the affected variables, 

covering 542 observations per asset. These include, as mentioned earlier, conventional and 

renewable energy commodities, European energy companies, and the Geopolitical Risk Index. 

The mean returns of all assets are close to zero, as expected for daily financial returns. Most 

assets display mean returns ranging between -0.12 and 0.20, with Dutch Gas (0.20) and Diesel 

(0.12) on the higher end, while Ørsted, Fortum, and Cobalt are the only assets that show slightly 

negative averages (-0.12, -0.06, and -0.01, respectively). The GPRD portraits a slight positive 

mean of 0.08, indicating that the index is experiencing a higher geopolitical risk over the 

reference period which is naturally true given the war event of our analysis.  

The standard deviation (SD) highlights the volatility of the series. The GPRD stands out with 

a SD of 40.95 way above the other variables. The next highest degree of volatility occupies 

Dutch Gas at 7.65, Diesel at 4.23, and Heating Oil at 3.50. A trend can be recognised, showing 

that conventional energy assets, and especially commodities demonstrate a higher SD in 

comparison to RE assets. Notably, Nickel (3.26) exhibits a similar degree of volatility as oil 

and gas commodities. On the lower end we find Copper (1.57), Cobalt (1.81) and surprisingly 

TotalEnergies (1.74) from the conventional energy equity sample. Another trend is identifiable 

in RE equities being generally lower in volatility.  
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Diesel (1.92) and Nickel (2.54) exhibit significant positive skewness, implying that large 

upward price movements occur more frequently than equivalent downward movements. In 

contrast, Cobalt (–4.06) and Equinor (–1.80) show pronounced negative skewness, suggesting 

that downside risk events are more prevalent for these assets. The kurtosis values are high 

across all variables, with Diesel (78.15), Cobalt (42.56), and Nickel (34.77) exhibiting 

particularly extreme leptokurtic behaviour. This implies the presence of fat tails and a high 

probability of observing extreme negative or positive events. This is consistent and expected 

when dealing with macroeconomic shocks. Even on the lower end, we see excess kurtosis > 3, 

suggesting leptokurtic behaviour in all variables.  

We employ the Jarque–Bera test to test for normal distribution. This is especially important for 

the volatility series which applies the GARCH model. We find that all series are not normally 

distributed as we reject the null hypothesis at statistical significance level. Thus, every variable 

shows non-normal distributed behaviour, indicating heavier tails. We therefore employ the 

student-t distribution model for our GARCH. 

Lastly, we test for stationarity utilising unit root tests such as the ADF and PP tests. The results 

show that all variables are stationary at the 1% significance level, as evidenced by highly 

negative ADF test statistics and large absolute PP test values. These results confirm that all 

return series are mean-reverting and suitable for use in the TVP-VAR connectedness 

framework without further differencing. 

To give a better overview of the GPRD, we included the time series in Figure 1. The red line 

marks the day of the Russian invasion of Ukraine, representing February 24th, 2022. The index 

clearly shows the news sentiment reporting the war on the war date which signifies the highest 

extent of geopolitical risk in the whole series. Although the news sentiment decreases shortly 

after, it remains on a higher level than before the war, depicting the ongoing conflict and 

following economic consequences. 
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Figure 1: Geopolitical Risk Index - Affected Returns 

 

Source: Caldara and Iacoviello (2022) (https://www.matteoiacoviello.com/gpr.htm)  

4.1.2. Correlation Matrix - Returns 

The correlation matrix for the affected daily log returns is shown in Table 2. It captures the 

linear relationships among the Geopolitical Risk Index, energy commodities, rare metals, and 

European energy companies. This matrix is central to understanding the underlying return 

dynamics prior to the TVP-VAR estimation and sheds light on how different asset classes 

interact under geopolitical and market stress. 

The GPRD shows low overall correlation with all other assets, with values ranging from –0.02 

to 0.07. The highest correlation is observed with Nickel (0.07), followed by Cobalt (0.05) and 

Heating Oil (0.04). These weak correlations are expected, as GPRD is an exogenous indicator 

that captures media-reported geopolitical tensions, and not a traded asset. Its low correlation 

with market-based returns suggests that its influence likely operates through lagged spillover 

effects rather than synchronous movement which seems logical as news report past events. 

This also justifies the use of lag structures in the TVP-VAR framework. 

The correlation among fossil fuel commodities reveals a clear pattern of interconnectedness. 

Brent Crude Oil and Heating Oil exhibit a particularly strong correlation (0.68), reflecting their 

https://www.matteoiacoviello.com/gpr.htm


   

 

 32 

shared upstream inputs and high co-dependence on global crude supply chains. Conversely, 

Diesel and Dutch Gas appear to behave more independently, with generally negligible 

correlations across the matrix.  

Conventional energy stocks display high internal correlations, which reflects their similar 

business models, geographic exposure, and investor bases. For instance, Shell and 

TotalEnergies are strongly correlated (0.79), as are Repsol and Shell (0.76) and Equinor and 

Repsol (0.61). This interconnectedness indicates that these companies are collectively 

responsive to shifts in crude oil prices, macroeconomic sentiment, and global energy supply 

shocks. While all show moderate correlations with Brent crude (0.40 – 0.49), the values are not 

excessively high, suggesting that firm-specific factors, diversification strategies, and risk 

management play a role in dampening direct commodity exposure.  

The industrial metals segment, comprising of Aluminium, Cobalt, Copper, and Nickel, shows 

moderate to high internal correlations, particularly between Aluminium and Copper (0.62), and 

Copper and Nickel (0.41). Notably, they are only weakly correlated with fossil fuel 

commodities and energy equities, confirming their value as a diversification tool.  

Renewable energy companies form a moderately correlated cluster, with notable co-

movements between RWE and Ørsted (0.45), RWE and Verbund (0.48), and Ørsted and 

Verbund (0.42). Interestingly, Fortum demonstrates a higher correlation with TotalEnergies 

(0.27) than other renewables, likely due to its continued involvement in gas energy assets. 

Overall, renewable stocks are only weakly or negatively correlated with traditional fossil fuel 

firms, suggesting that they operate under different risk structures and may offer hedging or 

diversification benefits in energy-focused portfolios.  

4.1.3. Connectedness Results - Returns  

Overall, we find a TCI of 74.60%, indicating a high level of interconnectedness among the 

examined assets as illustrated in Figure 2. This suggests that a substantial portion of return 

variation across these markets is driven by cross-variable spillovers. Throughout the sample 

period, the TCI fluctuates between approximately 55% and 90%, reflecting periods of both 

high systemic interaction and relative decoupling.  

In early 2021, the TCI remains elevated, fluctuating around 82–85%. This is likely influenced 

by post-COVID recovery dynamics and synchronized responses to global macroeconomic 

drivers such as inflation, central bank policy signals, and energy market volatility. A notable 
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spike in mid-to-late 2021 pushes the TCI close to 90%, reflecting mounting geopolitical tension 

which was further provoked by the imperial ambitions seen in the essay from Putin on July 

12th, 2021. As the series approaches the end of 2021, a steady decline in the TCI becomes 

evident, pointing to a partial decoupling across asset classes. However, an incline in 

connectedness can be observed beginning in the late months of 2021, stemming from further 

increase of geopolitical tensions as more and more Russian troops gather along the Ukrainian 

border in November 2021. Then by February 2022, Russia first starts its biggest military 

exercise since the Cold War and two weeks later begins its invasion into Ukraine which makes 

up the spike in TCI in that time. Following the initial war shock, the TCI undergoes a sustained 

decline throughout the remainder of 2022, dropping to approximately 55 – 60% by early 2023. 

This trend indicates a normalization in market behaviour, with return dynamics increasingly 

governed by asset- or sector-specific fundamentals rather than global shocks. The presence of 

several short-lived spikes suggests that secondary events, such as energy sanctions, policy 

responses, or companies having their assets seized unlawfully by the Russian state, briefly 

reignited connectedness, but these episodes were not persistent. (the information for the 

conflict events were gathered from Walker, 2023) 

Figure 2: TCI - Affected Returns 

 

The results of the NET connectedness from our TVP-VAR framework are depicted in Table 3 

and visualised in Figure 3. The plot in Figure 3 shows the time-varying net spillover roles of 

each asset, indicating whether the variable is a shock transmitter or receiver. It offers insights 

into how these roles evolved in response to geopolitical shocks and market transitions. 
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The GPRD is a moderate net transmitter (+10.52), meaning it transmits more return volatility 

to other markets than it receives. While not the strongest contributor overall, its influence peaks 

around early 2022, as seen in Figure 3, precisely around the time of the start of the Russia–

Ukraine War. This confirms GPRD’s role as an external systemic risk factor, particularly 

during periods of geopolitical escalation. Moreover, does the index show a net positive from 

January 2022 onwards after a period of being a shock receiver. It also remains a shock 

transmitter most of the time throughout the rest of our timeframe. 

Conventional energy equities show the highest and most sustained net spillover roles. The 

companies are strongly interconnected with both commodities and other equities and serve as 

dominant transmitters of return spillovers throughout the period. Their role intensifies during 

major commodity price shocks (i.e. Diesel and Dutch Gas in late 2021) and peaks again with 

the war in early 2022. This suggests that investors interpret oil and gas equities as leading 

indicators or amplifiers of broader return dynamics during crises. On the commodity side we 

find that Brent (+0.10) and Heating Oil (+3.05) are only marginal net transmitters despite their 

centrality in global energy pricing. This somewhat surprising result reflects their dual role: 

while they influence downstream markets, they also absorb shocks from upstream producers 

and geopolitical drivers. The NET plot shows these commodities become short-term 

transmitters during crisis periods (especially Brent around February–March 2022) but 

otherwise play a more balanced or reactive role. Furthermore, are both Diesel (-1.63) and Dutch 

Gas (-4.70) mild net receivers. Their NET connectedness remains slightly negative throughout 

the period, with brief spikes in late 2021 and early 2022, suggesting momentary reactivity to 

larger market or geopolitical events. 

We also discover that rare metals are clear net receivers. The NET plot shows little sustained 

transmission power for these assets, although brief upward spikes occur during inflationary 

pressure and energy crises. Copper, while averaging a slightly positive NET value (+4.09), also 

largely follows the same pattern.  

However, the strongest net receivers from our sample are the RE equities. The companies 

consistently absorb return shocks from fossil fuels and geopolitical risk, particularly during 

2022. Ørsted’s NET plot shows a distinct downturn at the time of the war as does the plot of 

RWE, indicating heightened vulnerability to market-wide spillovers despite their clean energy 

focus. This reflects a broader trend as renewables are not isolated from fossil fuel volatility, 

particularly when energy systems are stressed or rebalanced. However, their lack of spillover 
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transmission also supports their classification as defensive or diversifying assets under certain 

conditions. Nevertheless, Fortum shows only a slight negative net of -2.71 and its NET plot 

illustrates a larger transmitting period before the war than after. This is likely due to Fortum’s 

diversified business model employing multiple RE services and producing nuclear energy as a 

non-renewable energy alternative (Fortum, 2025). 
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Table 1: Descriptive Statistics - Affected Returns 

Note: *** suggests a p-value of 0.01. 

  

 
GPRD Brent Diesel Dutch Gas Heating 

Oil 

Equinor Repsol Shell Total 

Energies 

Aluminium Cobalt Copper Nickel Fortum Ørsted RWE Verbund 

Minimum -149.93 -15.64 -42.50 -36.42 -26.29 -7.32 -8.91 -8.79 -6.63 -12.97 -19.38 -5.37 -16.16 -10.92 -9.10 -8.99 -18.57 

Mean 0.08 0.10 0.12 0.20 0.13 0.12 0.12 0.12 0.10 0.06 -0.01 0.05 0.09 -0.06 -0.12 0.02 0.00 

Median 0.05 0.29 0.03 0.48 0.28 0.14 0.12 0.23 0.16 0.09 0.03 0.10 0.08 0.00 -0.20 0.03 0.12 

Maximum 135.73 9.14 50.45 43.15 12.36 7.51 6.60 7.52 7.86 7.59 6.61 5.55 37.06 10.50 14.65 7.98 12.53 

Kurtosis 3.76 6.23 78.15 7.84 16.24 3.61 4.54 4.82 4.29 7.13 42.56 3.87 34.77 6.62 5.74 5.51 10.50 

Skewness -0.13 -0.67 1.92 -0.08 -0.17 -1.80 -0.40 -0.29 -0.22 -0.48 -4.06 -0.20 2.54 -0.30 0.53 0.01 -0.93 

Range 285.66 24.78 92.95 79.57 38.65 14.83 15.52 16.31 14.49 20.56 25.99 10.92 53.22 21.43 23.75 16.97 31.10 

SD 40.95 2.68 4.23 7.65 3.50 2.46 2.01 1.93 1.74 1.97 1.81 1.57 3.26 2.45 2.54 1.82 2.62 

Count 542 542 542 542 542 542 542 542 542 542 542 542 542 542 542 542 542 

Jarque-Bera*** 14.492 276.52 127869 528.81 4254.1 11.006 67.98 82.24 41.753 405.34 36842 20.552 23384 303.87 195.27 141.84 1347.1 

ADF test*** -11.11 -9.61 -9.15 -8.09 -9.78 -8.30 -7.47 -7.95 -7.30 -9.04 -5.53 -8.15 -8.57 -6.97 -7.59 -8.24 -8.41 

PP test*** -50.02 -25.86 -32.12 -23.92 -24.36 -25.55 -24.05 -25.08 -25.01 -27.35 -23.26 -26.89 -20.11 -22.87 -24.44 -23.71 -25.86 
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Table 2: Correlation Matrix - Affected Returns 
 

GPRD Brent Diesel Dutch Gas Heating Oil Equinor Repsol Shell TotalEnergies Aluminium Cobalt Copper Nickel Fortum Ørsted RWE Verbund 

GPRD 1.00 0.05 -0.02 0.00 0.04 0.02 0.02 0.03 0.03 0.00 0.05 0.02 0.07 -0.01 -0.02 0.02 -0.01 

Brent 0.05 1.00 0.07 0.10 0.68 0.46 0.49 0.47 0.40 0.30 0.07 0.31 0.15 -0.01 0.01 -0.04 -0.03 

Diesel -0.02 0.07 1.00 0.05 0.07 0.04 -0.02 -0.05 -0.04 0.04 0.07 0.01 0.04 0.01 0.01 -0.05 0.01 

Dutch Gas 0.00 0.10 0.05 1.00 0.15 0.27 0.01 0.06 -0.05 0.12 0.10 0.04 0.09 -0.19 0.01 -0.11 0.03 

Heating Oil 0.04 0.68 0.07 0.15 1.00 0.34 0.35 0.35 0.27 0.17 0.16 0.21 0.14 -0.06 -0.01 -0.03 0.00 

Equinor 0.02 0.46 0.04 0.27 0.34 1.00 0.61 0.61 0.56 0.26 0.02 0.32 0.15 0.06 0.06 0.06 0.11 

Repsol 0.02 0.49 -0.02 0.01 0.35 0.61 1.00 0.76 0.75 0.17 0.04 0.28 0.13 0.16 0.01 0.08 0.05 

Shell 0.03 0.47 -0.05 0.06 0.35 0.61 0.76 1.00 0.79 0.15 0.00 0.27 0.15 0.20 0.05 0.11 0.05 

TotalEnergies 0.03 0.40 -0.04 -0.05 0.27 0.56 0.75 0.79 1.00 0.11 -0.02 0.23 0.09 0.27 -0.03 0.16 0.05 

Aluminium 0.00 0.30 0.04 0.12 0.17 0.26 0.17 0.15 0.11 1.00 0.04 0.62 0.31 -0.03 -0.01 0.02 -0.01 

Cobalt 0.05 0.07 0.07 0.10 0.16 0.02 0.04 0.00 -0.02 0.04 1.00 0.03 0.14 -0.06 -0.09 -0.10 -0.04 

Copper 0.02 0.31 0.01 0.04 0.21 0.32 0.28 0.27 0.23 0.62 0.03 1.00 0.41 -0.04 -0.04 -0.01 -0.02 

Nickel 0.07 0.15 0.04 0.09 0.14 0.15 0.13 0.15 0.09 0.31 0.14 0.41 1.00 -0.06 0.03 -0.09 -0.03 

Fortum -0.01 -0.01 0.01 -0.19 -0.06 0.06 0.16 0.20 0.27 -0.03 -0.06 -0.04 -0.06 1.00 0.13 0.32 0.27 

Ørsted -0.02 0.01 0.01 0.01 -0.01 0.06 0.01 0.05 -0.03 -0.01 -0.09 -0.04 0.03 0.13 1.00 0.45 0.42 

RWE 0.02 -0.04 -0.05 -0.11 -0.03 0.06 0.08 0.11 0.16 0.02 -0.10 -0.01 -0.09 0.32 0.45 1.00 0.48 

Verbund -0.01 -0.03 0.01 0.03 0.00 0.11 0.05 0.05 0.05 -0.01 -0.04 -0.02 -0.03 0.27 0.42 0.48 1.00 
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Table 3: Connectedness Table - Affected Returns 
 

GPRD Brent Diesel Dutch Gas Heating Oil Equinor Repsol Shell TotalEnergies Aluminium Cobalt Copper Nickel Fortum Ørsted RWE Verbund FROM 

GPRD 27.18 2.42 2.94 3.27 5.23 5.86 4.63 6.51 5.72 4.26 6.03 4.44 3.98 3.06 4.03 4.16 6.27 72.82 

Brent 4.23 18.97 2.92 3.48 11.66 7.03 7.71 8.15 7.36 5.02 2.55 4.99 2.65 3.61 2.21 3 4.48 81.03 

Diesel 4.36 3.69 39.99 2.89 3.81 4.41 4.31 4.45 3.97 4.46 3.24 3.76 2.99 4.23 3.04 2.45 3.97 60.01 

Dutch Gas 4.06 3.71 3.42 39.09 4.01 4.82 3.43 4.66 4.7 2.65 3.48 3.45 3.05 6.09 1.88 4.85 2.65 60.91 

Heating Oil 4.19 13.44 3.36 3.35 23.71 6.14 7.17 6.51 5.69 4.06 2.52 4.06 3.14 3.86 2.04 2.7 4.09 76.29 

Equinor 3.9 6.16 3.68 3.56 4.83 19.18 10.58 10.88 10.03 4.61 2.48 5.38 2.49 3.89 2.11 2.8 3.44 80.82 

Repsol 4.24 6.22 4.75 3.7 5.53 11.68 17.58 10.82 10.62 3.49 2.45 4.97 2.65 3.51 2.24 2.89 2.68 82.42 

Shell 5.28 6.2 3.96 3.76 4.64 9.87 10 17.13 12.54 3.96 3.17 5.27 2.5 4.03 2.13 2.87 2.7 82.87 

TotalEnergies 5.72 6.03 3.72 2.87 4.71 9.67 10.13 13.23 16.6 4.27 2.99 4.29 2.48 4.58 2.52 3.61 2.6 83.4 

Aluminium 4.01 5.33 4.19 2.44 4.57 5.34 5.13 5.11 5.8 25.42 2.12 12.92 6.94 3.8 1.48 2.59 2.84 74.58 

Cobalt 6.38 3.7 3.26 3.42 4.65 6.35 3.42 5.47 4.6 2.54 31.45 3.22 3.93 3.7 4.14 5.04 4.71 68.55 

Copper 5.4 4.63 3.05 2.85 4.65 6.8 6.63 5.55 5.1 10.88 2.61 22.6 8.13 2.98 1.65 3.38 3.12 77.4 

Nickel 5.15 3.9 3.89 3.42 5.16 4.12 4.66 3.9 3.92 7.31 2.83 9.69 30.68 2.96 2.71 3.16 2.55 69.32 

Fortum 3.2 3.63 4.35 5.2 3.85 4.9 4.73 4.9 5.92 3.09 3.96 2.86 2.73 32.33 3.84 6.25 4.26 67.67 

Ørsted 8.78 4 2.43 4.36 3.45 5.9 4.01 4.86 4.71 5.97 4.9 3.76 3.45 3.94 22.61 8.01 4.86 77.39 

RWE 6.32 4.19 3.05 4.29 4.57 5.23 4.41 4.36 5.08 3.78 3.26 4.19 4.13 5.98 8.73 23.24 5.19 76.76 

Verbund 8.13 3.87 5.4 3.36 4.03 6.38 5.42 4.49 3.99 3.94 3.28 4.26 3.29 4.74 5.18 6.18 24.05 75.95 

TO 83.34 81.14 58.38 56.2 79.34 104.5 96.35 103.83 99.74 74.28 51.86 81.48 58.53 64.96 49.93 63.93 60.4 1268.19 

NET 10.52 0.1 -1.63 -4.7 3.05 23.68 13.93 20.95 16.34 -0.3 -16.69 4.09 -10.79 -2.71 -27.46 -12.83 -15.54 TCI=74.60% 
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Figure 3: NET Connectedness - Affected Returns 
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4.2. Results Connectedness - Affected Volatility 

In this part of the discussion, we focus on the patterns revealed by the connectedness of 

GARCH-based volatilities, which help us understand how risk was transmitted across assets 

during the Russia–Ukraine conflict. Unlike returns, volatility captures the perceived 

uncertainty and reaction intensity of the market, particularly during shocks. 

4.2.1. Descriptive Statistics - Volatility 

Table 4 summarises the statistical properties of the logged GARCH-filtered volatilities for the 

affected assets and the logged GPRD. These transformed logged volatility series are suitable 

for use in the TVP-VAR framework to capture time-varying connectedness in volatility. As the 

GPRD is the same used in previous chapter 4.1. it will not be further discussed in this section 

and the focus will solely be put on the logged GARCH variables.  

The descriptive statistics indicate mostly negative mean values from the logged volatilities 

hovering around zero. Moreover, median values are notably more negative, especially for 

Heating Oil (-5.80), Dutch Gas (-4.40), and Ørsted (-1.52), indicating that while volatility is 

often low or stable, it is occasionally punctuated by large upward spikes which is expected for 

a GARCH model applied to a war event. 

Standard deviation values further reflect these dynamics. Cobalt (31.84) and Heating Oil 

(17.90) show the greatest dispersion in volatility, followed by Nickel (16.30) and Dutch Gas 

(12.49). Conversely, conventional energy equities such as Equinor (1.46) and TotalEnergies 

(1.94) exhibit low standard deviations, suggesting stable conditional volatility estimates and a 

more muted reaction to macro shocks. Moreover, do renewable energy equities exhibit higher 

SD than any of the equivalents in conventional energy. To main trends can be recognised: 

Firstly, we see Dutch Gas and Heating Oil both with high volatility dispersion. On the other 

hand, do the rare metal commodities show a high value in SD as well. Thus, the commodities 

of our sample show increased volatility dispersion in comparison to the respective equities.  

Skewness values across nearly all assets are positive and the variables showcase often extreme 

levels of skewness. Diesel (10.25), Verbund (6.40), and Ørsted (4.72) display particularly high 

positive skewness, indicating that upward volatility shocks dominate and are larger in 

magnitude than downward corrections. Looking at the kurtosis, we find that values are well 

above three for all assets, confirming strong leptokurtic behaviour.  
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Additionally, we employ the Jarque-Bera test and the unit root tests. We do not need to further 

analyse the JB test to select the correct GARCH distribution model as we already discuss the 

volatility dispersion in this section and do not require another GARCH. 

To be sure our logged variables do still conform with being stational, we employ both the 

Augmented Dickey–Fuller (ADF) and Phillips–Perron (PP) tests again. All ADF statistics fall 

below –6, while PP statistics are also strongly negative at a significance level of 0.01. Thus, 

further differencing is not necessary for our volatility data. 

4.2.2. Connectedness Results - Volatility 

The TCI for the affected volatility amounts to 78.13% which is an increase of ca. 4% from the 

affected return total connectedness. As can be seen in Figure 4, the TCI for affected volatility 

and the affected returns TCI share a great similarity. While return connectedness peaked around 

the onset of the Russia–Ukraine war and gradually declined, volatility connectedness remained 

elevated throughout 2022 until the summer.  

Figure 4: TCI - Affected Volatility 

 

Table 5 shows the NET connectedness table for affected volatility which is illustrated in Figure 

5. The empirical findings highlight a slight increase in the net of GPRD (16.27 as to previously 

10.52) in comparison to the affected returns connectedness. The elevated and sustained positive 

NET values following this point suggest that geopolitical uncertainty continued to influence 
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volatility across markets well beyond the initial invasion period as could be seen in the TCI 

plot.  

Mainly, the affected volatility results show somewhat similar results in comparison to affected 

returns. At the start of the war, GPRD converts from being a shock receiver to a transmitter 

which is consistent for the remaining timeframe.  

Conventional energy commodities exhibit more mixed roles. Diesel is the most dominant 

volatility transmitter in the system, with a net spillover of +44.67. Comparing it to its affected 

return value, it exhibits a stark contrast especially in the post-war period where it stays a 

transmitter. Whereas, in the return connectedness it changed into a shock receiver by summer 

2022. Heating Oil also contributes positively (+6.23) to volatility transmission, while Brent (-

6.76) and Dutch Gas (-6.63) act as mild net receivers. These mixed roles suggest heterogeneity 

in how different fossil fuel segments respond to and propagate volatility shocks. 

Fossil fuel equities such as Shell (+14.42), Repsol (+4.03), and Equinor (+2.82) are steady net 

volatility transmitters. In contrast to the previous values are the values not steadily net positive 

after the war start. In fact, do they show inverse behaviour, becoming receivers rather than 

staying transmitter. Surprisingly, does TotalEnergies acts as a net receiver (-8.94), whereas 

previously it has shown a moderately positive value. Industrial metals are predominantly net 

receivers of volatility which aligns to their return connectedness values. Only Aluminium 

appears nearly neutral (+0.79).  

RE companies are persistent and pronounced net receivers of volatility. Ørsted (-32.38), 

Verbund (-18.74), and Fortum (-32.38) display the most negative NET values which is 

consistent with previous return connectedness results. The NET plot shows that these firms 

consistently absorb volatility across the entire sample, particularly in response to oil and gas 

volatility and geopolitical spikes. Their passivity in the volatility transmission network 

suggests they are more exposed to external shocks than active contributors to systemic risk.  

Overall, the NET plot illustrates clear cross-sectoral segmentation. Fossil fuel companies and 

GPRD dominate the upper range as transmitters, while renewables and metals remain largely 

negative throughout the period. During major geopolitical events, as can be seen at the start of 

the war, this segmentation becomes even more pronounced, with volatility roles polarizing 

sharply. 
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Table 4: Descriptive Statistics - Affected Volatility 

Note: *** suggests a p-value of 0.01. 

 

  

 
GPRD Brent Diesel Dutch Gas Heating 

Oil 

Equinor Repsol Shell Total 

Energies 

Aluminium Cobalt Copper Nickel Fortum Ørsted RWE Verbund 

Minimum -149.93 -7.41 -9.19 -11.16 -24.22 -1.12 -1.37 -1.71 -1.28 -11.15 -91.58 -13.91 -21.21 -7.66 -6.89 -22.33 -4.36 

Mean -0.13 -0.04 -0.10 -0.06 -0.08 0.00 -0.03 -0.04 -0.02 -0.04 -0.01 -0.01 -0.08 -0.10 -0.03 -0.04 -0.03 

Median 0.04 -2.44 -0.08 -4.40 -5.80 -0.59 -0.67 -0.79 -0.68 -2.71 -0.64 -2.64 -4.80 -3.48 -1.52 -2.27 -1.18 

Maximum 135.73 70.92 58.07 100.32 126.02 7.93 17.71 18.44 19.38 62.66 225.47 52.06 139.36 53.68 61.04 68.38 56.71 

Kurtosis 3.74 23.05 139.17 13.37 8.81 11.05 31.99 24.04 32.62 12.90 15.68 6.77 14.51 11.82 43.71 11.87 61.09 

Skewness -0.16 3.62 10.25 2.60 1.93 2.66 4.32 3.99 4.39 2.63 2.16 1.73 2.43 2.71 4.72 2.32 6.40 

Range 285.66 78.33 67.27 111.48 150.24 9.06 19.09 20.15 20.67 73.81 317.05 65.96 160.56 61.33 67.93 90.71 61.07 

SD 40.68 8.24 3.88 12.49 19.70 1.46 1.76 2.26 1.94 8.80 31.84 9.42 16.30 9.20 5.12 11.22 4.76 

Count 541 541 541 541 541 541 541 541 541 541 541 541 541 541 541 541 541 

Jarque-Bera*** 14.573 10241 427468 3034.7 1096.4 2099 20631 11412 21519 2836.2 4048.3 590.94 3515.5 2416.7 39367 2261.7 79771 

ADF test*** -11.12 -9.38 -6.24 -7.97 -10.09 -8.56 -7.69 -8.32 -8.01 -8.33 -12.39 -8.70 -8.62 -9.01 -9.81 -10.14 -8.07 

PP test*** -49.76 -22.66 -22.67 -21.85 -24.51 -22.30 -23.88 -21.79 -22.29 -23.55 -38.23 -24.66 -24.08 -21.92 -25.27 -28.34 -23.66 



   

 

 44 

Table 5: Connectedness Table - Affected Volatility 
 

GPRD Brent Diesel Dutch Gas Heating Oil Equinor Repsol Shell TotalEnergies Aluminium Cobalt Copper Nickel Fortum Ørsted RWE Verbund FROM 

GPRD 20.98 4.36 6.91 4.73 5.47 3.99 4.69 4.73 3.18 5.04 6.61 5.63 5.46 3.09 4.45 7.2 3.47 79.02 

Brent 4.4 19.7 4.25 3.12 16.5 5.35 4.93 5.07 2.85 4.29 5.79 3.79 3.55 3.81 3.23 4.67 4.69 80.3 

Diesel 2.88 3.42 39.78 3.75 4.65 4.46 3.34 5.17 4.02 4.52 3.35 3.88 3.72 2.32 4.95 2.35 3.45 60.22 

Dutch Gas 7.06 3.67 15.32 19.76 4.3 4.15 3.46 4.82 3.29 3.51 4.1 4.38 4.05 2.69 4.67 7.21 3.57 80.24 

Heating Oil 5.59 15.13 3.86 3.2 21.65 4.95 5.19 4.07 2.49 5.65 6.27 3.29 2.57 3.91 4.27 4.36 3.56 78.35 

Equinor 5.56 3.9 5.59 4.1 5.15 20.45 7.74 7.21 7.08 5.15 4.22 4.66 3.5 3.11 4.37 6.16 2.05 79.55 

Repsol 5.62 5.17 3.4 4.27 6.01 7.06 21.12 11.22 9.65 3.49 3.72 3.24 2.71 2.82 3.52 4.19 2.79 78.88 

Shell 5.67 4.14 4.31 4.71 5.1 6.69 11.07 19.52 9.51 3.79 3.98 3.52 2.99 2.63 3.68 4.99 3.71 80.48 

TotalEnergies 5.02 4.58 4.6 4.2 5.12 7.38 9.33 10.65 16.74 3.8 5.22 4.66 4.36 3.03 4.43 4.34 2.55 83.26 

Aluminium 6.01 3.39 9.64 4.06 3.75 5.19 3.97 5.7 3.49 25.52 4.66 4.75 3.64 2.31 6.21 4.65 3.07 74.48 

Cobalt 7.15 4.17 6.8 5.98 5.12 4.56 4.38 4.76 3.82 6.12 20.93 4.53 4.42 3.1 5.43 5.26 3.47 79.07 

Copper 6.15 2.65 6.58 4.04 3.68 4.95 5.34 6.35 4.83 5.09 3.43 19.07 9.77 2.84 4.73 5.73 4.77 80.93 

Nickel 6.32 3.27 9.71 3.61 3 6.57 3.94 5.39 3.95 3.11 3.76 10.26 20.87 2.34 3.49 6.83 3.58 79.13 

Fortum 7.37 4.06 3.48 5.87 4.23 4.81 4.09 4.58 4.41 6.58 7.59 4.65 3.3 20.22 4.77 7.21 2.8 79.78 

Ørsted 5.64 3.83 5.83 6.41 4.53 4.43 3.59 5.21 4.38 6.64 4.28 5.26 5.42 3.01 19.17 8.76 3.63 80.83 

RWE 8.84 4.17 5.51 6.5 4.37 4.66 4.65 6.07 4.13 3.95 6.5 2.69 3.53 2.77 7.68 20.08 3.89 79.92 

Verbund 6 3.63 9.11 5.07 3.62 3.16 3.2 3.92 3.23 4.53 4.05 4.88 4.47 3.63 4.73 6.55 26.22 73.78 

TO 95.29 73.54 104.9 73.61 84.59 82.37 82.91 94.9 74.32 75.27 77.52 74.07 67.44 47.4 74.62 90.46 55.04 1328.23 

NET 16.27 -6.76 44.67 -6.63 6.23 2.82 4.03 14.42 -8.94 0.79 -1.54 -6.86 -11.69 -32.38 -6.21 10.54 -18.74 TCI=78.13% 
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Figure 5: NET connectedness - Affected Volatilities 

  



   

 

 46 

4.3. Linear Regression 

To investigate whether the results of the TVP-VAR analysis and the GARCH model can help 

predict future asset returns, we ran a series of linear regressions for each asset in the affected 

group. Each asset was modelled individually, resulting in a total of 16 regressions. This setup 

allowed us to evaluate the short-term predictive contribution of both financial and geopolitical 

indicators. Since financial time series data often violates the OLS assumptions due to issues 

like autocorrelation and heteroskedasticity, we applied robust standard errors using the Newey-

West correction. This adjustment helps ensure that our coefficient estimates and p-values are 

reliable. 

4.3.1. Pre-diagnostic Results 

Before applying any corrections or robust standard errors, we reviewed the initial regression 

outputs to evaluate model fit and reliability. The adjusted R-squared values varied across all 

assets, showing differences in how well the selected variables forecast returns. 

Table 6: Pre-diagnostic Results 

 R_squared Adj_R_squared x1_coef x1_pval x2_coef x2_pval x3_coef x3_pval x4_coef x4_pval 

Brent 0.210 0.204 -0.455 0.000 0.000 0.175 0.000 0.910 0.000 0.443 

Diesel 0.216 0.210 -0.465 0.000 0.000 0.833 0.000 0.115 0.000 0.182 

Dutch Gas 0.148 0.142 -0.384 0.000 0.000 0.783 0.000 0.360 0.000 0.188 

Heating Oil 0.182 0.176 -0.426 0.000 0.000 0.384 0.000 0.504 0.000 0.789 

Equinor 0.124 0.118 -0.352 0.000 0.000 0.883 0.000 0.784 0.000 0.507 

Repsol 0.025 0.017 -0.153 0.000 0.000 0.398 0.000 0.755 0.000 0.805 

Shell 0.052 0.045 -0.228 0.000 0.000 0.861 0.000 0.998 0.000 0.857 

TotalEnergies 0.063 0.056 -0.249 0.000 0.000 0.469 0.000 0.819 0.000 0.858 

Aluminium 0.185 0.179 -0.427 0.000 0.000 0.119 0.000 0.224 0.000 0.640 

Cobalt 0.232 0.227 -0.480 0.000 0.000 0.071 0.000 0.426 0.000 0.151 

Copper 0.118 0.112 -0.338 0.000 0.000 0.115 0.000 0.607 0.000 0.227 

Nickel 0.145 0.139 -0.380 0.000 0.000 0.162 0.000 0.431 0.000 0.706 

Fortum 0.092 0.085 -0.299 0.000 0.000 0.275 0.000 0.164 0.000 0.460 

Ørsted 0.064 0.057 -0.251 0.000 0.000 0.578 0.000 0.724 0.000 0.678 

RWE 0.011 0.004 -0.100 0.020 0.000 0.856 0.000 0.359 0.000 0.722 

Verbund 0.078 0.071 -0.273 0.000 0.000 0.085 0.000 0.791 0.000 0.487 

 

We observed, as can be seen in Table 6, that commodities generally showed a stronger model 

fit compared to company stocks. As seen in table 6 above, the adjusted R² was the highest for 

Diesel (20.96%), Brent (20.36%), and Heating Oil (17.61%). In comparison, Equinor 

(11.79%), RWE (0.41%), and Orsted (5.65%) had lower explanatory power, which shows that 
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company-specific factors outside the model may play a more dominant role in their price 

movements compared to the selected variables.  

In terms of individual variable significance, the lagged returns were highly significant across 

nearly all assets, with p-values close to zero. This points to short-term momentum or 

autocorrelation in returns. On the other hand, net connectedness, net volatility and GPRD were 

insignificant across the board. In net connectedness, Verbund and Cobalt reached marginal 

significance with p-values less than 0.1 but still above the target. Net volatility also showed a 

similar story, with high p-values across all assets, none being in the marginal significance 

category. The same went for all the assets with GPRD, showing us major problems with the 

model. 

We then assessed the models using diagnostic tests to check for violations of classical linear 

regression assumptions: 

• The Breusch-Pagan test for heteroskedasticity revealed non-constant variance in the 

residuals of several assets. Heteroskedasticity was most evident in models for Diesel, 

Dutch Gas, Repsol, Equinor, and Shell.  

• The Breusch-Godfrey test for autocorrelation identified serial correlation in the 

residuals for most companies, especially for Brent, Repsol, Shell, Fortum, and Heating 

Oil. 

• The Jarque-Bera test for normality indicated that residuals for several assets exhibited 

skewness and excess kurtosis. While normality is not strictly required for consistent 

estimation, non-normal residuals may signal that some model assumptions are not fully 

met. 

These diagnostic findings confirmed the need for using Newey-West standard errors to address 

heteroskedasticity and autocorrelation in the residuals. We applied these corrections to all 

models in the final stage to ensure the validity of the coefficient estimates and p-values. 

4.3.2. Post-diagnostic Results 

After confirming the presence of heteroskedasticity and autocorrelation in multiple models 

during the diagnostic phase, we re-estimated all regressions using Newey-West standard errors. 

This correction adjusts the standard errors for both autocorrelation and heteroskedasticity by 

accounting for serial correlation in the residuals and allowing error variances to vary over time, 

resulting in more robust statistical inference. 
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The use of Newey-West corrections led to several shifts in the statistical significance of 

variables. For instance, in models like Repsol and Shell, which showed autocorrelated residuals 

in the Breusch-Godfrey test, standard errors became wider after the adjustment, leading to some 

variables losing their initial significance. In contrast, in assets like Fortum and Orsted, where 

heteroskedasticity was more prominent, the correction improved the reliability of p-values 

without changing coefficient direction. 

The final regression outputs, including Newey-West adjusted coefficients and their p-values, 

are reported in Table 7 below. 

Table 7: Regression Outputs 

 x1_coef x1_pval x2_coef x2_pval x3_coef x3_pval x4_coef x4_pval 
Brent -0.455 0.000 0.000 0.136 0.000 0.885 0.000 0.195 
Diesel -0.465 0.000 0.000 0.936 0.000 0.175 0.000 0.095 
Dutch Gas -0.384 0.000 0.000 0.729 0.000 0.081 0.000 0.019 
Heating Oil -0.426 0.000 0.000 0.427 0.000 0.263 0.000 0.694 
Equinor -0.352 0.000 0.000 0.786 0.000 0.730 0.000 0.136 
Repsol -0.153 0.154 0.000 0.266 0.000 0.681 0.000 0.730 
Shell -0.228 0.006 0.000 0.701 0.000 0.997 0.000 0.720 
TotalEnergies -0.249 0.055 0.000 0.308 0.000 0.736 0.000 0.817 
Aluminium -0.427 0.000 0.000 0.087 0.000 0.196 0.000 0.452 
Cobalt -0.480 0.000 0.000 0.082 0.000 0.233 0.000 0.066 
Copper -0.338 0.000 0.000 0.040 0.000 0.502 0.000 0.132 
Nickel -0.380 0.000 0.000 0.202 0.000 0.415 0.000 0.563 
Fortum -0.299 0.001 0.000 0.189 0.000 0.081 0.000 0.287 
Ørsted -0.251 0.002 0.000 0.464 0.000 0.622 0.000 0.606 
RWE -0.100 0.177 0.000 0.795 0.000 0.159 0.000 0.628 
Verbund -0.273 0.000 0.000 0.054 0.000 0.743 0.000 0.320 

 

The lagged return variable remained the most consistently significant predictor across the 

affected assets. In 13 out of 16 models, the coefficient was statistically significant at the 5% 

level or better, with coefficients generally ranging between –0.25 and –0.47. The results for net 

connectedness changed a bit but still show no major significance. The only to be significant 

after the adjustment is copper, with Aluminium, Cobalt and Verbund being marginally 

significant. These cases highlight that while connectedness is not a universal predictor, it 

carries useful information for certain assets. Moving to net volatility, the results were clear to 

show that no assets were statistically significant or even marginally significant, showing that 

this variable has no predictive power whatsoever. The GPRD index displayed mostly 

insignificant results after the Newey-West correction. For 15 out of 16 assets, the variable was 
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not statistically meaningful with Dutch gas being the only statistically significant asset. Diesel 

and Cobalt do achieve marginal significance however as a whole, the variables failed to have 

any predictive power in most assets. 

Lastly, to ensure our models were not affected by multicollinearity, we computed Variance 

Inflation Factors for each regression. 

Table 8: Variance Inflation Factors 

 x1_vif x2_vif x3_vif x4_vif 
Brent 1.001 1.014 2.025 2.029 
Diesel 1.007 1.073 1.613 1.568 
Dutch Gas 1.005 1.050 1.085 1.047 
Heating Oil 1.001 1.269 1.088 1.189 
Equinor 1.001 1.407 1.527 1.844 
Repsol 1.003 1.131 1.271 1.138 
Shell 1.000 1.089 1.046 1.131 
TotalEnergies 1.001 1.384 1.291 1.405 
Aluminium 1.004 1.106 1.339 1.271 
Cobalt 1.006 1.270 1.603 1.407 
Copper 1.001 1.083 1.038 1.117 
Nickel 1.003 1.151 1.369 1.215 
Fortum 1.004 1.096 1.022 1.097 
Ørsted 1.001 1.025 1.024 1.037 
RWE 1.002 1.037 1.020 1.050 
Verbund 1.002 1.318 1.999 1.776 

 

As seen in Table 8 above, across all assets the VIF values for each independent variable remain 

below the conventional threshold of 10, with most ranging between 1 and 2.1. This confirms 

that there was no problematic correlation among predictors, and that the estimates were not 

distorted due to multicollinearity. 
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4.4. Robustness Check 

To assess whether the patterns observed in the affected assets were specific to sectors directly 

exposed to geopolitical risk, we conducted a robustness check using a group of unaffected 

assets. By analyzing their return behavior, volatility dynamics, and connectedness patterns 

over the same timeline, we aim to determine whether the changes we observed in the energy 

sector were systemic or localized. Comparing the unaffected group to the affected assets also 

helps to validate the significance of our findings by providing a stable reference point that is 

not expected to exhibit strong responses to the war. 

4.4.1. Unaffected Returns 

Looking into the descriptive statistics given in table 9, we observe that volatility varies across 

assets. Among the commodities, eggs display the highest standard deviation at 5.51, followed 

by corn (2.02) and butter (1.98), showing a wider range of daily return fluctuations. In 

comparison, equities like Novartis and Bayer exhibit lower volatility, with standard deviations 

of 1.02 and 1.75, respectively. These differences align with the expectation that food 

commodities are more exposed to seasonal and supply-side shocks, while healthcare firms tend 

to behave more defensively. 

The average returns are close to zero across all assets, with most means ranging between 0.01 

and 0.15. Novonordisk and eggs report the highest mean returns at 0.15, while assets like 

Novartis and Bayer show minimal returns. Median values also remain near zero, suggesting 

that return distributions are generally centred and not strongly skewed in either direction. 

However, the shape of the distributions reveals more complexity. Many of the unaffected assets 

exhibit high kurtosis, indicating fat tails and a higher likelihood of extreme return values. For 

example, butter has a kurtosis of 53.44, beef reports 29.75, and eggs 21.34. These values reflect 

the abnormal nature of return distributions, especially among agricultural commodities. 

Additionally, skewness values show some assets leaning toward large positive outliers (e.g., 

beef and eggs), while others like Novonordisk and Bayer lean slightly negative. 

The Jarque-Bera test confirms that none of the return distributions are normal. Each asset’s test 

statistic far exceeds the critical threshold for rejection at the 1% level. The most extreme 

departures from normality are seen in butter (57,500), beef (16,322), and eggs (7,766.8), further 

highlighting the presence of non-Gaussian return behaviour. 
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Lastly, we test for stationarity using both the Augmented Dickey-Fuller (ADF) and Phillips-

Perron (PP) tests. All test statistics were significantly negative and well beyond the critical 

values, indicating that the return series are stationary. This confirms that the data meet the 

requirements for the TVP-VAR analysis. 

Table 9: Descriptive Statistics - Unaffected Returns 

Note: *** suggests a p-value of 0.01. 

Going into the correlation matrix, table 10 shows that correlations with the GPRD are 

extremely weak as expected. The correlation values range from -0.05 with corn to 0.07 with 

Novartis, all of which are close to zero. This supports our assumption that the selected 

unaffected assets were largely disconnected from direct geopolitical shocks during the Russia–

Ukraine war period.  

Within the pharmaceutical group, we observe moderate positive correlations, suggesting a 

degree of common movement within the sector. AstraZeneca and Novartis show the strongest 

correlation at 0.47, followed by AstraZeneca and Novonordisk at 0.40, and Novartis and 

Novonordisk at 0.31. These values indicate that while the assets are not highly synchronized, 

they do share similar trends that may be influenced by broader healthcare market trends or 

investor sentiment. In comparison, the agricultural commodities show much weaker 

correlations with each other. The highest correlation in this group is between beef and corn at 

0.21, while most others are close to zero or slightly negative. This shows that these 

 
GPRD Astrazeneca Bayer Novartis Novonordisk Beef Butter Corn Eggs 

Minimum -149.93 -6.78 -7.90 -4.13 -12.47 -7.41 -17.32 -9.71 -23.75 

Mean 0.08 0.07 0.02 0.01 0.15 0.03 0.11 0.05 0.15 

Median 0.05 0.14 0.01 0.03 0.15 0.02 0.11 0.08 0.02 

Maximum 135.73 5.51 6.99 5.56 7.17 9.79 19.35 6.20 47.50 

Kurtosis 3.76 4.71 5.72 5.52 9.62 29.75 53.44 5.67 21.34 

Skewness -0.13 -0.24 -0.29 -0.10 -0.77 1.36 0.70 -0.49 1.37 

Range 285.66 12.29 14.89 9.69 19.64 17.20 36.67 15.91 71.25 

SD 40.95 1.56 1.75 1.02 1.78 1.05 1.98 2.02 5.51 

Count 542 542 542 542 542 542 542 542 542 

Jarque-Bera*** 14.492 71.199 174.75 143.9 1044.8 16322 57500 182.75 7766.8 

ADF test*** -11.11 -7.38 -7.07 -7.85 -8.76 -8.55 -8.28 -7.58 -5.48 

PP test*** -50.02 -24.25 -24.16 -21.88 -25.68 -29.69 -24.14 -25.32 -24.37 
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commodities generally move independently, which is consistent with their pricing being 

influenced by distinct supply and demand factors. We also find very low correlation between 

the pharma and commodity assets. For instance, Bayer and eggs have a correlation of -0.04, 

and AstraZeneca and butter have a correlation of -0.04. This shows that these two sectors are 

not driven by similar forms of risk. 

Overall, the correlation matrix confirms that the unaffected assets do not display strong 

interdependence either within or across sectors, and they show little to no relationship with the 

GPRD. This strengthens their role as a stable benchmark group in our analysis and supports 

our assumption that they were indeed “unaffected” by the Russia–Ukraine war. 

 

Table 10: Correlation Matrix - Unaffected Returns 

 GPRD Astrazeneca Bayer Novartis Novonordisk Beef Butter Corn Eggs 

GPRD 1.00 -0.03 0.00 0.07 0.05 0.05 0.06 -0.05 0.00 

Astrazeneca -0.03 1.00 0.28 0.47 0.40 0.03 -0.04 0.03 -0.01 

Bayer 0.00 0.28 1.00 0.30 0.12 -0.03 0.00 -0.03 -0.04 

Novartis 0.07 0.47 0.30 1.00 0.31 0.06 0.02 0.08 -0.02 

Novonordisk 0.05 0.40 0.12 0.31 1.00 -0.03 -0.11 0.01 0.03 

Beef 0.05 0.03 -0.03 0.06 -0.03 1.00 0.13 0.21 0.06 

Butter 0.06 -0.04 0.00 0.02 -0.11 0.13 1.00 0.06 0.00 

Corn -0.05 0.03 -0.03 0.08 0.01 0.21 0.06 1.00 -0.02 

Eggs 0.00 -0.01 -0.04 -0.02 0.03 0.06 0.00 -0.02 1.00 

 

The connectedness results for the unaffected asset group are presented in Table 11 and 

visualised in Figures 6 and 7. Overall, the behaviour of this group is quite different from the 

affected assets, especially how the assets respond to external shocks. The TCI averages at 

40.49%, which is significantly lower than the TCI of the affected group that averaged at 

74.60%. This lower TCI shows that these assets are not as heavily linked in terms of return 

spillovers, and their reactions to the Russia–Ukraine war are far more subtle. 

Figure 6 shows how the TCI evolved over time. We observe that the connectedness across the 

unaffected group peaked during 2021 in the start of the year, reaching to almost 60%, but 

gradually declined after. Although we do see a sharp increase around February 2022, it still 



   

 

 53 

differs strongly with the TCI behaviour of the affected assets as shown in figure 2. While the 

affected group experienced a surge in connectedness around the war’s outbreak and during key 

escalation phases, the unaffected group remained somewhat stable. This supports our 

expectation that these assets are less sensitive to geopolitical stress and were largely shielded 

from its direct financial consequences. 

Figure 6: TCI - Unaffected Returns 

 

Table 11 highlights the relative roles of different assets within the network. Among the 

pharmaceutical stocks, Astrazeneca and Novartis are seen as dominant contributors to return 

spillovers. AstraZeneca has a TO value of 56.64, followed closely by Novartis at 53.80, 

showing that these assets frequently transmit return shocks to others in the network. The FROM 

values, 46.79 and 47.72, respectively, are also high, suggesting they are equally exposed to 

incoming shocks. This two-way dynamic is consistent with the sector's integrated behaviour 

and reflects the fact that investor sentiment often links large-cap pharmaceutical firms during 

market-wide events, even in the absence of geopolitical shocks. 

In comparison, the agricultural commodities in the group show consistently lower 

connectedness. Corn, butter, beef and eggs exhibit TO values ranging between 31 and 33, with 

FROM values ranging from 30 to 43, a slightly higher range specially for beef (43.08). These 

figures indicate a relatively low level of engagement with the rest of the assets. For instance, 
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corn has a NET score close to zero, Butter has a NET of -9.77, beef at -10.16 and eggs stand at 

2.51, which classifies them largely as shock receivers rather than active transmitters. These 

results align with the assumption that food commodities are driven more by supply-side 

conditions, seasonal cycles, and localized factors than by global financial market shocks. 

An especially notable difference from the affected asset group lies in the behaviour of the 

GPRD. In the unaffected group, GPRD is not a dominant player. It has a TO value of 38.24 

and a FROM value of 45.53, giving it a NET score of -7.29, which clearly positions it as a net 

receiver. This is the reverse of what we saw in the affected group, where GPRD served as a 

strong transmitter of return spillovers to energy firms and commodities. The finding here 

reinforces the idea that GPRD's role as a shock source is context-dependent and that these 

unaffected assets were indeed a good source of comparison. This is further supported by Figure 

7, with most spikes being consistent throughout the timeline rather than around the war date. 

Altogether, the results confirm that the unaffected assets form a relatively low-connected and 

stable network. Their lower TCI, weak response to GPRD, and lack of consistent directional 

spillovers highlight their exclusion from the effects of the Russia–Ukraine war. These findings 

support our initial motivation for including this group as a control sample. 
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Table 11: Connectedness Table - Unaffected Returns 
 

GPRD Astrazeneca Bayer Novartis Novonordisk Beef Butter Corn Eggs FROM 

GPRD 54.47 7.94 3.74 3.56 5.99 4.38 5.07 3.71 11.15 45.53 

Astrazeneca 4.7 53.21 6.09 13.2 10.14 2.63 3.45 3.99 2.59 46.79 

Bayer 3.21 7.51 62.53 9.78 5.17 3.37 2.46 2.31 3.67 37.47 

Novartis 3.95 13.95 9.07 52.28 7.35 2.94 4.06 2.83 3.58 47.72 

Novonordisk 3.15 10.93 4.37 8.37 60.06 2.64 4.07 3.23 3.17 39.94 

Beef 6.96 4.21 6.15 4.44 5 56.92 5.21 8.69 2.43 43.08 

Butter 7.48 4.2 4.42 4.87 5.4 6.56 59.15 4.92 2.99 40.85 

Corn 3.85 2.98 4.02 4.58 2.47 8.59 3.3 67.11 3.11 32.89 

Eggs 4.95 4.93 2.94 5 3.96 1.82 3.46 3.13 69.82 30.18 

TO 38.24 56.64 40.8 53.8 45.47 32.92 31.08 32.79 32.69 364.45 

NET -7.29 9.86 3.33 6.08 5.53 -10.16 -9.77 -0.09 2.51 TCI=40.49% 

 

 

Figure 7: NET connectedness - Unaffected Returns 
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4.4.2. Unaffected Volatility 

Going into Table 12 which provides the descriptive statistics for the logged GARCH volatilities 

of the unaffected asset group, we see that the overall volatility characteristics here differ 

noticeably from those of the affected group. The mean and median values are relatively close 

to zero across most assets, which is typical of GARCH-filtered series. However, a few assets, 

including Novonordisk and Astrazeneca, show more negative median values than others. For 

example, the median volatility for Novonordisk is -0.86 and for Astrazeneca is -1.74, showing 

that while volatility was mostly low, these assets experienced occasional sharp increases. 

Agricultural commodities like corn and eggs also reflect this pattern, with median values of -

2.35 and -1.56, respectively. 

The standard deviation of logged volatility varies widely. Corn (6.72), Astrazeneca (6.47), and 

eggs (5.89) show relatively high volatility dispersion, which shows greater sensitivity to 

changing market conditions. On the other hand, assets like Bayer (0.02), butter (0.03), and beef 

(0.08) display a much lower variation in volatility, showing a more stable behaviour over time. 

This supports our assumption that the unaffected assets are generally less reactive to external 

shocks, particularly geopolitical ones. 

Looking at the distribution, we see that the volatility series show strong deviations from 

normality. Most assets display positive skewness, meaning large positive shocks in volatility 

occurred more frequently than negative ones. This is particularly clear in the pharmaceutical 

firms, where Novartis and Novonordisk show extremely high skewness values of 9.19 and 

9.55, respectively. The kurtosis values are also extremely high. Novartis has a kurtosis of 

128.31 and Novonordisk 124.02, which indicates fat tails and a high likelihood of extreme 

values. 

As mentioned previously in section 4.2.1. we do not need to further discuss the Jarque-Bera 

test because we already use GARCH volatilities. Lastly, the results of the ADF and PP unit 

root tests confirm all test statistics are strongly negative and well below critical thresholds 

meaning the volatility series is stationary. 

Overall, the unaffected group shows a different volatility profile compared to the affected 

group. While volatility remains non-normal and at times extreme, the lack of strong upward 

trends or sustained volatility further solidifies our claim that these assets are unaffected by the 

GPRD. 
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Table 12: Descriptive Statistics - Unaffected Volatility 

Note: *** suggests a p-value of 0.01. 

The TCI of the unaffected volatility connectedness amounts to just 38.44% which is roughly 

half of that from the affected volatility. Thus, it verifies our assumption that healthcare and 

agricultural assets are indeed unaffected or rather less affected. The TCI plot in Figure 8 

visualises the overall behaviour of the index throughout the series. In comparison to the 

affected TCI plots, one cannot distinguish trends on the first glance. There are spikes visible, 

however difficult to interpret. One spike is seen at the end of 2022 which perhaps shows a 

similar increase in volatility connectedness as could be seen in the affected volatility section. 

Nevertheless, if put into contrast the affected total connectedness showed easily recognisable 

peaks at the war date. Here, these peaks are absent. Furthermore, does the whole TCI plot 

exhibit a rather stagnant linearity. Hence, Figure 8 depicts a TCI plot of actual from GPR 

unaffected assets. 

 

 
GPRD Astrazeneca Bayer Novartis Novonordisk Beef Butter Corn Eggs 

Minimum -149.93 -8.74 0.03 -0.54 -1.75 0.05 0.04 -6.35 -1.56 

Mean -0.13 0.00 0.05 0.01 -0.03 0.14 0.07 -0.05 -0.12 

Median 0.04 -1.74 0.05 -0.33 -0.86 0.11 0.06 -2.35 -1.56 

Maximum 135.73 53.75 0.09 19.60 51.28 0.40 0.13 47.63 64.35 

Kurtosis 3.74 18.90 2.21 128.31 124.02 3.87 2.42 16.47 57.17 

Skewness -0.16 3.24 0.58 9.19 9.55 1.29 0.71 3.06 6.60 

Range 285.66 62.49 0.06 20.14 53.03 0.34 0.09 53.98 65.91 

SD 40.68 6.47 0.02 1.23 3.38 0.08 0.03 6.72 5.89 

Count 541 541 541 541 541 541 541 541 541 

Jarque-Bera*** 14.573 6646.1 44.139 361606 338390 167.97 53.086 4937.1 70078 

ADF test*** -11.12 -9.56 -2.68 -7.73 -7.57 -16.37 -11.71 -8.02 -7.26 

PP test*** -49.76 -24.82 -132.18 -23.24 -22.60 -61.94 -108.38 -23.06 -24.33 
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Figure 8: TCI - Unaffected Volatility 

 

With a net spillover of -12.94, the GPRD emerges as a moderate net receiver of volatility in 

this sample. While it transmits volatility to assets like Novartis (12.69) and Eggs (17.65), it 

also absorbs considerable spillovers, particularly from pharma and food sectors. The NET plot 

reflects this: GPRD oscillates around the zero line for most of the sample, with no sustained 

periods of dominance as a transmitter and rather larger periods of negative connectedness. This 

indicates that in markets less directly tied to energy or less prone to be affected from conflicts, 

geopolitical risk plays a less decisive role in driving volatility interdependence.  

Within the pharmaceutical sector, Novartis is the most prominent transmitter (+16.19), 

particularly around the early stages of the war, as visible in the NET plot. AstraZeneca and 

Novonordisk remain near-neutral, with only mild fluctuations in their net spillover roles. Bayer, 

in contrast, is a net receiver (–4.03), displaying relatively low average TO values and absorbing 

more volatility than it transmits. 

The commodity segment also exhibits heterogeneous patterns. Eggs emerges as the strongest 

net transmitter in the entire system, with a net spillover of +26.17. The NET plot confirms this 

behaviour, showing sustained periods of elevated transmission, particularly in 2022. This may 

reflect food supply chain disruptions, input price inflation, or broader agricultural volatility 

during the war and post-pandemic periods. Other commodities such as Butter and Corn, display 

relatively high TO values but end up as net receivers, suggesting that their volatility is driven 

more by external conditions than by internal propagation. Beef exhibits the most persistent net 
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receiver profile (-14.67), with the NET plot showing consistently negative values throughout 

the period. 

Overall, the connectedness structure in the unaffected sample reveals a lower, more fragmented, 

and asymmetric volatility transmission network. Only Novartis and Eggs serve as consistent 

sources of volatility spillovers, while others either play passive roles or alternate between minor 

sending and receiving. The NET plot highlights that these roles are more variable and less 

crisis-driven compared to the affected sample, confirming the relative isolation of these 

markets from systemic volatility contagion. 

Table 13: Connectedness Table - Unaffected Volatility 
 

GPRD Astrazeneca Bayer Novartis Novonordisk Beef Butter Corn Eggs FROM 

GPRD 50.22 8.59 2.12 12.69 4.02 0.84 1.81 2.07 17.65 49.78 

Astrazeneca 6.81 72.63 0.88 6.3 3.37 0.76 0.82 2.51 5.91 27.37 

Bayer 2.53 2.02 35.66 2.21 1.92 14.61 35.2 1.71 4.14 64.34 

Novartis 3.52 6.6 0.98 79.92 2.35 0.55 0.91 2.69 2.48 20.08 

Novonordisk 5.64 3.01 1.16 3.55 77.66 0.87 1.2 4.77 2.15 22.34 

Beef 3.8 1.92 17.04 1.87 1.6 51.53 16.48 2.51 3.26 48.47 

Butter 2.58 2.04 35.08 2.31 1.98 14.29 35.69 1.8 4.24 64.31 

Corn 7.08 4.27 1.3 5.63 3.3 0.98 1.44 70.19 5.81 29.81 

Eggs 4.88 2.74 1.76 1.72 2.26 0.9 1.69 3.53 80.53 19.47 

TO 36.84 31.2 60.31 36.27 20.79 33.81 59.54 21.58 45.64 345.97 

NET -12.94 3.83 -4.03 16.19 -1.55 -14.67 -4.77 -8.23 26.17 TCI=38.44% 
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Figure 9: NET connectedness - Unaffected Volatility 

 

 

 

 

 

  



   

 

 61 

5. Discussion 

Here we compare and analyse our findings in the previous section and put it into a broader 

academic context. We revisit the results not only to highlight where our findings support 

existing literature but also to point out where they diverge or offer new perspectives. 

 

5.1. Connectedness 

Geopolitical Risk as a Volatility Transmitter 

Our results confirm that GPRD acts as a moderate yet consistent net transmitter of volatility, 

particularly during periods of heightened geopolitical stress. Across both affected and 

unaffected samples, we observe that volatility connectedness is not only stronger but more 

persistent than return connectedness, particularly during and after the geopolitical shock. This 

aligns with the findings of Awartani et al. (2016), Apergis et al. (2018), Balcilar et al. (2018), 

Xu et al. (2024), and Chatziantoniou et al. (2025), who emphasize that geopolitical risk tends 

to impact volatility transmission more strongly than returns. While the GPRD’s return-based 

connectedness was present but not dominant, its volatility transmission role intensified notably 

around the onset of the Russia–Ukraine war in February 2022, confirming that geopolitical 

shocks are a primary driver of systemic uncertainty. Thus, our results confirm that while asset 

prices begin to differentiate as markets stabilize post-crisis, volatility interlinkages remain 

elevated for the energy market.  

Sectoral Segmentation and Asymmetry as Transmitter 

A central empirical finding is the clear segmentation between conventional energy assets and 

renewables in both return and volatility connectedness networks. Fossil fuel companies 

emerged as strong net transmitters, both in terms of returns and volatilities, particularly during 

the war period. This confirms the literature consensus (Antonakakis et al., 2017; Zhang et al., 

2022; Xu et al., 2024) that oil markets are disproportionately sensitive to geopolitical shocks, 

reacting immediately and feeding risk into the broader financial system. In contrast, renewable 

equities consistently appeared as net receivers of both return and volatility spillovers. While 

Yang et al. (2020) and Su et al. (2021) suggest that GPR can affect renewables, our results 

show that renewables predominantly absorb volatility, rather than amplify it. This asymmetry 

aligns our results with Zhao et al. (2021) and indicate that despite their rising strategic 
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importance, renewables remain relatively insulated from acting as systemic transmitters of 

geopolitical risk. 

Affected vs. Unaffected  

The empirical segmentation between affected and unaffected assets further validates our 

methodological approach. Assets classified as unaffected i.e. pharmaceuticals and agricultural 

commodities, displayed significantly lower TCI values, and the NET plots revealed less 

pronounced and temporary spillover effects. For instance, GPRD did not dominate volatility 

transmission in this sample, and Eggs was the only significant net transmitter. This finding 

supports the arguments made by Mo et al. (2023) and Hudecová & Rajčániová (2023), who 

suggest that non-energy sectors are less sensitive to GPR, with only selected food commodities 

showing regional and product-specific effects. Additionally, Corn being a shock receiver is in 

line with Dai et al. (2024) and Goyal et al. (2024), who showcase a negative effect of GPR on 

the asset. Furthermore, do we find that Eggs exhibits a moderate shock transmission to the GPR 

at 17.65 within the unaffected volatility sample group. 

 

5.2. Linear Regression 

Our regression analysis set out to investigate whether lagged returns, net connectedness, net 

GARCH-based volatility, and the GPRD index could help predict short-term asset returns for 

the selected affected group. While the regression models were originally designed to evaluate 

predictability at the asset level, what they highlighted was the relative strength or weakness of 

these predictors when set against the backdrop of the Russia–Ukraine war. 

One of the clearest findings we see from this analysis was the strength of past return behaviour 

in forecasting future movements. The presence of return autocorrelation across much of our 

sample aligns with what we might expect in periods of heightened uncertainty. In contrast, the 

role of connectedness and volatility in explaining returns was virtually non-existent. While our 

connectedness analysis showed clear transmission patterns in the affected assets group, those 

spillovers did not serve as strong predictors of returns. This difference suggests that while 

connectedness may reflect how markets interact, it does not necessarily indicate where they are 

headed next. Similarly, GARCH-based volatility did not offer predictive power either. This 

reinforces the theory that volatility and connectedness serve better as diagnostic tools than as 

predictive ones in the context of daily return forecasting. 
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The role of GPRD was the most interesting to see. Existing research offers a mixed view: some 

studies suggest that GPR can forecast returns, particularly in equity markets or under specific 

economic regimes (e.g., Ma et al., 2022), while others argue that its impact is stronger on 

volatility or sectoral risk (Apergis et al., 2018; Antonakakis et al., 2017). Our findings lean 

toward the latter. Although the GPRD index played a clear role in connectedness dynamics, it 

offered limited value in predicting next-day returns. This tells us that geopolitical risk serves 

more as a force shaping risk perception and cross-asset behaviour than as a short-term driver 

of returns. 

What we see through these regressions is a confirmation of our thesis’ broader position: 

geopolitical risk, though powerful, may not behave like conventional market variables. It 

disrupts, reshapes, and distorts, but does not easily predict.  

 

5.3. Future Research & Limitations 

First, the analysis relies on the Geopolitical Risk Index by Caldara and Iacoviello (2022) as a 

unidimensional proxy for geopolitical uncertainty. While the GPRD is widely used and well-

documented, it is constructed from a newspaper-based sentiment framework and may not fully 

capture the nuances of all geopolitical events. Future research could complement the GPRD 

with alternative or disaggregated measures of geopolitical risk, such as sub-indices for 

geopolitical threats vs. acts which is available on their website or incorporate conflict-specific 

indicators that account for regional heterogeneity. 

Additionally, the division of assets into affected and unaffected groups was based on logical 

sectoral and geographical relevance to the Ukraine–Russia War. However, this binary 

classification may oversimplify reality, as some assets may be only indirectly or intermittently 

influenced by geopolitical developments. Future studies could refine this classification by 

applying data-driven clustering to allow more flexible segmentation based on actual spillover 

behaviour. Furthermore, the sample includes a specific subset of European assets and 

commodities. While this provides a focus on how geopolitical risk affects the European energy 

market, it limits the generalisability of the findings to global markets or emerging economies. 

Future work could expand the asset group to include North American, Asian, Middle Eastern, 

or any other non-European markets. Another idea would be to focus only on country-specific 

spillovers, where only GPR effects on equities in one economy are being observed.  
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6. Conclusion 

This thesis set out to explore how geopolitical risk, specifically triggered by the Russia–

Ukraine war, affects the European energy markets. Using a TVP-VAR model, a GARCH-based 

volatility estimation, and a predictive regression analysis, we examined both return and 

volatility spillovers, identifying how these financial metrics evolved before, during, and after 

the onset of the war. Our main aim was to uncover the extent to which geopolitical shocks 

transmit through financial markets and whether they carry predictive power for short-term asset 

returns. 

One of the key insights from our connectedness analysis is that GPRD played a significant role 

as a net transmitter of volatility, especially during the early phase of the conflict. Volatility 

spillovers were consistently stronger and more persistent than return spillovers, reinforcing the 

idea that uncertainty often travels faster than price movements in times of crisis. This dynamic 

was especially pronounced in energy assets, which functioned as primary transmitters of both 

return and volatility shocks. Meanwhile, renewable energy equities mainly absorbed shocks 

and rarely functioned as dominant transmitters. The clear segmentation between fossil fuel and 

renewable energy markets emphasizes the differentiated response within the energy sector 

itself. 

Our robustness check using unaffected assets served to confirm that the elevated spillovers 

observed in the affected group were not systemic. The lower total connectedness and weaker 

links to the GPRD in the unaffected group strengthened our confidence in the sector-specific 

relevance of geopolitical risk transmission.  

The predictive regression analysis offered a different angle. While the models showed that past 

returns held strong predictive power, connectedness, volatility, and geopolitical risk showed 

limited ability to forecast next-day asset returns. This distinction highlights that while these 

variables explain current interdependencies and risks well, they do not necessarily guide future 

price directions. Our results echo parts of the literature that argue GPR is more useful as a risk 

indicator than a return predictor. In particular, the fact that the GPRD variable remained 

insignificant across almost all assets suggests that investor sentiment and market pricing 

incorporate geopolitical risk in complex, possibly nonlinear ways that standard regressions 

cannot fully capture. 



   

 

 65 

Overall, this thesis contributes to the growing field of geopolitical finance by applying a multi-

layered methodology to one of the most significant geopolitical events of the decade. By 

comparing different asset classes and testing predictive value, we have provided new evidence 

that geopolitical risk reshapes market structures more through connectedness and volatility than 

through immediate return effects.  
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