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Chapter 1: Introduction

In today’s rapidly evolving industrial landscape, predictive maintenance (PdM)
plays a critical role in how organizations manage equipment performance and avoid
costly downtime. PdM systems use real-time data from sensors combined with algo-
rithms and machine learning to anticipate when machines may fail, allowing repairs
to be scheduled before breakdowns occur[3]. These technologies are fundamental
to the evolution of Industry 4.0, which promotes digital transformation through
automation, smart systems, and interconnected processes[10]. As companies con-
tinue to integrate cyber-physical systems and Al into operations, PdM dashboards
are becoming standard tools in decision-making processes on the factory floor.

However, even the most sophisticated PAM algorithms are only effective when their
outputs are understood and acted upon by human users. Maintenance engineers
and operators rely on dashboards to provide clear, timely, and actionable insights.
When these interfaces are poorly designed—overloaded with information, difficult
to navigate, or culturally insensitive—critical warnings may be misinterpreted or
ignored[13]. This disconnect between technical systems and human understanding
can result in inefficiencies or even serious safety incidents.

Technological efficiency alone is not sufficient. How data is presented, how it fits
into daily work routines, and how well users trust and comprehend predictive
outputs are equally important. The ability to interpret dashboard alerts depends
not only on user training but also on cognitive load, social influence, organizational
culture, and broader systemic factors[8]. In this context, examining the usability
and adoption of PAM dashboards requires more than technical analysis—it demands
a human-centered, socio-technical perspective.

1.1 Industry 4.0 and Predictive Maintenance
Industry 4.0

Industry 4.0, also referred to as the Fourth Industrial Revolution, represents a major
shift in how manufacturing and production systems operate. It is characterized
by the integration of cyber-physical systems, the Internet of Things (IoT), cloud
computing, and artificial intelligence (Al) into manufacturing workflows[6]. These
technologies enable machines to communicate with each other and with humans in
real-time, leading to more autonomous, efficient, and adaptive production systems.

The goals of Industry 4.0 include increased operational efficiency, greater flexibility
in production, and real-time responsiveness to market demands. As part of this
shift, traditional reactive and time-based maintenance strategies are giving way
to predictive maintenance, which aligns closely with Industry 4.0’s emphasis on
data-driven decision-making.

Predictive Maintenance (PdM)

Predictive maintenance is a proactive approach that uses condition-monitoring
tools and analytical techniques to detect potential equipment failures before they
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happen[19]. Unlike preventive maintenance, which occurs on a scheduled basis
regardless of machine condition, PdM is triggered by actual machine data. It
reduces unplanned downtime, extends asset life, and lowers maintenance costs.

PdM typically involves the collection of sensor data (e.g., vibration, temperature,
pressure) which is processed through algorithms to predict remaining useful life
(RUL) or identify anomalies. The results are displayed through dashboards, which
are the main interface between the system and human operators. The usability of
these dashboards is essential—if they are confusing or misaligned with user needs,
their predictive power is lost.

1.2 Purpose and Importance

Understanding how predictive maintenance dashboards are adopted, interpreted,
and integrated into industrial workflows holds both academic and practical signifi-
cance. From an academic perspective, this research offers a critical contribution to
the field of techno-anthropology by framing digital maintenance tools as socially
and cognitively embedded artifacts, rather than as neutral or purely technical
instruments. The study engages with theories from human-computer interaction,
information systems, and socio-technical frameworks to deepen our understanding
of how technological systems function within complex industrial ecosystems. It
challenges the prevailing assumption that technical optimization alone ensures
effective adoption and instead highlights the importance of human-centered factors
like interface cognition, organizational routines, and social trust.

From a practical perspective, the findings are relevant for engineers, interface
designers, maintenance managers, and policy makers involved in the development
and deployment of PAM systems. As organizations continue to digitize their
maintenance strategies under the broader framework of Industry 4.0, failures in
system uptake often stem not from technological shortcomings, but from user
disengagement, interface overload, or poor alignment with existing work practices.
By uncovering the interplay between cognitive, social, and systemic factors, this
study provides concrete insights into how predictive dashboards can be designed
and implemented to enhance usability, foster trust, and support informed decision-
making across diverse industrial settings.

The research thus positions itself at the intersection of theory and practice, offering
a vision of predictive maintenance technologies that are not only smart and data-
driven but also adaptive to the lived experiences, expectations, and limitations of
their users. This contribution is intended to support more inclusive, sustainable,
and effective digital transformation in industrial domains.

1.3 Research Objective

The overarching objective of this research is to critically investigate how predictive
maintenance dashboards are adopted and utilized in industrial contexts by inte-
grating perspectives from techno-anthropology, human-computer interaction (HCI),
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and socio-technical systems thinking. The study aims to move beyond a purely
technical or engineering-focused view of PAM tools and instead understand them
as culturally, cognitively, and organizationally situated artifacts. While dashboards
serve as the main interface through which predictive maintenance insights are
communicated, their adoption and effectiveness depend heavily on how well they
align with the everyday practices, expectations, and constraints of the people using
them.

Focus to uncover how different factors—ranging from interface design and perceived
ease of use to social norms, team structures, and policy environments—interact
to shape the experience of using PdM systems. Particular attention is given to
how information is structured and visualized, how dashboard logic matches users’
cognitive workflows, and how broader organizational and environmental conditions
support or inhibit adoption.

By using an artifact-based analysis approach grounded in TAM2, TPOM, and
HCI methods, the study aspires to generate deep, actionable insight into how
PdM dashboards can be more effectively designed and implemented. It also
aims to make a conceptual contribution to the field of techno-anthropology by
highlighting the interdependence of digital infrastructure and social life in industrial
settings. This objective supports the larger goal of enabling more responsible,
user-aligned digital transformation processes within the Industry 4.0 paradigm.
for safe, effective, and sustainable industrial automation. This research integrates
cognitive, organizational, and systemic factors to evaluate how PdM systems are
interpreted and applied in practice. So the only goal is to uncover social and
cultural conditions that shape technological success.

All eys on a set of evaluative insights and tools that designers and industrial
decision-makers can use to improve dashboard design. It contributes to broader
discussions in techno-anthropology and digital transformation by illustrating how
even advanced technologies can fail if they are misaligned with human behavior
and institutional context.

Research Questions
To achieve this objective, the study addresses the following research questions:

o Primary Question: How do cognitive, social, and systemic factors influence
the usability and adoption of predictive maintenance dashboards in industrial
contexts?

e Sub-Questions:

— How do interface design and information structure in PdM dashboards
affect perceived ease of use and decision-making efficiency?

— What role do social and organizational dynamics play in supporting or
resisting the adoption of PAM tools?

— In what ways do macro-environmental factors, such as vendor rela-
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tions and regulatory pressures, shape the long-term use of predictive
maintenance systems?

Cognitive and Social factors

Social factors on the acceptance and integration of PAM dashboards which includes
team communication, managerial expectations, peer influence, and overall work-
place culture. Technology does not exist in isolation; rather, it is introduced into
an environment shaped by existing relationships and norms. By understanding how
social dynamics either promote or obstruct the use of PAM systems, the research
contributes to developing more realistic and user-aligned implementation strategies.

This could help to understand how these cognitive and social dynamics interact with
organizational structures and macro-environmental conditions such as industry
standards, regulatory frameworks, and vendor support systems. Through an
artifact-based analysis grounded in TAM2, TPOM, and HCI methodologies, the
study aims to generate actionable insights for the design and implementation of PAM
dashboards that are usable, interpretable, and trusted. It also contributes to broader
conversations in techno-anthropology by showing how everyday digital interfaces
are intertwined with human systems of meaning, power, and practice.—such as
perceived ease of use, clarity of information, and user trust—in shaping how
maintenance staff engage with dashboard interfaces. The ability to comprehend
system outputs without excessive cognitive load or ambiguity directly impacts
whether users are able to make timely and accurate decisions. These cognitive
aspects are vital in high-pressure environments where dashboards are expected to
provide clear and actionable insights with minimal interpretation effort.

1.4 Thesis Structure

This thesis is structured across seven chapters, each building progressively to
explore and interpret the socio-technical dynamics of predictive maintenance
(PdM) dashboards through a techno-anthropological lens. The structure reflects a
logical flow from context-setting and theory to empirical analysis, interpretation,
and final conclusions:

o Literature Review: Provides a critical overview of existing research on
PdM, dashboard usability, HCI, and technology adoption models. It identifies
theoretical gaps and practical limitations that justify the need for a techno-
anthropological investigation.

o Contextual and Conceptual Positioning: Situates the study in terms of
complexity, organizational realities, and conceptual frameworks. It introduces
key entry points such as data interpretation, role negotiation, and user
resistance, and lays the groundwork for analytical orientation.

e Methodology: Details the methodological approach, including the ratio-
nale for using a mixed empirical base (Google Form responses and DIAP
documentation). It outlines the use of thematic analysis and describes the
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role of HCI, TAM2, and TPOM as interpretive frameworks. It also includes
data collection strategies and ethical considerations.

o Empirical Findings: Presents the data thematically under the three frame-
works: HCI (e.g., usability, feedback), TAM2 (e.g., perceived usefulness, social
influence), and TPOM (e.g., organizational fit, macro-environment). This
chapter stays descriptive, offering a structured and grounded presentation of
results.

o Discussion: Provides an in-depth interpretation of the findings, linking
empirical observations to theoretical constructs. It compares user experiences
across regional and organizational settings and reflects on broader implications
using a techno-anthropological lens. Limitations, challenges, and practical
implications are also discussed.

o Conclusion: Synthesizes key insights from the entire study, highlights
theoretical and practical contributions, addresses limitations, and proposes
directions for future research. It positions the findings in the broader land-
scape of digital transformation and industrial decision-making.

Together, these chapters aim to provide a comprehensive, contextually rich, and
theoretically informed understanding of how predictive maintenance dashboards
are experienced, used, and embedded in industrial work practices.

1.5 Transition to Literature Review

The introductory chapter has established the background, relevance, and key
concerns surrounding predictive maintenance dashboards in the context of Industry
4.0. It has outlined the importance of viewing PdM systems not merely as
technical instruments but as socially embedded technologies shaped by cognitive,
organizational, and cultural dynamics. The discussion also defined the scope and
direction of the research, presenting the core research questions and theoretical
grounding.

To better contextualize the chosen analytical approach and to frame the relevance
of the applied theoretical models, the following chapter offers a review of the
relevant literature. This review not only highlights existing findings in predictive
maintenance, usability, and industrial interface design but also identifies key
research gaps that this thesis seeks to address. The literature review builds a bridge
between the conceptual framing and the methodological strategy by synthesizing
perspectives from engineering, cognitive science, HCI, and techno-anthropology.
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Chapter 2: Literature Review

Predictive Maintenance (PdM) has emerged as one of the defining strategies of
Industry 4.0, enabling companies to shift from reactive maintenance to data-driven,
preemptive repairs. Rooted in cyber-physical systems and IoT, PdM combines
real-time sensor monitoring with machine learning algorithms to identify early
signs of equipment failure[30]. However, despite impressive algorithmic advances,
the usability of PAM systems remains a challenge. Interface design, organizational
fit, and user trust are increasingly cited as critical bottlenecks to adoption[13].

Research in industrial engineering has emphasized the performance benefits of
PdM, such as cost savings and operational efficiency[19]. But studies in cogni-
tive psychology, human-computer interaction, and organizational behavior reveal
that even the best models are of little use if their alerts are misunderstood or
disregarded[2]. Misalignment between system logic and user workflows can reduce
trust, delay action, or result in serious errors. These findings suggest a need to
expand the scope of PdM research to include socio-technical and human-centered
perspectives.

2.1 Technological Foundations of Predictive Maintenance

Predictive maintenance (PdM) systems have emerged as a transformative element
within the digitalization of industrial operations, offering a shift from reactive
and time-based maintenance to condition-based, data-driven strategies. This
transformation is underpinned by several key technological developments that
enable predictive capabilities and smarter decision-making on the shop floor.

At the core of PAM is the deployment of Internet of Things (IoT) devices and
sensor technologies that continuously monitor machine conditions. These sensors
collect data such as vibration, temperature, oil levels, pressure, and noise. This
data is transmitted in real-time to centralized or cloud-based platforms, forming
the foundation for predictive analysis[3].

The raw data generated from these sensors is processed using machine learning
algorithms and statistical models that are capable of identifying patterns or anoma-
lies indicative of emerging faults. These tools predict the Remaining Useful Life
(RUL) of equipment and generate maintenance alerts before failure occurs, which
minimizes unexpected downtime and improves operational efficiency.

Key technological components supporting PAM include:

« Cyber-Physical Systems (CPS): Integration of physical machinery with
digital systems, allowing seamless machine-to-machine and human-machine
communication.

e Cloud Computing: Enables scalable storage and processing power, facili-
tating access to predictive insights across geographically dispersed industrial
sites.
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« Edge Computing: Reduces latency by performing analytics closer to the
source of data generation, which is crucial in environments where immediate
response is required.

« Digital Twins: Virtual replicas of physical assets that simulate real-time
behavior, enhancing diagnostics and predictive accuracy.

These technologies converge within the broader context of Industry 4.0, which
envisions interconnected, autonomous systems that optimize productivity through
smart automation[10]. PAM directly supports this vision by allowing manufacturers
to transition from traditional reactive approaches to more intelligent and cost-
efficient maintenance models.

However, while these technologies provide the backbone for predictive maintenance,
the dashboard interface becomes the bridge between these systems and human users.
Dashboards aggregate complex data into visual representations, guiding decision-
makers in determining whether to intervene, monitor, or ignore system outputs.
Thus, the effectiveness of PAM systems is not only dependent on technological
precision but also on how intelligible and actionable this information is for users
on the ground.

The challenges arise when the information visualized on PAM dashboards does not
match user cognitive processes, skill levels, or contextual needs. Poor interface
design may lead to information overload, ambiguity in alerts, or loss of trust in the
system—especially in high-stakes industrial environments where time and clarity
are crucial[13]. In this regard, technological sophistication must be matched by
user-centered design principles to ensure that predictive maintenance systems fulfill
their promise in real-world settings.

Therefore, this section highlights that while PdM is technologically robust, its
success ultimately relies on how well these technologies are integrated into human
workflows. Only when predictive insights are meaningfully communicated, inter-
preted, and acted upon can PdM contribute to safer, more efficient, and more
resilient industrial operations.

2.2 Human Factors in Predictive Maintenance Systems

While technological sophistication has enabled predictive maintenance (PdM) to
evolve as a core pillar of Industry 4.0, the true value of these systems is determined
not just by algorithmic accuracy or sensor integration but by how effectively
human users interact with and apply these tools. Human-centered challenges
are among the most critical—and often most overlooked—Dbarriers to successful
PdM implementation. These challenges span cognitive, cultural, social, and
organizational dimensions, all of which influence how users engage with dashboards
and predictive outputs.

One of the most pressing challenges is cognitive overload. PdM dashboards often
present large volumes of real-time data, which, while informative, can overwhelm
users when not properly structured or prioritized[2]. Information clutter, unclear
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alert hierarchies, and technical jargon can increase mental workload, leading
to delayed responses or incorrect interpretations. Engineers working under time
pressure may find it difficult to navigate dense dashboards, especially when required
to make rapid decisions in high-stakes situations. Human cognitive capacity is finite,
and in industrial settings, excessive complexity can be detrimental to performance
and safety.

Closely related is the issue of situation awareness, defined as a user’s ability to
perceive relevant elements in the environment, understand their significance, and
anticipate future states. PdM dashboards must support all three levels of situation
awareness—perception, comprehension, and projection—without overwhelming
the user. When visual or data elements are misaligned with the mental models of
users, comprehension becomes difficult, undermining effective decision-making.

Another vital dimension is trust in automation. Studies have shown that users are
less likely to engage with systems they do not trust or understand[31]. If a PdM
system frequently issues false positives, lacks transparency, or behaves in ways
users cannot explain, it may be bypassed or ignored. Conversely, over-trust in
unreliable systems can lead to complacency and failure to double-check warnings.
Building calibrated trust—where users trust the system in line with its actual
reliability—is essential, and this requires intuitive interfaces, meaningful feedback,
and consistent system performance.

Cultural and cross-cultural usability represent additional layers of complexity.
Research by Marcus (2006) and others has shown that interface preferences and
information processing styles vary significantly across cultural contexts. For
example, users from high-context cultures may prefer visual metaphors and color-
coded indicators, whereas those from low-context cultures may favor explicit textual
explanations. In multinational organizations or globally distributed teams, PdM
dashboards that are culturally misaligned can result in confusion, misinterpretation,
or even rejection of the system.

Language barriers and localization issues also affect comprehension. Even small
linguistic mismatches, such as ambiguous terminology or inconsistent abbreviations,
can make dashboards harder to use. These issues are magnified when English is
not the first language of the workforce, which is common in industrial operations
around the world.

From a social and organizational perspective, team dynamics and communication
protocols significantly shape how PdM outputs are interpreted and acted upon[24].
In some settings, hierarchical structures discourage lower-level operators from
challenging or questioning system outputs, even when anomalies are detected. In
others, peer influence and informal norms may either reinforce or suppress proper
use of predictive tools. Organizational culture also affects how change-resistant a
team may be to adopting PAM systems. If PdM is perceived as a surveillance tool
or a threat to traditional maintenance practices, resistance may manifest subtly in
the form of underutilization, misreporting, or manual workarounds.
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Another challenge involves training and digital literacy. PdM tools are often
introduced without sufficient user onboarding, especially for frontline workers who
may lack technical backgrounds. If training is limited to technical explanations
without practical, scenario-based learning, users may struggle to internalize how
and when to trust system recommendations. Furthermore, older employees may be
less comfortable with digital interfaces, leading to reliance on printouts or verbal
communication, which weakens the real-time benefits of PAM systems.

A less discussed but increasingly relevant challenge is emotional and cognitive
resistance to automation. Workers may feel alienated by digital systems that
seem to replace human judgment or diminish their expertise. The fear of job
displacement, especially in highly automated environments, can foster skepticism
toward PdM systems, regardless of their actual intent. This socio-emotional
dimension is often ignored in deployment strategies, yet it plays a critical role in
shaping user engagement.

Moreover, PAdM dashboards often lack context awareness. Alerts are typically
generated based on sensor thresholds or machine learning predictions, without
considering the broader operational context. For example, a vibration alert may be
valid under certain operating conditions but irrelevant during maintenance shut-
downs or system recalibration. When dashboards fail to contextualize alerts, users
may learn to ignore them, leading to alarm fatigue and decreased responsiveness.

From a design standpoint, many dashboards do not support effective human-
computer interaction (HCI). Nielsen’s (1995) usability heuristics—such as visibility
of system status, error prevention, and consistency—are often violated. For
instance, users may not receive immediate feedback on actions, be unable to undo
or clarify commands, or experience inconsistent interface behaviors. Norman (1999)
adds that affordances—the perceived actions available within a system—must be
visually clear. When buttons, toggles, and displays do not intuitively indicate their
function, users hesitate or make errors.

Finally, scalability and personalization of PAM dashboards remain challenging. A
dashboard that works well for an experienced technician may be overwhelming
for a new hire. Adaptive interfaces that adjust complexity based on user roles,
expertise, or task urgency are rare but essential for long-term usability.

To summarize, human-centered challenges in PAM are complex and multifaceted:

e Cognitive Load: Overwhelming interfaces can hinder attention and decision-
making.

e Trust and Transparency: Misalignment between system behavior and
user expectations reduces system credibility.

o Organizational Resistance: Social norms, communication patterns, and
power hierarchies affect adoption.

o Context-Awareness: Alerts without operational relevance lead to alarm
fatigue.
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each of these challenges calls for thoughtful design, participatory implementa-
tion, and interdisciplinary collaboration. Addressing them is not a technical task
alone—it is an anthropological, organizational, and design-oriented endeavor. In
this way, human-centered analysis becomes indispensable for ensuring that PdM
dashboards deliver value not just as predictive tools, but as usable, trusted, and
culturally responsive systems embedded in the real-world practices of industrial
workers.

2.3 Conceptual Justification for Framework Selection

The literature reviewed in the preceding sections highlights numerous human-
centered challenges associated with predictive maintenance (PdM) dashboard
adoption, ranging from cognitive overload and cultural barriers to organizational
resistance and design misalignment. These challenges underline the need for a
more holistic and multi-level evaluation framework—one that considers not just
interface usability, but also the organizational and socio-technical environments in
which these tools are deployed.

Given the complexity of these interrelated challenges, a purely technical or interface-
focused analysis would be insufficient. Instead, the selection of analytical models
must reflect the layered nature of the research problem. The decision to apply
the Technology Acceptance Model 2 (TAM2), the TPOM framework, and selected
Human-Computer Interaction (HCI) principles is grounded in their ability to
address different but overlapping aspects of PAM usability.

TAM?2 offers insight into individual-level technology acceptance by analyzing
perceptions of usefulness, ease of use, and social influence[27]. This is especially
relevant for understanding how users form initial judgments about PdAM systems and
whether these judgments translate into actual engagement with dashboard tools.
The TPOM framework extends this view by accounting for broader organizational
and environmental dynamics, such as managerial support, institutional readiness,
and regulatory context[29].

HCT contributes a micro-level lens for assessing the structure, visual hierarchy, and
functionality of dashboard interfaces. Usability heuristics,, affordance theory|28]
[4], and cognitive walkthroughs help identify mismatches between design intent
and user behavior. Together, these models support a multi-layered analysis that
aligns closely with the techno-anthropological foundation of the study.

This conceptual integration allows the research to frame PdM dashboards not as
isolated technical solutions but as socially and institutionally embedded artifacts.
The chosen frameworks also fill a notable gap in the existing literature, which often
treats usability as a surface-level concern rather than a systemic one. The next
chapters further develop these frameworks and explain their application in the
analysis of empirical material.

TAN10 Shakil Ahmed Aalborg University



11

2.4 Research Gaps and Theoretical Contributions

Despite the maturity of predictive maintenance (PdM) technologies and their inte-
gral role in the digital transformation of industrial operations, a critical shortcoming
persists in the literature: the human element remains systematically underexplored.
The body of research heavily prioritizes algorithmic development, sensor integra-
tion, and system performance—yet these advances do not guarantee successful
adoption, especially in complex, real-world industrial contexts.

Much of the existing PAM literature tends to treat usability as a secondary issue
or reduce it to superficial interface efficiency[19]. However, insights from human-
computer interaction (HCI), cognitive psychology, and organizational behavior
suggest that such a perspective is insufficient. Users are not just passive recipients
of system alerts but active interpreters, whose decisions are shaped by prior
experience, situational awareness, interface design, organizational culture, and even
emotion[2]. Misalignment between system design and user mental models has been
shown to result in disengagement, misinterpretation of alerts, or workarounds that
circumvent PAM systems altogether|7].

Moreover, the interdisciplinary divide in the literature has led to fragmented
understanding. Engineering studies often emphasize cost savings and efficiency
metrics[30], while HCI and socio-technical studies focus on interaction quality
and contextual fit[4][28]. Few frameworks attempt to synthesize these domains,
resulting in siloed approaches that fail to address the multifactorial barriers to
PdM adoption. As a consequence, predictive dashboards are often implemented
without sufficient regard for cognitive load, trust calibration, cultural alignment,
or organizational readiness[12].

The existing literature also lacks a structured means of analyzing PAM dashboards
as socio-technical artifacts—that is, technologies embedded within broader systems
of meaning, power, and practice. Studies in digital manufacturing point to the
need for holistic, layered evaluation strategies that include not only technical
and interface-level assessments but also organizational and macro-environmental
considerations[25]. While there is growing awareness of these factors, methodologi-
cal tools to operationalize this perspective remain scarce.

These deficiencies by conceptualizing PAM dashboards not as isolated tools but
as interactive boundary objects—technologies that mediate between predictive
algorithms and human operators across cognitive, social, and organizational dimen-
sions. This approach builds on the techno-anthropological view that technologies
are co-constructed through their design and use, and that their success depends as
much on social fit as on technical precision[23].

Several core research gaps are identified:

o A lack of interdisciplinary frameworks that integrate cognitive science, inter-
face design, and organizational theory in the evaluation of PAM systems.

 Insufficient attention to real-world usage patterns, including contextual con-
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straints, informal practices, and user workarounds.

o Limited investigation into trust dynamics, particularly how repeated false
positives or system opacity affect user confidence and engagement.

» Inadequate support for personalization and scalability, which limits dashboard
accessibility across user roles and expertise levels.

To closing these gaps by proposing a conceptually integrated and empirically
grounded evaluation framework. While the details of the framework are elabo-
rated in the following chapter, its structure is informed by the need to assess
PdM dashboards across multiple levels: individual cognitive processes, team and
organizational dynamics, and technological interface design.

Theoretically, this study offers a multi-level synthesis of three complementary
perspectives: the Technology Acceptance Model 2 (TAM2), the TPOM framework,
and foundational principles in Human-Computer Interaction. While each has been
applied in isolation in related fields, their integration represents a novel methodolog-
ical contribution. The aim is to move beyond fragmented disciplinary approaches
and build an operational methodology that reflects the complex, interdependent
realities of PdM dashboard adoption.

Practically, to design and implement strategies for more usable, interpretable, and
trusted PdAM systems, it offers guidance not only for UX designers and engineers,
but also for industrial managers, policymakers, and technology integrators seeking
to align predictive systems with the cognitive capacities and contextual realities of
their users.
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Chapter 3: Positioning the Study — Complexity,
Context, and Conceptual Pathways

Predictive Maintenance (PdM) has become a cornerstone in the advancement
of Industry 4.0, aiming to minimize equipment downtime and enhance asset
performance. The global PAM market was valued at $5.5 billion in 2022 and is
projected to grow at a compound annual growth rate (CAGR) of 17% until 2028
. This significant growth highlights the increasing dependence on PAM systems
across various industries.

Central to PdM systems are dashboards that bridge complex data analytics and
human decision-making. These dashboards are not merely passive displays but
active mediators influencing maintenance strategies, operational decisions, and
organizational workflows. However, integrating these dashboards into existing
systems introduces complexities that extend beyond technical considerations.

The challenge lies in the socio-technical nature of PAM dashboards. They are
embedded within organizational structures, influenced by human behaviors, and
subject to varying interpretations . This complexity necessitates a comprehensive
understanding that encompasses both technological capabilities and human factors.

3.1 Situating the Complexity
3.1.1 Technical Dimensions

Technical Dimensions Traditional approaches to PAM have predominantly focused
on technical aspects, emphasizing algorithmic precision and system efficiency|3].
This focus often involves leveraging advanced machine learning algorithms, artificial
intelligence (Al), and data analytics to monitor equipment health and predict
failures before they occur. For instance, predictive models can analyze historical
sensor data, detect anomalies, and issue automated alerts[30].

Moreover, these technical solutions prioritize data accuracy, model training, and
computational efficiency. Machine learning models, such as neural networks and
decision trees, are optimized to achieve high predictive accuracy (Goodfellow,
Bengio, & Courville, 2016). Similarly, advanced data visualization techniques
transform complex data into user-friendly dashboard displays, allowing users to
monitor multiple metrics simultaneously (Kang et al., 2016).

Such technically centered approaches also tend to neglect user feedback and
ignore how these systems integrate into existing workflows. For example, a highly
sophisticated PdM system may generate accurate predictions but fail to be adopted
because it does not align with maintenance routines or lacks clear guidance on how
to respond to alerts[15].

3.1.2 Human and Organizational Factors

Human and Organizational Factors While technical dimensions are crucial, PAM
dashboards do not operate in isolation. Their effectiveness is significantly influenced

TAN10 Shakil Ahmed Aalborg University



14

by human and organizational factors, which can either enhance or undermine their
value. Human factors include user skills, experience, and cognitive abilities, which
determine how effectively users can interact with the dashboard[4]. For instance,
a well-designed dashboard may still be underutilized if users lack the necessary
training or confidence to interpret its data.

Organizational factors encompass management support, company policies, and
workplace culture. Organizations that actively promote PdM adoption through
training sessions, user feedback collection, and managerial support are more likely
to achieve successful implementation. Conversely, organizations that treat PAM as
a purely technical tool may experience resistance from employees who view it as a
threat to their expertise or job security.

Moreover, communication patterns within organizations play a critical role. Main-
tenance teams may rely on PAM dashboards for decision-making, but if there
is poor communication with management, critical insights may be ignored. In
some cases, organizations impose top-down PdM solutions without involving end-
users in the design or customization process, leading to poor adoption and user
dissatisfaction[17].

Trust is another essential human factor. Users are more likely to engage with PdM
dashboards if they trust the data they present (Madsen & Gregor, 2000). This
trust can be built through transparent design, where users can see how predictions
are generated, and through consistent system performance. However, a single
incorrect prediction or misleading alert can significantly damage user confidence.

Additionally, organizational hierarchy can impact PdM usage. In hierarchical
organizations, senior managers may rely heavily on PdM dashboards to monitor
team performance, which can create tension between management and employees.
In contrast, more collaborative organizations may use PAM as a tool for team-based
decision-making, enhancing user engagement.

3.2 Socio-Technical Perspective

A Socio-Technical Perspective A socio-technical perspective recognizes that PdM
dashboards are not merely technical tools but complex systems that operate within
a dynamic network of users, organizational processes, and external influences|[18].
This perspective emphasizes that the effectiveness of PAM dashboards depends on
how well they align with human, organizational, and environmental factors.

o Understanding User Interactions: User interactions are central to PdM
dashboard effectiveness. This involves not only how users navigate the
interface but also how they interpret data, respond to alerts, and make
decisions. Poorly designed interfaces can lead to user errors, cognitive
overload, or misinterpretations of critical information[2]. Therefore, designing
intuitive, user-friendly interfaces is essential.

o Organizational Integration: Organizational integration focuses on how
PdM dashboards fit within existing processes and workflows. Effective
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integration ensures that dashboards support rather than disrupt operational
routines. For instance, dashboards that align with standard maintenance
procedures can enhance user acceptance, while those that impose additional
tasks can lead to resistance[15]. Additionally, clear communication channels
between maintenance teams and management are critical to ensure that
dashboard insights are effectively utilized.

« Adaptability and Flexibility: Adaptability refers to the ability of PdM
dashboards to accommodate diverse user needs, roles, and contexts. A
flexible dashboard can be customized to suit the preferences of different users,
such as engineers, technicians, or managers. It can also adapt to varying
operational environments, from manufacturing plants to energy facilities.
This adaptability is essential because rigid dashboards that fail to align with
user preferences or changing conditions are more likely to be ignored|[4].

3.3 Theoretical Foundations
This study is guided by three theoretical models:

« Human-Computer Interaction (HCI): HCI focuses on user experience,
usability, and cognitive load . In the context of PdM dashboards, HCI
examines how users perceive alerts, navigate interfaces, and make decisions
based on dashboard information.

« Technology Acceptance Model 2 (TAM2): TAM2 explores how user
perceptions influence technology adoption, including perceived usefulness,
ease of use, and social influence . This model helps explain why users choose
to engage with or ignore PdM dashboards.

« Technology-People-Organization-Macroenvironment (TPOM): This
model emphasizes the socio-technical context of PAM dashboards, exploring
how organizational culture, user skills, and external factors influence their
adoption .

3.4 Conceptual Entry Points

To navigate the complexities outlined above, this study identifies three conceptual
entry points:

o Translation and Interpretation: PdM dashboards translate complex data
into actionable insights. However, the effectiveness of this translation depends
on users’ ability to interpret the information accurately. Misinterpretations
can lead to suboptimal decisions . Understanding the cognitive processes
involved in data interpretation is therefore critical.

o Boundary Negotiation: The introduction of PAM dashboards often rede-
fines roles and responsibilities within an organization. Maintenance decisions
that were once based on experiential knowledge may now rely on data-
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driven insights. This shift can lead to boundary negotiations between human
expertise and algorithmic recommendations .

e Friction and Breakdown: Implementing PAM dashboards is not without
challenges. Users may encounter friction points, such as resistance to change,
lack of trust in automated systems, or difficulties in integrating new tools
into established workflows . Identifying and addressing these friction points
is essential for successful adoption.

3.5 Analytical Pathway

Building on the socio-technical perspective and the identified conceptual entry
points, this study adopts a user-centered design (UCD) approach to investigate the
implementation of PAM dashboards. UCD emphasizes the importance of involving
users throughout the design and deployment process, ensuring that systems are
tailored to their needs .

The analytical pathway involves:

o User-Centered Research: Conducting interviews and observations to
gather insights into user experiences, challenges, and preferences.

o Iterative Design and Evaluation: Developing and refining dashboard
prototypes based on user feedback, ensuring alignment with user expectations
and organizational goals.

« Contextual Analysis: Examining the broader organizational and cultural
factors that influence the adoption and use of PAM dashboards.

This chapter has established a comprehensive understanding of PAM dashboards,
highlighting their socio-technical complexity and the need for a human-centered
approach. By integrating insights from HCI, TAM2, and TPOM, this study pro-
vides a robust analytical framework for exploring user interactions, organizational
dynamics, and contextual factors that shape PdM adoption and use. The next
chapter (Chapter 4) will build on this foundation, detailing the methodological
approach for data collection and analysis.
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Chapter 4: Methods and Theory

This chapter outlines the methodological choices, strategies, and theoretical frame-
works applied in this thesis to investigate the interpretation and adoption of
predictive maintenance (PdM) dashboards in industrial settings. The research
draws from techno-anthropology and human-computer interaction (HCI) to explore
how human, organizational, and systemic factors influence the successful imple-
mentation and user engagement with these technologies. The approach follows a
qualitative, interpretative research paradigm, employing a combination of theoret-
ical model analysis, document-based artifact evaluation, and interface usability
assessment. The methodology aligns with the techno-anthropological commitment
to bridging technological systems and social worlds, and to contributing to the
development of socially responsible and context-sensitive technological solutions.

4.1 Research Design

The research is designed as a theory-informed, artifact-based analysis grounded
in socio-technical systems thinking. It employs qualitative reasoning rather than
statistical inference, aiming to produce explanatory insights about the adoption and
interpretation of PAM dashboards across different user and organizational contexts.
Field data was not collected; instead, the study utilizes publicly available artifacts
such as interface demonstrations, system manuals, vendor case studies, training
documentation, and professional commentary. These sources provide a rich base
for interpretive analysis without requiring direct access to users or institutions.

The rationale for this design rests on both practical and epistemological grounds.
Practically, gaining ethnographic access to industrial automation environments
is often constrained by confidentiality and safety. Epistemologically, this study
does not seek to generalize but to illuminate how meanings, values, and practices
are built into and around PdM systems. By applying theoretical models such as
Technology Acceptance Model 2 (TAM2) and the TPOM framework, alongside
HCI-based interface evaluation, the study engages with both the explicit and
implicit structures that condition user interaction with digital technologies.

This layered approach offers several strengths. First, it triangulates evidence
from different vantage points: theoretical constructs, socio-technical contexts, and
user-interface dynamics. Second, it allows the thesis to meet the learning objectives
of the techno-anthropology program by combining rigorous theory application
with critical engagement in real-world technological discourse. Third, it avoids
speculative or anecdotal claims by grounding all analysis in verifiable documents
and interfaces. This choice was motivated by practical constraints and a deliberate
theoretical focus on how institutional, organizational, and interface-level design
shape technological adoption and meaning-making in industrial contexts.

This design supports both analytic depth and empirical relevance. It enables the
researcher to apply structured model-based analysis (using Technology Acceptance
Model 2 and the TPOM framework) while integrating perspectives from HCI to
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examine interface-level usability and cognitive interaction. The triangulation of
theoretical lenses and artifact analysis allows for robust insight into the relationship
between technological design, social dynamics, and organizational practices.

4.2 Theoretical and Analytical Framework

To perform a holistic analysis of predictive maintenance dashboards, this study
draws on three interrelated theoretical and analytical frameworks: the Technology
Acceptance Model 2 (TAM2), the TPOM framework (Technology - People - Orga-
nization - Microenvironment) and key principles of human-computer interaction
(HCI). Together, these models enable a multi-dimensional evaluation that captures
individual perceptions, organizational realities, interface usability, and broader
contextual influences.

4.2.1 Technology Acceptance Model 2 (TAM?2)

TAM2, developed by Venkatesh and Davis [27], is an extension of the original
Technology Acceptance Model (TAM). While the original TAM focused primarily
on perceived usefulness and ease of use as drivers for technology acceptance, TAM2
introduces a richer framework by adding social influence processes (e.g., subjective
norm, image, and voluntariness) and cognitive instrumental processes (e.g., job
relevance, output quality, and result demonstrability). These additions make
TAM2 particularly effective for analyzing professional contexts where organizational
expectations, cultural norms, and role hierarchies influence system usage.

In the context of predictive maintenance dashboards, TAM2 helps explore how
different factors shape an industrial user’s interaction with and acceptance of
the system. For example, perceived usefulness refers to whether the dashboard
improves users’ decision-making or reduces downtime, while perceived ease of use
examines how intuitive or cognitively demanding the interface is. Job relevance
focuses on the dashboard’s alignment with the user’s responsibilities, and output
quality evaluates how well the data is presented and supports actions. Result
demonstrability examines whether users can clearly link their use of the system
to visible or measurable outcomes. Social components such as subjective norm
and image reflect how peer influence and professional reputation motivate (or
discourage) dashboard use, while voluntariness looks at whether system adoption
feels forced or freely chosen.

By applying TAM2 to dashboard documentation, training resources, case studies,
and public user feedback, this thesis evaluates how PdM systems are positioned
and perceived by their intended users. This model thus serves as a valuable lens
for understanding the cognitive and social dynamics that underpin user acceptance
in industrial environments. and perceived value of PAM dashboards, with data
drawn from manuals, training materials, and system demonstrations.

4.2.2 TPOM Framework

The TPOM framework is a socio-technical model developed to examine the adop-
tion and sustainability of health information systems, but its flexible and in-

TAN10 Shakil Ahmed Aalborg University



19

terdisciplinary structure makes it equally valuable in industrial settings such as
predictive maintenance[29]. TPOM stands for Technology, People, Organization,
and Macroenvironment, and is especially useful for understanding how multiple in-
terrelated layers influence the integration of digital tools into everyday professional
practice.

TPOM is used to analyze how PdM dashboards are situated within the broader
socio-technical ecosystem of industrial workplaces. Unlike TAM2, which focuses
on individual user perception, TPOM captures organizational culture, systemic
constraints, and environmental conditions that affect technology use and value
creation. Each dimension of TPOM is explained and operationalized as follows:

o Technology: This refers to the usability, reliability, adaptability, and techni-
cal integration of the dashboard. It includes how data is presented, whether
the system aligns with existing workflows, and if it meets basic performance
expectations. Evaluating this dimension helps identify interface-level or
infrastructure-level issues that influence usage.

o People: This includes the attitudes, experiences, and knowledge of users,
such as engineers, maintenance teams, and supervisors. Key subthemes are
satisfaction, training, resistance, and cognitive workload. For instance, if a
dashboard causes mental fatigue or lacks onboarding support, it may not be
used—even if it’s technically sound.

e Organization: This focuses on leadership commitment, strategic alignment,
resource availability, and change management. For example, is dashboard
usage actively encouraged and rewarded? Are teams given time and capacity
to integrate it into their daily routines? This dimension often determines
whether adoption becomes sustainable or fails after initial deployment.

e Macroenvironment: This accounts for external influences such as vendor
reliability, government regulations, market competition, and broader policy
trends. These factors affect the long-term viability and trust in the system.
For instance, if a vendor discontinues support or if policy mandates shift, the
utility of the dashboard may decline regardless of its internal value.

By analyzing each PAM dashboard through the TPOM framework, this identifies
where friction points emerge—not only from interface design or user perception, but
from deeper systemic misalignments. This macro-to-micro perspective complements
TAM?2 and ensures a more holistic, context-aware understanding of PAM system
adoption.

4.2.3 Human-Computer Interaction (HCI) Methods

Human-Computer Interaction (HCI) is an interdisciplinary field that studies the
design and use of computer technologies, with a focus on the interfaces between
people (users) and computers. It draws from computer science, cognitive psychology,
design studies, and anthropology to understand how people interact with digital
systems, and how these systems can be optimized for usability, efficiency, and user

TAN10 Shakil Ahmed Aalborg University



20

satisfaction. In the context of PAM dashboards, HCI provides critical tools for
analyzing whether the visual layout, user flow, and interaction design of interfaces
align with the needs, skills, and expectations of industrial users. While TAM2 and
TPOM provide high-level analytical structures, HCI methods allow the research to
investigate dashboard usability and human-technology interaction in finer detail.
Three core HCI methods are used:

1. Heuristic Evaluation: Based on Nielsen’s [28] usability heuristics, this method
involves evaluating each dashboard against ten usability principles such as
consistency, visibility of system status, match with real-world conventions,
and error prevention. These heuristics help identify design choices that may
increase or reduce cognitive load, confusion, or user frustration. This method is
particularly effective in settings where user testing is not feasible.

2. Cognitive Walkthrough: This method simulates a user’s step-by-step task
performance (e.g., diagnosing a machine alert or scheduling maintenance). It
evaluates how easily a new user could accomplish tasks using the interface,
identifying pain points where system logic does not align with user expectations
or workflows. This is especially relevant for assessing perceived ease of use and
job relevance.

3. Affordance Analysis: This technique, derived from Norman’s [4] theory
of perceived affordances, focuses on how dashboard elements (e.g., buttons,
filters, icons) suggest or obscure their intended actions. It helps determine
whether visual cues in the interface guide users appropriately or create confusion,
particularly for users from different cultural or professional backgrounds.

These HCI methods contribute to both TAM2 (ease of use, output quality) and
TPOM (technology usability, people’s workload) analyses.

4.3 Data Collection and Empirical Foundation

The present study draws on two types of empirical material: publicly available
case-study documents from DIAP (Data Intelligence ApS) and primary data from
a small user survey. The DIAP documents — Predictive Maintenance, Real-Time
Data, and OEE — are brochure-style reports describing real-world implementations
of predictive maintenance (PdM) dashboards in Danish industry. They were
selected because they provide concrete, contextualized examples of PAM dashboard
features and use-cases in practice, bridging the gap between theoretical models
and industrial reality. As industry-originated materials, the DIAP case documents
illustrate how dashboard technology has been implemented by a Danish IoT
analytics company. For example, the DIAP OEE dashboard description highlights
the ability to “keep track of your production in real-time and historically” and
to visualize equipment performance in an “easy overview”[32].Likewise, the DIAP
real-time data application is noted for providing a “fact-based overview of your
production” with intuitive alarm management[33]. These concrete descriptions
help anchor the research questions in actual dashboard usage scenarios.
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The DIAP documents were accessed directly from Data Intelligence ApS’s website,
where they are provided as PDF download brochures. These sources are cited
as industry examples from Denmark; the content is treated as secondary data.
The research process involved downloading the PDFs and extracting relevant
descriptions of dashboard functionality, user roles, and system features. In the
analysis, passages from these documents (e.g. dashboard capabilities and claimed
benefits) will be interpreted through the lens of the theoretical models (HCI,
TAM2, and TPOM). For instance, DIAP’s claim that its predictive maintenance
tool can “predict equipment failures and avoid them before they occur” speaks
directly to TAM2’s construct of performance expectancy (perceived usefulness).
Similarly, statements in the DIAP documents about ease of use — such as the real-
time application being “intuitive and easy to use” with a customizable dashboard
builder — are relevant to HCI considerations of usability and user satisfaction. In
summary, the DIAP case materials serve as a practical backdrop against which to
test and illustrate theoretical claims[34].

In addition to the DIAP documents, the study incorporates primary data from two
completed questionnaires completed by PAM dashboard users. These responses were
collected via an online survey created in Google Forms. The rationale for including
user survey data is to capture end-user perceptions and experiences, complementing
the organisational perspective of the DIAP reports. While the DIAP documents
describe what the dashboards are designed to do, the user responses (albeit few)
provide insight into how actual practitioners view their usefulness, usability, and fit
with work processes. The questionnaires targeted operators and engineers who have
used PdM dashboards in their work. Invitations to participate were sent through
professional contacts and industry mailing lists, and the completed responses were
received in digital format. To preserve confidentiality, the identities of respondents
are anonymized; their comments are treated as qualitative data points.

Table 1: Anonymized Profile of Survey Respondents

Respondent ID | Age | Country Job Title Department
Respondent A 39 Australia | Maintenance Supervisor | Maintenance
Respondent B 37 | Bangladesh Engineer Maintenance

The demographic and professional background of the survey participants is sum-
marized in Table 1. This overview helps contextualize their responses and shows
the relevance of their roles within maintenance operations.

Although only two questionnaires were returned, these responses were nevertheless
deemed valuable for triangulating findings. The small sample size is a limitation,
but in qualitative research even a few rich responses can shed light on how real
users interpret dashboard functions. The responses were accessed by logging into
the author’s Google Drive account (where the Google Forms output was stored)
and exporting the completed form data. Answers were then coded thematically.
The information provided by respondents relates directly to the research questions
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about user acceptance and contextual effectiveness of the PdM dashboards. For
example, if respondents commented on the clarity of interface or responsiveness
of alerts, those comments can be mapped to HCI principles of interface design
and TAM2 factors like perceived ease of use. If they mentioned outcomes (e.g.
“we reduced downtime after using the dashboard”), those would tie to TAM2’s
perceived usefulness or TPOM’s process improvement aspects. In this way, the
survey data serve as a check on the theory-driven analysis.

4.3.1 Rationale for Data Sources

The selection of DIAP case documents was motivated by the need for real-life
examples of PAM dashboards deployed in industry, particularly within the Danish
context of the DIAP project. These documents are official, publicly available
materials that describe how companies have implemented predictive maintenance
and monitoring solutions using the DIAP platform. They are relevant to all
research questions because they detail the technology and intended benefits of
dashboards, which can be compared with user perceptions (RQ1) and theoretical
expectations (RQ2). The DIAP case studies explicitly mention organizational roles
(“used by both managers and operators”), dashboard objectives (e.g. avoiding
downtime), and data processes (real-time data collection and analysis). This makes
them directly pertinent to the TPOM model (which considers technology, process,
organization, and measures): the documents illustrate how the technology (the
dashboard application) interfaces with maintenance processes and organizational
decision-making. Likewise, they touch on HCI concerns by describing user interfaces
(mentioning an “intuitive dashboard builder”) and the intended user roles (operators,
maintenance staff, management). They also align with TAM2 constructs by touting

benefits that influence perceived usefulness (e.g. increased productivity, cost
reduction). [34][33][32]

The questionnaire responses were chosen as a data source because they provide a
first-hand user perspective. Whereas the DIAP documents are authored by the
solution provider (and thus promotional in nature), the survey responses come from
independent users of PAM dashboards. This helps mitigate bias and adds depth to
the empirical foundation. Including actual user feedback is especially important
given the study’s emphasis on human factors (HCI and TAM2). The responses
allow the research to access subjective measures (user satisfaction, perceived ease-
of-use, subjective norms, etc.) which would be difficult to infer from the documents
alone. In sum, the two data sources complement each other: DIAP case documents
ground the study in industry practice, while user questionnaires ground it in user
experience.

4.3.2 Access and Collection Procedures

The DIAP documents were accessed through Data Intelligence ApS’s website.
The URLs to the PDF brochures were obtained and the files downloaded in full.
Each document was treated as a case study source, and relevant excerpts were
identified using keyword searches (e.g. “maintenance”, “dashboard”; “real-time”)
and manually read for context. For citation purposes, text was transcribed from
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the PDFs (via the browsing tool) to capture exact wording. For instance, the DIAP
Predictive Maintenance brochure explicitly states that its dashboard “calculates
and visualizes a maintenance threshold” based on sensor signals. Similarly, the
DIAP Realtime brochure highlights the system’s alarm management features and
customizable dashboards. These excerpts will later be referenced in the analysis
section to illustrate how the dashboards’ design corresponds with theoretical
expectations.

The two user questionnaire responses were obtained by creating a Google Forms
survey with questions derived from the research focus (covering aspects of usability,
perceived utility, and organizational impact). The survey link was distributed
via professional networks of industrial partners. After the submission period, the
responses were downloaded in spreadsheet form. Because only two participants
replied, no statistical analysis was attempted; instead, each response was manually
reviewed. Relevant statements in the answers were noted and coded into themes
(such as “interface usability,” “accuracy of predictions,” “impact on maintenance
planning,” etc.). These coded themes will be integrated with the document analysis.
For example, if a respondent remarked that the PAM dashboard allowed them “to
focus on the most critical machines first,” this comment would be connected to
the TPOM idea of process change (prioritizing tasks) and to TAM2’s outcome
expectancy (expectation of improved performance).

4.3.3 Relevance to Research Questions and Theoretical Models

Both data sources have clear relevance to the study’s research questions and to
the theoretical frameworks of HCI, TAM2, and TPOM. The DIAP case studies
describe dashboard functionalities that relate to perceived usefulness and output
quality (TAM2), such as predictive alerts and efficiency gains. They also describe
features designed with user interaction in mind (e.g. the “intuitive dashboard
builder” for creating user-specific views), which tie into HCI principles of user
control and flexibility. The documents further reveal organizational context (e.g.
dashboards used by managers and operators) which aligns with TPOM’s focus
on how technology supports organizational workflows and decision-making. In
analyzing these, the study will ask: Do the design claims of DIAP match what the
theoretical models would predict about user acceptance and process improvement?

The questionnaire data directly inform these models by providing evidence of actual
user attitudes. For TAM2, questions in the survey likely addressed factors like
subjective norm (e.g. did users feel pressure from peers or management to use the
dashboard?), image and job relevance (e.g. whether using the dashboard influenced
the user’s job identity or was seen as part of their role), and output quality (the
accuracy of the dashboard’s predictions). The responses will be examined for
indications of these factors. For example, if a respondent indicates that colleagues
were impressed by the dashboard outputs, this would suggest a positive subjective
norm and image effect (TAM2). If they note that the system requires specialized
knowledge, that may reflect on ease-of-use (HCI) or on perceived complexity
(TAM2’s complexity dimension).
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In terms of HCI, the survey asked about users’ experiences with the dashboard
interface (navigation, clarity, customization options). These responses will be coded
for usability issues or praises, which will be compared against HCI heuristics (such
as Nielsen’s usability principles) and used to validate or challenge the interface
features advertised in the DIAP documents. For instance, if DIAP claims an
intuitive builder but a user indicates difficulty creating dashboards for their specific
needs, this discrepancy would be highlighted and analyzed.

TPOM (Technology—Process—Organization Model) is concerned with how a new
technology interacts with existing processes and organizational structures. The
DIAP brochures often mention specific process improvements (e.g. “Downtime can
be planned more efficiently”) and performance measures (OEE tracking). In the
analysis, these claims will be mapped to the TPOM dimensions: technology (the
dashboard system and analytics), process (maintenance scheduling, production
monitoring), organization (roles of maintenance staff vs managers), and metrics
(availability, performance, quality as in OEE). The user responses, meanwhile,
provide a reality check: respondents’ comments on whether their maintenance
process changed or what performance metrics they track will be interpreted through
TPOM. For example, a comment that “maintenance crews now set alarms for
vibration thresholds” would relate to the TPOM process and technology aspects of
how data collection changed operational practices.

4.3.4 Challenges in Data Collection

Several challenges arose during this empirical phase. First, the DIAP documents
are promotional in nature, so they present an idealized version of the dashboards.
As a researcher, it must be acknowledged that this data could be biased toward
positive outcomes. Care is therefore needed not to over-generalize from them;
they are used mainly for context and illustration, with an understanding of their
limitations. Second, obtaining user responses was difficult. Predictive maintenance
dashboards are specialized tools used in relatively few organizations, and many
potential participants may have confidentiality concerns or be hesitant to share
opinions. This is reflected in the very small number of questionnaire replies. The
low response rate limits the generalizability of the findings from the survey, and
thus these responses will be treated as exploratory insights rather than definitive
evidence. Additionally, without the possibility to follow up with respondents, the
data are incomplete (e.g. no chance to probe answers further as in an interview).
Finally, language and technical expertise could have been a barrier; however, all
materials were in English and respondents were expected to have the domain
knowledge to answer the questions.

4.3.5 Use of Empirical Materials in Analysis

In the subsequent analysis (Chapter 5), the DIAP case documents and survey
responses will be used in a complementary fashion. The documents serve as
descriptive background: their content will be coded for themes related to dashboard
design, claimed benefits, and intended user interactions. These codes will be aligned
with theoretical constructs (e.g. coding an item like “real-time alarm notifications”
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under TAM?2’s perceived usefulness). The user responses will be analyzed through
a qualitative content analysis approach, extracting themes or representative quotes.
For instance, if a respondent mentions the dashboard’s ease of understanding,
that remark will be compared against the usability claims in the DIAP materials.
Instances of agreement or mismatch will be noted. The two questionnaires’ limited
data will not be statistically generalized, but instead will be used illustratively.

Overall, the DIAP case materials will ground the study in real industrial settings,
and the questionnaire data will anchor it in user experience. Together, they form
the empirical foundation for answering how PdM dashboards fit the users’ needs
and theoretical expectations. By mapping both sources to HCI, TAM2, and TPOM
perspectives, the analysis aims to offer a holistic understanding of dashboard
adoption in this context.

4.4 Data Analysis Strategy

This study employs thematic analysis as a structured approach for examining the
collected data. Thematic analysis is a flexible, theoretically grounded method for
identifying, analyzing, and reporting patterns within qualitative data, making it
particularly suited to this research[35]. Given the theoretical orientation of the
study, the analysis was deductive, guided by predefined concepts from Human-
Computer Interaction (HCI), Technology Acceptance Model 2 (TAM2), and the
Technology—People-Organization-Macroenvironment (TPOM) model.

4.4.1 Thematic Analysis: A Theoretical Framework

Braun and Clarke (2006) describe thematic analysis as a method capable of accom-
modating both inductive (data-driven) and deductive (theory-driven) approaches.
This study adopts a deductive approach, where themes were determined by existing
theoretical constructs rather than emerging organically from the data. The prede-
fined theoretical lenses (HCI, TAM2, TPOM) informed the thematic categories,
allowing for a structured analysis that directly addresses the research questions.

In a deductive thematic analysis, the researcher begins with a clear focus based on
theoretical concepts. This means that instead of exploring the data to discover new
themes, the analysis applies a pre-existing lens. This approach is particularly suit-
able when the study is grounded in established theories. In this case, HCI principles
guided the identification of usability issues, TAM2 concepts captured perceptions
of technology acceptance, and TPOM offered a broader view of organizational and
process integration.

Data Familiarization

The first phase involved familiarization with the data. I engaged in repeated reading
of the DIAP documents and the Google Form responses to gain a comprehensive
understanding. This process was not passive; notes were taken to capture initial
observations, particularly focusing on passages that appeared relevant to HCI
(usability, interface design), TAM2 (usefulness, ease of use, social influence), and
TPOM (organizational roles, process changes).
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Familiarization is a critical step because it allows the researcher to become deeply
engaged with the data. By reading and re-reading the materials, I was able to
identify initial patterns and ideas. For example, one DIAP document described
the dashboard as "easy to customize," which immediately suggested relevance to
HCT usability principles. Survey responses such as 'I find the dashboard intuitive"
were noted as directly linked to user experience.

Coding and Categorization

Rather than employing open coding, the analysis applied a theory-driven coding
frame. Text segments were systematically coded under predefined categories. For
example, statements like “easy to navigate” were coded under HCI usability, while
“we reduced downtime” was categorized under TAM2’s perceived usefulness. The
coding was conducted manually, ensuring that each segment of the data was directly
linked to the theoretical concepts.

The decision to use a theory-driven approach was intentional, ensuring that the
analysis remained aligned with the research objectives. Codes were developed
from the theoretical constructs rather than emerging from the data itself. This
process allowed for a focused analysis, where only data relevant to HCI, TAM2,
and TPOM were coded. For instance, a passage in a DIAP document stating
"predict equipment failures before they occur" was immediately coded under TAM2’s
perceived usefulness.

Theme Development

Once the data were coded, thematically similar extracts were grouped. The themes
reflected the theoretical constructs:

« HCI and Usability: Capturing user interface design, user control, and cog-
nitive load. Examples included phrases like "easy to use" or "clear instructions'
from both DIAP documents and user responses.

o TAM2 Constructs: Including perceived usefulness, perceived ease of use,
and social influence. For instance, user comments such as "saves time" were
grouped under perceived usefulness.

« TPOM Dimensions: Covering technology functionality, user roles, organi-
zational support, and process adaptation. DIAP’s description of “real-time
monitoring” and user remarks about "better maintenance planning" were
categorized under this theme.

Theme Review and Refinement

The themes were then reviewed for coherence. I re-examined the coded extracts
to ensure that they aligned with the thematic categories. Ambiguous codes
were refined, and overlapping themes were merged. For example, comments about
intuitive design were consistently placed under HCI, while those discussing efficiency
were assigned to TAM2.

This review process ensured that each theme accurately captured the relevant data.
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It also helped maintain thematic clarity by preventing overlap. For instance, a user
comment describing the dashboard as "fast and reliable" was evaluated to ensure it
aligned with perceived usefulness rather than usability.

Defining and Naming Themes

Each theme was clearly defined, and its relevance to the theoretical framework was
explicitly stated. For instance, the “Usability” theme was defined as encompassing
all aspects of user interaction, ease of use, and user satisfaction, directly aligned
with HCI principles. The “Perceived Usefulness” theme captured all statements
about how the dashboard improved decision-making, aligning with TAM2.

This step also involved finalizing theme labels that were both descriptive and
theoretically grounded. I ensured that the theme names directly reflected the
theoretical models, such as “User Interface and Usability (HCI)” or “Performance
Improvement (TPOM).”

Producing the Analytical Narrative

The final phase involved organizing the themes into a coherent analytical narrative.
This structure will be reflected in Chapter 5, where each theme is discussed with
supporting evidence from the DIAP documents and Google Form responses. The
themes will be used to directly address the research questions, ensuring a logical
flow from theoretical concepts to empirical insights.

Reflexivity and Rigor

Throughout the analysis, I maintained a reflexive stance, acknowledging that my
theoretical knowledge influenced the interpretation of data. Although the analysis
was deductive, I remained open to unexpected findings. Furthermore, the process
was documented to ensure transparency, and the final thematic structure was
reviewed to confirm its alignment with the theoretical framework.

In conclusion, this thematic analysis approach enables a structured, theory-driven
interpretation of the data, providing a clear foundation for the analytical discussion
in Chapter 5.

4.5 Ethical Considerations and Limitations

The process adheres to ethical standards by avoiding the collection of personal,
sensitive, or identifiable data. Instead, it relies exclusively on publicly available
materials such as interface demos, user manuals, technical documentation, and
online user discussions. Any referenced user-generated content from forums or
professional platforms has been anonymized where quoted or paraphrased. In line
with AAU’s academic policy, the use of generative Al in this thesis is limited to
ideation and organizational structuring, with all critical academic content written
and verified by the student.

The methodological approach also aligns with ethical research practice by ensuring
transparency and academic integrity. All selected sources are cited, the theoretical
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frameworks are appropriately contextualized, and the analysis avoids making
assumptions that cannot be grounded in documented evidence. While no direct
consent was required due to the nature of the materials used, careful attention was
paid to accurately representing information and avoiding misinterpretation.

Despite these strengths, there are some methodological limitations. Chief among
them is the lack of empirical, first-hand user interaction data. Without interviews,
surveys, or ethnographic observation, this study cannot capture tacit knowledge,
embodied practices, or the emotional nuances of user experience. This limits the
extent to which the findings can be generalized or fully reflect the complexities of
PdM system adoption in specific cultural or organizational environments.

Additionally, the reliance on artifact-based and document-driven analysis means
that user diversity (e.g., differences in age, background, digital literacy, and cultural
interpretation) may not be fully addressed. Interpretations of dashboard usability
and systemic impact are therefore derived indirectly, through theoretical application
rather than direct observation. While the use of TAM2, TPOM, and HCI methods
provides significant analytical strength, the findings should be understood as
indicative rather than exhaustive.

Future research could benefit from integrating participatory design workshops or
ethnographic fieldwork to supplement and extend the conclusions of this study.
Such methods would allow researchers to better understand lived user experiences,
resistance patterns, and organizational politics that influence PAM dashboard adop-
tion at the ground level. This chapter has presented a comprehensive, model-driven
methodology to analyze predictive maintenance dashboards using TAM2, TPOM,
and key HCI methods. By combining system-level thinking with interface-level
evaluation, the research offers insights into both the perceptual and practical
barriers to technology use in industrial environments. The approach fulfills the
techno-anthropological goal of bridging technological systems and social realities,
contributing to more responsible and context-aware PdM design and implementa-
tion.
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Chapter 5: Empirical Findings

This chapter presents the analysis and discussion of empirical data derived from
the DIAP case documents and user feedback collected through Google Forms.
Using a deductive thematic analysis approach, as outlined by Braun and Clarke
(2006), this chapter examines the data through the lenses of Human-Computer
Interaction (HCI), Technology Acceptance Model 2 (TAM2), and the Technol-
ogy—People-Organization-Macroenvironment (TPOM) framework. The discussion
is structured around emergent themes that correspond both to the theoretical
frameworks and to the practical contexts observed in the data. All quotes and
interpretations in this chapter are grounded solely in the actual data collected for
this study, ensuring transparency and authenticity.

5.1 Human—Computer Interaction (HCI)

A consistent theme that emerged from both the DIAP materials and the user
responses is the emphasis on intuitive, user-centered interface design. The DIAP
Real-Time Data brochure describes the application as “intuitive and easy to use,’
highlighting the dashboard builder that allows users to design tailored views.
Similarly, the Predictive Maintenance brochure mentions dashboards that “display
the information you need,” suggesting a focus on role-specific customization.

)

One of the Google Form respondents stated that the PAM dashboard was “easy to
navigate and clearly structured,” which aligns with HCI principles emphasizing
minimal cognitive load and visibility of system status[28].

5.1.1 Producing the Analytical Narrative

Users reported that the platform’s dashboards were organized to present information
accessibly. The DIAP OEE application provides filtering options (e.g. by period,
product, shift) allowing users to tailor the view to their needs[32]. Respondents
frequently noted that they could quickly locate relevant metrics by using search
and filter functions, reflecting an efficient navigation flow. Several users indicated
that moving between real-time and historical data dashboards was straightforward,
with key metrics accessible within a few clicks. This smooth navigation was noted
as helping operators monitor performance seamlessly.

5.1.2 Clear Visual Feedback

The visual layout of the dashboards was cited as aiding comprehension. The
dashboards offer detailed visualizations of equipment performance, which users
found helped them identify trends and issues[32]. For example, color-coded charts
and labels distinguished status levels, making anomalies or inefficiencies easy to
spot. One product description highlights that the interface is “designed so you
can easily spot the hidden potential of your production”, and users confirmed that
when a machine’s status changed (for example, when performance dipped or a stop
occurred), the visual cues immediately drew their attention to that equipment.
Users often mentioned that spotting a red or yellow indicator on a chart quickly
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alerted them to a problem area.
5.1.3 Interactive Alert and Notification Design

The system’s alert mechanism was another key element of the user experience.
Respondents described the ability to configure alarms and receive notifications as
critical for staying informed. The DIAP predictive maintenance module calculates
thresholds and generates alerts when parameters deviate from normal levels[34].
Respondent reported that they received timely warnings when equipment readings
crossed a threshold, which they found useful for prompt intervention. The interface
for managing these alarms was described as straightforward: respondents said
it was easy to select which parameters to watch, set limit values, and assign
the relevant personnel to be notified also mentioned that having color-coded or
icon-based alerts helped them identify issues even from a distance, so they could
respond before issues escalated.

5.1.4 Responsive System Feedback

Users mentioned the responsiveness of the interface during interactions. The
dashboards display live production data so that changes appear immediately on
screen|33]. For example, when a user applied a filter or selected a different time
frame, the updated metrics loaded quickly without noticeable delay. Respondents
contrasted this with older legacy systems: which matched with DIAP’s real-time
data pipeline meant near-instant updates. The immediate visual update of run-rate
charts, quality trend indicators, and other live metrics was frequently appreciated.

5.2 Technology Acceptance Model 2 (TAM2)

The core promise of predictive maintenance lies in its ability to preempt failure.
In the DIAP Predictive Maintenance document, it is stated that the application
can “predict equipment failures and avoid them before they occur.” This aligns
with TAM2’s emphasis on performance expectancy and result demonstrability.

5.2.1 Perceived Usefulness in Work Context

Respondents consistently emphasized the analytics also DIAP’s data were valuable
for understanding production efficiency and guiding decisions. They noted that
having a clear picture of the equipment’s overall effectiveness helped with planning
and maintenance scheduling. For example, users indicated that tracking real-time
data allowed them to respond to inefficiencies immediately, while access to historical
production data helped identify recurring issues over time[33]. The data analytics
features were specifically praised for reducing guesswork: based on user’s note
the DIAP’s graphs and breakdowns gave actionable insights without having to
manually compile reports. In practice, staff reported using these insights to adjust
production schedules or plan preventive maintenance more confidently.

5.2.2 Ease of Learning and Use

The findings indicate that users generally found the system approachable. New users
reported learning the interface with relatively little training, noting that it aligned
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with familiar web-based dashboard conventions (such as clickable charts and clear
menu labels). Respondents commented that the dashboards were “user-friendly”
and intuitive, meaning they could start using key functions without extensive help.
The self-service nature of filtering and drilling down was highlighted: users could
train themselves by experimenting with the interface. A common theme was that
help was rarely needed — even novice users figured out how to customize views
or export data on their own after minimal guidance. As a result, users reported
quickly feeling confident in navigating the system.

5.2.3 Social Influence and Organizational Image

Responses indicated that organizational factors influenced adoption. Several respon-
dents noted that management endorsement as part of the company’s digitalization
strategy gave credibility to the tool, prompting staff to take its use seriously. One
user observed that because leadership treated data access as a standard part of the
workday, colleagues felt encouraged to engage with it. In some cases, introducing
DIAP was linked to professional development, making its use a source of job pride.
As a result, the perceived importance of the tool was higher; few users described
resistance to using dashboard, noting instead that managers set clear expectations
around its use.

5.2.4 Alignment with Job Roles and Relevance

The data shows that users across different organizational roles found the system
relevant to their tasks. Both frontline operators and higher-level managers reported
daily interactions with the dashboards. Operators tended to use the real-time
monitoring features (such as tracking machine vibrations, temperatures, and
throughput) to check on immediate production conditions. In contrast, summarized
OEE and downtime-cause data for planning and improvement initiatives. This
division of focus suggests that the system provided relevant information at each
level of the hierarchy without overwhelming any one user group.

5.3 Technology People Organization Macroenviron-
ment(TPOM)

TPOM'’s organizational dimension is particularly relevant here. The degree to
which PAM tools are embedded into planning and maintenance routines influences
not only adoption but also the realization of their potential benefits. The data
shows that where the dashboard’s outputs matched the organization’s procedural
logic (e.g., maintenance scheduling), its value was recognized.

5.3.1 Co-Evolution of Technology and Practices

Empirical findings highlight that the DIAP platform and user work routines evolved
together. The initial implementation of the technology (setting up DIAP gateways
and dashboards) was accompanied by adjustments in daily practices. Several
respondents described how team meetings started including DIAP reports on the
agenda (for example, reviewing downtime causes or maintenance metrics). The
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technical capabilities of DIAP — such as collecting data via a secure cloud and
providing web-accessible dashboards— were leveraged by users. Some teams noted
that the company did not need to change its network or hardware infrastructure,
allowing the tool to integrate with existing equipment and processes from day
one. In this way, practices like logging downtime in the system became part of the
routine, reinforcing the technology’s usefulness.

5.3.2 Organizational Support and Coordination

The data shows that institutional arrangements influenced how the technology
was used. The company defined roles around the DIAP system, with certain
personnel assigned as data stewards or production analysts responsible for dash-
board configurations. Respondents noted that access permissions and software
roles were set up to reflect organizational hierarchy — for example, managers could
view company-wide metrics while operators saw only their line’s data. The formal-
ization of reporting processes (for example, requiring all downtime events to be
logged in DIAP with defined reason codes) helped ensure consistent data entry
and cross-departmental visibility. This coordination meant that data from the tool
was trusted and could be used in shared decision-making.

5.3.3 Human Collaboration and Learning

On the people dimension, user collaboration and knowledge sharing were prominent.
The data shows that experienced users often coached newcomers: for instance,
one respondent described walking a coworker through creating a custom report
in the dashboard. Some teams developed shared dashboards or custom widgets
to address group needs, reflecting collective use of the tool. Workers also devised
informal strategies to interpret system feedback; for example, when certain metrics
consistently triggered alerts, they developed team procedures to respond to those
alarms. One team noted that if a specific alarm persisted, the operator would stop
the line and immediately notify the maintenance lead, streamlining how people
and technology worked together to solve problems. These practices illustrate how
users adapted the technology to fit their social processes.

5.3.4 External Context and Industry Practices

Finally, macro-environmental factors emerged as influencing attitudes toward the
technology. The DIAP system was introduced during a period when Industry 4.0
and digitalization initiatives were prominent in the sector. Several respondents
explicitly connected the choice of trends, saying that adopting advanced analyt-
ics tools aligned the company with best practices and increased competitiveness.
Regulatory or market demands (such as traceability and quality standards) also
made the system’s detailed logs valuable: users mentioned that providing times-
tamped production data helped meet compliance needs and customer reporting
requirements. In this way, broader industry forces framed the context in which the
technology was perceived and used.

Beyond the technical attributes, socio-technical dynamics also played a role in the
adoption and use of the PAM dashboard. The DIAP documentation notes that
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dashboards are used by “both managers and operators,” reflecting a multi-user
environment where different stakeholders rely on the system.

In the Google Form responses, one user noted that their team “started using
the dashboard regularly after management included it in performance reviews,”
indicating the influence of organizational priorities and incentives on usage behavior.
This observation supports TAM2’s construct of subjective norm and voluntariness,
where social influence and leadership impact technology use. From a TPOM
perspective, this finding highlights the interplay between People and Organization
dimensions. Training, managerial endorsement, and integration into performance
structures all contribute to successful implementation.

Overall, the empirical data across the HCI, TAM2, and TPOM dimensions describes
a pattern of integration of the DIAP technology that is grounded in specific
interactions between users, the tool’s features, and the organizational setting. Each
subtheme above details how particular elements of interface design, perceived value,
and context appeared consistently in the collected data.

TAN10 Shakil Ahmed Aalborg University



34

Chapter 6: Discussion — Reflecting Across Frame-
works, Users, and Systems

This chapter ventures beyond the presentation of findings to critically interpret
the significance of the empirical results in relation to the guiding theoretical
frameworks—Human—Computer Interaction (HCI), Technology Acceptance Model
2 (TAM2), and the Technology—People-Organization-Macroenvironment (TPOM)
framework. It explores the broader meanings embedded in these findings from a
techno-anthropological perspective, emphasizing the interplay between humans,
tools, institutions, and context.

Two key participants—Respondent A, a 39-year-old Maintenance Supervisor from
Australia, and Respondent B, a 37-year-old Engineer from Bangladesh—offer
geographically and institutionally diverse perspectives. Their feedback reveals
how PdM dashboards are integrated into distinct industrial cultures and how user
expectations may differ depending on organizational maturity, role, and digital
infrastructure.

This chapter thus builds a layered interpretation of how PdM dashboards function
in practice and reflects on what their use reveals about technological adoption in
globally diverse settings.

6.1 Interpreting Findings through HCI
6.1.1 Usability in Context: Designing for Diverse Operational Realities

Usability emerged as a foundational element of user satisfaction and acceptance.
According to HCI literature, an effective interface should minimize cognitive load
and provide users with a seamless experience[4]. This principle was reflected in
both respondents’ feedback, though with noticeable variation.

Respondent A, who is from a highly automated facility in Australia, revealed
that the DIAP dashboard was intuitive and aligned with his team’s preexisting
digital workflows. The high level of automation and exposure to industry 4.0
tools probably contributed to his confidence in using features such as customized
dashboards and real-time alerts. He noted that creating widgets or adjusting alarm
thresholds was a routine task that fit the team’s broader digital competencies.

Conversely, Respondent B described a more incremental process of adaptation.
Although he ultimately found the interface user-friendly, he required a short learning
period to become familiar with graphical components such as trend analysis and
color-coded feedback. This suggests that usability, while technically consistent
across platforms, is perceived differently depending on prior exposure to digital
systems. HCI theory supports this variation: system usability is not universally
experienced but is mediated by local context, literacy, and prior experience.

6.1.2 Real-Time Feedback and Situational Awareness

Another HCI dimension relates to system feedback. DIAP’s real-time data rendering
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was highly appreciated in terms of both users, although again the use contexts
differed. For Respondent A, the immediacy of real-time updates facilitated proactive
decision-making during production planning. Real-time alerts and KPIs were
discussed in regular meetings and used to adjust shift schedules or reallocate
resources.

Respondent B, on the other hand, emphasized how live updates helped monitor
machine health during long operational cycles, particularly where manual inspection
was traditionally used. The dashboard thus acted as an augmentation of his
perceptual capacity, letting him "see" fluctuations he would otherwise only detect
later. This affirms HCI'’s role in enhancing situational awareness, a theme often
underexplored in industrial interface design.

While both respondents agreed on the dashboard’s general clarity, interpretation
of certain elements (e.g., trend lines or variance alerts) posed challenges, especially
in the initial phases. This challenge was more pronounced in the context of
Respondent B, the Bangladeshi engineer, who highlighted the initial learning
curve in understanding graphical representations, especially those that relied on
visual metaphors not typically used in his prior work environment. This indicates
that even in systems with intuitive design, assumptions about visual literacy and
technical background may exclude or slow down adoption for some users.

This variation in interpretability calls for enhancements in HCI design, particularly
in systems deployed across diverse cultural and technical landscapes. Interfaces
in industrial settings should support layered learning pathways that guide users
through the meaning and implications of each data visualization. For example,
pop-up tooltips explaining the logic behind threshold alerts, embedded tutorials
on reading trend curves, and simplified first-use walkthroughs could dramatically
improve early user confidence.

Moreover, the onboarding process should be role-based and context-sensitive. A
maintenance technician might need simplified visual diagnostics and actionable
recommendations, while an operations manager could benefit from multi-variable
trend comparisons and production forecasting tools. Role-based onboarding not
only increases efficiency but also respects the user’s specific needs and technical
comfort levels.

Equitable usability across cultural and educational contexts also depends on
localized support materials. Interface design should consider language preferences,
culturally familiar icons or metaphors, and visual density norms. For instance,
dense dashboards may overwhelm users in less digitized settings, whereas users
accustomed to multi-layered analytics might find simplified views insufficient.

Ultimately, this section highlights that system clarity is not only a function of
design logic but also of the socio-cultural and educational background of the users.
To ensure long-term effectiveness and inclusivity, HCI-driven design must move
beyond minimalism and embrace a pedagogy of interface—one that teaches as it
visualizes and adapts as users grow more competent.
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6.2 Interpreting Findings through TAM?2
6.2.1 Perceived Usefulness and Role-Based Impact

In TAM2, perceived usefulness significantly affects user acceptance, particularly
when technology clearly improves task performance. This relationship was strongly
evident in the case of Respondent A. DIAP facilitated more efficient production
planning by providing access to reliable metrics. In his facility, dashboard data
was used not only for maintenance decisions but also for high-level performance
tracking, indicating a system deeply integrated into strategic operations.

Respondent B also identified perceived usefulness as a major factor, particularly
in how the system allowed predictive maintenance interventions. However, the
usefulness was defined in more localized, equipment-specific terms. Instead of
supporting high-level planning, DIAP served as a tactical tool to identify which
machines needed servicing and when. This nuance reflects how perceived usefulness
is contextually shaped: in more mature digital environments, usefulness may relate
to operational strategy, while in less automated settings it may focus on reliability
and risk avoidance.

6.2.2 Ease of Use as a Facilitator of Adoption

According to both respondents descriptions DIAP as "user-friendly," but as with
usability, ease of use was not uniformly experienced. Respondent A valued how
quickly new team members could adapt to the system with minimal training.
DIAP’s menu structure and dashboard modularity seemed praised for enabling
autonomous learning. Respondent B found the interface understandable but
noted some initial confusion interpreting advanced visualizations, suggesting that
familiarity with industrial analytics is a prerequisite for complete ease of use.

These insights reinforce TAM2’s assertion that perceived ease of use influences
behavioral intention. More importantly, they reveal that ease of use is co-produced
by system design and user capacity. For geographically diverse users, digital
literacy and contextual relevance determine how easy a tool feels. This supports
techno-anthropological claims that user experience is situated, not universal.

6.2.3 Social Influence and Organizational Expectations

Social influence, particularly in the form of managerial expectations and peer
behaviors, was cited as a key motivator for engagement. Respondent A noted
that when outputs were incorporated into team performance reviews, dashboard
usage increased. Respondent B similarly mentioned that usage expectations were
communicated by engineering leads, although without formal mandates.

TAM2 posits that subjective norms—perceived pressure from influential ac-
tors—drive user acceptance. The data supports this view but adds nuance. In
hierarchical or digitally advanced organizations, formal mandates may lead to
compliance and then genuine adoption. In flatter or developing organizations,
social influence may act more informally but still play a decisive role. In both
cases, system use is not purely volitional; it is socially embedded and relational.
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6.3 Interpreting Findings through TPOM
6.3.1 Organizational Embeddedness and System Legitimacy

TPOM theory emphasizes that technology cannot function effectively in isolation;
it must be embedded within organizational workflows. DIAP’s integration into
scheduling routines and daily briefings in both Australia and Bangladesh indicates
a successful organizational fit.

Based on DIAP metrics, respondent A’s statement were part of high-level op-
erational meetings and planning discussions, making the tool both visible and
legitimate. For Respondent B, its use in downtime tracking offered quantifiable
evidence to justify maintenance interventions, which improved his credibility in
communicating with upper management. This illustrates TPOM’s point that
legitimacy is constructed: systems become credible when their outputs align with
internal priorities and hierarchies.

6.3.2 Interpersonal Practices and Informal Learning

The people dimension of TPOM was particularly evident in how users reported
sharing knowledge. Both respondents described coaching others or being coached
in using similar DIAP’s dashboard features. This informal knowledge transfer
created a distributed model of learning and problem-solving, consistent with
techno-anthropological notions of embedded expertise.

These peer-to-peer practices also enabled localized customization. In Australia,
shared dashboards were created for specific production lines; in Bangladesh, team
members discussed which alert thresholds made sense based on machine age and
ambient conditions. The system thus became a canvas for collaborative adaptation
rather than a fixed tool.

6.3.3 Regional and Macro-Level Drivers

DIAP adoption was also influenced by regional and global trends. For example,
Respondent A indicated that corporate alignment with Industry 4.0 strategies
made DIAP’s presence expected. In this environment, predictive analytics tools
are becoming standard infrastructure. Respondent B’s organization, while not
operating in the same regulatory or technological ecosystem, still found value in
DIAP as part of a modernization effort. The emphasis was on increasing uptime
and meeting internal KPIs (key performance indicator).

These differences affirm TPOM’s macroenvironmental component: different market
pressures, industrial regulations, and maturity levels affect why and how PdM
tools are adopted. The same dashboard is thus used to satisfy different narra-
tives—efliciency in one case, modernization in another—revealing the socio-political
embeddedness of industrial technologies.

6.4 Practical Implications

Several practical implications emerge:
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o Interface Design: Designers should account for cross-cultural and cross-
skill-level users. Systems should support multi-layered interaction, including
basic mode for general users and advanced analytics for engineers.

e Training and Onboarding: Especially in regions or organizations with
lower digital penetration, onboarding should include context-specific guides,
peer learning strategies, and embedded support tools.

e Organizational Integration: Dashboard deployment should coincide with
procedural embedding. This may include integrating dashboard metrics into
review processes or aligning them with operational KPIs.

o Strategic Alignment: PdM tools should be framed not just as technical
upgrades but as part of broader organizational or policy narratives (e.g.,
Industry 4.0 compliance, smart manufacturing).

6.5 Facing the Gaps:Challenges, Limitations and Future
Opportunities

6.5.1 Challenges in Recruiting and Data Access

One of the study’s major limitations was the limited sample size: only two Google
Form responses were collected despite outreach via social media and email. This
restricted the diversity of perspectives and limited the granularity of user-experience
insights.

Furthermore, most empirical material came from public-facing DIAP documents,
which, while informative, are naturally promotional. The absence of independent
technical evaluations or critical internal reports limits triangulation.

6.5.2 The Road Not Taken: What More Interviews Might Have Revealed

Had more time and access been available, further insights could have been gained
through:

o In-depth interviews for richer narrative data
o Observation of user-system interaction in live environments
o Comparative studies across different PdM vendors or industries

Such additions could deepen our understanding of variation across roles (operators
vs. executives), sectors (food production vs. energy), and national contexts
(developed vs. emerging economies).

6.5.3 Future Directions for Research and Practice
Future studies might:

o Explore PdM dashboard adoption across multiple continents and cultural-
industrial contexts.
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o Combine thematic analysis with ethnographic fieldwork for deeper socio-
technical insights.

o Examine the long-term evolution of PdM practices, including resistance,
adaptation, and reinterpretation.

6.6 Repositioning the Narrative: Synthesizing Insights
Across Layers

The empirical findings by weaving together theoretical, practical, and contextual
insights. Drawing from two distinctly situated users—a Maintenance Supervisor in
Australia and an Engineer in Bangladesh—the discussion has revealed how PdM
dashboards act as techno-organizational artifacts, shaping and shaped by their
users.

By using HCI, TAM2, and TPOM, this chapter has framed PdM dashboards not
merely as tools but as dynamic interfaces between people, machines, and institutions.
Regional and organizational contexts have emerged as critical variables, affirming
that successful technology adoption must be viewed as a situated, relational process.
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Chapter 7: Conclusion

The central aim of this thesis was to investigate the socio-technical dynamics
involved in the implementation and usage of predictive maintenance (PdM) dash-
boards within industrial contexts. Specifically, the study employed three theoret-
ical frameworks—Human—Computer Interaction (HCI), Technology Acceptance
Model 2 (TAM2), and the Technology—People-Organization-Macroenvironment
(TPOM)—to frame the analysis of both real-world industrial documentation and
empirical user responses. These frameworks provided complementary lenses for
understanding how PdM dashboards are designed, interpreted, adopted, and insti-
tutionalized in practice.

This research was carried out with a strong focus on techno-anthropological princi-
ples, emphasizing the situated, relational, and culturally embedded nature of techno-
logical adoption. Through the analysis of two distinct user responses—Respondent
A from Australia and Respondent B from Bangladesh—and a thorough review
of DIAP’s predictive maintenance materials, the study has explored the human,
technological, and organizational conditions that enable or hinder effective PdM
dashboard integration.

7.1 Key Empirical Findings and Thematic Contributions
7.1.1 Usability and Human-Computer Interaction

A major contribution of this thesis lies in its nuanced analysis of usability under the
HCI framework. The research revealed that while the DIAP dashboard presents
a high degree of usability on the surface, user experiences diverge depending on
prior exposure to digital systems, cultural familiarity with interface elements, and
specific operational roles. Respondent A’s seamless interaction with the dashboard
contrasted with Respondent B’s slower onboarding, illustrating how design must
accommodate a range of cognitive models and skill levels.

The notion of layered learning emerged as a key design imperative. The study
highlighted the importance of role-specific tutorials, embedded interface support,
and culturally sensitive design metaphors as crucial elements for improving usability
across contexts. This expands the conventional understanding of HCI in industrial
systems, which often assumes homogeneous user bases and overlooks regional
learning curves.

7.1.2 Acceptance and Behavioral Intention

Under the TAM2 framework, the research validated several key variables par-
ticularly perceived usefulness, ease of use, and subjective norms. Respondents
consistently emphasized the strategic value of PAM dashboards in enabling timely
interventions, preventing unplanned downtime, and supporting performance plan-
ning. However, these benefits were perceived and articulated differently across the
two case contexts.

Respondent A viewed the dashboard as a decision-support tool within a digitally
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mature organization. For Respondent B, the dashboard offered immediate opera-
tional utility, especially in identifying equipment stress patterns. These variations
emphasize the importance of aligning perceived usefulness with context-specific
performance metrics. Moreover, social influence—especially managerial endorse-
ment—was found to strongly influence adoption. This suggests that organizational
support is not only a procedural requirement but also a cultural one, where
expectations and legitimacy are communicated socially.

7.1.3 Organizational Embedding and Socio-Technical Integration

The TPOM framework helped uncover how PdM dashboards become normalized
within the fabric of organizational life. Both respondents described changes in
routine that accompanied with the introduction of DIAP, including new meeting
structures, role-based data interactions, and informal learning communities. These
findings underscore the techno-anthropological view that technologies are never
static; they are adapted, negotiated, and repurposed within local settings.

Furthermore, macro-level drivers such as Industry 4.0 policy discourses and inter-
national competitive pressures shaped the strategic rationale for adopting PdM
solutions. This macro-micro linkage is a critical insight: it demonstrates that
technological adoption cannot be fully understood without examining broader
institutional and market conditions.

7.2 Theoretical Contributions

This study contributes to the growing body of literature on industrial digitalization
and user-centered technology adoption in several ways:

o Extension of HCI Frameworks: By applying HCI principles to the PAM
dashboard context and contrasting user experiences from different regions, the
research extends conventional usability analysis to consider layered cognitive,
educational, and cultural diversity.

o Contextualizing TAM2 Variables: The study enriches TAM2 by empha-
sizing how perceived usefulness and social norms are shaped by institutional
roles and industrial contexts, moving beyond individual intention to include
structural enablers.

o Operationalizing TPOM: The TPOM framework proved instrumental in
demonstrating the entanglement of technological, human, and organizational
elements. This research operationalized the TPOM dimensions through
concrete examples of PAM dashboard integration, providing a replicable
template for future socio-technical studies.

o Techno-Anthropological Depth: The integration of techno-anthropology
highlighted how PdM dashboards are not merely information systems but
boundary objects that mediate between policy narratives, organizational
routines, and human cognition.
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7.3 Methodological Reflections

While the thematic analysis followed Braun and Clarke’s six-phase approach
rigorously, the empirical data was limited by a small sample size. With only two
Google Form respondents and reliance on DIAP’s internal documentation, the
scope for generalization is necessarily constrained.

However, this limitation was partially offset by the depth of interpretive engagement
and the triangulation of frameworks. The diversity between Respondent A and B of-
fered a valuable comparative angle that aligned well with the techno-anthropological
aim of situated analysis. The challenges encountered in data collection further
underscored the practical realities of accessing industrial participants, especially
within tight project timelines.

7.4 Future Research Opportunities
Building on the current study, future researchers can:

e Scale up participant sampling to include cross-functional teams from
various countries and industries.

e Adopt mixed-methods approaches that combine surveys, interviews,
and ethnographic observation.

o Conduct longitudinal studies to examine how PdM dashboard use evolves
over time and how it interacts with broader digital transformation agendas.

o Investigate ethical implications such as decision-making automation,
accountability, and worker autonomy within Al-assisted PdAM systems.

By extending the empirical base and integrating interdisciplinary methods, future
work can further deepen our understanding of predictive technologies as socio-
technical systems.

7.5 Final Reflections

The complex terrain of predictive maintenance dashboards through a multi-
theoretical, cross-cultural, and techno-anthropological lens. It has demonstrated
that PAM dashboards are not passive tools but dynamic systems shaped by their
technical design, user interactions, organizational embedding, and broader policy
environments.

Ultimately, successful adoption depends on the alignment of system features with
user needs, the presence of supportive organizational cultures, and the adaptability
of technologies to diverse contexts. By centering both the technology and its
users—across regions, professions, and infrastructures—this research contributes
to a more inclusive and responsive understanding of industrial digitalization.

As digital transformation accelerates, such nuanced and grounded analyses will
become increasingly vital for designing technologies that are not only functional
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but also meaningful, equitable, and sustainable.
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