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List of abbreviations and notation

Table 1: Abbreviations that are frequently used throughout the project are listed here.

RCT Randomised controlled trial

ATE Average treatment effect

ICE Intercurrent Event

ICH International Council for Harmonisation of Technical Requirements for Phar-
maceuticals for Human Use

EMA European Medicines Agency

FDA The U.S. Food and Drug Administration

PIONEER Peptide InnOvatioN for Early diabEtes tReatment

HbA1c Glycosylated haemoglobin A1c

T2D Type 2-diabetes

FPG Fasting plasma glucose

DGP Data generating process

SCM Structural causal model

IF Influence function

EIF Efficient influence function

CLT Central limit theorem

TMLE Targeted Maximum Likelihood Estimation/Estimator

LTMLE Longitudinal Targeted Maximum Likelihood Estimation/Estimator

BL Baseline

SAP Statistical Analysis Plan

MMRM Mixed Model for Repeated Measures

RMSE Root mean squared error.

Abbreviation Expansion

Table 2: Notation that is frequently used throughout the project is listed here.

N The natural numbers, excluding zero.

R The real numbers.

Notation Description

Continued on next page
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Table 2: Notation that is frequently used throughout the project is listed here. (Continued)

In The n× n-dimensional identity matrix.

0j , 1j The j-dimensional vectors of zeros and ones, respectively.

W (W0) Vector of baseline covariates.

Wk Measurement of the outcome variable at visit k, for k = 1, 2, . . . .

Wk All potential outcomes of Wk.

A (A0) Randomised treatment.

Ak Indicator of treatment discontinuation at visit k, for k = 1, 2, . . . .

Z Indicator of rescue medication initiation.

Zk Indicator of rescue medication initiation at visit k, for k = 0, 1, . . . .

Vj:k The vector of variables (Vj , . . . , Vk) for j ≤ k.

Y Outcome.

Y (a) Potential outcome where A = a.

Y (a, z) Potential outcome where A = a and Z = z.

Y All potential outcomes of Y .

P0 True probability distribution of the observed data, that is the true DGP.

P ∗ True probability distribution for the data structure involving potential outcomes.

P Possible DGP.

p0 Density of true DGP P0.

p Density of P .

Pa(V ) Parents of the variable V .

M Statistical model, which is a collection of possible DGPs for the observed data.

M∗ Causal model, which is a collection of possible DGPs for the data structure
involving potential outcomes.

Ψ(·) Statistical estimand.

Ψ∗(·) Causal estimand.

Ψ(P0),Ψ
∗(P ∗) Target parameters.

ϕP0 Influence function of an estimand.

Q̄Wk
Mean of the conditional distribution of Wk given Pa(Wk).

Q̄Y Mean of the conditional distribution of Y given Pa(Y ).

G(W ) Mean of the conditional distribution of A given W .

gVk
The density of the conditional distribution of Vk given Pa(Vk)

Nn(µ,Σ) The n-dimensional normal distribution with mean µ and variance matrix Σ.

tν The univariate t-distribution with ν degrees of freedom.
d−→ Convergence in distribution.
P−→ Convergence in probability.

Notation Description

viii



1 Introduction

A phase three randomised controlled trial (RCT) is generally conducted with the purpose of
demonstrating the efficacy and safety of an experimental treatment. It is often conducted because
of some questioning by experts in clinical practice. RCTs are considered the gold standard
for drug approval as randomisation implies some very favourable properties in causal inference.
Randomisation is crucial in these trials as it guarantees that the distribution of both observed and
unobserved baseline covariates and hence confounding factors is similar across treatment groups.
However, participants in the study may experience worsening of symptoms, insufficient therapeutic
effects or unforeseen complications. In response to this, they might start non-randomised disease
targeting medication in addition to the randomised treatment [1]. This non-experimental treatment
will be referred to as rescue medication in this project. Some participants may even discontinue the
randomised treatment in response to complications. Receiving rescue medication and discontinuing
treatment are examples of an intercurrent event (ICE), which is a term used for events that occur
after randomisation that may affect the assessment and interpretation of the outcome [2]. ICEs can
be related to the treatment or the disease, but sometimes it is completely unrelated to either.

ICEs occur in almost all trials and sponsors are usually encouraged to record them as part of the
trial conduct. Naturally, this data is used for assessing safety of a treatment, but it is also important
for showing efficacy as intercurrent events often affect the outcome. In [3], ICEs are an important
part of answering the clinical question of interest, which will be discussed in greater detail in
Section 1.2. As a motivation for why this discussion on ICEs is so important, we will exemplify
the setting by considering rescue medication. We may expect that rescue medication will affect
the outcome in some way as it is additional medication that is meant to treat the same disease as
the experimental treatment. Rescue medication is only given to participants in need of it making
it a non-randomised treatment. As a consequence, this may introduce some bias as the need for
rescue medication might be uneven across treatment arms. This is of course concerning as most
trials are set up as randomised trials to avoid bias. Hence, the use of rescue medication complicates
the interpretation and analysis of the trial results if one wishes to determine the treatment effect in
the hypothetical scenario where rescue medication was not available. This is of interest, since the
effect of the experimental treatment in the case where it is not influenced by other medications is
important for documentation of the experimental drug’s efficacy.

It may seem like an easy fix to design the study such that participants do not end up taking
rescue medication or discontinue the randomised treatment by simply forbidding it. However, this
approach would be highly unethical as the participant’s safety should be of highest priority when
conducting a trial. In addition, there are ICEs like for example death that would not be possible to
hinder no matter what. Hence we need methods which are able to account for the occurrence of
ICEs. Common practice for determining the treatment effect in the scenario where ICEs are absent,
has been to discard all samples collected after any ICE, and therefore handle them as missing.
However, it is of interest to explore other methods that utilise all the collected information and
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Group MS10-01 CHAPTER 1. INTRODUCTION

models the effects of ICEs, instead of disregarding observations that are affected by ICEs. This
approach is especially of interest in studies involving chronic and rare diseases as rescue medication
intake is a lot more common making very little data available if we disregard all the affected data.

1.1 Causal inference workflow

Before conducting a trial it is extremely important to make some statistical considerations and
decisions with the objective in mind. The aim of incorporating this into the planning of a trial is to
ensure that the trial data are reasonable to base an answer upon. This can be ensured by following
the workflow presented in this section, going from the clinical world into the statistical world
through the world of causality.

Clinical question
of interest

Clinical Estimand
• Population
• Treatment
• Variable
• Population level

summary
• Strategy for

handling ICE

Statistical worldCausal world

Identification

Estimation problem
Observed data
Statistical model M
Statistical Estimand Ψ

Statistical Estimator Ψ̂(·)

Statistical Estimate ψ̂

Rubin causal model
Data with potential outcomes
Causal model M∗

Causal Estimand Ψ∗

Causal Interpretation Identification

Figure 1.1: Causal inference workflow that gives an overview of the different types of estimands
and how they relate to each other.

Figure 1.1 displays the ideal workflow for answering clinical research questions based on clinical
trials. We start on the left-hand side, where we have the clinical question of interest which are
specified to align the goals of conducting the study. This clinical question should now be translated
into a clinical estimand, which will be introduced in Section 1.2, explicitly outlining the five
attributes to reduce uncertainties in the answer to the clinical question. Since clinical practice
and proper statistics are completely different, this clinical estimand serves as a tool to connect
the clinician’s knowledge and the expertise of the statistician. When this has been decided, we
can move on to considering the Rubin causal model, which will be introduced in Subsection 2.2.1.
Here, the five attributes of the clinical estimand are formulated mathematically in terms of the
causal data structure, causal model and causal estimand. Intuitively, one can think of defining the
causal estimand as answering the question “In an ideal world where we can observe the outcomes
in either treatment scenario, what quantity would we like to find?”.

In order to move on to the statistical world on the right-hand side, we rely on an identification result
under some identifiability assumptions which will be described in Subsection 2.2.4 and is depicted
with a blue arrow. The observed data, the statistical model and the statistical estimand make up
the estimation problem, which can be solved using statistical methods.This leads to formulating a
statistical estimator that produces a statistical estimate, which will be the topic of Chapter 3. After
this process, we again rely on the identifiability result, hence the blue arrow, to make a causal
interpretation of the estimate. The causal interpretation makes us able to say something about the
ideal world where we can observe outcomes in either treatment scenario, based only on observed

2



1.2. HANDLING OF INTERCURRENT EVENTS Group MS10-01

data. At this point our job as statisticians is done if we can formulate this causal interpretation in a
way where stakeholders are able to understand it and use it to make important decisions.

1.2 Handling of intercurrent events

As mentioned earlier, ICEs affect the observed outcome and hence the interpretation of the results
based on the outcome. Hence, if ICEs can not be avoided in clinical trials, it is important to handle
them properly. In this section, we will stress the importance of accounting for ICEs by using an
example and afterwards discuss some of the recommendations made by the regulatory authorities
about this matter.

Imagine that we conduct a trial, where the effect is measured in an outcome variable measured
repeatedly through time, and a lower value corresponds to an improvement. On the other hand,
a too high value of the outcome variable makes a participant more prone to receiving rescue
medication, due to safety concerns. Figure 1.2, depicts the mean progression of some biomarker
of the participants in either treatment group throughout time together with a grey area indicating
when a participant will receive rescue medication. The two groups are equal in the mean value
of their biomarker at the beginning of the trial, but the treatment group improves more over time,
compared to the placebo group. This implies that later on in the trial placebo participants are much
more prone to receiving rescue medication, since they are more likely to enter the grey area. As
a result, the biomarker is lowered in the placebo group too. This is explained by the fact that
rescue medication is often defined as other disease-targeting medication. At the end of the trial,
we see a difference between placebo and the treatment group, depicted by the blue arrow. But, in
addition we have depicted, by a dashed red line, how the placebo group would have behaved, had
rescue medication not been available. Following this dashed line, we see that the actual difference,
depicted by a yellow arrow, had rescue medication not been available, is bigger than when rescue
medication is allowed. Hence, if one does not account for the intake of rescue medication in the
statistical analyses, the treatment effect could be underestimated. This is especially a concern in
cases where the intake of rescue medication is not balanced between the treatment groups.

TimeTreatment Placebo

Figure 1.2: This figure illustrates the mean trajectory of some biomarker showing disease pro-
gression in treatment group (green line) and placebo group (red line) over time. The blue vertical
arrow represents the observed changes in the biomarker, highlighting the difference in treatment
effectiveness over time compared to placebo. The shaded area illustrates the threshold of the
biomarker for receiving rescue medication and the dashed red line indicates the progression of
the placebo arm had rescue medication not been available. In this case, the yellow vertical arrow
represents the the difference in treatment effectiveness over time compared to placebo.

One very important aspect in the handling of data obtained after occurrence of an ICE in a clinical
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Group MS10-01 CHAPTER 1. INTRODUCTION

trial is what the regulatory authorities suggest. This is important since their approval is crucial in
the process of getting a new treatment on the market.

The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for
Human Use (ICH) in cooperation with The European Medicines Agency (EMA) published an
addendum called Estimands and sensitivity analysis in clinical trials [3] to the overall statistical
guideline ICH E9 Statistical Principles for Clinical Trials [4]. In general, this addendum states that
it is important to prespecify strategies for handling ICEs. This is done through specifying a clinical
estimand, corresponding to the clinical question of interest, which has five attributes:

• Target population

• Treatment condition of interest

• Outcome variable of interest

• Population-level summary providing a basis for treatment group comparison

• Strategies for handling ICEs

Each of these attributes influence the interpretation of the results obtained from the analysis. The
purpose of specifying each of these five attributes is to eliminate uncertainties in the clinical
question. For examples of how one can specify these attributes see [5].

In addition to this, different strategies for handling data collection after occurrence of an ICE is
outlined in the addendum. In the following, we will highlight the strategies that will be considered
in this project:

• Treatment Policy strategy: Using this strategy we will disregard the occurrence of ICEs and
use the values of the affected variables in the analysis as if they had not been affected.

• Hypothetical strategy: Considering a hypothetical scenario for the ICE. This could be the
scenario that the participant received the assigned treatment and not experienced any ICE.

The treatment policy estimand will report the estimated treatment effect on a population level. That
is, the effect that we would observe if we released this drug in to the population. The treatment
policy estimand does not take any events between randomisation and observing the outcome into
account. Often the authorities are interested in this effect, as it gives an idea of what happens to the
population if we just release this medication and people did whatever they want with it. In contrast,
the hypothetical estimand will report the estimated treatment effect on an individual level and it “is
relevant for physicians who base clinical patient-specific decisions on the anticipated achievable
treatment effect” [6]. This effect applies to individuals that do not experience any of the ICEs that
are handled using the hypothetical strategy. When a patient is diagnosed with a disease the patient
does not care about the population level effect of the prescribed medication which is contaminated
by non-adherence, protocol deviation and additional medication. Instead the hypothetical estimand
reports the effect of interest for the patient. It is important to notice that the guidelines solely
emphasise the usage of estimands, not which strategy to use or that one strategy is better than
the other. Often, the two estimands, the treatment policy estimand and the hypothetical estimand,
augmented with the two specified strategies for handling ICE, respectively, will complement each
other in analyses. However, one of the estimands has to be the primary one, at least in medicine,
since they have to report one effect on the label.

4



1.3. BRIEF INTRODUCTION TO PIONEER 1 Group MS10-01

1.3 Brief introduction to PIONEER 1

The PIONEER phase 3a clinical development programme for oral semaglutide is a global develop-
ment programme with type 2 diabetes patients which completed in 2018. We have been provided
access to data from the PIONEER 1 trial by Novo Nordisk A/S. In this trial, ICEs like discontin-
uation of trial product and all additional medications were registered. Most of the time endpoint
measurements of HbA1c were collected even after these ICEs occurred, making the resulting data
appropriate for looking into the hypothetical strategy for handling this ICE.

Figure 1.3: Trial design for PIONEER 1 [6]. The red box highlights the arms that we will consider
in this project.

The design of the trial is illustrated in Figure 1.3, showing the exact number of randomised
participants, 703, as opposed to the planned number of participants, 704. The duration of the trial
was approximately 33 weeks, from screening visit, 2 weeks before randomisation, to the follow-up
visit, 5 weeks after end of treatment. At the screening visit participants were assessed for their
eligibility according to inclusion and exclusion criteria. One of the inclusion criteria was that the
participants need to be treated with diet and exercise only 30 days prior to screening. To see full
inclusion and exclusion criteria for PIONEER 1, see Table B.1. The trial is a four-armed study with
a randomisation ratio of 1:1:1:1. Participants allocated to each of the three active treatment arms,
displayed as the top three rows of boxes in Figure 1.3, start on the lowest dose, 3 mg, and then
gradually increase the dose up to their respective target doses. This is illustrated by colour coded
boxes sorted in columns to make it clear that the first increase, assuming that the target dose is not
reached, is at week 4 and the next at week 8. For simplicity, we have chosen to focus on comparing
placebo and the arm with 14 mg as target dose, corresponding to the two bottom rows of boxes
in Figure 1.3, marked by a red rectangle. Hence, when using the trial data in this project, we will
consider it as a two armed study with randomisation ratio 1:1.

The primary endpoint when seeking for efficacy is the change in glycosylated haemoglobin A1c
(HbA1c) from baseline to end of treatment at week 26. The variable HbA1c reflects the average
blood sugar level over the past two to three months, often expressed in percentage [7]. The range
in which the blood sugar level is considered normal for adults is HbA1c < 5.7%. When HbA1c is
between 5.7% and 6.4% it is considered so-called pre-diabetes, and then diabetes when it is above
6.5%. In Table B.1, which shows the inclusion criteria, it should be noted that patients must have an
HbA1c above 7.0% in combination with at least 3 months of diagnosed diabetes, to be considered
eligible to participate in the trial. This biomarker is a good indicator of overall glycaemic control.
In patients with diabetes, it is desirable to lower HbA1c since this will indicate well-regulated
long-term diabetes.

5
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As an other measure of glycaemic control, the fasting plasma glucose (FPG) is also measured at
each visit. FPG is the glucose level in the blood after at least 8 hours of fasting. This gives an
insight into the participants glycaemic control at the very moment that the measurement is taken.
Naturally, FPG measurement have a lot more variability than HbA1c measurements making it a
poor endpoint for determining efficacy for a treatment. However, it is important to measure to
monitor the safety of the participants and use as a guidance for whether participants are in need of
any additional anti-diabetic medication. This will be discussed in greater detail in Section 5.1.

Semaglutide is a glucagon-like peptide-1 (GLP-1) analogue treatment for patients with type 2
diabetes. It lowers blood glucose levels by stimulating the secretion of insulin and reducing the
secretion of glucagon [8]. This treatment is crucial for patients diagnosed with diabetes, since a too
high level of blood sugar, called hyperglycaemia, in an extended period of time comes with a lot
of potential side effect. For example it can lead to health problems that affect the eyes, kidneys,
nerves and heart, and it can cause serious health problems that require emergency care [9]. It can
potentially lead to ketoacidosis, which is life threatening. On the other hand, one of the side effects
in the treatment of diabetes is too low level of blood glucose, potentially causing unconsciousness.
Hence, maintaining a stable level of blood glucose is essential for a healthy living.

Based on this case we can illustrate the first step in the workflow, Figure 1.1. We start from the
clinical question of interest, which is

What is the treatment effect of oral semaglutide 14 mg compared to placebo on patients with T2D
in the hypothetical scenario where rescue medication was not available and no one discontinues

trial product? [6]
Now we can more formally define this in terms of attributes to the clinical estimand:

• Population: Participants aged ≥ 18 years with T2D for at least 30 days, who at trial entry
were being treated with diet and exercise only and had HbA1c levels between 7% and 9.5%,
see Table B.1.

• Treatment: Oral semaglutide 14 mg vs. placebo.

• Outcome variable: Change in HbA1c from baseline after 26 weeks.

• Population level summary: Mean difference in change in HbA1c from baseline between
treatment arms.

• Strategy for handling ICE: Hypothetical strategy for treatment discontinuation and rescue
medication use.

We will return to this example later, and show the journey through the workflow, by illustrating a
practical application of the steps. But since we are moving into the causal and statistical world, we
need some theory before applying it.

In this project, we will mainly focus on discontinuation of trial product and initiation of rescue
medication. Hence we will ignore the occurrence of any other ICE. However, the methodology
discussed in this project aims to be general enough to apply to other ICEs. In Chapter 2, we will
only focus on initiation of rescue medication to illustrate important concepts, which we will expand
to a more complex case in Chapter 5 that takes both discontinuation of trial product and initiation
of rescue medication into account.

6



2 Causal inference

This chapter will begin by introducing what we can obtain from experiments, data. Then it will
move on to the causal world, where we explain causal models and causal estimands under Rubin’s
potential outcome framework. These will serve as the mathematical translation of the clinical
estimand. The last part in Figure 1.1, going from the causal world to the statistical world is
established by a section on identification. The concepts will be illustrated both by examples and
graphics. It is mainly based on [10, ch. 1, 2, 3], [11, ch. 1, 2] and [12, ch. 1, 2].

2.1 Data

This section describes the importance of having some knowledge about the origin of the data and
potential dependencies among variables, since “data are meaningless without knowledge about the
experiment that generated the data” [11]. It takes inspiration from [13] in addition to the sources
mentioned above.

Clinical questions often focus on specific properties of a population, like how they would respond
to a given treatment. Ideally, we would have complete information on every single unit in this
population and then be able to measure the exact property of interest. However, this is not feasible
in practice, and hence we instead try to draw conclusions using a sample from the population of
interest. Obtaining a valid sample involves many considerations that will impact the inference that
one can draw from the sample. However, this is beyond the scope of this project as we have no say
in the collection process of the data that we will consider in this project, which is introduced in
Section 1.3.

Definition 2.1 (Data generating process). A sample from the population of interest will be
assumed to be n i.i.d. realisations of a stochastic vector that follows an unknown probability
distribution which is referred to as the data generating process (DGP).

In statistics, we are interested in learning something about this DGP through the sample that has
been collected. It is extremely important that we have some prior knowledge about the data and the
experiment that it originates from to make it useful, which is described in the following.

Consider a collection of n i.i.d. realisations of a stochastic vector. Specifying the data structure
in a study consists of a description of each variable in the vector, including its class and what it
measures and the order in which the variables are observed with respect to each other, referred to as
time ordering. This will be illustrated by the following example.

7
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Example 2.1 Specification of the data structure
Consider the PIONEER 1 trial, presented in Section 1.3, which is an RCT where we collect
data oi, i = 1, . . . , n, which are assumed to be n i.i.d. realisations of the stochastic vector
O = (W,A,Z, Y ). We explicitly specify the data structure:

• W contains the baseline covariates sex (binary), region (categorical) and blood
glucose level measured as HbA1c (continuous).

• A is the randomised treatment allocation (binary), where A = 0 indicates that the
participant is assigned to placebo and A = 1 indicates assignment to an anti-diabetic
drug.

• Z is the binary indicator of whether a participant has initiated rescue medication
throughout the study, where Z = 1 indicates initialisation of rescue medication at
some point.

• Y is the blood glucose level measured as HbA1c (continuous) after T ∈ N weeks,
which serves as the outcome of interest.

• We observe the baseline covariates W prior to allocation to treatment A. Hereafter
the indicator of rescue medication Z is recorded, and then the outcome Y is observed.

We will use the notation and data structure introduced in Example 2.1 throughout the entire project
to exemplify different concepts.

Definition 2.2 (Confounder). A variable which is a common cause of both the treatment and
the outcome variable is called a confounder in the treatment-outcome relationship.

In an RCT the treatment allocation is random and hence independent of covariates, which implies
that there will be no confounders in the treatment-outcome relationship. As data structures get
more complicated, it is not always clear which variable is considered a treatment and which is
considered an outcome. Hence, it may be important to specify the relationship that a variable is a
confounder in. To illustrate the concept of a confounder the following example will be based on an
observational study.

Example 2.2 Confounder
Consider an observational study aiming to determine the effect of smoking on lung cancer.
In this case the treatment A could be a binary indicator of whether or not a person is
smoking, and the outcome of interest Y is a binary indicator of whether or not the person
has experienced lung cancer. A potential confounder in the A-Y relationship, which we
will denote by W , is whether or not the participant’s parents smoked. Passive smoking is
believed to affect the risk of lung cancer, and having parents that smoke might influence on
participants’ own smoking habits.

It will later be evident that it is important to measure confounders, if there are any, and to incorporate
them in the analysis.

8
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2.2 Models and estimands

As explained, we will often have some prior knowledge of the way the data has been collected.
This knowledge is very powerful in narrowing down the collection of potential DGPs and thereafter
determining the quantity of interest, which are topics in this section. In addition to the sources
mentioned earlier, this section is based on [14].

2.2.1 Rubin causal model

Causal questions are often related to a hypothetical world that we are unable to observe data from.
For example, in a clinical study one might be interested in what would have happened if participants
received a different treatment or no treatment at all, to explore the therapeutical effect.

To formalise this framework, we introduce the concept of potential outcomes as we will be working
under the Rubin causal model in this project [15]. We start by introducing the Rubin causal model
corresponding to the data structure described in Example 2.1 with inspiration from [12, sec. 1.2].
The potential outcome Y (a, z) will denote the outcome whenever A = a and Z = z. Potential
outcomes answer the question of what would have happened to the participant’s outcome in the
different treatment scenarios. The trouble is that as a participant can not receive all treatment
combinations simultaneously, only one of these potential outcomes can be observed for each
participant in practice. This is known as the fundamental problem of causal inference.

Definition 2.3 (Causal model). A causal model M∗ is a collection of possible DGPs for a
stochastic vector involving potential outcomes.

For the data structure O = (W,A,Z, Y ) introduced in Example 2.1, the causal model M∗ will
contain all possible DGPs for the stochastic vector (W,A,Z, Y (0, 0), Y (0, 1), Y (1, 0), Y (1, 1)).
After defining the causal model M∗, we need to determine the causal estimand which answers the
clinical question of interest, in terms of potential outcomes.

Definition 2.4 (Causal estimand). The causal estimand is a mapping

Ψ∗ : M∗ → R (2.2.1)

that associates each distribution in the causal model M∗ with a number.

In words, the causal estimand is a mathematical formulation of the clinical estimand, incorporating
each of the five attributes, see Section 1.2. That is, in the hypothetical world where we can observe
all potential outcomes simultaneously, what quantity answers the clinical research question? The
concept of a causal estimand can easily be extended to a higher dimensional mapping, which takes
values in Rd for d ∈ N, but it is out of scope for this project.

Example 2.3 (Continuation of Example 2.1) Rubin causal model
We are interested in determining the efficacy of the treatment A but without the influence
of rescue medication Z, as explained in Section 1.3. Now, we can formulate the clinical
estimand as a mathematical quantity in the causal world, where we assume that we can
observe all potential outcomes for each participant and hence answer the question directly.

9
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Rubin causal model
Data Let o∗1, . . . , o

∗
n denote n i.i.d. observations from the stochastic vector

O∗ = (W,A,Z, Y (0, 0), Y (0, 1), Y (1, 0), Y (1, 1)). The covariates W and
the potential outcomes are continuous measurements of HbA1c bounded
between 0 and 100%. W is measured at baseline and the potential outcomes
are measured at the end of treatment. A is a binary indicator of randomised
treatment, which is assigned right after measuring W , but is independent
on W . Z is an indicator of whether or not a participant has taken rescue
medication, which is measured after randomisation but before observing the
final outcome.

Model A causal model M∗, which is a collection of distributions of O∗ designed
to comply with the natural constraints implied by data, eg. boundedness and
independence.

Estimand The causal estimand of interest is

Ψ∗(P ) = EP [Y (1, 0)− Y (0, 0)]

for P ∈ M∗, which corresponds to the clinical question of interest.

As a disclaimer, there are many different options for defining causal estimands other than the ATE.
One might for example be interested in the covariance, density, population mean or the conditional
average treatment effect, however these other possible causal estimands will not be discussed in
this project. This section has now covered the middle part of Figure 1.1. Under the assumption
of identification, the blue arrow in the figure, we are now able to move on to the statistical world,
which is the topic in the next section.

2.2.2 The statistical estimation problem

A natural assumption is, that given the treatment A, the rescue medication indicator Z and the
potential outcomes, the outcome Y that we actually observe is given by

Y =
∑
a,z

I(A = a, Z = z)Y (a, z).

Hence the statistical part is simply the observed part, which is what we will cover in this section.

Definition 2.5 (Statistical model). A statistical model M is a collection of possible DGPs
for a observable stochastic vector.

From now on, we will assume that all probability distributions in M are dominated by a common
measure µ, such that we can uniquely identify each possible probability measure P ∈ M by
its density p = dP

dµ . This is a rather technical assumption, which is necessary for ensuring that
each probability distribution has a unique density, but we will not go into further details, but only
consider models containing probability distributions that are dominated by a single measure.

10
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Example 2.4 Specification of a statistical model
Consider a one-dimensional continuous stochastic variable X with an unknown distribution.
If prior knowledge, on the experiment that generated observations from X suggests that the
distribution may be normal, then the statistical model is

M =

{
P with density p(x) =

1

σ
√
2π

exp

(
−(x− µ)2

2σ2

) ∣∣∣∣ for µ ∈ R, σ ∈ R

}
.

(2.2.2)

This statistical model places an assumption on X that is quite restrictive as there are many
other distributions that a continuous variable might follow. However, if we know that it is
normally distributed, but don’t know the parameters, this restriction makes sense as we now
have a much smaller model space to search for the true DGP.

We need to make sure to avoid assumptions that are unrealistic for the data as this could possibly
restrict the statistical model so much that the true DGP is no longer part of it.

Definition 2.6 (Statistical estimand). The statistical estimand is a mapping

Ψ : M → R (2.2.3)

that associates each distribution in the statistical model M with a number.

Example 2.5 (Continuation of Example 2.3) Statistical estimand
We are interested in determining the efficacy of the treatment A but without the influence of
rescue medication Z, as explained in Section 1.3. Now, we can formulate the Rubin causal
model as a statistical estimation problem.

The statistical estimation problem
Data Let o1, . . . , on denote n i.i.d. observations from the stochastic vector O =

(W,A,Z, Y ). W and Y are continuous measurements of HbA1c bounded
between 0 and 100%, measured at baseline and end of treatment respectively.
A is a binary indicator of randomised treatment, independent on the baseline
variable W . Z is an indicator of whether or not a participant has taken
rescue medication. Y is equal to Y (a, z) whenever A = a and Z = z.

Model A statistical model M, which is a collection of distributions designed to
comply with the natural constraints implied by data, eg. boundedness and
independence.

Estimand The statistical estimand of interest is

Ψ(P ) = EP [EP [Y | A = 1, Z = 0,W ]− EP [Y | A = 0, Z = 0,W ]].

It will be clear later how this aligns with the causal estimand of interest and
the clinical question of interest.

11



Group MS10-01 CHAPTER 2. CAUSAL INFERENCE

It is crucial, that there is a one-to-one correspondence between the statistical and causal world. We
can guarantee this, under some non-testable assumptions, which we will return to and establish in
Subsection 2.2.4.

2.2.3 Structural causal models and directed acyclic graphs

As a tool for illustrating the dependencies among variables, we will introduce the concept of a
structural causal model.

Definition 2.7 (Structural causal model). Consider a collection of time-ordered stochastic
variables X1, . . . , XK for K ∈ N. Let U = (U1, . . . , UK) be independent stochastic
variables with joint distribution PU . A structural causal model (SCM) consists of K
structural assignments

Xk = fk(Sk, Uk) (2.2.4)

and the joint distribution PU , where fk is a function and Sk ⊆ {X1, . . . , Xk−1} for k =
1, . . . ,K.

Let us consider an SCM for the stochastic vector O = (W,A,Z, Y ) introduced in Example 2.1. We
can express the dependencies between the variables with respect to the time ordering in a system of
structural equations

W = fW (UW )

A = fA(W,UA)

Z = fZ(W,A,UZ)

Y = fY (W,A,Z,UY ).

(2.2.5)

Here f = (fW , fA, fZ , fY ) represents the generating functions for the variables W , A, Z and Y ,
whereas U = (UW , UA, UZ , UY ) are stochastic variables with joint distribution PU . The variables
W,A,Z and Y are stochastic through UW , UA, UZ and UY , which in turn are assumed to be
independent. That is, the joint distribution PU is a product distribution.

Example 2.6 (Continuation of Example 2.1) Specification of an SCM
In the following, we give an example of how an SCM could be explicitly specified for the
data structure (W,A,Z, Y ), where W is just a single continuous covariate. In this example,
we will assume that we have complete knowledge on the distribution of U , W , A and Z.
Let us start by specifying the joint distribution PU of U

UW ∼ N (0, 1)

UA ∼ Bernoulli(1/2)

UZ ∼ Bernoulli(1/50)

UY ∼ N (0, 1).

(2.2.6)

12
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Now, we can specify the structural equations

W = 10 + 2 · UW

A = UA

Z = UZ

Y = α ·W + β ·A+ γ · Z + UY ,

(2.2.7)

where α, β ∈ R are unknown parameters. Hence, it is easy to see that we only need to
find α, β and γ to have complete knowledge of the DGP, which will enable us to answer
questions about features of the DGP.

The representation in (2.2.5), shows an example of a SCM that imposes very few assumptions on
the relationships among the involved variables, hence very few restrictions on the model. The
model is only augmented with the assumption that the intuitive time ordering holds, namely that a
change in Y would not be able to change the values of W nor A. However, a change in A might
have an effect on Y , which is exactly the effect of interest in most studies. However, as shown in
Example 2.6, the SCM can be specified in a way that imposes additional assumptions by specifying
the distribution of U and the class of the functions in f .

It is often of interest to visualise the dependencies among the stochastic variables involved in the
SCM and hence make some of the imposed assumptions even more explicit. For this purpose we
can utilise graphs to make a quick and easy overview of the possible dependencies among the
variables, which gives a more intuitive understanding of some of the assumptions that are imposed
in the model.

Definition 2.8 (Graph terminology ). A graph is a collection of vertices and edges connecting
them. Graphs are visualised using nodes and lines representing vertices and edges respec-
tively. A directed graph is a graph, where the edges have a certain direction represented by
arrows. If an arrow points towards a vertex, it is called a child and the vertex that the arrow
points away from is called the parent of the child. The set of parents of a vertex V is denoted
Pa(V ).

In this project, we use directed acyclic graphs (DAG) to depict causal relationships. In these
graphs, each variable involved in the causal relationship is associated with a unique vertex. The
interpretation of the parent-child relationship in a DAG is that the parent potentially affects the child
in some way. Every SCM can be associated with a graph, which visualises the causal assumptions
about variable dependencies that have been made for each of the variables.

W A Z Y

Figure 2.1: DAG related to (2.2.5). Arrows indicate a potential causal relationship.

The DAG corresponding to the SCM in (2.2.5) is shown in Figure 2.1. Here, the arrows represent a
potential causal relationship. The graph in Figure 2.1 gives a nice overview of the dependencies
among variables. However, it is important to understand that there are limitations of DAGs and
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that they are not able to encode all assumptions made in the model implied by the SCM, like the
functional form of f . Hence, DAGs serve as an addition to the SCM and not something that can
stand alone.

Example 2.7 (Continuation of Example 2.1) SCM for an RCT
In a two-armed RCT, we know that the covariate values W do not influence the treatment A
and most often we also know the exact form of the mechanism fA and distribution of UA.
In this case, the SCM would be

W = fW (UW )

A ∼ Bernoulli(b)

Z = fZ(W,A,UZ)

Y = fY (W,A,Z,UY ),

(2.2.8)

where b ∈ (0, 1) is determined by the randomisation ratio. These equations are an example
of incorporating the knowledge of the randomisation of treatment in an RCT into the model.
As we do not have any knowledge on how the variables are related, fW , fZ , fY remain
unknown functions and likewise the distributions of the errors UW , UZ , UY also remain
unknown.

W A Z Y

Figure 2.2: DAG related to (2.2.8). Arrows indicate a potential causal relationship.

The DAG associated with the SCM (2.2.8) is illustrated in Figure 2.2. As A does not depend
on anything but UA, we will not have any incoming arrows to A in the DAG and as a
consequence, we do not have any confounders in the A-Y relationship in an RCT.

Note that in both (2.2.5) and (2.2.8), we could just as well have used the parent-notation introduced
in Definition 2.8, and hence written

W = fW (UW )

A = fA(Pa(A), UA)

Z = fZ(Pa(Z), UZ)

Y = fY (Pa(Y ), UY )

(2.2.9)

instead, as long as the SCM is associated with a DAG making it clear how the parent-child relations
are defined. Hence SCMs and DAGs complement each other very nicely in defining and visualising
the data structure and dependencies among the measured variables.

Interventions and g-computation formula

The concept of SCMs and DAGs open up for considering child variables under different distributions
of the parent variables, using the terminology introduced in Definition 2.8. This is extremely useful
as we are often interested in scenarios where we change the parent variables and see the effect it
has in the child variable. If we learn the distribution of the child variable in terms of the parent
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variables then we can simply incorporate the newly proposed distribution of the parent variable and
find the effect of interest.

Definition 2.9 (Intervention). An intervention is an external manipulation of an SCM, where
the equation for one or more variables are changed to follow a certain distribution. The
variables that are manipulated in this way are referred to as intervention nodes and the SCM
after incorporating an intervention is called the post-intervention SCM.

Imposing an intervention on the treatment variable in the system of equations defined by the SCM
describes how data would have looked if the treatment had been assigned in such a way.

Example 2.8 (Continuation of Example 2.7) Post-intervention SCM
Consider the post-intervention SCM

W = fW (UW )

A = 0

Z = 0

Y = fY (W, 0, 0, UY ),

(2.2.10)

where we intervened by setting A = 0 and Z = 0. This SCM will construct the potential
outcomes Y (0, 0), since we are assigning all the participants to the control group. Similarly,
we could intervene by setting A = 1 and Z = 0, which would give us the potential outcome
Y (1, 0). This is exactly what we need to determine the causal estimand introduced in
Example 2.3.

Definition 2.10 (Static intervention). An intervention that imposes a constant function for
the intervention node is called a static intervention.

The static intervention is the simplest type of intervention and it will be the only type that we
will consider in this project. As an example of a static intervention, we have imposed a static
intervention for both A and Z in (2.2.10), which impacts the distribution of its child node Y .

If we considered the density for P ∈ M, we could factorise the density p as

p(O) = p(W,A,Z, Y ) = p(A |W )p(Z | A,W )︸ ︷︷ ︸
g

p(W )p(Y |W,A,Z)︸ ︷︷ ︸
q

, (2.2.11)

where g represents the part of the density corresponding to the intervention nodes A and Z. Note
the clear connection between this decomposition and the SCM (2.2.5), as given the functions
f = (fW , fA, fZ , fY ) and the distribution PU we know (2.2.11). Now, if we replace g with an
intervention in (2.2.11), we get the g-computation formula, which is the density under the external
manipulation. Under the static intervention, as presented in Example 2.8, the densities for A and Z
is just indicators. Hence the joint density simplifies to

pint(O) = I(A = 0)I(Z = 0)p(W )p(Y |W,A,Z)
= p(W )p(Y |W,A = 0, Z = 0).

(2.2.12)

15



Group MS10-01 CHAPTER 2. CAUSAL INFERENCE

2.2.4 Identification

To conduct meaningful causal inference, we require that there is a direct connection between
observations in the causal model to observations in the statistical one. This connection between the
causal and statistical model relies on non-testable assumptions. For example, if we are interested
in the causal estimand introduced in Example 2.3 which involves two of the potential outcomes,
making it a feature of the probability distributions in the causal model, we need the following
assumptions to be satisfied.

Assumption 2.11 (Identifying assumptions).
(i) No unmeasured confounders:

• [(Y (0, 0), Y (0, 1), Y (1, 0), Y (1, 1)) ⊥⊥ A] |W
• [(Y (0, 0), Y (0, 1), Y (1, 0), Y (1, 1)) ⊥⊥ Z] | A,W

(ii) Positivity:
• P0(A = a |W ) > 0 for a ∈ {0, 1}, whenever P0(W ) > 0
• P0(Z = z | A,W ) > 0, for z ∈ {0, 1}, whenever P0(A,W ) > 0

(iii) Consistency: Y = Y (a, z) whenever A = a and Z = z

Assumption 2.11 (i) states that all possible confounders in the A-Y relationship and in the Z-
Y relationship should be measured. In other words, the first of these states that we assume
conditional independence between the treatment mechanism and the potential outcomes given
the covariates. The positivity assumption 2.11 (ii) ensures that any participant in the study has
a non-zero probability of getting allocated to either treatment option, for both A and Z. The
consistency assumption 2.11 (iii) states that the actual outcome observed in the trial corresponds to
the potential outcome determined by the actual treatment assignments. If we draw inference on a
causal quantity from a statistical quantity without satisfying the identifying assumptions, it could
lead to bias called identification bias.

If both A and Z are randomised, assumptions 2.11 (i) and 2.11 (ii) are satisfied by definition. As
mentioned, the random assignment of treatment ensures no confounders at all, and hence also
no unmeasured confounders. In addition, the randomisation also ensures positive probability of
both treatment options regardless of the covariate values. At first sight it might seem natural that
Assumption 2.11 (iii) is satisfied in this context as it just says that the outcome you observe is
exactly the outcome you thought you would observe. One way this assumption could be violated is,
if the treatment group was not uniquely defined. For example, you can not pool observations from
patients that receive different doses of treatment into one treatment arm.

The importance of each of these assumptions becomes more clear when showing the identifiability,
which is the topic of the following result. Identifiability refers to having a connection between a
feature of distributions in the causal model and a feature of distributions in the statistical model.

Proposition 2.12 (Identifiability). Let P ∗ ∈ M∗ denote the true DGP for O∗ =
(W,A,Z, Y (0, 0), Y (0, 1), Y (1, 0), Y (1, 1)) and P0 ∈ M the true DGP for O =
(W,A,Z, Y ). Then under Assumption 2.11, it holds that

EP ∗ [Y (1, 0)− Y (0, 0)] = EP0

[
EP0 [Y | A = 1, Z = 0,W ]

− EP0 [Y | A = 0, Z = 0,W ]
]
,

(2.2.13)

where the subscript in the expectation makes it explicit that the expectation is taken over the
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distribution P ∗ or P0.

Proof. By the law of total expectation we find that

EP ∗ [Y (1, 0)− Y (0, 0)] = EP ∗ [EP ∗ [Y (1, 0)− Y (0, 0) |W ]]

= EP ∗ [EP ∗ [Y (1, 0) | A = 1,W ]]

− EP ∗ [EP ∗ [Y (0, 0) | A = 0,W ]]

= EP ∗ [EP ∗ [Y (1, 0) | A = 1, Z = 0,W ]]

− EP ∗ [EP ∗ [Y (0, 0) | A = 0, Z = 0,W ]]

= EP0 [EP0 [Y | A = 1, Z = 0,W ]

− EP0 [Y | A = 0, Z = 0,W ]],

(2.2.14)

where the second and third equality utilises the no unmeasured confounders assumption 2.11 (i)
and linearity of the expectation, and the fourth uses the assumption of consistency 2.11 (iii). The
positivity assumption 2.11 (ii) ensures that these expectations are well-defined.

The result in Proposition 2.12 shows that Assumption 2.11 ensures that we can identify the causal
estimand introduced in Example 2.3, a quantity in the causal model, from a quantity in the statistical
model, which is exactly equal to the one in Example 2.5. This allows us to make causal inference
and make a causal interpretation from statistical inference of observable data. Hence it is extremely
important what assumptions we impose, as it will be crucial for the identification result.

Note that the assumptions in 2.11 are stricter than what is actually used to show the identification
in Proposition 2.12. As an example, we only consider the potential outcomes for which Z = 0
and hence we can actually weaken the positivity assumption on this variable to be P0(Z = 0 |
A,W ) > 0 whenever P0(A,W ) > 0.

In this chapter, we have given a description of the data structure, which led to defining models and
estimands in the causal and statistical worlds in Figure 1.1. In addition, we established a connection
between these worlds in terms of identification. Hence the statistical estimation problem is now
fully defined. Next up is the actual estimation part, which will be the topic of the next chapter,
before we are able to make meaningful causal inference.
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3 Semiparametric theory

In Chapter 1 and 2, we presented a method for properly defining the clinical research question at
hand, and translating it to a statistical estimand. This chapter aims to elucidate what is considered a
meaningful way to answer the clinical question based on data.That is, we are interested in finding
estimators of the quantity of interest that have certain properties that make the estimator, and hence
the estimate, sensible. The chapter is based on [12], [16], [17], [18, App. B.1] and [19].

Previously, we introduced the concept of statistical models. The most well-known class of models is
parametric models, where the densities can be described by a finite dimensional parameter θ. This
could for example be Gaussian distributions, indexed by the two-dimensional parameter θ = (µ, σ).
Parametric models can be quite restrictive. Often, one does not believe that the DGP is parametric,
however, with the words “all models are wrong, but some are useful” of George E.P. Box in mind,
various parametric models are often fitted and interpreted anyway [20]. Of course parametric models
are favourable as one can use maximum likelihood estimation to obtain an estimate and make valid
inference under regularity conditions. But the choice of parametric model is often influenced by
the researcher’s preferences, the type of outcome being measured and even distributions in the data,
with limited consideration about the underlying DGP. As a consequence, when restricting the focus
to parametric models it is likely that the statistical model no longer contains the true DGP and
hence we will never reach the truth inside this model, at most we are able to reach an approximation.
Therefore, it is important that the statistical model is built on factual knowledge of the DGP.

Based on these considerations, we may want to consider models that are not restricted to densities
that can be described by a finite-dimensional parameter, that is, look towards models that contain
distributions that depend on an infinite dimensional parameter. In the case where we make no
restrictions on the infinite dimensional parameter, denoted by θ, the model will be referred to as a
nonparametric model. Nonparametric models are often considered when little to nothing is known
about the underlying data-generating mechanisms. These models offer flexibility by not assuming a
specific functional form, making them suitable for capturing complex and unknown relationships
between variables. Hence, they allow for realistically modelling the complexity of the true DGP,
however this adaptivity also makes estimation and inference more difficult.

In an RCT, the treatment mechanism is known a priori, hence we know that part of the real-world
distribution can actually be described by a finite dimensional parameter. We can implement this
knowledge into the nonparametric model, which results in a semiparametric model where the
parameter is made up by a finite and an infinite dimensional part. That is, the infinite dimensional
parameter θ has a finite dimensional parameter component. Semiparametric models offer a balance
between incorporating our knowledge of how the experiment was generated and allowing flexibility
to capture potential complex relationships in the true DGP.
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3.1 Estimators

In Subsection 2.2.4 we established identifiability of an unobservable causal parameter by a statistical
parameter, under certain assumptions. This statistical parameter is a feature of an observable
distribution. We have constructed a statistical estimation problem which, with the right tools, is a
manageable task. In this chapter, we will move to the next part of the workflow Figure 1.1, which
is the estimator.

We will focus on one-dimensional features of the true DGP. An estimate is an approximation of
the true value of this feature, based on observed data. However, it is of interest that this estimate
depends on the observed data in such a way that we end up making a qualified approximation of the
quantity. What is exactly meant by a qualified approximation will be the main topic of this section.

We start by introducing some notation that will be used throughout the chapter. Let M be
a statistical model for some finite-dimensional stochastic vector O that follows an unknown
probability distribution P0. Let o1, . . . , on denote n i.i.d. observations of the stochastic variable
O. In addition we will use Pnf = 1

n

∑n
i=1 f(Oi) as a shorthand notation for empirical mean of a

function evaluated in the n i.i.d. stochastic variables O1, . . . , On.

Definition 3.1 (Estimator). Let o1, . . . , on denote n i.i.d. realisations of the stochastic
variable O ∼ P0 ∈ M, where M is a statistical model. An estimator is a function of i.i.d.
stochastic vectors:

Ψ̂n : On → R, (3.1.1)

where O is the sample space of O and Ψ̂n(o1, . . . , on) is interpreted as an estimate of the
true value Ψ(P0).

Often we will write Ψ̂n as shorthand for the estimator or estimate and it should be clear from
context what is meant.

Example 3.1
Consider a situation where we are interested in the mean of some one-dimensional variable
X ∼ P0 in a population. In this case the sample mean Ψ̂n(x1, . . . , xn) = 1

n

∑n
i=1 xi is

an estimator for the population mean µ = EP0 [X]. Given observed data (x1, . . . , xn), our
estimator creates an estimate µ̂n = Ψ̂n(x1, . . . , xn) which in this case is just a scalar.

It is not hard to imagine that there are many possibilities for defining an estimator, and hence we
are interested in ways to determine if the estimator returns good estimates. Of course, this requires
us to define what is meant by a good estimate. First, we are interested in building an estimator that,
with enough data, converges to the true parameter value, which is known as consistency.

Definition 3.2 (Consistent estimator). Consider a sequence of estimators
(
Ψ̂n

)
n∈N, where

Ψ̂n : On → R. Ψ̂n is said to be a consistent estimator if

Ψ̂n(O1, . . . , On)
P0→ Ψ(P0), n→ ∞. (3.1.2)
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In Definition 3.2, P0→ denotes convergence in probability with respect to P0, for a formal definition
see Definition A.3.

Moreover, we are interested in an estimator that has a known sampling distribution asymptotically
such that we can construct valid confidence intervals and make inference. In addition, it would be
preferred that this distribution has the lowest possible variance to make the confidence intervals as
tight as possible. These properties will be discussed in greater detail in the following subsections.

3.1.1 Asymptotic linearity

We want an estimator that turns observations into a good estimate of the true parameter. However,
to be more clear about what makes an estimator good, we will introduce the concept of asymptotic
linearity. This ensures, that for large samples, the estimator converges to the right answer in
probability and converges in distribution to a sampling distribution that allows us to do inference.

Definition 3.3 (Asymptotically linear estimator). Consider an estimator Ψ̂n : On → R of
the statistical estimand Ψ : M → R. If there exists a function ϕP0 : O → R that satisfies
ϕP0 ∈ L2

0(P0) such that

Ψ̂n −Ψ(P0) = PnϕP0 + oP0

(
n−1/2

)
, (3.1.3)

we say that the estimator Ψ̂ is asymptotically linear.

The function ϕP0 ∈ L2
0(P0) that satisfies (3.1.3) for some estimator will be referred to as the

influence function (IF) corresponding to the estimator. The IF is a function of the stochastic
variable O that depends on the unknown distribution P0 and it measures the sensitivity of an
estimator to small changes or perturbations in the data [21]. The space L2

0(P0), in which the IF is
contained, is the Hilbert space with functions that have finite variance and mean zero under P0, see
Definition A.10 in Appendix A.

The notation Vn = oP0(n
−1/2) is used to express the rate of convergence in probability of a

sequence (Vn)n∈N, meaning that

Vn = oP0(n
−1/2) =⇒

√
nVn

P0→ 0, for n→ ∞. (3.1.4)

Example 3.2
We will illustrate the derivation of an IF by a simple example. Consider a univariate
stochastic variable O ∼ P0 with finite variance. We will consider a nonparametric statistical
model M and the statistical estimand Ψ : P ∈ M 7→ EP [O]. Consider the estimator
Ψ̂n = PnO, which is simply the sample mean. The estimator Ψ̂n is an asymptotically linear
estimator of Ψ(P0) as

Ψ̂n −Ψ(P0) = Pn (O −Ψ(P0)) (3.1.5)

which shows that the IF for this estimator is

ϕP0(O) = O −Ψ(P0) = O − EP0 [O]. (3.1.6)

We can check that the IF is in L2
0(P0) by checking that it has mean zero

EP0 [ϕP0(O)] = EP0 [O]− EP0 [O] = 0 (3.1.7)
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and finite variance
VarP0 [ϕP0(O)] = VarP0 [O] <∞. (3.1.8)

It is unfortunately not always as easy to derive the IF of an asymptotically linear estimator as we
saw in Example 3.2. However, as there is a lot of literature on the topic of deriving IFs, we will not
go much more in detail with this and instead refer to derivations of IFs when needed [17].

Proposition 3.4. An asymptotically linear estimator Ψ̂n of Ψ(P0), with influence function
ϕP0 , satisfies

√
n
(
Ψ̂n −Ψ(P0)

)
d−→
P0

N (0, σ20), (3.1.9)

for n→ ∞.

Proof. By the central limit theorem (CLT) A.5, it holds that

√
nPnϕP0 =

1√
n

n∑
i=1

ϕP0(Oi)
d−→
P0

N (0, σ20) (3.1.10)

as EP0 [ϕP0 ] = 0 and σ20 denotes the variance of the IF ϕP0 , which is referred to as the asymptotic
variance. Combining this with (3.1.3) using Slutsky’s theorem A.4 we know that an asymptotically
linear estimator satisfies

√
n
(
Ψ̂n −Ψ(P0)

)
d−→
P0

N (0, σ20). (3.1.11)

By this result, asymptotic linearity guarantees that the estimator is consistent, see Definition 3.2.
Proposition 3.4 is extremely useful as it implies that we can find the asymptotic distribution of
the estimator by knowing the IF. The asymptotic distribution of the estimator is important for
constructing confidence intervals and doing inference. Denoting the estimate of σ20 by σ̂20 and
specifying a level of significance α, we may obtain an approximate (1 − α) · 100% confidence
interval for Ψ(P0) by (3.1.11):

Ψ̂n ± zα/2

√
σ̂20
n
, (3.1.12)

where zα/2 denotes the 1− α/2-quantile of the standard normal distribution.

Theorem 3.5 ([16]). An asymptotically linear estimator has an influence function ϕ that is
almost surely unique.

Proof. We will establish this result through a proof by contradiction.
Suppose the contrary. Then, there must exist an alternative IF ϕ∗ such that E[ϕ∗] = 0, and

√
n(Ψ̂n −Ψ(P0)) =

√
nPnϕ

∗ + oP0(1). (3.1.13)
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Since ϕ is also an IF, then
√
n(Ψ̂n −Ψ(P0)) is also equal to

√
nPnϕ+ oP0(1), this implies that

√
nPn(ϕ− ϕ∗) = oP0(1). (3.1.14)

We can apply the CLT, Theorem A.5, to obtain

√
nPn(ϕ− ϕ∗)

d−→
P0

N
(
0, E

[
(ϕ− ϕ∗)2

])
, (3.1.15)

where Var[ϕ − ϕ∗] = E
[
(ϕ− ϕ∗)2

]
since it is a mean zero random variable. For this limiting

normal distribution to be oP0(1), it necessitates that the covariance matrix satisfies

E
[
(ϕ− ϕ∗)2

]
= 0q×q, (3.1.16)

which then implies that ϕ = ϕ∗ almost surely.

3.1.2 Regularity

As seen in (3.1.11), asymptotic linearity of an estimator ensures that we have a known asymptotic
distribution when estimating the target parameter. This is a property that ensures nice behaviour of
the estimator. However, we also want some type of control as we go towards the true distribution
P0 and the local area around P0. It is of course favourable that the estimator has some type of
robustness such that we do not end up with very different estimates for very similar distributions.

In short, regular estimators are estimators that have a limiting distribution that does not change
when local changes are made to the underlying DGP. Before giving a rigorous definition we need to
introduce the concept of a path and its corresponding score. This will serve as a technical device
for analysing semiparametric models and constructing tangent spaces, which will be defined later
in this chapter.

Definition 3.6 (Path). For an arbitrary distribution P ∈ M we define a path through P as{
P̃ε : ε ∈ R

}
⊆ M which satisfies P̃ε|ε=0 = P and has score function h ∈ L2

0(P ) equal to

h =
d

dε
log p̃ε

∣∣∣∣
ε=0

, (3.1.17)

where p̃ε denotes the density of the distribution P̃ε.

The paths that we will consider in this project are assumed to satisfy certain smoothness conditions,
which is a technicality that we will not go into in this project, for more see [16].

By this definition it is not surprising that in some literature, a path is also referred to as a parametric
submodel, since it is parametrised by a one-dimensional parameter ε and is contained in the
statistical model M. However, a path is not a parametric model in the usual sense. It should be
considered as a purely theoretic tool for generalizing methods known from parametric model theory
to semi- and nonparametric models. The following example will illustrate one way to formulate
distributions along a path and some properties of the corresponding score.

Example 3.3
Let M be a nonparametric statistical model. Consider P, P̃ ∈ M and let p and p̃ denote
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their respective density functions. For ε ∈ [0, 1] define P̃ε by having density

p̃ε(o) = εp̃(o) + (1− ε)p(o). (3.1.18)

Note that for each ε ∈ [0, 1] p̃ε(o) is a valid density by definition since it is non-negative
and ∫

p̃ε(o)do = ε

∫
p̃(o)do+ (1− ε)

∫
p(o)do = 1. (3.1.19)

Then the set of distributions
{
P̃ε : ε ∈ [0, 1]

}
⊆ M define a path from P towards P̃ . It

is important that the model M is assumed nonparametric in order to ensure that this path
between two arbitrary distributions in the model is also contained in the model. Had the
model instead been semiparametric, one would need to be careful when defining the path
such that the distributions along the path are included in the model. Since the score function
is just the change in the log-likelihood at P , it can be expressed as

h(o) =
d

dε
log

(
p̃ε(o)

) ∣∣∣∣
ε=0

=
d

dε
log

(
εp̃(o) + (1− ε)p(o)

) ∣∣∣∣
ε=0

=
p̃(o)− p(o)

εp̃(o) + (1− ε)p(o)

∣∣∣∣∣
ε=0

=
p̃(o)

p(o)
− 1.

(3.1.20)

We are able to write paths with densities in terms of the score h, which gives a sense of
direction, instead of using the destination P̃ . By rewriting (3.1.18), using (3.1.20), we
obtain

p̃ε(o) = εp̃(o) + (1− ε)p(o)

= ε(h(o) + 1)p(o) + (1− ε)p(o)

= εh(o)p(o) + εp(o) + p(o)− εp(o)

= (1 + εh(o))p(o),

(3.1.21)

which depends on the direction h rather than the destination P̃ .

In Example 3.3, we have shown that we can easily write the score from a path in terms of the
density functions of the distributions that the path starts and ends in. Now, we will show that given
a zero mean function with finite variance, we can construct a path with score equal to a given
function in L2

0(P ).

Proposition 3.7. Consider a function h ∈ L2
0(P ) such that h(o) ≥ −1 for all o ∈ O. A

path
{
P̃ε : ε ∈ [0, 1]

}
⊆ M starting in P with score h can be constructed by letting P̃ε be

the distribution with density

p̃ε(o) = (1 + εh(o))p(o). (3.1.22)

Proof. First we need to show that p̃ε is a density. As h(o) ≥ −1 it holds that

p̃ε = (1 + εh(o))p(o) ≥ 0 (3.1.23)
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for all ε ∈ [0, 1]. In addition, it is quite easy to see that∫
p̃ε(o)do =

∫
(1 + εh(o))p(o)do =

∫
p(o)do+ ε

∫
h(o)p(o)do

= 1 + εEP [h(O)] = 1

(3.1.24)

as EP [h(O)] = 0. Second, we need to show that the resulting distribution P̃ε is contained in the
model for ε ∈ [0, 1]. If M is assumed nonparametric we can move freely in the model space
no matter the starting point ensuring P̃ε ∈ M for all ε ∈ [0, 1]. However, if M is assumed
semiparametric, then there might a concern about whether or not the resulting distributions are
contained in the model. To avoid this problem we will assume that there always exists a E ∈ R

such that ε < E implies
{
P̃ε : ε ∈ [0,min(1, E)]

}
⊆ M [12].

Now it remains to show that the path actually has score h. Using (3.1.17), we find that

d

dε
log p̃ε(o)

∣∣∣∣
ε=0

=
d

dε
log((1 + εh(o))p(o))

∣∣∣∣
ε=0

=
h(o)p(o)

(1 + εh(o))p(o)

∣∣∣∣
ε=0

=
h(o)p(o)

p(o)
= h(o),

(3.1.25)

and hence
{
P̃ε : ε ∈ [0, 1]

}
⊆ M is a path with score h.

Returning to the characteristic of a regular estimator, the following definition will define when an
estimator is considered regular.

Definition 3.8 (Regular estimator). Consider any sequence of probability distributions(
P̃n−1/2

)
n∈N along any path through P0, where P̃n−1/2 goes toward the truth P0 as n→ ∞.

Let
( ˆ̃Ψn

)
n∈N be a sequence of estimators, where ˆ̃Ψn denotes an estimate of Ψ(P̃n−1/2) given

n observations from P̃n−1/2 . The estimator is regular at P0 for estimating Ψ(P0) if the

sequence
( ˆ̃Ψn

)
n∈N satisfies

√
n
(
ˆ̃Ψn −Ψ(P̃n−1/2)

)
d−−−−→

P̃
n−1/2

DP0 , (3.1.26)

where DP0 is a known distribution that is independent of the sequence
(
P̃n−1/2

)
n∈N.

Regularity ensures some kind of smoothness of the mapping Ψ̂n, and that it is robust to small
perturbations in the underlying DGP. It is important to notice that since we are considering the
sequence of probability distributions, the convergence in distribution is with respect to different
distributions as we go through the sequence. But, as n gets large, the difference in the distributions
becomes smaller. The following example will make it more explicit, what is actually meant by this
convergence in distribution, when the distribution changes.
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Example 3.4

Consider a sequence of estimators
( ˆ̃Ψn

)
n∈N. By Lemma A.2, the convergence in distribution

presented in (3.1.26) implies, for Z ∼ DP0 and any continuous and bounded function f ,
that

E
[
f
(√
n(Ψ̂n(O1,n, . . . , On,n)−Ψ(P̃n−1/2))

)
− f(Z)

]
→ 0 as n→ ∞. (3.1.27)

For each n, we have that O1,n, . . . , On,n are n independent vectors that follow the distribu-
tion P̃n−1/2 . That is, Oi,j is the i’th vector that follows the distribution P̃j−1/2 , which means
that for n = 1 we only have a single vector O1,1 and for n = 2 we have O1,2, O2,2 and so
on. As n changes, the distribution changes, the vectors used in the estimator change and
Ψ(P̃n−1/2) changes too.

Estimators that are not regular can behave badly outside of a very small and specific set of
distributions, hence it makes sense to restrict our focus on regular estimators. Under regularity
conditions, some of the well-known estimators are regular. For example the sample mean, the MLE
and the OLS are regular estimators. Regular estimators possesses desirable asymptotic properties
that allow for valid statistical inference as the sample size becomes large.

Consider a regular and asymptotically linear (RAL) estimator. As DP0 does not depend on the
sequence (P̃n−1/2)n∈N in Definition 3.8 we can choose the trivial sequence P̃n−1/2 := P0 for
n ∈ N in (3.1.26) to conclude that DP0 = N (0, σ20) by asymptotic linearity (3.1.11). Hence, if an
estimator is RAL, it means that as we move towards the truth, we still tend to the same normal
distribution no matter the chosen sequence

(
P̃n−1/2

)
n∈N along a path through P0, that is

√
n
(
ˆ̃Ψn −Ψ(P̃n−1/2)

)
d−−−−→

P̃
n−1/2

N
(
0, EP0 [ϕ

2
P0
]
)
. (3.1.28)

In addition, it can be shown that the regular estimator with the smallest variance is guaranteed
to be an asymptotically linear estimator [22, Theorem 25.20]. Therefore, it makes sense to limit
ourselves to RAL estimators going forward.

3.1.3 Asymptotic efficiency

It is easy to argue that asymptotic linearity and regularity are attractive properties. However, in
many cases there will be multiple RAL estimators of the estimand of interest. In this case, one might
question, which one do we choose? To answer this question, we introduce the concept of efficiency.
With enough data, the only difference between different RAL estimators is the asymptotic variance
imposed by the variance of their respective IFs. When doing inference it is of course preferable that
the confidence intervals (3.1.12) are as small as possible, while still being valid. This means that
we favour estimators where the asymptotic variance is as small as possible.

Definition 3.9. Let P0 ∈ M, where M is a statistical model. Furthermore, let Ψ : M → R

be a statistical estimand. A RAL estimator Ψ̂ of Ψ, that has IF ϕ∗P0
, is called asymptotically

efficient if

Var[ϕ∗P0
] ≤ Var[ϕP0 ] (3.1.29)

for any other IF ϕP0 of another RAL estimator of the same statistical estimand.
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The IF ϕ∗P0
satisfying (3.1.29) is called the efficient influence function (EIF) for the statistical

estimand. Derivation of EIFs is well-documented in the existing literature for the most common
statistical estimands, hence we will refer to [17] for derivation. The following example will present
an EIF for the estimation problem that was introduced in Example 2.5.

Example 3.5 (Continuation of Example 2.5)
Consider the statistical estimation problem in Example 2.5 but where we disregard the
additional treatment variable Z and hence consider the case with a single treatment variable,
resulting in the data structure O = (W,A, Y ). The statistical estimand can be expressed as
a difference of two other statistical estimands where

Ψ0(P ) = EP [EP [Y | A = 1,W ]] (3.1.30)

Ψ1(P ) = EP [EP [Y | A = 0,W ]] , (3.1.31)

making Ψ(P ) = Ψ1(P )−Ψ0(P ). Sometimes it is easier to consider the statistical estimands
Ψ1 and Ψ0 separately. By [12, sec. 3.3], it turns out that the EIF ϕ∗P of Ψ is simply the
difference of the EIFs ϕ∗1,P and ϕ∗0,P corresponding to Ψ1 and Ψ0 respectively.
Let Q̄(A,W ) = EP [Y | A,Z,W ] and Ḡ(W ) = EP [A | W ] = EP [A]. For P ∈ M, the
EIF ϕ∗P is given by

ϕ∗P = ϕ∗1,P − ϕ∗0,P

=

(
I(A = 1)

Ḡ(W )
− I(A = 0)

1− Ḡ(W )

)
(Y − Q̄(A,W ))

+ Q̄(1,W )− Q̄(0,W )−Ψ(P ).

(3.1.32)

In the following example, we will give a direct application of how to estimate the EIF in a realisation
of the stochastic variable O = (W,A, Y ) after observing data and making an initial estimate of the
target parameter.

Example 3.6 (Continuation of Example 3.5)
Consider an estimate P̂ of P0 and assume that Q̂Y , the conditional distribution of Y
under P̂ , is given by Y | W,A ∼ N (0.95W − 0.3A − 0.1A ·W, 1), with EP̂ [A] = 0.5
and that the initial estimated effect is −0.42. For a participant where we have observed
o1 = (8.7, 1, 8.2), the EIF in o1 is

ϕ̂∗
P̂
(o1) =

(
1

0.5
− 0

0.5

)
(8.2− 7.095) + 7.095− 8.265 + 0.42 = 1.46, (3.1.33)

by (3.1.32). It is clear to see, that an observation which deviates more from the general
tendency in data, will end up with a larger value of the EIF.

3.2 Characterising the set of influence functions

We have seen in the previous sections, that it is of interest to find the EIF as this leads to an efficient
RAL estimator for which we know the asymptotic distribution. This enables us to construct valid
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confidence intervals and make inference from the observed data.

Definition 3.10 (Gâteaux derivative, pathwise differentiable, gradient). Let
{
P̃ε : ε ∈ [0, 1]

}
be a path starting in P ∈ M and let Ψ be a statistical estimand. When the limit

lim
ε→0

Ψ(P̃ε)−Ψ(P )

ε
(3.2.1)

exists, it is called the Gâteaux derivative of Ψ in P and will be denoted by ∇hΨ(P ).
Additionally, Ψ is called pathwise differentiable at P if there exists a function ϕP : O → R

such that for every path
{
P̃ε : ε ∈ [0, 1], P̃ε|ε=0 = P

}
⊂ M with score h, it holds that

∇hΨ(P ) = EP [hϕP ]. (3.2.2)

A function ϕP that satisfies (3.2.2) is called a gradient of Ψ. The term on the right hand side is
the inner product of the score h and function ϕP in L0

2(P ), and it tells us the angle between the
score of the path and the IF of the estimator. On the other hand, the Gâteaux derivative describe the
changes in the estimand as we move along the path with score h.

Theorem 3.11 ([18]). Let Ψ : M → R be a statistical estimand. Under certain regularity
conditions, if a function ϕP ∈ L2

0(P ) satisfies (3.2.2), then there exists a RAL estimator of
Ψ(P ) with influence function ϕP .

There are multiple ways of building a RAL estimator from a function ϕP ∈ L2
0(P ) satisfying

(3.2.2). In Section 3.3 we will show one way of doing so. In Chapter 4 another method for
constructing such an estimator is described. The following theorem will explain why the notation
for gradients is exactly the same as for influence functions and state a condition for which some
statistical estimands that are pathwise differentiable.

Theorem 3.12 (An influence function is a gradient). Let M be a statistical model, P ∈ M
and Ψ : M → R be the statistical estimand. If one can construct a RAL estimator of Ψ(P ),
with IF ϕP , then Ψ is pathwise differentiable and ϕP is a gradient of Ψ at P .

Since this proof relies on some rather technical results, it is included in Appendix A.3 for better
readability here.

Corollary 3.13. Consider two RAL estimators for the same estimand with IF ϕ1 and
ϕ2 respectively. The difference between the IFs is orthogonal to any score h in L2

0(P )
corresponding to paths {P̃ε : ε ∈ R} in the statistical model M through P . That is

EP [(ϕ1 − ϕ2)h] = 0. (3.2.3)

Proof. By Theorem 3.12 we know that (3.2.2) holds for any two RAL estimators with IFs ϕ1 and
ϕ2. First, note that the left hand side of (3.2.2) solely depends on the statistical estimand Ψ, the
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true distribution P , the score h and hence the path. Second, the right hand side solely depends on
the choice of estimator through the corresponding IF ϕP , the true distribution P , the score h and
hence the path. The the Gâteaux derivative ∇hΨ(P ) remains the same as this does not depend on
the IFs, and hence we can write

EP [hϕ1] = ∇hΨ(P ) = EP [hϕ2]. (3.2.4)

This of course implies that

EP [(ϕ1 − ϕ2)h] = 0, (3.2.5)

which is what we needed to show.

Lemma 3.14. Consider a statistical estimand Ψ : M → R and let T (P ) denote the closure
of the linear span of scores corresponding to the set of all possible differentiable paths
through P in M. The projection of any IF corresponding to a RAL estimator of Ψ onto the
space T (P ) is unique and equal to the EIF.

Proof. Consider any IF ϕ and denote its projection onto T by ϕ†, then

ϕ = ϕ† + h⊥ (3.2.6)

for some h⊥ ∈ T ⊥. By (3.2.6) it is clear that

E[hϕ] = E[h(ϕ† + h⊥)] = E[hϕ†], (3.2.7)

which makes ϕ† an IF by Theorem 3.11. Hence, we know that there is an IF that is contained in T .

To prove uniqueness, consider the projection ϕ̃† ∈ T of another IF ϕ̃ onto the tangent space T ,
which by definition implies

ϕ̃ = ϕ̃† + h̃⊥ (3.2.8)

where h̃⊥ ∈ T ⊥. As T is a linear subspace, we know that ϕ† − ϕ̃† ∈ T . In addition, by
Corollary 3.13 and the fact that we have just shown that ϕ†, ϕ̃† are IFs it is clear that ϕ† − ϕ̃† ∈ T ⊥

as well. However, as T ∩ T ⊥ = {0} it must imply that ϕ† = ϕ̃†.

To show that the projection ϕ† is in fact the EIF, we consider the variance

Var[ϕ] = Var
[
ϕ† + h⊥

]
= Var

[
ϕ†
]
+ Var

[
h⊥

]
≥ Var

[
ϕ†
]
. (3.2.9)

Now we have shown that the IF obtained by projecting any IF onto T (P ) must be the EIF as it
satisfies (3.1.29).

By Lemma 3.14, we know that we can find the EIF, as it is simply the projection of any other IF onto
the tangent space. This is a powerful result as we are now able to construct a RAL estimator that is
asymptotically efficient by building it around having IF equal to the EIF. One type of estimators are
the plug-in estimators, which we will show is in fact RAL, under some regularity conditions, in the
next section.
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3.3 Plug-in estimators

In this project, we will mainly focus on a specific class of estimators called plug-in estimators. In
short, a plug-in estimator is an estimator where an estimate P̂n of the true distribution P0 is plugged
into the statistical estimand to obtain the parameter estimate Ψ̂n = Ψ(P̂n). Plug-in estimators are
advantageous since they respect the assumptions and constraints contained in the statistical model,
and hence they are more robust to outliers, small samples and sparsity than non-plug-in estimators
[11, ch. 1, 4].

In general we want asymptotic linear estimators, see Definition 3.3, and to obtain asymptotic
linearity of a plug-in estimator, we need to show that it can be written as

Ψ̂n −Ψ(P0) = PnϕP0 + oP0

(
n−1/2

)
. (3.3.1)

Consider the true DGP P0 and a fixed estimate of this distribution P̂n. Now, construct a path from
P̂n to P0 defined by p̃ε = εp0+(1− ε)p̂n, as in Example 3.3 where P = P̂n and P̃ = P0. Assume
that Ψ is pathwise differentiable, then by using Definition 3.10 we can write

Ψ(P0)− Ψ̂n = EP̂n
[ϕP̂n

h] +R(P̂n, P0), (3.3.2)

where R is a remainder term. By the change-of-variable formula and (3.1.20), we can write

EP̂n
[ϕP̂n

h] =

∫
ϕP̂n

(o)h(o)dP̂n =

∫
ϕP̂n

(o)h(o)p̂n(o) do

=

∫
ϕP̂n

(o)(p0(o)− p̂n(o)) do =

∫
ϕP̂n

dP0 −
∫
ϕP̂n

dP̂n = P0ϕP̂n
,

(3.3.3)

where P0ϕP̂n
denotes EP0 [ϕP̂n

], which is convenient later. Hence the estimation error is

Ψ̂n −Ψ(P0) = −P0ϕP̂n
−R(P̂n, P0). (3.3.4)

By adding zero in a smart way, we arrive at the following decomposition

Ψ̂n −Ψ(P0) = PnϕP0 − PnϕP̂n
+ (Pn − P0)(ϕP̂n

− ϕP0)−R(P̂n, P0)︸ ︷︷ ︸
x

. (3.3.5)

To be asymptotically linear, x needs to be oP0(n
−1/2), which is satisfied if each of the terms in x

are oP0(n
−1/2) individually.

The quantity −PnϕP̂n
will be referred to as the plug-in bias, which is often of concern when doing

plug-in estimation. One way to eliminate the plug-in bias in the estimate is to just add the term
again, shown in the following example. However it will be apparent in Chapter 4 that there are
other ways of eliminating plug-in bias.

Example 3.7 One step estimator to eliminate plug-in bias
One way to construct an estimator that eliminates plug-in bias is to use the one step estimator

Ψ̂∗
n = Ψ̂n + PnϕP̂n

, (3.3.6)

which is just a debiasing of the original plug-in estimate. Note that Ψ∗
n is not a plug-in
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estimator. By (3.3.5) it is clear that

Ψ̂∗
n −Ψ(P0) = PnϕP0 + (Pn − P0)(ϕP̂n

− ϕP0)−R(P̂n, P0)︸ ︷︷ ︸
x

(3.3.7)

where we can conclude that the one step estimator is asymptotically linear with IF ϕP0 if
we can show that x = oP0(n

−1/2).

The term

(Pn − P0)(ϕP̂n
− ϕP0). (3.3.8)

in (3.3.5) is the empirical process. The convergence of this term requires a result from empirical
process theory, which we will not go into detail with in this project. If we can show that ϕP̂n

and ϕP0 fall into a P0-Donsker class of functions and that P0(ϕP̂n
− ϕP0)

2 converges to zero in
probability, we have that the empirical process is oP0(n

−1/2) by [22, Lemma 19.24]. We will not
be going into the definition of Donsker classes in this project and from now on we will simply
assume that this condition is satisfied. For more details see [23] and [24].

Lastly, for any given statistical estimation problem, we need to show that the remainder term

R(P̂n, P0) = Ψ̂n −Ψ(P0) + P0ϕP̂n
(3.3.9)

is oP0(n
−1/2), to obtain an asymptotic linear estimator. If p0 is the density for the distribution P0,

we can sometimes factorise p0 = q0 · g0, and then let Q0 denote the distribution with density q0
and G0 denote the distribution with density g0. In the case when the remainder can be written as

R(P̂n, P0) =

∫
(H1(Q̂n)−H1(Q0))(H2(Ĝn)−H2(G0))f(P̂n, P0)dP0, (3.3.10)

for functionsH1,H2 and f , we say that the estimation problem admits a double robustness structure.
The remainder converges to zero if either Q or G is consistently estimated. The rationale behind
the name double robust lies in the fact that a consistent target parameter estimation depends on
either one of them being consistent. In fact, if the remainder is as (3.3.10), it is sufficient that either
H1(Q̂n) or H2(Ĝn) is consistent. This will be illustrated in the following example.

Example 3.8 (Continuation of Example 3.5)
If we let P0 denote the true DGP, then Ψ(P0) will denote the true value, ie. the target
parameter. We will now consider the remainder term in (3.3.9), from the decomposition
of the estimation error when estimating Ψ(P0) using a plug-in estimator. Since Ψ(P0) =
Ψ1(P0) − Ψ0(P0) we will consider the remainder term for Ψ1(P0) and the calculations
are similar for Ψ0(P0). Let ˆ̄Q(A,W ) = EP̂n

[Y | A,W ], Q̄0(A,W ) = EP0 [Y | A,W ],
ˆ̄G(W ) = EP̂n

[A |W ] and Ḡ0(W ) = EP0 [A |W ]. Using the EIF given in (3.1.32) it holds
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that

R1(P̂n, P0) = Ψ1(P̂n)−Ψ1(P0) + P0ϕ
∗
1,P̂n

= EP̂n

[
ˆ̄Q(1,W )

]
− EP0

[
Q̄0(1,W )

]
+

= EP0

[
I(A = 1)

ˆ̄G(W )
(Y − ˆ̄Q(A,W )) + ˆ̄Q(1,W )− EP̂n

[
ˆ̄Q(1,W )

] ] (3.3.11)

The very first and the very last expectation are equivalent but with opposite signs, hence
they eliminate each other. It is possible to rewrite the term

EP0

[
I(A = 1)

ˆ̄G(W )
Y

]
= EP0

[
EP0

[
I(A = 1)

ˆ̄G(W )
Y

∣∣∣∣W
]]

= EP0

[
1

ˆ̄G(W )
EP0 [I(A = 1)Y |W ]

]

= EP0

[
1

ˆ̄G(W )
EP0 [A |W ]EP0 [Y | A = 1,W ]

]

= EP0

[
Ḡ0(W )

ˆ̄G(W )
Q̄0(1,W )

]
,

(3.3.12)

where the third equation holds by Theorem A.8, and likewise

EP0

[
I(A = 1)

ˆ̄G(W )

ˆ̄Q(A,W )

]
= EP0

[
Ḡ0(W )

ˆ̄G(W )

ˆ̄Q(1,W )

]
. (3.3.13)

Hence the remainder (3.3.11) becomes

R1(P̂n, P0) = EP0

[
1

ˆ̄G(W )

(
Ḡ0(W )

(
Q̄0(1,W )− ˆ̄Q(1,W )

)
+ ˆ̄G(W )

(
ˆ̄Q(1,W )− Q̄0(1,W )

))]
= EP0

[
1

ˆ̄G(W )
( ˆ̄G(W )− Ḡ0(W ))

(
ˆ̄Q(1,W )− Q̄0(1,W )

)]
.

(3.3.14)

Note that this explicitly shows the doubly robustness property (3.3.10) of the estimation
problem. That is, if either ˆ̄G is consistently estimating Ḡ0 or ˆ̄Q is consistently estimating
Q̄0 then the remainder will be negligible. Since we are in an RCT setting, the treatment
mechanism Ḡ0 is known, and hence the remainder term will be zero in this case by the
above result.
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4 Targeted Learning

In Chapter 2 we presented the statistical model, the statistical estimand, and arrived at a point where
we obtained identifiability of a causal quantity through observable data under some assumptions.
Turning back to the framework presented in Figure 1.1, we have now established the statistical
estimation problem, and the purpose of this chapter is to construct a reasonable estimator with
properties discussed in Chapter 3. For this purpose, we introduce Targeted learning and in particular
Targeted Maximum Likelihood Estimation (TMLE), which has become increasingly popular since
it was proposed by [20]. This is also for a good reason as, under reasonable regularity conditions, it
yields an asymptotically efficient estimator of the statistical estimand. This chapter will describe
the concept of TMLE and its properties, including an extension to the case of longitudinal data, and
it is based on [11, ch. 4, 5] and [17].

In short, TMLE combines semiparametric efficiency theory, from Chapter 3, and machine learning
in a two-step procedure, which can be summarised as follows.

(i) Obtain an initial estimate of the DGP or the relevant parts of this distribution using machine
learning.

(ii) Update the initial estimate targeted towards making the optimal bias-variance trade-off for
the target parameter.

This is solely meant to be a short overview of the general idea behind TMLE. To understand
what is meant by relevant parts of the distribution, think of the estimand in Example 2.5 where
we statically set the intervention nodes. Here we are only interested in the means under the
conditional distribution of Y and the marginal distribution of W and not all of the distribution of
O = (W,A,Z, Y ).

Machine learning are popular for some problems as they place few assumptions on the underlying
distribution of the data and can accommodate a large number of covariates with complex relation-
ships as opposed to parametric models. However, a concern about flexible data-adaptive models is
that they do not have asymptotic properties for inference and are hence mainly used for prediction
problems, however, prediction is not the aim when doing estimation. This is because machine
learning fits have an optimal bias-variance trade-off for the estimation of the outcome, rather than
an optimal bias-variance trade-off for the estimation of the parameters.

So how does one get the benefits from the flexible and assumption-cheap methods provided by
machine learning but also the ability to obtain valid inference for parameters? This is where
TMLE comes in. What makes TMLE different from the machine learning models is that after
utilising machine learning for the initial estimate it takes an additional step that optimises the
bias-variance trade-off for the target parameter instead of minimising prediction error. In the
semiparametric setting with an infinite-dimensional parameter, maximum likelihood methods fail to
work. However, TMLE proposes a way to still utilise maximisation of a likelihood when the model
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space is semiparametric. This is done by iteratively parametrising a part of the model space using
paths, and since paths have a one-dimensional parameter it enables utilisation of regular maximum
likelihood estimation. As shown later, we obtain known asymptotic properties of bias and variance
from this procedure enabling us to obtain valid inference from the TMLE estimate.

4.1 Targeted Maximum Likelihood Estimation

In this section, we will go through the steps of the TMLE algorithm, before extending the algorithm
to handle longitudinal data. Suppose we have n observations, denoted oi = (wi, ai, zi, yi) for
i = 1, . . . , n, of the stochastic vector O = (W,A,Z, Y ) ∼ P0 with sample space O. Consider a
semiparametric statistical model M, which is augmented with factual knowledge e.g. boundedness,
independence or class of the variables, such that P0 ∈ M. Define a pathwise differentiable
statistical estimand

Ψ : M → R. (4.1.1)

We will denote the true value of the parameter of interest by Ψ(P0).

The following algorithm constructs an estimator of the DGP, targets it towards the target parameter
using the EIF, and obtain the estimate using a plug-in estimator. The target step serves to solve
something called the efficient score equation and hence obtain the optimal bias-variance trade-off
for Ψ(P0) [25].

Algorithm 4.1 Targeted Maximum Likelihood Estimation [11, ch. 5].
Require: A statistical model M, a statistical estimand Ψ : M → R and n i.i.d. observations

o1, . . . , on of a stochastic vector O = (W,A,Z, Y ) ∼ P0 ∈ M.
1: Obtain an initial estimate P 0

n of P0 with density p0n.
2: Set i = 0 and ε̂ = 1.
3: while ε̂ ̸= 0 do
4: Compute the EIF ϕP i

n
corresponding to the statistical estimand at P i

n.
5: Define a path {P̃ε : ε ∈ [0, 1]} with corresponding densities p̃ε = (1− εϕP i

n
)pin.

6: Use maximum likelihood estimation along the path to update

ε̂ = argmax
ε

1

n

n∑
i=1

log(p̃ε(Oi)), (4.1.2)

where we define log(0) := −∞.
7: Update P i+1

n = P̃ε|ε=ε̂ and denote its density by pi+1
n .

8: Update i = i+ 1.
9: The estimate obtained in the final iteration, denoted by P ∗

n , is the TMLE of the true DGP P0.
This is used to obtain the TMLE of Ψ(P0) by simply plugging the final distribution estimate
into the statistical estimand:

Ψ̂TMLE = Ψ(P ∗
n). (4.1.3)

This algorithm requires some explanation, which are listed in the following:

• In each iteration in the algorithm, we consider a one-dimensional maximum likelihood
problem in the parameter ε, which means that in each step we will increase the empirical
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log-likelihood, relative to the value in the previous step. The main purpose of this algorithm
is to adjust the initial estimate in a reasonable way such that the plug-in bias is eliminated.

• The initial estimate in step 1 can be obtained by using any model, for example a parametric
regression or a flexible data-adaptive machine learning method. Computation of the EIF in
step 4 is performed using the theory described in Section 3.2.

• Note that as the estimate changes in step 7 so does the path in step 5 in the next iteration.
Since the new path starts in the estimate obtained in the previous iteration, we are guaranteed
that the log-likelihood value does not decrease when maximising along this new path in step
6.

• In step 5, the likelihood is continuous as a function of ε and as ε takes values on a closed
interval, it is also bounded and hence it attains a maximum for ε ∈ [0, 1]. Since the likelihood
is bounded from above, and as just explained, the value of the likelihood never decreases
even though it changes in each iteration, we will reach the maximum at some point implying
that ε̂ = 0.

This algorithm, where the likelihood is maximised to obtain the estimate, is a special case of a
broader class of estimators, called targeted minimum loss-based estimators, which is also abbrevi-
ated TMLE. This class of estimators works under minimisation of a loss function, which satisfies
that the minimum expected value is obtained in the truth. Hence in the presented algorithm, the
loss function will be defined as the negative log-likelihood, which attains its minimum expected
value in the true DGP.

One can imagine that the statistical estimand only depends on some part Q0 of P0. In this case
we would typically specify the loss function such that it also only depends on that part of the
distribution. In this case we could replace P with Q in the Algorithm 4.1.

There might be some concerns regarding the validity of the steps in Algorithm 4.1, which are listed
and will be discussed in the following:

• One concern is that the functions defined in step 5 might not be valid densities. That is,
there is a chance that there exists an ε ∈ [0, 1] and an o ∈ O such that p̃ε(o) < 0. However,
if for an arbitrary P ∈ M it holds that ϕ∗P : O → R is continuous and O is a compact
set, then there exists some M ∈ R such that ϕ∗P (o) ≥ −M . By Proposition 3.7, we know
that this immediately implies that p̃ε is a well-defined density for all ε ∈ [0, 1] if M = 1.
Following the proof of Proposition 3.7 we know that p̃ε is a well-defined density for all
ε ∈ [0,min{1, 1/M}] when ϕ∗P (o) ≥ −M for all o ∈ O. That is, we can adjust the interval
for ε such that we always consider valid densities and hence valid distributions. In practice,
ensuring a lower bound for ϕ∗

P i
n

is in general not a concern as it is based on a finite amount
of observed data, which must make up a compact set.

• In the case of a semi-parametric model there might also be a concern regarding whether or
not the densities from step 5 correspond to distributions that reside in the model M. To
avoid this problem we will assume that there always exists an E ∈ R such that ε < E implies
P̃ε ∈ M [12].

• Note that we constructed the path using the EIF, and not the score as in Proposition 3.7.
However, by Lemma 3.14 the EIF is in the tangent space making it a score, and hence defines
a valid direction for a path. By using this path in the maximising step of the algorithm, we
are moving in the direction in which we obtain the largest possible change in the estimate
towards the truth Ψ(P0). Any other direction may give small adjustments in the estimate, but
larger changes in parts of the distribution that do not contribute to the estimate, which are
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not of interest. This is derived from a discussion on the hardest submodel or locally least
favorable model, which we will not dive deeper into in this project. For more context see [12,
4.4].

In the extreme case where both of the first two concerns are applicable, we will maximise over the
values of ε that ensure we have a well-defined density and then stay within M.

It remains to show that Algorithm 4.1 gives a useful estimate of Ψ(P0), which will be elucidated in
the next section. It turns out that the TMLE algorithm is a recipe for constructing an estimator with
IF equal to the EIF and hence a recipe for constructing an asymptotically efficient estimator.

4.2 Properties

From (4.1.3) it is clear that TMLE is a plug-in estimator. To obtain valid and sensible inference, it
is important to have some control over how this estimator behaves asymptotically. In the following,
we will show that TMLE eliminates plug-in bias, which makes it an asymptotically linear estimator
under some regularity conditions as discussed in Section 3.3.

As explained in Subsection 3.1.1, asymptotic linearity is a very attractive property for an estimator
to have, and hence we are looking to see if the estimator obtained by using the Algorithm 4.1
possesses this property. Recall that the decomposition of the estimation error (3.3.5) holds for
any plug-in estimator. By the arguments made in Section 3.3, we need to consider the size of the
plug-in bias for this case. The following result shows that even though TMLE is a plug-in estimator
it eliminates plug-in bias.

Proposition 4.1. The TMLE P ∗
n of P0 eliminates plug-in bias

PnϕP ∗
n
=

1

n

n∑
i=1

ϕP ∗
n
(oi) = 0, (4.2.1)

where ϕP ∗
n

denotes the EIF of the statistical estimand at P ∗
n .

Proof. Let p∗n denote the density of P ∗
n . Consider the path {P̃ ∗

ε : ε ∈ [0, 1]} with densities
p̃∗ε = (1 + εϕP ∗

n
)p∗n, then

log(p̃∗ε) = log((1 + εϕP ∗
n
)p∗n) (4.2.2)

and hence

d

dε
log(p̃∗ε) =

1

1 + εϕP ∗
n

ϕP ∗
n

=⇒ d

dε
log(p̃∗ε)|ε=0 = ϕP ∗

n
. (4.2.3)

When the maximiser of the log-likelihood is 0, it holds that

Pn
d

dε
log(p̃∗ε)|ε=0 = 0, (4.2.4)

where Pn is the empirical mean, as introduced in Section 3.1. Hence, it becomes clear that the
TMLE P ∗

n eliminates plug-in bias

PnϕP ∗
n
= 0 (4.2.5)

by combining (4.2.3) and (4.2.4).
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Based on this result and the discussion in Section 3.3, it holds that TMLE is an asymptotically linear
estimator that provides efficient and consistent estimates for a doubly robust estimation problem
where at least one of the components in the second order remainder term is estimated consistently
under regularity conditions, including that the EIF falls in a P0-Donsker class. In addition, it can be
shown that the TMLE algorithm also yields a regular estimator, which we will not go into in this
project [11].

This section proves that it is possible to construct an efficient estimator directly from knowing
the EIF. Hence, we can use the theory from Chapter 3 to identify the EIF and Algorithm 4.1 to
construct an efficient estimator from the estimation problem described in Chapter 2.
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5 Data and methods

To explore the problem described in Chapter 1 regarding estimation of the treatment effect when
participants initiate rescue medication during clinical trials, we have been provided with data from
Novo Nordisk A/S. The data are from the phase 3a programme PIONEER, which consisted of
many different trials, each with a different aspect in mind. We will only consider the PIONEER 1
trial, which was introduced in Section 1.3 and will be explained in greater detail in the following
section. In addition, we will describe methods for estimating the hypothetical estimand in context
of the PIONEER 1 trial. First, some rather simple methods will be proposed and then we describe
the method that is standard of practice for estimating the hypothetical estimand. Lastly, we will
describe how one can use targeted learning to estimate the hypothetical estimand. The results from
these methods will be compared in Chapter 6 and 7.

5.1 PIONEER 1

In this section we will describe relevant aspects, setup, inclusion criteria and guidance on rescue
medication in context of the PIONEER 1 trial. PIONEER 1 is a multicentre randomised 26-week
placebo-controlled monotherapy trial designed to assess the clinical effects of oral semaglutide at
the three intended dose levels (3, 7 and 14 mg) vs. placebo in subjects with type 2-diabetes (T2D)
who at trial entry were being treated with diet and exercise only [6]. For a brief introduction to
what oral semaglutide is, how it treats diabetes and an explanation of most important biomarkers
measured in the study, we refer the reader to Section 1.3 or [8].

In the PIONEER 1 trial, the participants show up at the site for assessment of their measurements
at four planned visits between the baseline visit at week 0 and the final visit at week 26. The visit
structure in the trial, along with which variables are collected at that visit and the corresponding
threshold for receiving rescue medication, is summarised in Table 5.1.

Table 5.1: Summarising the visit structure for PIONEER 1, along with the variables collected at
each visit and the threshold for rescue medication if it exists.

Visit # Weeks Variables Rescue threshold
Visit 0 Week 0 W0, A0, Z0

Visit 1 Week 4 W1, A1, Z1

Visit 2 Week 8 W2, A2, Z2 FPG > 13.3
Visit 3 Week 14 W3, A3, Z3 FPG > 11.1
Visit 4 Week 20 W4, A4, Z4 FPG > 11.1
Visit 5 Week 26 Y

In general, the W s and the Y denote continuous measurements of HbA1c, bounded between 0
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and 100%, at the corresponding visit. In the PIONEER 1 study, the baseline value of HbA1c is
prespecified to be adjusted for and hence it is the first entry in the vector of baseline covariates W0.
The distribution of the baseline HbA1c levels can be found in Figure B.3. The only other covariate
prespecified for use in the primary analysis, is the covariate REGION, which is a categorical variable
that indicates the continent of residence and its distribution can be seen in Figure B.2. The As are
binary variables capturing adherence to the randomised treatment, except A0 which is a binary
indicator of randomised treatment that is equal to 1 if assigned to active treatment. For example,
A2 = 0 if the participant discontinued treatment before visit 3, 14 weeks after randomisation. We
assume, in line with the protocol, that once a participant has discontinued the randomised treatment,
they can not go back. That is, if Ak = 0 it implies that Aj = 0 for all j > k. Finally, the Zs are
binary variables that tell whether or not the participants receive rescue medication between that visit
and the next visit. Just as for the As, if Zk = 1 it implies that Zj = 1 for all j > k. A summary
of these variables and the notation that will be used throughout the rest of this project is given in
Table 5.2.

Table 5.2: Overview of the different variables in the analysis dataset, their name in the code and
their notation.

Description Variable name Notation
HbA1c at baseline HBA1CBL W0,1

Region of residence REGION W0,2

Randomised treatment A0 A0

Rescue medication before visit 1 Z0 Z0

Change from baseline in HbA1c at visit 1 HBA1CV1 W1

Treatment discontinuation before visit 2 A1 A1

Rescue medication before visit 2 Z1 Z1

Change from baseline in HbA1c at visit 2 HBA1CV2 W2

Treatment discontinuation before visit 3 A2 A2

Rescue medication before visit 3 Z2 Z2

Change from baseline in HbA1c at visit 3 HBA1CV3 W3

Treatment discontinuation before visit 4 A3 A3

Rescue medication before visit 4 Z3 Z3

Change from baseline in HbA1c at visit 4 HBA1CV4 W4

Treatment discontinuation before visit 5 A4 A4

Rescue medication before visit 5 Z4 Z4

Change from baseline in HbA1c at visit 5 HBA1CV5 Y

The variables in the data and their mutual dependencies can be visualised in a DAG, presented in
Figure 5.1. To illustrate the dependencies of one of the variables some arrows are marked with red
in Figure 5.1. The node which we will focus on is the node W2, the measurement of HbA1c at visit
2, 8 weeks after randomisation. The coloured arrows illustrate all the node’s parents. That is, W2 is
dependent on W0, A0, Z0,W1, A1, and Z1, all the history prior to visit 2. As another example, the
parents of Y is all of the variables except for Y itself.

The DAG, presented in Figure 5.1 is rather complex as it barely imposes any assumptions on
the relationships between the variables, except for the time ordering. Since the variables we are
working with are measurements of HbA1c, the average level of blood sugar over the past three
months, it may be reasonable to assume that a measurement is primarily affected by the most recent
measurement and not previous ones. Likewise, discontinuation of randomised treatment and rescue
medication intake are most likely not affected by past events if we know the most recently measured
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W0 W1 W2 W3 W4 Y

A0

Z0

A1

Z1

A2

Z2

A3

Z3

A4

Z4

Figure 5.1: A joint DAG illustrating the dependencies in the data from the PIONEER 1 trial. Red
arrows mark the route from the parents of the node W2.

variables. Hence we will also propose the DAG presented in Figure 5.2. This DAG makes a Markov
type of assumption implying conditional independencies between many pairs of variables. Making
more assumptions in this way might introduce bias as we might remove dependencies that actually
exist, however, it will most likely lower the variance making it part of the bias-variance trade-off.
In addition, the assumptions made by removing these arrows from the DAG are reasonable as it just
implies that the most recent events have a direct effect and the events prior to that have an indirect
effect through the most recent events.

W0 W1 W2 W3 W4 Y

A0
A1

Z1

A2

Z2

A3

Z3

A4

Z4

Figure 5.2: A joint DAG illustrating the dependencies in the data from the PIONEER 1 trial after
making some assumptions that simplify the dependency structure. Dotted lines coming from W0

indicate that only the region, W0,2, affects the variable that the arrow is pointing to.

At each visit, the physician at the site will collect a blood sample from the participant measuring the
relevant information. Specifically, the physician will among other things receive measurements of
the HbA1c and the FPG. The HbA1c value is contained in the W corresponding to that specific visit
and the mean value of these across participants for each visit is displayed in Figure 5.3. The value of
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Figure 5.3: Mean plot for each treatment group along with the standard error.

FPG is used to determine the need for rescue medication, hence the value of Z based on thresholds
presented in Table 5.1. These thresholds align with an example of prespecified thresholds provided
by FDA through [26], who also stress the need for a period of around 6 weeks in the beginning of a
trial, to allow time for the treatment to work. Hence rescue medication is generally not allowed
in this period, but it is important to consider later on in the trial since participants with persistent
and unacceptable hyperglycaemia should be offered treatment intensification [6]. From now on, in
the analysis of PIONEER 1 and in the simulation study, the variable Z0 will be omitted. This is
because participants are not allowed to enter the trial with rescue medication, and since the first
time glycaemic control is assessed, after receiving the randomised treatment, is at visit 1.

The biomarkers HbA1c and FPG measure the same phenomenon, namely the level of blood sugar.
Due to the nature of HbA1c, which captures average blood glucose during the last two to three
months, it makes sense to use this biomarker to evaluate the efficacy of the drug. By the same
argument, it makes less sense to use this variable to determine the need for rescue medication, since
by construction it is less sensitive to recent changes. However, FPG is a measurement that captures
the level of blood sugar at the moment that it is measured. By nature, this variable has a lot more
variability, and hence it is better to capture recent changes. By the same arguments, this variable is
not a suitable biomarker for estimating the efficacy.

Naturally, there are some missing observations in the dataset from the PIONEER 1 trial. This
project will not be addressing methods for missing data and we will use multiple imputation to
complete the data prior to fitting models. In order to do this, we use the mice package in R.

Prior to the analyses we displayed histograms of baseline variables grouped by treatment group in
Figure B.2 and Figure B.3. In addition, on page 93-95 in [6] two tables summarising descriptive
statistics on baseline characteristics and demographics can be found. Both the figures and the tables
show equal distributions of baseline variables across the two treatment groups as expected.

5.2 The Estimation problem

Section 5.1 gave a description of the experiment that created the data that we will be analysing in
this project and the potential causal relationships among each variable involved. This leads us to
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consider the clinical question of interest, which we can then formulate as a causal quantity and
lastly a statistical estimation problem following the workflow illustrated in Figure 1.1.

Clinical question of interest

To assess the efficacy of oral semaglutide compared to placebo, the clinical question of interest was

What is the treatment effect of oral semaglutide 14 mg compared to placebo in patients with T2D
assuming that all subjects remained on trial product and did not use rescue medication? [6]

In order to more formally formulate this question, we describe it in terms of a clinical estimand,
which has five attributes that were described in Section 1.2.

Clinical estimand

As explained, we are looking into different ways of estimating the hypothetical estimand, which is
the treatment effect where intercurrent events are handled using the hypothetical strategy, described
in Section 1.2. In [6] they state

The hypothetical estimand evaluated the treatment effect assuming that all subjects remained on
trial product and did not initiate any rescue medication. Thus, this estimand estimates the efficacy
for a scenario where the drug is taken as intended and where rescue medication is not initiated.

The case described in the quote above is exactly what the clinical question of interest is pointing
toward and hence we formulate this as a clinical estimand:

• Target population: Participants aged ≥ 18 years with T2D for at least 30 days, who at trial
entry were being treated with diet and exercise only and had HbA1c levels between 7% and
9.5%. For thorough inclusion and exclusion criteria see Table B.1.

• Treatment: Oral semaglutide 14 mg compared to placebo.

• Outcome variable: Change in HbA1c from baseline to week 26 per the discussion in
Section 5.1.

• Population-level summary: Mean difference, in change in HbA1c from baseline, between
treatment groups.

• Strategies for handling ICEs: Hypothetical strategy for treatment discontinuation and
rescue medication use.

Using these five attributes, we have clearly specified exactly what we would like to know. Now,
we are ready to move on to the mathematical formulation of the quantity of interest. This will be
done within the Rubin causal model framework in terms of potential outcomes as introduced in
Subsection 2.2.1.

Causal question of interest

Before defining the Rubin causal model for this problem, we will introduce some notation. Let Vk
denote the vector of potential outcomes of the variable Vk at visit k for any variable V ∈ {W,Y }
in every possible treatment scenario with respect to time ordering and dependencies. In addition,
let Vj:k for j ≤ k denote the collection of variables (Vj , . . . , Vk) for any variable V ∈ {W,A,Z}.
As an example, W1 = (W1(A0 = 0),W1(A0 = 1)) as the only treatment that can affect W1 is A0,
which only has two possible values. However, this becomes complicated really fast if we consider
the dependencies from Figure 5.1 as W3 is affected by A0, A1, A2, Z1 and Z2, which can attain 2
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different values each, resulting in 25 = 32 potential outcomes. We will not bother to write these
out and hence use the notation W3 for this collection of potential outcomes instead. In addition,
there are 29 = 512 different potential outcomes of Y under the DAG in Figure 5.1.

In our case, only two of the potential outcomes for Y are of interest as for each of the treatments
we only want to consider the case where participants remain on the randomised treatment A1:4 =
14 = (1, 1, 1, 1) while not taking rescue medication Z1:4 = 04 = (0, 0, 0, 0) at any time during the
study. This will be more clear when we introduce the causal estimand of interest in the following.

Rubin causal model
Data The data in the causal world consists of observations from the stochastic

vector
O∗ = (W0, A0,W1, A1, Z1, . . . ,W4, A4, Z4,Y ),

using the notation introduced above.

Model A causal model M∗, which is a collection of potential distributions of
O∗, designed to comply with the natural constraints implied by data, eg.
boundedness, independence and class of the variables.

Estimand The causal estimand of interest is

Ψ∗(P ) = EP [Y (1, 14, 04)− Y (0, 14, 04)]

for P ∈ M, where Y (a0, 14, 04) denotes the potential outcome at the final
visit when the randomised treatment A0 is set to a0 ∈ {0, 1} and A1:4 = 14
and Z1:4 = 04 corresponding to adhering to the randomised treatment and
not initiating rescue medication throughout the study.

Identifiability

Identifiability of the causal estimand by a statistical one is ensured by generalising the identifying
assumptions of no unmeasured confounders, positivity and consistency in Assumption 2.11 to the
longitudinal case. The observable data structure in the PIONEER 1 trial is

O = (W0, A0,W1, A1, Z1, . . . ,W4, A4, Z4, Y ) ∈ O. (5.2.1)

Assumption 5.1 (Longitudinal identifying assumptions).
(i) Sequential randomisation:

• [Y (1, 14, 04), Y (0, 14, 04)] ⊥⊥ Ak |W0:k, A0:(k−1), Z1:(k−1)

• [Y (1, 14, 04), Y (0, 14, 04)] ⊥⊥ Zk |W0:k, A0:k, Z1:(k−1)

for all k = 0, . . . ,K − 1.
(ii) Sequential positivity:

sup
O∈O

4∏
k=0

I(Ak = 1)

gAk

I(Zk = 0)

gZk

<∞ (5.2.2)

where gAk
and gZk

denote the conditional densities p(Ak | Pa(Ak)) and p(Zk |
Pa(Zk)) respectively. Here we define 0/0 := 1.

(iii) Sequential consistency: The potential outcome Y (a0, 14, 04) is observed for the
subjects that followed the treatment regime A0 = a0, A1:4 = 14, Z1:4 = 04.
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In the following we will go through each of the assumptions in Assumption 5.1 and discuss the
validity in the context of the PIONEER 1 trial. The sequential randomisation assumption is satisfied
as long as there are no unmeasured confounders in the outcome-treatment relationship, where A0,
Ak and Zk for k = 1, . . . , 4 are considered treatments and Y is considered the outcome. It has been
discussed in a variety of papers on diabetes studies, see [2] and [27], that repeated measurements
of both HbA1c and FPG collected before the outcome Y are confounders as they affect both the
occurrence of an ICE and the value of the outcome. We will not use FPG as a covariate, hence it
will be considered unmeasured in our analyses making it an unmeasured confounder. However,
when discussing the validity of the assumption of no unmeasured confounders, [2] states “the extent
to which it is violated may be mitigated by the high correlation between FPG and HbA1c”. As both
FPG and HbA1c are blood glucose measurements they are highly correlated, which makes it less of
a concern not to include FPG in our models even though it is believed to be a confounder.

It is clear that the sequential positivity assumption, Assumption 5.1 (ii), is a bit different and
less intuitive than what we have seen before, but it is simply an extension. In the context of the
PIONEER 1 trial, sequential positivity corresponds to having a positive probability of observing
the outcome in the case of no discontinuation of treatment and no rescue medication under either
randomised treatment for every participant. Hence, we consider the product of ratios between the
interventions, determined by the indicators I(Ak = 1) and I(Zk = 0), and the true conditional
densities of Ak and Zk. The sequential positivity assumption requires that every intervention
Ak = 1 and Zk = 0, for k = 1, . . . , 4, has positive probability of occurring in the true distribution,
just as in Assumption 2.11 (ii). We know that there is a positive probability of either treatment
scenario by randomisation. Moving on to treatment discontinuation, we need a positive probability
of not discontinuing the randomised treatment at any time no matter the covariate values. The
concern is that there might be participants that experience adverse events or insufficient therapeutic
effect, which makes them want to discontinue treatment. When looking into different variables in
the dataset and comparing extreme values that might affect discontinuation of trial product, we saw
no patterns or trends that led to a violation of this assumption.

The procedure outlined in Section 5.1, regarding initiation of rescue medication based on a threshold,
highlights that there might be an issue with the assumption of having a positive probability of
not receiving rescue medication at any visit. According to the protocol it seems that initiation of
rescue medication is a deterministic decision based on covariate history. We have investigated
this assumption in data, which shows some deviations from this deterministic decision guiding
framework. In the PIONEER 1 trial participants were not allowed to initiate rescue medication
before visit 2. However there were some (< 5) participants that initiated rescue medication before
visit 2. In later visits, where there were thresholds for initiation of rescue medication as indicated in
Table 5.1, at least 50% of the participants who exceeded these thresholds did not end up receiving
rescue medication. For visit 2, 3 and 4, the proportions of participants that actually received rescue
medication among those exceeding the rescue threshold are 38.1%, 45.7% and 21.6% respectively.
This may be because they did not end up exceeding the threshold when a confirmatory FPG
measurement was taken, but we have not investigated this part of the problem. The conclusion is,
that the threshold rule in the protocol did not end up creating a deterministic rescue medication
assignment after exceeding certain thresholds of FPG when based only on scheduled visits, as
we might have feared. Hence we are no longer concerned about the validity of the assumption of
having positive probability of not receiving rescue medication for every possible covariate history.
Of course we need a positive probability of the combination of no rescue medication and continuing
on trial product throughout the 26 weeks for both treatment arms. However, it is not believed that
these two ICEs affect each other and hence it is sufficient to consider them separately.

The sequential consistency assumption, Assumption 5.1 (iii), states that the participant’s realised
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outcome should be equal to the potential outcome corresponding to the treatment scenario they have
experienced. For example, there should not be a variation of treatment dose within one treatment
arm. As doses are measured exactly in the PIONEER 1 trial, we have no reason to doubt the validity
of this assumption.

In conclusion, the assumptions stated in Assumption 5.1 unreasonable. If there is a concern of
any assumptions being valid, one could conduct a sensitivity analysis in addition to the original
analysis, however, this is out of scope for this project.

Statistical problem

We are able to move on to describe the statistical estimation problem as illustrated in Figure 1.1 and
under the identifying assumptions stated in Assumption 5.1, it holds that the statistical estimand
given by

Ψ(P ) = E[E[· · ·E[Y |W0:4, A0 = 1, A1:4 = 14, Z1:4 = 04] · · · |W0, A0 = 1]]

− E[E[· · ·E[Y |W0:4, A0 = 0, A1:4 = 14, Z1:4 = 04] · · · |W0, A0 = 0]]
(5.2.3)

identifies the causal estimand given above. We will not be proving this result, however, the proof of
an analogue result in the simpler case where there are 2 visits after baseline is given in Appendix
A.4.

The statistical estimation problem
Data n i.i.d. observations o1, . . . , on of the stochastic vector

O = (W0, A0,W1, A1, Z1, . . . ,W4, A4, Z4, Y )

using the notation introduced earlier.

Model A statistical model M, which is a collection of distributions designed to
comply with the natural constraints implied by data, eg. boundedness,
independence and class of the variables.

Estimand The statistical estimand of interest Ψ : M → R is given in (5.2.3).

The last steps presented in the workflow of Figure 1.1 are to define a statistical estimator, obtain a
statistical estimate and interpret the result.

5.2.1 Data for analysis of the hypothetical estimand

As introduced in Section 5.2, we are interested in the hypothetical estimand, that is, we are interested
in the case where participants do not initiate rescue medication nor discontinue the randomised
treatment throughout the study. In the redacted clinical study report [6], they define different
observation periods used for efficacy endpoints. The two observation periods that we will consider
in this project are

• Data from randomised participants while on treatment and without rescue medication

• Data from all randomised participants in trial

The first approach is to solely consider pre-ICE data. That is, discarding data observed after
occurrence of any of these ICEs, creating a monotone missingness pattern. The intuitive idea to
this approach is to eliminate the effect that ICEs have on the outcome by disregarding observations
that are affected by them. In the context of the PIONEER 1 study, observations after treatment
discontinuation or initialisation of rescue medication are discarded and the corresponding variables
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Ak and Zk are referred to as censoring variables, as they together are indicators of whether or
not an observation is missing. The second approach is to utilise all the collected data, model the
effects of the ICEs on the outcome and then calculate the estimate of the treatment effect in the
hypothetical absence of ICEs.

In the following sections, we will present methods that use data from either of these observation
periods and compare them in a simulation study and in a case study, see Chapters 6 and 7.

5.3 Parametric estimation methods

First we will propose likelihood based methods, which assume parametric dependencies and only
use data from participants while on treatment and without rescue medication. When using likelihood
based methods on data with missingness in the dependent variable, we work under the assumption
that data is missing at random (MAR) [28]. This corresponds to non-informative censoring, that is,
the censoring could not have been foreseen, had we known the outcomes after censoring. When
basing these models on data observed prior to any ICE, we answer the question “What would the
treatment effect be, had patients taken the randomised treatment and not received rescue medication
and behaved like other patients who did not take rescue medication and adhered to protocol?”.
In words, the MAR assumption states that the behaviour of participants that experience an ICE is
similar to the behaviour of participants that do not experience any ICEs and hence we can generalise
the results drawn from pre-ICE data to all participants.

To state the MAR assumption mathematically in the context of basing an analysis on pre-ICE data,
we start by introducing some notation. In PIONEER 1 there were 5 visits after baseline, hence we
define the joint censoring variable

Rk =

{
0, if either Ak = 0 or Zk = 1

1, otherwise
(5.3.1)

for k = 1, . . . , 4, which are indicators of whether or not data after the k’th visit are included in
the analysis. By the monotone missingness pattern that is created by discarding post-ICE data,
R = (R1, . . . , R4) can only take the form

rj = (1j , 04−j) (5.3.2)

for j = 0, . . . , 4. Then R = rj for one subject would imply that we solely include data observed up
to visit j and consider everything observed thereafter as missing. That is R = r4 denotes the case
where the participant does not discontinue randomised treatment nor initialise rescue medication at
any point during the study and hence there is no missingness in (W2,W3,W4, Y ).

By [29], the MAR assumption states

P (R = rj | A0,W0:(j+1),W(j+2):4, Y ) = P (R = rj | A0,W0:(j+1)) (5.3.3)

for j = 0, . . . , 3. This is equivalent to the conditional independence

{R = rj} ⊥⊥ (W(j+2):4, Y ) | (A0,W0:(j+1)). (5.3.4)

Part of this assumption is somewhat familiar to us as (5.3.4) is similar to the sequential randomisa-
tion assumption stated in Assumption 5.1 [30]. As discussed earlier, this assumption simply entails
that we do not have any unobserved confounders in the relationship between the outcome and the
time varying treatment variables Ak and Zk. However, the MAR assumption additionally requires
that there are no unobserved confounders in the relationship between the repeated measurements of
the endpoint up to the final visit and the time varying treatment variables Ak and Zk.
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5.3.1 Simple methods modelling only the outcome

If one just considers the outcome Y at end of treatment and hence ignore all the repeated mea-
surements W1:4, the outcome will be censored if one of the Ak = 0 or Zk = 1, and due to the
monotonicity of these variables it is equivalent with R4 = 0. In this case, where we just ignore the
information between the baseline visit and the final outcome measurement, the MAR assumption
simplifies to the conditional independence

{R4 = 0} ⊥⊥ Y | (A0,W0). (5.3.5)

The implication of this assumptions is, that we receive no information from Y as to whether or not
a participant experience any ICE. However, we know that the prescription of rescue medication is
determined by the biomarker FPG, which is highly correlated with the HbA1c measurement. The
repeated measurements of HbA1c are therefore considered confounders in the R4-Y relationship,
which is also depicted in both Figure 5.1 and 5.2. Hence, we do not believe this assumption, but
use it as a starting point for estimation of the treatment effect.

In this subsection we will consider some simple likelihood based estimation methods that solely
consider the final outcome as the dependent variable and only consider data that are not affected by
any ICE. In this case, participants that discontinue at the first visit and participants who discontinue
just before the last visit contribute with the same amount of information. These methods rely on the
MAR assumption as discussed above.

Empirical mean

The first simple approach is to take the empirical mean of the final HbA1c measurement across each
of the treatment groups, that is

Ȳ0 =
1

n0

n∑
i=1

I(A0,i = 0)Yi, Ȳ1 =
1

n1

n∑
i=1

I(A0,i = 1)Yi, (5.3.6)

where n0 and n1 are the number of participants that do not discontinue treatment or receive rescue
medication in the placebo and treatment group respectively. The estimate of the treatment effect
using this approach is Ȳ1 − Ȳ0. Under the assumption that the outcome is normally distributed this
is a likelihood based approach, since it is equivalent to fitting a linear model where the dependent
variable is Y and the only independent variable is A0.

Linear model

Another simple approach, using the same strategy for handling ICEs, is to fit a linear model
accounting for covariates. We will adjust for the baseline value of HbA1c and region of residence
inspired by the covariates that were adjusted for in the original analysis. We specify the linear
model

Y = γ0 + γ1W0,1 + γ2W0,2 + γ3A0 + ε, (5.3.7)

where ε ∼ N (0, σ2) for some σ2 > 0 and one should recall the notation introduced in Table 5.2.
In this case, the treatment effect is γ3.

5.3.2 Mixed models for repeated measures

In addition to the simple methods presented above, we will present the method that was chosen
for the hypothetical estimand when originally planning the PIONEER 1 study, which is a Mixed
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Model for Repeated Measures (MMRM). The MMRM models a continuous variable that has
been measured repeatedly at discrete time points and can include both fixed and random effects.
Hence we can utilise the repeated measures from data on treatment and without rescue medication,
Υ = (W1,W2,W3,W4, Y ). In this case, the participants contribute with different amounts of
information if they are censored at different time points, contrary to the case where we only consider
the outcome. The advantage of using an MMRM is that it allows us to account for the correlation
between the repeated measurements of HbA1c and hopefully gain information about the trajectory
of the censored participants. This method is standard practice for estimating the hypothetical
estimand as it provides unbiased results under the assumption that missing data is MAR and the
model is correctly specified [31]. We aim to replicate the analysis from the publication [32]. In
the case where there is no missingness, which in this case corresponds to no ICEs, MMRM is
equivalent to a general linear model.

As our aim is to replicate the original analysis, we will just state the model. The supplementary
material for [32] formulated the MMRM model in the following way: “The independent effects
included in the model were treatment and region as categorical fixed effects and baseline value as a
covariate, all nested within visit. An unstructured covariance matrix for endpoint measurements
within the same patient was employed”. This means that the fixed effects consisted of HbA1c
measured at baseline, region, visit, randomised treatment A0 and the interactions between visit and
all the other variables. Let Υk denote the k’th entry in Υ. Using the notation presented in Table 5.2,
the model described above can be formulated in the following way

Υk = α0 + β0,k +W0,1β1,k +W0,2β2,k +A0β3,k + εk (5.3.8)

for each post-baseline visit k = 1, . . . , 5, where we assume that
∑5

k=1 β0,k = 0. The error term
εk denotes the k’th entry in ε ∼ N5(05,Σ). As (5.3.8) contains no random effects, it is simply a
general linear model. The model makes the assumption that the change in HbA1c measured at each
visit throughout the duration of the trial can be described by a finite number of parameters. We
have earlier discussed that this assumption might not be very realistic and in practice, a sensitivity
analysis is often conducted to ensure that the findings are not completely reliant on this and other
perhaps inaccurate assumptions.

As region is a factor with five levels, we assume that W0,2 is a four dimensional row vector of
indicators that specify the region that the participant resides in, where a full row of zeros indicate
that the participant resides in the reference group, which is important to avoid overparameterisation.
The parameters β2,k ∈ R4 are four dimensional parameter vectors for k = 1, . . . , 5 specifying the
effect of each region and its interaction with the visits.

The covariance matrix Σ ∈ R5×5 is assumed to be unstructured meaning that we have 15 variance
parameters to estimate. When using an unstructured covariance matrix, we make no assumptions
about the structure of correlational effects. A drawback of using an unstructured covariance matrix
is that we need to estimate a large number of parameters compared to other covariance structures
that make more restrictive assumptions. However, this is not of concern in large samples. In total
we reach 50 parameters to estimate when fitting this model.

The MMRM (5.3.8) assumes that the residuals are multivariate normally distributed. This is again a
restrictive assumption, but we can assess a normal Quantile-Quantile (QQ) plot for the residuals as
a rather simple tool to see if the residuals at each separate visit look normally distributed. Figure B.1
displays the normal QQ plots for the residuals at each visit after baseline. It is clear that they all
have rather heavy tails, but they fit fairly well towards the middle. Judging from these plots there is
not enough evidence to reject the assumption of normally distributed data.

As the aim is to model the data as if it had not been affected by treatment discontinuation or
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rescue medication intake with an MMRM, we consider the data structure (W0, A0,Υ). That is, we
disregard the censoring variables Ak and Zk, which we can do as we have made the assumption
that these variables give no further information about the value of the potential outcomes of a
participant. By MAR (5.3.4), the statistical estimand (5.2.3) equals

E[· · ·E[Y |W0:4, A0 = 1] |W0:3, A0 = 1] |W0:2, A0 = 1] |W0:1, A0 = 1] |W0, A0 = 1]]

− E[· · ·E[Y |W0:4, A0 = 0] |W0:3, A0 = 0] |W0:2, A0 = 0] |W0:1, A0 = 0] |W0, A0 = 0]]

= E[E[Y |W0, A0 = 1]− E[Y |W0, A0 = 0]] = β3,5.

The first equality is a consequence of Theorem A.7 and the second is per (5.3.8). The treatment
effect that we will record for the MMRM model will be the estimate of the above quantity.

As we have mentioned earlier in this project, there are quite a few drawbacks when using parametric
models like MMRM, as correct specification of the model is an important assumption for it to attain
desirable properties. In a guideline specifically addressing the hypothetical strategy for the use of
rescue medication in the context of diabetes mellitus [33], EMA stated that “standard imputation
methods or modelling targeting a hypothetical estimand strategy may not be appropriate if based
on subjects that do not require rescue medication or if based on the missing-data-assumption since
these subjects differ from those who require rescue medication”. This motivates looking into other
approaches for estimating the hypothetical estimand, which do not rely on the MAR assumption. In
addition, we might wonder if there is a method where it is possible to utilise all the observed data,
instead of ignoring the parts that are influenced by treatment discontinuation and initialisation of
rescue medication.

5.4 Longitudinal TMLE

As opposed to the parametric estimation methods we will introduce a method based on TMLE that
is semiparametric and utilises all the observed data. First we need to extend TMLE, from Section
4.1, to handle longitudinal data.

Recall the statistical estimand of interest presented in Section 5.2,

Ψ(P ) = E[E[· · ·E[Y |W0:4, A0 = 1, A1:4 = 14, Z1:4 = 04] · · · |W0, A0 = 1]]

− E[E[· · ·E[Y |W0:4, A0 = 0, A1:4 = 14, Z1:4 = 04] · · · |W0, A0 = 0]].
(5.4.1)

We start by introducing some notation that will come in handy when extending the concept of
TMLE to this setting. Recall that we have used Q̄ to denote the conditional mean of the outcome
Y . Since we are working iteratively we will subscript the Qs to indicate which mean we are
considering. For a0 ∈ {0, 1}, let

Q̄Y (a0,W0:4) := E[Y |W0:4, A0 = a0, A1:4 = 14, Z1:4 = 04] (5.4.2)

Q̄W4(a0,W0:3) := E[Q̄Y (a0,W0:4) |W0:3, A0 = a0, A0:3 = 13, Z1:3 = 03] (5.4.3)

Q̄W3(a0,W0:2) := E[Q̄W4(a0,W0:3) |W0:2, A0 = a0, A1:2 = 12, Z1:2 = 02] (5.4.4)

Q̄W2(a0,W0:1) := E[Q̄W3(a0,W0:2) |W0:1, A0 = a0, A1 = 1, Z1 = 0] (5.4.5)

Q̄W1(a0,W0) := E[Q̄W2(a0,W0:1) |W0, A0 = a0]. (5.4.6)

Longitudinal TMLE (LTMLE) is a process that iteratively uses the TMLE algorithm for each of
the equations (5.4.2)-(5.4.6). When iterating, it moves backwards in time and starts by estimating
(5.4.2) using the TMLE algorithm to find an updated estimator ˆ̄Q∗

Y (a0,W0:4) of Q̄Y (a0,W0:4).
Then the obtained estimator is used as the outcome in the next conditional expectation (5.4.3),
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which we use TMLE to find an estimator for. This estimator is then used as the outcome in the next
conditional expectation and so on until we get an updated estimator ˆ̄Q∗

W1
(a0,W0) of Q̄W1(a0,W0).

Then the LTMLE of Ψ(P0) is defined by

Ψ̂LTMLE =
1

n

n∑
i=1

ˆ̄Q∗
W1

(1, w0,i)− ˆ̄Q∗
W1

(0, w0,i) (5.4.7)

where w0,1, . . . , w0,n denote i.i.d. observations of W0. This procedure is described in the following
algorithm.

Algorithm 5.1 LTMLE for the intervention specific mean.
Require: A statistical model M containing distributions with densities that are bounded from

above, the statistical estimand Ψ : M → R in (5.4.1) and n i.i.d. observations o1, . . . , on of
the stochastic vector O = (W0, A0,W1, A1, Z1, . . . ,W4, A4, Z4, Y ) ∼ P0 ∈ M.

1: Use Algorithm 4.1 to estimate Q̄Y (a0,W1:4) and denote the TMLE of Q̄Y (a0,W1:4) by ˆ̄Q∗
W5

2: for k = 4 to k = 1 do
3: Obtain the TMLE ˆ̄Q∗

Wk
of Q̄Wk

(a0,W1:k) by Algorithm 4.1, using ˆ̄Q∗
Wk+1

as the outcome.

4: Save the final estimator of Ψ(P0) given by (5.4.7).

Algorithm 5.1 uses Algorithm 4.1 iteratively, in which the EIF is calculated. The EIF in the k’th
iteration is given by

ϕWk =
I((A0, A1:(k−1), Z1:(k−1)) = (a0, 1k−1, 0k−1))

gA0

∏k−1
i=1 gAigZi

(Q̄Wk+1
− Q̄Wk

) (5.4.8)

for k = 1, . . . , 4 where gAk
= p(Ak | Pa(Ak)) and gZk

= p(Zk | Pa(Zk)) and

ϕY =
I((A0, A1:4, Z1:4) = (a0, 14, 04))

gA0

∏4
i=1 gAigZi

(Y − Q̄Y ) (5.4.9)

for the first step in Algorithm 5.1 and a proof of this statement can be found in [34, app. A]. As
TMLE is used repeatedly we know by Proposition 4.1 that plug-in bias is eliminated for each
iteration considered as a separate problem. However, by [34, thm. 2] it holds that plug-in bias
is eliminated for estimation of Ψ(P0) using LTMLE if either the estimates of (5.4.2)-(5.4.6) or
g = gA0

∏4
i=1 gAigZi are equal to the truth.

Algorithm 5.1 is a very specific version of LTMLE for estimating an intervention specific mean,
but there are more general versions of this algorithm that are suitable for other statistical estimands.
In this project we will solely consider intervention specific means, for which this algorithm is
sufficient.

An advantage of using LTMLE for estimating the hypothetical estimand is that we are able to design
the statistical model ourselves. That is, we can restrict our model space to reflect factual knowledge
instead of making unrealistic assumptions, eg. parametric dependencies. As mentioned, we can use
DAGs to illustrate the potential dependencies among variables in the data and hence specify the
dependencies that are allowed in possible DGPs contained in the statistical model. When making
less assumptions in the DAG, that is, having more potential dependencies, we will most likely end
up with more uncertainty. Hence it is often of interest to remove some of these dependencies from
the DAG as we did in Figure 5.2. However, it is a trade-off situation as these assumptions might
not be satisfied, which will cause bias.
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This concludes the presentation of the different methods that we will use for estimating the
hypothetical estimand in this project. The aim of the next couple of chapters is to compare the
results that each of these yield in a simulation study and a case study.
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6 Simulation study

Causal estimands require unobserved counterfactuals and seek properties of the true data generating
process, which remains unknown. When we seek to validate or compare models, this is quite an
obstacle, since we do not know the truth and hence do not know what to compare the models to.
Instead of using observed data where the DGP is unknown, we will conduct a simulation study
where we choose the true DGP beforehand. Then we are able to compare models based on their
performance on this simulated dataset, where we know the actual truth that our models are trying to
estimate. This can be perceived as an imaginary world with all the information that we could wish
for.

To investigate the difference between the performance of the models proposed in 5 for estimating
the hypothetical estimand in a variety of scenarios, we conducted a simulation study. The scenarios
we are interested in looking into are cases where the proportion of participants receiving rescue
medication varies. This section will go through how the data are simulated and the conclusions that
we are able to draw from this simulation study. All analyses were carried out using R version 4.4.1.

6.1 Distribution of simulated data

For the purpose of the simulation study, we developed a function in R to simulate longitudinal RCT
data. To mimic data from the PIONEER 1 data, we simulated 1000 two-armed RCTs with 400
participants, where the continuous outcome was measured at baseline and at 5 visits after baseline.

First we simulated four baseline covariates, denoted W0 = (W0,1,W0,2). The first baseline
covariate will be interpreted as the baseline HbA1c value and is chosen to be normally distributed
with mean 7.94 and variance 0.49 inspired by the data from PIONEER 1. The second baseline
covariate is a categorical variable indicating region of residence among five possible regions chosen
at random such that two of the regions are chosen with a larger probability than the rest. In addition
to these we simulated some additional baseline variables U0 = (U0,1, U0,2) that will be considered
unmeasured covariates in the analyses and will hence not be accounted for. The covariates U0,1 and
U0,2 are chosen to be independent standard normal distributed variables. The treatment variable A0

is evenly distributed. This concludes the variables that were generated for each participant at the
baseline visit. Note that we did not allow participants to initiate rescue medication before visit 1.
This choice was made as we do not see this in the data from PIONEER 1 and this extreme case is
often not relevant in diabetes studies.

Visit 1

Moving on to the first visit, we start by generating the HbA1c value by the following equation

W1 =W0,1 + 0.1(U0,1 + U0,2) + θ1A0 + 0.5 · I(W0,2 = 3)

+ 0.05(W st
0,1U0,1 +W st

0,1U0,2 + U0,1U0,2)− 0.05(W st
0,1

2
+ U2

0,1 + U2
0,2) + t4,

(6.1.1)
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where W st
0,1 denotes the standardised value of W0,1 and t4 denotes a t distribution with 4 degrees of

freedom. The effect of treatment, which is determined by the parameter θ1 = −0.5 and number of
visits K, is chosen to be negative such that the active treatment reduces the HbA1c value, which
is what we would expect in a diabetes trial. Based on the consultation in visit 1, participants may
discontinue the randomised treatment and/or initiate rescue medication. We generate the variables

A1 ∼ Bernoulli(0.98) (6.1.2)

Z1 ∼ Bernoulli(p1), p1 = expit(γ0,1 + γ1,1A0 + γ2,1W1). (6.1.3)

This implies that the probability of discontinuing treatment between the first and second visit (A1 =
0) is the same across all participants and that the probability of receiving rescue medication varies
depending on randomised treatment assignment, A0, and the previously measured HbA1c value, W1.
The coefficients (γ0,1, γ1,1, γ2,1) were found by fitting a logistic regression on the data from the
PIONEER 1 trial in order to mimic the way participants receive rescue medication between visits 1
and 2 in the study. The HbA1c values in the data were standardised prior to fitting the regression
and likewise W1 was standardised prior to making the predictions expit(γ0,1 + γ1,1A0 + γ2,1W1)
that form the probabilities p1 for each participant. Table 6.1 shows the estimated coefficients for
the logistic regression and hence the values of (γ0,1, γ1,1, γ2,1).

Remaining visits

Now that we have explained thoroughly how the variables for the baseline visit and visit 1 are
generated we will use generalised notation to explain how variables observed in visits 2 through 4
are generated, as this is a repetitive process. For visit k = 2, 3, 4 we first generate the HbA1c value
observed for that visit using the following formula:

Wk =Wk−1 +
θ1(6− k)

5
A0Ak−1 + θ2Zk−1I(Z1:k−2 = 0k−2) + t4. (6.1.4)

The intuition of the formula (6.1.4) for the HbA1c value at visit k is, that it is based on the previous
HbA1c value with additional effects depending on treatment assignment, treatment adherence and
rescue medication intake. The indicator variable is added to make sure that the effect of taking
rescue medication is only added once.

Then we generate the adherence and rescue medication intake variables. For the adherence variable
we assume that when a participant does not adhere, it is not possible to get back on randomised
treatment, that is Ak = 0 ⇒ Ak+1 = 0. When they adhere, the variable Ak is generated in the
same way as (6.1.2). For the rescue medication intake variable the rule is that you are only allowed
rescue medication once, hence if a participant has not received anything yet, Zk−1 = 0, the Zk is
generated by

Zk ∼ Bernoulli(pk), pk = expit(γ0,k + γ1,kA0 + γ2,kWk) (6.1.5)

and otherwise if Zk−1 = 1 then Zk = 1. Remark, that a participant who has been assigned to active
treatment, but discontinues treatment at some point, will progress as if they had been assigned to
placebo after they discontinue. The coefficient θ2 = −0.7 meaning that participants who initiate
rescue medication receive an immediate effect of reducing their HbA1c value by 0.7. Lastly Y , the
HbA1c value at the end of treatment, is generated by

Y =W4 +
θ1
5
A0A4 + θ2Z4I(Z3 = 0) + t4. (6.1.6)
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6.1.1 Dependencies

As mentioned, the coefficients (γ0,k, γ1,k, γ2,k) in the formulas for the probability of receiving
rescue medication at the k’th visit for each participant are found using a logistic regression fit on the
real data. The coefficients obtained from these fits are displayed in Table 6.1. The intercepts γ0,k
are close to −10 for all k = 1, . . . , 4 indicating that with a HbA1c value of 0 at visit k, a participant
in the placebo group would have an extremely small probability for receiving rescue medication at
all visits. Of course this scenario is completely hypothetical as a HbA1c level of 0 is unfeasible. The
coefficient γ1,k is negative for all k, meaning that being assigned to the active treatment decreases
the probability of getting rescue medication compared to placebo. This indicates that there will
be created an imbalance of rescue medication use between the treatment groups. It is clear that
receiving active treatment has a much larger effect on the probability of getting rescue medication
for the first two visits (k = 1, 2) than for the last two visits (k = 3, 4). Lastly, the coefficient γ2,k is
positive for all k implying that a larger HbA1c value at the previous visit gives a higher probability
of receiving rescue medication. This is expected as larger HbA1c values indicate high values of
blood glucose, which can lowered by rescue medication.

Table 6.1: Coefficient estimates after fitting a logisitic regression, on data from the PIONEER 1
trial, with formula Zk = γ0,k + γ1,kA0 + γ2,kWk.

k γ0,k γ1,k γ2,k
1 −10.2500 −17.0876 0.6278
2 −11.805 −17.652 1.062
3 −10.705 −2.016 1.046
4 −8.3217 −1.7680 0.8137

Using the above formulas for generating observations for each of the 400 participants in each dataset,
we know the true causal distribution P ∗ of O∗ = (W0, A0,W1, A1, Z1, . . . ,W4, A4, Z4,Y ). This
means that we can calculate the true value of the causal estimand described in Section 5.2. Consid-
ering the scenario where participants completely adhere and never initiate rescue medication, the
true treatment effect is given by

Ψ∗(P ∗) = EP ∗ [Y (1, 14, 04)− Y (0, 14, 04)]

=

K∑
k=1

K − k + 1

K
θ1 =

5∑
k=1

6− k

5
(−0.5) = −1.5

(6.1.7)

and is identified by the statistical estimand (5.2.3), which we will try to estimate using the methods
described in Chapter 5 in the next section.

As we are in complete control of the underlying DGP, we have complete knowledge of the SCM,
which is simply the collection of equations presented in the above and hence we can also draw
a correct DAG for this case. Figure 6.1 presents the true relationships between the variables for
the simulated data. Here it is important to note that Ak for k = 2, . . . , 4 is only affected by Ak−1

if Ak−1 = 0, which then sets Ak = 0 deterministically. Otherwise Ak is completely randomly
generated.
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W0 W1 W2 W3 W4 Y

Z1 Z2 Z3 Z4

A0

A1 A2 A3 A4

Figure 6.1: DAG illustrating dependencies between variables in the simulated data.

The DAG presented in Figure 6.1 is noticeably different than the DAGs in Figure 5.1 and 5.2. There
are much fewer dependencies between the variables in the simulation study than what Figure 5.1
assumes, which ensures that a model containing all possible distributions with these dependencies
will contain the true DGP of the simulated data. The DAG in Figure 5.2 does not present any
dependencies between the randomised treatment A0 and the ICEs Ak and Zk for k = 2, . . . , 4
as opposed to the simulated data where A0 directly affects Zk for k = 1, . . . , 4. However, this
was solely done in the simulated data to create the imbalance in the proportion of participants
receiving rescue medication across treatment groups. In addition, it is not always the case that the
assumptions made on dependencies between variables is completely correct and it will also be
of interest to see how models that assume different dependencies end up performing, when these
assumptions are not satisfied.

To get an understanding of how the different methods perform on average, we generate 1000
datasets consisting of 400 participants using the above formulas. From now on, we will refer to
this collection of datasets as scenario B. On average across these 1000 datasets, 22.4% of the
participants end up receiving rescue medication at some point during the trial. This is more than
what was observed in the PIONEER 1 study, however, this will work in our favour as we are
interested in how well the different methods presented in Chapter 5 handle data that is affected by
intercurrent events.

6.1.2 Additional datasets

In addition to considering scenario B, we also generated 1000 datasets that was not affected by
rescue medication at all, which will be referred to as scenario A. To generate these datasets, the
same process as described in Section 6.1 was used while deterministically setting Zk = 0 for all
k = 1, . . . , 4. This scenario is of interest because we would like to compare the performance of the
methods presented in Chapter 5 when data is affected very little by ICEs. The only ICE in this case
is treatment discontinuation, which is balanced among treatment groups by construction. Hence
this dataset will represent the scenario where rescue medication was not permitted without any
other changes to the DGP.

As we are interested in methods for estimating the hypothetical estimand, it is natural to question
the performance of these in the case where more than 22.4% of the participants receive rescue
medication. Hence we have also generated 1000 datasets where, on average, 38% of participants
receive rescue medication, which will be referred to as scenario C. Again, we modified the amount
of rescue medication use and used the same process for generating data as described in Section 6.1.
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In Table 6.2 we have displayed the percentage of participants that receive rescue medication at
some point for each of the three collections of 1000 datasets. The difference in the percentage of
participants that take rescue medication across the two treatment groups is remarkable for scenario
B and C. It is clear that the effect of treatment on the probability of receiving rescue medication
that was presented in Table 6.1 shows in the simulated data just as expected. It should be noted that
the true value of the hypothetical estimand is −1.5 in all of the generated datasets and it is only
the percentage of participants that receive rescue medication that differs among each of the three
collections of 1000 datasets.

Table 6.2: The mean, minimum and maximum percent of participants (written as mean[min,max])
that receive rescue medication at some point throughout the study, taken over three different rescue
scenarios, named A, B and C, each containing 1000 simulated datasets of 400 participants.

Scenario Treatment Placebo Total
A 0% [0, 0] 0% [0, 0] 0% [0, 0]
B 7.376% [2, 14.50] 37.35% [25, 50] 22.36% [14.75, 31]
C 15.83% [9, 23.5] 60.25% [50, 70.5] 38.04% [30.75, 44.75]

Figure 6.2 displays the average percent of participants that have not experienced an ICE at each
given visit. That is, the percent of participants that are still taking the randomised treatment,Ak = 1,
and have not started rescue medication, Zk = 0, at each visit k = 1, . . . , 5. As explained, data was
simulated such that no participant discontinued treatment or initialised rescue medication before
visit 1, making this percentage 100% for all three rescue scenarios. In scenario A, where no rescue
medication was allowed, we only see a decline due to the participants that discontinue treatment,
as this is the only ICE. Hence we end up with an outcome measurement Y , that was not affected
by an ICE, from approximately 92% of participants on average across datasets from scenario A.
In scenario B and C we see that there are approximately 72% and 57% of participants having an
outcome measurement that is not affected by an ICE, marked by the dots at visit 5.
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Figure 6.2: Visualising the amount of data which are not affected by the occurrence of an ICE for
each visit. Dots are slightly jittered in the direction of the x-axis for better visualisation.

To get an idea of the mean trajectories of participants generated in each of the scenarios A, B and
C we present Figure 6.3. These plots display the means across all 1000 datasets containing 400
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participants, that is, they are means across 400,000 measurements for each of the visits. It is clear
across all three plots that the treatment arm obtains a lower HbA1c than the placebo arm. One thing
to notice is that the placebo arms are rather different across the three plots, that is, the placebo
arms for the different simulated datasets are different. This is due to the varying amount of rescue
medication. Of course, there is also a varying amount of rescue medication in the treatment arm,
however, as displayed in Table 6.2, the difference is much mere extreme in the placebo arm, which
also makes up the noticeable difference in the plots.

In the first plot displayed in Figure 6.3 there is not much change in the placebo arm. In the second
plot, there is a downhill slope after visit 2 indicating that placebo patients in these simulated trials
actually lower their HbA1c levels throughout the study. However, by the way this data has been
generated, we know that this is due to the amount of participants in the placebo arm that end up
receiving rescue medication, which by definition is some anti-diabetic drug that naturally will affect
the HbA1c measurements. Hence if we do not account for this difference, we will most likely
underestimate the true treatment difference of the experimental treatment. In the last plot displayed
in Figure 6.3, we see a more extreme case, where the proportion of participants receiving rescue
medication is amplified. This has a clear effect on the mean trajectory of the placebo patients.
Hence, in a case where a large proportion of participants end up receiving rescue medication, there
is an even larger risk of underestimating the true treatment difference if the models used in the
analysis do not account for the use of rescue medication.
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Figure 6.3: Mean plots for each of the three scenarios.

6.2 Results

In this section we will compare the performance of the models presented in Chapter 5 on simulated
data from the three different scenarios described in the above section. Specifically we will focus on
their ability to capture the true treatment effect (6.1.7), when using a hypothetical strategy for ICEs.

To be specific, the different models that we will be comparing in this section are the empirical mean
given in (5.3.6), the linear model (5.3.7) and the MMRM given in (5.3.8). In addition to these,
we will fit two LTMLE models that differ in their assumptions on the dependencies between the
involved variables. The first one will make very few assumption on the variables by taking the
dependencies implied by the DAG in Figure 5.1 into account. The second one will make more
assumptions on the dependencies as it will only consider the dependencies implied by Figure 5.2.
The MMRM is fitted using the R-package mmrm [35] and the LTMLE is implemented using the
ltmle package [36]. For more information on how all these models are implemented, see Section

7.2. In Table 6.3 all the results are summarised.
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Table 6.3: Mean estimate and bias across 1000 simulated datasets, from each of the five different
models, in three different rescue scenarios. In addition the RMSE and coverage are reported.

Scenario Method Mean estimate Mean bias RMSE Coverage

A

Empirical mean −1.486 0.01410 0.3467 95.4%
Linear model −1.486 0.01385 0.3392 95%
MMRM −1.488 0.01151 0.3314 95.2%
LTMLE (Figure 5.1) −1.485 0.01509 0.01042 95.1%
LTMLE (Figure 5.2) −1.485 0.01477 0.01041 95.1%

B

Empirical mean −0.5204 0.9796 1.038 19.5%
Linear model −0.5874 0.9126 0.9728 24.9%
MMRM −1.503 −0.002691 0.3545 94%
LTMLE (Figure 5.1) −1.479 0.02074 0.01236 94.3%
LTMLE (Figure 5.2) −1.481 0.01863 0.01291 94.8%

C

Empirical mean 0.1337 1.634 1.676 1.4%
Linear model 0.03843 1.538 1.585 3.1%
MMRM −1.504 −0.004362 0.3949 93%
LTMLE (Figure 5.1) −1.480 0.01964 0.01307 90.1%
LTMLE (Figure 5.2) −1.496 0.003724 0.01428 93.9%

If we solely consider the data without initiation of rescue medication, scenario A, the estimates
across the methods are approximately equal. But both of the proposed LTMLE models have lower
RMSE and hence lower variance of the estimate. In scenario B, when there is introduced rescue
medication in the data, the empirical mean and the linear model become very biased compared
to the remaining models, which is also reflected in their coverage which is far away from 95%.
The MMRM slightly underestimates the treatment effect and the LTMLEs slightly overestimate it.
However, it is clear that the LTMLE based on more assumptions introduces more bias than the one
based on Figure 5.1. Looking towards the situation with even more rescue medication, scenario
C, the conclusion is almost the same as for scenario B. Both the empirical mean and the linear
model fail to capture the true treatment effect, with horrible confidence intervals. Even when almost
40% of the data is missing, both MMRM and the LTMLEs succeed in determining the treatment
effect with low bias and variance. This result really emphasizes the need of models that handle the
longitudinal data structure. Across all scenarios it is remarkable that both LTMLEs obtain a much
lower RMSE than any of the other methods.
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Figure 6.4: Illustrating the mean estimates across data from different scenarios, corresponding to
results from Table 6.3. Dots are slightly jittered in the direction of the x-axis for better visualisation.
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Figure 6.4 displays the mean estimates, which gives a nice overview of the mean bias of the
different models across each for the 1000 simulated datasets in each scenario. It is clear that the
dots corresponding to MMRM and the LTMLEs remain close to the true value no matter the rescue
scenario. However, the empirical mean and linear model are only close to the true estimate in
scenario A. For the two other scenarios, the linear model obtains estimates that are slightly closer
to the true value than the empirical mean. From this figure it is hard to tell the performance of
the MMRM and LTMLEs apart. In Figure 6.5 we have zoomed in and are only considering these
methods such that it is easier to compare them. From the first plot it seemed that they were pretty
accurate, however all the models show a little bias.The MMRM has the lowest mean bias across
all scenarios except scenario C, where the LTMLE based on Figure 5.2 has the lowest mean bias.
There is a clear tendency that the LTMLE based on the dependencies in Figure 5.2 has smaller
mean bias than the one based on the dependencies in Figure 5.2 across all scenarios. This difference
is very small in scenario A and B, but becomes a bit larger in scenario C. We would expect this
pattern to be the other way around as more assumptions may introduce more bias if not satisfied.
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Figure 6.5: Illustrating the mean estimates across data from different scenarios, corresponding to
selected results from Table 6.3. Dots are slightly jittered in the direction of the x-axis for better
visualisation.

6.2.1 Discussion on model assumptions

As we are in complete control of the true DGP for the simulated data in this chapter, we also have
complete knowledge on whether or not the assumptions made by each of the methods is actually
satisfied. Common for all methods is that they rely on the identifiability assumptions to be able to
make a causal interpretation of the results.

Identifiability assumptions

Assumption 5.1 states the assumptions that were needed to identify the causal estimand of interest
by the statistical estimand (5.2.3). We will discuss the validity of these assumptions using the
DAG presented in Figure 6.1. The sequential randomisation assumption is satisfied as there are
no unmeasured confounders in the Ak-Y relationship outside of W0:k, A0:(k−1) and Z1:(k−1) for
k = 0, . . . , 4. Likewise there are no unmeasured confounders in the Zk-Y relationship. Moving on
to positivity, we know that

P (A0 = 1 |W0) = P (A0 = 1) = 1/2 (6.2.1)

P (Ak = 1 |W0:k, A0, A1:(k−1) = 1k−1, Z1:(k−1) = 0k−1) = 0.98 (6.2.2)

P (Zk = 0 |W0:k, A0, A1:k = 1k, Z1:(k−1) = 0k−1) = expit(γ0,k + γ1,kA0 + γ2,kWk) (6.2.3)
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which is strictly larger than zero for all k = 1, . . . , 4, as expit : R → ]0, 1[. Hence, the simulated
data satisfies the positivity assumption. The sequential consistency assumption is also satisfied by
construction, see (6.1.6).

Assumptions for the parametric models

The MAR assumptions stated in (5.3.4) requires that there are no confounders in the relation-
ship between the censoring variable R, which is determined by A1:4 and Z1:4, and the repeated
measurements of HbA1c after censoring time.

More intuitively, the MAR assumption is satisfied if the observations after an ICE give no extra
information about the probability of censoring, beyond what has happened up until that point in
time. That is, the probability of discontinuation at visit k when we know the past and the future, is
equal to the probability in the case where we only know the past, just as explained mathematically
in Section 5.3. However, as there is a direct arrow from the variables Ak and Zk to Wk+1 in
the DAG 6.1, we know that having information on the future Wk+1 will inform about what has
happened in the past (Ak and Zk). Therefore it is hard to imagine that the MAR assumption for
censored data after occurrence of ICE should be satisfied in this case.

Both the empirical mean, the linear model and the MMRM assumes MAR. Looking into the results
this could be the reason that both empirical mean and the linear model performs bad when we
increase the censoring. However, as we see in the results, MMRM is robust against slight deviations
in the distribution from normality.

As discussed earlier, common for all parametric models is, that they assume that the relationship
between the variables can be described by a finite amount of parameters. This assumption holds
true for the simulation study as we have used parametric models to generate data.

In addition, the parametric models assume that the residuals are normally distributed under correct
model specification. This assumption could be questioned too, since the error terms are t distributed
in the simulation study.

Assumptions for the LTMLE

In this chapter, we have fitted an LTMLE based on the relationships in Figure 5.1 and an LTMLE
based on the relationships in Figure 5.2, which implies some conditional independencies. As
discussed in Section 5.1 this is a question of bias-variance trade-off. This is also what we saw in
the results presented in Table 6.3 as the estimates from the LTMLE based on more assumptions had
higher variance than the ones from the LTMLE that made fewer assumptions. Overall, the two fits
gave very similar results in every rescue scenario.
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In this chapter, we will use the same methods as we considered in Chapter 6, but since this is only
one dataset instead of 1000, we are able to concretise it a bit more. First, we will explain how data
was prepared in preparation for analysis and then we will go into detail of the specification of each
model in R. Lastly, we summarise the results and discuss the differences between the results from
each model.

7.1 Data preparation

In this section, we will shortly explain how we have prepared the data prior to analysis. The aim is
also to describe how we have combined different datasets to obtain the needed information.

Table 7.1: Overview of the different important datasets.

Dataset Description Structure
adsl Subject-Level data One record per subject
adcm Concomitant Medication data One record per subject per concomitant medication
adlb Laboratory data One record per subject per parameter per analysis visit

Table 7.1 displays an overview of the different datasets that we have used in the analysis of data
and their overall structure in terms of how many records it contains. The adsl dataset contains
information on the participants treatment allocation and demographic. In addition it contains a
variety of flags for analysis eligibility among others and dates of important events like randomisation,
first and last exposure to treatment. The adcm dataset contains information on what participants
have received rescue medication among other concomitant medication and the date of when it was
initiated. The adlb dataset contains all the biomarker measurements made for each patient at each
visit and the corresponding date of the visit.

In a clinical trial, things happen continuously in time, and not exactly the planned number of weeks
after initiation of treatment.However, in this project we have focused on methods using a discrete
timescale. Hence, to align with the data structure presented in Section 5.1, we need to discretise
these variables. How this has been done will be explained in the following.

Initiation of rescue medication, measured in the Z variable, was judged by comparing the dates of
the HbA1c measurements for the corresponding visit in the adlb data and the date of initiation of
rescue medication in the adcm data. Of course it is completely possible for participants to take
rescue medication multiple times throughout the study, however, we will not be accounting for this
and hence the date of initiation of rescue medication that we are using in this comparison will be
the date of the first initiation of rescue medication.
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Likewise, the indicator of staying on trial product at the k’th visit, Ak, will be 1 if the participant
still takes the randomly allocated treatment and 0 otherwise. This will be judged from the dates of
the HbA1c measurements for the corresponding visit in the adlb data and the date of treatment
discontinuation found in the adsl data.

Table 7.2: Number of participants discontinuing treatment product or initiating rescue medication
by treatment arm.

Semaglutide 14 mg Placebo Total
Number of participants 175 178 353
Discontinued treatment at any time 34 (19.4%) 25 (14.0%) 59 (16.7%)
Received rescue medication at any time < 5 (< 2.9%) 27 (15.2%) < 32 (< 9.1%)

Table 7.2 displays the number of participants who end up either discontinuing the trial product
or receiving rescue medication at any time. Remark that there may be an overlap between the
participants that discontinue treatment and initiate rescue medication as it is completely possible
for a participant to experience both these intercurrent events. There are slightly more participants
who receive 14 mg of semaglutide and discontinue treatment than participants in the placebo group.
In addition, Table 7.2 makes it clear that the number of participants in need of rescue medication is
larger in the placebo group than in the treatment group receiving 14 mg of semaglutide. This is of
course expected as the placebo group does not receive any anti-diabetic medication.

7.2 Model specifications in R
In this section, we show how to implement the methods described in Section 5.3 and 5.4 in R and
obtaining an estimate of the hypothetical estimand (5.2.3). The models handle ICEs in different
ways, either consider only Pre-ICE data or consider all collected data, as described in Subsection
5.2.1.

Example 7.1 Empirical mean
To use the empirical mean for estimating the hypothetical estimand, we only consider the
final outcome for participants that did not discontinue nor receive rescue medication. There
were 129 participants in the placebo group and 140 in the treatment group that followed this
regime of interest, so we ended up only taking these 269 participants into account when
conducting this analysis.

The empirical mean method is equivalent to fitting a linear model with change in HbA1c
from baseline to week 26 as the dependent variable and the only independent variable being
the treatment A0. To calculate the contrast we use the R package emmeans [37], where we
specify trt.vs.control as A0 because it is the treatment variable.

1 model <- lm(HBA1CV5 ~ A0, data)
2 contrast <- emmeans(model, trt.vs.ctrl ~ A0)
3 confint(contrast)

R Output

$emmeans
A0 emmean SE df lower.CL upper.CL
0 -0.347 0.0967 267 -0.538 -0.157
1 -1.519 0.0928 267 -1.701 -1.336
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Confidence level used: 0.95

$contrasts
contrast estimate SE df lower.CL upper.CL
A01 - A00 -1.17 0.134 267 -1.44 -0.907

Confidence level used: 0.95

When fitting the linear model in R and calculating the contrast, we get the output displayed
above. The first parts are the estimates of the change in HbA1c from baseline to week 26
in the two treatment groups. The second part is the estimate Ȳ1 − Ȳ0 of the hypothetical
estimand (5.2.3), using the notation introduced in Subsection 5.3.1.

By this model, the expected difference of change from baseline in HbA1c to week 26
between the treatment and placebo group is −1.17 for participants in the target population
that do not initiate rescue medication or discontinue randomised treatment. From this result,
we see that it is a statistically significant difference, meaning that the empirical mean model
concludes that treatment is superior to placebo in treating T2D.

The estimate in Example 7.1, is solely the difference in the mean change from baseline to week 26
in HbA1c between the treatment groups. Based on this example it seems that treatment is better at
lowering HbA1c than placebo, but we want to investigate whether or not this is due to a difference
in the HbA1c values at baseline. Next step is then to incorporate the baseline value as a covariate in
the model.

Example 7.2 Linear model
Just as in Example 7.1, the linear model introduced in Subsection 5.3.1 for participants
that did not take rescue medication or discontinued randomised treatment, when modelling
change in HbA1c from baseline to week 26. As mentioned, this model also adjusts for
selected baseline covariates.

1 model <- lm(HBA1CV5 ~ HBA1CBL + A0 + REGION, data = data)
2 contrast <- emmeans(model, trt.vs.ctrl ~ A0, weights = "proportional")
3 confint(contrast)

R Output

$emmeans
A0 emmean SE df lower.CL upper.CL
0 -0.384 0.0890 262 -0.559 -0.209
1 -1.485 0.0854 262 -1.653 -1.317

Results are averaged over the levels of: REGION
Confidence level used: 0.95

$contrasts
contrast estimate SE df lower.CL upper.CL
A01 - A00 -1.1 0.124 262 -1.34 -0.857

Results are averaged over the levels of: REGION
Confidence level used: 0.95

As we are now adjusting for the categorical variable REGION , we need to specify how
averages are taken across the different levels of this variable. We do this by using the
weights argument in the emmeans call. To get the average treatment effect on a population
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level, where the distribution of people from each region is the same as in the observed data,
we use proportional weights. This specification influences the estimated marginal means,
however the contrast remains the same.

The output when fitting this model in R is very similar to what we saw in Example 7.1. But,
as expected, the confidence interval is a bit narrower in this case since some of the variation
in the previous example is now explained through the additional covariates. Again we see
that the result is significant in favour of the treatment group with the same interpretation as
the previous example.

The linear model in Example 7.2 handles missing data in the response variable by just omitting
them in the analysis. It implies that no matter how many observations, that are unaffected by ICEs,
a participant has, the outcome will be set to missing and will not be included in the analysis if the
participant experiences an ICE at any visit. By omitting participants that experience an ICE, we
break randomisation and potentially introduce bias as these participants might differ from the ones
that do not experience ICEs. Next up is then to make use of all the observations that are unaffected
by ICEs. The amount of Pre-ICE data for each visit is summarised in Table 7.3, which exactly is
the data that MMRM will consider.

Table 7.3: Number of participants included in the MMRM analysis.

Treatment Placebo Total
Visit 1 178 175 353
Visit 2 163 169 332
Visit 3 155 157 312
Visit 4 144 151 295
Visit 5 140 129 269

Example 7.3 Mixed model for repeated measures
The model that was used in the original analysis for the hypothetical estimand in [32] was
the MMRM described in Subsection 5.3.2 and it is implemented in R in the following. This
model uses data in long format which is obtained from the wide format data by running the
code displayed in R.2. In addition, the HbA1c measurements are set to missing when the
participant experiences an ICE.

1 library(mmrm)
2 model <- mmrm(Upsilon ~ (HBA1CBL + A0 + REGION)*VISIT +

us(VISIT | USUBJID), datalong)
3 contrast <- emmeans(model, trt.vs.ctrl ~ A0|VISIT,

weights = "proportional")
4 confint(contrast)

R Output

$emmeans
VISIT = Visit 5:
A0 emmean SE df lower.CL upper.CL
0 -0.0647 0.0894 285 -0.241 0.1112
1 -1.5029 0.0890 275 -1.678 -1.3278

...
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Results are averaged over the levels of: REGION
Confidence level used: 0.95

$contrasts
VISIT = Visit 5:
contrast estimate SE df lower.CL upper.CL
A01 - A00 -1.438 0.1265 280 -1.687 -1.189

...

Results are averaged over the levels of: REGION
Confidence level used: 0.95

Selected parts of the output is displayed above. The formula used as the first input in
mmrm corresponds to the model specified in (5.3.8), where us(VISIT|USUBJID) specifies

the unstructured covariance matrix.

Contrary to the linear model we have now incorporated interactions between variables.
When investigating the treatment effect it is important to specify the levels of the categorical
variables that we are interested in. This is done by specifying trt.vs.ctrl ∼ A0|VISIT ,
since we want the visit specific treatment coefficients. Specifically, the effect at visit 5,
which is the change in HbA1c from baseline to week 26. Just as in the linear model, we
specify proportional weights for the emmeans .

The estimate of the hypothetical estimand (5.2.3), is −1.44, which is larger than what
we saw in Example 7.1 and 7.2. The confidence interval is of similar length, however, it
also indicates a larger treatment effect. This means that by including the information on
the repeated measurements of change from baseline in HbA1c taken throughout the study
duration, we gain evidence pointing toward a greater difference in change in HbA1c from
baseline to week 26 for the treatment group than the placebo group.

These three examples above concludes the different parametric methods that we will compare. Now
we will apply the theory of targeted maximum likelihood estimation on PIONEER 1.

Example 7.4 Longitudinal targeted maximum likelihood estimation
This example will present the implementation of using LTMLE, see Section 5.4, for estimat-
ing the hypothetical estimand (5.2.3). This model has been proposed as a competitor for the
MMRM model described in Subsection 5.3.2. Just as the MMRM, it also takes the repeated
measurements of HbA1c into account, however, it uses a different approach for handling
data affected by ICEs, as it utilises all the observed data even after occurrence of an ICE.

1 library(ltmle)
2 set.seed(123)
3 model <- ltmle(data,

Anodes = c("A0", "A1", "Z1", "A2", "Z2",
"A3", "Z3", "A4", "Z4"),

Lnodes = c("HBA1CV1", "HBA1CV2", "HBA1CV3", "HBA1CV4"),
Ynodes = "HBA1CV5",
abar = list(c(1, 1, 0, 1, 0, 1, 0, 1, 0),

c(0, 1, 0, 1, 0, 1, 0, 1, 0)),
deterministic.g.function = deterministic.g.function,
SL.library = "default")

4 summary(model)
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R Output

Treatment Estimate:
Parameter Estimate: -1.5156
Estimated Std Err: 0.073106

p-value: <2e-16
95% Conf Interval: -1.6588, -1.3723

Control Estimate:
Parameter Estimate: -0.087003
Estimated Std Err: 0.10999

p-value: <2e-16
95% Conf Interval: -0.30258, 0.12857

Additive Treatment Effect:
Parameter Estimate: -1.4286
Estimated Std Err: 0.12906

p-value: <2e-16
95% Conf Interval: -1.6815, -1.1756

The LTMLE call in R is a bit different than for the models presented previously. We
specify time varying treatments as Anodes , as we are now accounting for the use of
rescue medication and treatment discontinuation throughout the study. The argument abar
specifies the treatment regimes that we are interested in, which is no rescue medication
Z1:4 = 04 and staying on the randomised treatment A1:4 = 14 in either treatment group.

The Lnodes argument is the vector of time-dependent covariate nodes, which in this case
are the repeated measurements of change from baseline in HbA1c at the visits up to week
26. The Ynodes argument specifies the endpoint of interest, which is change from baseline
in HbA1c after 26 weeks. The argument deterministic.g.function is a function that
incorporates the monotone patterns of Ak and Zk if one discontinues treatment or initiates
rescue medication, as this is factual knowledge of the experiment. In addition, we specify in
this function that A0 is randomised with probability 1/2. The last argument SL.library
is the method for making the initial estimate needed in Algorithm 4.1 as LTMLE is just
repeated use of TMLE. When using “default” as the SL.library , the algorithm uses a
so-called super learner to make an initial estimate [36]. This is an algorithm that combines
different machine learning methods to make an estimate of the quantity of interest. As one
of the machine learning algorithms the super learner uses is random forest, it is necessary to
specify a seed prior to fitting the model. However, this seed has very little effect on the final
estimate. In this project we will not go further into how this works and to learn more about
the super learner, we refer to [38].

The output shows estimates of the mean change in HbA1c with corresponding standard
error, p-value and confidence interval in the treatment group, the placebo group and the
contrast between these two. The contrast is labelled as the Additive Treatment Effect and
it corresponds to the estimate of the hypothetical estimand (5.2.3). The model concludes
that the estimate of the contrast is significant, just like the previous examples, indicating
that the 14 mg of semaglutide is superior to placebo. The output is pretty similar to the one
from MMRM, concluding almost the same size of effect along with approximately equal
confidence intervals.

As mentioned in Section 5.4, the algorithm needs some information on the dependencies between
the variables to guide the fitting process. However, as none has been specified it defaults to assuming
that every variable is dependent on all the previously observed variables. Hence the above LTMLE
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fit is under the dependencies presented in Figure 5.1. Next up is to consider an LTMLE that is
restricted to only account for the dependencies implied by the DAG in Figure 5.2.

Example 7.5
In the following, we present how to implement the LTMLE algorithm to incorporate
knowledge on the dependencies between variables. Specifically, we will implement the
LTMLE accounting for the dependencies displayed in Figure 5.2. To implement this we will
include the arguments Qform and gform in which we specify the dependencies of variables.
We write Q.kplus1 as the dependent variable in the elements in Qform following the syntax
of the ltmle package, which is in line with the notation in Section 5.4. The syntax for
specifying these dependencies is rather similar to specifying the linear models, however,
as an important note, this does not imply that LTMLE is parametric. These formulas just
specify some dependencies, which is then used to form an initial estimate using a super
learner as mentioned above.

1 set.seed(123)
2 model <- ltmle(data,

Anodes = c("A0", "A1", "Z1", "A2", "Z2",
"A3", "Z3", "A4", "Z4"),

Lnodes = c("HBA1CV1", "HBA1CV2", "HBA1CV3", "HBA1CV4"),
Ynodes = "HBA1CV5",
abar = list(c(1, 1, 0, 1, 0, 1, 0, 1, 0),

c(0, 1, 0, 1, 0, 1, 0, 1, 0)),
deterministic.g.function = deterministic.g.function,
SL.library = "default")
Qform = c(HBA1CV1 = "Q.kplus1 ~ REGION + HBA1CBL + A0",

HBA1CV2 = "Q.kplus1 ~ REGION + A0 + HBA1CV1 +
Z1 + A1",

HBA1CV3 = "Q.kplus1 ~ REGION + A0 + HBA1CV2 +
Z2 + A2",

HBA1CV4 = "Q.kplus1 ~ REGION + A0 + HBA1CV3 +
Z3 + A3",

HBA1CV5 = "Q.kplus1 ~ REGION + A0 + HBA1CV4 +
Z4 + A4"),

gform = c("A0 ~ 1",
"A1 ~ HBA1CV1 + A0",
"Z1 ~ HBA1CV1 + A0",
"A2 ~ HBA1CV2 + Z1 + A1",
"Z2 ~ HBA1CV2 + Z1 + A1",
"A3 ~ HBA1CV3 + Z2 + A2",
"Z3 ~ HBA1CV3 + Z2 + A2",
"A4 ~ HBA1CV4 + Z3 + A3",
"Z4 ~ HBA1CV4 + Z3 + A3"))

3 summary(model)
R Output

Treatment Estimate:
Parameter Estimate: -1.5184
Estimated Std Err: 0.076062

p-value: <2e-16
95% Conf Interval: -1.6675, -1.3693

Control Estimate:
Parameter Estimate: -0.025725
Estimated Std Err: 0.13224

p-value: <2e-16
95% Conf Interval: -0.28491, 0.23346
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Additive Treatment Effect:
Parameter Estimate: -1.4926
Estimated Std Err: 0.15099

p-value: <2e-16
95% Conf Interval: -1.7886, -1.1967

As explained above the function will output three different estimates. We are mainly
interested in the last estimate, the contrast between the two first estimates, which again is
significant, with the same interpretation as the previous example.

7.3 Results

In Table 7.4, the results from each of the models presented in the above examples are summarised.
The contrast estimates, presented in the first column are the estimates of the hypothetical estimand
(5.2.3). The estimates in the second column, corresponding to the control group, are estimates of
the average change from baseline in HbA1c after 26 weeks among the participants taking placebo
and following the treatment regime of interest. Likewise, the last column contains estimates of the
average change from baseline in HbA1c after 26 weeks among participants taking 14 mg of oral
semaglutide.

Table 7.4: Estimates of the contrast and mean change from baseline to week 26 in HbA1c across the
treatment groups and their corresponding 95% confidence intervals according to different models.

Data used Method Semaglutide 14 mg Placebo Contrast

Endpoint only
Empirical mean −1.51 −0.35 −1.17

[−1.68,−1.32] [−0.55,−0.14] [−1.44,−0.91]

Linear model −1.49 −0.38 −1.1
[−1.65,−1.32] [−0.56,−0.21] [−1.34,−0.86]

Repeated
measures

MMRM −1.50 −0.06 −1.44
[−1.68,−1.33] [−0.24, 0.11] [−1.69,−1.19]

LTMLE −1.52 −0.09 −1.43
(Figure 5.1) [−1.66,−1.37] [−0.30, 0.13] [−1.68,−1.18]
LTMLE −1.52 −0.03 −1.49
(Figure 5.2) [−1.67,−1.37] [−0.28, 0.23] [−1.79,−1.20]

Common for all four models is that they agree on the fact that 14 mg of oral semaglutide is
significantly better than the placebo group at reducing the HbA1c in T2D patients. MMRM and
LTMLE pretty much agree on a larger treatment effect than what the two other methods indicate.
Hence all models conclude that 14 mg of semaglutide is a superior treatment to placebo in treating
T2D.

To investigate the performance even more, we illustrate the estimates and their corresponding
confidence interval in forest plots in Figure 7.1 for both 14 mg semaglutide, placebo and the
contrast. This especially highlights that the different models agree on the estimate in the treatment
group, and that it is the estimation in the placebo group which make them differ a lot. In the
treatment group, we see that the confidence interval becomes notably more narrow from MMRM to
both of the LTMLE estimates. This difference is not as remarkable in neither the placebo group not
in the contrast estimate.
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Figure 7.1: Forest plot of the estimates from each estimation method.

As mentioned, the methods do pretty much agree on the estimate of change from baseline in the
treatment group. However, they do not agree on the estimate of change from baseline in the control
group, which is also clear from the forest plot. This discrepancy may be explained by the fact
that intake of rescue medication is very unbalanced in the favour of the placebo group, as one can
see in Table 7.2. All the participants in the placebo group who experience an ICE are removed
from the estimation methods who only take the endpoint into consideration. Hence we are left
with all the participants who, contrary to what was expected, lowered their HbA1c on placebo due
to diet and exercise. To investigate the difference among the participants that did not take rescue
medication and the ones that did, we have displayed the mean HbA1c for these two scenarios across
all visits grouped by treatment assignment in Figure 7.2. Here it is clear that the participants that
did not end up receiving rescue within either treatment assignment differ from the ones that did by
having much lower HbA1c values. It is also clear that there is a tendency for the participants in the
placebo arm that do initiate rescue to get higher and higher HbA1c values up until visit 3, where the
HbA1c is lowered. This is most likely due to the effect of the rescue medication. We do not see
the same tendency for the semaglutide 14 mg arm, however, this is most likely due to the effect of
treatment lowering the HbA1c value continuously throughout the study. In contrast, the methods,
which accounted for repeated measures of the outcome variable, knew the general trajectory of
a participant receiving placebo, at least until the point where they receive rescue medication or
discontinued the randomised treatment. Hence it is expected for them to make less biased estimates
than the methods that only have information on the final outcome.

As an other important note, there is a large difference in computational burden between the LTMLEs
and the parametric models. LTMLE takes approximately 1 minute, which is 60 times longer than
the MMRM. This is something that is important to take into consideration when making large
simulation studies, as this additional time for each model fit accumulates to a large amount of time.
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Figure 7.2: Mean plot for the participants that do and do not initiate rescue medication at some
point throughout the study in either treatment arm.

Dette er en hemmelig besked, resten er overladt til læseren.
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8 Discussion

When one seeks to do causal inference to investigate effect of treatment, RCTs are the golden
standard as some assumptions are automatically fulfilled, causing fewer problems with identification.
However, as RCTs often last for a long period of time to prove long-term safety and efficacy, it is
common for participants to deviate from the treatment assignment, either in terms of discontinuing
randomised treatment or initialising other, possibly disease targeting, medication. ICH introduced
the estimand framework, that specifies five attributes clarifying the effect of interest. This is of
great importance when working with studies where ICEs occur as ICEs are known to have an effect
on the measurements that are used to estimate the treatment effect. This implies that they also affect
the interpretation of the estimated effect which highlights the importance of clearly specifying how
these are handled in the analyses. We incorporated this estimand framework into a workflow for
making causal inference.

The effect of ICEs on the measurements taken in the study is a problem when we are interested in
the hypothetical estimand, which is the treatment effect when participants continue their randomised
treatment and do not initiate rescue medication. But even though clinical trials aim to be a controlled
environment, deviations from the treatment regime of interest are impossible to prevent as they
can be a consequence of something external either caused by treatment or something completely
unrelated. In this project we discussed different analysis methods that took different amounts of
data into account in order to estimate this hypothetical estimand.

In our simulation study we wanted to investigate how the methods handled varying amounts of
rescue medication. It showed approximately equal performance across all five proposed methods
when participants were not allowed to take rescue medication. However, when introducing rescue
medication both the MMRM and the LTMLE methods significantly improves the estimation results
in terms of bias and RMSE compared to the two linear regressions, but LTMLE obtained a smaller
variance. This could imply differences in performance in smaller samples, which could also be a
topic of interest for a future simulation study. Hence, when estimating the hypothetical estimand
in cases where data is affected by ICEs, one should always favour models that include repeated
measures at least up until the time point where the participant no longer complies with the treatment
regime of interest.

The two LTMLEs that were introduced in this project proved to have a lower RMSE than the
MMRM. However, some drawbacks of this method are the complex and not very transparent theory
behind it and the computational burden. The algorithm takes much longer to arrive at an estimate
than the MMRM. This is partly due to the super learner that is used to find an initial estimate. To
reduce the time spent finding the initial estimate using the super learner, one could instead use a
simpler regression method. However, this might also affect the final estimate, so it is a trade-off. In
the end, the LTMLEs and the MMRM were very similar in all other aspects than the RMSE.

In the project, we solely considered static interventions, where all participants are assigned to the
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same exact regime of not receiving rescue medication nor discontinuing the randomised treatment.
However, completely eliminating the possibility of receiving rescue medication may not be feasible
in practice, due to ethical reasons. Hence one could question the need for an estimand that reflects
a treatment effect that is not necessarily feasible for all participants in practice. In this case
one could look towards “milder” and more realistic interventions allowing some participants to
initiate rescue medication, for example only the 5% with worst glycaemic control, implying a
stochastic or dynamic intervention. The important thing to remember is the ultimate goal to balance
the confounding effect of rescue medication across treatment groups. Dynamic and stochastic
interventions open up for this possibility as opposed to static interventions where the only option is
to completely eliminate all use of rescue medication.

When fitting the different models on the real data did not highlight other differences than what
we saw in the simulation study. We aimed to replicate the original analysis from PIONEER 1, as
they also used an MMRM for the hypothetical estimand. However, it should be noted that we used
the software R instead of the software SAS for the analyses, which is used in the original analyses
from the PIONEER 1 trial. Even though we used different software the results are the same as the
ones reported for the hypothetical estimand in the PIONEER 1 trial. In the protocol for PIONEER
1, it is specified that whenever a participant meets the rescue medication threshold, an additional
measurement after a few days is required. A consequence of this is measurements at unscheduled
visits, which contain more information to whether or not a participant ends up receiving rescue
medication. We have focused solely on the scheduled visits in this project, however in [27] they
investigated methods which also took the measurements from unscheduled visits into account. They
concluded that “Our simulation study demonstrated that using only all data from regular scheduled
visits up to the initiation of rescue medication is inappropriate. This is because the unscheduled
confirmatory visit values are ignored so that the MAR assumption is no longer satisfied.” Hence,
one could possibly extend what we did in this project to something that accounts for the additional
measurements.

The nonparametric approach using the LTMLE algorithm is limited to pathwise differentiable
parameters. However, there are some parameters that might be of interest, which are not pathwise
differentiable. For example, the conditional average treatment effect for participants at age 40 is not
a pathwise differentiable parameter, since age is a continuous variable. Moreover, we have focused
only on one-dimensional parameters in this report, since we are only interested in the treatment
effect under some specific intervention. There exist on-going research in extending this algorithm
to target infinite dimensional parameters.
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9 Conclusion

In this project, we explored the challenges associated with evaluating hypothetical estimands in
clinical trials, where ICEs can impact treatment effect assessments. After a presentation of standard
methodologies, including linear models of the outcome and the commonly used MMRM, we
proposed LTMLE as a more robust alternative for estimating the hypothetical treatment effect. Our
simulations and empirical analyses indicate that while MMRM offers an easily interpretable solution,
LTMLE provides a more accurate reflection of causal relationships, particularly in scenarios
involving ICEs like rescue medication and treatment discontinuation. However, a drawback of
using LTMLE is its high computational burden.

In the simulation study, we saw a clear difference in the performance of the different methods.
All methods performed rather well when data was affected very little by ICEs. However, when
the amount of participants experiencing ICEs increased, the simple methods modelling only the
outcome were no longer able to provide reliable estimates. The MMRM and LTMLE methods
accounted for varying amounts of repeated measurements of the outcome, still they performed
similar in terms of bias and coverage in the first two scenarios. In the last scenario, where there was
a large amount of participants that experienced ICEs, the LTMLE making few assumptions on the
dependencies had higher bias than MMRM and the other LTMLE that made more assumptions.
However, it had the lowest RMSE implying the lowest variance estimate and tightest confidence
intervals. However, this method obtained a lower coverage, which is a drawback compared to the
other methods when the goal is to determine the efficacy of a drug, where control of the type 1 error
is especially important. But it is worth remarking, that even the MMRM, which was used in the
submission for PIONEER 1, could not maintain a coverage at 95% when increasing the amount
of ICEs. In general, LTMLE significantly outperformed MMRM in terms of variance, which is
particularly beneficial in smaller samples. Overall, neither bias nor RMSE from the MMRM and
LTMLE are significantly affected even when there are a lot of data being affected by ICEs.

In the case study, approximately 20% of the participants were affected by an ICE and hence
we expected LTMLE to perform better in terms of accuracy compared to the MMRM using the
knowledge we obtained in the simulation study. However, the LTMLE and MMRM models led to
very similar estimates of effects and standard errors. An interesting finding in the case study was
that with the clear unbalance in ICEs among treatment groups, all methods agreed on the mean
change in the treatment arm. Hence the difference in the contrasts among methods was due to the
estimates of the mean in the placebo group. The models that solely modelled the endpoint found
that placebo had a significant effect in treating T2D patients, however, this was due to the heavy
selection bias implied by only accounting for participants that did not experience ICEs.

Our work demonstrates how the integration of the estimand framework can enhance our under-
standing of treatment outcomes in clinical trials. These estimands are a key part of the workflow
for causal inference which translates clinical questions of interest to statistical estimation problems.
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Group MS10-01 CHAPTER 9. CONCLUSION

We also emphasise the importance of selecting the appropriate model in the causal and statistical
world to obtain valid and reliable estimates of causal quantities.

Overall, this research contributes to a foundation for more informed model selection in clinical
trial planning. In addition it highlights the need to continue collecting information on ICEs and
developing analytical methods that can address the complexities of ICEs in clinical trials.
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A Supplementary material

This appendix is a collection of supplementary definitions, results and some proofs that are used in
the main part of the project.

A.1 Probability theory

In this section we will list definitions, lemmas and theorems, and append some of them with their
respective proof.

Definition A.1 (Convergence in distribution [39]). Let (Xn)n∈N be a sequence of k-
dimensional stochastic vectors such that Xn has cumulative distribution function Fn. If X is
a continuous stochastic vector with cumulative distribution function F and

Fn(x) → F (x), as n→ ∞ for all x ∈ Rk (A.1.1)

holds, it is said that (Xn)n∈N converges in distribution to X . We will denote convergence in
distribution by Xn

d→ X . In addition, we say that (Xn)n∈N has an asymptotic distribution
with cumulative distribution function F .

The notation d−→
P

is used when it is important to highlight the specific distribution P that it converges

with respect to.

Lemma A.2 ([22]). Let (Xn)n∈N be a sequence of stochastic vectors and let X be some

stochastic vector. Convergence in distribution Xn
d→ X is equivalent to

E[f(Xn)] → E[f(X)] (A.1.2)

for all bounded, continuous functions f .

Definition A.3 (Convergence in probability [39]). Let (Yn)n∈N be a sequence of stochastic
variables. If

lim
n→∞

P (|Yn − y| > ϵ) = 0 (A.1.3)

for some constant y ∈ R and every ε > 0, we say that the sequence (Yn)n∈N converges in

probability to y as n→ ∞ and write Yn
P→ Y .
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Theorem A.4 (Slutsky’s theorem [39]). Consider two sequences of stochastic variables
(Xn)n∈N and (Yn)n∈N. Assume that

Xn
d→ X (A.1.4)

Yn
P→ y (A.1.5)

for some stochastic variable X and constant y ∈ R. Then

Xn + Yn
d→ X + y. (A.1.6)

Theorem A.5 (Central limit theorem [12]). Let X1, X2 . . . be i.i.d observations of a stochas-
tic variableX that follows a distribution with mean µ and variance σ2. Let X̄ = 1

n

∑n
i=1Xi.

Then
√
n(X̄ − µ)

σ

d→ Z (A.1.7)

where Z ∼ N (0, 1).

Sometimes we will abuse notation by writing
√
n(X̄ − µ)

σ

d→ N (0, 1) (A.1.8)

instead of (A.1.7).

Lemma A.6 (Le Cam’s third lemma [22]). Let (Pn)n∈N and (Qn)n∈N be sequences of
probability measures on measurable spaces, and let (Xn)n∈N be a sequence of k-dimensional
stochastic vectors. Suppose that Qn is contiguous with respect to Pn and[

Xn

log dQn

dPn

]
d−−→
Pn

Nk+1

([
µ

−1
2σ

2

]
,

[
Σ τ
τT σ2

])
, (A.1.9)

then

Xn
d−−→
Qn

Nk(µ+ τ,Σ). (A.1.10)

For the definition of contiguity see [22, defn. 6.3].

Theorem A.7 ([24]). Let X , Y , Z be random variables. Assuming that the expectations
exist, the following equality holds

E[E[X | Z, Y ] | Y ] = E[X | Y ]. (A.1.11)

Proof. Suppose that the random variables X , Y and Z are discrete. We start by considering the
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left hand side of the equation (A.1.11). Given that Y = y, the random variable E[X | Z, Y ] has
possible values E[X | Z = z, Y = y] with probability P (Z = z | Y = y), where z varies across
the range of Z. Therefore,

E[E[X | Z, Y ] | Y = y] =
∑
z

E[X | Z = z, Y = y]P (Z = z | Y = y)

=
∑
z

∑
x

xP (X = x | Z = z, Y = y)P (Z = z | Y = y)

=
∑
z,x

x
P (X = x, Z = z, Y = y)

P (Z = z, Y = y)

P (Z = z, Y = y)

P (Y = y)

=
∑
z,x

x
P (X = x, Z = z, Y = y)

P (Y = y)

=
∑
x

x
P (X = x, Y = y)

P (Y = y)

=
∑
x

xP (X = x | Y = y)

= E[X | Y = y],

(A.1.12)

where we have used the definition of the expectation of a discrete variable and the definition of
conditional probability multiple times. Moreover, in the fifth equality we used the definition of
marginal distributions. The proof is similar for continuous random variables, where the summations
are replaced with integrals.

Theorem A.8. Assume that X is a continuous random variable, and that A is a binary
random variable. Then

E[X | A = 1] =
E[I(A = 1)X]

P (A = 1)
. (A.1.13)

Proof. Considering the expectation of X conditional on A = 1 we know that

E[X | A = 1] =

∫
xfX|A(x | 1)dx

=

∫
x
fX,A(x, 1)

P (A = 1)
dx

=
1

P (A = 1)

∫
xfX,A(x, 1)dx

=
1

P (A = 1)

1∑
a=0

∫
xI(a = 1)fX,A(x, a)dx

=
E[I(A = 1)X]

P (A = 1)
.
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A.2 The Hilbert space L2

This section will give a short introduction to the Hilbert space L2 and an important result in this
context. It is based on [40].

Definition A.9. Define L2(P0) as the set of all functions of the random variable O ∼ P0

with sample space O, that have finite variance, that is,

L2(P0) =

{
f(o) :

∫
O
f(o)2dP0 <∞

}
. (A.2.1)

Often the probability distribution is left out and L2(P0) will simply be denoted L2 when the
probability distribution is clear from the context.

The space of functions L2 is an infinite-dimensional Hilbert space, that is, L2 is

• Linear: f, g ∈ L2, α ∈ R =⇒ f + αg ∈ L2.

• An inner product space: ⟨f, g⟩ = EP0 [fg], where f and g are said to be orthogonal if
EP0 [fg] = 0.

• A complete space.

Definition A.10. Define L2
0(P0) as the set of all functions of the random variable O ∼ P0

with sample space O, that have mean zero and finite variance, that is,

L2
0(P0) =

{
f(o) :

∫
O
f(o)2dP0 <∞ and EP0 [f(O)] = 0

}
. (A.2.2)

Theorem A.11 (Projection theorem for Hilbert spaces). Let H be a Hilbert space and let U
denote a closed linear subspace. For any h ∈ H, there exists a unique u0 ∈ U that is closest
to h in the following sense:

∥h− u0∥ ≤ ∥h− u∥, ∀u ∈ U . (A.2.3)

We refer to u0 as the projection of h onto U . Furthermore, it holds for all u ∈ U that

⟨h− u0, u⟩ = 0. (A.2.4)

A.3 Proof of Theorem 3.12

We let ε = 1/
√
n, hence it is clear that ε ∈ [0, 1] for n ∈ N. Later it will become important that ε

depends on n in this way, so keep this in mind throughout the proof. Consider an arbitrary path{
P̃ε : ε = 1/

√
n, P̃ε|ε=0 = P

}
⊂ M, (A.3.1)

which is assumed to be differentiable and denote its score by h. The assumption of it being
differentiable is a technicality and for a formal definition we refer to [22, p. 362].
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As we are considering a differentiable path, we get

log

n∏
i=1

dP̃ε

dP
(Oi) =

1√
n

n∑
i=1

h(Oi)−
1

2
EP

[
h(O)2

]
+ oP (1) (A.3.2)

by [22, Lemma 25.14]. The left hand side is a random variable and at first sight this result might
look strange, however, it will serve as an important tool later. We can use CLT to conclude that

1√
n

n∑
i=1

h(Oi)
d−→
P

N (0, EP [h
2]). (A.3.3)

Using this together with (A.3.2) and Slutsky’s theorem A.4, it now holds that

log
n∏

i=1

dP̃ε

dP
(Oi)

d−→
P

N
(
−1

2
EP [h

2], EP [h
2]

)
. (A.3.4)

Likewise, we use the assumed property of asymptotic linearity to conclude

√
n
(
Ψ̂n −Ψ(P )

)
=

1√
n

n∑
i=1

ϕP (Oi) + oP (1)
d−→
P

N (0, EP [ϕ
2
P ]). (A.3.5)

Combining these we find that√n(Ψ̂n −Ψ(P )
)

log
∏n

i=1
dP̃n

ε
dPn (Oi)

 d−→
P

N2

([
0

−1
2EP [h

2]

]
,

[
EP [ϕ

2
P ] EP [hϕP ]

EP [hϕP ] EP [h
2]

])
, (A.3.6)

as n→ ∞. Then we can utilize Lemma A.6, which tells us that
√
n
(
ˆ̃Ψn −Ψ(P )

)
d−→̃
Pε

N
(
EP [hϕP ], EP [ϕ

2
P ]
)
. (A.3.7)

Note that the distribution changes and so does the estimator sequence, which is now a collection of
estimators based on n draws from P̃ε.

With the help of these technical results, we have been able to use asymptotic linearity to say
something about the difference between the estimate, as we change the underlying distribution
from which samples are taken, and the truth at P . Note that in (A.3.7) we actually see the same
variance as in (A.3.5), where we stay in the true distribution P and sample from this. When adding
zero, subtracting the mean and moving some terms around in (A.3.7) we find that as n→ ∞,

√
n
(
ˆ̃Ψn −Ψ(P̃ε) + Ψ(P̃ε)−Ψ(P )

)
− EP [hϕP ]

=
√
n
(
ˆ̃Ψn −Ψ(P̃ε)

)
+
(√

n
(
Ψ(P̃ε)−Ψ(P )

)
− EP [hϕP ]

)
d−→̃
Pε

N
(
0, EP [ϕ

2
P ]
)
.

(A.3.8)

Now, recall the regularity property (3.1.28) for an asymptotically normal estimator
√
n
(
ˆ̃Ψn −Ψ(P̃ε)

)
d−→̃
Pε

N
(
0, EP [ϕ

2
P ]
)
. (A.3.9)

Note that this looks similar to (A.3.8). Since we have assumed both asymptotic linearity and
regularity, (A.3.8) and (A.3.9) must hold at the same time, implying that

lim
n→∞

√
n
(
Ψ(P̃ε)−Ψ(P )

)
= EP [hϕP ], (A.3.10)

must hold for the excess in (A.3.8) to be zero. Now, recall that ε = 1/
√
n, then

lim
n→∞

√
n
(
Ψ(P̃ε)−Ψ(P )

)
= lim

ε→0

Ψ(P̃ε)−Ψ(P )

ε
(A.3.11)

which then implies exactly what we wanted to show. As the h is simply the score of an arbitrary
path starting in P , (3.2.2) holds for any path starting in P , when considering a RAL estimator.
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A.4 Identification

In this section we will prove identification of the causal estimand when we have two visits after
baseline, that is, we have the data structure O = (W0, A0, Z0,W1, A1, Z1, Y ) with intervention
variables A0, A1, Z0 and Z1. Let Y (a0, a1, z0, z1) be the notation for the potential outcome at the
end of the trial when A0 = a0, A1 = a1, Z0 = z0 and Z1 = z1. Consider the causal estimand of
interest

Ψ∗
1(P

∗) = EP ∗ [Y (1, 1, 0, 0)], (A.4.1)

which reflects the situation of adherence and no rescue medication while receiving active treatment.
That this causal estimand can by identified by a statistical estimand is proven in the following,
where the equalities rely on Theorem A.7 and Assumption 5.1.

Ψ∗
1(P

∗)

= E[Y (1, 1, 0, 0)]

= E
[
E[Y (1, 1, 0, 0) |W0]

]
= E

[
E[Y (1, 1, 0, 0) |W0, A0 = 1]

]
= E

[
E[Y (1, 1, 0, 0) |W0, A0 = 1, Z0 = 0]

]
= E

[
E
[
E[Y (1, 1, 0, 0) |W0, A0 = 1, Z0 = 0,W1]

∣∣∣W0, A0 = 1, Z0 = 0
]]

= E

[
E
[
E[Y (1, 1, 0, 0) |W0, A0 = 1, Z0 = 0,W1, A1 = 1]

∣∣∣W0, A0 = 1, Z0 = 0
]]

= E

[
E
[
E[Y (1, 1, 0, 0) |W0, A0 = 1, Z0 = 0,W1, A1 = 1, Z1 = 0]

∣∣∣W0, A0 = 1, Z0 = 0
]]

= E

[
E
[
E[Y |W0, A0 = 1, Z0 = 0,W1, A1 = 1, Z1 = 0]

∣∣∣W0, A0 = 1, Z0 = 0
]]

= Ψ1(P ).

The sequential randomisation assumption ensures the third, fourth, sixth and seventh equality. The
second and fifth equality are consequences of Theorem A.7, and lastly the eighth equality is valid
due to the sequential consistency assumption. The sequential positivity assumption guarantees that
the conditional expectations are well-defined.
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B Overview of clinical trial data

B.1 Inclusion and exclusion criteria for PIONEER 1

Table B.1: Inclusion and exclusion criteria for PIONEER 1 [6, sec. 9.3].

Inclusion criteria Exclusion criteria

Informed consent obtained before any trial-related activities.
Trial-related activities are any procedures that are carried out as
part of the trial, including activities to determine suitability for
the trial.

Age ≥ 18 years.
Age ≥ 19 years for Algeria only.
Age ≥ 20 years for Japan only.

Type 2 diabetes diagnosed clinically ≥ 30 days at time of
screening.

Treatment with diet and exercise for at least 30 days prior to
day of screening.

HbA1c is between 7.0− 9.5% at the screening visit.

Known or suspected hypersensitivity to trial product(s) or
related products.

Previous participation in this trial. Participation is defined as
signed informed consent.

Female who is pregnant, breast-feeding or intends to become
pregnant or is of child-bearing potential and not using an
adequate contraceptive method.

Receipt of any investigational medicinal product within 90
days before screening.

Any disorder, which in the investigator’s opinion might
jeopardise subject’s safety or compliance with the protocol.

Family or personal history of multiple endocrine neoplasia type
2 (MEN 2) or medullary thyroid carcinomas (MTC).

History of pancreatitis (acute or chronic).

History of major surgical procedures involving the stomach
potentially affecting absorption of trial product (e.g. subtotal
and total gastrectomy, sleeve gastrectomy, gastric bypass
surgery).

Any of the following: myocardial infarction, stroke or
hospitalisation for unstable angina or transient ischaemic attack
within the past 180 days prior to the day of screening and
randomisation.

Subjects presently classified as being in New York Heart
Association (NYHA) Class IV.

Planned coronary, carotid or peripheral artery revascularisation
known on the day of screening.

Subjects with alanine aminotransferase (ALT) > 2.5 x upper
normal limit (UNL).

Renal impairment defined as estimated glomerular filtration
rate (eGFR) <60 mL/min/1.73 m2 as per Chronic Kidney
Disease Epidemiology Collaboration formula (CKD-EPI).

Treatment with any medication for the indication of diabetes or
obesity in a period of 90 days before the day of screening. An
exception is short-term insulin treatment for acute illness for a
total of ≤ 14 days.

Proliferative retinopathy or maculopathy requiring acute
treatment. Verified by fundus photography or dilated
fundoscopy performed within 90 days prior to randomisation.

History or presence of malignant neoplasms within the last 5
years (except basal and squamous cell skin cancer and in-situ
carcinomas).
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B.2 Normal Quantile-Quantile plots
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Figure B.1: Normal Quantile-Quantile plot for the residuals from the MMRM presented in Subsec-
tion 5.3.2.
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B.3 Distribution of data from PIONEER 1

F M
Sex

HISPANIC OR LATINO NOT HISPANIC OR LATINO
Hispanic or latino

Current smoker Never smoked Previous smoker
Smoker status

Africa Asia Europe North America South America
Region

ASIAN BLACK OR AFRICAN
AMERICAN

OTHER WHITE

Race

Treatment group Oral sema 14 mg Placebo

Figure B.2: Empirical distribution of selected categorical covariates. To protect personal informa-
tion, the race category labelled OTHER includes not only the category itself but also categories
with a few number of participants.
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Treatment group Oral sema 14 mg Placebo

Figure B.3: Empirical distribution of selected continuous covariates. The means are illustrated by
the dashed lines.
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R Code

R.1 Generation of simulated data

1 generate.data <- function(theta1 = -0.5,
2 theta2 = -0.7,
3 N.covs = 3,
4 coefs = c(-0.05, 0.1, 0.05),
5 cov = diag(1, N.covs),
6 df = 4,
7 N.control = 200,
8 N.treatment = N.control,
9 N.sim = 1000,

10 N.cores = 20,
11 N.visits = 5, # max 5
12 disc.prob = rep(0.02, N.visits),
13 resc = 1){
14 if (N.covs < 1) {stop("N.covs must be at least 1")}
15 if (length(disc.prob) != N.visits){
16 stop("Vector containing probabilities of discontinuation must have length
17 equal the number of visits")}
18 out <- list()
19

20 # Create variable names for the baseline covariates
21 varnames <- paste0("x", 1:(N.covs))
22

23 if (!is.null(N.control) & !is.null(N.treatment)) {
24 # For every simulation we create one dataset
25 out <- mclapply(1:N.sim, function(k){
26 # Create a data frame with the id variable
27 id <- data.frame("USUBJID" = 1:(N.control + N.treatment) %>% as.factor())
28 reg <- data.frame("REGION" = sample(c(0:5,4,5), N.control + N.treatment,
29 replace = TRUE) %>% as.factor())
30

31 # Generate the baseline covariates
32 cov[1,1] <- sd(real_data$HBA1CBL)**2
33 data <- mvrnorm(n = N.control + N.treatment,
34 mu = c(mean(real_data$HBA1CBL), rep(0, N.covs - 1)),
35 Sigma = cov) %>% as.data.frame()
36 colnames(data) <- varnames
37

38 # Combine the id variable with the covariates
39 data <- cbind(id, reg, data)
40

41 # Create the treatment variable
42 data$A0 <- c(rep(0, N.control), rep(1, N.treatment)) %>% factor()
43

44 # Creating variable such that we don’t add multiple rescue effects
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45 data["sumZ"] = rep(0, N.control + N.treatment)
46 # Creating variable that makes sure we don’t stop treatment twice
47 data["sumA"] = rep(1, N.control + N.treatment)
48

49 # Create time varying variables for each visit
50 for (i in 1:N.visits) {
51 var <- paste0("HBA1CV", i)
52 if (i == 1) {
53 data[[var]] <- theta1*(N.visits - i + 1)/N.visits*(data$A0 == "1") +
54 (data$REGION == "3")*0.5 + rt(N.control + N.treatment, df)
55

56 X <- model.matrix(formula(
57 paste0("HBA1CV", i, " ~ ",
58 paste0("(",paste0("x", 1:N.covs, collapse = "+"),")^2"),
59 "+",paste0("I(x", 1:N.covs, "^2)", collapse = "+"))),
60 data = data %>% mutate_at("x1",~(scale(.))%>%as.vector))[,-c(1,2)]
61

62 data[[var]] <- data[[var]] + data$x1 +
63 X %*% c(rep(coefs[2], N.covs-1),
64 rep(coefs[1], N.covs),
65 rep(coefs[3], max(0, N.covs)),
66 rep(coefs[1], max(0, ncol(X) - 3*N.covs)))
67 data[[var]] <- data[[var]][,1]
68

69 # Creating the adherence variable
70 avar <- paste0("A", i)
71 data[[avar]] <-
72 case_when(data[["sumA"]] == 1 ~
73 as.integer(rbinom(n = N.control + N.treatment,
74 size = 1,
75 p = 1 - disc.prob[i])),
76 TRUE ~ 0)
77

78 data[["sumA"]] <- data[["sumA"]] + 1 - data[[avar]]
79 data[[avar]] <- factor(data[[avar]], levels = c("1","0"))
80

81 # Z1 variable
82 model1 <- glm(Z1 ~ HBA1CV1 + A0,
83 family = binomial(link = ’logit’),
84 data = real_data %>%
85 mutate(A0 = factor(A0, levels = c("1","0"))))
86

87 data$Z1 <-
88 as.integer(rbinom(n = N.control + N.treatment,
89 size = 1,
90 p = pmin(resc*predict(model1,
91 newdata = data,
92 type = "response"),1)))
93

94 data$sumZ <- data$sumZ + data$Z1
95

96 }else{data[[var]] = data[[paste0("HBA1CV", i - 1)]] +
97 theta1*(N.visits - i + 1)/
98 N.visits*(data$A0 == "1")*(data[[paste0("A", i - 1)]] == "1") +
99 theta2*data[[paste0("Z", i - 1)]] + rt(N.control + N.treatment, df)

100 }
101 if (i != N.visits & i != 1){
102 # Creating the adherence variable
103 avar <- paste0("A", i)
104 data[[avar]] <-
105 case_when(data[["sumA"]] == 1 ~
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106 as.integer(rbinom(n = N.control + N.treatment,
107 size = 1,
108 p = 1 - disc.prob[i])),
109 TRUE ~ 0)
110

111 data[["sumA"]] <- data[["sumA"]] + 1 - data[[avar]]
112 data[[avar]] <- factor(data[[avar]], levels = c("1","0"))
113

114 # Creating the rescue medication variable
115 model <- glm(paste0("Z",i, " ~ ", " A0 + HBA1CV", i),
116 family = binomial(link = ’logit’),
117 data = real_data %>%
118 mutate(A0 = factor(A0, levels = c("1","0"))))
119

120 zvar <- paste0("Z", i)
121 data[[zvar]] <-
122 case_when(data[["sumZ"]] == 0 ~
123 as.integer(
124 rbinom(n = N.control + N.treatment,
125 size = 1,
126 p = pmin(resc*predict(model,
127 newdata = data,
128 type = "response"),1))),
129 TRUE ~ 0)
130

131 data[["sumZ"]] <- data[["sumZ"]] + data[[zvar]]
132 }
133 }
134 data %>% rename(HBA1CBL = x1) %>% select(-sumZ, -sumA)
135 }, mc.cores = N.cores)
136

137 }
138 attr(out, "ATE") <- calc_ATE(N.visits, theta1)
139 out
140 }

R.2 From wide to long format

1 datalong <- data %>%
2 mutate(HBA1CV2 = case_when((A1 == 0 | Z1 == 1) ~ NA, TRUE ~ HBA1CV2),
3 HBA1CV3 = case_when((is.na(HBA1CV2) | A2 == 0 | Z2 == 1) ~ NA,
4 TRUE ~ HBA1CV3),
5 HBA1CV4 = case_when((is.na(HBA1CV3) | A3 == 0 | Z3 == 1) ~ NA,
6 TRUE ~ HBA1CV4),
7 HBA1CV5 = case_when((is.na(HBA1CV4) | A4 == 0 | Z4 == 1) ~ NA,
8 TRUE ~ HBA1CV5)) %>%
9 pivot_longer(cols = c(HBA1CV1, HBA1CV2, HBA1CV3, HBA1CV4, HBA1CV5),

10 names_to = "VISIT", values_to = c("Upsilon")) %>%
11 mutate(VISIT = factor(case_when(VISIT == "HBA1CV1" ~ "Visit 1",
12 VISIT == "HBA1CV2" ~ "Visit 2",
13 VISIT == "HBA1CV3" ~ "Visit 3",
14 VISIT == "HBA1CV4" ~ "Visit 4",
15 VISIT == "HBA1CV5" ~ "Visit 5"))) %>%
16 select(USUBJID, HBA1CBL, REGION, A0, VISIT, Upsilon)
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