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Resumé 

Baggrund: Magnetisk Resonans billeddannelse (MR) 

anvendes hyppigt klinisk til vurdering af apopleksi, hvor 

Fluid Attenued Inversion Recovery (FLAIR) er en central 

sekvens til detektering og karakterisering af patologi. Dog 

er T1-vægtede sekvenser, som ofte kræves til avanceret 

neurobilledanalyse og forskningssoftwareværktøjer, ofte 

utilgængelige, hvilket udgør en betydelig begrænsning. 

SynthSR, et neuralt netværk der kan syntetisere manglende 

T1-vægtet billeder ud fra andre MR-sekvenser, tilbyder en 

potentiel løsning. Formålet med dette studie var at validere 

SynthSR’s evne til at syntetisere realistiske T1-vægtet 

billeder ud fra FLAIR, og at vurdere ligheden af de 

syntetiserede T1-vægtet billeder sammenlignet med 

referencedata. 

Metode: Data bestod af FLAIR og T1-vægtet MR-billeder 

fra 95 apopleksipatienter. FLAIR billederne fungerede som 

input til SynthSR for at syntetisere T1 billeder. Efter 

syntetisering, blev både de originale og syntetiserede T1 

billeder registreret til MNI-152 skabelon og normaliseret 

før udregning af Mean Squared Error (MSE) og Structural 

Similarity Index (SSIM), samt subjektiv vurdering. 

Resultater: 87 FLAIR og T1-vægtet billede par blev 

inkluderet til syntetisering. Objektiv vurdering viste en 

gennemsnits MSE på 0.56 ± 0.17 og en gennemsnits SSIM 

på 0.35 ± 0.66 når de syntetiserede T1-vægtet billeder blev 

sammenlignet med de originale T1-vægtet billeder. 

Sammenlignet med MNI-152 skabelonen viste de originale 

T1-vægtet billeder en gennemsnits MSE på 1.12 ± 0.17 og 

en gennemsnits SSIM på 0.32 ± 0.06, hvor de 

syntetiserede T1-vægtet billeder viste en gennemsnits MSE 

på 0.99 ± 0.04 og en gennemsnits SSIM på 0.32 ± 0.01. 

Konklusion: SynthSR syntetiserede T1-vægtet billeder ud 

fra FLAIR der visuelt lignede de originale T1-vægtet 

billeder. Dog viste objektive målinger forskelle i både 

pixelintensitet og strukturel lighed, hvilket understreger 

behovet for yderligere forskning. 
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Abstract 

Background: Magnetic Resonance Imaging (MRI) is 

widely used clinically for stroke assessment, with Fluid-

Attenuated Inversion Recovery (FLAIR) being a key 

sequence for detecting and characterising pathology. 

However, T1-weighted sequences, often required for 

advanced neuroimaging analysis and research software 

tools, are frequently unavailable, posing a limitation. 

SynthSR, a neural network capable of synthesising missing 

T1-weighted images from other MRI sequences, offers a 

potential solution. The aim of this study was to validate 

SynthSR’s capability to synthesise realistic T1-weighted 

images from FLAIR, and to assess the similarity of the 

synthesised T1-weighted images compared to the ground 

truth. 

Method: Data consisted of FLAIR and T1-weighted MRI 

images from 95 stroke patients. FLAIR images served as 

input for SynthSR to synthesise T1-weighted images. After 

synthesis, both the original and synthesised T1-weighted 

images were registered to the MNI-152 template and 

normalised before computing Mean Squared Error (MSE) 

and Structural Similarity Index (SSIM), alongside 

subjective validation. 

Results: 87 FLAIR and T1-weighted image pairs were 

included for synthesis. Objective assessment revealed a 

mean MSE of 0.56 ± 0.17 and mean SSIM of 0.35 ± 0.66 

when synthesised T1-weighted images were compared 

against original T1-weighted images. Against the MNI-152 

template, original T1-weighted images exhibited a mean 

MSE of 1.12 ± 0.17 and mean SSIM of 0.32 ± 0.06, 

whereas synthesised T1-weighted images showed a mean 

MSE of 0.99 ± 0.04 and mean SSIM of 0.32 ± 0.01. 

Conclusion: SynthSR synthesised T1-weighted images 

from FLAIR that were visually similar to the original T1-

weighted images. However, objective measurements 

revealed differences in both pixel intensity and structural 

similarity, emphasising the need for further research. 
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Original article 

Validation of Synthesised T1-weighted Images from 
FLAIR  
Maria Dalmose Rasmussen, MSc 𝟏 

Abstract 

Background: Magnetic Resonance Imaging (MRI) is widely used clinically for stroke assessment, 

with Fluid-Attenuated Inversion Recovery (FLAIR) being a key sequence for detecting and 

characterising pathology. However, T1-weighted sequences, often required for advanced 

neuroimaging analysis and research software tools, are frequently unavailable, posing a limitation. 

SynthSR, a neural network capable of synthesising missing T1-weighted images from other MRI 

sequences, offers a potential solution. The aim of this study was to validate SynthSR’s capability to 

synthesise realistic T1-weighted images from FLAIR, and to assess the similarity of the synthesised 

T1-weighted images compared to the ground truth. 

Method: Data consisted of FLAIR and T1-weighted MRI images from 95 stroke patients. FLAIR 

images served as input for SynthSR to synthesise T1-weighted images. After synthesis, both the 

original and synthesised T1-weighted images were registered to the MNI-152 template and 

normalised before computing Mean Squared Error (MSE) and Structural Similarity Index (SSIM), 

alongside subjective validation. 

Results: 87 FLAIR and T1-weighted image pairs were included for synthesis. Objective assessment 

revealed a mean MSE of 0.56 ± 0.17 and mean SSIM of 0.35 ± 0.66 when synthesised T1-weighted 

images were compared against original T1-weighted images. Against the MNI-152 template, original 

T1-weighted images exhibited a mean MSE of 1.12 ± 0.17 and mean SSIM of 0.32 ± 0.06, whereas 

synthesised T1-weighted images showed a mean MSE of 0.99 ± 0.04 and mean SSIM of 0.32 ±

0.01. 

Conclusion: SynthSR synthesised T1-weighted images from FLAIR that were visually similar to the 

original T1-weighted images. However, objective measurements revealed differences in both pixel 

intensity and structural similarity, emphasising the need for further research. 

Keywords: Neuroimaging, deep learning, image synthesis, magnetic resonance imaging, mean 

squared error, structural similarity index, medical imaging, stroke, FLAIR, T1-weighted imaging, 

image quality assessment, SynthSR.

Introduction 

Stroke is one of the leading causes of morbidity 

and mortality worldwide (2). Magnetic 

Resonance Imaging (MRI) is one of the leading 

imaging procedures for diagnosis, 

characterization and follow-up for stroke, and are 

used for both clinical and research purposes. In 

clinical practice, Fluid-Attenuated Inversion 

Recovery (FLAIR) is one of the several MRI 

sequences used for stroke diagnosis due to its 

ability to visualize pathological changes such as 

white matter abnormalities and hyperintense 
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lesions. Another MRI sequence, T1-weigthed 

imaging, are especially used in neuroscience 

because of its capability to demonstrate anatomy 

(3–5). Therefore, neuro studies use this sequence 

as a reference for registration, segmentation and 

atlas based analyse (3–5). Furthermore, most of 

the software for doing those analysis, requires 

high resolution T1-weigthed images (6,7). Given 

that T1-weighted images are not included in all 

MRI scans, including MRI scans for stroke (8–

10), this is a limitation for neuroscience research. 

As the majority of MRI scans are conducted for 

clinical purposes, this is reflected in the available 

datasets, and sequences with T1-weighting is 

missing in most of the clinical scans (11,12). This 

is a challenge in neuroscience research, because 

to execute analyses such as segmentation and 

registration specific demands are necessary. 

To solve these challenges with missing MRI 

images, synthetic MRI images could be a 

resolution for use in neuroscience. Numerous 

studies have investigated several methods for 

synthesising MRI images using different models 

of neural networks (6,13,14).  Recently, SynthSR 

have demonstrated promising results in 

synthesising neurological imaging compared to 

previous approaches. SynthSR is a neural 

network implemented in FreeSurfer, that 

synthesise clinical brain scans into high 

resolution T1-weighted images (6). The result 

can then be analysed with any established tool for 

registration or segmentation. SynthSR is based 

on two Convolutional Neural Network (CNN) 

each with its own U-net and combine a domain 

randomization approach with a generative brain 

MRI model. This makes it possible to handle 

scans in any contrast or resolution. Furthermore, 

is uses an auxiliary segmentation task to produce 

realistic images and replace lesions with healthy 

tissue (6). 

Although T1-weigthed MRI images is among the 

sequences that are most often missing, but also 

most wanted for analyses, there is limited 

research in synthesising this sequence.  

Therefore, the purpose of this study is to validate 

SynthSR capability to synthesise T1-weighted 

MRI images from FLAIR. Furthermore, to 

validate the similarity of the synthesised T1-

weighted images compared with original T1-

weighted images as the ground truth. 

Method 

To validate SynthSR capability to synthesise T1-

weighted images and assess the quality of those 

images, several processes were performed. These 

processes are shown in Figure 1. 

Figure 1: Flowchart illustrating the methodology for evaluating 

synthesised T1-weighted image quality using SynthSR. 
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In general, all procedures were performed using 

Python 3.10.12 on Ubuntu 22.04. For image 

synthesis, Freesurfer 8.0.0 was utilised to run 

SynthSR 2. 

Relevant Python libraries and modules used for 

individual processes included: SimpleITK 2.4.1, 

NumPy 2.2.4, Pandas 2.2.3, Nibabel 5.3.2, 

Scikit-image (skimage) 0.25.2, Scikit-learn 

(sklearn) 1.6.1 and Advanced Normalization 

Tools (ANTs) 0.3.26.3. 

Data 

The data used in this study originated from the 

study by Lemos et al (1). The data were collected 

in 2018-2019, with stroke patients recruited from 

a pain centre at Hospital das Clínicas da 

Universidade de São Paulo. The inclusion criteria 

for patients were adults with stroke (ischaemic or 

haemorrhagic) and documented MRI lesions. 

The exclusion criteria for the study were missing 

or unsuitable MRI images, as well as the absence 

of T1-weighted, FLAIR, or diffusion-weighted 

images (1). 

Image Synthesis 

Image synthesis in this study was performed 

using SynthSR within Freesurfer (6). 3D FLAIR 

MRI images were used for synthesis and thus 

served as input to SynthSR. 

As the input images originated from both 1.5 T 

and 3 T MRI scanners, the synthesis was 

performed with the low-field flag enabled. 

Furthermore, the newest version of SynthSR v2 

was used, so the v1 flag was not applied. The 

command utilised 32 CPU threads, which was 

optional but made the process faster. 

Image registration 

Prior to measuring the anatomical metrics and 

comparing the synthesised T1-weighted image 

with the original T1-weighted image, all images 

required registration and alignment.  

Image registration involved establishing a 

geometric transformation to align the images. In 

this way, two different MRI images could be 

compared, and an overlay between the images 

could be visualised and measured. For 

registration, the standard MNI-152 brain space 

was used. This model was an average of 152 T1-

weighted MRI scans, which were transformed to 

form a symmetric model and create a common 

spatial framework where different brains could 

be compared (15,16). 

For this study, multiple registrations were 

performed. FLAIR images were registered to the 

synthesised T1-weighted images when the 

synthesis was carried out. Furthermore, the 

original T1-weighted images and the synthesised 

T1-weighted images were registered to the MNI-

152 space.  

The ANTs library was utilised for registration 

procedures (17–19). 

Registration allowed for the assessment of how 

overall registration performance differed when a 

synthesised T1-weighted image was used instead 

of the original T1-weighted image. Furthermore, 

registration enabled the visualisation and 

evaluation of the spatial similarity between the 

synthesised and original T1-weighted images. 

Likewise, the SynthSR accuracy and quality in 

generating synthetic T1-weighted images from 

FLAIR images could be validated by studying 

how well the images spatially matched.  

Henceforth, the MNI-152 space will be referred 

to as “the template image” in this study. 

Intensity Normalisation 

After registration, the images were normalised to 

ensure consistent intensity values for the 

subsequent measurements. This normalisation 

was performed in Python using Z-score 

normalisation, calculated as follows: 

Z =
𝑥 − 𝜇

𝜎
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This normalisation transformed the data to have 

a mean around 0 and a standard deviation around 

1.  

For this normalisation, the NumPy, Nibabel and 

Scikit-learn (sklearn) libraries were used (20–

24). 

The normalisation was applied individually to 

both the original and synthesised T1-weighted 

images, as well as the template image. 

These normalised images were then used for 

objective image quality measurement and are 

henceforth referred to as “synthesised T1-

weighted images,” “original T1-weighted 

images,” and “template images” respectively. 

Anatomical metrics 

In this study, objective image quality 

measurements were performed using Mean 

Squared Error (MSE) and the Structural 

Similarity Index (SSIM). Each metric was 

measured between the original T1-weighted 

image and the synthesised T1-weighted image. 

Additionally, measurements were taken between 

the original T1-weighted image and the template 

it was registered to, and finally, between the 

synthesised T1-weighted image and the template. 

Mean Squared Error (MSE) 

MSE calculates the average of the squared 

differences between pixels in two images, 

providing a numerical value for the total error or 

difference between them. It is given by the 

following formula: 

𝑀𝑆𝐸 =
1

𝑀 ∗ 𝑁
∑ ∑[𝑓(𝑖, 𝑗) − 𝑔(𝑖, 𝑗)]2

𝑁−1

𝑗=0

𝑀−1

𝑖=0

 

Here, g represents the synthesised image and f 

represents the ground truth image. M and N are 

the dimensions of the image, and (𝑖, 𝑗) refer to 

the pixel values within the images. 

Higher MSE values indicate larger differences in 

pixel intensity between the images. Therefore, 

the aim is to achieve an MSE value close to zero 

(25,26). 

The libraries used for calculating MSE in Python 

were SimpleITK, NumPy and Pandas (27–29) 

Structural Similarity Index (SSIM) 

The SSIM index measures the structural 

similarity between two images - the synthesised 

and the original MRI image - by combining three 

components: 

𝑆𝑆𝐼𝑀 = (
2𝜇𝑓𝜇𝑔 + 𝐶1

𝜇𝑓
2 + 𝜇𝑔

2 + 𝐶1

) ∗ (
2𝜎𝑓𝜎𝑔 + 𝐶2

𝜎𝑓
2 + 𝜎𝑔

2 + 𝐶2

)

∗ (
𝜎𝑓𝑔 + 𝐶3

𝜎𝑓𝜎𝑔 + 𝐶3
) 

The SSIM index typically ranges between zero 

and one. If the SSIM was equal to one, the images 

f and g were identical. 

Kowalik-Urbaniak et al. showed that SSIM had 

the best performance and was therefore the 

measure that most closely aligned with 

radiologists’ assessments (25,26).  

The libraries used for calculation SSIM in Python 

were Nibabel, NumPy, Pandas and Scikit-image 

(skimage) (20,21,23,29,30) 

Statistical Analysis 

Descriptive statistics were performed using SPSS 

29.0.0.0. The descriptive statistics included 

mean, median, minimum, maximum, standard 

deviation, variance and percentiles for both MSE 

values and SSIM values. Furthermore, Boxplots 

were made for visual representation of the 

descriptive statistics for MSE values and SSIM 

values. 

Subjective Image Quality Assessment 

A subjective image quality assessment was 

conducted by the author of this study, in addition 

to the objective measurements. This was 

performed by visually comparing the synthesised 

and original images. 
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Results 

MRI data from 95 patients were initially included 

in this study. These data consisted of T1-

weighted and FLAIR sequences from all 95 

patients. However, after a subjective review of 

the data, MRI data from 8 patients were excluded 

due to poor image quality and artefacts. 

Therefore, MRI data from 87 patients were 

finally included. 

Comparison of Original T1-weighted 

Images with Synthesised T1-weighted 

Images 

Table 1 presents descriptive statistics for the 

MSE values obtained from the comparison 

between the synthesised T1-weighted and 

original T1-weighted images. 

 
Table 1: Descriptive statistics of MSE-values between original 

T1-weighted and synthesised T1-weighted images. 

For the comparison between the synthesised T1-

weighted and original T1-weighted images, the 

mean MSE value was 0.56 ± 0.17, and the 

values ranged from 0.22 to 0.93 (Table 1). The 

descriptive statistics are visually presented in 

Figure 2, which shows no outliers. 

The SSIM values between the original T1-

weighted and synthesised T1-weighted images 

had a mean of 0.35 ± 0.66 with a range from 

0.17 to 0.48 (Table 2). As with the MSE values, 

there were no outliers for SSIM values (Figure 

3).  

 
Table 2: Descriptive statistics of SSIM-values between original 

T1-weighted and synthesized T1-weighted images 

Comparison of Original T1-weighted 

Images and the Template Image 

The results for the comparison between the 

original T1-weighted images and the template 

image are shown in Table 3 and Table 4.  

 
Table 3: Descriptive statistics of MSE-values between the 

template image and the original T1-weighted images. 

The mean MSE value was 1.12 ± 0.17, with a 

range from 0.82 to 1.55 (Table 3). The mean 

SSIM value was 0.32 ± 0.06 with a range from 

0.11 to 0.41 (Table 4).  
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Figure 2: Boxplot of MSE values for the three comparisons: Original T1-weighted images compared to synthesised T1-weighted 

images, original T1-weighted images compared to template image, and synthesised T1-weighted images compared to template 

image. 

Figure 3: Boxplot of SSIM values for the three comparisons: Original T1-weighted images compared to synthesised T1-weighted 

images, original T1-weighted images compared to template image, and synthesised T1-weighted images compared to template 

image. 
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Table 4: Descriptive statistics of SSIM-values between the 

template image and the original T1-weighted images 

The boxplot in Figure 2 and Figure 3 visually 

presents the results, and outliers were observed 

for both MSE and SSIM values. For the MSE 

values, three outliers had a higher value than the 

upper IQR, which was around 1.25 (Figure 2). 

For the SSIM values, one outlier fell below the 

lower bound of the IQR, which was around 0.15 

(Figure 3). 

Comparison of Synthesised T1-weighted 

Images and the Template Image 

The results of MSE measurement between the 

synthesised T1-weighted images and the 

template image are shown in Figure 5. The mean 

MSE value was 0.99 ± 0.04 with a range from 

0.90 to 1.08 (Table 5). 

 
Table 5: Descriptive statistics of MSE-values between the 

template image and the synthesised T1-weighted images. 

For the SSIM values, the results are shown in 

Figure 6. The mean SSIM value was 0.32 ± 0.01 

with a range from 0.30 to 0.37 (Table 6). 

 
Table 6: Descriptive statistics of SSIM-values between the 

template image and the synthesised T1-weighted images. 

Figure 2 and Figure 3 displays the boxplot for the 

MSE and SSIM values between the template and 

the synthesised T1-weighted images. This 

revealed no outliers for the MSE values but 

showed two outliers for the SSIM values. These 

outliers were just above the upper bound of the 

IQR, which was around 0.34 (Figure 3). 

Subjective Results 

Figure 4 displayed four image pairs, each 

consisting of an original T1-weighted image and 

its corresponding synthesised T1-weighted 

image after registration and normalisation. The 

first image pair exhibited the highest MSE value 

(0.93) and the lowest SSIM value (0.17) (Figure 

4a). The second image pair had the lowest MSE 

value (0.22) (Figure 4b), while the third image 

pair showed the highest SSIM value (0.48) 

(Figure 4c). The final image pair presented with 

a moderate MSE value (0.56) and a moderate 

SSIM value (0.36) reflecting the study’s overall 

findings (Figure 4d).
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Figure 4: Four image pairs with the original T1-weighted images to the left and the synthesized T1-weighted images to the right, for 

visual comparison. 4a) Shows the image pair with the highest MSE-value and lowest SSIM-value. 4b) Shows the image pair with the 

lowest MSE-value. 4c) Shows the image pair with the highest SSIM-value. 4d) Shows the image pair with a moderate MSE-value and 

moderate SSIM value. 
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Discussion 

This study investigated the similarity of 

synthesised T1-weighted images compared to 

original T1-weighted images. The results showed 

that the synthesised T1-weighted images and 

original T1-weighted images had a mean MSE 

value of 0.56 ± 0.17, which indicates an average 

moderate symmetry between the pixel intensity 

in the images. This result means that the pixel 

values of the synthesised images show numerical 

deviations from the original images. Although 

there were a few images where the pixel intensity 

was very similar between the synthesised and 

original images, with an MSE value around 0.2. 

These images would be more pixel-wise 

identical. However, it should be noted that MSE 

is sensitive to intensity shifts and noise whilst 

ignoring structural similarity (31). This means 

that a low MSE does not necessarily guarantee a 

visually identical image, if the structural integrity 

is compromised. Hence SSIM was also measured 

between the synthesised and original images. 

The average SSIM value between the synthesised 

images and the original images was 0.35 ± 0.07 

which means the images have a low structural 

similarity and will be different in their 

fundamental structure. Similarly, the visual 

image quality appears poor, as illustrated in 

Figure 4, due to the substantial difference 

between the original and synthesised T1-

weighted images. The image pair exhibiting the 

highest structural similarity, as indicated by its 

SSIM score, achieved an SSIM value of 0.48. 

Even this best-case value, however, suggests that 

SynthSR struggled to achieve high structural 

fidelity within the dataset, even under optimal 

conditions. While not perfect, a visual inspection 

of these images reveals a generally comparable 

overall structure (Figure 4). This contrasts 

sharply with image pairs demonstrating the 

lowest structural similarity, where an SSIM value 

of 0.17 resulted in images that appeared almost 

entirely dissimilar upon visual inspection (Figure 

4). From this perspective, the image pair with the 

highest SSIM-value, despite its low score, 

visually represents an improvement when 

compared to those with the lowest SSIM values. 

Crucially, the combination of high MSE and low 

SSIM values highlights that while MSE 

quantifies numerical pixel-level deviations, 

SSIM provides critical insight into the 

preservation of underlying anatomical structures, 

which are vital for human visual perception (31). 

Together, these metrics unequivocally indicate 

that SynthSR is not performing optimally in 

terms of reconstructing the original MRI image. 

This is because the results show that the 

synthesised T1-weighted images exhibit 

considerable deviations from the original images, 

both numerically and structurally. 

Beyond the comparison between the original T1-

weighted and the synthesised T1-weighted 

images, an additional analysis was conducted to 

assess the similarity between the template image 

and the original T1-weighted images. The mean 

MSE value for this comparison was 1.12 ± 0.17. 

This result indicates a substantial average pixel-

to-pixel deviation, demonstrating that the pixel 

values of the original images numerically differ 

noticeably from those of the template image. This 

finding holds true for the majority of the images, 

as evidenced by a minimum observed MSE value 

of 0.82, which itself suggests a low similarity 

and large differences in pixel intensity even for 

the most similar pairs within this specific 

comparison. 

For the same comparison, the mean SSIM value 

was 0.32 ± 0.06. As this result is low, the 

template image and the original T1-weighted 

images have poor structural similarity, and image 

information such as tissue interfaces, anatomical 

structures, and fine details are likely not well 

preserved.  

Additionally, the template image was compared 

to the synthesised T1-weighted images. The 

mean MSE value for this comparison was 0.99 ±

0.04, indicating a high numerical deviation. The 
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minimum MSE value was 0.90, which suggests 

that all the synthesised T1-weighted images 

differ from the template image and have varying 

intensity scales.  

Furthermore, the mean SSIM value for this 

comparison was 0.32 ± 0.01, with the highest 

value being 0.37. This result indicates that the 

synthesised images and the template are 

substantially different and have a low structural 

similarity.  

An analysis of the MSE values revealed distinct 

differences when comparing images to the 

template. Specifically, the comparison between 

the template and the original T1-weighted 

images yielded a mean MSE of 1.12. In contrast, 

the synthesised T1-weighted images, when 

compared to the same template, demonstrated a 

slightly lower average MSE of 0.99, suggesting 

a marginally improved pixel-wise similarity in 

this comparison. This could suggest that the 

synthesised T1-weighted images can be 

registered to the template with comparable or 

even improved accuracy relative to the original 

T1-weighted images. Nevertheless, the observed 

MSE values persist at a relatively high level, 

implying substantial disparities in pixel intensity 

between the template and the synthesised T1-

weighted images.  

Based on the obtained MSE and SSIM values, the 

results of this study indicated both numerical 

differences in pixel intensity and low structural 

similarity when comparing the synthesised T1-

weighted images with the original T1-weighted 

images, as well as with the template image. 

Refinements in the methodology might yield 

better results, such as how the normalisation was 

performed.  

Osman et al. developed a CNN-based U-net 

model designed for synthesising T1-weighted 

images from FLAIR, among other modalities 

(13). A critical step in their methodology 

involved pre-synthesis normalisation, where data 

underwent both Z-score normalisation and 

subsequent scaling to the [0,1] intensity range. 

They compared the synthesised T1-weighted 

images with original T1-weighted images by 

calculating MSE and SSIM, among other 

metrics. The average MSE and SSIM values of 

(0.0009, 0.95) (13) were substantially better 

than those of this study (0.56, 0.45). In a 

separate study by Sharma et al., a Generative 

Adversarial Network (GAN) model was 

proposed for the synthesis of missing MRI 

sequences. Consistent with the approach of 

Osman et al., image normalisation was 

performed prior to the synthesis of the MRI 

images. Although they did not synthesise T1-

weighted images from FLAIR, but rather from 

T2-weighted images, they obtained considerably 

improved SSIM values of 0.93 (11), compared to 

the SSIM of this study 0.45. 

Considering the distinct synthesis models 

employed, which may explain discrepancies in 

results, it would be valuable to investigate the 

effects of pre-synthesis normalisation within the 

SynthSR framework, potentially involving data 

scaling to the [0,1] intensity range. 

Iglesias et al. developed SynthSR with the aim of 

transforming clinical brain scans, regardless of 

their MRI contrasts, orientation, and resolution, 

into high-resolution T1-weighted scans (6). The 

tool was extensively tested and validated on more 

than 10,000 brain scans. This validation 

included segmenting and registering the 

synthesised images, which showed a high 

correlation with actual high-resolution scans. 

Furthermore, the synthesised T1-weighted 

images from SynthSR proved to be compatible 

with existing neuroimaging tools (6). 

Although this study did not perform direct 

quality analysis of the synthesised T1-weighted 

images through downstream methods like 

segmentation, their suitability for registration 

was assessed. Both the synthesised T1-weighted 

images and the original T1-weighted images 
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were registered to a common template. The 

synthesised T1-weighted images exhibited a 

lower MSE-value (0.99, 1.12) and an identical 

SSIM-value (0.32, 0.32) compared to the 

original T1-weighted images. This marginally 

improved pixel-wise similarity and comparable 

structural alignment is a key finding for 

registration purposes. It suggests that while the 

synthesis might introduce some pixel-level 

deviations from the original, it could 

simultaneously produce images with properties, 

such as reduced noise or a more consistent 

intensity scale, that are advantageous for 

standard template registration. This finding 

aligns with SynthSR’s demonstrated utility and 

compatibility for robust registration in 

neuroimaging pipelines, indicating the 

synthesised T1-weighted images are equally 

effective for this purpose as the original T1-

weighted images (6). 

Limitations 

This study has some limitations that could affect 

the results. First, the data used for synthesising 

came from different MRI scanners, and it was 

unknown if the protocols had been consistent. 

Images from different scanners or with different 

protocols can have varying image properties, 

which could impact the registration, 

normalisation or synthesis. The synthesis in this 

study is particularly sensitive to whether the 

input images originate from a low-field or high-

field scanner. Given that the scanner origin was 

unknown for the images, all were processed with 

the low-field flag. Therefore, the synthesis 

results in this study could potentially vary if this 

information had been known and applied. 

Another limitation is the absence of downstream 

evaluation, such as using the synthesised images 

for segmentation and comparing the results to 

segmentations derived from the original images. 

Until this is done, it remains unknown if the 

synthesised T1-weighted images can be used for 

further neuro-analysis. 

Conclusion 

This study validated SynthSR capability to 

synthesise T1-weighted images from FLAIR. 

Furthermore, the synthesised T1-weighted 

images were validated by comparing them with 

original T1-weighted images as the ground truth. 

SynthSR synthesised T1-weighted images from 

FLAIR, that visually resembled the original T1-

weighted images. However, objective image 

quality measurements did show differences in 

both pixel intensity and the structural similarity 

between the synthesised T1-weighted images and 

the original T1-weighted images. This indicates 

a need for further research to either optimise the 

synthesised images or to determine, if they are 

sufficient for neuroimaging-analysis. 
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Worksheets 1: Background information 

In this worksheet, further background information for the scientific problem is giving.  

Stroke 

Annually, 12.000 Danes are hospitalized with a stroke in Denmark, and it stands as the fourth most 

frequent cause of death (32). Treatment for stroke involves either thrombolysis or thrombectomy, 

which must begin as soon as possible (32).  

Thrombolysis medically dissolves the thrombus by administering 0.9 mg pr kg of alteplase 

intravenously to the patient (32,33). However, this treatment is only effective if administered within 

three to four a half hours of symptom onset (32–34). Thrombectomy, conversely, is a minor surgical 

intervention that removes the thrombus and must be initiated within six hours of symptom onset (32). 

Earlier treatment, regardless of type, leads to fewer patients requiring post-treatment assistance 

(34,35). 

To initiate the treatments as fast as possible, stroke must be detected by either CT- or MR-scanning 

(36). MRI offers superior sensitivity for demonstrating ischemia and can identify it more quickly than 

CT. Additionally, MRI yields insights into the infarct’s size and mechanism, information not provided 

by CT (8,36). 

Vert et al. argue for which sequences should be included in an MRI scan to detect information about 

the presence and location of an intravascular thrombus that requires treatment, the size of 

irreversibly infarcted tissue, and the presence of hypo perfused tissue. These sequences are T2*, 

MRA, DWI, T2-FLAIR and PWI (8). 

At Aalborg University hospital, MRI can also be used for stroke, where the following sequences are 

included; DWI, T2 Flair fs, T2*, 3D ASL without contrast, TOF and T2 FSE (9,10). 

MRI sequences 

T2*  

The T2*-sequence is a gradient-echo sequence, utilizing a gradient pulse rather than an 

radiofrequency pulse (RF pulse). It offers a short scanning time as both repetition time (TR) and echo 

time (TE) are briefer due to faster magnetization and dephasing compensation (37). 

Vert et al. contend that T2*-weighted sequences ought to be part of the MRI protocol for stroke. They 

are particularly sensitive for detecting both acute and chronic intracerebral haemorrhage, as they 
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exploit deoxyhaemoglobin’s paramagnetic effect, which creates hypointensity in blood-filled areas. 

Furthermore, they can identify microbleeds and hypointense blood vessels in ischaemic areas, serving 

as diagnostic markers for stroke (8). 

Diffusion Weighted Imaging (DWI) 

Diffusion Weighted imaging (DWI) is a fast MRI sequence that uses pulses sensitive to the diffusion 

of water molecules. This makes the sequence particularly useful for detecting ischaemic damage in 

the brain within minutes of a thrombus (8,37). Furthermore, DWI can identify subclinical satellite 

ischaemic lesions, which can provide information about the stroke’s mechanism (8). Fiebach et al. 

likewise conclude that DWI has become the most sensitive (88 % to 100 %) and specific (95 % to 

100 %) imaging technique for detecting acute infarction, even very early after symptom onset, when 

comparing MRI-DWI and CT (38). 

Flair  

FLAIR is used to visualize pathological changes in the brain, as it suppresses the signal from free 

fluid, such as cerebrospinal fluid (CSF), making it easier to detect lesions, particularly in white matter. 

To suppress CSF, a long inversion time (TI) is required, as the CSF must reach zero magnetisation, 

along with a long repetition time (TR) to preserve the T2 contrast (37). This sequence is useful for 

detecting ischaemic lesions, precisely because the signal from CSF is suppressed, and for visualising 

vascular hyperintensities, which are used as an indirect indicator for collateral assessment (8). 

Furthermore, FLAIR, along with DWI, is used to estimate the age of the infarct, which is important 

in relation to further treatment (8). 

Time of Flight (TOF)  

This sequence is used to visualize blood vessels. This works by applying an inversion pulse in the 

area where the blood is to be “labelled”. This pulse alters the magnetism in the blood’s protons, 

thereby giving the blood a stronger signal compared to the surrounding tissue. After the scan, the 

moving blood can be separated from the stationary surrounding tissue, based on the different signals 

detected (37). 

Vert et al. contend that this sequence is useful in an MRI stroke protocol, as it is particularly valuable 

for detecting vascular occlusion and/or stenosis in patients with acute ischaemic stroke. The detection 

of this is crucial for subsequent clinical decisions (8).  
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Perfusion Weighted Imaging (PWI) 

This sequence is used to identify areas in the brain with reduced blood flow due to arterial blockages, 

and to distinguish between the infarct core and the ischaemic penumbra. For this sequence, a 

gadolinium-based contrast agent is injected, which then causes signal changes, thereby providing 

information about blood flow and blood volume in the brain (8). 

Vert et al. further estimate that this sequence can be advantageously used together with DWI to 

differentiate the infarct core from the penumbra (8). 

3D Arterial Spin Labelling (ASL) without contrast  

This sequence is used to measure cerebral blood flow (CBF). This is possible by applying an RF pulse 

to the blood in the neck or carotid artery, thereby “labelling” the blood and altering its magnetic 

properties. The signal from the labelled blood cells will consequently have different signals than the 

unlabelled blood cells when they reach the area where the signal is measured. The change between 

the labelled and unlabelled blood cells can be used to calculate CBF and can provide information 

about how quickly blood is moving through the brain’s tissue (37).  

T2 Fast Spin Echo (FSE)  

This sequence uses multiple 180° RF pulses rather than just one, which makes the sequence fast. It 

also utilizes T2-relaxation where fluid will exhibit a high signal, as protons in tissue with high water 

content lose their signal more slowly before the next RF pulse is transmitted (37).  

Therefore, this sequence is good for visualizing tissues with high water content, such as stroke and 

oedema (37). 

T1-weighted  

T1-weighted images are primarily used to visualise anatomy and pathology. They are often used for 

mapping or creating atlases, as their contrast primarily depends on the differences in the T1 recovery 

times between fat and water. This is achieved by using a short TR and a short TE, which results in fat 

appearing bright (hyperintense) and water appearing dark (hypointense) on the image (37). 
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Worksheet 2: Conduction and documentation of the systematic literature review 

Initially initial literature searches were conducted to gather information, identify knowledge gaps and 

to formulate the aim of this study. Furthermore, the initial literature searches served to find keywords, 

synonymous and thesauri applicable to the systematic literature search. 

The systematic literature search was conducted on background of the initial literature search. They 

included scientific articles from the systematic literature search was used in the discussion of this 

study.  

The systematic literature search was conducted through search blocks (Table A). Each block was 

compiled by the Boolean operator AND, and the search terms were compiled by the Boolean operator 

OR. The search terms consisted of both keywords, thesauri and synonymous, and truncation and 

phrasing were applied in the searches. 

Block 1 Block 2 Block 3  Block 4 

Brain /exp 4 synonyms 

Stroke :all 

Ischemia /exp 21 synonyms 

Nuclear Magnetic 

Resonance /exp 5 

synonyms 

 

Nuclear Magnetic 

Resonance imaging 

/exp 8 synonyms 

 

Diagnostic imaging 

/exp 4 synonyms 

 

Neuroimaging /exp 

3 synonyms 

 

MRI :all 

Deep Learning 

/exp 4 synonyms 

 

Neural Network 

/exp 

 

Machine Learning 

/exp 3 synonyms 

 

Artificial 

intelligence /exp 2 

synonyms 

 

Convolutional 

neural network 

/exp 13 synonyms 

 

Generative 

adversarial 

network /exp 2 

synonyms 

Synthesizing :all 

 

SynthSR :all 

 

Synthesis /exp 

 

Synthetic :all 

 

Modality translation 

:all 

 

Image-to-image 

translation /exp 

 

Cross-modality 

synthesis :all 

Table A: Search block for the systematic literature search 

The systematic literature searches were conducted in Embase and IEEE Xplore. Embase was selected 

because it represents one of the largest bibliographic databases in the fields of medicine and health 
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sciences and is commonly employed by the author (39). IEEE Xplore was selected because it provides 

access to more than three million documents in electronic and computer science (40). 

 

Figure A: Flowchart for the selection process of the systematic literature searches 

The selection process was made by the author, where duplicates were removed at first, and then the 

articles was screened by title, followed by screening of abstract and last screening by full text (Figure 

A). The exclusion criterions were used for the selection of articles and was primarily wrong purposes 

or outcome regarding this project. This could be articles with focus on prediction of diseases or aging 

of tumours, optimizing of scan protocols or treatments, training of the healthcare professionals, 
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Excluded due to: 
- Wrong outcome 17 

- Wrong modality 12 

Excluded due to: 
- Wrong population 6 

o Other than brain 
- Wrong modality 52 

o CT 
o PET 
o Radiotherapy 

- Wrong study type 17 
- Wrong purpose 105 

o Segmentation 
o Augmentation 
o Registration 
o Predicting 
o Classification 
o Reconstruction 

Articles excluded based on 
full text 
(n = 29) 

Articles excluded based on 
abstract 
(n = 180) 

Articles excluded based on 
title 
(n = 1492) 

Articles included 
(n = 5) 

Articles for screening by full 
text 
(n = 34) 

Articles for screening by 
abstract 
(n = 214) 

Articles for screening by title 
(n = 1706) 

Duplicates removed 
(n = 75) 

Articles identified through literature search 
bibliographic databases (n = 1781) 
 
Embase (n=1574) and IEEE Xplore (n=207) 

Excluded due to: 
- Wrong study type 75 
- Wrong purpose 649 

o Diagnosis 
o Prediction 
o Training 
o Optimizing 
o Improvement 
o Drugs 

- Wrong population 284 
o Children 
o Animals 
o Other than brain 

- Wrong modality 484 
o PET 
o Radiotherapy 
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reconstruction of image or classification of pathology. The rest of the criterions are showed both in 

Figure A, but also in the table with both inclusion and exclusion criterions (Figure A, Table B). 

Inclusion Exclusion 

Population: 

- Adults 18+ years 

- Brain images 

- Stroke 

Modality: 

- MRI 

Purpose: 

- Synthesizing of images 

- Handling missing MRI data 

- Image measurements 

 

Study type: 

- Pilot study 

- Protocol 

- Expert article 

- In vitro 

Population: 

- Animals 

- Children 

- Images of other parts than the brain 

Modality: 

- PET 

- Radiotherapy 

- CT 

- X-ray 

Purpose: 

- Prediction 

- Diagnosis 

- Classification 

- Training 

- Optimizing 

- Improvement 

- Segmentation 

- Augmentation 

- Registration 

- Reconstruction 

- Synthesizing of chemical drugs 

Table B: Criterions for the systematic literature search 

The criterions about modality were made, because it was essential to find the studies that already had 

worked with MRI images, because this is the purpose of this project. Furthermore, some of the 

purpose criterions was made under the selection process. Segmentation, among other things, was one 

of the criterions that was made under the selection process, because there were enough articles about 

synthesizing that fit the purpose of the project better, than articles about segmentation. 

At last, five articles were chosen to use both in the introduction and in the discussion for this project 

(Figure A). The articles were: 

- SynthSR: A public AI tool to turn heterogeneous clinical brain scans into high-resolution T1-

weighted images for 3D morphometry (6) 
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- Missing MRI Pulse Sequence Synthesis using Multi-Modal Generative Adversarial Network 

(11) 

- Joint super-resolution and synthesis of 1 mm isotropic MP-RAGE volumes from clinical MRI 

exams with scans of different orientation, resolution and contrast (12) 

- Deep learning-based convolutional neural network for intramodality brain MRI synthesis (13) 

- Generative adversarial networks to synthesize missing T1 and FLAIR MRI sequences for use 

in a multisequence brain tumour segmentation model (14) 

Other articles in this project were found through snowballing. By this method, articles were found in 

references in articles from the systematic literature search and by looking at other articles that have 

cited an article from the systematic literature search. 
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Worksheet 3: Understanding Convolutional Neural Network (CNN) 

Convolutional Neural Network (CNN) is a deep learning neural network. It is used for various task, 

such as image classification and image segmentation (41). They are designed to handle data presented 

as multiple arrays, such as images (42) and can have hundreds of layers (41). The three main layers 

are convolutional layer, Pooling layer and Fully Connected layer (42). The first layer, Convolutional 

layer is a fundamental building block. The purpose of this layer is to apply small, learnable filters to 

the input data to detect specific patterns or features in the data. Each filter activates when it recognises 

a pattern it is trained to recognise. Neurons in this layer is only connected with a small array of the 

input, which effectively captures the spatial relationship in the input data. Furthermore, one filter can 

recognise the learned feature across the entire input, which prevent overfitting. The result of the 

convolutional layer is multiple feature maps (41,42). 

The next layer, Pooling Layer, reduces the spatial dimensions of the feature maps from the 

Convolutional layers, by downsampling the maps. The Pooling layer works by considering a small, 

confined area of the input map and produce a singular output value for that area, leading to a reduction 

in the map’s scale. It helps reducing the risk for overfitting because the network gets less sensitive to 

small variations in the input data, which makes the model robust to noise and small shifts or 

deformation and becomes less sensitive to the exact location of a feature within the input (41,42). 

The last main layer, Fully Connected layer is often the last layer in CNN. Essentially, it takes the 

maps from the Pooling layer and converts their features into a final prediction or decision, specifically 

by mapping them to probabilities or values for classification or regression (41,42). Though, the output 

from the Pooling layer must be flattened into a single long vector for the Fully Connected layer can 

work with it. In the Fully Connected layer, all neurons are connected in the preceding layer, which 

enables it to learn complex, non-lineary combination of the features extracted from earlier layers (42). 
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Worksheet 4: Scripts 

In this worksheet, the scripts used in this master’s thesis are described. 

Synthesising 

To synthesize FLAIR images to T1 images, SynthSR was used as mentioned in the article for this 

project. Furthermore, it was performed in Python.  

The commando for synthesizing with SynthSR was: 

mri_synthsr --i <input> --o <output> --threads <n_threads> [--v1] [--lowfield] [--ct] 

After insertion of the path for SynthSR, the input image and the output image, the commando, for 

this project, would be: 

/usr/local/freesurfer/8.0.0/bin/mri_synthsr --i /home/maria/Pictures/Data/Input/001/flair.nii --o 

/home/maria/Pictures/Data/Output/001 --lowfield --threads 32. 

The lowfield flag was used, because the data in this project originated from both 1.5 and 3 Tesla MRI 

scans. Because there was no information about which type of MRI scanner the images came from, 

the flag was used to ensure that the results were the best as possible for all the images. 

The v1 flag was not used, because there is a newer version of SynthSR, which made better synthesized 

images visual. Therefore, the newest version, version 2, was used automatically when no flag was 

used. Furthermore, the ct flag was not used, because it was only MRI scans that were processed.  

At last, the n_threads flag was used to make the process faster. The computer that was used for 

synthesizing had 32 CPU threads, why it was chosen. 

(6,43). 

Registration 

import os 

import ants 

 

def register_pipeline( 

    flair, t1, mni, output_path=None, flair_t1_registered=True, verbose=False 

): 

    """ 

    Pipeline to register FLAIR → T1 → MNI152. 

    Applies transformations to align FLAIR with MNI space using either original or registered T1. 

    """ 
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    def out(prefix): 

        return os.path.join(output_path, prefix) if output_path else prefix 

    #Step 0: Resample T1 to MNI space 

    t1_resampled = ants.resample_image_to_target(t1, target=mni, interp_type="bSpline") 

    #Step 1: Register FLAIR → T1 (if not already registered) 

    flair_to_t1 = None 

    if not flair_t1_registered: 

        print("Register FLAIR to T1") 

        flair_to_t1 = ants.registration( 

            fixed=t1_resampled, 

            moving=flair, 

            type_of_transform="Affine", 

            aff_metric="mattes", 

            syn_metric="mattes", 

            write_composite_transform=True, 

            outprefix=out("flair_to_t1_"), 

            verbose=verbose, 

        ) 

    #Step 2: Register T1 → MNI 

    print("Register T1 to MNI") 

    t1_to_mni = ants.registration( 

        fixed=mni, 

        moving=t1, 

        type_of_transform="Affine", 

        aff_metric="meansquares", 

        syn_metric="meansquares", 

        write_composite_transform=True, 
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        outprefix=out("t1_to_mni_"), 

        verbose=verbose, 

    ) 

    #Step 3: Apply transforms to FLAIR → MNI 

    transforms = [out("t1_to_mni_Composite.h5")] 

    if not flair_t1_registered: 

        transforms.append(out("flair_to_t1_Composite.h5")) 

    flair_mni_registered = ants.apply_transforms( 

        fixed=mni, 

        moving=flair, 

        transformlist=transforms, 

        interpolator="linear", 

    ) 

    #Step 4: Save results 

    if output_path: 

        os.makedirs(output_path, exist_ok=True) 

        if flair_to_t1: 

            ants.image_write( 

                flair_to_t1["warpedmovout"], out("flair_t1_registered.nii.gz") 

            ) 

        ants.image_write(t1_to_mni["warpedmovout"], out("t1_mni_registered.nii.gz")) 

        ants.image_write(flair_mni_registered, out("flair_mni_registered.nii.gz")) 

    return flair_mni_registered, t1_to_mni["warpedmovout"] 

if __name__ == "__main__": 

    original_data_dir = r"C:\Users\Anders\OneDrive - Aalborg 

Universitet\Dokumenter\Forskningsassistent - Neurologisk afdeling\Central post-stroke-

pain\Brasilien_t1_flair" 

    subject_id = "001" 

    mni_registered_flair_org_t1 = "mni_registered_flair_org_t1" 
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    mni_registered_flair_synth_t1 = "mni_registered_flair_synth_t1" 

    subject_path = os.path.join(original_data_dir, subject_id) 

    print(subject_path) 

    os.makedirs(mni_registered_flair_org_t1, exist_ok=True) 

    os.makedirs(mni_registered_flair_synth_t1, exist_ok=True) 

    print(subject_id[-2:]) 

    subject_filename_synthRS = f"billede_{subject_id[-2:]}.nii" 

    synthRS_data_dir = "SynthRS" 

    subject_synthRS = os.path.join(synthRS_data_dir, subject_filename_synthRS) 

    print(subject_synthRS) 

    t1_img_path = os.path.join(original_data_dir, subject_id, "t1.nii") 

    flair_img_path = os.path.join(original_data_dir, subject_id, "flair.nii") 

    template_dir = "mni_icbm152_nl_VI_nifti" 

    template_img_path = os.path.join( 

        template_dir, "icbm_avg_152_t1_tal_nlin_symmetric_VI.nii" 

    ) 

    output_base_path_org = os.path.join(mni_registered_flair_org_t1, subject_id) 

    output_base_path_synth = os.path.join(mni_registered_flair_synth_t1, subject_id) 

    os.makedirs(output_base_path_org, exist_ok=True) 

    os.makedirs(output_base_path_synth, exist_ok=True) 

    #Load images 

    flair = ants.image_read(flair_img_path, reorient="RAS") 

    t1 = ants.image_read(t1_img_path, reorient="RAS") 

    t1_synthRS = ants.image_read(subject_synthRS, reorient="RAS") 

    mni152 = ants.image_read(template_img_path, reorient="RAS") 

    register_pipeline(flair, t1, mni152, output_base_path_org, False) 

    register_pipeline(flair, t1_synthRS, mni152, output_base_path_synth, True) 



13 

 

Explanation of the codes in the script: 

ants.resample_image_to_target is a function that takes an image object and change its spatial features 

to match a reference image. 

interp_type=”bSpline” is the interpolations method that is used to maintain the image quality when 

the resolution 

ants.registation() performs the image registration by spatially align two images so they match 

fixed=t1_resampled is the reference image. The registration would try to align the moving image to 

this fixed image 

moving=flair is the moving image, and get transformed to fit the fixed image 

type_of_transform=“Affine” is the type of transformation. It is a linear transformation that are able 

to translation, rotation and scaling of the images. 

aff_metric“mattes” is the similarity metric that is used to assess how good the images fit under the 

affine part of transformation. Here the Mattes Mutual Information is used 

syn_metric=”mattes” is another metric for non-linear transformations  

write_composite_transform=True saves a composite transform as a file with all the calculated 

transformations 

outprefix=out(“flair_to_t1_”) is the prefix for the output files 

transforms = [out()] is a list with the paths to the transformation files that should be used 

if not flair_t1_registered is a conditional statement that verifies if the FLAIR-image is registered to 

the T1 image. 

transform.append(out()) adds the transformation of FLAIR to T1 to the transform list, if FLAIR is 

not registered to T1 

ants.apply_transforms() performs the image transformation. 

Interpolator=”linear” is the interpolation method that is used when pixel values are calculated in the 

transformed image. 

ants.image_write save the transformed images. 

(17). 

Normalisation 

The normalisation was made in Python and was developed by the author with use of libraries for 

normalisation with z-score. The libraries used in this script are NumPy, nibabel and sklearn. 

The script for normalisation was: 

import numpy as np 
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import nibabel as nib 

from sklearn.preprocessing import StandardScaler 

import os 

 

def standardise_single_image(image_path): 

    """ 

    Loads a NifTI image, standardises its pixel values 

    (Z-score normalisation) and returns the standardised image. 

    """ 

    try: 

        img = nib.load(image_path) 

        image_data = img.get_fdata() 

        original_shape = image_data.shape 

        #Flatten the Image to a 2D Array (num_pixel, 1) for StandardScaler 

        flat_image = image_data.reshape(-1, 1) 

        #Initialiser og fit scaler'en på det fladgjorte billede og transformer dataen. 

        scaler = StandardScaler() 

        standardised_flat_image = scaler.fit_transform(flat_image) 

        #Reshape de standardiserede data tilbage til den originale billedform 

        standardised_image = standardised_flat_image.reshape(original_shape) 

        print(f"Billede '{os.path.basename(image_path)}' er standardiseret.") 

        return standardised_image, img.affine, img.header, None # Returner ingen fejl 

    except FileNotFoundError: 

        error_msg = f"Fejl: Filen blev ikke fundet: {image_path}" 

        print(error_msg) 

        return None, None, None, error_msg 

    except nib.exceptions.Nifti1Error as e: 

        error_msg = f"Fejl: Ikke en gyldig NIfTI-fil: {image_path} - {e}" 
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        print(error_msg) 

        return None, None, None, error_msg 

    except Exception as e: 

        error_msg = f"Fejl ved behandling af {image_path}: {e}" 

        print(error_msg) 

        return None, None, None, error_msg 

 

image_to_standardize_path = 

'/home/maria/Data/Alle_billeder/Syntetiseret/t1_mni_registered_syntetiseret_95.nii' 

print(f"Behandler enkeltbillede: '{os.path.basename(image_to_standardise_path)}'") 

#Standardise the image 

scaled_image_data, affine, header, error = standardise_single_image(image_to_standardise_path) 

 

if scaled_image_data is not None: 

    #Save the standardised image 

    try: 

        output_filename = f"standardised_single_{os.path.basename(image_to_standardise_path)}" 

        new_img = nib.Nifti1Image(scaled_image_data, affine, header) 

        nib.save(new_img, output_filename) 

        print(f"Gemt: {output_filename}") 

    except Exception as e: 

        print(f"Fejl ved gemning af standardiseret billede: {e}") 

else: 

    print(f"Standardisering mislykkedes for {os.path.basename(image_to_standardize_path)}.") 

Explanation of the codes in the script: 

def standardize_single_image(image_path) is a definition of a function, for standardising the input 

image with z-score normalisation.  

nib.load(image_path) loads the input image from a path 

img.get_fdata() extracts the raw pixel intensity from the loaded image and returns it as a NumPy array 
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image_data.shape saves the original dimensions of the NumPy array 

image_data.reshape(-1, 1) changes the dimensions of the array. -1 is a dimension which automatically 

gets calculated from the total pixel in the image. 

StandardScaler() standardise the data, so it has a mean at 0 and a standard deviation at 1 

scaler.fit_transform performs the standardising by to steps. .fit calculates the mean and standard 

deviation of all pixelvalues in the image. .transform uses the z-score normalisation formula on every 

pixel 

(20–25). 

MSE measurement 

The MSE-measurement was performed in Python. The script for the measurement was developed by 

the author with use of libraries for calculating MSE. The libraries used in this script are SimpleITK, 

NumPy and Pandas. 

The script for MSE-measurement was: 

import SimpleITK as sitk 

import numpy as np 

import os 

import pandas as pd 

 

#Define the function: Calculates the MSE between two images 

def calculate_mse(image1_path, image2_path): #The function for calculation of MSE between two images 

    image1 = sitk.ReadImage(image1_path, sitk.sitkFloat32) #The first argument for the function 

    image2 = sitk.ReadImage(image2_path, sitk.sitkFloat32) #The second argument for the function 

    image1_array = sitk.GetArrayFromImage(image1).astype(np.float32)  

    image2_array = sitk.GetArrayFromImage(image2).astype(np.float32) 

    mse = np.mean((image1_array - image2_array) ** 2) 

    return mse 

Explanation of the codes in the script: 

def calculate_mse is the function. This function implements a method for calculation of MSE between 

two images and defines the code for achieving results. 

sitk.ReadImage loads images. 
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sitk.sitkFloat32 specifies that SimpleITK is intended to read the image and store its pixel values as 

32-bit floating-point numbers. 

sitk.GetArrayFromImage converts an image object to a NumPy-array 

astype() converts the data type for all elements in the NumPy-array 

np.float32 is the data type notation. Every pixel value in the array saves as a 32-bit floating-point 

number 

np.mean is a function from NumPy-library which calculates the mean of all elements in the given 

array. It subtracts elementwise between two images and squares each element in the array. 

(27–29). 

SSIM measurement 

The SSIM-measurement was performed in Python. The script for the measurement was developed by 

the author with use of libraries for calculating SSIM. The libraries used in this script are skimage, 

NiBabel, NumPy and Pandas. 

The script for SSIM-measurement was: 

from skimage.metrics import structural_similarity as ssim 

import nibabel as nib 

import numpy as np 

import os 

import pandas as pd 

 

#Define variables that save the two paths for the images 

reference_path = '/home/maria/Data/Reference/mni_registered_flair_org_t1/' 

synthesized_path = '/home/maria/Data/Syntetiseret/mni_registered_flair_synth_t1/' 

num_pairs = 87 

#Define string variables for the prefix and suffix to the filenames 

filename_prefix_reference = "t1_mni_registered_" 

filename_prefix_synthesized = "flair_mni_registered_" 

filename_suffix = ".nii" 

#Create empty lists to store the results 

pair_numbers = [] 
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ssim_scores = [] 

#Start a for-loop 

for i in range (1, num_pairs + 1): 

    reference_filename = os.path.join(reference_path, 

f"{filename_prefix_reference}{i}{filename_suffix}") 

    synthesized_filename = os.path.join(synthesized_path, 

f"{filename_prefix_synthesized}{i}{filename_suffix}") 

    try: 

    #Load the two images 

        nii_imgA = nib.load(reference_filename) 

        nii_imgB = nib.load(synthesized_filename) 

    #Retrieve the image data as NumPy arrays 

        imageA = nii_imgA.get_fdata() 

        imageB = nii_imgB.get_fdata() 

    #Calculate SSIM 

        (score, diff) = ssim(imageA, imageB, data_range=1.0, full=True) 

        diff = (diff * 255).astype("uint8") 

        print(f"SSIM: {i}: {score:.4f}") 

        #Add the results to the lists 

        pair_numbers.append(i) 

        ssim_scores.append(score) 

    except FileNotFoundError: 

        print("Fejl: En eller begge billedfiler blev ikke fundet. Tjek stierne.") 

    except Exception as e: 

        print(f"Der opstod en fejl: {e}") 

#Create a panda dataframe from the lists 

data = {'Image_pair': pair_numbers, 'SSIM Score': ssim_scores} 

df = pd.DataFrame(data) 
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#Save the dataframe to an Excel-file 

excel_filename = "ssim_resultater.xlsx" 

df.to_excel(excel_filename, index=True) 

print(f"Færdig med at beregne SSIM for de fundne billedepar.") 

Explanation of the codes in the script: 

num_pairs is a variable that saves an integer 

range(1, num_pairs +1) is a function that generates a sequence of numbers 

for i in is a for-loop that runs one time for every number. i is used to construct the unique filenames 

for every image pair. 

os.path.join(…) is a function from os, which combines path components into a valid file path 

f"{...}{i}{...} is an f-string, which builds strings in Python, and inserts the value of i between the 

prefix and suffix. 

nib.load loads the NIfTI-image file 

.get_fdata() returns the actual pixel/voxel data from the images as a NumPy-array 

ssim(imageA, imageB, …) use the SSIM-function that was imported from skimage.metrics library. 

data_range=1.0 tells the SSIM-function which data range the image pixels have. 

full=True returns the SSIM-value (score) and a “difference”-image (diff). 

diff*255 scales the values up to match a typical 8-bit image format. 

.astype(“uint8”) converts the datatype for diff-array to uint8 which is a standard shape for grayscale 

images. 

f"SSIM: {i}: {score:.4f}” is a f-string that gives the statistical text SSIM, the current pair number (i) 

and the last part of the string inserts the calculated SSIM-score with four decimals  

append(i) adds the current value of i to the list 

data = {'Image Pair’: pair_numbers, 'SSIM Score': ssim_scores} is a Python-dictionary that assigns 

Image Pair to the list pair_numbers in the first column and SSIM Score to the list ssim_scores in the 

second column 

df = pd.DataFrame(data) creates a DataFrame, which is a table from the dictionary. The variable df 

contains this table 

df.to_excel(excel_filename, index=True) saves the DataFrame as an Excel-file. Index=True includes 

the DataFrame index as a separate column in the Excel-file. 

(20,21,23,29,30). 
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Worksheet 5: Z-score Normalisation in Image Analysis: Selection and Rationale 

The normalization in the project was made by using Z-score normalization as mentioned in the article. 

The formula for Z-score normalization is:  

𝑍 =
𝑥 − 𝜇

𝜎
 

Where x is the individual data point, 𝜇 is the mean of pixel intensity in the image and 𝜎 the standard 

deviation. 

After normalization, the images would have a mean around 0 and a standard deviation around 1, 

which makes it possible to compare the images intensities. 

The Z-score normalization was chosen for this project, because it considers outliers and maintain the 

relative distribution of intensities compares to other normalization methods (24). Because the data in 

this project derives from different scanners the intensities can differ. Furthermore, the data was 

collected at different time points before contrast was giving, why the intensities could be different 

too. This, Z-score normalisation will account for. 

Another method for normalization is to use minimum and maximum and scale the data into an 

interval. Minimum and maximum was not chosen in this project because it does not handle outliers 

as good as Z-score normalization. If there are outliers or big differences in the original intensity fields, 

these would possibly distort the information in the images, because the min-max normalization 

compromises the data in a small interval (11). The Z-score normalization maintains the statistical 

distribution of the intensities, which is essential when comparing images with MSE and SSIM. 

Furthermore, Z-score normalization is wide used in work with deep learning and image analysis 

(11,13).  
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Worksheet 6: Visualising Image Differences: Insights from SSIM Difference 

Maps 

When calculating SSIM, a difference image was also created for each comparison. These difference 

images provide a visual representation of the difference between two images, by subtracting the pixel 

values of one image from those of the other, pixel by pixel. The difference image displays areas where 

the images are similar as dark, and areas where the images have big differences as light. The darkest 

areas in the difference image indicates the smallest structural differences.  

Figure B shows the difference image from image pair with the lowest SSIM value, and therefore most 

structural differences. There are some dark spots, which indicate small differences, but there are also 

some white or light spots, which indicate large differences. It appears noisy, and the structure in the 

brain is unrecognisable. The image indicates that there is a difference between the two images in both 

structure and intensity and not just in small details. The difference image corresponds with the SSIM 

value of 0,17 for this image pair.  

 

Figure B: Difference image of the image pair with lowest SSIM value 

Figure C, conversely, shows the difference image for the image pair with the highest SSIM value and 

thus the images with the best structural similarity for this study. Although there are still light areas, 

the structure of the brain is clearer in this image compared to Figure B. This indicates that there is 

better structural similarity between this image pair, but because there are a lot of light areas, there are 

still differences. This corresponds with the SSIM value of 0.48, which indicates that there are 

structural differences. 
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Figure C: Difference image of the image pair with highest SSIM value 

Although the difference image in Figure C is visually better than the difference image in Figure B, 

the structure in the brain is still noisy, and the edges in the tissue is blurred. This emphasises the 

conclusion in the article, that there is a need for further analysis or optimising in the process, to 

conclude if the synthesised images are usable. 
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Worksheet 7: Effective Time Management and Structure in master’s Thesis 

Writing 

For organising the master’s thesis, a Gantt chart was made for outlining the estimated duration for 

each task of the study (Table C). Furthermore, it gave an overview of the different progress that should 

be done. It was useful for visual representation of where I was in the process and what I still needed 

to do. It was updated approximately once a week to check up on status. 

Besides the Gantt chart, a weekly and daily plan was made in a physical calendar. Here a plan for the 

week was made, both with work relevant task, but also with spare time errands. Furthermore, a to-do 

list was made to make sure the time was well spent.  

 

 

Table C: Shows the first 10 activities of the Gantt diagram in the middle of the progress 

During the master’s thesis, multiple supervisory sessions were held with both supervisors and the 

author. These were planned by the author, by booking the supervisors and both verbal and written 

supervision was giving through the master’s thesis.  

With the Gantt chart and weekly planner, the structure of the master’s thesis was made. Furthermore, 

it helped ensure that made. Furthermore, it helped ensure that the learning objectives were met within 

the timeframe. 
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