
Summary

This report introduces a typed translation from the language basic typed Futhark (BtF), to the process
calculus typed extended 𝜋-calculus (TE𝜋). This report extends the work by Jensen et. al in which they
introduce the language basic untyped Futhark (ButF), the process calculus extended 𝜋-calculus (𝐸𝜋)
and the translation from ButF to E𝜋.
We start by introducing ButF - a core language based on the functional array programming language
Futhark which compiles to optimised graphical processing unit (GPU) code. What makes Futhark
interesting is the addition of arrays in a functional programming language and array operations
known as second-order array combinators (SOACs). The semantics of SOACs allow Futhark to rewrite
expressions which helps with optimisation.
Next we introduce E𝜋, which is a process calculus based on the applied 𝜋-calculus and extended with
broadcasting capabilities and composite names to better handle the array structure for the translation
of ButF to E𝜋. Then we go over the original translation and give some examples which shows trans-
lations of ButF expressions.

To bring ButF closer to Futhark we extend it with a type system, incorporating types such integers,
arrays, and tuples inspired by Futhark’s simple type system and the simply typed 𝜆-calculus. By
introducing a type system we acquire static guarantees and ensure illogical expressions, such as a
binary operations on two abstractions, is not allowed. For BtF we introduce a theorem for soundness
of the type system which consists of two parts: preservation (types are preserved after a transition
step) and progress (expressions are either values or can take a transition step). We then give a proof
of the soundness theorem.
This is followed by introducing a type system for E𝜋. To handle composite we introduce a location
type and pre-channel type which restrict how we combine names through the type rules and by
introducing a pre-channel type environment - a type environment to ensure we handle arrays and
tuples in the translation correctly. This is followed by a soundness theorem consisting of two parts:
subject reduction (types are preserved after a reduction) and type safety (if we are well-typed reduction
errors can not occur). For type safety we introduce an 𝑒𝑟𝑟𝑜𝑟 predicate and its reduction rules, and give
the proof for soundness.

Lastly we give a typed translation from BtF to TE𝜋 and show previous examples updated with the new
translation. To prove the correctness of the translation we introduce theorems about type correctness
and behavioral correctness.
Type correctness ensures that every well-typed BtF expression translates to a well-typed TE𝜋 process,
with the type carried by the output channel type mirroring the type of the expression. Behavioral
correctness ensures the translation behaves similar to BtF on the observable output after an important
reduction. For this we introduce an operational correspondence that relates BtF expressions and TE𝜋
processes. Together, these results provide a type-preserving translation of BtF to TE𝜋.

We conclude the report and discuss future work which includes ideas for possible improvements in
the semantics, extending BtF with a new construct from Futhark called with, and introducing sized
types to BtF.



A Type Safe Translation of a Functional
Array Language to a Process Calculus

cs-25-sv-10-01
Daniel Vang Kleist, and Loke Walsted

S
TU

DE
NT REPORT



Computer Science
Aalborg University

http://cs.aau.dk

Title:
A Type Safe Translation of a Functional
Array Language to a Process Calculus

Theme:
Semantics and type systems

Project Period:
Spring Semester 2025

Project Group:
cs-25-sv-10-01

Participants:
Daniel Vang Kleist
Loke Walsted

Supervisor:
Hans Hüttel

Date:
2025-06-06

Copies: 1

Page Numbers: 41

Abstract:
Using graphics processing units (GPUs) for
computations bring a significant amount
of computational power compared to the
central processing unit (CPU) through the
use parallelisation. The functional array
programming language Futhark makes use
of array operations known as second-order
array combinators (SOACs) for compiling
to optimised GPU code. In this report we
extend an existing untyped core language,
ButF (a subset of Futhark), and an extended
𝜋-calculus with broadcasting capabilities, E
𝜋, by Hüttel et. al, with simple type systems
(called BtF and TE𝜋, respectively). The two
type systems are then proven to be sound
in regards to their respective semantics. The
original translation from ButF to E𝜋 is
then extended by incorporating the type sys-
tems which provides static guarantees about
program behaviors. This results in a type-
preserving data-parallel implementation of
BtF in TE𝜋 which is proven to be correct
through proofs about the translation of the
types and behaviour.

III

http://cs.aau.dk


Contents
1 Introduction ...................................................................................................... 1

1.1 Futhark - a Functional Array Programming Language .................................................. 1
1.2 The 𝜋-calculus - a Process Calculus ............................................................................... 1
1.3 Translations to the 𝜋-calculus ........................................................................................ 2
1.4 Structure of the Report .................................................................................................. 2

2 Preliminaries ..................................................................................................... 3
2.1 Basic Untyped Futhark .................................................................................................. 3
2.2 Extended 𝜋-calculus ....................................................................................................... 5
2.3 Translation of ButF to E𝜋 ............................................................................................. 8

3 A Typed Setting ............................................................................................. 14
3.1 Basic Typed Futhark .................................................................................................... 14
3.2 Soundness of BtF ......................................................................................................... 16
3.3 Typed E𝜋 ..................................................................................................................... 19
3.4 Soundness of TE𝜋 ........................................................................................................ 22

4 Translation and Correctness ........................................................................... 26
4.1 Translation of BtF to TE𝜋 ........................................................................................... 26
4.2 Correctness of the Translation ..................................................................................... 32

5 Conclusion ...................................................................................................... 39
5.1 Results .......................................................................................................................... 39
5.2 Future Work ................................................................................................................. 40

Bibliography ....................................................................................................... 41

Appendix
A Appendix for Preliminaries .............................................................................. I

A.1 ButF Definitions ........................................................................................................... I
A.2 ButF Semantics ........................................................................................................... II
A.3 E𝜋 Definitions ............................................................................................................ III

B Proofs About the Type System for BtF ...................................................... VII
B.1 Proof of Lemma 3.1 .................................................................................................. VII
B.2 Proof of Lemma 3.2 .................................................................................................. VII
B.3 Proof of Lemma 3.3 ................................................................................................. VIII
B.4 Proof of Theorem 3.1 - preservation ........................................................................... IX
B.5 Proof of Theorem 3.1 - progress ................................................................................. XI

C The 𝑒𝑟𝑟𝑜𝑟 predicate of TE𝜋 ........................................................................ XIV

D Proofs About the Type System for TE𝜋 ...................................................... XV
D.1 Proof of Lemma 3.4 .................................................................................................. XV
D.2 Proof of Lemma 3.5 .................................................................................................. XV
D.3 Proof of Lemma 3.6 ................................................................................................. XVI
D.4 Proof of Lemma 3.7 ............................................................................................... XVII
D.5 Proof of Lemma 3.8 .............................................................................................. XVIII
D.6 Proof of Lemma 3.9 ................................................................................................. XIX
D.7 Proof of Lemma 3.10 ................................................................................................ XX

IV



D.8 Proof of Theorem 3.2 - subject reduction .............................................................. XXII
D.9 Proof of Theorem 3.2 - type safety ....................................................................... XXIII

E Proofs for the Translation of BtF to TE𝜋 ................................................ XXVI
E.1 Proof of Lemma 4.1 ............................................................................................... XXVI
E.2 Proof of Lemma 4.2 ............................................................................................... XXVI
E.3 Proof of Lemma 4.3 ............................................................................................. XXXII
E.4 Proof of Lemma 4.4 ............................................................................................. XXXII
E.5 Proof of Lemma 4.5 ............................................................................................ XXXIII
E.6 Proof of Lemma 4.6 ............................................................................................ XXXIV
E.7 Proof of Theorem 4.1 ........................................................................................... XXXV
E.8 Proof of Theorem 4.2 ......................................................................................... XXXIX

V



1 Introduction
A graphics processing unit (GPU) is a central part of most modern computers, mostly used
for image rendering and displaying it to a monitor. This is, of course, not the only kind of
computation GPUs can be used for, and through the introduction of programming interfaces
such as CUDA [3] and later OpenCL [4], writing GPU code without knowing shader languages
was made possible [5]. One key advantage of using a GPU for computations instead of the
Central Processing Unit (CPU) is that the computational power of the GPU is much larger
compared to that of the CPU. The reason for this is the utilisation of parallelisation in GPUs [5].

1.1 Futhark - a Functional Array Programming Language
Futhark is a functional array programming language that generates GPU code by CUDA and
OpenCL and is designed with the focus on compiling to optimised GPU code [6]. The language
is an ongoing research project but can still be used for non-trivial programs. The foundation
of the Futhark language is that of array manipulation using what is known as second-order
array combinators (SOACs) [7]. This is based on the work by Bird, in which some theoretical
groundwork for manipulating list/array functions is created [8]. This includes the following
functions: map, reduce, foldl, foldr and scan.

The Futhark semantics of SOACs allow for rewrites of expressions, which helps with optimi-
sation by not only transforming the schedule but also the space [7]. Futhark utilises a
transformation of parallelism for optimisation by taking nested parallelism and reorganising
it into SOACs nests (that being the outer levels correspond to map operators) [7]. Futhark is
syntactically similar to other functional programming languages such as Haskell but focuses
less on the expressivity and type systems.

1.2 The 𝜋-calculus - a Process Calculus
To help prove aspects of data-parallelism in Futhark, one might look towards process calculi,
a tool useful for verifying and proving certain behaviours of systems. In the family of process
calculi, the 𝜋-calculus is one which can describe concurrent parallel systems. First introduced
by Milner et. al in [9], [10], the 𝜋-calculus is a process calculus in which communication happens
by name passing.

Though the 𝜋-calculus is very expressive, extensions and sub-calculi exist which allow for shorter
and less cumbersome notation for writing the same process. Take for example the polyadic 𝜋
-calculus [11] where multiple names can be sent and received in communication, or the Higher-
Order 𝜋-calculus (HO𝜋) [12] where processes can be communicated. Both have been shown to
be encodable in the monadic 𝜋-calculus. The polyadic 𝜋-calculus by Milner in [11] and HO𝜋
by Sangiorgi in [12]. There also exist variations which cannot be expressed in the 𝜋-calculus.
One such is 𝑏𝜋-calculus (a calculus with broadcast derived from the 𝜋-calculus), which Ene and
Muntean show that no uniform encoding of 𝑏𝜋-calculus into the 𝜋-calculus exists [13].

One of the approaches for proving certain properties of a programming language or process
calculus is that of encoding the original to another language or process calculus such as the 𝜋
-calculus. Translating Futhark to the 𝜋-calculus would give a data-parallel implementation for
free. This would also make it possible to analyse the complexity of data-parallelism in Futhark.

1



1.3 Translations to the 𝜋-calculus
One of the most well-known encodings is Milner’s encodings of the call-by-value 𝜆-calculus and
the lazy 𝜆-calculus to the 𝜋-calculus [14]. In [15], Sangiorgi studies the relationship between the
encodings of the call-by-value and call-by-name 𝜆-calculus to 𝜋-calculus. The approach taken
by Sangiorgi is different than Milner’s. In [15] the encoding is obtained by transforming the 𝜆-
calculus into a continuation passing style which is then translated into HO𝜋 and lastly into the
𝜋-calculus.

In [16], Honda et. al introduce a type-preserving translation of the 𝜆𝜇-calculus (a variation of
the 𝜆-calculus with continuation variables) to a subset of the asynchronous 𝜋-calculus. Another
type-preserving encoding can be found in [17], where Amadio et. al introduce a translation
from a concurrent 𝜆-calculus (a variation of the call-by-value 𝜆-calculus extended with parallel
composition, restriction, output and input) to the 𝜋-calculus. The concurrent 𝜆-calculus is an
attempt at capturing the nature of a concurrent functional programming language.

Work regarding encodings of languages to the 𝜋-calculus is also prevalent and used for showing
or proving properties. Walker gives a translation of two different object-oriented languages,
respectively, to illustrate the expressiveness of the 𝜋-calculus [18]. A translation of the functional
programming language Erlang can be found in [19]. By translating a subset of Erlang known as
core Erlang to the asynchronous 𝜋-calculus, model checking techniques could possibly be used
for verifying correctness properties of communication systems implemented in Erlang [19].

In the work by Hüttel et. al, a subset of the Futhark language (called ButF) is translated to
an extended 𝜋-calculus (called 𝐸𝜋) [2]. This translation is then used for an analysis of the
complexities of expressions and compared to that of Futhark. As ButF is untyped, this allows
for writing expressions that logically make no sense; it is for example allowed to use a binary
operation on two abstractions. This brings up the question of how one could design a type
system for ButF to bring the language closer to that of Futhark. That would also restrict the
language such that these illogical expressions cannot be valid. The type system of Futhark has
three aspects; simple types, unique types, and sized types. We will in this report introduce
ButF and 𝐸𝜋 and extend both with a type system, respectively. The type system we introduce
for ButF will try to embody that of the simple types of Futhark as introduced in [20]. With the
inclusion of a type system we gain static guarantees in regards to the behaviour of a program
which a correct translation would preserve. For this we need an updated translation and proofs
for the correctness of the translation.

1.4 Structure of the Report
The remainder of the report is structured as follows: in Chapter 2 we introduce the ButF
language, E𝜋, and the translation from ButF to E𝜋 by Hüttel et. al from [2]. In Chapter 3 we
extend ButF with a type system (we call this BtF) and prove the soundness of the type system.
This is followed by an extension with a type system to E𝜋 (we call this TE𝜋), where we also
prove the soundness of this type system. In Chapter 4 we introduce an updated translation
from BtF to TE𝜋 and define and prove the correctness of the translation. Lastly, in Chapter 5
we conclude the report and discuss future work.

2



2 Preliminaries
We will in this chapter give an introduction to language ButF, the process calculus E𝜋 and the
original translation from ButF to E𝜋. We will start by introducing ButF as seen in [2] with a
revised semantics. This is followed by an introduction of 𝐸𝜋 and the translation from ButF to
𝐸𝜋 as seen in [2].

2.1 Basic Untyped Futhark
In [2], Hüttel et. al introduces a reduced syntax for Futhark without types called Basic Untyped
Futhark (ButF). ButF is made with the focus on array computations of Futhark and while
ButF has removed most of the array operations, the core concept of Futhark still remains. This
makes ButF very similar to a 𝜆-calculus extended with arrays, tuples, and binary operations.
Though Futhark has more array operations than ButF, Hüttel et. al have chosen the operations
map, size and iota since they can be used to define other common array operations [2].

2.1.1 Syntax for ButF
𝑒 ⩴ 𝑏

𝑥
[𝑒1, …, 𝑒𝑛]
𝑒1[𝑒2]
𝜆𝑥.𝑒1
𝑒1𝑒2

(𝑒1, …, 𝑒𝑛)
if 𝑒1 then 𝑒2 else 𝑒3

𝑏 ⩴ 𝑛
map
iota
size
⊙

Figure 2.1: ButF syntax [2]

Expressions in ButF is built with the following constructs:
• 𝑏 which are constants and can either be an integer constant (𝑛), an array operation or an

arithmetic operation. Array operations are either map, iota or size.
‣ map takes a tuple containing a function and an array, and returns an array where the

function has been applied to each element.
‣ size takes an array and returns the length of the array.
‣ iota takes an integer and returns an array with length equal to the integer given and with

the value of each element equal to its index.
‣ The arithmetic operator ⊙ are the standard arithmetic operations such as +, −, ⋅, / and

%.
• 𝑥 denotes a variable, [𝑒1, …, 𝑒𝑛] an array and (𝑒1, …, 𝑒𝑛) a tuple.
• 𝑒1[𝑒2] (indexing) returns the value at the location in an array (𝑒1) based on the index (𝑒2).
• 𝜆𝑥.𝑒1 (abstraction) introduces a variable 𝑥 in an expression.
• 𝑒1𝑒2 (application) applies expression 𝑒1 to the expression 𝑒2.
• The conditional expression takes 𝑒1 and if it evaluates to true then we proceed as 𝑒2 else we

proceed as 𝑒3.

3



2.1.2 Semantics for ButF
The operational semantics of ButF is a small-step semantics and is given as a reduction relation
(→) of the form 𝑒 → 𝑒'. The semantics we present is a revised semantics to the one introduced
in [2]. The language ButF is a call-by-value language with values defined as follow.

Definition 2.1 (Value):  We define a value as 𝑣 in the set of all values 𝑣 ∈ 𝒱, where
values are constants, function symbols, arrays and tuples that contain values only, and
abstractions:

𝑣 ≔ 𝑏 | [𝑣1, …, 𝑣𝑛] | (𝑣1, …, 𝑣𝑛) | 𝜆𝑥.𝑒

For the semantics of ButF we will show some of the rules specific to ButF’s array operations.
The full semantics of ButF can be found in Appendix A.2.

𝑒1 → 𝑒′
1

(B-Index1) 
𝑒1[𝑒2] → 𝑒′

1[𝑒2]

𝑒2 → 𝑒′
2

(B-Index2) 
𝑒1[𝑒2] → 𝑒1[𝑒′

2]

∀𝑖 ∈ {1, …, 𝑛}
(B-Index) 

[𝑣1, …, 𝑣𝑛][𝑖] → 𝑣𝑖

(B-Iota) 
iota 𝑛 → [0, 1, …, 𝑛 − 1]

(B-Size) 
size [𝑣1, …, 𝑣𝑛] → 𝑛

(B-Map) 
map(𝜆𝑥.𝑒, [𝑣1, …, 𝑣𝑛]) → [𝑒{𝑥 ↦ 𝑣1}, …, 𝑒{𝑥 ↦ 𝑣𝑛}]

Figure 2.2: ButF semantics

For indexing we have three rules. (B-Index1) is used for evaluation the first sub-expression 𝑒1

and (B-Index2) for evaluating sub-expression 𝑒2. When both sub-expression has fully evaluated
to an array of values and an indexing number, respectively, we can use (B-Index) to take the
final step and get the value at the index.

For the array operations the semantic rules reflects the intuition quite well. (B-Map) takes a
tuple containing a function and an array of evaluated expressions and applies the function to
each element. When applying an abstraction we substitute with the value from the abstraction.
Substitution in ButF is denoted as {𝑥 ↦ 𝑦} and is read as 𝑥 is substituted with 𝑦. The definition
for substitution in ButF can be found in Appendix A.1. (B-Iota) takes a number 𝑛 and returns
an array of sequentially increasing elements from 0 to 𝑛 − 1. (B-Size) takes an array of evaluated
expressions and returns a value which corresponds the number of elements in the array.

4



2.2 Extended 𝜋-calculus
The Extended 𝜋-calculus (𝐸𝜋) is a process calculus based on the applied 𝜋-calculus [21]
extended with broadcast and composite names [1]. First introduced in [22], Jensen et. al looks at
extending the pi-calculus to capture constructs and concepts of Futhark in the later introduced
translation. Broadcast is added by Jensen et. al to prevent other communication from occurring
when translating the map construct from ButF and composite names is introduced to capture
how some constructs are related, such as elements in arrays.

2.2.1 Syntax for E𝜋
𝑃 , 𝑄, 𝑅, … ⩴ 𝟎

𝑃 | 𝑄
!𝑃
𝐴.𝑃
∙ 𝑃
𝜈𝑎.𝑃
[𝑇1 ⋈ 𝑇2]𝑃 , 𝑄

𝐴 ⩴ 𝑐⟨𝑇
→

⟩

𝑐(𝑥→)

𝑐:⟨𝑇
→

⟩

𝑐 ⩴ 𝑎
𝑥
𝑥 ⋅ 𝑙
𝑎 ⋅ 𝑙

𝑙 ⩴ 𝑛
𝑥
all
len
tup

𝑇 ⩴ 𝑛
𝑎
𝑥
𝑇 ⊙ 𝑇

Figure 2.3: E𝜋 Syntax [2]

The syntax for the E𝜋 is split into different formation rules where 𝑃 , 𝑄, 𝑅, … are processes,
𝐴 are actions, 𝑐 are channels, and 𝑇  are terms. We denote names with lowercase letters and
use specific letters to differentiate between them: 𝑎 being a channel name, 𝑥 being a variable,
𝑛 being a number and 𝑢 when we do not differentiate between 𝑎 and 𝑥. We assume variables
and names are distinct. 𝟎 is the inactive process that being a process which cannot reduce
further. We will sometimes leave out the trailing inactive process and write 𝑃  instead of 𝑃 .𝟎.
Parallel composition 𝑃 | 𝑄 consists of two processes in parallel and replication !𝑃  constructs an
unbounded number of the process 𝑃 . The process ∙ 𝑃  is used to denote an important step which
is used in the translation. E𝜋 also includes the match construct [𝑇1 ⋈ 𝑇2]𝑃 , 𝑄 where ⋈∈ {<, >
, ≤, ≥, =, ≠} and should be read as: when 𝑇1 ⋈ 𝑇2 evaluates to true it proceeds as 𝑃 , otherwise
𝑄. Restriction of a name to a process (𝜈𝑎.𝑃 ) is limited to only channel names. There are three
actions in E𝜋:
• Send (𝑐⟨𝑇

→
⟩) that sends a list of terms 𝑇

→
 on the channel 𝑐.

• Receive (𝑐(𝑥→)) which receives a list of terms and binds it to 𝑥→ on the channel 𝑐.

• Broadcast (𝑐:⟨𝑇
→

⟩) that sends 𝑇
→

 to everyone that listens on the channel 𝑐 simultaneously.

Restriction and input acts as a binder for names to processes. Channels in E𝜋 can be either
channel names or variables 𝑎, and 𝑥 respectively; additionally both names and variables can be
composed with a label 𝑎 ⋅ 𝑙. Labels are used in [2] to select specific behaviour of channels e.g.
arr ⋅ len (𝑥) will get the length of an array where arr ⋅ all (𝑥) will get all the elements of arr.
The idea of composite names comes from [23], though one key difference is that the composition
of names introduced by Carbone and Maffeis allow composite names of arity 𝑘 where in E𝜋 it

5



is restricted to an arity of two. Terms can be either 𝑛 ∈ ℕ, channel names, variables or binary
operations where ⊙ ∈ {+, −, ⋅, /, %} [2].

2.2.2 Semantics for E𝜋
The semantics of E𝜋 is in the style of a labelled reduction semantics similar to that of the
reduction semantics for the 𝜋-calculus. The structural congruence relation is defined as usual
[22].

(Rename)
(Par-𝟎)
(Par-A)
(Par-B)

𝑃 ≡ 𝑃 ′ by 𝛼-conversion
𝑃 | 𝟎 ≡ 𝑃
𝑃 |(𝑄 | 𝑅) ≡ (𝑃 | 𝑄) | 𝑅
𝑃 | 𝑄 ≡ 𝑄 | 𝑃

(Replicate)
(New-𝟎)
(New-A)
(New-B)

!𝑃 ≡ 𝑃 | !𝑃
𝜈𝑎.𝟎 ≡ 𝟎
𝜈𝑎.𝜈𝑏.𝑃 ≡ 𝜈𝑏.𝜈𝑎.𝑃
𝑃 | 𝜈𝑎.𝑄 ≡ 𝜈𝑎.(𝑃 | 𝑄)
when 𝑎 ∉ fv(𝑃 ) ∪ fn(𝑃 )

Figure 2.4: Structural congruence rules

The structural congruence rules given are quite common for most 𝜋-calculi and allow for rewrites
of processes. (Par-𝟎), (Par-A) and (Par-B) allow for restructuring parallel composition. (New-𝟎)
show that a restriction on the inactive process is inconsequential and (New-A) that the order
of restrictions can be swapped. (New-B) show that the scope of a restriction can be moved to
encompass a parallel process or the other way around, remove said process from the restriction.

6



(E-Com) 
𝑐⟨𝑇

→
⟩.𝑃 |𝑐(𝑥→).𝑄 ⟶

𝜏
𝑃 | 𝑄{ /𝑇

→

𝑥→}

(E-Broad) 
𝑐:⟨𝑇

→
⟩.𝑄 |𝑐(𝑥1

→ ).𝑃1|…|𝑐(𝑥𝑛
→ ).𝑃𝑛 ⟶

:𝑐
𝑄 | 𝑃1{ /𝑇

→

𝑥1
→ } | … | 𝑃𝑛{ /𝑇

→

𝑥𝑛
→ }

𝑃 ⟶
𝜏

𝑃 ′

(E-Par1) 
𝑃 | 𝑄 ⟶

𝜏
𝑃 ′ | 𝑄

𝑐 ∉ 𝑄 𝑃 ⟶
:𝑐

𝑃 ′

(E-Par2) 
𝑃 | 𝑄 ⟶

:𝑐
𝑃 ′ | 𝑄

𝑃 ⟶
𝑞

𝑃 ′ 𝑞 ≠: 𝑎
(E-Res1) 

𝜈𝑎.𝑃 ⟶
𝑞

𝜈𝑎.𝑃 ′

𝑃 ⟶
:𝑐

𝑃 ′ 𝑎 ∈ 𝑐
(E-Res2) 

𝜈𝑎.𝑃 ⟶
𝜏

𝜈𝑎.𝑃 ′

(E-Then) 
[𝑇1 ⋈ 𝑇2]𝑃 , 𝑄 ⟶

𝜏
𝑃

if 𝑇1 ⋈ 𝑇2 (E-Else) 
[𝑇1 ⋈ 𝑇2]𝑃 , 𝑄 ⟶

𝜏
𝑄

if 𝑇1 ⋈/ 𝑇2

𝑃 ≡ 𝑄 𝑄 ⟶
𝑞

𝑄′ 𝑃 ′ ≡ 𝑄′

(E-Struct) 
𝑃 ⟶

𝑞
𝑃 ′

Figure 2.5: Labelled reduction rules for E𝜋

The semantics for E𝜋 can be seen in Figure 2.5. It is similar to the one for the monadic 𝜋-calculus
introduced by Milner in [14], however to handle broadcast a labelled reduction semantic is
introduced to ensure that broadcast is handled before the process can continue. In the reduction
rules for communication and broadcast, when communication occur we substitute the names 𝑥→

with the received value 𝑇
→

 denoted as { /𝑇
→

𝑥→}. The substitution rules for E𝜋 can be found in

Appendix A.3. For the labelled semantic three arrow types are introduced: ⟶
𝜏

, ⟶
:𝑐

, and ⟶
𝑞

.
The reduction ⟶

𝜏
 is the regular reduction as seen in the 𝜋-calculus. The ⟶

:𝑐
 reduction is the

broadcast reduction which ensures that all parallel receivers on a broadcast channel receives
the broadcasted value. Lastly, ⟶

𝑞
 can be either a ⟶

𝜏
 or ⟶

:𝑐
 reduction [22].

𝑃 ⟶
𝜏

𝑃 ′

(Admn) 
𝑃 ⟶⚬ 𝑃 ′

𝑃 → 𝑃 ′

(NonAdm) 
∙ 𝑃 ⟶∙ 𝑃 ′

𝑃 ⟶
𝑠

𝑃 ′ 𝑠 ∈ {⚬, ∙}
(Both) 

𝑃 → 𝑃 ′

Figure 2.6: labelled semantics for important and administrative reductions as seen in [2]

In addition to the labelled reduction semantics, a labelled semantics for administrative and
important reductions is given in [2]. These two types of reductions are used in the translation
from ButF to E𝜋 and will be important when we define the correctness of our typed translation
in Chapter 4.

7



2.3 Translation of ButF to E𝜋
We will now introduce the translation from ButF to E𝜋 by Hüttel et. al, [2]. This will be used
to give a general understanding of the original translation and will be used when we compare
the new translation from BtF to TE𝜋 introduced in Chapter 4.1.

For a translation of a ButF expression 𝑒 to the corresponding E𝜋 process, the notation ⟦𝑒⟧ will
be used for the translated E𝜋 process. The notation ⟦𝑒⟧𝑜 is used when specifying an output
channel (that being the channel 𝑜) as parameter for a translated process that is used such that
we can communicate with that process, as seen in [2]. This approach originates from the work
by Milner where two translations to the 𝜋-calculus is shown: one of the lazy 𝜆-calculus and one
of the call-by-value 𝜆-calculus [14].

2.3.1 Translation
In the translation we will use certain lower-case letters for names to illustrate their function
such as ℎ being a channel name whose purpose is being a function, array or tuple handle and 𝑣
being a name signifying a value; that being the name received from a process that has already
finished evaluating. In the translation the notation ∙ marks important reductions in E𝜋 that
matches a transition in ButF [2].

Translation of Expressions
⟦𝑥⟧𝑜 = 𝑜⟨𝑥⟩

⟦𝑛⟧𝑜 = 𝑜⟨𝑛⟩

⟦𝜆𝑥.𝑒⟧𝑜 = 𝜈ℎ.(𝑜⟨ℎ⟩ | !ℎ(𝑥, 𝑟).⟦𝑒⟧𝑟)

⟦𝑒1𝑒2⟧𝑜 = 𝜈𝑜1.𝜈𝑜2.(⟦𝑒1⟧𝑜1
| ⟦𝑒2⟧𝑜2

| 𝑜1(ℎ).𝑜2(𝑣). ∙ ℎ⟨𝑣, 𝑜⟩)

⟦𝑒1[𝑒2]⟧𝑜 = 𝜈𝑜1.𝜈𝑜2.(⟦𝑒1⟧𝑜1
| ⟦𝑒2⟧𝑜2

| 𝑜1(ℎ).𝑜2(𝑖). ∙ [𝑖 ≥ 0]ℎ ⋅ 𝑖(𝑖, 𝑣).𝑜⟨𝑣⟩, 𝟎)

⟦if 𝑒1 then 𝑒2 else 𝑒3⟧𝑜 = 𝜈𝑜1.(⟦𝑒1⟧𝑜1
| 𝑜1(𝑛). ∙ [𝑛 ≠ 0]⟦𝑒2⟧𝑜, ⟦𝑒3⟧𝑜)

⟦𝑒1 ⊙ 𝑒2⟧𝑜 = 𝜈𝑜1.𝜈𝑜2.(⟦𝑒1⟧𝑜1
| ⟦𝑒2⟧𝑜2

| 𝑜1(𝑣1).𝑜2(𝑣2).𝑜⟨𝑣1 ⊙ 𝑣2⟩)

Figure 2.7: Translation of basic ButF expressions

The translation of variables and numbers is the same as in [14] with the channel 𝑜 being the
link. In the translation of abstraction, the new name ℎ is introduced, which is a handle to the
process. As we cannot transmit functions, this works as a pointer to the function. A replicated
process is receiving on ℎ, waiting for the parameter (𝑥) and a return channel (𝑟) which is used
in the translation of the expression ⟦𝑒⟧𝑟.

In application, we have three processes in parallel, the translations of expressions ⟦𝑒1⟧𝑜1
 and

⟦𝑒2⟧𝑜2
 and a process waiting for an output from the two processes. Upon receiving ℎ and 𝑣 the

process will output the value and return channel on ℎ (the channel the value after evaluation
will be output on). Recall that abstraction waits for an input on ℎ and that connects abstraction
and application.

8



Indexing is translated similarly to application. First, we evaluate the two sub-expressions and
receive the array handle (the name ℎ) from ⟦𝑒1⟧𝑜1

, and the index (the name 𝑖) from ⟦𝑒2⟧𝑜2.

Then we match the index and if its larger or equal to 0, we receive the value on the composite
name ℎ ⋅ 𝑖 and outputs it, else we proceed as the inactive process 𝟎.

For the translation of branching we make use of the match constructor in TE𝜋. We first evaluate
the translation of sub-expression ⟦𝑒1⟧𝑜1

, which will then output the result on the channel 𝑜1.

Upon receiving the name 𝑛 (which specify a number as seen in Chapter 2.2.1) we match it with
0 and proceed as either ⟦𝑒2⟧𝑜 or ⟦𝑒3⟧𝑜. As branching can only proceed as either one of the two

we can use the same output channel (𝑜) for both of them.

In addition we have introduced the translation of binary operation which is missing in [2]. In
the translation of binary operation we first evaluate the two sub-expressions and receive the
values on their respective output channel. We then send the value on 𝑜 with the corresponding
TE𝜋 binary operation.

Translation of Arrays and Tuples
To define the translation of arrays we need a process 𝐶𝑒𝑙𝑙 as introduced in [2].

𝐶𝑒𝑙𝑙(ℎ, 𝑖, 𝑣) = !ℎ ⋅ all (𝑟).𝑟⟨𝑖, 𝑣⟩ | !ℎ ⋅ 𝑖⟨𝑖, 𝑣⟩ (1)

The 𝐶𝑒𝑙𝑙 process is defined with a handle (ℎ), an index (𝑖) and a value (𝑣). The reason for
the handle is that 𝐶𝑒𝑙𝑙 is defined using the same approach as translation of functions in the 𝜋
-calculus - the handle is pointer to the cell. 𝐶𝑒𝑙𝑙 has two composed names: the first name (ℎ ⋅
all) is waiting for a request for all the values in the array. The second composed name (ℎ ⋅ 𝑖)
is waiting for a request for a specific element in the array.

⟦[𝑒1, …, 𝑒𝑛]⟧𝑜 = 𝜈𝑜1.….𝜈𝑜𝑛.𝜈ℎ.(∏
𝑛

𝑖=1
⟦𝑒𝑖⟧𝑜𝑖

| 𝑜1(𝑣1).….𝑜𝑛(𝑣𝑛).

(∏
𝑛

𝑖=1
𝐶𝑒𝑙𝑙(ℎ, 𝑖 − 1, 𝑣𝑖) | ℎ ⋅ len⟨𝑛⟩ | 𝑜⟨ℎ⟩))

⟦(𝑒1, …, 𝑒𝑛)⟧𝑜 = 𝜈𝑜1.….𝜈𝑜𝑛.(∏
𝑛

𝑖=1
⟦𝑒𝑖⟧𝑜𝑖

| 𝑜1(𝑣1).….𝑜𝑛(𝑣𝑛).𝜈ℎ.(!ℎ ⋅ tup⟨𝑣1, …𝑣𝑛⟩ | 𝑜⟨ℎ⟩))

Figure 2.8: Translation of arrays and tuples

Tuples and arrays are translated similarly. For array we translate each sub-expression and
receive the evaluated values on each of their output channel. When we have received the values
we can then create the array structure using the 𝐶𝑒𝑙𝑙 process for each of the values we have
received. The sub-process ℎ ⋅ len⟨𝑛⟩ outputs the length of the array which will be used in the
translation of the array operation size.

For the translation of tuples, we first we translate each sub-expression and receive the evaluated
values over each of their output channel as in arrays. The output channel ℎ ⋅ tup is a restriction
for communication such that a tuple can only be used in place expecting a tuple.

9



Translation of Array Operations

⟦size 𝑒1⟧𝑜 = 𝜈𝑜1.(⟦𝑒1⟧𝑜1
| 𝑜1(ℎ).ℎ ⋅ len (𝑛). ∙ 𝑜⟨𝑛⟩)

⟦iota 𝑒1⟧𝑜 = 𝜈𝑜1.𝜈𝑟.𝜈ℎ.(⟦𝑒1⟧𝑜1
| 𝑜1(𝑛). 𝑅𝑒𝑝𝑒𝑎𝑡(𝑛, 𝑟, 𝑑) |

!𝑟(𝑖, 𝑣). 𝐶𝑒𝑙𝑙(ℎ, 𝑖, 𝑣) | ∙ 𝑑().(ℎ. len⟨𝑛⟩ | 𝑜⟨ℎ⟩))

⟦map 𝑒1⟧𝑜 = 𝜈𝑜1.𝜈ℎ1.(⟦𝑒1⟧𝑜1
| 𝑜1(𝑥).𝑥 ⋅ tup (𝑓, ℎ).ℎ ⋅ len (𝑛).

𝜈𝑣1.ℎ ⋅ all:⟨𝑣1⟩.𝜈𝑟.𝜈𝑑.(𝑅𝑒𝑝𝑒𝑎𝑡(𝑛, 𝑟, 𝑑) |

!𝑣1(𝑖, 𝑣).𝜈𝑟1.𝑓⟨𝑣, 𝑟1⟩.𝑟1(𝑣2).𝑟(_, _). 𝐶𝑒𝑙𝑙(ℎ1, 𝑖, 𝑣2) |

𝜈𝑜2.𝑓⟨0, 𝑜2⟩. ∙ 𝑑().𝑜⟨ℎ1⟩ | !ℎ1 ⋅ len⟨𝑛⟩))

Figure 2.9: Translation of array operations

One important thing to note of the translation of array operations is our presentation have
some important reductions in the translation of size and iota, which cannot be seen in [2].

The translation of size is quite simple. First we translate the expression ⟦𝑒1⟧, which is an array.
On its output channel we receive its handle which we can use to get the size of the array.
Remember that the translation of arrays outputs the length over the channel ℎ ⋅ len. Here we
receive the length of the array and will output on the return channel 𝑜.

For the translation of map and iota we introduce an auxiliary process called 𝑅𝑒𝑝𝑒𝑎𝑡 as seen
in [2].

𝑅𝑒𝑝𝑒𝑎𝑡(𝑠, 𝑟, 𝑑) = 𝜈𝑐.(!𝑐(𝑛).([𝑛 ≥ 0](𝑟⟨𝑛 − 1, 𝑛 − 1⟩ | 𝑐⟨𝑛 − 1⟩), 𝑑⟨⟩) | 𝑐⟨𝑠⟩) (2)

𝑅𝑒𝑝𝑒𝑎𝑡 is, as the name suggest, a process that will repeatedly communicate with itself a number
of times. This is similar to a restricted replication were instead of an unbounded number
iteration the process is limited to a set number of iterations. Before a countdown can begin, an
output of the initial value that will counted down from (that being 𝑠), is sent on 𝑐. This will
trigger the next process that will do the actual repeating - this is seen by the replicated input
channel 𝑐 that upon receiving a number 𝑛 does a match with 0 and will proceed with either:
1. Match succeeds: Output 𝑛 − 1 on the return channel 𝑟 in parallel with outputting the same

on its own channel 𝑐.
2. Match fails: Output an empty message on channel 𝑑 to signal we are finished.

iota uses repeat with the number (𝑛) we receive from evaluating the translated process ⟦𝑒1⟧.
In parallel with 𝑅𝑒𝑝𝑒𝑎𝑡 we receive the index and the value (this being the same number) and
then construct the array cell. When 𝑅𝑒𝑝𝑒𝑎𝑡 has finished we can send the array handle (ℎ) on
the output channel (𝑜).

For the translation of map we first need the evaluation of the translation of ⟦𝑒1⟧ as that will
return the arguments (𝑥) on 𝑜1. On the 𝑥 ⋅ tup channel we will receive the function we will
apply (𝑓) and the array handle (ℎ). With the array handle we get the length of the array which
will be used later. We then do a broadcast to all array element of a certain name 𝑣1, which
will have all the values from the array. We use the 𝑅𝑒𝑝𝑒𝑎𝑡 process with the array length we

10



received earlier. In parallel we receive the index and value on 𝑣1 followed by sending the value
and return channel over the function channel (𝑓). On this return channel we will receive the
new value. We can then update the cell array, when have received on the 𝑅𝑒𝑝𝑒𝑎𝑡 return channel
(𝑟). The second last part is a check to ensure we are working with a function by sending a 0
over the function channel. We cannot proceed before 𝑅𝑒𝑝𝑒𝑎𝑡 has finished which we will know
when we receive on channel 𝑑. Finally we can send the new array handle.

2.3.2 Examples of Translations
We will now give three examples of a translation from ButF to E𝜋. The first is an example of
indexing, the second of abstraction and the third of the map function. Different parts of the
translations have been marked to help with readability.

Example of Indexing
This first example is the translation of the expression [2, 3][1], indexing of an array consisting
of two numbers. When translating we will have the following form for indexing ⟦[2, 3][1]⟧𝑜

expanding to Figure 2.10.

⟦[2, 3][1]⟧𝑜 = 𝜈𝑜arr.(𝜈𝑜1.(𝜈𝑜2.(𝜈𝑜3.(𝜈ℎ1.(

⟦2⟧𝑜2

⏠𝑜2⟨2⟩ |

⟦3⟧𝑜3

⏠𝑜3⟨3⟩ |
receiver

⏠⏠⏠⏠𝑜2(𝑣1).𝑜3(𝑣2)

|
cell_0

⏠⏠⏠⏠⏠⏠⏠⏠⏠⏠⏠⏠!(ℎ1 ⋅ all (𝑟0).𝑟0⟨0, 𝑣1⟩) | !(ℎ1 ⋅ 0⟨0, 𝑣1⟩)

|
cell_1

⏠⏠⏠⏠⏠⏠⏠⏠⏠⏠⏠⏠!(ℎ1 ⋅ all (𝑟1).𝑟1⟨1, 𝑣2⟩) | !(ℎ1 ⋅ 1⟨1, 𝑣2⟩)|
len

⏠⏠⏠⏠!(ℎ1 ⋅ len⟨2⟩)|
handle

⏠𝑜arr⟨ℎ1⟩ ))) |
index

⏠𝑜1⟨1⟩

|
access

⏠⏠⏠⏠⏠⏠⏠⏠⏠⏠⏠⏠𝑜arr(ℎ0).𝑜1(𝑖).[𝑖 ≥ 0](ℎ0 ⋅ 𝑖(𝑖, 𝑣).𝑜⟨𝑣⟩), 𝟎))
Figure 2.10: Translation of the expression: [2,3][1]

If we take a look at the translation of indexing from Figure 2.7 we first need to translate the
two sub-expressions: The first being the array (⟦𝑒1⟧), the second being the number we want to
index (⟦𝑒2⟧).

For the first sub-expression (the translation of the array) we first need to translate each element
in the array. This can be seen in the first two marks (2 and 3) where we output the number
on their respective output channel. This matches the translation of numbers seen in Figure 2.7.
The next step is receiving the values (marked with receiver), and then construct the array with
the 𝐶𝑒𝑙𝑙 process. The whole array consists of two cells (each marked as cell_0 and cell_1)
constructed as seen in 𝐶𝑒𝑙𝑙 process, the composite name with length of the array, and the handle
of the array.

The second sub-expression is quite simple. It is just the output of the indexing number on the
channel 𝑜1 which has been marked with 1 above.

For the final part (marked as access), we receive the array handle on channel 𝑜0 and the indexing
number on channel 𝑜1. This is followed by a match on the indexing number we received. If the
match succeeds (which we know it will in this case) we can use the handle and index the get
the value at that index, and output it on channel 𝑜. If the match fails we go to the 𝟎 process.

11



Example of Abstraction
The second example is the translation of the expression 𝜆𝑥.𝑥 + 1, an abstraction that takes
a value x and adds 1 to it. When translating we will have the following form for abstraction
⟦𝜆𝑥.𝑥 + 1⟧𝑜 expanding to Figure 2.11

⟦𝜆𝑥.𝑥 + 1⟧𝑜 = 𝜈ℎ0.(𝑜⟨ℎ0⟩ | !(ℎ0(𝑥, 𝑟0).⟦𝑥 + 1⟧𝑟))⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡
lambda h_0

⟦𝑥 + 1⟧𝑟 = 𝜈𝑜0.(𝜈𝑜1.(
𝑥

⏠𝑜0⟨𝑥⟩ |
1

⏠𝑜1⟨1⟩ |
receiver

⏠⏠⏠⏠𝑜0(𝑣0).𝑜1(𝑣1).
binop

⏠⏠⏠𝑟0⟨𝑣0 + 𝑣1⟩))⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡
𝑥+1

Figure 2.11: Translation of 𝜆𝑥.𝑥 + 1

If we take a look at the translation of a simple abstraction in Figure 2.11 we first need to create
a function handle to receive the 𝑥 and the return location 𝑟0 and send it to the output channel
𝑜. Then we have to translate the sub-expression ⟦𝑒⟧𝑟0

 which is a binary operation between a

variable 𝑥 and the number 1. The first part of the translation of the body ⟦𝑒⟧𝑟0
 is translating

the variable 𝑥 and number 1 followed by receiving the values (marked with receiver), and then
sending the result of the binary operation (marked binop) in 𝑟0.

Example of Map
For our last example we have we have the expression map (𝜆𝑥. size 𝑥, [[1, 2], [3, 4]]), a mapping
of the size operation to an array of arrays. The translation of map is quite long and therefore
we have split it into smaller sub-translations.

First we have the translation of the two inner arrays.

⟦[1, 2]⟧𝑜𝐵
= 𝜈𝑜1.𝜈𝑜2.𝜈ℎ𝐴.(

⟦1⟧01 and ⟦2⟧𝑜2

⏠⏠⏠𝑜1⟨1⟩ | 𝑜2⟨3⟩ |
receiver

⏠⏠⏠⏠𝑜1(𝑣1).𝑜2(𝑣2).

(𝐶𝑒𝑙𝑙(ℎ𝐴, 0, 𝑣1) | 𝐶𝑒𝑙𝑙(ℎ𝐴, 1, 𝑣2) | ℎ𝐴 ⋅ len⟨2⟩ | 𝑜𝐴⟨ℎ𝐴⟩⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡
array: [1,2]

)

⟦[3, 4]⟧𝑜𝐵
= 𝜈𝑜3.𝜈𝑜4.𝜈ℎ𝐵.(

⟦3⟧03 and ⟦4⟧𝑜4

⏠⏠⏠𝑜3⟨3⟩ | 𝑜4⟨4⟩ |
receiver

⏠⏠⏠⏠𝑜3(𝑣3).𝑜4(𝑣4).

(𝐶𝑒𝑙𝑙(ℎ𝐵, 0, 𝑣3) | 𝐶𝑒𝑙𝑙(ℎ𝐵, 1, 𝑣4) | ℎ𝐵 ⋅ len⟨2⟩ | 𝑜𝐵⟨ℎ𝐵⟩⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡
array: [3,4]

))

The value located is each translated using the translation of numbers. When we have received
the translated value (marked as receiver) we can then create the array using the 𝐶𝑒𝑙𝑙 process:

𝐶𝑒𝑙𝑙(ℎ𝐵, 0, 𝑣3) = !ℎ𝐵 ⋅ all (𝑟).𝑟⟨0, 𝑣3⟩ | !ℎ ⋅ 0⟨0, 𝑣3⟩

Next we have the translation of the outer array. When we receive the array handles from the
inner arrays we can construct the outer array using the 𝐶𝑒𝑙𝑙 process with the handles as values
on the index.

12



⟦[[1, 2], [3, 4]]⟧𝑜arr
= 𝜈𝑜𝐴.𝜈𝑜𝐵.𝜈ℎ.(⟦[1, 2]⟧𝑜𝐴

| ⟦[3, 4]⟧𝑜𝐵
|

Receive inner array handles

⏠⏠⏠⏠𝑜𝐴(ℎ𝐴).𝑜𝐵(ℎ𝐵) .

(𝐶𝑒𝑙𝑙(ℎ, 0, ℎ𝐴) | 𝐶𝑒𝑙𝑙(ℎ, 1, ℎ𝐵) | ℎ ⋅ len⟨2⟩ | 𝑜arr⟨ℎ⟩⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡
array: [[1,2],[3,4]]

))

We also have the translation of the abstraction using the size operation. Following the trans-
lation rules in Figure 2.7 and Figure 2.9 we get the following:

⟦𝜆𝑥. size 𝑥⟧𝑜𝐹
=

Abstraction
⏠⏠⏠⏠⏠⏠⏠⏠⏠⏠⏠⏠⏠⏠⏠⏠⏠⏠⏠⏠𝜈ℎ𝐹 .(𝑜𝐹 ⟨ℎ𝐹 ⟩ | !ℎ𝐹 (𝑥, 𝑟).𝜈𝑜𝑥.(𝑜𝑥⟨𝑥⟩ | 𝑜𝑥(ℎ).ℎ ⋅ len (𝑛). ∙ 𝑟⟨𝑛⟩)⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡

⟦size 𝑥⟧𝑟

)

We can now create the tuple with the function, and the array we apply the function to. We
insert the translation of the function and the array. When we receive the handles to both we
can then output tuple handle on the 𝑜tup channel such that communication with the tuple can
occur.

⟦(𝜆𝑥. size 𝑥, [[1, 2], [3, 4]])⟧𝑜tup = 𝜈𝑜𝐹 .𝜈𝑜arr.(
Tuple elements

⏠⏠⏠⏠⏠⏠⏠⏠⏠⏠⟦𝜆𝑥. size 𝑥⟧𝑜𝐹
| ⟦[[1, 2], [3, 4]]⟧𝑜arr

| 𝑜𝐹 (𝑓).𝑜arr(ℎin)⏡⏡⏡⏡
Function and array handle

.𝜈ℎtup.(!ℎtup ⋅ tup⟨𝑓, ℎin⟩ | 𝑜tup⟨ℎtup⟩⏡⏡⏡⏡⏡⏡⏡⏡
Communication with the tuple

))

Finally we have the translation of the full expression. First we have the translation of our tuple
as seen above. When we have received all the handles from the tuple, we can then get the
values from the input array. Then we can start the 𝑅𝑒𝑝𝑒𝑎𝑡 process to apply the function to
each element. When we receive the value from the function we can the create the cell in the
resulting array using the 𝐶𝑒𝑙𝑙 process.

⟦map (𝜆𝑥. size 𝑥, [[1, 2], [3, 4]])⟧𝑜 = 𝜈𝑜tup.𝜈ℎout.(⟦(𝜆𝑥. size 𝑥, [[1, 2], [3, 4]])⟧𝑜tup⏡⏡⏡⏡⏡⏡⏡⏡⏡
Tuple

| 𝑜tup(ℎtup).ℎtup ⋅ tup (𝑓, ℎin)⏡⏡⏡⏡⏡⏡⏡⏡
Unpack tuple

.ℎin ⋅ len (𝑛)⏡⏡⏡
Input array size

.𝜈ℎall.

ℎin ⋅ all:⟨ℎall⟩⏡⏡⏡⏡
Get input array elements

.𝜈𝑟.𝜈𝑑.(𝑅𝑒𝑝𝑒𝑎𝑡(𝑛, 𝑟, 𝑑) |

!ℎall(𝑖, 𝑣sub).𝜈𝑟1.𝑓⟨𝑣sub, 𝑟1⟩⏡⏡⏡
Function call

. 𝑟1(𝑠𝑧)⏡
return value

.𝑟(_, _).

𝐶𝑒𝑙𝑙(ℎout, 𝑖, 𝑠𝑧)⏡⏡⏡⏡
Fill resulting array

| ∙ 𝑑()⏡
𝑅𝑒𝑝𝑒𝑎𝑡 finished

.𝑜⟨ℎout⟩ | !ℎout ⋅ len⟨𝑛⟩))

When we receive on 𝑑 we know the 𝑅𝑒𝑝𝑒𝑎𝑡 process has finished, and so the resulting array after
a map has been created which we can then output.

13



3 A Typed Setting
In this chapter, we introduce typed variations of ButF and E𝜋, henceforth denoted as BtF
and TE𝜋. We start by introducing a simple type system for ButF, an attempt in adapting the
simple type system of Futhark introduced in [20] to BtF. Following this we provide a proof of
soundness for BtF. Similarly, for E𝜋 we introduce a type system that handles composite names
and prove the soundness of the type system.

3.1 Basic Typed Futhark
We extend ButF with a type system inspired by the original type system from [20] and the
simply typed 𝜆-calculus [24]. It should be noted that an original type system for ButF was
introduced by Jensen et. al in [22] but the syntax and semantics for ButF has changed in [2].

3.1.1 Types for BtF
Type judgements are of the form: Γ ⊢ 𝑒 : 𝜏 , where Γ is a type environment, 𝑒 is a BtF expression
and 𝜏  is a type. Type judgements should be read as: given an environment Γ, then the expression
𝑒 has type 𝜏 .

Definition 3.1 (Type environment):  An environment Γ is partial function from variables
to types

𝐕𝐚𝐫 ⇀ 𝑻

We have chosen the primitive types of BtF based on the semantics from [2] and the Futhark
documentation [25]. The primitive types introduced in [25] are signed and unsigned integers,
floating-points, and boolean types. As of now, we have only chosen integers as in [2], but a
future extension would be to have floating-point types as well as boolean types. In our case,
booleans could have been used in the conditional expression but as seen in Figure 3.1 that is
handled by evaluating the value of an integer where 0 is false and everything else is true.

Definition 3.2 (Types 𝑻 ):

𝜏 ⩴ 𝐈𝐧𝐭
| [𝜏 ]

| (𝜏→)

| 𝜏1 → 𝜏2

(Integer)
(Array)
(Tuple)

(Abstraction)

As mentioned earlier the only primitive type we have is 𝐈𝐧𝐭. This simplifies the type system but
still allow to show the core of Futhark. In addition to the primitive type 𝐈𝐧𝐭 we have two types
for handling collections of elements: tuple types (𝜏→) and array types [𝜏 ]. The tuple and array

types can be nested meaning they can have an arbitrary depth. Lastly we have the abstraction
type which can model higher order functions using tuples.

14



3.1.2 Syntax and Semantics of BtF
The syntax for BtF is the same as in ButF (Figure 2.1) however, the abstraction rule is changed
to require a type annotation as it is the only binder construct in BtF.

𝑒 ⩴ 𝑏
𝑥
[𝑒1, …, 𝑒𝑛]
𝑒1[𝑒2]
𝜆(𝑥 : 𝜏).𝑒1
𝑒1𝑒2

(𝑒1, …, 𝑒𝑛)
if 𝑒1 then 𝑒2 else 𝑒3

𝑏 ⩴ 𝑛
map
iota
size
⊙

Figure 3.1: BtF syntax

With the way the syntax of BtF is constructed we have three functions map, iota and size
that needs a type to enforce correct usage. The way we solve this is by introducing an implicit
type context (Definition 3.3). The implicit type context contains the types for the three array
functions and is used to extend the type environment (Definition 3.1) as follows Γ ∪ ∑.

Definition 3.3 (Implicit type context):

∑ =
{{
{
{{map : (𝜏1 → 𝜏2, [𝜏1]) → [𝜏2],
iota : 𝐈𝐧𝐭 → [𝐈𝐧𝐭],
size : [𝜏 ] → 𝐈𝐧𝐭 }}

}
}}

The semantics of BtF is the same as seen in Chapter 2.1.2 with a type annotation in abstraction.

3.1.3 Type rules
To adapt the simple type system of Futhark in BtF we took a look at the type rules introduced
by Henriksen in [20]. In the cases where we were unable to create similar type rules due to the
difference between BtF and Futhark we took inspiration from the simply typed 𝜆-calculus. The
type rules for BtF can be found in Figure 3.2.

(BT-If) is an interesting case to look at. We first look at the type of 𝑒1 where it must be of
type: 𝐈𝐧𝐭, such that it complies with the semantics given in Figure 3.1. The most interesting
part is that we enforce the types of the two branches to be the same. This agrees with what we
encountered when we tested conditional branching in the Futhark language and the type rule
found in [20].

Typing of (BT-Array) and (BT-Tuple) look very similar. For (BT-Array) we require the array to
be homogeneous, that being each element of the array must have the same type. In comparison,
tuples are heterogeneous, that being we allow each element to have a different type. If we
restricted tuples in the same way as array our semantic rule for map would no longer hold.

In the (BT-Index) rule we need to type the two expressions. 𝑒1 must be typed as an array type
of 𝜏1 and 𝑒2 as 𝐈𝐧𝐭. The resulting type of index is 𝜏1 - the type of the elements in the array.

15



In the (BT-Abs) rule we need to type the abstraction body, the expression 𝑒 where 𝑥 has the
type 𝜏1. The expression body has the type 𝜏2 if well-typed, giving the abstraction the resulting
arrow type 𝜏1 → 𝜏2.

In the (BT-App) rule, 𝑒1 has to be typed as an arrow type 𝜏1 → 𝜏2 otherwise 𝑒1 is not an
abstraction. We then require that 𝑒2 is typed as 𝜏1 enforcing that the parameter has to have
the correct type. The resulting type of application is the result type of the abstraction 𝜏2

(BT-Int) 
Γ ⊢ 𝑛 : 𝐈𝐧𝐭

Γ(𝑥) = 𝜏
(BT-Var) 

Γ ⊢ 𝑥 : 𝜏

Γ ⊢ 𝑒1 : 𝐈𝐧𝐭 Γ ⊢ 𝑒2 : 𝐈𝐧𝐭
Γ ⊢ ⊙ : 𝐈𝐧𝐭 → 𝐈𝐧𝐭 → 𝐈𝐧𝐭

(BT-Bin) 
Γ ⊢ 𝑒1 ⊙ 𝑒2 : 𝐈𝐧𝐭

Γ ⊢ 𝑒1 : 𝐈𝐧𝐭 Γ ⊢ 𝑒2 : 𝜏
Γ ⊢ 𝑒3 : 𝜏

(BT-If)
Γ ⊢ if 𝑒1 then 𝑒2 else 𝑒3 : 𝜏

∀𝑖 ∈ {1, …, 𝑛}Γ ⊢ 𝑒𝑖 : 𝜏
(BT-Array)

Γ ⊢ [𝑒1, …, 𝑒𝑛] : [𝜏 ]

∀𝑖 ∈ {1, …, 𝑛} Γ ⊢ 𝑒𝑖 : 𝜏𝑖
(BT-Tuple)

Γ ⊢ (𝑒1, …, 𝑒𝑛) : (𝜏1, …, 𝜏𝑛)

Γ ⊢ 𝑒1 : [𝜏 ] Γ ⊢ 𝑒2 : 𝐈𝐧𝐭
(BT-Index)

Γ ⊢ 𝑒1[𝑒2] : 𝜏

Γ, (𝑥 : 𝜏1) ⊢ 𝑒 : 𝜏2
(BT-Abs)

Γ ⊢ (𝜆𝑥 : 𝜏1).𝑒 : 𝜏1 → 𝜏2

Γ ⊢ 𝑒1 : 𝜏1 → 𝜏2 Γ ⊢ 𝑒2 : 𝜏1
(BT-App)

Γ ⊢ 𝑒1𝑒2 : 𝜏2

Figure 3.2: Type rules of BtF

3.2 Soundness of BtF
With the type system introduced, one of the properties of the type system we want is that of
soundness. For this we give the following theorem.

Theorem 3.1 (Soundness of BtF):  Let 𝑒 be a BtF expression then
1. (Preservation) if Γ ⊢ 𝑒 : 𝜏  and 𝑒 → 𝑒' then Γ ⊢ 𝑒′ : 𝜏
2. (Progress) if ⊢ 𝑒 : 𝜏  then 𝑒 = 𝑣 ∈ 𝒱 or ∃𝑒′.𝑒 → 𝑒′

The soundness theorem consists of two parts: preservation and progress. Preservation states
that if we are well-typed and can take a transition step then the resulting expression is also
well-typed. Progress states that either the expression is a value or there exists an 𝑒′ we can
reach after taking a transition step.

16



3.2.1 BtF Lemmas
To help prove Theorem 3.1 we need formulate the following lemmas. Lemma 3.1 is necessary
for connecting values and types. Lemma 3.2 states that we can add a new fresh variable to the
type environment without conflicts. Lemma 3.3 states that substitution of variables are type
preserving. The full proof of all the lemmas can be found in Appendix B.1 to Appendix B.3.

Lemma 3.1 (Inversion):  If ⊢ 𝑣 : 𝜏  then
1. if 𝜏 = 𝐈𝐧𝐭 then 𝑣 is a constant.
2. if 𝜏 = 𝜏1 → 𝜏2 then 𝑣 is an abstraction.
3. if 𝜏 = [𝜏] then 𝑣 is an array of values.
4. if 𝜏 = (𝜏→) then 𝑣 is a tuple of values.

Lemma 3.2 (Weakening):  If Γ ⊢ 𝑒 : 𝜏  and 𝑥 ∉ dom(Γ), then Γ, 𝑥 : 𝜏 ′ ⊢ 𝑒 : 𝜏

Lemma 3.3 (Preservation of types under substitution):  If Γ, 𝑥 : 𝜏 ⊢ 𝑒 : 𝜏 ′ and Γ ⊢ 𝑠 : 𝜏 ,
then Γ ⊢ 𝑒{𝑥 ↦ 𝑠} : 𝜏 ′

3.2.2 Proving Soundness
We have split the proof of Theorem 3.1 into two parts; one for preservation and one for progress.
As the whole proof is quite long we will in this section only showcase some of the cases for
the proof. The full proof of preservation and progress can be found in Appendix B.4 and
Appendix B.5, respectively.

Proof of Preservation
We will prove preservation by induction on the derivation of Γ ⊢ 𝑒 : 𝜏  using case analysis on
the last rule in the derivation.

(𝐁𝐓-𝐈𝐟): Then 𝑒 = if 𝑒1 then 𝑒2 else 𝑒3 and 𝑒1 : 𝐈𝐧𝐭 and 𝑒2 : 𝜏  and 𝑒3 : 𝜏 . By assuming
𝑒 → 𝑒′ exists, we then derive the following applicable reduction rules:

(𝐁-𝐈𝐟𝐭): then 𝑒′ = 𝑒2 and from the typing of 𝑒2 we get Γ ⊢ 𝑒′ : 𝜏 .

(𝐁-𝐈𝐟𝐟): then 𝑒′ = 𝑒3 and from the typing of 𝑒3 we get Γ ⊢ 𝑒′ : 𝜏 .

(𝐁-𝐈𝐟): then we get 𝑒′ = if 𝑒′
1 then 𝑒2 else 𝑒3, where 𝑒1 → 𝑒′

1. Using the inductive
hypothesis we get that Γ ⊢ 𝑒′

1 : 𝐈𝐧𝐭, therefore using (BT-If) we get Γ ⊢ 𝑒′ : 𝜏 .

(𝐁𝐓-𝐀𝐩𝐩): Then 𝑒 = 𝑒1𝑒2, and Γ ⊢ 𝑒1 : 𝜏1 → 𝜏  and Γ ⊢ 𝑒2 : 𝜏1. By assuming 𝑒 → 𝑒′ exists,
and using case analysis we derive the following applicable reduction rules:

…:

17



(𝐁-𝐀𝐛𝐬): Then 𝑒1 = 𝜆(𝑥 : 𝜏2).𝑒3 and 𝑒2 = 𝑣 and 𝑒′ = 𝑒3{𝑥 ↦ 𝑣}. Because Γ ⊢ 𝑒1 : 𝜏1 →
𝜏  and 𝑒1 = 𝜆(𝑥 : 𝜏2).𝑒3 by inspection of the type rules it must hold that 𝜏1 = 𝜏2 giving
us Γ ⊢ 𝜆(𝑥 : 𝜏1).𝑒3 : 𝜏1 → 𝜏 . Then by inspection the derivation must end with (BT-Abs)
giving us Γ, (𝑥 : 𝜏1)𝑒3 : 𝜏 . Then because Γ ⊢ 𝑒2 : 𝜏1 and 𝑒2 = 𝑣 it must hold that Γ ⊢ 𝑣 :
𝜏1. Therefore, using the Lemma 3.3 we have that Γ ⊢ 𝑒3{𝑥 ↦ 𝑣} : 𝜏 .

…:

Proof of Progress
We will prove progress by induction on the typing derivation of ⊢ 𝑒 : 𝜏  (the empty environment).

(𝐁𝐓-𝐈𝐟): We know from (BT-If) that 𝑒1 has type 𝐈𝐧𝐭. By the inductive hypothesis we know
that either 𝑒1 ∈ 𝒱 or ∃𝑒′

1.𝑒1 → 𝑒′
1. This gives us two cases:

• 𝑒1 ∉ 𝒱
• 𝑒1 ∈ 𝒱

𝒆𝟏 ∉ 𝓥: In the case that 𝑒1 ∉ 𝒱 then by our inductive hypothesis 𝑒1 → 𝑒′
1. We

can then apply (B-If). We can see that given the premise we can take the step
if 𝑒1 then 𝑒2 else 𝑒3 → if 𝑒′

1 then 𝑒2 else 𝑒3 and therefore progress holds.

𝒆𝟏 ∈ 𝓥: In the case that 𝑒1 ∈ 𝒱 then it must be number (that is the only value of type
𝐈𝐧𝐭 by proof of Lemma 3.1). In that case one of the two following rules applies: (B-Ift)
or (B-Iff).

First case we apply (B-Ift) where given the premise 𝑒 can take the step
if 𝑒1 then 𝑒2 else 𝑒3 → 𝑒2 and therefore progress holds.

Second case we apply (B-Iff) where given the premise 𝑒 can take the step
if 𝑒1 then 𝑒2 else 𝑒3 → 𝑒3 and therefore progress holds.

(𝐁𝐓-𝐀𝐩𝐩): We know by (BT-App) that 𝑒1 has type 𝜏1 → 𝜏2. By the induction hypothesis
we know that 𝑒1 ∈ 𝒱 or ∃𝑒′

1.𝑒1 → 𝑒′
1 and 𝑒2 ∈ 𝒱 or ∃𝑒′

2.𝑒2 → 𝑒′
2. That gives us four cases:

• 𝑒1, 𝑒2 ∉ 𝒱
• 𝑒1, 𝑒2 ∈ 𝒱
• 𝑒1 ∈ 𝒱 and 𝑒2 ∉ 𝒱
• 𝑒2 ∈ 𝒱 and 𝑒1 ∉ 𝒱.

𝒆𝟏, 𝒆𝟐 ∉ 𝓥: In the case that 𝑒1 and 𝑒2 are not values then by our inductive hypothesis
𝑒1 → 𝑒′

1 and 𝑒2 → 𝑒′
2. If 𝑒1 takes a step then (B-App1) applies. From (B-App1) we have

that given the premise we can take the step 𝑒1𝑒2 → 𝑒′
1𝑒2 and therefore progress holds.

if 𝑒2 takes a step then (B-App2) applies. From (B-App2) we have that given the premise
we can take the step 𝑒1𝑒2 → 𝑒1𝑒′

2 and therefore progress holds.

𝒆𝟏 ∉ 𝓥: In the case that 𝑒1 is not a value then by our inductive hypothesis it can take
a step. Then the rule (B-App1) applies. From (B-App1) we have that given the premise
we can take the step 𝑒1𝑒2 → 𝑒′

1𝑒2 and therefore progress holds.

18



𝒆𝟐 ∉ 𝓥: In the case that 𝑒2 is not a value then by our inductive hypothesis it can take
a step. Then the rule (B-App2) applies. From (B-App2) we have that given the premise
we can take the step 𝑒1𝑒2 → 𝑒1𝑒′

2 and therefore progress holds.

𝒆𝟏, 𝒆𝟐 ∈ 𝓥: In the last case both 𝑒1 and 𝑒2 are values. As 𝑒1 must be an arrow type (by
our type rule) - then abstraction applies (as that is the only value that has type 𝜏1 →
𝜏2 from proof of Lemma 3.1) and we can use (B-Abs) to take a step.

3.3 Typed E𝜋
We will in this section extend E𝜋 with a type system (we call it TE𝜋). In creating a type system
for TE𝜋, different approaches can be taken as many different variations of type systems for the
𝜋-calculus exists, including simple types, linear types, and session types [26]. We have chosen
to start with designing a simple type system which can act as a base for future extensions.

3.3.1 Syntax and Semantics of TE𝜋
The formation rules of TE𝜋 are a bit different from E𝜋. First we have removed the labels
all, len and tup. As these labels are just names to help with readability in the translation and
do not have different semantics from 𝑥 ⋅ 𝑦 we have removed them. In addition we will restrict
composite names to be only on variables and numbers. By doing this we can then change the
syntax for composite names from 𝑐 ⋅ 𝑙 to 𝑐 ⋅ 𝑇  and use the type system to restrict composite
names to only 𝑥 and 𝑛 in the type rules. The other difference is the type annotation on the
name in restriction and the receive action.

𝑃 , 𝑄, 𝑅, … ⩴ 𝟎
𝑃 | 𝑄
!𝑃
𝐴.𝑃
∙ 𝑃
(𝜈𝑎 : 𝑡).𝑃
[𝑇1 ⋈ 𝑇2]𝑃 , 𝑄

𝐴 ⩴ 𝑐⟨𝑇
→

⟩

𝑐(𝑥→ : 𝑡
→

)

𝑐:⟨𝑇
→

⟩

𝑐 ⩴ 𝑎
𝑥
𝑐 ⋅ 𝑇

𝑇 ⩴ 𝑛
𝑎
𝑥
𝑇 ⊙ 𝑇

Figure 3.3: Syntax for TE𝜋

The semantics of TE𝜋 is the same as E𝜋 but with added type annotations as seen in Figure 3.3.

3.3.2 Type System
The type system for TE𝜋 is inspired by the simple type system as introduced by Gay in [26]
and elements of the 𝐷𝜋 type-system from [27] to handle composite names. Like in BtF we have
the primitive type 𝐈𝐧𝐭 and just like in the simple type system from [26], we have the channel
type which indicate the type of object the channel carries.

19



Definition 3.4 (TE𝜋 types):

𝑡 ≔ 𝐈𝐧𝐭 | ch( 𝑡
→

) | @ℓ | pch( 𝑡
→

)

ℓ ≔ {𝑡1, …, 𝑡𝑛}

To handle communication on composite names we introduce two types: @ℓ called a location
type and pch( 𝑡

→
) called a pre-channel type. The location type is inspired by [28] as it contains

a set of types that can be communicated on. However as we do not have sub-typing as in [28]
we use composed names to communicate, where the type of the composed name should match
with a type in the the set of types in the location type.

The type judgements for TE𝜋 is of the following form: Δ, Π ⊢ 𝑃 , where Δ, Π are type environ-
ments and 𝑃  is a TE𝜋 process. The Δ environment gives us the types of the free variables, names
and natural numbers in 𝑃 . The Π environment maps the location handle and the composed
name or number to a pre-channel type ensuring that each array/tuple location handle has their
own typing for the composed name. This then prevents out of bounds indexing as any pair
(ℎ, 𝑛) where 𝑛 is greater than the size of the array should not map to a type in the environment
Π.

Definition 3.5 (Type environment):  A type environment Δ is partial function from free
names and variables to types

𝒩 ⇀ 𝓣

Definition 3.6 (Pre-channel type environment):  A composite name type environment Π
is partial function from a pair of a name and a name/number to pre-channel types

(𝒩, 𝒩 ∪ ℕ) ⇀ 𝓣

To use these environments we have defined a simple notation for extending them with a name
and its corresponding type (Definition 3.7). When extending with multiple names we may use
Δ, 𝑢→ : 𝑡

→
 or Π, (𝑢→, 𝑛→) : 𝑡

→
.

Definition 3.7 (Type environment extension):  When extending a type environment with
a name 𝑢 or number 𝑛 and a type 𝑡 we write Δ, 𝑢 : 𝑡 or Π, (𝑢, 𝑛) : 𝑡.

In addition we define the well-formed environment as follows.

20



Definition 3.8 (Well-formed Δ, Π):  The type environments Δ, Π are well formed, if
Δ, Π ⊢ 𝑃  and fv(𝑃 ) ∪ fn(𝑃 ) ⊆ dom(Δ) ∪ dom(Π).

We have split the type rules into two parts: type rules for processes and type rules for terms.

(ET-Nil) 
Δ, Π ⊢ 𝟎

Δ, Π ⊢ 𝑃 Δ, Π ⊢ 𝑄
(ET-Par) 

Δ, Π ⊢ 𝑃 | 𝑄

Δ, Π ⊢ 𝑃
(ET-Rep) 

Δ, Π ⊢ !𝑃

Δ, 𝑎 : 𝑡, Π ⊢ 𝑃
(ET-Res) 

Δ, Π ⊢ (𝜈𝑎 : 𝑡).𝑃

Δ, Π ⊢ 𝑐 : ch( 𝑡
→

) Δ, Π ⊢ 𝑇
→

: 𝑡
Δ, Π ⊢ 𝑃

(ET-Send) 
Δ, Π ⊢ 𝑐⟨𝑇

→
⟩.𝑃

Δ, Π ⊢ 𝑐 : ch( 𝑡
→

)

Δ, 𝑥→ : 𝑡, Π ⊢ 𝑃
(ET-Recv) 

Δ, Π ⊢ 𝑐(𝑥→ : 𝑡).𝑃

Δ, Π ⊢ 𝑐 : ch( 𝑡
→

) Δ, Π ⊢ 𝑇
→

: 𝑡
Δ, Π ⊢ 𝑃

(ET-Broad) 
Δ, Π ⊢ 𝑐:⟨𝑇

→
⟩.𝑃

Δ, Π ⊢ 𝑇1 : 𝑡 Δ, Π ⊢ 𝑇2 : 𝑡
Δ, Π ⊢ 𝑃 Δ, Π ⊢ 𝑄

(ET-Match) 
Δ, Π ⊢ [𝑇1 ⋈ 𝑇2]𝑃 , 𝑄

Figure 3.4: Type rules for TE𝜋 processes

Type rule (ET-Par) is typed as usual by typing each process under the environment. (ET-
Match) is typed similarly but we also require the two terms we match to be the same type. For
restriction, (ET-Res), we require that the continuing process is well-typed with the restricted
name added.

For (ET-Recv), we require the name we receive on to be a channel type, and that we can add
the received names and their types to the environment and still be well-typed. There is no
difference between the type rules of (ET-Send) and (ET-Broad). Like (ET-Recv), we require
the name we are broadcasting/sending over, to be a channel type. The names we are sending/
broadcasting must also be the same type and the continuing process must also be well-typed.

21



(ET-N)
Δ, Π ⊢ 𝑛 : 𝐈𝐧𝐭

Δ(𝑢) = 𝑡
(ET-U)

Δ, Π ⊢ 𝑢 : 𝑡

Δ, Π ⊢ 𝑇1 : 𝐈𝐧𝐭 Δ, Π ⊢ 𝑇2 : 𝐈𝐧𝐭
(ET-Bin) 

Δ, Π ⊢ 𝑇1 ⊙ 𝑇2 : 𝐈𝐧𝐭

Δ ⊢ 𝑢 : @ℓ Π(𝑢, 𝑥) = pch( 𝑡
→

)

pch( 𝑡
→

) ∈ ℓ
(ET-Compx) 

Δ, Π ⊢ 𝑢 ⋅ 𝑥 : ch( 𝑡
→

)

Δ ⊢ 𝑢 : @ℓ Π(𝑢, 𝑛) = pch( 𝑡
→

) pch( 𝑡
→

) ∈ ℓ
(ET-Compn) 

Δ, Π ⊢ 𝑢 ⋅ 𝑛 : ch( 𝑡
→

)

Figure 3.5: Type rules for TE𝜋 terms

We have one look-up rule (ET-U). Remember we use 𝑢 when we do not differentiate between
𝑥 and 𝑎. (ET-Bin) require the terms for the binary operation to have type 𝐈𝐧𝐭. To handle
composite names we have two type rules (ET-Compx) and (ET-Compn). First we require 𝑢 to
be a location type as we then can look in the Π-environment to see if the composition of the
names has a pre-channel type. Then we ensure that the pre-channel type exists in the location
type and therefore is valid name in the location.

3.4 Soundness of TE𝜋
Before giving the soundness theorem of TE𝜋 we will introduce a 𝑒𝑟𝑟𝑜𝑟 predicate. The 𝑒𝑟𝑟𝑜𝑟
predicate is a process that should only be reached in case there is a type mismatch. In Figure 3.6,
a subset of the reductions rules for the 𝑒𝑟𝑟𝑜𝑟 predicate can be found. For all the rules see
Appendix C.

Δ(𝑐) = ch( 𝑡1
→

) Δ, Π ⊢ 𝑇
→

: 𝑡2
→

𝑡1
→

≠ 𝑡2
→

(ER-Broad)
Δ, Π ⊢ 𝑐:⟨𝑇

→
⟩.𝑃 ⟶

:𝑐
𝑒𝑟𝑟𝑜𝑟

Δ(𝑐) = ch( 𝑡1
→

) 𝑡1
→

≠ 𝑡2
→

(ER-Recv)
Δ, Π ⊢ 𝑐(𝑥→ : 𝑡2

→
).𝑃 ⟶

𝜏
𝑒𝑟𝑟𝑜𝑟

Δ, Π ⊢ 𝑇1 : 𝑡1 Δ, Π ⊢ 𝑇2 : 𝑡2 𝑡1 ≠ 𝑡2
(ER-Match) 

Δ, Π ⊢ [𝑇1 ⋈ 𝑇2]𝑃 , 𝑄 ⟶
𝜏

𝑒𝑟𝑟𝑜𝑟
Figure 3.6: Subset of the 𝑒𝑟𝑟𝑜𝑟 predicate rules

(ER-Broad) can go to 𝑒𝑟𝑟𝑜𝑟 in the case that the channel type and the type of the terms being
sent does not match. (ER-Recv) is similar as we can go to 𝑒𝑟𝑟𝑜𝑟 if the type of variables received
do not match with type the channel type carries. (ER-Match) can go to 𝑒𝑟𝑟𝑜𝑟 if the type of the
terms being matched is not the same.

3.4.1 Soundness Theorem
With the 𝑒𝑟𝑟𝑜𝑟 predicate introduced we can now give the soundness theorem for TE𝜋.

22



Theorem 3.2 (Soundness of TE𝜋):  Let 𝑃  be a TE𝜋 process then
1. (Subject reduction) if Δ, Π ⊢ 𝑃  and 𝑃 → 𝑃 ′ then Δ, Π ⊢ 𝑃 ′

2. (Type safety) if Δ, Π ⊢ 𝑃  then 𝑃 ↛ 𝑒𝑟𝑟𝑜𝑟

For Theorem 3.2 we have two parts that needs to be proven. Subject reduction states that if
a process 𝑃  is well-typed in an environment and can reduce to 𝑃 ′ then 𝑃 ′ is also well-typed.
Type safety states that if a process 𝑃  is well-typed it can never reduce to 𝑒𝑟𝑟𝑜𝑟.

3.4.2 Proof of lemmas
Before we start the proof of Theorem 3.2 we need to define some lemmas which will help in
the proof.

Lemma 3.4 (Weakening of terms):  If Δ, Π ⊢ 𝑇 : 𝑡 then Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑇 : 𝑡 given any type
𝑡𝑢 and a 𝑢 such that 𝑢 ∉ dom(Δ).

Lemma 3.5 (Weakening of processes):  If Δ, Π ⊢ 𝑃  then Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑃  given any type
𝑡𝑢 and a 𝑢 such that 𝑢 ∉ dom(Δ).

Lemma 3.6 (Strengthening of terms):  If Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑇 : 𝑡 then Δ, Π ⊢ 𝑇 : 𝑡 given any
type 𝑡𝑢 and a 𝑢 such that 𝑢 ∉ dom(Δ).

Lemma 3.7 (Strengthening of processes):  If Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑃  then Δ, Π ⊢ 𝑃  given any
type 𝑡𝑢 and a 𝑢 such that 𝑢 ∉ dom(Δ).

Lemma 3.4 to Lemma 3.7 states that we can add and remove names from the type environment
where some name 𝑢 is not used in some process 𝑃 . This is used to prove Lemma 3.8 as in
structural congruence we have the ability to extend the scope, add and remove restrictions. The
full proof of all the lemmas can be found in Appendix D.1 to Appendix D.4.

Lemma 3.8 (Type preservation under structural congruence):  Let 𝑃  and 𝑄 be TE
𝜋 processes.
1. If Δ, Π ⊢ 𝑃  and 𝑃 ≡ 𝑄 then Δ, Π ⊢ 𝑄
2. If Δ, Π ⊢ 𝑄 and 𝑄 ≡ 𝑃  then Δ, Π ⊢ 𝑃

23



Lemma 3.8 states that types are preserved under structural congruence. This lemma is necessary
for proving subject reduction in Theorem 3.2. The full proof can be found in Appendix D.5.

Lemma 3.9 (Type preservation under substitution of processes):  Let Δ, Π ⊢ 𝑃  be a well-
typed TE𝜋 process and Δ, Π ⊢ 𝑇𝑢 : 𝑡𝑢, Δ, Π ⊢ 𝑇 ′

𝑢 : 𝑡𝑢, then Δ, Π ⊢ 𝑃{ /𝑇 ′
𝑢 𝑇𝑢

}

Lemma 3.10 (Type preservation under substitution of terms):  If Δ, Π ⊢ 𝑇 : 𝑡, Δ, Π ⊢
𝑇𝑢 : 𝑡𝑢 and Δ, Π ⊢ 𝑇 ′

𝑢 : 𝑡𝑢 such that Δ, Π ⊢ 𝑇{ /𝑇𝑢′
𝑇𝑢

} : 𝑡

The last two lemmas, Lemma 3.9 and Lemma 3.10, states that types are preserved under
substitution.

3.4.3 Proving Soundness
Just as the proof for Theorem 3.1, we have split the proof into two parts; one for subject
reduction and one for type safety. As the whole proof is quite long we will in this section only
showcase some of the cases for the proof. The full proof of subject reduction and type safety
can be found in Appendix D.8 and Appendix D.9, respectively.

Proof of Subject Reduction
We will prove subject reduction by induction in the rule for concluding 𝑃 → 𝑃 ′.

(𝐄-𝐂𝐨𝐦): By our assumption we know that Δ, Π ⊢ 𝑐⟨𝑇
→

⟩.𝑃  and Δ, Π ⊢ 𝑐(𝑥→ : 𝑡
→

).𝑄 by the

application of (ET-Par). By (E-Com) we have 𝑐⟨𝑇
→

⟩.𝑃 |𝑐(𝑥→).𝑄 ⟶
𝜏

𝑃 | 𝑄{ /𝑇
→

𝑥→} and must

show that Δ, Π ⊢ 𝑃 | 𝑄{ /𝑇
→

𝑥→}.

Then by (ET-Send) we have that 𝑐 : ch( 𝑡
→

) and 𝑇
→

: 𝑡
→

, and by (ET-Recv) we have that 𝑐 :

ch( 𝑡
→

) and Δ, 𝑥→ : 𝑡
→

, Π ⊢ 𝑄. By using Lemma 3.9 we have that Δ, 𝑥→ : 𝑡
→

, Π ⊢ 𝑄{ /𝑇
→

𝑥→}, and

by Lemma 3.7 we have Δ, Π ⊢ 𝑄{ /𝑇
→

𝑥→}. We can therefore conclude Δ, Π ⊢ 𝑃 | 𝑄{ /𝑇
→

𝑥→}

by (ET-Par).

(𝐄-𝐓𝐡𝐞𝐧): By our assumption we know Δ, Π ⊢ [𝑇1 ⋈ 𝑇2]𝑃 , 𝑄 by (ET-Match) and [𝑇1 ⋈
𝑇2]𝑃 , 𝑄 ⟶

𝜏
𝑃  by (E-Then). We must then show Δ, Π ⊢ 𝑃 . This follows immediately by

(ET-Match) as Δ, Π ⊢ [𝑇1 ⋈ 𝑇2]𝑃 , 𝑄 is only correct if Δ, Π ⊢ 𝑃 .

(𝐄-𝐄𝐥𝐬𝐞): By our assumption we know Δ, Π ⊢ [𝑇1 ⋈ 𝑇2]𝑃 , 𝑄 by (ET-Match) and [𝑇1 ⋈
𝑇2]𝑃 , 𝑄 ⟶

𝜏
𝑃  by (E-Else). We must then show Δ, Π ⊢ 𝑄. This follows immediately by (ET-

Match) as Δ, Π ⊢ [𝑇1 ⋈ 𝑇2]𝑃 , 𝑄 is only correct if Δ, Π ⊢ 𝑄.

Proof of Type Safety
We prove type safety by induction in the type rules.

24



(𝐄𝐓-𝐁𝐫𝐨𝐚𝐝): By our assumption we have that Δ, Π ⊢ 𝑐:⟨𝑇
→

⟩.𝑃  and must prove that 𝑐:
⟨𝑇

→
⟩.𝑃 ↛

:𝑐
𝑒𝑟𝑟𝑜𝑟. By inspecting (ER-Broad) we can see that 𝑐:⟨𝑇

→
⟩.𝑃 ⟶

:𝑐
𝑒𝑟𝑟𝑜𝑟 only if 𝑐 :

ch( 𝑡1
→

), 𝑇
→

: 𝑡2
→

 where 𝑡1
→

≠ 𝑡2
→

. This contradicts the type rule for broadcast, that states 𝑐 :

ch( 𝑡
→

) and 𝑇
→

: 𝑡
→

 meaning it must hold that 𝑡1
→

= 𝑡2
→

 for broadcast to be well-typed and

therefore 𝑃 ↛ 𝑒𝑟𝑟𝑜𝑟.

(𝐄𝐓-𝐑𝐞𝐜𝐯): By our assumption we have that Δ, Π ⊢ 𝑐(𝑥→ : 𝑡
→

).𝑃  and must prove that 𝑐(𝑥→ :

𝑡
→

).𝑃 ↛
𝜏

𝑒𝑟𝑟𝑜𝑟. By inspecting (ER-Send) we can see that 𝑐(𝑥→ : 𝑡
→

).𝑃 ⟶
𝜏

𝑒𝑟𝑟𝑜𝑟 if 𝑐 : ch( 𝑡1
→

)

and 𝑥→ : 𝑡2
→

 where 𝑡1
→

≠ 𝑡2
→

. This contradicts (ET-Recv) as for send to be well-typed 𝑐 : ch( 𝑡
→

)

and 𝑥→ : 𝑡
→

, and therefore it must be that 𝑡1 = 𝑡2. We can therefore conclude 𝑃 ↛ 𝑒𝑟𝑟𝑜𝑟.

(𝐄𝐓-𝐌𝐚𝐭𝐜𝐡): By our assumption we have that Δ, Π ⊢ [𝑇1 ⋈ 𝑇2]𝑃 , 𝑄 and must prove that
[𝑇1 ⋈ 𝑇2]𝑃 , 𝑄 ↛

𝜏
𝑒𝑟𝑟𝑜𝑟. By inspecting (ER-Match) we can see that [𝑇1 ⋈ 𝑇2]𝑃 , 𝑄 ⟶

𝜏
𝑒𝑟𝑟𝑜𝑟

if 𝑇1 : 𝑡1, 𝑇2 : 𝑡2 and 𝑡1 ≠ 𝑡2. This contradicts (ET-Match) as 𝑇1 : 𝑡 and 𝑇2 : 𝑡, that being
𝑡1 = 𝑡2 for match to be well-typed and therefore 𝑃 ↛ 𝑒𝑟𝑟𝑜𝑟

25



4 Translation and Correctness
We will in this chapter introduce the translation of BtF to TE𝜋 and show the typed versions
of the examples given in Chapter 2.3.2. We then define the correctness of the translations and
show a part of the proof.

4.1 Translation of BtF to TE𝜋
As the semantics of BtF and TE𝜋 is not different from the semantics of ButF and E𝜋, the
translation of the expressions themselves has not changed much. For the cases where the
translation has changed we will discuss the differences compared to the original introduced in
Chapter 2.3.

4.1.1 Translation
Just as the introduction of the original translation from ButF to E𝜋 by Hüttel et. al, [2], we use
certain characters to illustrate their value. For translating the types and the type environment
we take inspiration from Sangiorgi and Walker and their translation of the typed 𝜆-calculus [29].

When translating expressions we use the notation ⟦𝑒⟧Γ
𝑜 = (Δ, Π, 𝑃) to denote translating some

well-typed expression Γ ⊢ 𝑒 : 𝜏  to Δ, Π ⊢ 𝑃 . In the case where 𝑜 is a fresh name in 𝑃  we add
the restriction on 𝑜 such that ⟦𝑒⟧Γ

𝑜 = (Δ, Π, (𝜈𝑜 : ch(⟦𝜏⟧)).𝑃 ). To simplify the definition of the
translation when sub-expression are present we simply insert the 𝑃𝑛 from the resulting tuple
(Δ𝑛, Π𝑛, 𝑃𝑛) from the sub-expression and collect the environments (Δ1 ∪ … ∪ Δ𝑛, Π1 ∪ … ∪
Π𝑛, 𝑃 ). We omit the tuple notation when no change is made to Δ and Π in the translation.
When referencing Π𝑛 in the translation, it corresponds to the Π from ⟦𝑒𝑛⟧Γ

𝑜𝑛
= (Δ, Π, 𝑃).

Translation of Basic Expressions
The translation of basic expression is similar to the one as seen in Chapter 2.3.

⟦𝑥⟧Γ
𝑜 = 𝑜⟨𝑥⟩ where Γ ⊢ 𝑥 : 𝜏

⟦𝑛⟧Γ
𝑜 = 𝑜⟨𝑛⟩ where Γ ⊢ 𝑛 : 𝐈𝐧𝐭

⟦𝜆(𝑥 : 𝜏1).𝑒1⟧Γ
𝑜 = (𝜈ℎ : ⟦𝜏1 → 𝜏2⟧).(𝑜⟨ℎ⟩ |

!ℎ(𝑥 : ⟦𝜏1⟧, 𝑟 : ch(⟦𝜏2⟧)).⟦𝑒1⟧Γ
𝑟 )

where
Γ ⊢ 𝜆(𝑥 : 𝜏1).𝑒 : 𝜏1 → 𝜏2

Γ ⊢ 𝑒 : 𝜏2

⟦𝑒1𝑒2⟧Γ
𝑜 = (𝜈𝑜1 : ch(⟦𝜏1 → 𝜏2⟧)).(𝜈𝑜2 : ch(⟦𝜏1⟧)).

(⟦𝑒1⟧Γ
𝑜1

| ⟦𝑒2⟧Γ
𝑜2

|

𝑜1(ℎ : ⟦𝜏1 → 𝜏2⟧).𝑜2(𝑣 : ⟦𝜏1⟧). ∙ ℎ⟨𝑣, 𝑜⟩)

where
Γ ⊢ 𝑒1 : 𝜏1 → 𝜏2

Γ ⊢ 𝑒2 : 𝜏1

⟦𝑒1[𝑒2]⟧Γ
𝑜 = (𝜈𝑜1 : ch(⟦[𝜏 ]⟧)).(𝜈𝑜2 : ch(⟦𝐈𝐧𝐭⟧)).

(⟦𝑒1⟧Γ
𝑜1

| ⟦𝑒2⟧Γ
𝑜2

| 𝑜1(ℎ : ⟦[𝜏 ]⟧).

𝑜2(𝑖 : ⟦𝐈𝐧𝐭⟧).ℎ ⋅ 𝑖(𝑣 : ⟦𝜏⟧). ∙ 𝑜⟨𝑣⟩))

where
Γ ⊢ 𝑒1 : [𝜏 ]
Γ ⊢ 𝑒2 : 𝐈𝐧𝐭

26



⟦if 𝑒1 then 𝑒2 else 𝑒3⟧Γ
𝑜 = (𝜈𝑜1 : ch(⟦𝐈𝐧𝐭⟧)).(⟦𝑒1⟧Γ

𝑜1
|

𝑜1(𝑛 : ⟦𝐈𝐧𝐭⟧). ∙ [𝑛 ≠ 0]⟦𝑒2⟧Γ
𝑜 , ⟦𝑒3⟧Γ

𝑜 )

where
Γ ⊢ 𝑒1 : 𝐈𝐧𝐭
Γ ⊢ 𝑒2 : 𝜏
Γ ⊢ 𝑒3 : 𝜏

⟦𝑒1 ⊙ 𝑒2⟧Γ
𝑜 = (𝜈𝑜1 : ch(⟦𝐈𝐧𝐭⟧)).(𝜈𝑜2 : ch(⟦𝐈𝐧𝐭⟧)).

(⟦𝑒1⟧Γ
𝑜1

| ⟦𝑒2⟧Γ
𝑜2

| 𝑜1(𝑣1 : ⟦𝐈𝐧𝐭⟧).

𝑜2(𝑣2 : ⟦𝐈𝐧𝐭⟧). ∙ 𝑜⟨𝑣1 ⊙ 𝑣2⟩)

where
Γ ⊢ 𝑒1 : 𝐈𝐧𝐭
Γ ⊢ 𝑒2 : 𝐈𝐧𝐭

Figure 4.1: Translation of basic BtF expressions

Indexing is one the more interesting cases as that has been changed the most. First we have
moved the important reduction to the output of the value as we have removed the match on
𝑖. In the original translation the match stops us from proceeding if the value is below 0 but
not if above the number of elements in the array. As we will show in the proof of Theorem 4.2
removing the match does not change the correctness of the behaviour for the translation.

Translation of Arrays and Tuples
For the translation of arrays and tuples we need an updated version of the 𝐶𝑒𝑙𝑙 process with
its type annotation.

𝐶𝑒𝑙𝑙(ℎ, 𝑖, 𝑣, 𝑡𝑣) = !ℎ ⋅ all (𝑟 : ch(𝐈𝐧𝐭, 𝑡𝑣)).𝑟⟨𝑖, 𝑣⟩ | !ℎ ⋅ 𝑖⟨𝑣⟩ (3)

One of the changes in the 𝐶𝑒𝑙𝑙 process is in the output on ℎ ⋅ 𝑖. In [2], when output on ℎ ⋅ 𝑖 both
the value and index was sent. As only the value and not the index was needed to be sent we
have removed it. When we construct the 𝐶𝑒𝑙𝑙 process we require the type of the value located
at the index.

⟦(𝑒1, …, 𝑒𝑛)⟧Γ
𝑜 = (𝜈𝑜1 : ch(⟦𝜏1⟧)).….(𝜈𝑜𝑛 : ch(⟦𝜏𝑛⟧)).

(∏𝑛
𝑖=1⟦𝑒𝑖⟧Γ

𝑜𝑖
| 𝑜1(𝑣1 : ⟦𝜏1⟧). … .𝑜𝑛(𝑣𝑛 : ⟦𝜏𝑛⟧).

(𝜈ℎ : ⟦(𝜏1, …, 𝜏𝑛)⟧).(!ℎ ⋅ tup⟨𝑣1, …, 𝑣𝑛⟩ | 𝑜⟨ℎ⟩))

where
Γ ⊢ (𝑒1, …, 𝑒𝑛) : (𝜏1, …, 𝜏𝑛)
∀𝑖 ∈ {1, …, 𝑛}.Γ ⊢ 𝑒𝑖 : 𝜏𝑖

Π = (Π1 ∪ … ∪ Π𝑛)
, (ℎ, tup) : pch(⟦𝜏1⟧, …, ⟦𝜏𝑛⟧)

⟦[𝑒1, …, 𝑒𝑛]⟧Γ
𝑜 = (𝜈𝑜1 : ch(⟦𝜏⟧)).….(𝜈𝑜𝑛 : ch(⟦𝜏⟧)).(𝜈ℎ : ⟦[𝜏 ]⟧).

(∏𝑛
𝑖=1⟦𝑒𝑖⟧Γ

𝑜𝑖
| 𝑜1(𝑣1 : ⟦𝜏⟧).….𝑜𝑛(𝑣𝑛 : ⟦𝜏⟧).

(∏𝑛
𝑖=1 𝐶𝑒𝑙𝑙(ℎ, 𝑖 − 1, 𝑣𝑖, ⟦𝜏⟧) | ℎ ⋅ len⟨𝑛⟩ | 𝑜⟨ℎ⟩))

where
Γ ⊢ [𝑒1, …, 𝑒𝑛] : [𝜏 ]
∀𝑖 ∈ {1, …, 𝑛}.Γ ⊢ 𝑒𝑖 : 𝜏
Π = (Π1 ∪ … ∪ Π𝑛)
, (ℎ, len) : pch(𝐈𝐧𝐭)
, (ℎ, all) : pch(ch(𝐈𝐧𝐭, 𝜏))
, (ℎ, 1) : pch(⟦𝜏⟧)

⋮
, (ℎ, 𝑛) : pch(⟦𝜏⟧)

Figure 4.2: Translation of BtF arrays and tuples

The biggest addition to translation of array and tuples is the construction of the Π to ensure
the correct typing of composed names. Building Π for tuples are quite simple we only add one
pair (ℎ, tup) with a pre-channel type for it. Then for arrays we add a pair for all, len and then
a pair for each index in the array.

27



Translation of Types and Environments
⟦𝐈𝐧𝐭⟧ = 𝐈𝐧𝐭

⟦[𝜏]⟧ = @{pch(𝐈𝐧𝐭, ⟦𝜏⟧), pch(⟦𝜏⟧), pch(𝐈𝐧𝐭)}

⟦(𝜏1, …, 𝜏𝑛)⟧ = @{pch(⟦𝜏1⟧, …, ⟦𝜏𝑛⟧)}

⟦𝜏1 → 𝜏2⟧ = ch(⟦𝜏1⟧, ch(⟦𝜏2⟧))
Figure 4.3: Translation of basic BtF types

First major addition in the translation we have, is the addition of the translation of types. The
translation of 𝐈𝐧𝐭 is straightforward as there is a one to one correspondence for this type. The
translation of the array type is interesting as it depends on the translation of arrays. The reason
we have a pre-channel type for arrays is that communication with arrays in TE𝜋 is on composite
names and therefore we must type it as such. We have three composite names to communicate
with the array on: ℎ ⋅ all, ℎ ⋅ 𝑖 and ℎ ⋅ len. The type of all, 𝑖 and len corresponds to what can
be seen as 𝑡1

→
 in (ET-Compx) or (ET-Compn). The translation of the tuple type is very similar

as communication with tuples is on the ℎ ⋅ tup channel. Lastly, the translation of the abstraction
type is similar to the intuition of applying a function. The first type is the argument and the
second is the return channel with the resulting type of the function application.

⟦∅⟧ = ∅

⟦Γ, 𝑥 : 𝜏⟧ = ⟦Γ⟧, 𝑥 : ⟦𝜏⟧
Figure 4.4: Translation of type environment

Translation of Array Operations
Similar to the 𝐶𝑒𝑙𝑙 process we need to update the 𝑅𝑒𝑝𝑒𝑎𝑡 process with type annotations. In
addition we need to send a value on 𝑑 and for the translations using 𝑅𝑒𝑝𝑒𝑎𝑡 we need a restriction
on 𝑑 for it to be well-typed.

𝑅𝑒𝑝𝑒𝑎𝑡(𝑠, 𝑟, 𝑑) = (𝜈𝑐 : 𝐈𝐧𝐭).(!𝑐(𝑛 : 𝐈𝐧𝐭).([𝑛 ≥ 0](𝑟⟨𝑛 − 1⟩ | 𝑐⟨𝑛 − 1⟩), 𝑑⟨0⟩) | 𝑐⟨𝑠⟩) (4)

The translation of array operations are then as seen in Figure 4.5. The translation of map has
been changed by removing the check to ensure 𝑓 is a function as that is required for it to be
well-typed.

⟦size⟧Γ
𝑜 = (𝜈𝑜1 : ch(⟦[𝜏 ]⟧)).(⟦𝑒1⟧Γ

𝑜1
|

𝑜1(ℎ : ⟦[𝜏 ]⟧).ℎ ⋅ len (𝑛 : 𝐈𝐧𝐭). ∙ 𝑜⟨𝑛⟩)

where
Γ ⊢ size 𝑒1 : 𝐈𝐧𝐭
Γ ⊢ 𝑒1 : [𝜏 ]

⟦iota 𝑒1⟧Γ
𝑜 = (𝜈𝑜1 : ch(⟦𝐈𝐧𝐭⟧)).(𝜈𝑟 : ch(𝐈𝐧𝐭)).(𝜈𝑑 : ch(𝐈𝐧𝐭)).

(𝜈ℎ : @{pch(𝐈𝐧𝐭, 𝐈𝐧𝐭), pch(𝐈𝐧𝐭)}).

(⟦𝑒1⟧Γ
𝑜1

| 𝑜1(𝑛 : ⟦𝐈𝐧𝐭⟧).(𝑅𝑒𝑝𝑒𝑎𝑡(𝑛, 𝑟, 𝑑) |

!𝑟(𝑖 : 𝐈𝐧𝐭). 𝐶𝑒𝑙𝑙(ℎ, 𝑖, 𝑖, 𝐈𝐧𝐭) | ∙ 𝑑(_ : 𝐈𝐧𝐭).

𝑜⟨ℎ⟩ | ℎ ⋅ len⟨𝑛⟩))

where
Γ ⊢ iota 𝑒1 : [𝐈𝐧𝐭]
Γ ⊢ 𝑒1 : 𝐈𝐧𝐭

28



⟦map 𝑒1⟧Γ
𝑜 = (𝜈𝑜1 : ch(𝑡1)).(𝜈ℎ1 : ⟦[𝜏2]⟧).(⟦𝑒1⟧𝑜1

|

𝑜1(ℎ2 : 𝑡1).ℎ2 ⋅ tup (𝑓 : ⟦𝜏1 → 𝜏2⟧, ℎ3 : ⟦[𝜏1]⟧).
ℎ3 ⋅ len (𝑛 : 𝐈𝐧𝐭).(𝜈ℎ4 : ch(𝐈𝐧𝐭, ⟦𝜏1⟧)).

ℎ3 ⋅ all:⟨ℎ4⟩.(𝜈𝑟1 : ch(𝐈𝐧𝐭)).(𝜈𝑑 : ch(𝐈𝐧𝐭)).

(𝑅𝑒𝑝𝑒𝑎𝑡(𝑛, 𝑟1, 𝑑) | !ℎ4(𝑖 : 𝐈𝐧𝐭, 𝑣1 : ⟦𝜏1⟧).

(𝜈𝑟2 : ch(⟦𝜏2⟧)).𝑓⟨𝑣1, 𝑟2⟩.𝑟2(𝑣2 : ⟦𝜏2⟧)
.𝑟1(_ : 𝐈𝐧𝐭). 𝐶𝑒𝑙𝑙(ℎ1, 𝑖, 𝑣2, ⟦𝜏2⟧) |

∙ 𝑑(_ : 𝐈𝐧𝐭).𝑜⟨ℎ1⟩ | !ℎ1 ⋅ len⟨𝑛⟩))

where
Γ ⊢ 𝑒1 : (𝜏1 → 𝜏2, [𝜏1])
𝑡1 = ⟦(𝜏1 → 𝜏2, [𝜏1])⟧

Figure 4.5: Translation of BtF array operations

4.1.2 Examples of Translations
We will now show some examples of translations. We will take the same examples as shown in
Chapter 2.3.2.

Example of Indexing
For the first example we have the indexing of an array like on page 11. The expression is as
follows: [2, 3][1], with the translation of the expression being:

⟦[2, 3][1]⟧Γ
𝑜 = (𝜈𝑜arr : ch(⟦[𝐈𝐧𝐭]⟧)).(𝜈𝑜𝑖 : ch(𝐈𝐧𝐭)).

((𝜈𝑜2 : ch(𝐈𝐧𝐭)).(𝜈𝑜3 : ch(𝐈𝐧𝐭)).(𝜈ℎ : ⟦[𝐈𝐧𝐭]⟧).

(

⟦2⟧Γ
𝑜2 and ⟦3⟧Γ

𝑜3

⏠⏠⏠𝑜2⟨2⟩ | 𝑜3⟨3⟩ |
receiver

⏠⏠⏠⏠⏠⏠⏠𝑜2(𝑣2 : 𝐈𝐧𝐭).𝑜3(𝑣3 : 𝐈𝐧𝐭).

(𝐶𝑒𝑙𝑙(ℎ, 0, 𝑣2, 𝐈𝐧𝐭) | 𝐶𝑒𝑙𝑙(ℎ, 1, 𝑣3, 𝐈𝐧𝐭) | ℎ ⋅ len⟨2⟩ | 𝑜arr⟨ℎ⟩⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡
array: [2,3]

))

|
index

⏠𝑜𝑖⟨1⟩ |
receive array handle and index

⏠⏠⏠⏠⏠⏠⏠⏠𝑜arr(ℎ : ⟦[𝐈𝐧𝐭]⟧).𝑜𝑖(𝑖 : 𝐈𝐧𝐭).
receive value at index

⏠⏠⏠ℎ ⋅ 𝑖(𝑣 : 𝐈𝐧𝐭) . ∙ 𝑜⟨𝑣⟩⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡
access and output of value

)

First we create restrictions on the different channels used for communication. These include
channels for the array handle and the values in the array. Then we translate the respective
values in the array and receive them on their output channel (marked as receiver). We then
construct the array using the 𝐶𝑒𝑙𝑙 process (marked as: array : [2, 3]). The 𝐶𝑒𝑙𝑙 process for the
value at index 1 is a follow:

𝐶𝑒𝑙𝑙(ℎ, 1, 𝑣2, 𝐈𝐧𝐭) = ℎ ⋅ all (𝑟 : ch(𝐈𝐧𝐭, 𝐈𝐧𝐭)).𝑟⟨1, 𝑣3⟩ | !ℎ ⋅ 1⟨𝑣3⟩;

After the translation of the indexing number we receive the array handle and index. We can
then communicate with the 𝐶𝑒𝑙𝑙 process on ℎ ⋅ 1 to receive the value located at the index.
Finally we can send the value on our output channel 𝑜.

Example of Abstraction
For the second example we have the simple abstraction shown on page 12. The expression is as
follows 𝜆(𝑥 : 𝐈𝐧𝐭).𝑥 + 1 and is translated as shown below.

29



⟦𝜆𝑥 : 𝐈𝐧𝐭.𝑥 + 1⟧Γ
𝑜 = (𝜈ℎ : ⟦𝐈𝐧𝐭 → 𝐈𝐧𝐭⟧).(𝑜⟨ℎ⟩ | !ℎ(𝑥 : ⟦𝐈𝐧𝐭⟧, 𝑟 : ch ⟦𝐈𝐧𝐭⟧)⏡⏡⏡⏡⏡⏡⏡

argument and return channel

.⟦𝑥 + 1⟧Γ
𝑟

⟦𝑥 + 1⟧Γ
𝑟 = (𝜈𝑜1 : ch(⟦𝐈𝐧𝐭⟧)).(𝜈𝑜2 : ch(⟦𝐈𝐧𝐭⟧)).(

⟦𝑥⟧Γ
𝑜1 and ⟦1⟧Γ

𝑜2

⏠⏠⏠⏠𝑜1⟨𝑥⟩ | 𝑜2⟨1⟩ |
receive values

⏠⏠⏠⏠⏠⏠⏠𝑜1(𝑣1 : 𝐈𝐧𝐭).𝑜2(𝑣2 : 𝐈𝐧𝐭).
send result

⏠⏠⏠𝑟⟨𝑣1 + 𝑣2⟩)⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡
⟦𝑥+1⟧Γ

𝑟

First we create a restriction on ℎ, the function handle with the type ⟦𝐈𝐧𝐭 → 𝐈𝐧𝐭⟧, which is
translated to ch(𝐈𝐧𝐭, ch(𝐈𝐧𝐭)). Then we send the handle on 𝑜 in parallel with constructing the
function. The construction of the body consists of receiving the argument and return channel
𝑥, 𝑟 then translating the expressions 𝑥 and 1, respectively, and receive them on the output
channels 𝑜1 and 𝑜2. Finally we send the result of 𝑣1 + 𝑣2 over 𝑟.

Example of Map
In the last example we have the translation of an expression with map as seen on page 12. The
expression is the following: map (𝜆(𝑥 : [𝐈𝐧𝐭]). size 𝑥, [[1, 2], [3, 4]]) . This translation is quite long
and therefore we have split it into sub-translations.

First we have the translation of the two inner arrays.

⟦[1, 2]⟧Γ
𝑜𝐴

= (𝜈𝑜1 : ch(𝐈𝐧𝐭)).(𝜈𝑜2 : ch(𝐈𝐧𝐭)).(𝜈ℎ𝐴 : ⟦[𝐈𝐧𝐭]⟧).

(

⟦1⟧Γ
𝑜1 and ⟦2⟧Γ

𝑜2

⏠⏠⏠𝑜1⟨1⟩ | 𝑜2⟨2⟩ |
receiver

⏠⏠⏠⏠⏠⏠⏠𝑜1(𝑣1 : 𝐈𝐧𝐭).𝑜2(𝑣2 : 𝐈𝐧𝐭).

(𝐶𝑒𝑙𝑙(ℎ𝐴, 0, 𝑣1, 𝐈𝐧𝐭) | 𝐶𝑒𝑙𝑙(ℎ𝐴, 1, 𝑣2, 𝐈𝐧𝐭) | ℎ𝐴 ⋅ len⟨2⟩ | 𝑜𝐴⟨ℎ𝐴⟩⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡
array: [1,2]

))

⟦[3, 4]⟧Γ
𝑜𝐵

= (𝜈𝑜3 : ch(𝐈𝐧𝐭)).(𝜈𝑜4 : ch(𝐈𝐧𝐭)).(𝜈ℎ𝐵 : ⟦[𝐈𝐧𝐭]⟧).

(

⟦3⟧Γ
𝑜3 and ⟦4⟧Γ

𝑜4

⏠⏠⏠𝑜3⟨3⟩ | 𝑜4⟨4⟩ |
receiver

⏠⏠⏠⏠⏠⏠⏠𝑜3(𝑣3 : 𝐈𝐧𝐭).𝑜4(𝑣4 : 𝐈𝐧𝐭).

(𝐶𝑒𝑙𝑙(ℎ𝐵, 0, 𝑣3, 𝐈𝐧𝐭) | 𝐶𝑒𝑙𝑙(ℎ𝐵, 1, 𝑣4, 𝐈𝐧𝐭) | ℎ𝐵 ⋅ len⟨2⟩ | 𝑜𝐵⟨ℎ𝐵⟩⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡
array: [3,4]

))

This part of the translation is quite simple. First the values of the array are translated and
then the array is created using the 𝐶𝑒𝑙𝑙 process just like in the indexing example. Next we have
the translation of the outer array. We create the array using the handles we received from the
translation of the two inner arrays as the value on the index.

⟦[[1, 2], [3, 4]]⟧Γ
𝑜arr

= (𝜈𝑜𝐴 : ch(⟦[𝐈𝐧𝐭]⟧)).(𝜈𝑜𝐵 : ch(⟦[𝐈𝐧𝐭]⟧)).(𝜈ℎ : ⟦[[𝐈𝐧𝐭]]⟧).

(⟦[1, 2]⟧Γ
𝑜𝐴

| ⟦[3, 4]⟧Γ
𝑜𝐵

|
receive handles to inner arrays

⏠⏠⏠⏠⏠⏠⏠⏠⏠⏠𝑜𝐴(ℎ𝐴 : ⟦[𝐈𝐧𝐭]⟧).𝑜𝐵(ℎ𝐵 : ⟦[𝐈𝐧𝐭]⟧).

(𝐶𝑒𝑙𝑙(ℎ, 0, ℎ𝐴, ⟦[𝐈𝐧𝐭]⟧) | 𝐶𝑒𝑙𝑙(ℎ, 1, ℎ𝐵, ⟦[𝐈𝐧𝐭]⟧) | ℎ ⋅ len⟨2⟩ | 𝑜arr⟨ℎ⟩⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡
array: [[1,2],[3,4]]

))

Next we have the translation of the abstraction. We start by outputting the handle such
that processes can communicate with the abstraction process. In parallel with this, we have a
replicated input on the handle which waits for the argument and the return channel were we

30



output the result after applying the abstraction. This is followed by the translation of our sub-
expression which is a direct translation of size 𝑒1 with 𝑒1 being 𝑥.

⟦𝜆(𝑥 : [𝐈𝐧𝐭]). size 𝑥⟧Γ
𝑜𝐹

= (𝜈ℎ𝐹 : ⟦[𝐈𝐧𝐭] → 𝐈𝐧𝐭⟧).(𝑜𝐹 ⟨ℎ𝐹 ⟩ | !ℎ𝐹 (𝑥 : ⟦[𝐈𝐧𝐭]⟧, 𝑟 : ch(𝐈𝐧𝐭))⏡⏡⏡⏡⏡⏡⏡⏡
Argument & return channel

.

(𝜈𝑜𝑥 : ch(⟦[𝐈𝐧𝐭]⟧)).(

⟦𝑥⟧Γ
𝑜𝑥

⏠𝑜𝑥⟨𝑥⟩ |
Get size of array

⏠⏠⏠⏠⏠⏠⏠⏠⏠⏠⏠𝑜𝑥(ℎarr : ⟦[𝐈𝐧𝐭]⟧).ℎarr ⋅ len (𝑛 : 𝐈𝐧𝐭)). ∙ 𝑟⟨𝑛⟩⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡
⟦size 𝑥⟧Γ

𝑟

In the translation of the tuple we first have the translation of the two sub-expressions which we
have already shown. From their respective output channel we receive the function handle and
array handle. We can then output the tuple handle such that other processes can communicate
with it.

⟦(𝜆𝑥.size 𝑥, [[1, 2], [3, 4]])⟧Γ
𝑜tup

= (𝜈𝑜𝐹 : ch(⟦[𝐈𝐧𝐭] → 𝐈𝐧𝐭⟧)).(𝜈𝑜arr : ch(⟦[[𝐈𝐧𝐭]]⟧)).
Tuple elements

⏠⏠⏠⏠⏠⏠⏠⏠⏠⏠⟦𝜆𝑥. size 𝑥⟧Γ
𝑜𝐹

| ⟦[[1, 2], [3, 4]]⟧Γ
𝑜arr

| 𝑜𝐹 (𝑓).𝑜arr(ℎin)⏡⏡⏡⏡
Function and array handle

.(𝜈ℎtup : ⟦([𝐈𝐧𝐭] → 𝐈𝐧𝐭, [[𝐈𝐧𝐭]])⟧).

(!ℎtup ⋅ tup⟨𝑓, ℎin⟩ | 𝑜tup⟨ℎtup⟩⏡⏡⏡⏡⏡⏡⏡⏡
Tuple communication

)

Lastly we have the translation of the mapping. First, from the translation of the tuple we get
the handle which we can then use to unpack the tuple. From the input array in the tuple we
get the length of the array which will be used later in the 𝑅𝑒𝑝𝑒𝑎𝑡 process (marked as Setup
guard). Additionally we also get the elements from the array, that being the two sub-arrays.
When we receive the array element we can then apply the function. With the value we receive
after a function application we can create a cell using the 𝐶𝑒𝑙𝑙 process for the resulting array.
When we receive on 𝑑 (marked guard) we know the 𝑅𝑒𝑝𝑒𝑎𝑡 process has finished and can then
output the new array handle.

31



⟦map (𝜆𝑥.size 𝑥, [[1, 2], [3, 4]])⟧Γ
𝑜 = (𝜈𝑜tup : ch(⟦([𝐈𝐧𝐭] → 𝐈𝐧𝐭, [[𝐈𝐧𝐭]])⟧).(𝜈ℎout : ⟦[𝐈𝐧𝐭]⟧).

(⟦(𝜆𝑥.size 𝑥, [[1, 2], [3, 4]])⟧Γ
𝑜tup

| 𝑜tup(ℎtup : ⟦([𝐈𝐧𝐭] → 𝐈𝐧𝐭, [[𝐈𝐧𝐭]])⟧).⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡
Tuple

ℎtup ⋅ tup (𝑓 : ⟦[𝐈𝐧𝐭] → 𝐈𝐧𝐭⟧, ℎin : ⟦[[𝐈𝐧𝐭]]⟧).⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡
Unpack tuple

ℎin ⋅ len (𝑛 : 𝐈𝐧𝐭)⏡⏡⏡⏡⏡
Input array size

.(𝜈ℎall : ch(𝐈𝐧𝐭, ⟦[𝐈𝐧𝐭]⟧)).

ℎin ⋅ all:⟨ℎall⟩.⏡⏡⏡⏡
Get input array elements

(𝜈𝑟idx : ch(𝐈𝐧𝐭)).(𝜈𝑑 : ch(𝐈𝐧𝐭)).

(𝑅𝑒𝑝𝑒𝑎𝑡(𝑛, 𝑟idx, 𝑑)⏡⏡⏡⏡⏡
Setup guard

| !ℎall(𝑖 : 𝐈𝐧𝐭, 𝑣sub : ⟦[𝐈𝐧𝐭]⟧).⏡⏡⏡⏡⏡⏡⏡⏡
Receive input array element

(𝜈𝑟sub : ch(𝐈𝐧𝐭)).𝑓⟨𝑣sub, 𝑟sub⟩.𝑟sub(𝑠𝑧 : 𝐈𝐧𝐭).⏡⏡⏡⏡⏡⏡⏡⏡
apply function

𝑟idx(_ : 𝐈𝐧𝐭). 𝐶𝑒𝑙𝑙(ℎout, 𝑖, 𝑠𝑧, 𝐈𝐧𝐭)⏡⏡⏡⏡⏡⏡⏡⏡⏡⏡
Unguard new array element

| ∙ 𝑑(_ : 𝐈𝐧𝐭).⏡⏡⏡
Guard

𝑜⟨ℎout⟩ | !ℎout ⋅ len⟨𝑛⟩))

4.2 Correctness of the Translation
As we have now shown the translation of BtF to TE𝜋, the next important step is to show that
the translation is correct. But before we get to the proof we will need to define what a correct
translation is. Our approach to define and prove correctness is similar to [2], that being by an
operational correspondence, with a few changes brought forth by the type systems.

4.2.1 Defining Bisimulation
We have some important definitions we need before we can define operational correspondence.
One of the main parts of operational correspondence is the notion of bisimilarity - more
specifically in our case, a barbed congruence. A barb, as introduced by Milner and Sangiorgi
in [30], is a predicate ↓𝛼 such that 𝑃 ⟶

𝛼
 that being 𝑃  can perform some observable action 𝛼.

In our case 𝛼 is either an input (𝑎), output (𝑎) or a broadcast (𝑎:).

For our definition of barbed bisimulation, we have the notion of multiple important and
administrative reductions. The definition we give is the same as seen in [2].

Definition 4.1 (Multiple important and administrative transitions):  The transition ⇒
𝑠

is defined for labels 𝑠 ∈ {⚬, ∙} as follows:

⇒
𝑠

= {𝑠 = ⚬, ⟶∗⚬

𝑠 = ∙, ⟶∗⚬ ⟶∙

Another important definition we introduce is the complete context. This approach of constrict-
ing contexts is inspired by Sangiorgi, [31].

32



Definition 4.2 (Complete context):  Let Δ, Π ⊢ 𝑃  and 𝐶[⋅] be a context with a hole with
fn(𝐶[⋅]) ∪ fv(𝐶[⋅]) = ℳ, then we say 𝐶 is a complete context if ∃Δ′, Π′ s.t Δ′, Π′ ⊢ 𝐶[𝑃 ]
where dom(Δ′, Π′) = ℳ.

Now we can finally give the definition of Weak Administrative Barbed Bisimulation (WABB).
The definition of WABB is similar to the one seen in [2].

Definition 4.3 (Weak Administrative Barbed Bisimulation):  Suppose Δ, Π ⊢ 𝑃 , 𝑄 and
let ℛ be symmetric relation over processes. Then ℛ is called a Weak Administrative
Barbed Bisimulation if for whenever 𝑃 ℛ𝑄 the following holds:
1. If 𝑃 ⟶∙ 𝑃 ′ then 𝑄 ⇒∙ 𝑄′ and 𝑃 ′ ℛ𝑄′

2. If 𝑃 ⟶⚬ 𝑃 ′ then 𝑄 ⇒⚬ 𝑄′ and 𝑃 ′ ℛ𝑄′

3. For each prefix 𝛼, 𝑃 ↓𝛼 implies 𝑄 ⇒⚬ ↓𝛼

4. For all complete contexts 𝐶, 𝐶(𝑃)ℛ𝐶(𝑄)

We write 𝑃 ≈𝛼
⋅ 𝑄 if there exist a weak administrative barbed bisimulation ℛ such that

𝑃 ℛ𝑄.

The definition of a complete context (Definition 4.2) is necessary in the definition of WABB.
Let us imagine we defined WABB without a complete context and just allowed a relation on
every context filled with well-typed processes. We would then be able to relate two process that
by themselves are well-typed, but put in a context are ill-typed. The complete context restricts
the contexts such that we only look at contexts that is also well-typed when the hole is filled
with a well-typed process.

4.2.2 Defining Correctness
With the definition of WABB we can start defining correctness of the translation. We have two
requirements for the translation. The first requirement is the correctness of types is preserved
after translation. This gives us the following theorem.

Theorem 4.1 (Typed correctness):  Let 𝑒 be a BtF expression.
1. (Soundness) If Γ ⊢ 𝑒 : 𝜏  then ⟦𝑒⟧Γ

𝑜 = (Δ, Π, 𝑃) where Δ, Π ⊢ 𝑃  and Δ(𝑜) = ch(⟦𝜏⟧).
2. (Completeness) If ⟦𝑒⟧Γ

𝑜 = (Δ, Π, 𝑃), Δ, Π ⊢ 𝑃  and there exists Δ(𝑜) : ch(𝑡) with 𝑡 = ⟦𝜏⟧
then Γ ⊢ 𝑒 : 𝜏 .

We then say that 𝑒 ≻≺ ⟦𝑒⟧Γ
𝑜  if the typed translation is sound and complete.

The second requirements is the behaviour is preserved after the translation. The second part
is achieved by the notion of operational correspondence which is inspired by Amadio et. al,
[17]. Our definition of operational correspondence is similar to the one as seen in [2] with the
addition of requiring that expressions and processes must be well-typed.

33



Definition 4.4 (Operational Correspondence):  Let Γ ⊢ 𝑒 : 𝜏  be a well-typed BtF expres-
sion, Δ, Π ⊢ 𝑃  a well-typed TE𝜋 process and 𝑅 be non-symmetric binary relation between
an expression and a process. Then 𝑅 is an administrative operational correspondence if
∀(𝑒, 𝑃 ) ∈ 𝑅 the following holds:
1. If 𝑒 → 𝑒′ then ∃𝑃 ′ such that 𝑃 ⇒∙ 𝑄, 𝑄 ≈𝛼

⋅ 𝑃 ′ and 𝑒′ 𝑅 𝑃 ′

2. If 𝑃 ⇒∙ 𝑃 ′ then ∃𝑒′, 𝑄 such that 𝑒 → 𝑒′, 𝑄 ≈𝛼
⋅ 𝑃 ′ and 𝑒′ 𝑅 𝑄

We say that 𝑒 ≷ok 𝑃  if there exists an operational correspondence relation 𝑅 such that
𝑒𝑅 𝑃 .

From the definition of operational correspondence we have two conditions. Condition 1 achieves
soundness by guaranteeing that reductions of BtF expression 𝑒 can be matched by a sequence of
one or more reductions in the corresponding TE𝜋 process 𝑃 . Condition 2 achieves completeness
by ensuring that 𝑒 can always evolve to some 𝑒′ given that 𝑃  has any important reduction
and that the evolved expression 𝑒′ is in an operational correspondence with some 𝑄, and that
𝑃 ′ and 𝑄 are WABB. The later part is important for ensuring the operational correspondence
after a reduction. For the behavioural correctness we get the following theorem.

Theorem 4.2 (Behavioural correctness):  Let 𝑒 be a well-typed BtF expression and 𝑜 be
a fresh name then 𝑒 ≷ok ⟦𝑒⟧Γ

𝑜 .

Theorem 4.2 states that a BtF expression and the translation of the expression is in an
operational correspondence and in the proof we will show this. In the proof we will denote
condition 1 as soundness and condition 2 as completeness. To help prove Theorem 4.2 we need
some lemmas as seen in [2].

Lemma 4.1 (Program behaviour):  For any Δ, Π ⊢ 𝑃 , complete context 𝐶 and
𝑠 ∈ {⚬, ∙}, then if there exists a Δ, Π ⊢ 𝑄 s.t 𝐶[𝑃 ] ⟶

𝑠
𝑄, then one of the following holds:

1. Only 𝐶 reduces, therefore 𝑄 = 𝐶′[𝑃 ] s.t 𝐶[𝟎] ⟶
𝑠

𝐶′[𝟎].
2. Only 𝑃  reduces, therefore 𝑄 = 𝐶[𝑃 ′] s.t 𝑃 ⟶

𝑠
𝑃 ′.

3. 𝐶 and 𝑃  interact, therefore 𝑄 = 𝐶′[𝑃 ′] and there exists an 𝑂 s.t
𝐶[𝑃 ] ≡ (𝜈𝑎→ : 𝑡𝑎

→
).(𝑂 | 𝑃 ), 𝑂 | 𝑃 ⟶

𝑠
𝑂′ | 𝑃 ′ and 𝐶[𝑃 ] ⟶

𝑠
𝐶′[𝑃 ′].

Lemma 4.1 states three different cases in which processes can reduce when within a context.
In the first case only the context reduces. In the second only the process within the context
reduces. In the last case an interaction occurs and as such both the context and process reduces.
This lemma is useful for simplifying the proofs for some of the later lemmas.

34



Lemma 4.2 (Preservation of substitution):  let Γ ⊢ 𝑒1 : 𝜏  and Γ ⊢ 𝑒2 : 𝜏  be well-typed
BtF expression and 𝑒2 ∈ 𝒱 then
1. If 𝑒2 is a number then ⟦𝑒1⟧Γ

𝑜 { /𝑛
𝑥} ≈𝛼

⋅ ⟦𝑒1{𝑥 ↦ 𝑛}⟧Γ
𝑜  for some 𝑜

2. If 𝑒2 is an abstraction, tuple or array then (𝜈ℎ : 𝑡).(𝑄 | ⟦𝑒1⟧Γ
𝑜 { /ℎ

𝑥}) ≈𝛼
⋅ ⟦𝑒1{𝑥 ↦ 𝑒2}⟧Γ

𝑜

for some 𝑜, where ⟦𝑒2⟧Γ
𝑜 | 𝑜(𝑥 : 𝑡).𝑃 ⇒∙ (𝜈ℎ : 𝑡).(𝑄 | 𝑃{ /ℎ

𝑥}) and 𝑡 = ⟦𝜏⟧.

Lemma 4.2 is necessary in proving Theorem 4.2, more specifically application. As in the
application we have two expression 𝑒1𝑒2 with the first being an abstraction. We need to know
if we can substitute in with the value from the second expression. This is necessary for us
argue that the translation after reductions can be matched with application in BtF after the
transition step.

The next two lemmas will be necessary to show that processes that are finished in the translation
can be removed without any other processes being affected. First, Lemma 4.3 states that
processes bisimilar to the 𝟎 processes will always be bisimilar even after possible reductions.
Second, Lemma 4.4 states that we can remove theses processes without affecting other processes.

Lemma 4.3 (Garbage processes):  For any Δ, Π ⊢ 𝑃  then if 𝑃 ≈𝛼
⋅ 𝟎 and there exists 𝑃 ′

such that 𝑃 ⇒∗𝑠
𝑃 ′ then ∀𝛼.𝑃 ′↓/𝛼 and 𝑃 ′ ≈𝛼

⋅ 𝟎.

Lemma 4.4 (Garbage collection):  For any complete context 𝐶 and any Δ, Π ⊢ 𝑃  where
𝑃 ≈𝛼

⋅ 𝟎, then for all Δ, Π ⊢ 𝑄 it holds that 𝑃 | 𝑄 ≈𝛼
⋅ 𝑄.

Lemma 4.5 is necessary if we want to know if there is an observable action after some
administrative reductions. This will useful in the proof for behavioral correctness to argue for
the bisimilarity of two processes. Lemma 4.6 states that if a translated expression after some
reductions eventually outputs on 𝑜 then 𝑒 is a value.

Lemma 4.5 (Translated value has observable output):  If Γ ⊢ 𝑒 : 𝜏  and 𝑒 ∈ 𝒱 then there
exists an Δ, Π ⊢ 𝑃 , s.t ⟦𝑒⟧Γ

𝑜 ⇒⚬ 𝑃  and 𝑃 ↓𝑜.

Lemma 4.6 (Translated expression has observable ouput):  There exists Γ ⊢ 𝑒 : 𝜏  and
Δ, Π ⊢ 𝑃  s.t ⟦𝑒⟧Γ

𝑜 ⇒⚬ 𝑃  and 𝑃 ↓𝑜 then it holds that 𝑒 ∈ 𝒱.

From the two theorems about correctness of the translation we get following corollary which
states that any given well-typed BtF expression can be translated and stay well-typed in TE𝜋
while preserving the behaviour from BtF.

35



Corollary 4.1 (Correctness of the typed translation):  Given a well-typed BtF expression
Γ ⊢ 𝑒 : 𝜏  and a fresh 𝑜 then 𝑒 ≷ok ⟦𝑒⟧Γ

𝑜  and 𝑒 ≻≺ ⟦𝑒⟧Γ
𝑜

4.2.3 Proof of Correctness
For the corollary to hold we must prove the two theorems: Theorem 4.1 and Theorem 4.2.

We start with a subset of the proof of Theorem 4.1. The full proof can be found in Appendix E.7.

Proof of Theorem 4.1.

We prove soundness by induction on the rules used for concluding 𝑒 is well-typed, and for
completeness we prove it by induction on the structure of 𝑒.

𝐀𝐩𝐩𝐥𝐢𝐜𝐚𝐭𝐢𝐨𝐧: For application we have 𝑒 = 𝑒1𝑒2 and must prove the soundness and
completeness of the translation.

𝐒𝐨𝐮𝐧𝐝𝐧𝐞𝐬𝐬: From the (BT-App) rule we know that 𝑒 : 𝜏2. From inspection of the
translation we have an ℎ : ⟦𝜏1 → 𝜏2⟧ = ch(⟦𝜏1⟧, ch(⟦𝜏2⟧)). From the translation we see
that we send 𝑣, 𝑜 on ℎ and from that we then have 𝑣 : ⟦𝜏1⟧ and 𝑜 : ch(⟦𝜏2⟧). Therefore
soundness hold.

𝐂𝐨𝐦𝐩𝐥𝐞𝐭𝐞𝐧𝐞𝐬𝐬: We have that 𝑒 = 𝜆(𝑥 : 𝜏1).𝑒1 and ⟦𝑒⟧Γ
𝑜 = (Δ, Π, 𝑃) where

𝑃 = (𝜈ℎ : ⟦𝜏1 → 𝜏2⟧).(𝑜⟨ℎ⟩ | !ℎ(𝑥 : ⟦𝜏1⟧, 𝑟 : ch(⟦𝜏2⟧)).⟦𝑒1⟧Γ
𝑟 )

We assume that Δ(𝑜) = ch(𝑡) where 𝑡 = ⟦𝜏⟧. By inspection of the translation we
have that 𝑜⟨ℎ⟩ where ℎ : ⟦𝜏1 → 𝜏2⟧ which implies 𝜏 = 𝜏1 → 𝜏2. Then by the induction
hypothesis we get that ⟦𝑒1⟧Γ

𝑜 = (Δ′, Π, 𝑃 ′) where Δ′ = Δ, ℎ : ⟦𝜏1 → 𝜏2⟧, 𝑥 : ⟦𝜏1⟧, 𝑟 :
ch(⟦𝜏2⟧), s.t Γ, 𝑥 : 𝜏1 ⊢ 𝑒1 : 𝜏2. Therefore by (BT-Abs) we get that Γ ⊢ 𝜆(𝑥 : 𝜏1).𝑒1 :
𝜏1 → 𝜏2.

⬜

For Theorem 4.2 we will show the proof of behavioral correctness for application. The full proof
of Theorem 4.2 can be found in Appendix E.8.

Proof of Theorem 4.2.

Let ℬ be the set of all BtF programs and let 𝑅 be the the following relation 𝑅 =
{(𝑒, ⟦𝑒⟧Γ

𝑜 ) | 𝑒 ∈ ℬ, 𝑜 fresh}. We show that 𝑅 is an administrative operational correspon-
dences. As per Definition 4.4 we only consider pairs where 𝑒 → 𝑒′ and where ⟦𝑒⟧Γ

𝑜  contains
∙.

𝐀𝐩𝐩𝐥𝐢𝐜𝐚𝐭𝐢𝐨𝐧: For application we have 𝑒 = 𝑒1𝑒2 and must prove that the two parts of
operational correspondence hold.

𝐒𝐨𝐮𝐧𝐝𝐧𝐞𝐬𝐬: For the first part we have that if 𝑒 → 𝑒′ then there is a 𝑃 ′ such that
⟦𝑒⟧Γ

𝑜 ⇒∙ 𝑃 ′ and 𝑃 ′ ≈𝛼
⋅ ⟦𝑒′⟧Γ

𝑜 . There are two cases for when 𝑒 → 𝑒′: One when the
sub-expressions can take a step and one when they cannot.

36



For the first case we have that there are two application rules for the sub-expressions
𝑒1 and 𝑒2 to take a step: (B-App1) and (B-App2). By our assumption that (𝑒, ⟦𝑒⟧Γ

𝑜 ) ∈
𝑅 we have that (𝑒1, ⟦𝑒1⟧Γ

𝑜1
) ∈ 𝑅. The same holds for 𝑒2. When ⟦𝑒1⟧Γ

𝑜1
 and ⟦𝑒2⟧Γ

𝑜2
 is

unguarded we know that ⟦𝑒⟧Γ
𝑜 ⇒∙ 𝑃 ′ and 𝑃 ′ ≈𝛼

⋅ ⟦𝑒′⟧Γ
𝑜 .

For the second case we have that neither 𝑒1 and 𝑒2 cannot take a step and by
Lemma 4.6 we know that 𝑒1 and 𝑒2 must be values and therefore must be on the form
𝑒1 = 𝜆(𝑥 : 𝜏1).𝑒𝜆 and 𝑒2 = 𝑣. In this case we can take a step with (B-Abs) and this
can be matched in the translation of application. As this case is more complicated
we will show how the translation will match this. First the two sub-expression is
evaluated and this will give us the process on the following form:

(𝜈𝑜1 : ch(⟦𝜏1 → 𝜏2⟧)).(𝜈𝑜2 : ch(⟦𝜏1⟧)).

(
((
(((𝜈ℎ : ⟦𝜏1 → 𝜏2⟧).(𝑜⟨ℎ⟩ | !ℎ(𝑥 : ⟦𝜏1⟧, 𝑟 : ch(⟦𝜏2⟧)).⟦𝑒𝜆⟧Γ

𝑟 )⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
⟦𝑒1⟧Γ

𝑜1

| (𝜈𝑣 : ⟦𝜏1⟧).𝑜2⟨𝑣⟩ | 𝑆⎵⎵⎵⎵⎵⎵⎵⎵
⟦𝑒2⟧Γ

𝑜2

| 𝑜1(ℎ : ⟦𝜏1 → 𝜏2⟧).𝑜2(𝑣 : ⟦𝜏1⟧). ∙ ℎ⟨𝑣, 𝑜⟩

)
))
))

As the translation of 𝑒1 is an abstraction it is substituted with the translation
of abstraction. The translation of 𝑒2 is substituted with a value ready to be sent
on 𝑜2 in parallel with a processes 𝑆 that maintains the value. To not confuse the
reader, the expression in the translation of abstraction has been renamed to 𝑒𝜆. After
communication on 𝑜1 and 𝑜2 happens the application will be on the following form:

(𝜈ℎ : ⟦𝜏1 → 𝜏2⟧).(𝜈𝑣 : ⟦𝜏1⟧).!ℎ(𝑥 : ⟦𝜏1⟧, 𝑟 : ch(⟦𝜏2⟧)).⟦𝑒𝜆⟧Γ
𝑟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵

Abstraction

| 𝑆 | ∙ ℎ⟨𝑣, 𝑜⟩

Now we can send on the function handle ℎ and thus proceed to ⟦𝑒𝜆⟧Γ
𝑟  where 𝑟 is the

return channel substituted with the output channel 𝑜 and value 𝑣. We denote this as
the process 𝐻 which then corresponds to 𝐻 = ⟦𝑒𝜆⟧Γ

𝑜 { /𝑣
𝑥}. By Lemma 4.2 we have

that this corresponds to 𝑒𝜆{𝑣 ↦ 𝑥} which is our 𝑒′. Thereby we have the ⟦𝑒⟧Γ
𝑜 ⇒∙

𝑃 ′ and 𝑃 ′ ≈𝛼
⋅ ⟦𝑒′⟧Γ

𝑜 .

𝐂𝐨𝐦𝐩𝐥𝐞𝐭𝐞𝐧𝐞𝐬𝐬: For the second part we have that if ⟦𝑒⟧Γ
𝑜 ⇒∙ 𝑃 ′ then there is an 𝑒′

such that 𝑒 → 𝑒′ and 𝑃 ′ ≈𝛼
⋅ ⟦𝑒′⟧Γ

𝑜 . We have two cases: first if the important transition
happens in either ⟦𝑒1⟧Γ

𝑜1
 or ⟦𝑒2⟧Γ

𝑜2
, or second when sending on the handle ℎ.

In the first case we can select 𝑒′ to be either 𝑒′
1𝑒2 or 𝑒1𝑒′

2 depending on where the
important transition happens and then by one of the two application rules we have
𝑒 → 𝑒′.

In the second case both ⟦𝑒1⟧Γ
𝑜1

 and ⟦𝑒2⟧Γ
𝑜2

 can send on their respective 𝑜 after some

administrative reductions. By Lemma 4.6 we know that 𝑒1 and 𝑒2 are values and as

37



such no important transition exists in those. We know that ⟦𝑒1⟧Γ
𝑜1

 is an abstraction

and therefore by (B-Abs) we have that 𝑒 → 𝑒′.

⬜

38



5 Conclusion
In this report we have taken a look at the small language ButF which encompasses some of
the core aspects of Futhark and E𝜋, an extension to the 𝜋-calculus extended with broadcasting
capabilities and composite names, and the translation of ButF to 𝐸𝜋. We then extended both
with a simple type system (called BtF and TE𝜋, respectively) and introduced an updated
translation.

5.1 Results
For the type system for BtF we took inspiration from the simply typed lambda calculus with
some of the types based on a simplified Futharks type system, such as arrays and tuple types.
As the goal was to attempt to create a type system similar to the simple type system of Futhark,
we took inspiration from [20] for the type rules. Since a number of the type rules for Futhark
is created with unique types, we were unable to capture those exactly with the simple types
of BtF. As such, our type rules is mostly similar in those cases with others inspired by the
simply typed 𝜆-calculus. To handle typing of array operations we introduced an implicit type
context where we could look up the type of map, iota and size. We showed that BtF is sound
(Theorem 3.1) in regards to the semantics by showing that we can always take a reduction from
a well-typed expression that is not a value and still be well-typed after the reduction.

In the type system for TE𝜋 we introduced a simple type-system with location and pre-channel
types to handle composite names. Furthermore we introduce a composite name environment
that maps a tuple of names (𝑥, 𝑦) to types. This ensures that we can reuse the name 𝑦 for
multiple handles 𝑥 when translating from BtF to TE𝜋. This allows for a common interface for
accessing arrays and tuples ℎ ⋅ all, ℎ ⋅ len, ℎ ⋅ 𝑛 and ℎ ⋅ tup without typing collisions simplifying
the translation. Furthermore this prevents out of bounds indexing as the pair (ℎ, 𝑛 + 1) should
not map to a type in Π for any array with the handle ℎ and the length 𝑛. As in BtF we prove
that the type system for TE𝜋 is sound (Theorem 3.2) by proving that we can take a reduction
from a well-typed process and still be well-typed.

We then defined an updated translation of BtF to TE𝜋 with some of the constraints of the
original translation removed, as they became unnecessary through guarantees of the type-
system. Furthermore we have reduced the amount of allowed programs, for example preventing
using binary operation on two abstractions by ensuring that the values in binary operations
have to be typed as 𝐈𝐧𝐭. We then prove type correctness (Theorem 4.1) which ensures the
translation of any well-typed BtF expression results in a well-typed TE𝜋 expression, with the
type of the final output being a channel type ch(⟦𝜏⟧) where ⟦𝜏⟧ is the translated type of the
BtF expression. This is followed by a proof of the behavioural correctness of the translation
(Theorem 4.2) which ensures that there is an operational correspondence between 𝑒 and ⟦𝑒⟧Γ

𝑜

such that 𝑒 ≷ok ⟦𝑒⟧Γ
𝑜 . We then argue that (Theorem 4.1) and Theorem 4.2 prove Corollary 4.1

such that any given well-typed BtF expression can be translated and stay well-typed in TE𝜋
while preserving the behaviour. This then gives us a data-parallel implementation of BtF in
TE𝜋 that ensures the behaviour and typing is correct. This also provides a starting point for
extending the type system with sized and unique types from Futhark.

39



5.2 Future Work
There are several directions this work can be extended. Though BtF is a step closer to Futhark
compared to ButF by including a type system, there are still many interesting aspects and
designs in Futhark we have not been able to capture. One such could be their unique types
or constructs not yet introduced to BtF. Below we will discuss some of the possible directions
future work could take.

5.2.1 From Array Operations to Functions
Changing the semantics of BtF to allow size, iota and map as abstractions would simplify some
programs as the example on page 12. Furthermore it would simplify Theorem 4.1 as there is a
direct correspondence between the typing of array operation types in BtF and the TE𝜋 process
where now the type in TE𝜋 is the resulting type of the arrow type in BtF. For example, the
type for size would be ((𝐈𝐧𝐭, [𝜏 ] → 𝐈𝐧𝐭)) instead of 𝐈𝐧𝐭.

5.2.2 with Construct
Introducing the with construct from Futhark would be an interesting path to expand the
translation to TE𝜋. As allowing in place updates without side effects, would require preventing
the use of the input array and any aliases of it, in both BtF and TE𝜋. This problem could be
potentially be solved using an environment that contains unique handles similar to the concept
in [31] where Sangiorgi introduces an environment for names that must be used exactly once.
This would require adding an extra condition to communication type rules that ensures the
handle is not in the environment. Another interesting solution could be adding uniqueness types
from Futhark [25]. Ensuring that either solution works is going to be interesting for the case of
Lemma 4.2 where there are multiple handles in the TE𝜋 translation to the same array where
none should be accessible after using with in the body of the function.

5.2.3 Sized Types
Introducing sized types as in [32] would further align BtF with Futhark by ensuring bound
checks at the type level. This however would require some degree of polymorphism on the size
of arrays at the type level to allow for the implementation of function such as size, iota and
map. This could be achieved by using universal quantification as in [32] and could look as follows
Γ ⊢ map : ∀𝑛.(𝜏1 → 𝜏2, [𝜏1](𝑛)) → [𝜏2](𝑛). This would require introducing a specialization type
rule as below where a specific size can be selected for a given universal quantifier though this
would require defining substitution on types.

𝑛 ∈ ℕ Γ(𝑓) : ∀𝑥.𝜏1 → 𝜏2
(BT-spec)

Γ(𝑓) : 𝜏1{ /𝑥
𝑛} → 𝜏2{ /𝑥

𝑛}

40



6 Bibliography
[1] L. Jensen, C. O. Paulsen, and J. J. Teule, “Translating Concepts of the Futhark

Programming Language into an Extended pi-Calculus,” 2023, [Online].  Available: https://
futhark-lang.org/student-projects/pi-msc-thesis.pdf

[2] H. Hüttel, L. Jensen, C. O. Paulsen, and J. Teule, “Functional Array Programming in an
Extended Pi-Calculus,” Electronic Proceedings in Theoretical Computer Science, vol. 412,
pp. 2–18, Nov. 2024, doi: 10.4204/eptcs.412.2.

[3] Nvidia, “CUDA Toolkit.” [Online]. Available: https://developer.nvidia.com/cuda-toolkit

[4] K. Group, “OpenCL for Parallel Programming of Heterogeneous Systems.” [Online].
Available: https://www.khronos.org/opencl/

[5] S. Cook, CUDA Programming : a Developer’s Guide to Parallel Computing with GPUs.
Amsterdam ; Boston: Morgan Kaufmann, 2013.

[6] “The Furthark Programming Language.” [Online]. Available: https://futhark-lang.org/

[7] T. Henriksen, N. G. W. Serup, M. Elsman, F. Henglein, and C. E. Oancea, “Futhark:
purely functional GPU-programming with nested parallelism and in-place array updates,”
SIGPLAN Not., vol. 52, no. 6, pp. 556–571, Jun. 2017, doi: 10.1145/3140587.3062354.

[8] R. Bird, “Algebraic Identities for Program Calculation,” Comput. J., vol. 32, pp. 122–126,
1989, doi: 10.1093/comjnl/32.2.122.

[9] R. Milner, J. Parrow, and D. Walker, “A calculus of mobile processes, I,” Information and
Computation, vol. 100, no. 1, pp. 1–40, 1992, doi: https://doi.org/10.1016/0890-5401(92)
90008-4.

[10] R. Milner, J. Parrow, and D. Walker, “A calculus of mobile processes, II,” Information
and Computation, vol. 100, no. 1, pp. 41–77, 1992, doi: https://doi.org/10.1016/0890-5401
(92)90009-5.

[11] R. Milner, “The Polyadic 𝜋-Calculus: a Tutorial”, in Logic and Algebra of Specification,
F. L. Bauer, W. Brauer, and H. Schwichtenberg, Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg,  1993, pp. 203–246. doi: https://doi.org/10.1007/978-3-642-58041-3_6.

[12] D. Sangiorgi, “From 𝜋-calculus to higher-order 𝜋-calculus — and back”, in TAPSOFT'93:
Theory and Practice of Software Development, M. C. Gaudel and J. P. Jouannaud, Eds.,
Berlin, Heidelberg: Springer Berlin Heidelberg,  1993, pp. 151–166. doi: https://doi.org/
10.1007/3-540-56610-4_62.

[13] C. Ene and T. Muntean, “Expressiveness of point-to-point versus broadcast communica-
tions,” in Fundamentals of Computation Theory, G. Ciobanu and G. Păun, Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg,  1999, pp. 258–268. doi: https://doi.org/10.1007/
3-540-48321-7_21.

[14] R. Milner, “Functions as processes,” in Automata, Languages and Programming, M. S.
Paterson, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg,  1990, pp. 167–180. doi:
https://doi.org/10.1007/BFb0032030.

[15] D. Sangiorgi, “From 𝜆 to 𝜋; or, Rediscovering continuations”, Mathematical Structures in
Computer Science, vol. 9, no. 4, pp. 367–401, 1999, doi: 10.1017/S0960129599002881.

41

https://futhark-lang.org/student-projects/pi-msc-thesis.pdf
https://futhark-lang.org/student-projects/pi-msc-thesis.pdf
https://doi.org/10.4204/eptcs.412.2
https://developer.nvidia.com/cuda-toolkit
https://www.khronos.org/opencl/
https://futhark-lang.org/
https://doi.org/10.1145/3140587.3062354
https://doi.org/10.1093/comjnl/32.2.122
https://doi.org/https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/https://doi.org/10.1016/0890-5401(92)90009-5
https://doi.org/https://doi.org/10.1016/0890-5401(92)90009-5
https://doi.org/https://doi.org/10.1007/978-3-642-58041-3_6
https://doi.org/https://doi.org/10.1007/3-540-56610-4_62
https://doi.org/https://doi.org/10.1007/3-540-56610-4_62
https://doi.org/https://doi.org/10.1007/3-540-48321-7_21
https://doi.org/https://doi.org/10.1007/3-540-48321-7_21
https://doi.org/https://doi.org/10.1007/BFb0032030
https://doi.org/10.1017/S0960129599002881


[16] K. Honda, N. Yoshida, and M. Berger, “Control in the 𝑝𝑖-Calculus”, in Proc.~Fourth ACM-
SIGPLAN Continuation Workshop (CW'04),  2004.

[17] R. M. Amadio, L. Leth, and B. Thomsen, “From a Concurrent Lambda-Calculus to the
Pi-Calculus,” in Proceedings of the 10th International Symposium on Fundamentals of
Computation Theory, in FCT '95. Berlin, Heidelberg: Springer-Verlag,  1995, pp. 106–115.

[18] D. Walker, “𝜋-Calculus semantics of object-oriented programming languages”, in Theoret-
ical Aspects of Computer Software, T. Ito and A. R. Meyer, Eds., Berlin, Heidelberg:
Springer Berlin Heidelberg,  1991, pp. 532–547. doi: https://doi.org/10.1007/3-540-54415-
1_63.

[19] T. Noll and C. K. Roy, “Modeling Erlang in the pi-calculus,” in Proceedings of the 2005
ACM SIGPLAN Workshop on Erlang, in ERLANG '05. Tallinn, Estonia: Association for
Computing Machinery,  2005, pp. 72–77. doi: 10.1145/1088361.1088375.

[20] T. Henriksen, “Design and Implementation of the Futhark Programming Language,”
Universitetsparken 5, 2100 KÃ̧ benhavn, 2017.

[21] M. Abadi, B. Blanchet, and C. Fournet, “The Applied Pi Calculus: Mobile Values,
New Names, and Secure Communication,” J. ACM, vol. 65, no. 1, Oct. 2017, doi:
10.1145/3127586.

[22] L. Jensen, C. O. Paulsen, and J. J. Teule, “Constructs of the Futhark Programming
Language Described in a pi-Calculus,” 2023, [Online].  Available: https://kbdk-aub.primo.
exlibrisgroup.com/discovery/search?query=any,contains,3be42cfd-46d8-4308-81fd-4ff3863
d97b3&tab=ProjekterSpecialer&search_scope=Projekter&vid=45KBDK_AUB:DDPB&
lang=da&offset=0

[23] M. Carbone and S. Maffeis, “On the Expressive Power of Polyadic Synchronisation in π-
calculus,” Electronic Notes in Theoretical Computer Science, vol. 68, no. 2, pp. 15–32,
2002, doi: https://doi.org/10.1016/S1571-0661(05)80361-5.

[24] A. Church, “A formulation of the simple theory of types,” Journal of Symbolic Logic, vol.
5, no. 2, pp. 56–68, 1940, doi: 10.2307/2266170.

[25] “The Futhark Language.” [Online]. Available: https://futhark-book.readthedocs.io/en/
latest/language.html#basic-language-features

[26] S. Gay, “Some Type Systems for the Pi Calculus,” p. , 2000.

[27] M. Hennessy and J. Riely, “Resource Access Control in Systems of Mobile Agents,”
Information and Computation, vol. 173, no. 1, pp. 82–120, 2002, doi: https://doi.org/10.
1006/inco.2001.3089.

[28] M. Hennessy, A Distributed Pi-Calculus. Cambridge University Press, 2007.

[29] D. Sangiorgi and D. Walker, PI-Calculus: A Theory of Mobile Processes. USA: Cambridge
University Press, 2001.

[30] R. Milner and D. Sangiorgi, “Barbed bisimulation,” in Automata, Languages and Program-
ming, W. Kuich, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg,  1992, pp. 685–695.
doi: https://doi.org/10.1007/3-540-55719-9_114.

42

https://doi.org/https://doi.org/10.1007/3-540-54415-1_63
https://doi.org/https://doi.org/10.1007/3-540-54415-1_63
https://doi.org/10.1145/1088361.1088375
https://doi.org/10.1145/3127586
https://kbdk-aub.primo.exlibrisgroup.com/discovery/search?query=any,contains,3be42cfd-46d8-4308-81fd-4ff3863d97b3&tab=ProjekterSpecialer&search_scope=Projekter&vid=45KBDK_AUB:DDPB&lang=da&offset=0
https://kbdk-aub.primo.exlibrisgroup.com/discovery/search?query=any,contains,3be42cfd-46d8-4308-81fd-4ff3863d97b3&tab=ProjekterSpecialer&search_scope=Projekter&vid=45KBDK_AUB:DDPB&lang=da&offset=0
https://kbdk-aub.primo.exlibrisgroup.com/discovery/search?query=any,contains,3be42cfd-46d8-4308-81fd-4ff3863d97b3&tab=ProjekterSpecialer&search_scope=Projekter&vid=45KBDK_AUB:DDPB&lang=da&offset=0
https://kbdk-aub.primo.exlibrisgroup.com/discovery/search?query=any,contains,3be42cfd-46d8-4308-81fd-4ff3863d97b3&tab=ProjekterSpecialer&search_scope=Projekter&vid=45KBDK_AUB:DDPB&lang=da&offset=0
https://doi.org/https://doi.org/10.1016/S1571-0661(05)80361-5
https://doi.org/10.2307/2266170
https://futhark-book.readthedocs.io/en/latest/language.html#basic-language-features
https://futhark-book.readthedocs.io/en/latest/language.html#basic-language-features
https://doi.org/https://doi.org/10.1006/inco.2001.3089
https://doi.org/https://doi.org/10.1006/inco.2001.3089
https://doi.org/https://doi.org/10.1007/3-540-55719-9_114


[31] D. Sangiorgi, “The name discipline of uniform receptiveness,” Theoretical Computer
Science, vol. 221, no. 1, pp. 457–493, 1999, doi: https://doi.org/10.1016/S0304-3975(99)
00040-7.

[32] L. Bailly, T. Henriksen, and M. Elsman, “Shape-Constrained Array Programming
with Size-Dependent Types,” in Proceedings of the 11th ACM SIGPLAN International
Workshop on Functional High-Performance and Numerical Computing, in FHPNC
2023. Seattle, WA, USA: Association for Computing Machinery,  2023, p. 29. doi:
10.1145/3609024.3609412.

43

https://doi.org/https://doi.org/10.1016/S0304-3975(99)00040-7
https://doi.org/https://doi.org/10.1016/S0304-3975(99)00040-7
https://doi.org/10.1145/3609024.3609412


A Appendix for Preliminaries
A.1 ButF Definitions

Definition 1.1 (Free variables of ButF):

FV(𝑥) = {𝑥}

FV(𝜆𝑥.𝑒) = FV(𝑒) \ {𝑥}

FV(𝑒1𝑒2) = FV(𝑒1) ∪ FV(𝑒2)

FV(𝑒1 ⊙ 𝑒2) = FV(𝑒1) ∪ FV(𝑒2)

FV([𝑒1, …, 𝑒𝑛]) = FV(𝑒1) ∪ … ∪ FV(𝑒𝑛)

FV((𝑒1, …, 𝑒𝑛)) = FV(𝑒1) ∪ … ∪ FV(𝑒𝑛)

FV(if 𝑒1 then 𝑒2 else 𝑒3) = FV(𝑒1) ∪ FV(𝑒2) ∪ FV(𝑒3)

FV(map 𝑒1) = FV(𝑒1)

FV(iota 𝑒1) = FV(𝑒1)

FV(size 𝑒1) = FV(𝑒1)

Definition 1.2 (Substitution of ButF):

𝑥{𝑥 ↦ 𝑠} = 𝑠

𝑦{𝑥 ↦ 𝑠} = 𝑦 if 𝑦 ≠ 𝑥

(𝜆𝑦.𝑒1){𝑥 ↦ 𝑠} = 𝜆𝑦.𝑒1{𝑥 ↦ 𝑠} if 𝑦 ≠ 𝑥 and 𝑦 ∉ FV(𝑠)

(𝑒1𝑒2){𝑥 ↦ 𝑠} = 𝑒1{𝑥 ↦ 𝑠} 𝑒2{𝑥 ↦ 𝑠}

(𝑒1 ⊙ 𝑒2){𝑥 ↦ 𝑠} = 𝑒1{𝑥 ↦ 𝑠} ⊙ 𝑒2{𝑥 ↦ 𝑠}

𝑒1[𝑒2]{𝑥 ↦ 𝑠} = 𝑒1{𝑥 ↦ 𝑠}[𝑒2{𝑥 ↦ 𝑠}]

[𝑒1, …, 𝑒𝑛]{𝑥 ↦ 𝑠} = [𝑒1{𝑥 ↦ 𝑠}, …, 𝑒𝑛{𝑥 ↦ 𝑠}]

(𝑒1, …, 𝑒𝑛){𝑥 ↦ 𝑠} = (𝑒1{𝑥 ↦ 𝑠}, …, 𝑒𝑛{𝑥 ↦ 𝑠})

if 𝑒1 then 𝑒2 else 𝑒3{𝑥 ↦ 𝑠} = if 𝑒1{𝑥 ↦ 𝑠} then

𝑒2{𝑥 ↦ 𝑠} else 𝑒3{𝑥 ↦ 𝑠}

(map 𝑒){𝑥 ↦ 𝑠} = map (𝑒{𝑥 ↦ 𝑠})

(iota 𝑒){𝑥 ↦ 𝑠} = iota (𝑒{𝑥 ↦ 𝑠})

(size 𝑒){𝑥 ↦ 𝑠} = size (𝑒{𝑥 ↦ 𝑠})

I



A.2 ButF Semantics

∃𝑖 ∈ {1, …, 𝑛}.𝑒𝑖 → 𝑒′
𝑖

(B-Array) 
[𝑒1, …, 𝑒𝑖, …, 𝑒𝑛] → [𝑒1, …, 𝑒′

𝑖, …𝑒𝑛]

∃𝑖 ∈ {1, …, 𝑛}.𝑒𝑖 → 𝑒′
𝑖

(B-Tuple) 
(𝑒1, …, 𝑒𝑖, …, 𝑒𝑛) → (𝑒1, …, 𝑒′

𝑖, …𝑒𝑛)

𝑒1 → 𝑒′
1

(B-Index1) 
𝑒1[𝑒2] → 𝑒′

1[𝑒2]

𝑒2 → 𝑒′
2

(B-Index2) 
𝑒1[𝑒2] → 𝑒1[𝑒′

2]

∀𝑖 ∈ {1, …, 𝑛}
(B-Index) 

[𝑣1, …, 𝑣𝑛][𝑖] → 𝑣𝑖

(B-Abs) 
(𝜆𝑥.𝑒)𝑣 → 𝑒{𝑥 ↦ 𝑣}

𝑒1 → 𝑒′
1

(B-App1) 
𝑒1𝑒2 → 𝑒′

1𝑒2

𝑒2 → 𝑒′
2

(B-App2) 
𝑒1𝑒2 → 𝑒1𝑒′

2

𝑒1 → 𝑒′
1

(B-If) 
if 𝑒1 then 𝑒2 else 𝑒3 → if 𝑒′

1 then 𝑒2 else 𝑒3

𝑣 ≠ 0
(B-Ift) 

if 𝑣 then 𝑒2 else 𝑒3 → 𝑒2

𝑣 = 0
(B-Iff) 

if 𝑣 then 𝑒2 else 𝑒3 → 𝑒3

𝑒1 → 𝑒′
1

(B-Bin1) 
𝑒1 ⊙ 𝑒2 → 𝑒′

1 ⊙ 𝑒2

𝑒2 → 𝑒′
2

(B-Bin2) 
𝑒1 ⊙ 𝑒2 → 𝑒1 ⊙ 𝑒′

2

𝑣3 = 𝑣1 ⊙ 𝑣2
(B-Bin) 

𝑣1 ⊙ 𝑣2 → 𝑣3

(B-Iota) 
iota 𝑛 → [0, 1, …, 𝑛 − 1]

(B-Size) 
size [𝑣1, …, 𝑣𝑛] → 𝑛

(B-Map) 
map(𝜆𝑥.𝑒, [𝑣1, …, 𝑣𝑛]) → [𝑒{𝑥 ↦ 𝑣1}, …, 𝑒{𝑥 ↦ 𝑣𝑛}]

Figure 1.1: ButF semantics

II



A.3 E𝜋 Definitions

Definition 1.3 (Free names of channels):

fn(𝑎) = {𝑎}
fn(𝑥) = ∅

fn(𝑎 ⋅ 𝑙) = {𝑎}
fn(𝑥 ⋅ 𝑙) = ∅

Definition 1.4 (Free names of terms and
channels):

fn(𝑛) = ∅
fn(𝑎) = {𝑎}
fn(𝑥) = ∅

fn(𝑇1 ⊙ 𝑇2) = fn(𝑇1) ∪ fn(𝑇2)

Definition 1.5 (Free names of processes):

fn(𝟎) = ∅
fn(𝑃 | 𝑄) = fn(𝑃) ∪ fn(𝑄)

fn(!𝑃 ) = fn(𝑃)
fn(𝜈𝑎.𝑃 ) = fn(𝑃) \ {𝑎}

fn(𝑐⟨𝑇
→

⟩.𝑃) = fn(𝑐) ∪ fn(𝑇 ) ∪ fn(𝑃 )

fn(𝑐:⟨𝑇
→

⟩.𝑃) = fn(𝑐) ∪ fn(𝑇 ) ∪ fn(𝑃 )

fn(𝑐(𝑥→)) = fn(𝑐) ∪ fn(𝑃 )

fn([𝑇1 ⋈ 𝑇2]𝑃 , 𝑄) = fn(𝑇1) ∪ fn(𝑇2) ∪ fn(𝑃 ) ∪ fn(𝑄)

Definition 1.6 (Free variables of labels) :

fv(𝑛) = ∅
fv(𝑥) = {𝑥}

fv(all) = ∅
fv(len) = ∅
fv(tup) = ∅

Definition 1.7 (Free variables of chan-
nels) :

fv(𝑎) = ∅
fv(𝑥) = {𝑥}

fv(𝑎 ⋅ 𝑙) = fv(𝑙)
fv(𝑥 ⋅ 𝑙) = {𝑥} ∪ fv(𝑙)

Definition 1.8 (Free variables of terms):

fv(𝑛) = ∅
fv(𝑎) = ∅
fv(𝑥) = {𝑥}

fv(𝑇1 ⊙ 𝑇2) = fv(𝑇1) ∪ fv(𝑇2)

III



Definition 1.9 (Freee variables of processes):

fv(𝟎) = ∅
fv(𝑃 | 𝑄) = fv(𝑃 ) ∪ fv(𝑄)

fv(!𝑃 ) = fv(𝑃 )
fv(𝜈𝑎.𝑃 ) = fv(𝑃 )

fv(𝑐⟨𝑇
→

⟩.𝑃) = fv(𝑐) ∪ fv(𝑇 ) ∪ fv(𝑃 )

fv(𝑐:⟨𝑇
→

⟩.𝑃) = fv(𝑐) ∪ fv(𝑇 ) ∪ fv(𝑃 )

fv(𝑐(𝑥→)) = fv(𝑐) ∪ fv(𝑃 )

fv([𝑇1 ⋈ 𝑇2]𝑃 , 𝑄) = fv(𝑇1) ∪ fv(𝑇2) ∪ fv(𝑃 ) ∪ fv(𝑄)

Definition 1.10 (Bound names of processes):

bn(𝟎) = ∅
bn(𝑃 | 𝑄) = bn(𝑃) ∪ bn(𝑄)

bn(!𝑃 ) = bn(𝑃)
bn(𝜈𝑎.𝑃 ) = {𝑎} ∪ bn(𝑃)

bn(𝑐⟨𝑇
→

⟩.𝑃) = bn(𝑃)

bn(𝑐:⟨𝑇
→

⟩.𝑃) = bn(𝑃)

bn(𝑐(𝑥→)) = bn(𝑃)

bn([𝑇1 ⋈ 𝑇2]𝑃 , 𝑄) = bn(𝑃) ∪ bn(𝑄)

IV



Definition 1.11 (Bound variables of processes):

bv(𝟎) = ∅
bv(𝑃 | 𝑄) = bv(𝑃) ∪ bv(𝑄)

bv(!𝑃 ) = bv(𝑃)
bv(𝜈𝑎.𝑃 ) = bv(𝑃)

bv(𝑐⟨𝑇
→

⟩.𝑃) = bv(𝑃)

bv(𝑐:⟨𝑇
→

⟩.𝑃) = bv(𝑃)

bv(𝑐(𝑥→)) = 𝑥→ ∪ bv(𝑃)

bv([𝑇1 ⋈ 𝑇2]𝑃 , 𝑄) = bv(𝑃) ∪ bv(𝑄)

Definition 1.12 (Substitution of labels) :

𝑛{ /𝑇2 𝑇1
} = 𝑛

𝑥{ /𝑇2 𝑇1
} = {𝑇2 if 𝑥 = 𝑇1

𝑥 otherwise

all { /𝑇2 𝑇1
} = all

len { /𝑇2 𝑇1
} = len

tup { /𝑇2 𝑇1
} = tup

Definition 1.13 (Substitution of chan-
nels) :

𝑎{ /𝑇2 𝑇1
} = {𝑇2 if 𝑎 = 𝑇1

𝑎 otherwise

𝑥{ /𝑇2 𝑇1
} = {𝑇2 if 𝑥 = 𝑇1

𝑥 otherwise

(𝑎 ⋅ 𝑇 ){ /𝑇2 𝑇1
} =

{{
{
{{𝑇2 ⋅ (𝑇{ /𝑇2 𝑇1

}) if 𝑎 = 𝑇1

𝑎 ⋅ (𝑇{ /𝑇2 𝑇1
}) otherwise

(𝑥 ⋅ 𝑇 ′){ /𝑇2 𝑇1
} =

{{
{
{{𝑇2 ⋅ (𝑇{ /𝑇2 𝑇1

}) if 𝑥 = 𝑇1

𝑥 ⋅ (𝑇{ /𝑇2 𝑇1
}) otherwise

Definition 1.14 (Substitution of terms
and channels):

𝑛{ /𝑇2 𝑇1
} = 𝑛

𝑎{ /𝑇2 𝑇1
} = {𝑇2 if 𝑎 = 𝑇1

𝑎 otherwise

𝑥{ /𝑇2 𝑇1
} = {𝑇2 if 𝑥 = 𝑇1

𝑥 otherwise

(𝑇3 ⊙ 𝑇4){ /𝑇2 𝑇1
} = 𝑇3{ /𝑇2 𝑇1

} ⊙ 𝑇4{ /𝑇2 𝑇1
}

V



Definition 1.15 (Substitution of processes):

𝟎{ /𝑇2 𝑇1
} = 𝟎

(𝑃 | 𝑄){ /𝑇2 𝑇1
} = 𝑃{ /𝑇2 𝑇1

} | 𝑄{ /𝑇2 𝑇1
}

!𝑃{ /𝑇2 𝑇1
} = !(𝑃{ /𝑇2 𝑇1

})

(𝜈𝑎.𝑃 ){ /𝑇2 𝑇1
} = {

𝜈𝑎.(𝑃{ /𝑇2 𝑇1}) if 𝑎∉ fn(𝑇1)∪ fn(𝑇2)

𝜈𝑏.(𝑃{ /𝑏
𝑎}{ /𝑇′

2 𝑇′
1
}) otherwise where 𝑏∉𝑓𝑛

where 𝑓𝑛 = fn(𝑇1) ∪ fn(𝑇2) ∪ fn(𝑃 )

𝑇 ′
1 = 𝑇1{ /𝑏 𝑎} and 𝑇 ′

2 = 𝑇2{ /𝑏 𝑎}

(𝑐⟨𝑇
→

⟩.𝑃){ /𝑇2 𝑇1
} = (𝑐{ /𝑇2 𝑇1

})⟨(𝑇
→

{ /𝑇2 𝑇1
})⟩.(𝑃{ /𝑇2 𝑇1

})

(𝑐:⟨𝑇
→

⟩.𝑃){ /𝑇2 𝑇1
} = (𝑐:{ /𝑇2 𝑇1

})(⟨𝑇
→

{ /𝑇2 𝑇1
}⟩).(𝑃{ /𝑇2 𝑇1

})

(𝑐(𝑥→).𝑃){ /𝑇2 𝑇1
} = {

𝑐{ /𝑇2 𝑇1}(𝑥→).𝑃{ /𝑇2 𝑇1} if 𝑥→∩ fv(𝑇1)∪ fv(𝑇2)=∅

𝑐{ /𝑇′
2 𝑇′

1
}(𝑦→).𝑃{ /𝑦→

𝑥→}{ /𝑇′
2 𝑇′

1
} otherwise where 𝑦→∩𝑓𝑣=∅

where 𝑓𝑣 = (fv(𝑇1) ∪ fv(𝑇2) ∪ fv(𝑃 ))

𝑇 ′
1 = 𝑇1{ /𝑦→

𝑥→} and 𝑇 ′
2 = 𝑇2{ /𝑦→

𝑥→}

([𝑇1 ⋈ 𝑇2]𝑃 , 𝑄){ /𝑇2 𝑇1
} = ⋈ 𝑇2{ /𝑇2 𝑇1

}]𝑃{ /𝑇2 𝑇1
}, 𝑄{ /𝑇2 𝑇1

}

VI



B Proofs About the Type System for BtF
B.1 Proof of Lemma 3.1
Proof of Lemma 3.1.

We prove Lemma 3.1 by inspection of the type rules.

𝝉 = 𝐈𝐧𝐭: In the case that 𝜏 = 𝐈𝐧𝐭 the only rule that gives a value this type is (BT-Int)

𝝉 = 𝝉𝟏 → 𝝉𝟐: In the case that 𝜏1 → 𝜏2 the only rule that gives a value this type is
(BT-Abs)

𝝉 = [𝝉]: In the case that 𝜏 = [𝜏] the only rule that gives a value this type is (BT-Array)

𝝉 = (𝝉→): In the case that 𝜏 = (𝜏→) the only rule that gives a value this type is (BT-

Tuple)

⬜

B.2 Proof of Lemma 3.2
Proof of Lemma 3.2.

By induction on the depth of the derivation of Γ ⊢ 𝑒 : 𝜏

(𝐁𝐓-𝐈𝐧𝐭): Then 𝑒 = 𝑛 and 𝜏 = 𝐈𝐧𝐭. Therefore by (BT-Int) we have Γ, 𝑥 : 𝜏 ′ ⊢ 𝑛 : 𝐈𝐧𝐭.

(𝐁𝐓-𝐕𝐚𝐫): Then 𝑒 = 𝑦 and 𝑦 : 𝜏 ∈ dom(Γ). Since 𝑥 ∉ dom(Γ), we have that 𝑥 ≠ 𝑦.
Therefore we get 𝑦 ∈ dom(Γ, 𝑥 : 𝜏 ′) and from (BT-Var) we have Γ, 𝑥 : 𝜏 ′ ⊢ 𝑦 : 𝜏 .

(𝐁𝐓-𝐁𝐢𝐧): Then 𝑒 = 𝑒1 ⊙ 𝑒2 and Γ ⊢ 𝑒1 : 𝐈𝐧𝐭 and Γ ⊢ 𝑒2 : 𝐈𝐧𝐭 and 𝜏 = 𝐈𝐧𝐭. Therefore
using the inductive hypothesis we have Γ, 𝑥 : 𝜏 ′ ⊢ 𝑒1 : 𝐈𝐧𝐭 and Γ, 𝑥 : 𝜏 ′ ⊢ 𝑒2 : 𝐈𝐧𝐭 and
from (BT-Bin) we get Γ, 𝑥 : 𝜏 ′ ⊢ 𝑒1 ⊙ 𝑒2 : 𝜏 .

(𝐁𝐓-𝐈𝐟): Then 𝑒 = if 𝑒1 then 𝑒2 else 𝑒3 and Γ ⊢ 𝑒1 : 𝐈𝐧𝐭 and Γ ⊢ 𝑒2 : 𝜏  and Γ ⊢ 𝑒3 : 𝜏 .
From the induction hypothesis we have that Γ, 𝑥 : 𝜏 ′ ⊢ 𝑒1 : 𝐈𝐧𝐭 and Γ, 𝑥 : 𝜏 ′ ⊢ 𝑒2 : 𝜏  and
Γ, 𝑥 : 𝜏 ′ ⊢ 𝑒2 : 𝜏 . Therefore, from (BT-If) we have Γ, 𝑥 : 𝜏 ′ ⊢ if 𝑒1 then 𝑒2 else 𝑒3 : 𝜏 .

(𝐁𝐓-𝐀𝐫𝐫𝐚𝐲): Then 𝑒 = [𝑒1, …, 𝑒𝑛] and ∀𝑖 ∈ {1, …, 𝑛}.Γ ⊢ 𝑒𝑖 = 𝜏1 and 𝜏 = [𝜏1]. From the
inductive hypothesis we have that ∀𝑖 ∈ {1, …, 𝑛}.Γ, 𝑥 : 𝜏 ′ ⊢ 𝑒𝑖 : 𝜏1 and from (BT-Array)
we get Γ, 𝑥 : 𝜏 ′ ⊢ [𝑒1, …, 𝑒𝑛] : [𝜏1]

(𝐁𝐓-𝐓𝐮𝐩𝐥𝐞): Then 𝑒 = (𝑒1, …, 𝑒𝑛) and ∀𝑖 ∈ {1, …, 𝑛}.Γ ⊢ 𝑒𝑖 = 𝜏𝑖 and 𝜏 = (𝜏1, …, 𝜏𝑛).
From the inductive hypothesis we have that ∀𝑖 ∈ {1, …, 𝑛}.Γ, 𝑥 : 𝜏 ′ ⊢ 𝑒𝑖 : 𝜏𝑖 and from
(BT-Tuple) we get Γ, 𝑥 : 𝜏 ′ ⊢ (𝑒1, …, 𝑒𝑛) : (𝜏1, …, 𝜏𝑛)

(𝐁𝐓-𝐈𝐧𝐝𝐞𝐱): Then 𝑒 = 𝑒1[𝑒2] and Γ ⊢ 𝑒1 : [𝜏 ] and Γ ⊢ 𝑒2 : 𝐈𝐧𝐭. Therefore using the
inductive hypothesis we have Γ, 𝑥 : 𝜏 ′ ⊢ 𝑒1 : [𝜏 ] and Γ, 𝑥 : 𝜏 ′ ⊢ 𝑒2 : 𝐈𝐧𝐭 and from (BT-
Index) we get Γ, 𝑥 : 𝜏 ′ ⊢ 𝑒1[𝑒2] : 𝜏 .

(𝐁𝐓-𝐀𝐛𝐬): Then 𝑒 = 𝜆𝑦 : 𝜏1.𝑒1 and 𝜏 = 𝜏1 → 𝜏2 and Γ, 𝑦 : 𝜏1 ⊢ 𝑒1 : 𝜏2 we assume 𝑥 ≠
𝑦 renaming 𝑦 if needed. Because 𝑥 ∉ dom(Γ) it must hold that 𝑥 ∉ dom(Γ, 𝑦 : 𝜏1).

VII



Therefore using the inductive hypothesis we get Γ, 𝑦 : 𝜏1, 𝑥 : 𝜏 ′ ⊢ 𝑒1 : 𝜏2 and from (BT-
Abs) we get Γ, 𝑥 : 𝜏 ′ ⊢ 𝜆𝑦 : 𝜏1.𝑒1 : 𝜏1 → 𝜏2.

(𝐁𝐓-𝐀𝐩𝐩): Then 𝑒 = 𝑒1𝑒2 and Γ ⊢ 𝑒1 : 𝜏1 → 𝜏  and Γ ⊢ 𝑒2 : 𝜏1. Therefore using the
inductive hypothesis we have Γ, 𝑥 : 𝜏 ′ ⊢ 𝑒1 : 𝜏1 → 𝜏  and Γ, 𝑥 : 𝜏 ′ ⊢ 𝑒2 : 𝜏1 and from (BT-
App) we get Γ, 𝑥 : 𝜏 ′ ⊢ 𝑒1𝑒2 : 𝜏 .

⬜

B.3 Proof of Lemma 3.3
Proof of Lemma 3.3.

By induction on derivations of Γ, 𝑥 : 𝜏 ⊢ 𝑒 : 𝜏 ′.

(𝐁𝐓-𝐈𝐧𝐭): Then 𝑒 = 𝑛 and 𝜏 ′ = 𝐈𝐧𝐭. Then from 𝑛{𝑥 ↦ 𝑠} : 𝜏 ′ the preservation of under
substitution is immediately obvious.

(𝐁𝐓-𝐕𝐚𝐫): Then 𝑒 = 𝑦 and 𝑦 : 𝜏 ′ ∈ Γ, (𝑥 : 𝜏). For (BT-Var) there are two sub cases
depending on whether 𝑒 is 𝑥 or another variable .

𝒚 = 𝒙: Then we get 𝑦{𝑥 ↦ 𝑠} = 𝑠 from Definition 1.2. From the inductive hypothesis
we then get that Γ ⊢ 𝑠 : 𝜏 .

𝒚 ≠ 𝒙: Then we get 𝑦{𝑥 ↦ 𝑠} = 𝑦 from Definition 1.2, and as the expression remains
unchanged the preservation of types is immediately obvious.

(𝐁𝐓-𝐁𝐢𝐧): Then 𝑒 = 𝑒1 ⊙ 𝑒2 and Γ(𝑥 : 𝜏) ⊢ 𝑒1 : 𝐈𝐧𝐭 and Γ(𝑥 : 𝜏) ⊢ 𝑒2 : 𝐈𝐧𝐭. Using the
inductive hypothesis we have that Γ ⊢ 𝑒1{𝑥 ↦ 𝑠} : 𝐈𝐧𝐭 and Γ ⊢ 𝑒2{𝑥 ↦ 𝑠} : 𝐈𝐧𝐭. Then
using (BT-Bin) we get Γ ⊢ 𝑒1{𝑥 ↦ 𝑠} ⊙ 𝑒2{𝑥 ↦ 𝑠} : 𝐈𝐧𝐭; therefore the type is preserved
under substitution.

(𝐁𝐓-𝐈𝐟): Then 𝑒 = if 𝑒1 then 𝑒2 else 𝑒3 and Γ, (𝑥 : 𝜏) ⊢ 𝑒1 : 𝐈𝐧𝐭 and Γ, (𝑥 : 𝜏) ⊢ 𝑒2 : 𝜏 ′

and and Γ, (𝑥 : 𝜏) ⊢ 𝑒3 : 𝜏 ′. Using the inductive hypothesis we have that Γ ⊢ 𝑒1{𝑥 ↦
𝑠} : 𝐈𝐧𝐭 and Γ ⊢ 𝑒2{𝑥 ↦ 𝑠} : 𝜏 ′ and Γ ⊢ 𝑒3{𝑥 ↦ 𝑠} : 𝜏 ′. Then using (BT-If) we get Γ ⊢
if 𝑒1{𝑥 ↦ 𝑠} then 𝑒2{𝑥 ↦ 𝑠} else 𝑒3{𝑥 ↦ 𝑠} : 𝜏 ′; therefore the type is preserved under
substitution.

(𝐁𝐓-𝐀𝐫𝐫𝐚𝐲): Then 𝑒 = [𝑒1, …, 𝑒𝑛] and ∀𝑖 ∈ {1…𝑛}.Γ(𝑥 : 𝜏) ⊢ 𝑒𝑖 : 𝜏1 and 𝜏 ′ = [𝜏1]. Using
the inductive hypothesis we have that ∀𝑖 ∈ {1…𝑛}.Γ ⊢ 𝑒𝑖{𝑥↦𝑠} : 𝜏1. Then using (BT-

Array) we get Γ ⊢ [𝑒1{𝑥 ↦ 𝑠}, …, 𝑒𝑛{𝑥 ↦ 𝑠}] : [𝜏1]; therefore the type is preserved under
substitution.

(𝐁𝐓-𝐓𝐮𝐩𝐥𝐞): Then 𝑒 = (𝑒1, …, 𝑒𝑛) and ∀𝑖 ∈ {1…𝑛}.Γ(𝑥 : 𝜏) ⊢ 𝑒𝑖 : 𝜏𝑖 and 𝜏 ′ =
(𝜏1, …, 𝜏𝑛). Using the inductive hypothesis we have that ∀𝑖 ∈ {1…𝑛}.Γ ⊢ 𝑒𝑖{𝑥↦𝑠} : 𝜏1𝑖.

Then using (BT-Array) we get Γ ⊢ (𝑒1{𝑥 ↦ 𝑠}, …, 𝑒𝑛{𝑥 ↦ 𝑠}) : (𝜏1, …, 𝜏𝑖); therefore the
type is preserved under substitution.

(𝐁𝐓-𝐈𝐧𝐝𝐞𝐱): Then 𝑒 = 𝑒1[𝑒2] and Γ(𝑥 : 𝜏) ⊢ 𝑒1 : [𝜏 ′] and Γ(𝑥 : 𝜏) ⊢ 𝑒2 : 𝐈𝐧𝐭. Using the
inductive hypothesis we have that Γ ⊢ 𝑒1{𝑥 ↦ 𝑠} : [𝜏 ′] and Γ ⊢ 𝑒2{𝑥 ↦ 𝑠} : 𝐈𝐧𝐭. The

VIII



using (BT-Index) we get Γ ⊢ 𝑒1{𝑥 ↦ 𝑠}[𝑒2{𝑥 ↦ 𝑠}] : 𝜏 ′; therefore the type is preserved
under substitution.

(𝐁𝐓-𝐀𝐛𝐬): Then 𝑒 = 𝜆(𝑦 : 𝜏1).𝑒1, 𝜏 ′ = 𝜏1 → 𝜏2 and Γ, 𝑥 : 𝜏, 𝑦 : 𝜏1 ⊢ 𝑒1 : 𝜏2 since Γ ⊢ 𝑠 : 𝜏
by Lemma 3.2 we have Γ, 𝑦 : 𝜏1 ⊢ 𝑠 : 𝜏 , then using the inductive hypothesis we have Γ, 𝑦 :
𝜏1 ⊢ 𝑒1{𝑥 ↦ 𝑠} : 𝜏2. Therefore from (BT-Abs) we get Γ ⊢ 𝜆(𝑦 : 𝜏1).𝑒1{𝑥 ↦ 𝑠} : 𝜏1 → 𝜏2.
As we can assume 𝑦 ≠ 𝑥 from Lemma 3.2 and from Definition 1.2 we have that 𝑒{𝑥 ↦
𝑠} = 𝜆(𝑦 : 𝜏1).𝑒1{𝑥 ↦ 𝑠}, therefore the type is preserved under substitution.

(𝐁𝐓-𝐀𝐩𝐩): Then 𝑒 = 𝑒1𝑒2 and Γ, 𝑥 : 𝜏 ′ ⊢ 𝑒1 : 𝜏1 → 𝜏  and Γ, 𝑥 : 𝜏 ′ ⊢ 𝑒2 : 𝜏1. Then using
the inductive hypothesis we have Γ ⊢ 𝑒1{𝑥 ↦ 𝑠} : 𝜏1 → 𝜏  and Γ ⊢ 𝑒2{𝑥 ↦ 𝑠} : 𝜏1. There-
fore using (BT-App) we get Γ ⊢ 𝑒1{𝑥 ↦ 𝑠}𝑒2{𝑥 ↦ 𝑠} : 𝜏 . Because we have 𝑒{𝑥 ↦ 𝑠} =
𝑒1{𝑥 ↦ 𝑠}𝑒2{𝑥 ↦ 𝑠} from Definition 1.2, therefore the type is preserved under substi-
tution.

⬜

B.4 Proof of Theorem 3.1 - preservation
Proof of preservation.

Induction on the derivation of Γ ⊢ 𝑒 : 𝜏  using case analysis on the last rule in the derivation.

(𝐁𝐓-𝐈𝐧𝐭): Then 𝑒 = 𝑛, and by inspection of the reduction rules there exists no 𝑒′ such
that 𝑛 → 𝑒′ making the preservation immediately obvious.

(𝐁𝐓-𝐕𝐚𝐫): Then 𝑒 = 𝑥, and by inspection of the reduction rules there exists no 𝑒′ such
that 𝑥 → 𝑒′ making the preservation immediately obvious.

(𝐁𝐓-𝐁𝐢𝐧): Then 𝑒 = 𝑒1 ⊙ 𝑒2 and 𝜏 = 𝐈𝐧𝐭 and Γ ⊢ ⊙ : 𝐈𝐧𝐭 → 𝐈𝐧𝐭 → 𝐈𝐧𝐭 and Γ ⊢ 𝑒1 :
𝐈𝐧𝐭 and Γ ⊢ 𝑒2 : 𝐈𝐧𝐭. By assuming 𝑒 → 𝑒′ exists, we derive the following reduction rules:

(𝐁-𝐁𝐢𝐧𝟏): then 𝑒′ = 𝑒′
1 ⊙ 𝑒2, where 𝑒1 → 𝑒′

1. Using the induction hypothesis we get
that Γ ⊢ 𝑒′

1 : 𝐈𝐧𝐭 therefore, using (BT-Bin) we get that Γ ⊢ 𝑒′ : 𝜏 .

(𝐁-𝐁𝐢𝐧𝟐): then 𝑒′ = 𝑒1 ⊙ 𝑒′
2, where 𝑒2 → 𝑒′

2. Using the induction hypothesis we get
that Γ ⊢ 𝑒′

2 : 𝐈𝐧𝐭 therefore, using (BT-Bin) we get that Γ ⊢ 𝑒′ : 𝜏 .

(𝐁-𝐁𝐢𝐧): then 𝑒′ = 𝑣3 and from the typing of ⊙ we get that Γ ⊢ 𝑒′ : 𝜏 .

(𝐁𝐓-𝐈𝐟): Then 𝑒 = if 𝑒1 then 𝑒2 else 𝑒3 and 𝑒1 : 𝐈𝐧𝐭 and 𝑒2 : 𝜏  and 𝑒3 : 𝜏 . By assuming
𝑒 → 𝑒′ exists, we then derive the following applicable reduction rules:

(𝐁-𝐈𝐟𝐭): then 𝑒′ = 𝑒2 and from the typing of 𝑒2 we get Γ ⊢ 𝑒′ : 𝜏 .

(𝐁-𝐈𝐟𝐟): then 𝑒′ = 𝑒3 and from the typing of 𝑒3 we get Γ ⊢ 𝑒′ : 𝜏 .

(𝐁-𝐈𝐟): then we get 𝑒′ = if 𝑒′
1 then 𝑒2 else 𝑒3, where 𝑒1 → 𝑒′

1. Using the inductive
hypothesis we get that Γ ⊢ 𝑒′

1 : 𝐈𝐧𝐭, therefore using (BT-If) we get Γ ⊢ 𝑒′ : 𝜏 .

(𝐁𝐓-𝐀𝐫𝐫𝐚𝐲): Then 𝑒 = [𝑒1, …, 𝑒𝑛] and ∀𝑖 ∈ {1, …, 𝑛}.Γ ⊢ 𝑒𝑖 : 𝜏1 and 𝜏 = [𝜏1]. By assum-
ing 𝑒 → 𝑒′ exists, we then derive that (B-Array) is the only applicable reduction rule.

IX



Therefore 𝑒′ = [𝑒1, …, 𝑒′
𝑖, …, 𝑒𝑛]. Using the inductive hypothesis we get that Γ ⊢ 𝑒′

1 : 𝜏1,
using (BT-Array) we get Γ ⊢ 𝑒′ : 𝜏 .

(𝐁𝐓-𝐓𝐮𝐩𝐥𝐞): Then 𝑒 = (𝑒1, …, 𝑒𝑛) and ∀𝑖 ∈ {1, …, 𝑛}.Γ ⊢ 𝑒𝑖 : 𝜏𝑖 and 𝜏 = (𝑡1, …, 𝑡𝑛). By
assuming 𝑒 → 𝑒′ exists, we then derive that (B-Tuple) is the only applicable reduction
rule. Therefore 𝑒′ = (𝑒1, …, 𝑒′

𝑖, …, 𝑒𝑛). Using the inductive hypothesis we get that Γ ⊢ 𝑒′
1 :

𝜏1, using (BT-Tuple) we get Γ ⊢ 𝑒′ : 𝜏 .

(𝐁𝐓-𝐈𝐧𝐝𝐞𝐱): Then 𝑒 = 𝑒1[𝑒2] and Γ ⊢ 𝑒1 : [𝜏 ] and Γ ⊢ 𝑒2 : 𝐈𝐧𝐭. By assuming 𝑒 → 𝑒′

exists, we then derive the following reduction rules:

(𝐁-𝐈𝐧𝐝𝐞𝐱𝟏): then 𝑒′ = 𝑒′
1[𝑒2], where 𝑒1 → 𝑒′

1. Using the inductive hypothesis we get
that Γ ⊢ 𝑒′

1 : [𝜏 ], therefore using (BT-Index) we get Γ ⊢ 𝑒′ : 𝜏 .

(𝐁-𝐈𝐧𝐝𝐞𝐱𝟐): then 𝑒′ = 𝑒1[𝑒′
2], where 𝑒2 → 𝑒′

2. Using the inductive hypothesis we get
that Γ ⊢ 𝑒′

2 : 𝐈𝐧𝐭, therefore using (BT-Index) we get Γ ⊢ 𝑒′ : 𝜏 .

(𝐁-𝐈𝐧𝐝𝐞𝐱): then 𝑒′ = 𝑣𝑖, using Lemma 3.1 we get that 𝑒1 = [𝑣1, …, 𝑣𝑛]. Then using
(BT-Array) we get that ∀𝑖 ∈ {1, …, 𝑛}.Γ ⊢ 𝑣𝑖 : 𝜏  and therefore we get that Γ ⊢ 𝑣𝑖 : 𝜏 .

(𝐁𝐓-𝐀𝐛𝐬): Then 𝑒 = 𝜆(𝑥 : 𝜏).𝑒, and by inspection of the reduction rules there exists no
𝑒′ such that 𝜆(𝑥 : 𝜏).𝑒 → 𝑒′ making the preservation immediately obvious.

(𝐁𝐓-𝐀𝐩𝐩): Then 𝑒 = 𝑒1𝑒2, and Γ ⊢ 𝑒1 : 𝜏1 → 𝜏  and Γ ⊢ 𝑒2 : 𝜏1. By assuming 𝑒 → 𝑒′

exists, and using case analysis we derive the following applicable reduction rules:

(𝐁-𝐀𝐩𝐩𝟏): Then 𝑒′ = 𝑒′
1𝑒2 and 𝑒1 → 𝑒′

1. Using the induction hypothesis we have
that Γ ⊢ 𝑒′

1 : 𝜏1 → 𝜏 . Therefore, using (BT-App) we get Γ ⊢ 𝑒′
1𝑒2 : 𝜏 .

(𝐁-𝐀𝐩𝐩𝟐): Then 𝑒′ = 𝑒1𝑒′
2 and 𝑒2 → 𝑒′

2. Using the induction hypothesis we have
that Γ ⊢ 𝑒′

2 : 𝜏1. Therefore, using (BT-App) we get Γ ⊢ 𝑒1𝑒′
2 : 𝜏 .

(𝐁-𝐀𝐛𝐬): Then 𝑒1 = 𝜆(𝑥 : 𝜏2).𝑒3 and 𝑒2 = 𝑣 and 𝑒′ = 𝑒3{𝑥 ↦ 𝑣}. Because Γ ⊢ 𝑒1 :
𝜏1 → 𝜏  and 𝑒1 = 𝜆(𝑥 : 𝜏2).𝑒3 by inspection of the type rules it must hold that 𝜏1 = 𝜏2

giving us Γ ⊢ 𝜆(𝑥 : 𝜏1).𝑒3 : 𝜏1 → 𝜏 . Then by inspection the derivation must end with
(BT-Abs) giving us Γ, (𝑥 : 𝜏1)𝑒3 : 𝜏 . Then because Γ ⊢ 𝑒2 : 𝜏1 and 𝑒2 = 𝑣 it must hold
that Γ ⊢ 𝑣 : 𝜏1. Therefore, using the Lemma 3.3 we have that Γ ⊢ 𝑒3{𝑥 ↦ 𝑣} : 𝜏 .

(𝐁-𝐌𝐚𝐩): Then 𝑒1 = map for 𝑒2 there are two cases that apply:

𝒆𝟐 ∉ 𝓥: the case for (B-App2) applies.

𝒆𝟐 ∈ 𝓥: using Lemma 3.1 we get that 𝑒2 = (𝜆(𝑥 : 𝜏1) : 𝑒3, [𝑣1, …, 𝑣𝑛]) then we get
that 𝑒′ = [𝑒3{𝑥 ↦ 𝑣1}, …, 𝑒3{𝑥 ↦ 𝑣𝑛}]. Then from Definition 3.3 we have that
Γ ⊢ map : (𝐈𝐧𝐭 → 𝐈𝐧𝐭, [𝐈𝐧𝐭]) → [𝐈𝐧𝐭] then by inspection of the type rules we have
that 𝜏 = [𝐈𝐧𝐭] and 𝜏1 = 𝐈𝐧𝐭. Then by inspection the derivation must end with
(BT-Array) giving us Γ ⊢ [𝑣1, …, 𝑣𝑛] : 𝜏  and ∀𝑖 ∈ {1, …, 𝑛}.Γ ⊢ 𝑣𝑖 : 𝐈𝐧𝐭. Therefore
using Lemma 3.3 we have that Γ ⊢ [𝑒{𝑥 ↦ 𝑣1}, …, 𝑒{𝑥 ↦ 𝑣𝑛}] : 𝜏 .

(𝐁-𝐈𝐨𝐭𝐚): Then 𝑒1 = iota for 𝑒2 there are two cases that apply:

X



𝒆𝟐 ∉ 𝓥: the case for (B-App2) applies.

𝒆𝟐 ∈ 𝓥: using Lemma 3.1 we get that 𝑒2 = 𝑛, then we get that 𝑒′ = [𝑣1, …, 𝑣𝑛].
Then from Definition 3.3 we have that Γ ⊢ iota : 𝐈𝐧𝐭 → [𝐈𝐧𝐭] then by inspection
of the type rules we have that 𝜏 = [𝐈𝐧𝐭] and 𝜏1 = 𝐈𝐧𝐭. Then using (BT-Array) we
get that Γ ⊢ 𝑒′ : 𝜏 .

(𝐁-𝐒𝐢𝐳𝐞): Then 𝑒1 = size for 𝑒2 there are two cases that apply:

𝒆𝟐 ∉ 𝓥: the case for (B-App2) applies.

𝒆𝟐 ∈ 𝓥: using Lemma 3.1 we get that 𝑒2 = [𝑣1, …, 𝑣𝑛] then we get that 𝑒′ = 𝑛.
Then from Definition 3.3 we have that Γ ⊢ size : [𝐈𝐧𝐭] → 𝐈𝐧𝐭 then by inspection
of the type rules we have that 𝜏 = 𝐈𝐧𝐭 and 𝜏1 = [𝐈𝐧𝐭]. Then using (BT-Int) we
get that Γ ⊢ 𝑒′ : 𝜏 .

⬜

B.5 Proof of Theorem 3.1 - progress
Proof of progress.

We will prove progress by induction on the typing derivation of ⊢ 𝑒 : 𝜏  (the empty environ-
ment). We will go over each type rule and show that progress holds: either 𝑒 is a value or it
can take a step 𝑒 → 𝑒′.

(𝐁𝐓-𝐈𝐧𝐭): Trivial as 𝑛 is a value and therefore progress holds.

(𝐁𝐓-𝐕𝐚𝐫): We cannot type (BT-Var) under the empty environment. We would have
that 𝑥 : 𝜏  under Γ but that contradicts our inductive hypothesis.

(𝐁𝐓-𝐀𝐛𝐬): The case of (BT-Abs) is trivial as abstraction is a value and therefore
progress holds.

(𝐁𝐓-𝐀𝐩𝐩): We know by (BT-App) that 𝑒1 has type 𝜏1 → 𝜏2. By the induction hypoth-
esis we know that 𝑒1 ∈ 𝒱 or ∃𝑒′

1.𝑒1 → 𝑒′
1 and 𝑒2 ∈ 𝒱 or ∃𝑒′

2.𝑒2 → 𝑒′
2. That gives us four

cases:

𝒆𝟏, 𝒆𝟐 ∉ 𝓥: In the case that 𝑒1 and 𝑒2 are not values then by our inductive hypothesis
𝑒1 → 𝑒′

1 and 𝑒2 → 𝑒′
2. If 𝑒1 takes a step then (B-App1) applies. From (B-App1) we

have that given the premise we can take the step 𝑒1𝑒2 → 𝑒′
1𝑒2 and therefore progress

holds.

if 𝑒2 takes a step then (B-App2) applies. From (B-App2) we have that given the
premise we can take the step 𝑒1𝑒2 → 𝑒1𝑒′

2 and therefore progress holds.

𝒆𝟏 ∉ 𝓥: In the case that 𝑒1 is not a value then by our inductive hypothesis it can
take a step. Then the rule (B-App1) applies. From (B-App1) we have that given the
premise we can take the step 𝑒1𝑒2 → 𝑒′

1𝑒2 and therefore progress holds.

𝒆𝟐 ∉ 𝓥: In the case that 𝑒2 is not a value then by our inductive hypothesis it can
take a step. Then the rule (B-App2) applies. From (B-App2) we have that given the
premise we can take the step 𝑒1𝑒2 → 𝑒1𝑒′

2 and therefore progress holds.

XI



𝒆𝟏, 𝒆𝟐 ∈ 𝓥: In the last case both 𝑒1 and 𝑒2 are values. As 𝑒1 must be an arrow type
(by our type rule) - then abstraction applies (as that is the only value that has type
𝜏1 → 𝜏2 from proof of Lemma 3.1) and we can use (B-Abs) to take a step.

(𝐁𝐓-𝐁𝐢𝐧): We know from (BT-Bin) that 𝑒1 and 𝑒2 has type 𝐈𝐧𝐭. By the induction
hypothesis we know that 𝑒1 ∈ 𝒱 or ∃𝑒′

1.𝑒1 → 𝑒′
1 and 𝑒2 ∈ 𝒱 or ∃𝑒′

2.𝑒2 → 𝑒′
2. This gives

us the following cases:

𝒆𝟏, 𝒆𝟐 ∉ 𝓥: In the case that 𝑒1, 𝑒2 ∉ 𝒱 the by our inductive hypothesis we know that
𝑒1 → 𝑒′

1 and 𝑒2 → 𝑒′
2. If 𝑒1 take a step then (B-Bin1) applies. From (B-Bin1) we have

that given the premise we can take the step 𝑒1 ⊙ 𝑒2 → 𝑒′
1 ⊙ 𝑒2 and therefore progress

applies.

If 𝑒2 take a step then (B-Bin2) applies. From (B-Bin2) we have that given the premise
we can take the step 𝑒1 ⊙ 𝑒2 → 𝑒1 ⊙ 𝑒′

2 and therefore progress applies.

𝒆𝟏 ∉ 𝓥: In the case that 𝑒1 ∉ 𝒱 then by our inductive hypothesis 𝑒1 can take a step
and then (B-Bin1) applies. From (B-Bin1) we have that given the premise we can
take the step 𝑒1 ⊙ 𝑒2 → 𝑒′

1 ⊙ 𝑒2 and therefore progress applies.

𝒆𝟐 ∉ 𝓥: In the case that 𝑒2 ∉ 𝒱 then by our inductive hypothesis 𝑒2 can take a step
and then (B-Bin2) applies. From (B-Bin2) we have that given the premise we can
take the step 𝑒1 ⊙ 𝑒2 → 𝑒1 ⊙ 𝑒′

2 and therefore progress applies.

𝒆𝟏, 𝒆𝟐 ∈ 𝓥: In the last case both 𝑒1 and 𝑒2 are values. Both values must be numbers
(that is the only value of type 𝐈𝐧𝐭 by proof of Lemma 3.1). In that case (B-Bin)
applies and given the premise 𝑒 can take a step and therefore progress applies.

(𝐁𝐓-𝐈𝐟): We know from (BT-If) that 𝑒1 has type 𝐈𝐧𝐭. By the inductive hypothesis we
know that either 𝑒1 ∈ 𝒱 or ∃𝑒′

1.𝑒1 → 𝑒′
1. This gives us two cases:

𝒆𝟏 ∉ 𝓥: In the case that 𝑒1 ∉ 𝒱 then by our inductive hypothesis 𝑒1 → 𝑒′
1. We

can then apply (B-If). We can see that given the premise we can take the step
if 𝑒1 then 𝑒2 else 𝑒3 → if 𝑒′

1 then 𝑒2 else 𝑒3 and therefore progress holds.

𝒆𝟏 ∈ 𝓥: In the case that 𝑒1 ∈ 𝒱 then it must be number (that is the only value of
type 𝐈𝐧𝐭 by proof of Lemma 3.1). In that case one of the two following rules applies:
(B-Ift) or (B-Iff).

First case we apply (B-Ift) where given the premise 𝑒 can take the step
if 𝑒1 then 𝑒2 else 𝑒3 → 𝑒2 and therefore progress holds.

Second case we apply (B-Iff) where given the premise 𝑒 can take the step
if 𝑒1 then 𝑒2 else 𝑒3 → 𝑒3 and therefore progress holds.

(𝐁𝐓-𝐀𝐫𝐫𝐚𝐲): In the case of (BT-Array) we have 𝑛 number of expressions. Then by our
inductive hypothesis, for 𝑖 ∈ {1, …, 𝑛}, we know that 𝑒𝑖 ∈ 𝒱 or ∃𝑒′

𝑖.𝑒𝑖 → 𝑒′
𝑖. We will take

a look at two cases:

∃𝒊.𝒆𝒊 ∉ 𝓥: In the case that ∃𝑖.𝑒𝑖 ∉ 𝒱 we know that from our inductive hypothesis
𝑒𝑖 → 𝑒′

𝑖. In that case we can apply the rule (B-Array). from (B-Array) we have that

XII



given the premise we take the step [𝑒1, …, 𝑒𝑖, …, 𝑒𝑛] → [𝑒1, …, 𝑒′
𝑖, …𝑒𝑛] and therefore

progress holds.

∀𝒊.𝒆𝒊 ∈ 𝓥: In the case that ∀𝑖.𝑒𝑖 ∈ 𝒱 then all sub-expressions are values. Then
progress holds as arrays where all sub-expressions are values is in 𝒱

(𝐁𝐓-𝐓𝐮𝐩𝐥𝐞): The case of (BT-Tuple) is similar to (BT-Array) as we have 𝑛 number of
expressions. Then by our inductive hypothesis, for 𝑖 ∈ {1, …, 𝑛}, we know that 𝑒𝑖 ∈ 𝒱 or
∃𝑒′

𝑖.𝑒𝑖 → 𝑒′
𝑖. We will take a look at two cases:

∃𝒊.𝒆𝒊 ∉ 𝓥: In the case that ∃𝑖.𝑒𝑖 ∉ 𝒱 then by our inductive hypothesis there must exist
an 𝑒′

𝑖 such that 𝑒𝑖 → 𝑒′
𝑖. We can then apply the rule (B-Tuple). From (B-Tuple) we

have that if the premise holds we can take the step (𝑒1, …, 𝑒𝑖, …, 𝑒𝑛) → (𝑒1, …, 𝑒′
𝑖, …𝑒𝑛)

and therefore progress holds.

∀𝒊.𝒆𝒊 ∈ 𝓥: In the case that ∀𝑖.𝑒𝑖 ∈ 𝒱 then all sub expressions are values. Then
progress holds as tuples where all sub-expressions are values is in 𝒱.

(𝐁𝐓-𝐈𝐧𝐝𝐞𝐱): We know from (BT-Index) that 𝑒1 has type [𝜏 ] and 𝑒2 has type 𝐈𝐧𝐭. By
our inductive hypothesis we know that 𝑒1 ∈ 𝒱 or ∃𝑒′

1.𝑒1 → 𝑒′
1 and 𝑒2 ∈ 𝒱 or ∃𝑒′

2.𝑒2 →
𝑒′

2. That gives us four cases:

𝒆𝟏, 𝒆𝟐 ∉ 𝓥: In the case that 𝑒1, 𝑒2 ∉ 𝒱 then by our inductive hypothesis we know that
𝑒1 and 𝑒2 can take a step. If 𝑒1 takes a step then (B-Index1) applies. From (B-Index1)
we have that given the premise we can take the step 𝑒1[𝑒2] → 𝑒′

1[𝑒2] and therefore
progress holds.

If 𝑒2 take a step then (B-Index2) applies. From (B-Index2) we have that given the
premise we can take the step 𝑒1[𝑒2] → 𝑒1[𝑒′

2] and therefore progress holds.

𝒆𝟏 ∉ 𝓥: In the case that 𝑒1 ∉ 𝒱 then by our inductive hypothesis 𝑒1 can take a step
and then (B-Index1) applies. From (B-Index1) we have that given the premise we
can take the step 𝑒1[𝑒2] → 𝑒′

1[𝑒2] and therefore progress holds.

𝒆𝟐 ∉ 𝓥: In the case that 𝑒2 ∉ 𝒱 then by our inductive hypothesis 𝑒2 can take a step
and then (B-Index2) applies. From (B-Index2) we have that given the premise we
can take the step 𝑒1[𝑒2] → 𝑒1[𝑒′

2] and therefore progress holds.

𝒆𝟏, 𝒆𝟐 ∈ 𝓥: In the last case both 𝑒1 and 𝑒2 are values. 𝑒1 must be an array (that is the
only value of type [𝜏 ] by proof of Lemma 3.1) and 𝑒2 must be a number (that is the
only value of type 𝐈𝐧𝐭 by proof of Lemma 3.1). In that case (B-Index) applies. We
can see that given the premise then 𝑒 can take a step and therefore progress holds.

⬜

XIII



C The 𝑒𝑟𝑟𝑜𝑟 predicate of TE𝜋
Δ(𝑐) = ch( 𝑡1

→
) Δ, Π ⊢ 𝑇

→
: 𝑡2

→

𝑡1
→

≠ 𝑡2
→

(ER-Send) 
Δ, Π ⊢ 𝑐⟨𝑇

→
⟩.𝑃 ⟶

𝜏
𝑒𝑟𝑟𝑜𝑟

Δ(𝑐) = ch( 𝑡1
→

) Δ, Π ⊢ 𝑇
→

: 𝑡2
→

𝑡1
→

≠ 𝑡2
→

(ER-Broad)
Δ, Π ⊢ 𝑐:⟨𝑇

→
⟩.𝑃 ⟶

:𝑐
𝑒𝑟𝑟𝑜𝑟

Δ(𝑐) = ch( 𝑡1
→

) 𝑡1
→

≠ 𝑡2
→

(ER-Recv)
Δ, Π ⊢ 𝑐(𝑥→ : 𝑡2

→
).𝑃 ⟶

𝜏
𝑒𝑟𝑟𝑜𝑟

Δ, Π ⊢ 𝑃 ⟶
𝜏

𝑒𝑟𝑟𝑜𝑟
(ER-Par1)

Δ, Π ⊢ 𝑃 | 𝑄 ⟶
𝜏

𝑒𝑟𝑟𝑜𝑟

Δ, Π ⊢ 𝑄 ⟶
𝜏

𝑒𝑟𝑟𝑜𝑟
(ER-Par2)

Δ, Π ⊢ 𝑃 | 𝑄 ⟶
𝜏

𝑒𝑟𝑟𝑜𝑟

Δ, Π ⊢ 𝑃 ⟶
𝜏

𝑒𝑟𝑟𝑜𝑟
(ER-Rep) 

Δ, Π ⊢ !𝑃 ⟶
𝜏

𝑒𝑟𝑟𝑜𝑟

𝑃 ⟶
𝑞

𝑒𝑟𝑟𝑜𝑟 (temp)
(ER-Res) 

Δ, Π ⊢ (𝜈𝑎 : 𝑡).𝑃 ⟶
𝑞

𝑒𝑟𝑟𝑜𝑟

Δ, Π ⊢ 𝑇1 : 𝑡1 Δ, Π ⊢ 𝑇2 : 𝑡2
𝑡1 ≠ 𝑡2

(ER-Match) 
Δ, Π ⊢ [𝑇1 ⋈ 𝑇2]𝑃 , 𝑄 ⟶

𝜏
𝑒𝑟𝑟𝑜𝑟

Δ, Π ⊢ 𝑇1 : 𝑡 𝑡 ≠ 𝐈𝐧𝐭
(ER-Bin1) 

Δ, Π ⊢ 𝑇1 ⊙ 𝑇2 ⟶
𝜏

𝑒𝑟𝑟𝑜𝑟

Δ, Π ⊢ 𝑇2 : 𝑡 𝑡 ≠ 𝐈𝐧𝐭
(ER-Bin2) 

Δ, Π ⊢ 𝑇1 ⊙ 𝑇2 ⟶
𝜏

𝑒𝑟𝑟𝑜𝑟

Δ(𝑢) ≠ @ℓ
(ER-Compx1) 

Δ, Π ⊢ 𝑢 ⋅ 𝑥 ⟶
𝜏

𝑒𝑟𝑟𝑜𝑟

Δ(𝑢) ≠ @ℓ
(ER-Compn1) 

Δ, Π ⊢ 𝑢 ⋅ 𝑛 ⟶
𝜏

𝑒𝑟𝑟𝑜𝑟

Δ(𝑢) = @ℓ
Π(𝑢, 𝑥) ≠ pch( 𝑡

→
)

(ER-Compx2) 
Δ, Π ⊢ 𝑢 ⋅ 𝑥 ⟶

𝜏
𝑒𝑟𝑟𝑜𝑟

Δ(𝑢) = @ℓ
Π(𝑢, 𝑛) ≠ pch( 𝑡

→
)

(ER-Compn2) 
Δ, Π ⊢ 𝑢 ⋅ 𝑥 ⟶

𝜏
𝑒𝑟𝑟𝑜𝑟

Δ(𝑢) = @ℓ
Π(𝑢, 𝑥) = pch( 𝑡

→
)

pch( 𝑡
→

) ∉ ℓ
(ER-Compx3) 

Δ, Π ⊢ 𝑢 ⋅ 𝑥 ⟶
𝜏

𝑒𝑟𝑟𝑜𝑟

Δ(𝑢) = @ℓ
Π(𝑢, 𝑛) = pch( 𝑡

→
)

pch( 𝑡
→

) ∉ ℓ
(ER-Compn3) 

Δ, Π ⊢ 𝑢 ⋅ 𝑛 ⟶
𝜏

𝑒𝑟𝑟𝑜𝑟
Figure 3.1: Wrong processes for TE𝜋

XIV



D Proofs About the Type System for TE𝜋
D.1 Proof of Lemma 3.4
Proof of Lemma 3.4.

𝒏: Then 𝑇 = 𝑛, and from (ET-N) we get that Δ, Π ⊢ 𝑇 : 𝐈𝐧𝐭. Then from Definition 1.4
and Definition 1.8 we get that fn(𝑇 ) ∪ fv(𝑇 ) = ∅. Therefore adding 𝑢 : 𝑡𝑢 to Δ and
applying (ET-N) preserves the typing Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑇 : 𝐈𝐧𝐭.

𝒖: Then 𝑇 = 𝑢′, and from (ET-U) we get that Δ, Π ⊢ 𝑇 : 𝑡 and Δ(𝑢′) = 𝑡. Since 𝑢 ∉
dom(Δ), then (Δ, 𝑢 : 𝑡𝑢, Π)(𝑢′) = 𝑡 therefore applying (ET-U) preserves the typing Δ, 𝑢 :
𝑡𝑢, Π ⊢ 𝑇 : 𝑡.

𝑻𝟏 ⊙ 𝑻𝟐: Then 𝑇 = 𝑇1 ⊙ 𝑇2, and from (ET-Bin) we get that Δ, Π ⊢ 𝑇 : 𝐈𝐧𝐭, Δ, Π ⊢ 𝑇1 :
𝐈𝐧𝐭 and Δ, Π ⊢ 𝑇2 : 𝐈𝐧𝐭. Then from the induction hypothesis we get that Δ, 𝑢 : 𝑡𝑢, Π ⊢
𝑇1 : 𝐈𝐧𝐭 and Δ, 𝑢 : 𝑡𝑢, Δ, Π ⊢ 𝑇2 : 𝐈𝐧𝐭. Therefore applying (ET-U) preserves the typing
Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑇 : 𝐈𝐧𝐭.

𝒄 ⋅ 𝑻 : Then 𝑇 = 𝑐 ⋅ 𝑇 ′ and as 𝑇 ′ can be typed with either (ET-Compx) and (ET-Compn)
depending on wether 𝑇 ′ is 𝑥 or 𝑛. Therefore we get that Δ(𝑐) = @ℓ, Π(𝑐, 𝑇 ′) = pch(𝑡),
pch(𝑡) ∈ @ℓ and Δ, Π ⊢ 𝑐 ⋅ 𝑇 ′ : ch(𝑡). Therefore applying (ET-Compx) or (ET-Compn)
preserves the typing Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑐 ⋅ 𝑇 ′ : ch(𝑡). Then as 𝑢 is not in the environment by
Definition 3.8 and by Definition 3.6 we know that the type of 𝑇 ′ depends on the handle
𝑐 then 𝑐 ≠ 𝑢 and 𝑇 ′ ≠ 𝑢. Therefore applying (ET-Compx) or (ET-Compn) with 𝑢 in the
environment preserves the typing Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑇 : ch(𝑡).

⬜

D.2 Proof of Lemma 3.5
Proof of Lemma 3.5.

By induction on derivation of Δ, Π ⊢ 𝑃

𝟎: Then 𝑃 = 𝟎 and by (ET-Nil) we get that Δ, Π ⊢ 𝟎 holds for any Δ, Π as 𝟎 is not
dependent on the environment.

𝑷 | 𝑸: Then 𝑃 = 𝑄 | 𝑅 and by (ET-Par) we get that if Δ, Π ⊢ 𝑃 , then Δ, Π ⊢ 𝑄 and
Δ, Π ⊢ 𝑅. Then using the induction hypothesis we get that Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑅 and Δ, 𝑢 :
𝑡𝑢, Π ⊢ 𝑄. Therefore applying (ET-Par) gives us Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑄 | 𝑅 preserving that 𝑃
is well-typed.

!𝑷 : Then 𝑃 = !𝑄 and by (ET-Rep) we get that if Δ, Π ⊢ !𝑄, then Δ, Π ⊢ 𝑄. Then using
the induction hypothesis we get that Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑄. Therefore applying (ET-Rep) gives
us Δ, 𝑢 : 𝑡𝑢, Π ⊢ !𝑄 preserving that 𝑃  is well-typed.

(𝝂𝒂 : 𝒕).𝑷 : Then 𝑃 = (𝜈𝑎 : 𝑡).𝑄 and by (ET-Res) we get that if Δ, Π ⊢ 𝑃 , then Δ, 𝑎 :
𝑡, Π ⊢ 𝑄. Then using the induction hypothesis we get that Δ, 𝑎 : 𝑡, 𝑢 : 𝑡𝑢, Π ⊢ 𝑄. There-
fore applying (ET-Res) gives us Δ, 𝑢 : 𝑡𝑢, Π ⊢ (𝜈𝑎 : 𝑡).𝑄 preserving that 𝑃  is well-typed.

XV



𝒄⟨𝑻
→

⟩.𝑷 : Then 𝑃 = 𝑐⟨𝑇
→

⟩.𝑄 and by (ET-Send) we get that if Δ, Π ⊢ 𝑃 , then Δ, Π ⊢ 𝑐 :
ch( 𝑡

→
), Δ, Π ⊢ 𝑇

→
: 𝑡

→
 and Δ, Π ⊢ 𝑄. Then using the inductive hypothesis we get that

Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑄. Then by Lemma 3.4 we get that we can weaken the terms and the
channel s.t Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑐 : ch( 𝑡

→
) and Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑇

→
: 𝑡

→
. Therefore applying (ET-

Send) gives us Δ, Π, 𝑢 : 𝑡𝑢 ⊢ 𝑐⟨𝑇
→

⟩.𝑄 preserving that 𝑃  is well-typed..

𝒄(𝒙→ : 𝒕
→

).𝑸: Then 𝑃 = 𝑐(𝑥→, 𝑡
→

).𝑄 and by (ET-Recv) we get that if Δ, Π ⊢ 𝑃 , then

Δ, Π ⊢ 𝑐 : ch( 𝑡
→

) and Δ, 𝑥→ : 𝑡
→

, Π ⊢ 𝑄. From Definition 3.8 we can derive that 𝑢 ∉

fn(𝑃) ∪ fv(𝑃 ). Since Δ, Π only contains free variables/names therefore 𝑢 is a new free
variable or name. Then by the induction hypothesis we get that Δ′ = Δ, 𝑥→ : 𝑡

→
, 𝑢 : 𝑡𝑢,

Δ′, Π ⊢ 𝑄. Therefore applying (ET-Recv) gives us Δ, 𝑢 : 𝑡, Π ⊢ 𝑐(𝑥→, 𝑡
→

).𝑄 preserving

that 𝑃  is well-typed..

𝒄:⟨𝑻
→

⟩.𝑷 : Then 𝑃 = 𝑐:⟨𝑇
→

⟩.𝑄 and by (ET-Broad) we get that if Δ, Π ⊢ 𝑃 , then Δ, Π ⊢
𝑐 : ch( 𝑡

→
), Δ, Π ⊢ 𝑇

→
: 𝑡

→
 and Δ, Π ⊢ 𝑄. Then using the inductive hypothesis we get that

Δ, Π, 𝑢 : 𝑡𝑢 ⊢ 𝑄. Then by Lemma 3.4 we get that we can weaken the terms and the
channel s.t Δ, Π, 𝑢 : 𝑡𝑢 ⊢ 𝑐 : ch( 𝑡

→
) and Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑇

→
: 𝑡

→
. Therefore applying (ET-

Send) gives us Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑐:⟨𝑇
→

⟩.𝑄 preserving that 𝑃  is well-typed.

[𝑻𝟏 ⋈ 𝑻𝟐]𝑷 , 𝑸: Then 𝑃 = [𝑇1 ⋈ 𝑇2]𝑄, 𝑅 and by (ET-Match) we get that if Δ, Π ⊢ 𝑃 , then
Δ, Π ⊢ 𝑇1 : 𝑡,Δ, Π ⊢ 𝑇2 : 𝑡, Δ, Π ⊢ 𝑄 and Δ, Π ⊢ 𝑅. Then using the inductive hypothesis
we get that Δ, 𝑢 : 𝑡, Π ⊢ 𝑄 and Δ, Π, 𝑢 : 𝑡 ⊢ 𝑅. Then using Lemma 3.4 we get that we
can weaken the terms s.t Δ, 𝑢 : 𝑡, Π ⊢ 𝑇1 : 𝑡, Δ, 𝑢 : 𝑡, Π ⊢ 𝑇2 : 𝑡 Therefore applying (ET-
Match) we get that Δ, 𝑢 : 𝑡, Π ⊢ [𝑇1 ⋈ 𝑇2]𝑄, 𝑅 preserving that 𝑃  is well-typed.

⬜

D.3 Proof of Lemma 3.6
Proof of Lemma 3.6.

𝒏: Then 𝑇 = 𝑛 and from (ET-N) we get that Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑇 : 𝐈𝐧𝐭. Then from
Definition 1.4 and Definition 1.8 we get that fn(𝑇 ) ∪ fv(𝑇 ) = ∅. From Definition 3.8 we
can derive 𝑢 ∉ fn(𝑃) ∪ fv(𝑃 ). Therefore applying (ET-N) without 𝑢 in the environment
preserves the typing Δ, Π ⊢ 𝑇 : 𝐈𝐧𝐭.

𝒖: Then 𝑇 = 𝑢′ and from (ET-U) we get that Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑇 : 𝑡 and (Δ, 𝑢 : 𝑡𝑢, Π)(𝑢′) =
𝑡.

𝒖′ ≠ 𝒖: Then as 𝑢 ∉ dom(Δ) and 𝑢′ ∈ dom(Δ) we get that Δ(𝑇 ) : 𝑡. Therefore
applying (ET-U) without 𝑢 in the environment preserves the typing Δ, Π ⊢ 𝑇 : 𝑡.

𝒖′ = 𝒖: contradicts 𝑢 ∉ dom(Δ).

XVI



𝑻𝟏 ⊙ 𝑻𝟐: Then 𝑇 = 𝑇1 ∪ 𝑇2 and from (ET-Bin) we get that Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑇 : 𝐈𝐧𝐭, Δ, 𝑢 :
𝑡𝑢, Π ⊢ 𝑇1 : 𝐈𝐧𝐭 and Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑇2 : 𝐈𝐧𝐭. Then using the inductive hypothesis we get
that Δ, Π ⊢ 𝑇1 : 𝐈𝐧𝐭 and Δ, Π ⊢ 𝑇2 : 𝐈𝐧𝐭. Therefore applying (ET-Bin) preserves the
typing Δ, Π ⊢ 𝑇 : 𝐈𝐧𝐭.

𝒄 ⋅ 𝑻 : Then 𝑇 = 𝑐 ⋅ 𝑇 ′ and as 𝑇 ′ can be typed with either (ET-Compx) and (ET-Compn)
depending on wether 𝑇 ′ is 𝑥 or 𝑛. Therefore we get that (Δ, 𝑢 : 𝑡𝑢)(𝑐) = @ℓ, Π(𝑐, 𝑇 ′) =
pch(𝑡), pch(𝑡) ∈ @ℓ and Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑐 ⋅ 𝑇 ′ : ch(𝑡). Then as 𝑢 is not in the environment
by Definition 3.8 and by Definition 3.6 we know that the type of 𝑇 ′ depends on the handle
𝑐 then 𝑐 ≠ 𝑢 and 𝑇 ′ ≠ 𝑢. Therefore applying (ET-Compx) or (ET-Compn) preserves the
typing Δ, Π ⊢ 𝑇 : ch(𝑡).

⬜

D.4 Proof of Lemma 3.7
Proof of Lemma 3.7.

𝟎: Using (ET-Nil) we get that Δ, 𝑢 : 𝑡, Π ⊢ 𝟎 holds for any Δ, Π as 𝟎 is not dependent
on the environment.

𝑷 | 𝑸: Then 𝑃 = 𝑄 | 𝑅 and by (ET-Par) we get that if Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑃 , then Δ, 𝑢 :
𝑡𝑢, Π ⊢ 𝑄 and Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑅. Then from the induction hypothesis we have that Δ, 𝑢 :
𝑡𝑢, Π ⊢ 𝑄 and Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑅. Therefore applying (ET-Par) gives us Δ, Π ⊢ 𝑄 | 𝑅
preserving that 𝑃  is well-typed.

!𝑷 : Then 𝑃 = !𝑄 and by (ET-Rep) we get that if Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑃 , then Δ, 𝑢 : 𝑡𝑢, Π ⊢
𝑄. Then from the inductive hypothesis we have that Δ, Π ⊢ 𝑃 . Therefore applying (ET-
Rep) gives us Δ, Π ⊢ !𝑄 preserving that 𝑃  is well-typed.

(𝝂𝒂 : 𝒕).𝑷 : Then 𝑃 = (𝜈𝑎 : 𝑡).𝑄 and by (ET-Res) we get that if Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑃 , then
Δ, 𝑢 : 𝑡𝑢, 𝑎 : 𝑡, Π ⊢ 𝑄. From the induction hypothesis we get that Δ, 𝑎 : 𝑡, Π ⊢ 𝑄 and that
𝑢 ∉ dom(Δ, 𝑎 : 𝑡) therefore 𝑢 ≠ 𝑎. Therefore applying (ET-Res) gives us Δ, 𝑢 : 𝑡𝑢, Π ⊢
(𝜈𝑎 : 𝑡).𝑄 preserving that 𝑃  is well-typed.

𝒄⟨𝑻
→

⟩.𝑷 : Then 𝑃 = 𝑐⟨𝑇
→

.𝑄⟩ and by (ET-Send) we get that if Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑃 , then Δ, 𝑢 :
𝑡𝑢, Π ⊢ 𝑐 : ch( 𝑡

→
), Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑇

→
: 𝑡

→
 and Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑄. Then from the inductive

hypothesis we have that Δ, Π ⊢ 𝑄. Then using Lemma 3.6 we can strengthen the terms
and channel s.t Δ, Π ⊢ 𝑐 : ch( 𝑡

→
), Δ, Π ⊢ 𝑇

→
: 𝑡

→
. Therefore applying (ET-Send) gives us

Δ, Π ⊢ 𝑐⟨𝑇
→

⟩.𝑄 preserving that 𝑃  is well-typed.

𝒄(𝒙→ : 𝒕
→

).𝑸: Then 𝑃 = 𝑐(𝑥→ : 𝑡
→

).𝑄 by and (ET-Recv) we get that if Δ, 𝑢 : 𝑡𝑢, Π ⊢

𝑃 , then Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑐 : ch( 𝑡
→

) and Δ, 𝑢 : 𝑡𝑢, 𝑥→ : 𝑡
→

, Π ⊢ 𝑄. Then from the inductive

hypothesis we get that Δ, 𝑥→ : 𝑡
→

, Π ⊢ 𝑄 and that 𝑢 ∉ dom(Δ, 𝑎 : 𝑡) therefore 𝑢 ≠ 𝑎. Then
using Lemma 3.4 we can strengthen the channel s.t Δ, Π ⊢ 𝑐 : ch( 𝑡

→
). Therefore applying

(ET-Recv) gives us Δ, Π ⊢ 𝑐(𝑥→ : 𝑡
→

).𝑄 preserving that 𝑃  is well-typed.

XVII



𝒄:⟨𝑻
→

⟩.𝑷 : Then 𝑃 = 𝑐:⟨𝑇
→

.𝑄⟩ and by (ET-Broad) we get that if Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑃 , then
Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑐 : ch( 𝑡

→
), Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑇

→
: 𝑡

→
 and Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑄. Then from the induc-

tive hypothesis we have that Δ, Π ⊢ 𝑄. Then from Lemma 3.6 we can strengthen the
terms and channel s.t Δ, Π ⊢ 𝑐 : ch( 𝑡

→
), Δ, Π ⊢ 𝑇

→
: 𝑡

→
. Therefore applying (ET-Broad)

gives us Δ, Π ⊢ 𝑐:⟨𝑇
→

⟩.𝑄 preserving that 𝑃  is well-typed.

[𝑻𝟏 ⋈ 𝑻𝟐]𝑷 , 𝑸: Then 𝑃 = [𝑇1 ⋈ 𝑇2]𝑄, 𝑅 and by (ET-Match) we get that if Δ, 𝑢 : 𝑡𝑢, Π ⊢
𝑃 , then Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑇1 : 𝑡, Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑇2 : 𝑡, Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑄 and Δ, 𝑢 : 𝑡𝑢, Π ⊢ 𝑅.
Then from the inductive hypothesis we have that Δ, Π ⊢ 𝑄 and Δ, Π ⊢ 𝑅. Then from
Lemma 3.6 we can strengthen the terms s.t Δ, Π ⊢ 𝑇1 : 𝑡 and Δ, Π ⊢ 𝑇2 : 𝑡. Therefore
applying (ET-Match) gives us Δ, Π ⊢ [𝑇1 ⋈ 𝑇2]𝑄, 𝑅 preserving that 𝑃  is well-typed.

⬜

D.5 Proof of Lemma 3.8
Proof of Lemma 3.8.

We prove Lemma 3.8 by induction in the structural congruence rules.

(𝐑𝐞𝐧𝐚𝐦𝐞): Trivial as by 𝛼-conversion we only change bound names and in Δ, Π we only
find free names, variables and numbers.

(𝐏𝐚𝐫-𝟎): 𝑃⎵
1

≡ 𝑃 | 𝟎⎵
2

𝟏: By our inductive hypothesis we have that Δ, Π ⊢ 𝑃 . By (ET-Par) and (ET-Nil)
we have Δ, Π ⊢ 𝑃 | 𝟎.

𝟐: By our inductive hypothesis we have that Δ, Π ⊢ 𝑃 | 𝟎. Then by (ET-Par) we have
Δ, Π ⊢ 𝑃 .

(𝐏𝐚𝐫-𝐀): 𝑃 | (𝑄 | 𝑅)⎵⎵⎵⎵⎵
1

≡ (𝑃 | 𝑄) | 𝑅⎵⎵⎵⎵⎵
2

𝟏: By our inductive hypothesis we have that Δ, Π ⊢ 𝑃 | (𝑄 | 𝑅). Then by two appli-
cations of (ET-Par) we have Δ, Π ⊢ 𝑃 , Δ, Π ⊢ 𝑄 and Δ, Π ⊢ 𝑅. Then we have Δ, Π ⊢
(𝑃 | 𝑄) | 𝑅 by two applications of (ET-Par).

𝟐: Similar to the first case.

(𝐏𝐚𝐫-𝐁): 𝑃 | 𝑄⎵
1

≡ 𝑄 | 𝑃⎵
2

𝟏: By our inductive hypothesis we have that Δ, Π ⊢ 𝑃 | 𝑄. By (ET-Par) we have
Δ, Π ⊢ 𝑃  and Δ, Π ⊢ 𝑄. Then we have Δ, Π ⊢ 𝑄 | 𝑃  by (ET-Par).

𝟐: Similar to the first case.

(𝐑𝐞𝐩𝐥𝐢𝐜𝐚𝐭𝐞): !𝑃⎵
1

≡ 𝑃 | !𝑃⎵
2

XVIII



𝟏: By our inductive hypothesis we have that Δ, Π ⊢ !𝑃 . By (ET-Rep) we that Δ, Π ⊢
𝑃 . Using (ET-Par) we have Δ, Π ⊢ 𝑃 | !𝑃 .

𝟐: By our inductive hypothesis we have that Δ, Π ⊢ (𝑃 | !𝑃 . By (ET-Rep) we that
Δ, Π ⊢ 𝑃 .

(𝐍𝐞𝐰-𝟎): (𝜈𝑎 : 𝑡).𝟎⎵⎵⎵
1

≡ 𝟎⎵
2

𝟏: By our inductive hypothesis we have that Δ, Π ⊢ (𝜈𝑎 : 𝑡).𝟎. By (ET-Res) we have
that Δ, 𝑎 : 𝑡, Π ⊢ 𝟎 for some 𝑡. We can then prove Δ, Π ⊢ 0 using Lemma 3.7 as it
states that we can remove names from the 𝟎 process and still be well-typed.

𝟐: By our inductive hypothesis we have that Δ, Π ⊢ 𝟎. Using Lemma 3.5 we can show
that Δ, 𝑎 : 𝑡, Π ⊢ 𝟎 and using (ET-Res) show that Δ, Π ⊢ (𝜈𝑎 : 𝑡).𝟎 is still well-typed.

(𝐍𝐞𝐰-𝐀): (𝜈𝑎 : 𝑡1).(𝜈𝑏 : 𝑡2).𝑃⎵⎵⎵⎵⎵⎵⎵⎵
1

≡ (𝜈𝑏 : 𝑡2).(𝜈𝑎 : 𝑡1).𝑃⎵⎵⎵⎵⎵⎵⎵⎵
2

𝟏: By our inductive hypothesis we have that Δ, Π ⊢ 𝜈𝑎.𝜈𝑏.𝑃 . By applying (ET-Res)
twice and we get Δ, 𝑎 : 𝜏1, 𝑏 : 𝜏2, Π ⊢ 𝑃  and Δ, 𝑏 : 𝜏2, 𝑎 : 𝜏1, Π ⊢ 𝑃  as the order is
irrelevant (𝜈𝑎 : 𝑡1).(𝜈𝑏 : 𝑡2).𝑃  is still well-typed.

𝟐: Similar to the first case.

(𝐍𝐞𝐰-𝐁): 𝑃 | (𝜈𝑎 : 𝑡).𝑄⎵⎵⎵⎵⎵
1

≡ (𝜈𝑎 : 𝑡).(𝑃 | 𝑄)⎵⎵⎵⎵⎵⎵
2

𝟏: By our inductive hypothesis we have that Δ, Π ⊢ 𝑃 | 𝜈𝑎.𝑄 and by (ET-Par)
we have Δ, Π ⊢ 𝑃  and Δ, Π ⊢ (𝜈𝑎 : 𝑡).𝑄. The premise Δ, Π ⊢ (𝜈𝑎 : 𝑡).𝑄 must be
concluded with (ET-Res) giving us Δ, 𝑎 : 𝑡, Π ⊢ 𝑄. Then from the premise of (New-B)
we have 𝑎 ∉ fv(𝑃 ) ∪ fn(𝑃 ). Then using Lemma 3.5 we get that Δ, 𝑎 : 𝑡, Π ⊢ 𝑃  when
𝑎 ∉ dom(Δ). Therefore, if 𝑎 ∉ dom(Δ) it must hold that Δ, 𝑎 : 𝑡, Π ⊢ 𝑃 .

𝟐: By our inductive hypothesis we have that (𝜈𝑎 : 𝑡).(𝑃 | 𝑄). By Lemma 3.7 we have
Δ, Π ⊢ 𝑃  from Δ, 𝑎 : 𝑡, Π ⊢ 𝑃 . We can then apply (ET-Res) on Q and (ET-Par).

⬜

D.6 Proof of Lemma 3.9
Proof of Lemma 3.10.

(𝐄𝐓-𝐍): Then 𝑇 = 𝑛. Then from the Definition 1.14 we get the substitution 𝑛{ /𝑇 ′
𝑢 𝑇𝑢

} =

𝑛 and applying (ET-N) preserves the typing Δ, Π ⊢ 𝑛 : 𝐈𝐧𝐭.

(𝐄𝐓-𝐔): Then 𝑇 = 𝑢 and from (ET-U) we get that Δ, Π(𝑢) = 𝑡. Then from
Definition 1.14 we get two cases:

𝒖 = 𝑻𝒖: From the substitution we get that 𝑢{ /𝑇 ′
𝑢 𝑇𝑢

} = 𝑇𝑢′ and 𝑢 = 𝑇𝑢 therefore

Δ(𝑇𝑢) = 𝑡 and since Δ, Π ⊢ 𝑇 ′
𝑢 : 𝑡𝑢 we get that 𝑡 = 𝑡𝑢. Then since Δ, Π ⊢ 𝑇𝑢 : 𝑡𝑢

XIX



we get that Δ, Π(𝑇𝑢) = 𝑡. Therefore applying (ET-U) preserves the typing Δ, Π ⊢
𝑢{ /𝑇 ′

𝑢 𝑇𝑢
} : 𝑡.

𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞: From the substitution we get that 𝑢{ /𝑇 ′
𝑢 𝑇𝑢

} = 𝑢 and applying (ET-U)

preserves the typing Δ, Π ⊢ 𝑢 : 𝑡 and therefore Δ, Π ⊢ 𝑢{ /𝑇 ′
𝑢 𝑇𝑢

} : 𝑡 preservers the

typing.

(𝐄𝐓-𝐁𝐢𝐧): Then 𝑇 = 𝑇1 ⊙ 𝑇2, where Δ, Π ⊢ 𝑇1 : 𝐈𝐧𝐭,Δ, Π ⊢ 𝑇2 : 𝐈𝐧𝐭 and 𝑡 = 𝐈𝐧𝐭.
Then from Definition 1.14 we get that (𝑇1 ⊙ 𝑇2){ /𝑇 ′

𝑢 𝑇𝑢
} = 𝑇1{ /𝑇 ′

𝑢 𝑇𝑢
} ⊙ 𝑇2{ /𝑇 ′

𝑢 𝑇𝑢
}.

Then from the inductive hypothesis we get that Δ, Π ⊢ 𝑇1{ /𝑇 ′
𝑢 𝑇𝑢

} : 𝐈𝐧𝐭 and Δ, Π ⊢

𝑇2{ /𝑇 ′
𝑢 𝑇𝑢

} : 𝐈𝐧𝐭. Therefore, applying (ET-Bin) preservers the typing Δ, Π ⊢ (𝑇1 ⊙

𝑇2){ /𝑇 ′
𝑢 𝑇𝑢

} : 𝐈𝐧𝐭.

(𝐄𝐓-𝐂𝐨𝐦𝐩𝐱): Then 𝑇 = 𝑐 ⋅ 𝑇 ′ and as 𝑇 ′ can be typed with either (ET-Compx) and
(ET-Compn) depending on wether 𝑇 ′ is 𝑥 or 𝑛. Then from Definition 1.13 we get
substitution on both 𝑐 and 𝑇  therefore we can apply it component wise s.t we get 𝑐′ =
𝑐{ /𝑇 ′

𝑢 𝑇𝑢
} and 𝑇 ′ = 𝑇{ /𝑇 ′

𝑢 𝑇𝑢
} from the induction hypothesis we get that Δ, Π(𝑐′) : @ℓ

and Δ(𝑐′, 𝑇 ′) : pch( 𝑡
→

). Since, the types @ℓ and pch( 𝑡
→

) are preserved after substitution

then pch( 𝑡
→

) ∈ @ℓ holds. Therefore, applying (ET-Compx) or (ET-Compn) preserves

the typing Δ, Π ⊢ (𝑐 ⋅ 𝑇 ){ /𝑇 ′
𝑢 𝑇𝑢

} : ch(𝑡).

⬜

D.7 Proof of Lemma 3.10
Proof of Lemma 3.9.

(𝐄𝐓-𝐍𝐢𝐥): Then 𝑃 = 𝟎. Then from the Definition  1.15 we get the substitution
𝑃{ /𝑇 ′

𝑢 𝑇𝑢
} = 𝟎 and using (ET-Nil) we get that Δ, Π ⊢ 𝑃 .

(𝐄𝐓-𝐏𝐚𝐫): Then 𝑃 = 𝑄 | 𝑅. Then using Definition 1.15 we get that 𝑃{ /𝑇 ′
𝑢 𝑇𝑢

} =

𝑄{ /𝑇 ′
𝑢 𝑇𝑢

} | 𝑅{ /𝑇 ′
𝑢 𝑇𝑢

}. Then using the inductive hypothesis we get that Δ, Π ⊢

𝑄{ /𝑇 ′
𝑢 𝑇𝑢

} and Δ, Π ⊢ 𝑅{ /𝑇 ′
𝑢 𝑇𝑢

}. Therefore, applying (ET-Par) preserves the typing

Δ, Π ⊢ 𝑃{ /𝑇 ′
𝑢 𝑇𝑢

}.

(𝐄𝐓-𝐑𝐞𝐩): Then 𝑃 = !𝑄. Then from Definition  1.15 we get that 𝑃{ /𝑇 ′
𝑢 𝑇𝑢

} =

!(𝑄{ /𝑇 ′
𝑢 𝑇𝑢

}). Then using the inductive hypothesis we get that Δ, Π ⊢ 𝑄{ /𝑇 ′
𝑢 𝑇𝑢

}.

Therefore, applying (ET-Rep) preserves the typing Δ, Π ⊢ 𝑃{ /𝑇 ′
𝑢 𝑇𝑢

}.

(𝐄𝐓-𝐑𝐞𝐬): Then 𝑃 = (𝜈𝑎 : 𝑡)𝑄. Then from Definition 1.15 we get two cases:

𝒂 ∉ 𝐟𝐧(𝑻𝟏) ∪ 𝐟𝐧(𝑻𝟐): Then using the inductive hypothesis we get that Δ, 𝑎 : 𝑡, Π ⊢⊢
𝑄{ /𝑇 ′

𝑢 𝑇𝑢
}. Therefore, when applying (ET-Res) we get that Δ, Π ⊢ (𝜈𝑎 : 𝑡)𝑄{ /𝑇 ′

𝑢 𝑇𝑢
}.

XX



𝒂 ∉ 𝐟𝐧(𝑻𝟏) ∪ 𝐟𝐧(𝑻𝟐): From Definition 1.15 we get that 𝑏 ∉ fn(𝑇𝑢) ∪ fn(𝑇𝑢′) ∪ fn(𝑄),
(𝜈𝑏 : 𝑡)𝑄′{ /𝑇 ‴

𝑢 𝑇 ″
𝑢
} and where 𝑇 ″

𝑢 = 𝑇𝑢{ /𝑏 𝑎}, 𝑇 ‴
𝑢 = 𝑇 ′

𝑢 and 𝑄′ = 𝑄{ /𝑏 𝑎}. Then by

induction hypothesis we have Δ, 𝑏 : 𝑡, Π ⊢ 𝑄{ /𝑏 𝑎} and the typing of 𝑄′ is preserved
and by Lemma 3.10 the typing is preserved for 𝑇 ″ and 𝑇 ‴ s.t Δ, 𝑏 : 𝑡, Π ⊢ 𝑇 ″ : 𝑡𝑢
and Δ, 𝑏 : 𝑡, Π ⊢ 𝑇 ‴ : 𝑡𝑢. Then first case of Definition 1.15 applies as 𝑏 ∉ fn(𝑇 ″

𝑢 ) ∪
fn(𝑇 ‴

𝑢 ) therefore, using the induction hypothesis Δ, 𝑏 : 𝑡, Π ⊢ 𝑄′,Δ, 𝑏 : 𝑡, Π ⊢ 𝑇 ″
𝑢 : 𝑡𝑢

and Δ, 𝑏 : 𝑡, Π ⊢ 𝑇 ‴
𝑢 : 𝑡𝑢, . Then, when applying (ET-Res) preserves the typing Δ, Π ⊢

(𝜈𝑏 : 𝑡)𝑄′{ /𝑇 ‴
𝑢 𝑇 ″

𝑢
}.

(𝐄𝐓-𝐒𝐞𝐧𝐝): Then 𝑃 = 𝑐⟨𝑇
→

⟩.𝑄. Then from Definition  1.15 we get that

(𝑐⟨𝑇
→

⟩.𝑄){ /𝑇 ′
𝑢 𝑇𝑢

} = 𝑐{ /𝑇 ′
𝑢 𝑇𝑢

}⟨𝑇
→

{ /𝑇 ′
𝑢 𝑇𝑢

}⟩.𝑄{ /𝑇 ′
𝑢 𝑇𝑢

}. Then using the inductive hy-

pothesis we get that Δ, Π ⊢ 𝑐{ /𝑇 ′
𝑢 𝑇𝑢

}, Δ, Π ⊢ 𝑄{ /𝑇 ′
𝑢 𝑇𝑢

}, and Δ, Π ⊢ 𝑇
→

{ /𝑇 ′
𝑢 𝑇𝑢

}. Then,

when applying (ET-Send) preserves the typing Δ, Π ⊢ 𝑐⟨𝑇
→

⟩.𝑄){ /𝑇 ′
𝑢 𝑇𝑢

}.

(𝐄𝐓-𝐁𝐫𝐨𝐚𝐝): Then 𝑃 = 𝑐:⟨𝑇
→

⟩.𝑄. Then from Definition  1.15 we get that (𝑐:

⟨𝑇
→

⟩.𝑄){ /𝑢2 𝑢1
} = 𝑐{ /𝑢2 𝑢1

}⟨𝑇
→

{ /𝑢2 𝑢1
}⟩.𝑄{ /𝑢2 𝑢1

}. Then using the inductive hypothesis

we get that Δ, Π ⊢ 𝑐{ /𝑇 ′
𝑢 𝑇𝑢

}, Δ, Π ⊢ 𝑄{ /𝑇 ′
𝑢 𝑇𝑢

}, and Δ, Π ⊢ 𝑇
→

{ /𝑇 ′
𝑢 𝑇𝑢

}. Then, when

applying (ET-Broad) preserves the typing Δ, Π ⊢ 𝑐:⟨𝑇
→

⟩.𝑄){ /𝑢2 𝑢1
}.

(𝐄𝐓-𝐑𝐞𝐜𝐯): Then 𝑃 = 𝑐(𝑥→ : 𝑡
→

).𝑄. Then from Definition 1.15 we get two cases:

𝒙→ ∩ 𝐟𝐯(𝑻𝟏) ∪ 𝐟𝐯(𝑻𝟐) = ∅: From Definition 1.15 we get that (𝑐(𝑥→ : 𝑡
→

).𝑄){ /𝑇 ′
𝑢 𝑇𝑢

} =

𝑐{ /𝑇 ′
𝑢 𝑇𝑢

}(𝑥→ : 𝑡
→

).𝑄{ /𝑇 ′
𝑢 𝑇𝑢

}. Then using the inductive hypothesis we get that Δ, 𝑥→ :

, 𝑡
→

, Π ⊢ 𝑐{ /𝑇 ′
𝑢 𝑇𝑢

} : ch( 𝑡
→

),Δ, 𝑥→ :, 𝑡
→

, Π ⊢ 𝑄{ /𝑇 ′
𝑢 𝑇𝑢

}. Therefore, applying (ET-Recv)

preserves the typing Δ, Π ⊢ 𝑐(𝑥→ : 𝑡
→

).𝑄{ /𝑇 ′
𝑢 𝑇𝑢

}

𝒙→ ∩ 𝐟𝐯(𝑻𝟏) ∪ 𝐟𝐯(𝑻𝟐) ≠ ∅: From Definition 1.15 we get that 𝑦→ ∉ fn(𝑇𝑢) ∪ fn(𝑇𝑢′) ∪
fn(𝑄), 𝑐(𝑦→ : 𝑡

→
).𝑄′ and where 𝑇 ″

𝑢 = 𝑇𝑢{ /𝑦→
𝑥→}, 𝑇 ‴

𝑢 = 𝑇 ′
𝑢{ /𝑦→

𝑥→} and 𝑄′ = 𝑄{ /𝑦→
𝑥→}.

Then by induction hypothesis we have Δ, 𝑦→ : 𝑡
→

, Π ⊢ 𝑄{ /𝑦→
𝑥→} and the typing of 𝑄′

is preserved and by Lemma 3.10 the typing is preserved for 𝑇 ″ and 𝑇 ‴ s.t Δ, 𝑦→ :
𝑡
→

, Π ⊢ 𝑇 ″ : 𝑡𝑢 and Δ, 𝑦→ : 𝑡
→

, Π ⊢ 𝑇 ‴ : 𝑡𝑢. Then first case of Definition 1.15 applies as
𝑏 ∉ fn(𝑇 ″

𝑢 ) ∪ fn(𝑇 ‴
𝑢 ) therefore, using the induction hypothesis Δ, 𝑦→ : 𝑡

→
⊢ 𝑐{ /𝑇 ‴

𝑢 𝑇 ″
𝑢
} :

ch( 𝑡
→

), Δ, 𝑦→ : 𝑡
→

, Π ⊢ 𝑄′{ /𝑇 ‴
𝑢 𝑇 ″

𝑢
}. Therefore, applying (ET-Recv) preserves the typ-

ing Δ, Π ⊢ (𝑐(𝑦→ : 𝑡
→

).𝑄){ /𝑇 ‴
𝑢 𝑇 ″

𝑢
}

(𝐄𝐓-𝐌𝐚𝐭𝐜𝐡): Then 𝑃 = [𝑇1 ⋈ 𝑇2]𝑄, 𝑅 and from (ET-Match) we get that Δ, Π ⊢ 𝑇1 : 𝑡,
Δ, Π ⊢ 𝑇2 : 𝑡, Δ, Π ⊢ 𝑄 and Δ, Π ⊢ 𝑅. Then from Definition 1.15 we get that 𝑃{ /𝑇 ′

𝑢 𝑇𝑢
} =

[𝑇1{ /𝑇 ′
𝑢 𝑇𝑢

} ⋈ 𝑇2{ /𝑇 ′
𝑢 𝑇𝑢

}]𝑄{ /𝑇 ′
𝑢 𝑇𝑢

}, 𝑅{ /𝑇 ′
𝑢 𝑇𝑢

}. Then from Lemma 3.10 we get that

XXI



Δ, Π ⊢ 𝑇1{ /𝑇 ′
𝑢 𝑇𝑢

} : 𝑡 and Δ, Π ⊢ 𝑇2{ /𝑇 ′
𝑢 𝑇𝑢

} : 𝑡. Then by the induction hypothesis we get

that Δ, Π ⊢ 𝑄{ /𝑇 ′
𝑢 𝑇𝑢

} and Δ, Π ⊢ 𝑅{ /𝑇 ′
𝑢 𝑇𝑢

}. Therefore, applying (ET-Match) preserves

the typing Δ, Π ⊢ ([𝑇1 ⋈ 𝑇2]𝑄, 𝑅){ /𝑇 ′
𝑢 𝑇𝑢

}

⬜

D.8 Proof of Theorem 3.2 - subject reduction
Proof of Proof of subject reduction.

We will prove subject reduction by induction in the rule for concluding 𝑃 → 𝑃 ′.

(𝐄-𝐂𝐨𝐦): By our assumption we know that Δ, Π ⊢ 𝑐⟨𝑇
→

⟩.𝑃  and Δ, Π ⊢ 𝑐(𝑥→ : 𝑡
→

).𝑄 by

the application of (ET-Par). By (E-Com) we have 𝑐⟨𝑇
→

⟩.𝑃 |𝑐(𝑥→).𝑄 ⟶
𝜏

𝑃 | 𝑄{ /𝑇
→

𝑥→} and

must show that Δ, Π ⊢ 𝑃 | 𝑄{ /𝑇
→

𝑥→}.

Then by (ET-Send) we have that 𝑐 : ch( 𝑡
→

) and 𝑇
→

: 𝑡
→

, and by (ET-Recv) we have

that 𝑐 : ch( 𝑡
→

) and Δ, 𝑥→ : 𝑡
→

, Π ⊢ 𝑄. By using Lemma 3.9 we have that Δ, 𝑥→ : 𝑡
→

, Π ⊢

𝑄{ /𝑇
→

𝑥→}, and by Lemma 3.7 we have Δ, Π ⊢ 𝑄{ /𝑇
→

𝑥→}. We can therefore conclude Δ, Π ⊢

𝑃 | 𝑄{ /𝑇
→

𝑥→} by (ET-Par).

(𝐄-𝐁𝐫𝐨𝐚𝐝): By our assumption we know that Δ, Π ⊢ 𝑐:⟨𝑇
→

⟩.𝑄, Δ, Π ⊢ 𝑐(𝑥1
→ : 𝑡

→
).𝑃1, …,

Δ, Π ⊢ 𝑐(𝑥𝑛
→ : 𝑡

→
).𝑃𝑛 given multiple applications of (ET-Par). By (E-Broad) we have

𝑐:⟨𝑇
→

⟩.𝑄 |𝑐(𝑥1
→ ).𝑃1|…|𝑐(𝑥𝑛

→ ).𝑃𝑛 ⟶
:𝑐

𝑄 | 𝑃1{ /𝑇
→

𝑥1
→ } | … | 𝑃𝑛{ /𝑇

→

𝑥𝑛
} and must show that

Δ, Π ⊢ 𝑄 | 𝑃1{ /𝑇
→

𝑥1
→ } | … | 𝑃𝑛{ /𝑇

→

𝑥𝑛
}.

Then by (ET-Broad) we have that 𝑐 : ch( 𝑡
→

) and 𝑇
→

: 𝑡
→

, and by (ET-Recv) we

have that 𝑐 : ch( 𝑡
→

) and Δ, 𝑥𝑖
→ : 𝑡

→
, Π ⊢ 𝑃𝑖 for all 𝑖 ∈ {1, …, 𝑛}. By using Lemma 3.9

we have that Δ, 𝑥𝑖
→ : 𝑡

→
, Π ⊢ 𝑃𝑖{ /𝑇

→

𝑥𝑖
→ } for all 𝑖 ∈ {1, …, 𝑛}, and by Lemma  3.7

we have Δ, Π ⊢ 𝑃𝑖{ /𝑇
→

𝑥𝑖
→ } for all 𝑖 ∈ {1, …, 𝑛}. We can therefore conclude Δ, Π ⊢

𝑄 | 𝑃1{ /𝑇
→

𝑥1
→ } | … | 𝑃𝑛{ /𝑇

→

𝑥𝑛
→ } by multiple applications of (ET-Par).

(𝐄-𝐏𝐚𝐫): By our assumption we know that Δ, Π ⊢ 𝑃 | 𝑄 and given application of (ET-
Par) we know Δ, Π ⊢ 𝑃  and Δ, Π ⊢ 𝑄. Given (E-Par) we know that 𝑃 | 𝑄 ⟶

𝜏
𝑃 ′ | 𝑄 and

must show that Δ, Π ⊢ 𝑃 ′ | 𝑄. By induction we get that Δ, Π ⊢ 𝑃 ⟶
𝜏

𝑃 ′ and thereby
also for Δ, Π ⊢ 𝑃 ′. By (ET-Par) we then have Δ, Π ⊢ 𝑃 ′ | 𝑄.

(𝐄-𝐏𝐚𝐫𝟐): The proof is similar to (E-Par).

XXII



(𝐄-𝐑𝐞𝐬𝟏): By our assumption we know that Δ, Π ⊢ (𝜈𝑎 : 𝑡).𝑃  and by (ET-Res) we have
Δ, 𝑎 : 𝑡, Π ⊢ 𝑃 , and given (E-Res1) we know that (𝜈𝑎 : 𝑡).𝑃 ⟶

𝑞
(𝜈𝑎 : 𝑡).𝑃 ′. We must then

show Δ, Π ⊢ (𝜈𝑎 : 𝑡).𝑃 ′. Then by induction and given (ET-Res) we have Δ, 𝑎 : 𝑡, Π ⊢ 𝑃 ′.

(𝐄-𝐑𝐞𝐬𝟐): The proof is similar to (E-Res1).

(𝐄-𝐓𝐡𝐞𝐧): By our assumption we know Δ, Π ⊢ [𝑇1 ⋈ 𝑇2]𝑃 , 𝑄 by (ET-Match) and [𝑇1 ⋈
𝑇2]𝑃 , 𝑄 ⟶

𝜏
𝑃  by (E-Then). We must then show Δ, Π ⊢ 𝑃 . This follows immediately by

(ET-Match) as Δ, Π ⊢ [𝑇1 ⋈ 𝑇2]𝑃 , 𝑄 is only correct if Δ, Π ⊢ 𝑃 .

(𝐄-𝐄𝐥𝐬𝐞): By our assumption we know Δ, Π ⊢ [𝑇1 ⋈ 𝑇2]𝑃 , 𝑄 by (ET-Match) and [𝑇1 ⋈
𝑇2]𝑃 , 𝑄 ⟶

𝜏
𝑄 by (E-Else). We must then show Δ, Π ⊢ 𝑄. This follows immediately by

(ET-Match) as Δ, Π ⊢ [𝑇1 ⋈ 𝑇2]𝑃 , 𝑄 is only correct if Δ, Π ⊢ 𝑄.

(𝐄-𝐒𝐭𝐫𝐮𝐜𝐭): By our assumption we know that Δ, Π ⊢ 𝑃  and 𝑃 ⟶
𝑞

𝑃 ′, and by Lemma 3.8
we have that Δ, Π ⊢ 𝑄. By induction we have that Δ, Π ⊢ 𝑄′ and by Lemma 3.8 we get
Δ, Π ⊢ 𝑃 ′

⬜

D.9 Proof of Theorem 3.2 - type safety
Proof of Type safety of processes.

We prove type safety by induction in the type rules.

(𝐄𝐓-𝐍𝐢𝐥): Trivial as for (ET-Nil) 𝑃 ↛ 𝑒𝑟𝑟𝑜𝑟

(𝐄𝐓-𝐒𝐞𝐧𝐝): By our assumption we have that Δ, Π ⊢ 𝑐⟨𝑇
→

⟩.𝑃  and must prove that
𝑐⟨𝑇

→
⟩.𝑃 ↛

𝜏
𝑒𝑟𝑟𝑜𝑟. By inspecting (ER-Send) we can see that 𝑐⟨𝑇

→
⟩.𝑃 ⟶

𝜏
𝑒𝑟𝑟𝑜𝑟 only if 𝑐 :

ch( 𝑡1
→

), 𝑇
→

: 𝑡2
→

 where 𝑡1
→

≠ 𝑡2
→

. This contradicts the type rule for send, that states 𝑐 :

ch( 𝑡
→

) and 𝑇
→

: 𝑡
→

 meaning it must hold that 𝑡1
→

= 𝑡2
→

 for send to be well-typed and

therefore 𝑃 ↛ 𝑒𝑟𝑟𝑜𝑟.

(𝐄𝐓-𝐁𝐫𝐨𝐚𝐝): By our assumption we have that Δ, Π ⊢ 𝑐:⟨𝑇
→

⟩.𝑃  and must prove that 𝑐:
⟨𝑇

→
⟩.𝑃 ↛

:𝑐
𝑒𝑟𝑟𝑜𝑟. By inspecting (ER-Broad) we can see that 𝑐:⟨𝑇

→
⟩.𝑃 ⟶

:𝑐
𝑒𝑟𝑟𝑜𝑟 only if 𝑐 :

ch( 𝑡1
→

), 𝑇
→

: 𝑡2
→

 where 𝑡1
→

≠ 𝑡2
→

. This contradicts the type rule for broadcast, that states

𝑐 : ch( 𝑡
→

) and 𝑇
→

: 𝑡
→

 meaning it must hold that 𝑡1
→

= 𝑡2
→

 for broadcast to be well-typed

and therefore 𝑃 ↛ 𝑒𝑟𝑟𝑜𝑟.

(𝐄𝐓-𝐑𝐞𝐜𝐯): By our assumption we have that Δ, Π ⊢ 𝑐(𝑥→ : 𝑡
→

).𝑃  and must prove that

𝑐(𝑥→ : 𝑡
→

).𝑃 ↛
𝜏

𝑒𝑟𝑟𝑜𝑟. By inspecting (ER-Recv) we can see that 𝑐(𝑥→ : 𝑡
→

).𝑃 ⟶
𝜏

𝑒𝑟𝑟𝑜𝑟 if

𝑐 : ch( 𝑡1
→

) and 𝑥→ : 𝑡2
→

 where 𝑡1
→

≠ 𝑡2
→

. This contradicts (ET-Recv) as for receive to be

well-typed 𝑐 : ch( 𝑡
→

) and 𝑥→ : 𝑡
→

, and therefore it must be that 𝑡1 = 𝑡2. We can therefore

conclude 𝑃 ↛ 𝑒𝑟𝑟𝑜𝑟.

XXIII



(𝐄𝐓-𝐌𝐚𝐭𝐜𝐡): By our assumption we have that Δ, Π ⊢ [𝑇1 ⋈ 𝑇2]𝑃 , 𝑄 and must prove
that [𝑇1 ⋈ 𝑇2]𝑃 , 𝑄 ↛

𝜏
𝑒𝑟𝑟𝑜𝑟. By inspecting (ER-Match) we can see that [𝑇1 ⋈ 𝑇2]𝑃 , 𝑄 ⟶

𝜏

𝑒𝑟𝑟𝑜𝑟 if 𝑇1 : 𝑡1, 𝑇2 : 𝑡2 and 𝑡1 ≠ 𝑡2. This contradicts (ET-Match) as 𝑇1 : 𝑡 and 𝑇2 : 𝑡, that
being 𝑡1 = 𝑡2 for match to be well-typed and therefore 𝑃 ↛ 𝑒𝑟𝑟𝑜𝑟

(𝐄𝐓-𝐏𝐚𝐫): By our assumption we have that Δ, Π ⊢ 𝑃 | 𝑄 and must prove that 𝑃 | 𝑄 ↛
𝜏

𝑒𝑟𝑟𝑜𝑟. We have two cases where we can go to the 𝑒𝑟𝑟𝑜𝑟 process.

(𝐄𝐑-𝐏𝐚𝐫𝟏): By inspecting (ER-Par1) we can see that 𝑃 | 𝑄 ⟶
𝜏

𝑒𝑟𝑟𝑜𝑟 if 𝑃 ⟶
𝜏

𝑒𝑟𝑟𝑜𝑟. Since Δ, Π ⊢ 𝑃 | 𝑄 we have that Δ, Π ⊢ 𝑃  by (ET-Par), and by our induction
hypothesis we have 𝑃 ↛

𝜏
𝑒𝑟𝑟𝑜𝑟 and therefore we have a contradiction.

(𝐄𝐑-𝐏𝐚𝐫𝟐): By inspecting (ER-Par2) we can see that 𝑃 | 𝑄 ⟶
𝜏

𝑒𝑟𝑟𝑜𝑟 if 𝑄 ⟶
𝜏

𝑒𝑟𝑟𝑜𝑟. Since Δ, Π ⊢ 𝑃 | 𝑄 we have that Δ, Π ⊢ 𝑄 by (ET-Par), and by our induction
hypothesis we have 𝑄 ↛

𝜏
𝑒𝑟𝑟𝑜𝑟 and therefore we have a contradiction.

(𝐄𝐓-𝐑𝐞𝐬): By our assumption we have that Δ, Π ⊢ (𝜈𝑎 : 𝑡).𝑃  and must prove that (𝜈𝑎 :
𝑡).𝑃 ↛

𝑞
𝑒𝑟𝑟𝑜𝑟. Since Δ, Π ⊢ (𝜈𝑎 : 𝑡).𝑃  we have that Δ, Π, 𝑎 : 𝑡 ⊢ 𝑃  by (ET-Par), and by

our induction hypothesis we have 𝑃 ↛
𝜏

𝑒𝑟𝑟𝑜𝑟 and therefore we have a contradiction.

(𝐄𝐓-𝐑𝐞𝐩): By our assumption we have that Δ, Π ⊢ !𝑃  and must prove that !𝑃 ↛
𝜏

𝑒𝑟𝑟𝑜𝑟.
Since Δ, Π ⊢ !𝑃  we have that Δ, Π ⊢ 𝑃  by (ET-Par), and by our induction hypothesis
we have 𝑃 ↛

𝜏
𝑒𝑟𝑟𝑜𝑟 and therefore we have a contradiction.

⬜

Proof of Type safety of terms.

(𝐄𝐓-𝐍): Trivial as for (ET-N) 𝑃 ↛ 𝑒𝑟𝑟𝑜𝑟

(𝐄𝐓-𝐔): Trivial as for (ET-U) 𝑃 ↛ 𝑒𝑟𝑟𝑜𝑟

(𝐄𝐓-𝐁𝐢𝐧): By our assumption we have that Δ, Π ⊢ 𝑇1 ⊙ 𝑇2 and must prove that 𝑇1 ⊙
𝑇2 ↛

𝜏
𝑒𝑟𝑟𝑜𝑟. We have two cases where we can go to the 𝑒𝑟𝑟𝑜𝑟 process.

(𝐄𝐑-𝐁𝐢𝐧𝟏): By inspecting (ER-Bin1) we can see that 𝑇1 ⊙ 𝑇2 ⟶
𝜏

𝑒𝑟𝑟𝑜𝑟 if 𝑇1 : 𝑡 and
𝑡 ≠ 𝐈𝐧𝐭. This contradicts (ET-Bin) as for binary operation to be well-typed the type
of 𝑇1 must be 𝐈𝐧𝐭. Therefore 𝑃 ↛ 𝑒𝑟𝑟𝑜𝑟

(𝐄𝐑-𝐁𝐢𝐧𝟐): By inspecting (ER-Bin2) we can see that 𝑇1 ⊙ 𝑇2 ⟶
𝜏

𝑒𝑟𝑟𝑜𝑟 if 𝑇2 : 𝑡 and
𝑡 ≠ 𝐈𝐧𝐭. This contradicts (ET-Bin) as for binary operation to be well-typed the type
of 𝑇2 must be 𝐈𝐧𝐭. Therefore 𝑃 ↛ 𝑒𝑟𝑟𝑜𝑟

(𝐄𝐓-𝐂𝐨𝐦𝐩𝐱): By our assumption we have that Δ, Π ⊢ 𝑢 ⋅ 𝑥 and must prove that 𝑢 ⋅
𝑥 ↛

𝜏
𝑒𝑟𝑟𝑜𝑟. We have three cases where we can go to the 𝑒𝑟𝑟𝑜𝑟 process.

(𝐄𝐑-𝐂𝐨𝐦𝐩𝐱𝟏): By inspecting (ER-Compx1) we can see that 𝑢 ⋅ 𝑥 ⟶
𝜏

𝑒𝑟𝑟𝑜𝑟 if 𝑢 is
not a location type. This contradicts (ET-Compx) as for a composite name to be
well-typed 𝑢 must be a location type. Therefore 𝑃 ↛ 𝑒𝑟𝑟𝑜𝑟.

XXIV



(𝐄𝐑-𝐂𝐨𝐦𝐩𝐱𝟐): By inspecting (ER-Compx2) we can see that 𝑢 ⋅ 𝑥 ⟶
𝜏

𝑒𝑟𝑟𝑜𝑟 if
Π(𝑢, 𝑥) ≠ pch( 𝑡

→
). This contradicts (ET-Compx) as for a composite name to be well-

typed we have Δ(𝑥) = pch( 𝑡
→

). Therefore 𝑃 ↛ 𝑒𝑟𝑟𝑜𝑟.

(𝐄𝐑-𝐂𝐨𝐦𝐩𝐱𝟑): By inspecting (ER-Compx3) we can see that 𝑢 ⋅ 𝑥 ⟶
𝜏

𝑒𝑟𝑟𝑜𝑟 if
pch( 𝑡

→
) ∉ @ℓ. This contradicts (ET-Compx) as for a composite name to be well-

typed we have pch( 𝑡
→

) ∈ @ℓ. Therefore 𝑃 ↛ 𝑒𝑟𝑟𝑜𝑟.

(𝐄𝐓-𝐂𝐨𝐦𝐩𝐧): By our assumption we have that Δ, Π ⊢ 𝑢 ⋅ 𝑥 and must prove that 𝑢 ⋅
𝑥 ↛

𝜏
𝑒𝑟𝑟𝑜𝑟. We have three cases where we can go to the 𝑒𝑟𝑟𝑜𝑟 process.

(𝐄𝐑-𝐂𝐨𝐦𝐩𝐧𝟏): By inspecting (ER-Compn1) we can see that 𝑢 ⋅ 𝑛 ⟶
𝜏

𝑒𝑟𝑟𝑜𝑟 if 𝑢 is
not a location type. This contradicts (ET-Compn) as for a composite name to be
well-typed 𝑢 must be a location type. Therefore 𝑃 ↛ 𝑒𝑟𝑟𝑜𝑟.

(𝐄𝐑-𝐂𝐨𝐦𝐩𝐧𝟐): By inspecting (ER-Compn2) we can see that 𝑢 ⋅ 𝑛 ⟶
𝜏

𝑒𝑟𝑟𝑜𝑟 if
Π(𝑢, 𝑛) ≠ pch( 𝑡

→
). This contradicts (ET-Compn) as for a composite name to be well-

typed we have Π(𝑢, 𝑛) = pch( 𝑡
→

). Therefore 𝑃 ↛ 𝑒𝑟𝑟𝑜𝑟.

(𝐄𝐑-𝐂𝐨𝐦𝐩𝐧𝟑): By inspecting (ER-Compn3) we can see that 𝑢 ⋅ 𝑛 ⟶
𝜏

𝑒𝑟𝑟𝑜𝑟 if
pch( 𝑡

→
) ∉ @ℓ. This contradicts (ET-Compn) as for a composite name to be well-

typed we have pch( 𝑡
→

) ∈ @ℓ. Therefore 𝑃 ↛ 𝑒𝑟𝑟𝑜𝑟.

⬜

XXV



E Proofs for the Translation of BtF to TE𝜋
E.1 Proof of Lemma 4.1
Proof of Lemma 4.1.

We prove this using the cases where 𝑃  appears in 𝐶[𝑃 ] unguarded or guarded.

𝑷 𝐢𝐬 𝐠𝐮𝐚𝐫𝐝𝐞𝐝: If 𝑃  is guarded in 𝐶[𝑃 ] then only 𝐶 can reduce and the first case applies.

𝑷 𝐢𝐬 𝐮𝐧𝐠𝐮𝐚𝐫𝐞𝐝: If 𝑃  is unguarded in 𝐶[𝑃 ] then it has to be behind a combination of
!, 𝜈𝑎, 𝑄 | in C. Using structural congruence we can construct the following two cases

𝐶[𝑃 ] ≡ 𝜈𝑎→.(𝑂 | 𝑃 ) or 𝐶[𝑃 ] ≡ !(𝜈𝑎→.(𝑂 | 𝑃 ))

Further using structural congruence we can show that we can transform the second case
into the form of the first.

!(𝜈𝑎→.(𝑂 | 𝑃 )) ≡

!(𝜈𝑎→.(𝑂 | 𝑃 )) | 𝑏
→

.(𝑂 | 𝑃 ) ≡

!(𝜈 𝑏
→

.(!(𝜈𝑎→.(𝑂 | 𝑃 )) | 𝑂 | 𝑃)) =

!𝜈 𝑏
→

.(𝑂′ | 𝑃 ) where 𝑂′ ≡ !(𝜈𝑎→.(𝑂 | 𝑃 ))

Therfore we get that 𝑄 is one of the following three cases.

𝝂𝒂→.(𝑶 | 𝑷 ′): As 𝑄 ≡ 𝜈𝑎→.(𝑂 | 𝑃 ′) we have that 𝑃 ⟶
𝑠

𝑃 ′ and since only 𝑃  reduces
we have that 𝑄 ≡ 𝐶[𝑃 ′]. Since, we have 𝐶[𝑃 ′] and 𝑃 ⟶

𝑠
𝑃 ′ case (2) applies.

𝝂𝒂→.(𝑶′ | 𝑷 ): As 𝑄 ≡ 𝜈𝑎→.(𝑂′ | 𝑃 ) we have that 𝑂 ⟶
𝑠

𝑂′ and since only 𝑂 reduces
we have that 𝑄 ≡ 𝐶′[𝑃 ] where 𝐶′[⋅] = 𝜈𝑎→.(𝑂′ | ⋅). Since no reduction on 𝑃  occurs
from the reduction 𝐶[𝑃 ] ⟶

𝑠
𝐶′[𝑃 ] we can conclude that the context can take the

same reduction with the inactive process s.t 𝐶[𝟎] ⟶
𝑠

𝐶[𝟎]. Then, as we have 𝐶′[𝑃 ],
𝑂 ⟶

𝑠
𝑂′ and 𝐶[𝟎] ⟶

𝑠
𝐶[𝟎] case (1) applies.

𝝂𝒂→.(𝑶′ | 𝑷 ′): As 𝑄 ≡ 𝜈𝑎→.(𝑂′ | 𝑃 ′) we have that both 𝑂 and 𝑃  reduces and that
𝑄 ≡ 𝐶′[𝑃 ′]. Then as both 𝑂 and 𝑃  are reduced in a single step it must be either a
(E-Com) or (E-Broad). Therefore there must ∃𝑏 s.t 𝑂 ↓𝑏 and 𝑃 ↓𝑏 then we have that
𝑂 | 𝑃 ⟶

𝑠
= 𝑂′ | 𝑃 ′, and 𝐶[𝑃 ] ⟶

𝑠
𝐶′[𝑃 ′]. Then, we have 𝐶[𝑃 ′],𝑂 | 𝑃 ⟶

𝑠
= 𝑂′ | 𝑃 ′

and 𝐶[𝑃 ] ⟶
𝑠

𝐶′[𝑃 ′] and therefore case (3) applies.

⬜

E.2 Proof of Lemma 4.2
Before we start the proof of Lemma 4.2 we first need some important definitions. We have taken
the same approach to prove Lemma 4.2 as Hüttel et. al and therefore the approach for the proof
will be similar to the one seen in [2].

XXVI



First we have the definition 𝑈  which is the building blocks for the translation. By this we mean
that for any Γ ⊢ 𝑒 : 𝜏  there should exist a process 𝑃  and output channel 𝑜 such that ⟦𝑒⟧Γ

𝑜 ≡ 𝑃
and that 𝑃  is in the set of all possible 𝑈 . As we know that 𝑒 is well typed then by the proof of
Theorem 4.1 we know that 𝑃  is well-typed and therefore we will denote the types in some of
the building blocks by 𝑡.

Definition 5.1 (Building blocks 𝑈):  We define the set of translation building blocks 𝑈
as follows.

𝑈 = 𝑜(𝑣 : 𝑡).𝑈 | ℎ(𝑣 : 𝑡1, 𝑜 : 𝑡2).𝑈 | !ℎ(𝑣 : 𝑡1, 𝑜 : 𝑡2).𝑈 | ℎ ⋅ 𝑛(𝑣 : 𝑡).𝑈 | ℎ ⋅ len (𝑛 : 𝑡).𝑈 |

ℎ ⋅ tup (𝑣1 : 𝑡1, …, 𝑣𝑛 : 𝑡𝑛).𝑈 | ℎ ⋅ all (𝑐 : 𝑡).𝑈 | !ℎ ⋅ all (𝑐 : 𝑡).𝑈 | ℎ ⋅ all:⟨𝑐⟩.𝑈 |
𝑐(𝑛 : 𝑡1, 𝑣 : 𝑡2).𝑈 | !𝑐(𝑛 : 𝑡1, 𝑣 : 𝑡2).𝑈 | 𝑑(_ : 𝑡).𝑈 | [𝑛 ≠ 0]𝑈, 𝑈 | 𝑈|𝑈 | (𝜈𝑎 : 𝑡).𝑈 |

𝑜⟨𝑣⟩ | ℎ⟨𝑣, 𝑜⟩ | ℎ ⋅ 𝑛⟨𝑛, 𝑣⟩ | !ℎ ⋅ 𝑛⟨𝑛, 𝑣⟩ | ℎ ⋅ len⟨𝑛⟩ | ℎ ⋅ tup⟨𝑣1, …, 𝑣𝑛⟩ |

!ℎ ⋅ tup⟨𝑣1, …, 𝑣𝑛⟩ | 𝑐⟨𝑛, 𝑣⟩ | 𝑑⟨0 : 𝑡⟩ | 𝑅𝑒𝑝𝑒𝑎𝑡(𝑛, 𝑐, 𝑑) | 𝟎

we denote the set of all possible 𝑈  as 𝒰.

In the translation we have 4 categories of channels 𝑜 ∈ Ω, ℎ ∈ Λ, 𝑑 ∈ Κ, 𝑐 ∈ Ψ and 𝒜 = Ω ∪
Λ ∪ Κ ∪ Ψ where 𝑎 ∈ 𝒜. We denote 𝒫 = {𝑃1, …, 𝑃𝑛} as a set of processes in 𝑈  where ∀𝑖 ∈
{1..𝑛}.𝑃𝑖 ↓ℎ, and therefore 𝒫 ⊆ 𝒰. We denote 𝒬 = {𝑄1, …, 𝑄𝑛} as the set of processes s.t for
some 𝑄𝑖 ∈ 𝒬, 𝑄𝑖 communicates over ℎ𝑖 instead of ℎ.

Definition 5.2 (Client function 𝑓):  We create a function that partially maps from sub
processes to the powerset of processes 𝑓 : 𝒬 ⇀ ℙ(𝒫)

This function takes a sub-process 𝑄 and then returns the processes 𝑄 communicates with, that
being 𝑄’s clients. Next we define a new relation 𝑅 that relates processes with a single handle for
communication with a 𝑄 to processes with multiple handles for communication with multiple
𝑄’s. In this relation 𝐶 is a complete context (see Definition 4.2).

XXVII



Definition 5.3 (Relation 𝑅):

𝑅 =
{{
{
{{

(
(((𝐶[(𝜈ℎ : 𝑡ℎ).(𝜈𝒜 : 𝑡𝑎

→
).(𝑄 | ∏

𝑃𝑖∈𝒫
𝑃𝑖 | 𝑈)],

𝐶
[
[
[(𝜈ℎ1 : 𝑡ℎ1

). … .(𝜈ℎ𝑛 : 𝑡ℎ𝑛
).(𝜈𝒜 : 𝑡𝑎

→
).

(
((( ∏

𝑄𝑖∈𝒬
| ∏
𝑄𝑗∈𝒬

∏
𝑃𝑖∈𝑓(𝑄𝑗)

𝑃𝑖{ /ℎ
ℎ𝑗

} | 𝑈
)
)))

]
]
]

)
))) |

𝑈↓/ℎ and ∀𝑖 ∈ {1…𝑛}.𝑈↓/ℎ𝑖
and ( ⋃

𝑄𝑖∈𝒬
𝑓(𝑄𝑖)) = 𝒫 and

∀𝑄𝑖, 𝑄𝑗. where 𝑖 ≠ 𝑗 then 𝑓(𝑄𝑖) ∩ 𝑓(𝑄𝑗) = ∅ and ∀𝑎 ∈ 𝒜.(𝜈𝑎 : 𝑡𝑎).𝑈↓/𝑎
}}
}
}}

This brings us to the proof of Lemma 4.2 which states that for two well-typed BtF expressions
and their

Proof of Lemma 4.2.

In order to prove Lemma 4.2 we have to prove that independent of what value 𝑒1 is that
⟦𝑒1⟧Γ

𝑜 { /𝑥
ℎ} ≈𝛼

⋅ ⟦𝑒1{𝑥 ↦ 𝑒2}⟧Γ
𝑜  by showing that 𝑅 is a WABB and therefore closed under

Definition 4.3. We do this by matching the transitions for each translated expression and
showing that the new pair is in 𝑅.

𝒆𝟐 𝐢𝐬 𝐚𝐧 𝐢𝐧𝐭𝐞𝐠𝐞𝐫: When 𝑒2 is a number we have from the translation that ⟦𝑛⟧Γ
𝑜 =

𝑜⟨𝑛⟩ where 𝑛 : 𝐈𝐧𝐭, 𝑜 : ch(𝐈𝐧𝐭) and 𝑥 : 𝐈𝐧𝐭. As 𝑥 is a variable the substitution is on
translations of 𝑥 in 𝑒1. Therefore we show that ⟦𝑥⟧Γ

𝑜 { /𝑛
𝑥} ≈𝛼

⋅ ⟦𝑥{𝑥 ↦ 𝑛}⟧Γ
𝑜 . Then we

have the translation for 𝑥 is ⟦𝑥⟧Γ
𝑜 = 𝑜⟨𝑥⟩ and ⟦𝑥{𝑥 ↦ 𝑛}⟧Γ

𝑜 = 𝑜⟨𝑛⟩. We then have that
𝑜⟨𝑥⟩{ /𝑛

𝑥} = 𝑜⟨𝑛⟩ and since 𝑜⟨𝑛⟩ ≈𝛼
⋅ 𝑜⟨𝑛⟩ then 𝑜⟨𝑥⟩{ /𝑛

𝑥} ≈𝛼
⋅ ⟦𝑥{𝑥 ↦ 𝑛}⟧Γ

𝑜 .

𝒆𝟐 𝐢𝐬 𝐚𝐧 𝐚𝐛𝐬𝐭𝐫𝐚𝐜𝐭𝐢𝐨𝐧, 𝐭𝐮𝐩𝐥𝐞 𝐨𝐫 𝐚𝐫𝐫𝐚𝐲: For the process ⟦𝑒1{𝑥 ↦ 𝑒2}⟧Γ
𝑜  there can be

different variations of processes from the translation of 𝑒2. In this case a handle is used
for communication with the translation of 𝑒2.

𝟏. 𝑪[𝑺] → 𝑪′[𝑺]: In this case we have an internal reduction in the context of the

form 𝐶[𝑆] → 𝐶′[𝑆] where 𝑆 = (𝜈ℎ : 𝑡ℎ).(𝜈𝒜 : 𝑡𝑎).(𝑄 | ∏
𝑃𝑖∈𝒫

𝑃𝑖 | 𝑈) s.t 𝐶 can take

the transition without 𝑆 and behaves like 𝐶[𝟎] → 𝐶′[𝟎]. Therefore we can use 𝐶′

on the right side of the pair since it is not dependent on the process in the context.
Furthermore since the restrictions on the relation only are on the inner process of
the context the new pair is in 𝑅.

𝟐. 𝑼 → 𝑼 ′: In this case we have an internal transition inside 𝑈  s.t 𝑈 → 𝑈 ′ and since
𝑈  is the same on the left and right side of the pair there is a matching transition
per Definition 4.3. However to show that 𝑈 ′ is allowed in 𝑅 we have to prove the
following holds 𝑈 ′↓/ℎ, ∀𝑖 ∈ {1…𝑛}.𝑈 ′↓/ℎ𝑖

 and ∀𝑎 ∈ 𝒜.(𝜈𝑎 : 𝑡𝑎).𝑈 ′↓/𝑎. To prove the first

XXVIII



condition 𝑈 ′↓/ℎ we destruct 𝑈 ′ into it’s components 𝑈 ′ = 𝑈1 | … | 𝑈𝑛. Then to prove

𝑈 ′↓/ℎ we have to construct a 𝑈″ as from the building blocks of 𝑈  we have that there

can exists a 𝑈𝑖 of the form 𝑈𝑖 ∉ {!𝑈, (𝜈𝑎 : 𝑡𝑎).𝑈, [𝑛 ≠ 0]𝑈, 𝑈, 𝟎} s.t that 𝑈𝑖 ↓ℎ and
therefore 𝑈 ′ ↓ℎ which is not allowed in 𝑅. However we can construct a new 𝑈″ and

𝒫′ s.t 𝑈″↓/ℎ and ( ⋃
𝑄𝑖∈𝒬

𝑓(𝑄𝑖)) = 𝒫′. We construct 𝒫′ as 𝒫 and the set of all sub-

processes of 𝑈 ′ where 𝑈𝑖 ↓ℎ then we construct 𝑈″ as the all the sub-processes of 𝑈 ′

where 𝑈𝑖↓/ℎ in parallel composition. Then as 𝑈″↓/ℎ and all of new exposed clients of

𝒬 has been moved to 𝒫′ we have ( ⋃
𝑄𝑖∈𝒬

𝑓(𝑄𝑖)) = 𝒫′.

Then for the second condition ∀𝑖 ∈ {1…𝑛}.𝑈″↓/ℎ𝑖
 we use that on both sides of the

pair 𝑈  is the same. Then as we are only able to observer communication ℎ𝑖 after
substituting ℎ we know from the construction of 𝑈″ above that 𝑈″↓/ℎ. Therefore we

can only observe communication on ℎ𝑖 outside of 𝑈″ and therefore the condition ∀𝑖 ∈
{1…𝑛}.𝑈″↓/ℎ𝑖

 holds.

Then for the case of ∀𝑎 ∈ 𝒜.(𝜈𝑎 : 𝑡𝑎).𝑈″↓/𝑎 we can use structural congruence to move

out all restrictions and therefore we have that the new pair is in 𝑅.

(
(((𝐶

[
[[(𝜈ℎ : 𝑡ℎ).(𝜈𝒜 : 𝑡𝑎

→
).

(
((𝑄 | ∏

𝑃 ′
𝑖 ∈𝒫′

𝑃 ′
𝑖 | 𝑈″

)
))

]
]],

𝐶
[
[
[(𝜈ℎ1 : 𝑡ℎ1

). … .(𝜈ℎ𝑛 : 𝑡ℎ𝑛
).(𝜈𝒜 : 𝑡𝑎

→
).

(
((( ∏

𝑄𝑖∈𝒬
| ∏
𝑄𝑗∈𝒬

∏
𝑃 ′

𝑖 ∈𝑓(𝑄𝑗)

𝑃 ′
𝑖 { /ℎ

ℎ𝑗
} | 𝑈″

)
)))

]
]
]

)
)))

𝟑. 𝑸 |𝑷𝒊 → 𝑸′ | 𝑷 ′
𝒊 : For this case we consider the different forms of 𝑒2 and 𝑄 where

𝑒2 is either an abstraction, tuple or array.

𝒆𝟐 = 𝝀(𝒙 : 𝒕).𝒆𝝀: Then 𝑄 = !ℎ(𝑥, 𝑟).⟦𝑒𝜆⟧Γ
𝑟  and as 𝑃𝑖 communicates with 𝑄 on ℎ

it has the following form 𝑃𝑖 = !ℎ⟨𝑥, 𝑟⟩.𝑆 where 𝑆 is some continuation of 𝑃𝑖. Then
we have the transition to 𝑄 | 𝑃 → ⟦𝑒𝜆⟧Γ

𝑟 | 𝑆 in the right pair we can match this
by using 𝑃𝑖{ /ℎ

ℎ𝑗
} where 𝑃𝑖 ∈ 𝑓(𝑄𝑗) s.t 𝑄𝑗 ↓ℎ𝑗

. After the communication 𝑆 is

uncovered and a ⟦𝑒𝜆⟧Γ
𝑟  is spawned and added to 𝑈 ′ = 𝑈 ∪ ⟦𝑒𝜆⟧Γ

𝑟 ∪ 𝑆. However as
it is possible that ⟦𝑒𝜆⟧Γ

𝑟 ↓ℎ and 𝑆 ↓ℎ we use structural congruence as in the second
case to find a 𝑈″ and 𝑃 ′ s.t 𝑈″↓/ℎ and then the following holds:

𝑄 | ∏
𝑃𝑖∈𝒫

𝑃𝑖 | 𝑈 → 𝑄 | ∏
𝑃𝑖∈𝒫′

𝑃𝑖 | 𝑈″

Therefore the pair after the transition is still in 𝑅.

𝒆𝟐 = (𝒆𝟐,𝟏, …, 𝒆𝟐,𝒏): Then 𝑄 = !ℎ ⋅ tup⟨𝑇1, …, 𝑇𝑛⟩ | 𝑜⟨ℎ⟩ and as 𝑃𝑖 communicates

with 𝑄 on ℎ it has the following form 𝑃𝑖 = ℎ ⋅ tup (𝑣1 : 𝑡1, …, 𝑣𝑛 : 𝑡𝑛).𝑆 where 𝑆 is

XXIX



some continuation of 𝑃𝑖. Then using the same argument for the case of abstraction
with 𝑈 ′ = 𝑈 ∪ 𝑆.

𝒆𝟐 = [𝒆𝟐,𝟏, …, 𝒆𝟐,𝒏]: Then 𝑄 = ∏
𝑖∈1..𝑛

(!ℎ ⋅ all (𝑟).𝑟⟨𝑇𝑖⟩ | ℎ ⋅ 𝑖⟨𝑇𝑖⟩) | 𝑜⟨ℎ⟩ and as 𝑃𝑖

communicates with 𝑄 on ℎ it has one of the following forms where 𝑆 is some
continuation of 𝑃𝑖.

𝑃𝑖 ∈ {ℎ ⋅ 𝑖(𝑣 : 𝑡).𝑆, ℎ ⋅ all⟨ℎ𝑥⟩.!ℎ𝑥(𝑖 : 𝐈𝐧𝐭, 𝑣 : 𝑡).𝑆, ℎ ⋅ len (𝑣 : 𝐈𝐧𝐭).𝑆}

Then using the same argument for the case of abstraction with 𝑈 ′ = 𝑈 ∪ 𝑆.

Next we look at the right side of the pair in the relation.
1. In this case we have an internal communication in the context 𝐶. The proof follows

the same argument as in case 1 above.
2. In this case we have an internal communication in 𝑈 . The proof follows the same

argument as in case 2 above.
3. For this case we consider the different forms of Q, that being 𝑒1 is either an abstraction,

tuple or array. The proof follows the same argument as in case 3 above communicating
on some ℎ𝑗 instead.

𝐓𝐡𝐞 𝐩𝐚𝐢𝐫 (⟦𝒆𝟏⟧𝚪
𝒐{ /𝒙

𝒉}, ⟦𝒆𝟏{𝒙 ↦ 𝒆𝟐}⟧𝚪
𝒐 ):

Lastly we show that 𝑅 is closed under Definition 4.3 when on the form of the pair.

((𝜈ℎ : 𝑡).(𝑄 | ⟦𝑒1⟧Γ
𝑜 { /𝑥

ℎ}), ⟦𝑒1{𝑥 ↦ 𝑒2}⟧Γ
𝑜 )

In 𝑒1 there exist 𝑛 usages of 𝑥 where each usage in ⟦𝑒1⟧Γ
𝑜  is replaced with 𝑜1⟨𝑥⟩, …, 𝑜𝑛⟨𝑥⟩

where ∀𝑖 ∈ {1, …, 𝑛}.𝑜𝑖⟨𝑥⟩ ∈ 𝒰. Then in 𝑒1{𝑥 ↦ 𝑒2} each use of 𝑥 is replaced with
the full expression 𝑒2 s.t in ⟦𝑒1⟧Γ

𝑜  each 𝑥 is on the form ∀𝑖 ∈ {1, …, 𝑛}.⟦𝑒𝑖⟧Γ
𝑜𝑖

= (𝜈ℎ :

𝜏).(𝑄 | 𝑜𝑖⟨ℎ𝑖⟩) where ⟦𝑒𝑖⟧Γ
𝑜𝑖

∈ 𝒰. Therefore ⟦𝑒1{𝑥 ⊢ 𝑒2}⟧Γ
𝑜 = ⟦𝑒2⟧Γ

𝑜1
| … | ⟦𝑒2⟧Γ

𝑜𝑛
| 𝑆 and

⟦𝑒1⟧Γ
𝑜 { /𝑥

ℎ} = 𝑜1⟨ℎ⟩| … |𝑜𝑛⟨ℎ⟩ | 𝑆 where 𝑆 is the rest of ⟦𝑒2⟧Γ
𝑜 . We start by showing we

can match transitions.

𝐖𝐀𝐁𝐁: We start by expanding the translation of ⟦𝑒1{𝑥 ↦ 𝑒2}⟧Γ
𝑜 =

𝑄1 | 𝑜1⟨ℎ1⟩ | … | 𝑄𝑛 | 𝑜𝑛⟨ℎ𝑛⟩ | 𝑆 and ⟦𝑒1⟧Γ
𝑜 { /ℎ

𝑥} = 𝑄 | 𝑜1⟨ℎ⟩ | … | 𝑜𝑛⟨ℎ⟩ | 𝑆. The
by inspection of the translation we have that ∀𝑖 ∈ {1, …, 𝑛}.(𝑄 ≡ 𝑄𝑖) as 𝑄 and 𝑄𝑖

are both translations of 𝑒2 with different handles and therefore we can apply the
structural congruence rule for alpha conversion. Furthermore from the translation we
have that for each 𝑄 | … |𝑜𝑖⟨ℎ⟩ on the left side of the pair there is a corresponding
𝑄𝑖 | 𝑜𝑖⟨ℎ𝑖⟩ on the right side and as 𝑒2 ∈ 𝒱 we no there are no further important
transitions. Then as 𝑆 is the same on both sides of the pair we can match any internal
transition of 𝑆.

Then we show that for the left and right side of the pair that the conditions for 𝑅 is
fulfilled.

𝐋𝐞𝐟𝐭 𝐬𝐢𝐝𝐞: Then for the left side we show that we can transform the form of
the translation s.t it fulfills that 𝑈↓/ℎ and ∀𝑎 ∈ 𝒜.(𝜈𝑎 : 𝑡𝑎).𝑈↓/𝑎. To do this we

XXX



first find a 𝑈 , 𝑄 and 𝒫 s.t we can transform the process 𝑊1 = (𝜈ℎ : 𝑡).(𝜈𝒜 :
𝑡𝑎).(𝑄′ | 𝑜1⟨ℎ⟩| … |𝑜𝑛⟨ℎ⟩ | 𝑆) to the following process.

(𝜈ℎ : 𝑡).(𝜈𝒜 : 𝑡𝑎).(𝑄 | ∏
𝑃𝑖∈𝒫

𝑃𝑖 | 𝑈)

The first step is to abuse that all bindings of names are unique and therefore we
can move out all bindings using structural congruence s.t we have the process on the
following form.

𝑊1 ≡ (𝜈ℎ : 𝑡).(𝜈𝒜 : 𝑡𝑎
→

).(𝑄′ | 𝑜1⟨ℎ⟩| … |𝑜𝑛⟨ℎ⟩ | 𝑆)

Then for every sub-process in 𝑆 we check if 𝑆𝑖 ↓ℎ and when it is the case add it to
𝒫 and otherwise to 𝑈  and then we add 𝑄′|𝑜1⟨ℎ⟩| … |𝑜𝑛⟨ℎ⟩ to 𝑄. Therefore we have
that 𝑈↓/ℎ and ∀𝑎 ∈ 𝒜.(𝜈𝑎 : 𝑡𝑎).𝑈↓/𝑎, and by the construction of 𝑈  we have not added

any process that communicates on ℎ and as all restrictions have been moved to the
top of the process. Therefore we can reconstruct 𝑊1 using 𝑈  and 𝒫 s.t we have the
following process.

(𝜈ℎ : 𝑡).(𝜈𝒜 : 𝑡𝑎).(𝑄 | ∏
𝑃𝑖∈𝒫

𝑃𝑖 | 𝑈)

𝐑𝐢𝐠𝐡𝐭 𝐬𝐢𝐝𝐞: Then for the right side we show that we can transform the
form of the translation s.t it fulfills that ∀𝑖 ∈ {1…𝑛}.𝑈 ′↓/ℎ𝑖

, (⋃𝑄𝑖∈𝒬 𝑓(𝑄𝑖)) = 𝒫,

∀𝑄𝑖, 𝑄𝑗. where 𝑖 ≠ 𝑗 then 𝑓(𝑄𝑖) ∩ 𝑓(𝑄𝑗) = ∅ and ∀𝑎 ∈ 𝒜.(𝜈𝑎 : 𝑡𝑎).𝑈↓/𝑎 To do this

we first find a 𝑈 , 𝒬 and 𝒫 s.t we can transform the process 𝑊2 = (𝜈ℎ1 :
𝑡).(𝑄1 | 𝑜1⟨ℎ1⟩) | … | (𝜈ℎ𝑛 : 𝑡).(𝑄𝑛 | 𝑜𝑛⟨ℎ𝑛⟩) | 𝑆 to the following process.

(𝜈ℎ1 : 𝑡ℎ1
). … .(𝜈ℎ𝑛 : 𝑡ℎ𝑛

).(𝜈𝒜 : 𝑡𝑎).
(
((( ∏

𝑄𝑖∈𝒬
| ∏
𝑄𝑗∈𝒬

∏
𝑃𝑖∈𝑓(𝑄𝑗)

𝑃𝑖{ /ℎ
ℎ𝑗

} | 𝑈
)
)))

The first step is to abuse that all bindings of names are unique and therefore we can
move them to start of the process s.t we have the process on the following form.

𝑊1 ≡ (𝜈ℎ1 : 𝑡).….(𝜈ℎ𝑛 : 𝑡).(𝑄1 | 𝑜1⟨ℎ1⟩) | … | (𝑄𝑛 | 𝑜𝑛⟨ℎ𝑛⟩) | 𝑆

Then for every sub-process in 𝑆 we check if 𝑆𝑖 ↓ℎ and if it is the case we add it to 𝒫
and otherwise 𝑈 . Then we construct 𝒬 = {𝑄1| 𝑜1⟨ℎ1⟩, …, 𝑄𝑛| 𝑜𝑛⟨ℎ𝑛⟩}. Therefore we

have that ∀𝑖 ∈ {1…𝑛}.𝑈↓/ℎ𝑖
 and ( ⋃

𝑄𝑖∈𝒬
𝑓(𝑄𝑖)) = 𝒫 holds as all clients of 𝒬 has been

moved to 𝒫 and ∀𝑄𝑖, 𝑄𝑗. where 𝑖 ≠ 𝑗 then 𝑓(𝑄𝑖) ∩ 𝑓(𝑄𝑗) = ∅ holds as each 𝑃𝑖 ∈ 𝒫

receives their handle through some 𝑜𝑖 specific to each instance of the translation
of 𝑒2. Lastly ∀𝑎 ∈ 𝒜.(𝜈𝑎 : 𝑡𝑎).𝑈↓/𝑎 as all restrictions have been moved to the top of

the process.

XXXI



Therefore as the pair (𝑊1, 𝑊2) fulfills the conditions for 𝑅 and 𝑅 is closed under
Definition 4.3 with the pair it must hold for this case.

⬜

E.3 Proof of Lemma 4.3
Proof of Lemma 4.3.

We use ⟶
𝑠 𝑛

 to denote 𝑛 reductions of the form ⟶
𝑠

 then using induction on 𝑛.

𝒏 = 𝟎: In this case no reduction has occured and therefore 𝑃 ′ = 𝑃  and we must show
that 𝑃↓/𝛼 for any prefix. We show this by contradiction and therefore assume there exists

an 𝛼 s.t 𝑃 ↓𝛼. From the assumption of 𝑃 ≈𝛼
⋅ 𝟎 we have that (𝑃 , 𝟎) ∈ 𝑅 and by the

condition (4) of Definition 4.3 then it must hold that 𝟎 ⇒⚬ ↓𝛼. However, since there are
no reductions from 𝟎 therefore 𝟎 ⟶

𝑠
/  and 𝟎↓/𝛼.

𝒏 > 𝟎: From the induction hypothesis we have 𝑃 ⟶
𝑠 𝑛−1

𝑃𝑛−1 then ∀𝛼.𝑃𝑛−1↓/𝛼 and

𝑃𝑛−1 ≈𝛼
⋅ 𝟎. Then we we will show that 𝑃𝑛−1 ⟶

𝑠
𝑃 ′ then ∀𝛼.𝑃 ′↓/𝛼 and 𝑃 ′ ≈𝛼

⋅ 𝟎. Since

𝑃𝑛−1 ≈𝛼
⋅ 𝟎 we know that there exist and 𝑅 s.t (𝑃𝑛−1, 𝟎) ∈ 𝑅 and 𝑅 is a Definition 4.3.

Since 𝟎 ⟶∙/ , then 𝑃 ⟶∙/  therefore 𝑃𝑛−1 ⟶⚬ 𝑃 ′. Then because (𝑃𝑛−1, 𝟎) ∈ 𝑅, then
(𝑃 ′, 𝟎) ∈ 𝑅, and therefore 𝑃 ′ ≈𝛼

⋅ 𝟎 and ∀𝛼.𝑃↓/𝛼

⬜

E.4 Proof of Lemma 4.4
Proof of Lemma 4.4.

Let 𝑅 be a relation 𝑅 = {(𝐶[𝑃 | 𝑄], 𝐶[𝑄]) | 𝑃 , 𝑄 ∈ 𝒫, 𝐶 ∈ 𝒞, 𝑃 ≈𝛼
⋅ 𝟎}. Then by Lemma 4.3

if 𝑃 ≈𝛼
⋅ 𝟎 then 𝑃↓/𝛼 therefore since 𝑃 ≈𝛼

⋅ 𝟎 it holds that when 𝑃 | 𝑄 ↓𝛼 then 𝑃↓/𝛼 and 𝑄 ↓𝛼.

We then prove that 𝑅 is a Definition 4.3.

(𝟏) 𝐚𝐧𝐝 (𝟐): By Definition 4.3 condition (1) and (2) if 𝐶[𝑃 |𝑄] ⟶
𝑠

𝑂 then 𝐶[𝑄] ⇒
𝑠

𝑂′

s.t (𝑂, 𝑂′) ∈ 𝑅. By Lemma 4.1 𝑂 is one of the following three cases.

𝑪 𝐫𝐞𝐝𝐮𝐜𝐞𝐬 𝐚𝐥𝐨𝐧𝐞: Then 𝑂 = 𝐶′[𝑃 | 𝑄]. Here 𝐶[𝑄] can follow by 𝐶[𝑄] ⟶
𝑠

𝐶′[𝑄].

𝑷 | 𝑸 𝐫𝐞𝐝𝐮𝐜𝐞𝐬 𝐚𝐥𝐨𝐧𝐞: Then 𝑂 = 𝐶[𝑅], where 𝑅 = 𝑃 | 𝑄 ⟶
𝑠

𝑅. Since by
Lemma 4.3 we have 𝑃↓/𝛼, then either 𝑃  or 𝑄 reduces alone.

𝑹 = 𝑷 ′ | 𝑸: Then 𝑃 ⟶
𝑠

𝑃 ′, and because 𝑃 ≈𝛼
⋅ 𝟎, 𝑠 = ⚬. Therefore 𝐶[𝑄] can

follow with no reductions as by Lemma 4.3 𝑃 ′ ≈𝛼
⋅ 𝟎 and (𝐶[𝑃 ′ | 𝑄], 𝐶[𝑄]) ∈ 𝑅

𝑹 = 𝑷 | 𝑸′: Then 𝑄 ⟶
𝑠

𝑄′, 𝐶[𝑄] ⟶
𝑠

𝐶[𝑄′] and (𝐶[𝑃 | 𝑄′], 𝐶[𝑄′]) ∈ 𝑅

𝑷 | 𝑸 𝐚𝐧𝐝 𝑪 𝐫𝐞𝐝𝐮𝐜𝐞𝐬: Then ∃𝑅 s.t 𝑅 ∈ 𝐶 and 𝑅 | 𝑃 | 𝑄 ⟶
𝑠

𝑆′ | 𝑃 | 𝑄′ as by
Lemma 4.3 we have 𝑃↓/𝛼 and therefore 𝑃  can not communicate with 𝑆. Therefore we

have that 𝑆 | 𝑄 ⟶
𝑠

𝑆′ | 𝑄′ and then 𝐶[𝑄] ⟶
𝑠

𝐶′[𝑄′].

(𝟑): By the selection of 𝑅 it holds.

XXXII



(𝟒): If 𝐶[𝑃 | 𝑄] ↓𝛼 then 𝑄 ⇒⚬ ↓𝛼. By Lemma 4.3 then 𝑃↓/𝛼, 𝑄 ↓𝛼 and by Lemma 4.1 𝑂

is one of the following cases.

𝑪 𝐫𝐞𝐝𝐮𝐜𝐞𝐬 𝐚𝐥𝐨𝐧𝐞: Then 𝑂 = 𝐶′[𝑃 | 𝑄]. Here 𝐶[𝑄] can follow by 𝐶[𝑄] ⟶
𝑠

𝐶′[𝑄].

𝑸 𝐫𝐞𝐝𝐮𝐜𝐞𝐬 𝐚𝐥𝐨𝐧𝐞: Then 𝑂 = 𝐶[𝑄′] where 𝑄 ⟶
𝑠

𝑄′ and 𝐶[𝑃 | 𝑄] ⟶
𝑠

𝐶[𝑃 | 𝑄′].

𝑸 𝐚𝐧𝐝 𝑪 𝐫𝐞𝐝𝐮𝐜𝐞𝐬: Follows the same argumentation as (1) and (2).

⬜

E.5 Proof of Lemma 4.5
Before we can prove Lemma 4.5 we need to know the depth of an expression 𝑒.

Definition 5.4 (Depth of expression):  Let 𝒟(𝑒) denote the depth of 𝑒.

𝒟(𝑛) = 0
𝒟(𝜆𝑥.𝑒) = 0

𝒟((𝑒1, …, 𝑒𝑛)) = max
𝑖∈{0,…,𝑛}

(𝒟(𝑒𝑖)) + 1

𝒟([𝑒1, …, 𝑒𝑛]) = max
𝑖∈{1,…,𝑛}

(𝒟(𝑒𝑖)) + 1

𝒟(if 𝑒1 then 𝑒2 else 𝑒3) = max
𝑖∈{1,…,3}

(𝒟(𝑒𝑖)) + 1

𝒟(𝑒1 ⊙ 𝑒2) = max
𝑖∈{1,…,2}

(𝒟(𝑒𝑖)) + 1

𝒟(size 𝑒1) = 𝒟(𝑒1) + 1
𝒟(iota 𝑒1) = 𝒟(𝑒1) + 1
𝒟(map 𝑒1) = 𝒟(𝑒1) + 1

Proof of Lemma 4.5.

We prove this on induction on the depth 𝒟(𝑒) where 𝑒 ∈ 𝒱. As per (Adm) any ⟶
𝜏

 is an
administrative reduction.

𝓓(𝒆) = 𝟎: From Definition 5.4, we get that 𝑒 must be either a number or abstraction.

𝒏: From Chapter 4.1.1.1 ⟦𝑛⟧Γ
𝑜 = 𝑜⟨𝑛⟩ can immediately send 𝑛 on 𝑜 and therefore

⟦𝑛⟧𝑜 ↓𝑜

𝒙: From Chapter 4.1.1.1 ⟦𝑥⟧Γ
𝑜 = 𝑜⟨𝑥⟩ can immediately send 𝑥 on 𝑜 and therefore

⟦𝑥⟧𝑜 ↓𝑜

𝝀𝒙.𝒆: From Chapter 4.1.1.1 ⟦𝜆(𝑥 : 𝜏1).𝑒1⟧Γ
𝑜 = (𝜈ℎ : ⟦𝜏1 → 𝜏2⟧).(𝑜⟨ℎ⟩ | !ℎ(𝑥 : ⟦𝜏1⟧, 𝑟 :

ch(⟦𝜏2⟧)).⟦𝑒1⟧Γ
𝑟 ) can send the handle ℎ on 𝑜 by going under restriction and the parallel

composition therefore (𝜈ℎ : ⟦𝜏1 → 𝜏2⟧).(𝑜⟨ℎ⟩ | !ℎ(𝑥 : ⟦𝜏1⟧, 𝑟 : ch(⟦𝜏2⟧)).⟦𝑒1⟧Γ
𝑟 ) ↓𝑜

𝓓(𝒆) > 𝟎: Since 𝒟(𝑒) > 0 then 𝑒 must be either a tuple or array. From Definition 5.4
we get that the depth for tuple and array is 𝒟(𝑒) = max𝑖∈{0,…,𝑛}(𝒟(𝑒𝑖)) + 1. Since 𝑒 is a

XXXIII



value on the form (𝑒1, …𝑒𝑛) or [𝑒1, …, 𝑒𝑛], then each 𝑒𝑖 we have that for all 𝑒1, …, 𝑒𝑛 ∀𝑖 ∈
{1, …, 𝑛} where 𝒟(𝑒𝑖) < 𝒟(𝑒). Then by the induction hypothesis we have that ⟦𝑒𝑖⟧𝑜𝑖 ⇒⚬

𝑃𝑖 where 𝑃𝑖 ↓𝑜𝑖

(𝒆𝟏, …𝒆𝒏): From Chapter 4.1.1.1 we get the translation for array ⟦[𝑒1, …, 𝑒𝑛]⟧Γ
𝑜  is

(𝜈𝑜1 : ch(⟦𝜏⟧)).….(𝜈𝑜𝑛 : ch(⟦𝜏⟧)).(𝜈ℎ : ⟦[𝜏 ]⟧).

(∏
𝑛

𝑖=1
⟦𝑒𝑖⟧Γ

𝑜𝑖
| 𝑜1(𝑣1 : ⟦𝜏⟧).….𝑜𝑛(𝑣𝑛 : ⟦𝜏⟧).

(∏
𝑛

𝑖=1
𝐶𝑒𝑙𝑙(ℎ, 𝑖 − 1, 𝑣𝑖, ⟦𝜏⟧) | ℎ ⋅ len⟨𝑛⟩ | 𝑜⟨ℎ⟩))

Then by repeated application of (E-Res1) followed by (E-Com) therefore 𝑞 = 𝜏
as communication reduction is a 𝜏  reduction. This then results in the following
process 𝑃 = (∏𝑛

𝑖=1 𝐶𝑒𝑙𝑙(ℎ, 𝑖 − 1, 𝑣𝑖) | ℎ ⋅ len⟨𝑛⟩ | 𝑜⟨ℎ⟩) and as it was reached using

only administrative reductions we have that ⟦[𝑒1, …, 𝑒𝑛]⟧Γ
𝑜 ⇒⚬ 𝑃 . Then because 𝑃

can send the handle ℎ on 𝑜 by going under the parallel composition we have that
𝑃 ↓𝑜

[𝒆𝟏, …𝒆𝒏]: From Chapter 4.1.1.1 we get the translation for tuple ⟦(𝑒1, …, 𝑒𝑛)⟧Γ
𝑜  is

(𝜈𝑜1 : ch(⟦𝜏1⟧)).….(𝜈𝑜𝑛 : ch(⟦𝜏𝑛⟧)).

(∏
𝑛

𝑖=1
⟦𝑒𝑖⟧Γ

𝑜𝑖
| 𝑜1(𝑣1 : ⟦𝜏1⟧). … .𝑜𝑛(𝑣𝑛 : ⟦𝜏𝑛⟧).

(𝜈ℎ : ⟦(𝜏1, …, 𝜏𝑛)⟧).(!ℎ ⋅ tup⟨𝑣1, …, 𝑣𝑛⟩ | 𝑜⟨ℎ⟩))

Then by repeated application of (E-Res1) followed by (E-Com) therefore 𝑞 = 𝜏  as
communication reduction is a 𝜏  reduction. This then results in the following process
𝑃 = 𝜈ℎ.(!ℎ ⋅ tup⟨𝑣1, …, 𝑣𝑛⟩ | 𝑜⟨ℎ⟩) and as it was reached using only administrative
reductions we have that ⟦(𝑒1, …, 𝑒𝑛)⟧Γ

𝑜 ⇒⚬ 𝑃 . Then by going under restriction, and
using structural congruence to swap !ℎ ⋅ tup⟨𝑣1, …, 𝑣𝑛⟩ and 𝑜⟨ℎ⟩ in the parallel
composition and then going under it, we have that 𝑃  can send ℎ on 𝑜. Therefore we
have that 𝑃 ↓𝑜.

⬜

E.6 Proof of Lemma 4.6
Proof of Lemma 4.6.

By inspection of the translation in Chapter 4.1 we have that the constructs {𝑥, 𝑛, 𝜆𝑥 :
𝜏.𝑒, (𝑒1, …, 𝑒𝑛), [𝑒1, …, 𝑒𝑛]} only contain administrative transitions. Then by induction on
𝒟(𝑒) we get two cases:

𝓓(𝒆) = 𝟎: Then 𝑒 ∈ {𝑛, 𝑥, 𝜆𝑥 : 𝜏.𝑒} and by Definition 2.1 we have that 𝑒 ∈ 𝒱. Then as
𝑒 ∈ 𝒱 we have by Lemma 4.5 that ⟦𝑒⟧Γ

𝑜 ⇒⚬ 𝑃  and 𝑃 ↓𝑜.

XXXIV



𝓓 > 𝟎: Then 𝑒 ∈ {(𝑒1, …, 𝑒𝑛), [𝑒1, …, 𝑒𝑛]} and 𝒟(𝑒) = max𝑖∈{0,…,𝑛}(𝒟(𝑒𝑖)) + 1 where

𝑒𝑖 ∈ {𝑥, 𝑛, 𝜆𝑥 : 𝜏.𝑒, (𝑒1, …, 𝑒𝑛), [𝑒1, …, 𝑒𝑛]}. Then as 𝑒𝑖 does not contain constructs with
important transitions then 𝑒 must contain fully evaluated expressions and therefore by
Definition 2.1 𝑒 ∈ 𝒱 and therefore by Lemma 4.5 that ⟦𝑒⟧Γ

𝑜 ⇒⚬ 𝑃  and 𝑃 ↓𝑜.

⬜

E.7 Proof of Theorem 4.1
Proof of Soundness.

We prove this by induction in the rules used for concluding 𝑒 is well-typed.

(𝐁𝐓-𝐕𝐚𝐫): From the (BT-Var) rule we know that 𝑒 : 𝜏 . From inspection of the trans-
lation we have 𝑜⟨𝑥⟩ and by the type rules (ET-Send) and (ET-U) we have that 𝑜 : ch(𝑡)
where 𝑡 = Δ(𝑥). Then we have that ⟦Γ⟧ = Δ, Π and Γ(𝑥) : 𝜏  therefore Δ(𝑥) = ⟦𝜏⟧ and
then it must be that 𝑜 : ch(⟦𝜏⟧).

(𝐁𝐓-𝐈𝐧𝐭): From the (BT-Int) rule we know that 𝑒 : 𝐈𝐧𝐭. From inspection of the
translation we have 𝑜⟨𝑛⟩ and by the type rules (ET-Send) and (ET-N) we have that
𝑜 : ch(𝑡) where 𝑡 = 𝐈𝐧𝐭. By the translation of types we have ⟦𝐈𝐧𝐭⟧ = 𝐈𝐧𝐭. Therefore 𝑜 :
ch(⟦𝜏⟧).

(𝐁𝐓-𝐀𝐛𝐬): From the (BT-Abs) rule we know that 𝑒 : (𝜏1 → 𝜏2). From inspection of the
translation we have 𝑜⟨ℎ⟩ and by the type rule (ET-Send) we have 𝑜 : ch(𝑡) where 𝑡 is the
type of the object we are sending on 𝑜. From the translation we can see that ℎ : ⟦𝜏1 →
𝜏2⟧. Therefore it must be that 𝑜 : ch(⟦𝜏1 → 𝜏2⟧).

(𝐁𝐓-𝐀𝐩𝐩): From the (BT-App) rule we know that 𝑒 : 𝜏2. From inspection of the
translation we have an ℎ : ⟦𝜏1 → 𝜏2⟧ = ch(⟦𝜏1⟧, ch(⟦𝜏2⟧)). From the translation we see
that we send 𝑣, 𝑜 on ℎ and from that we then have 𝑣 : ⟦𝜏1⟧ and 𝑜 : ch(⟦𝜏2⟧). Therefore
soundness hold.

(𝐁𝐓-𝐈𝐧𝐝𝐞𝐱): From the (BT-Index) rule we know that 𝑒 : 𝜏 . From inspection of the
translation we have 𝑜⟨𝑣⟩ and by the type rule (ET-Send) we have 𝑜 : ch(𝑡) where 𝑡 is
the type of the object we are sending on 𝑜. From the translation we can see that 𝑣 : ⟦𝜏⟧.
Therefore it must be that 𝑜 : ch(⟦𝜏⟧).

(𝐁𝐓-𝐁𝐢𝐧): From the (BT-Bin) rule we know that 𝑒 : 𝐈𝐧𝐭. From inspection of the trans-
lation we have 𝑜⟨𝑣1 ⊙ 𝑣2⟩ and by the type rule (ET-Send) we have 𝑜 : ch(𝑡) where 𝑡 is
the type of the object we are sending on 𝑜. From (ET-Bin) we have the type of 𝑣1 ⊙ 𝑣2 :
𝐈𝐧𝐭. By the translation of types we have ⟦𝐈𝐧𝐭⟧ = 𝐈𝐧𝐭. Therefore 𝑜 : ch(⟦𝜏⟧).

(𝐁𝐓-𝐈𝐟): From the (BT-If) rule we know that 𝑒 : 𝜏  where both sub-expressions 𝑒2 and
𝑒3 is of type 𝜏 . From the induction hypothesis we get that from ⟦𝑒2⟧Γ

𝑜  and ⟦𝑒3⟧Γ
𝑜  that

Δ, Π(𝑜) = ch(⟦𝜏⟧). Therefore soundness hold.

(𝐁𝐓-𝐀𝐫𝐫𝐚𝐲): From the (BT-Array) rule we know that 𝑒 : [𝜏 ]. From inspection of the
translation we have 𝑜⟨ℎ⟩ and by the type rule (ET-Send) we have 𝑜 : ch(𝑡) where 𝑡 is the

XXXV



type of the object we are sending on 𝑜. From the translation we can see that ℎ : ⟦[𝜏 ]⟧.
Therefore it must be that 𝑜 : ch(⟦[𝜏 ]⟧).

(𝐁𝐓-𝐓𝐮𝐩𝐥𝐞): From the (BT-Tuple) rule we know that 𝑒 : (𝜏1, …, 𝜏𝑛). From inspection of
the translation we have 𝑜⟨ℎ⟩ and by the type rule (ET-Send) we have 𝑜 : ch(𝑡) where 𝑡
is the type of the object we are sending on 𝑜. From the translation we can see that ℎ :
⟦(𝜏1, …, 𝜏𝑛)⟧. Therefore it must be that 𝑜 : ch(⟦(𝜏1, …, 𝜏𝑛)⟧).

⬜

Proof of Completeness.

We prove this by induction in the structure of 𝑒.

𝒆 = 𝒙: We have that ⟦𝑒⟧Γ
𝑜 = (Δ, Π, 𝑃) where 𝑃 = 𝑜⟨𝑥⟩. We assume that Δ(𝑜) = ch(𝑡)

where 𝑡 = ⟦𝜏⟧, therefore we must have that Δ ⊢ 𝑥 : 𝑡. By inspection of the translation of
BtF type environment Figure 5.4 we have that Δ, 𝑥 : 𝑡 implies Γ, 𝑥 : 𝜏  and therefore Γ ⊢
𝑥 : 𝜏 .

𝒆 = 𝒏: We have that ⟦𝑒⟧Γ
𝑜 = (Δ, Π, 𝑃) where 𝑃 = 𝑜⟨𝑛⟩. We assume that Δ(𝑜) = ch(𝑡)

where 𝑡 = ⟦𝜏⟧, therefore we must have that Δ ⊢ 𝑛 : 𝑡 and by (ET-N) we have that 𝑡 =
𝐈𝐧𝐭. By inspection of the translation of BtF type environment Figure 5.4 and types
Figure 5.3 we have that Δ, 𝑛 : 𝐈𝐧𝐭 implies Γ, 𝑛 : 𝐈𝐧𝐭 and therefore Γ ⊢ 𝑛 : 𝐈𝐧𝐭.

𝒆 = 𝝀(𝒙 : 𝝉𝟏).𝒆𝟏: We have that ⟦𝑒⟧Γ
𝑜 = (Δ, Π, 𝑃) where

𝑃 = (𝜈ℎ : ⟦𝜏1 → 𝜏2⟧).(𝑜⟨ℎ⟩ | !ℎ(𝑥 : ⟦𝜏1⟧, 𝑟 : ch(⟦𝜏2⟧)).⟦𝑒1⟧Γ
𝑟 )

We assume that Δ(𝑜) = ch(𝑡) where 𝑡 = ⟦𝜏⟧. By inspection of the translation we have
that 𝑜⟨ℎ⟩ where ℎ : ⟦𝜏1 → 𝜏2⟧ which implies 𝜏 = 𝜏1 → 𝜏2. Then by the induction hypoth-
esis we get that ⟦𝑒1⟧Γ

𝑜 = (Δ′, Π, 𝑃 ′) where Δ′ = Δ, ℎ : ⟦𝜏1 → 𝜏2⟧, 𝑥 : ⟦𝜏1⟧, 𝑟 : ch(⟦𝜏2⟧), s.t
Γ, 𝑥 : 𝜏1 ⊢ 𝑒1 : 𝜏2. Therefore by (BT-Abs) we get that Γ ⊢ 𝜆(𝑥 : 𝜏1).𝑒1 : 𝜏1 → 𝜏2.

𝒆 = 𝒆𝟏𝒆𝟐: We have that ⟦𝑒⟧Γ
𝑜 = (Δ, Π, 𝑃) where

𝑃 = (𝜈𝑜1 : ch(⟦𝜏1 → 𝜏2⟧)).(𝜈𝑜2 : ch(⟦𝜏1⟧)).(⟦𝑒1⟧Γ
𝑜1

| ⟦𝑒2⟧Γ
𝑜2

|

𝑜1(ℎ : ⟦𝜏1 → 𝜏2⟧).𝑜2(𝑣 : ⟦𝜏1⟧). ∙ ℎ⟨𝑣, 𝑜⟩)

We assume that Δ(𝑜) = ch(𝑡) where 𝑡 = ⟦𝜏⟧. By inspection of the translation we have
that ℎ⟨𝑣, 𝑜⟩ where ℎ : ⟦𝜏1 → 𝜏2⟧. By inspection of the translation of BtF types Figure 5.3
we have that ℎ : ch(⟦𝜏1⟧, ch(⟦𝜏2⟧)) this then implies that 𝑜 : ch(⟦𝜏2⟧) and 𝜏 = 𝜏2. Then
by the induction hypothesis we get that ⟦𝑒1⟧Γ

𝑜1
= (Δ′, Π′, 𝑃 ′) where Δ(𝑜1) = ch(⟦𝜏1 →

𝜏2⟧) s.t Γ′ ⊢ 𝑒1 : 𝜏1 → 𝜏2 and ⟦𝑒2⟧Γ
𝑜2

= (Δ″, Π″, 𝑃 ″) where Δ(𝑜2) = ch(⟦𝜏1⟧) s.t Γ′ ⊢ 𝑒2 :

𝜏1. Therefore by (BT-App) we get that Γ ⊢ 𝑒1𝑒2 : 𝜏2

𝒆 = 𝒆𝟏[𝒆𝟐]: We have that ⟦𝑒⟧Γ
𝑜 = (Δ, Π, 𝑃) where

𝑃 = (𝜈𝑜1 : ch(⟦[𝜏 ]⟧)).(𝜈𝑜2 : ch(⟦𝜏⟧)).⟦𝑒1⟧Γ
𝑜1

| ⟦𝑒2⟧Γ
𝑜2

| 𝑜1(ℎ : ⟦[𝜏 ]⟧).

𝑜2(𝑖 : ⟦𝐈𝐧𝐭⟧).ℎ ⋅ 𝑖(𝑣 : ⟦𝜏⟧). ∙ 𝑜⟨𝑣⟩

XXXVI



We assume that Δ(𝑜) = ch(𝑡) where 𝑡 = ⟦𝜏⟧. By the induction hypothesis we get that
⟦𝑒1⟧Γ

𝑜1
= (Δ1, Π1, 𝑃1) and ⟦𝑒2⟧Γ

𝑜2
= (Δ2, Π2, 𝑃2) where Δ(𝑜1) = ch(⟦[𝜏 ]⟧) and Δ(𝑜2) =

ch(⟦𝐈𝐧𝐭⟧) s.t Γ ⊢ 𝑒1 : [𝜏 ] and Γ ⊢ 𝑒2 : 𝐈𝐧𝐭. If 𝑃  is well-typed we get the following well-
typed sub-process ℎ ⋅ 𝑖(𝑣 : ⟦𝜏⟧). ∙ 𝑜⟨𝑣⟩ and thereby we know the type of the object 𝑜
carries. From this we get that 𝑡 = ⟦𝜏⟧ and by (BT-Index) we get that Γ ⊢ 𝑒1[𝑒2] : 𝜏 .

𝒆 = if 𝒆𝟏 then 𝒆𝟐 else 𝒆𝟑: We have that ⟦𝑒⟧Γ
𝑜 = (Δ, Π, 𝑃) where

𝑃 = (𝜈𝑜1 : ch(⟦𝐈𝐧𝐭⟧)).(⟦𝑒1⟧Γ
𝑜1

| 𝑜1(𝑛 : ⟦𝐈𝐧𝐭⟧). ∙ [𝑛 ≠ 0]⟦𝑒2⟧Γ
𝑜 , ⟦𝑒3⟧Γ

𝑜 )

We assume that Δ(𝑜) = ch(𝑡) where 𝑡 = ⟦𝜏⟧. Then if 𝑃  is well-typed we also have the
following subprocess being well-typed [𝑛 ≠ 0]⟦𝑒2⟧Γ

𝑜 , ⟦𝑒3⟧Γ
𝑜  in which both branches outputs

on the channel 𝑜. Then by the induction hypothesis we get that ⟦𝑒1⟧Γ
𝑜1

= (Δ1, Π1, 𝑃1)

where Δ(𝑜1) = ch(⟦𝐈𝐧𝐭⟧) s.t Γ ⊢ 𝑒1 : 𝐈𝐧𝐭 and ⟦𝑒2⟧Γ
𝑜 = (Δ2, Π2, 𝑃2), ⟦𝑒3⟧Γ

𝑜 = (Δ3, Π3, 𝑃3)
where Δ(𝑜) = ch(⟦𝜏⟧) s.t Γ ⊢ 𝑒2 : 𝜏  and Γ ⊢ 𝑒3 : 𝜏 . Therefore by (BT-If) we get that Γ ⊢
if 𝑒1 then 𝑒2 else 𝑒3 : 𝜏 .

𝒆 = 𝒆𝟏 ⊙ 𝒆𝟐: We have that ⟦𝑒⟧Γ
𝑜 = (Δ, Π, 𝑃) where

𝑃 = (𝜈𝑜1 : ch(⟦𝐈𝐧𝐭⟧)).(𝜈𝑜2 : ch(⟦𝐈𝐧𝐭⟧)).(⟦𝑒1⟧Γ
𝑜1

| ⟦𝑒2⟧Γ
𝑜2

| 𝑜1(𝑣1 : ⟦𝐈𝐧𝐭⟧).

𝑜2(𝑣2 : ⟦𝐈𝐧𝐭⟧). ∙ 𝑜⟨𝑣1 ⊙ 𝑣2⟩)

We assume that Δ(𝑜) = ch(𝑡) where 𝑡 = ⟦𝜏⟧. By the induction hypothesis we get that
⟦𝑒1⟧Γ

𝑜1
= (Δ1, Π1, 𝑃1) and ⟦𝑒2⟧Γ

𝑜2
= (Δ2, Π2, 𝑃2) where Δ(𝑜1) = ch(⟦𝐈𝐧𝐭⟧) and Δ(𝑜2) =

ch(⟦𝐈𝐧𝐭⟧) s.t Γ ⊢ 𝑒1 : 𝐈𝐧𝐭 and Γ ⊢ 𝑒2 : 𝐈𝐧𝐭. Then by inspection of the translation we
have that 𝑜⟨𝑣1 ⊙ 𝑣2⟩ and by (ET-Bin) we have that Δ, 𝑣1 : 𝐈𝐧𝐭, 𝑣2 : 𝐈𝐧𝐭, Π ⊢ 𝑣1 ⊙ 𝑣2 :
𝐈𝐧𝐭 which implies 𝜏 = 𝐈𝐧𝐭. Therefore by (BT-Bin) we get that Γ ⊢ 𝑒1 ⊙ 𝑒2 : 𝐈𝐧𝐭.

𝒆 = [𝒆𝟏, …, 𝒆𝒏]: We have that ⟦𝑒⟧Γ
𝑜 = (Δ, Π, 𝑃) where

𝑃 = (𝜈𝑜1 : ch(⟦𝜏⟧)).….(𝜈𝑜𝑛 : ch(⟦𝜏⟧)).(𝜈ℎ : ⟦[𝜏 ]⟧).

(∏
𝑛

𝑖=1
⟦𝑒𝑖⟧Γ

𝑜𝑖
| 𝑜1(𝑣1 : ⟦𝜏⟧).….𝑜𝑛(𝑣𝑛 : ⟦𝜏⟧).

(∏
𝑛

𝑖=1
𝐶𝑒𝑙𝑙(ℎ, 𝑖 − 1, 𝑣𝑖, ⟦𝜏⟧) | ℎ ⋅ len⟨𝑛⟩ | 𝑜⟨ℎ⟩))

We assume that Δ(𝑜) = ch(𝑡) where 𝑡 = ⟦𝜏⟧. By the induction hypothesis we get that
∀𝑖 ∈ 1..𝑛.⟦𝑒𝑖⟧Γ

𝑜𝑖
= (Δ𝑖, Π𝑖, 𝑃𝑖) where Δ(𝑜𝑖) = ch(⟦𝜏1⟧) such that Γ ⊢ 𝑒𝑖 : 𝜏1. If 𝑃  is well-

typed the following sub-process in the translation must be well-typed as well: 𝑜⟨ℎ⟩. From
the restriction (𝜈ℎ : ⟦[𝜏1]⟧) we get the type of the object that 𝑜 carries. From this we get
that 𝑡 = ⟦[𝜏1]⟧. We must therefore have that Γ ⊢ 𝑒 : [𝜏1] and by (BT-Array) we get that
Γ ⊢ [𝑒1, …, 𝑒𝑛] : [𝜏1].

𝒆 = (𝒆𝟏, …, 𝒆𝒏): We have that ⟦𝑒⟧Γ
𝑜 = (Δ, Π, 𝑃) where

XXXVII



𝑃 = (𝜈𝑜1 : ch(⟦𝜏1⟧)).….(𝜈𝑜𝑛 : ch(⟦𝜏𝑛⟧)).

(∏
𝑛

𝑖=1
⟦𝑒𝑖⟧Γ

𝑜𝑖
| 𝑜1(𝑣1 : ⟦𝜏1⟧). … .𝑜𝑛(𝑣𝑛 : ⟦𝜏𝑛⟧).

𝜈(ℎ : ⟦(𝜏1, …, 𝜏𝑛)⟧).(!ℎ ⋅ tup⟨𝑣1, …, 𝑣𝑛⟩ | 𝑜⟨ℎ⟩))

We assume that Δ(𝑜) = ch(𝑡) where 𝑡 = ⟦𝜏⟧. By the induction hypothesis we get that
∀𝑖 ∈ 1..𝑛.⟦𝑒𝑖⟧Γ

𝑜𝑖
= (Δ𝑖, Π𝑖, 𝑃𝑖) where Δ(𝑜𝑖) = ch(⟦𝜏𝑖⟧) such that Γ ⊢ 𝑒𝑖 : 𝜏𝑖. If 𝑃  is well-

typed the following sub-process in the translation must also be well-typed: 𝑜⟨ℎ⟩. From
the restriction (𝜈ℎ : ⟦(𝜏1, …, 𝜏𝑛)⟧) we get the type of the object that 𝑜 carries. From this
we get that 𝑡 = ⟦(𝜏1, …, 𝜏𝑛)⟧. We must therefore have that Γ ⊢ 𝑒 : (𝜏1, …, 𝜏𝑛) and by (BT-
Tuple) we get that Γ ⊢ (𝑒1, …, 𝑒𝑛) : (𝜏1, …, 𝜏𝑛).

𝒆 = size 𝒆𝟏: We have that ⟦𝑒⟧Γ
𝑜 = (Δ, Π, 𝑃) where

𝑃 = (𝜈𝑜1 : ch(⟦[𝜏1]⟧)).(⟦𝑒1⟧Γ
𝑜1

|

𝑜1(ℎ : ⟦[𝜏1]⟧).ℎ ⋅ len (𝑛 : 𝐈𝐧𝐭). ∙ 𝑜⟨𝑛⟩)

We assume that Δ(𝑜) = ch(𝑡) where 𝑡 = ⟦𝜏⟧. By the induction hypothesis we get that
⟦𝑒1⟧Γ

𝑜1
= (Δ1, Π1, 𝑃1) where Δ(𝑜1) = ch(⟦[𝜏1]⟧) s.t Γ ⊢ 𝑒1 : [𝜏1]. Then if 𝑃  is well-typed

the following sub-process from the translation must be well-typed: ℎ ⋅ len (𝑛 : 𝐈𝐧𝐭). ∙
𝑜⟨𝑛⟩). From this we know the type of object that 𝑜 carries from which we get that 𝑡 =
𝐈𝐧𝐭 and therefore we must have that Γ ⊢ 𝑒 : 𝐈𝐧𝐭. From Definition 3.3 we get the type of
size : [𝜏1] → 𝐈𝐧𝐭 and by (BT-App) we get that Γ ⊢ size 𝑒1 : 𝐈𝐧𝐭.

𝒆 = iota 𝒆𝟏: We have that ⟦𝑒⟧Γ
𝑜 = (Δ, Π, 𝑃) where

𝑃 = (𝜈𝑜1 : ch(⟦𝐈𝐧𝐭⟧)).(𝜈𝑟 : ch(𝐈𝐧𝐭)).(𝜈𝑑 : ch(𝐈𝐧𝐭)).
(𝜈ℎ : @{ch(𝐈𝐧𝐭, 𝐈𝐧𝐭), ch(𝐈𝐧𝐭), ch(𝐈𝐧𝐭)}).

(⟦𝑒1⟧Γ
𝑜1

| 𝑜1(𝑛 : ⟦𝐈𝐧𝐭⟧).(𝑅𝑒𝑝𝑒𝑎𝑡(𝑛, 𝑟, 𝑑) |

!𝑟(𝑖 : 𝐈𝐧𝐭). 𝐶𝑒𝑙𝑙(ℎ, 𝑖, 𝑖) | ∙ 𝑑(_ : 𝐈𝐧𝐭).

𝑜⟨ℎ⟩ | ℎ. len⟨𝑛 : 𝐈𝐧𝐭⟩))

We assume that Δ(𝑜) = ch(𝑡) where 𝑡 = ⟦𝜏⟧. By the induction hypothesis we that
⟦𝑒1⟧Γ

𝑜1
= (Δ1, Π1, 𝑃1) where Δ(𝑜1) = ch(𝐈𝐧𝐭) such that Γ ⊢ 𝑒1 : 𝐈𝐧𝐭. Then if 𝑃  is well-

typed the following sub-process is also well-typed: 𝑜⟨ℎ⟩. From the restriction (𝜈ℎ :
@{ch(𝐈𝐧𝐭, 𝐈𝐧𝐭), ch(𝐈𝐧𝐭), ch(𝐈𝐧𝐭)}) which is the type of the object that 𝑜 carries. From
the translation of types know that @{ch(𝐈𝐧𝐭, 𝐈𝐧𝐭), ch(𝐈𝐧𝐭), ch(𝐈𝐧𝐭)} = ⟦[𝐈𝐧𝐭]⟧ and we
must therefore have Γ ⊢ 𝑒 : [𝐈𝐧𝐭]. From Definition 3.3 we get the type of iota : 𝐈𝐧𝐭 →
[𝐈𝐧𝐭] and by (BT-App) we get that Γ ⊢ iota 𝑒1 : [𝐈𝐧𝐭].

𝒆 = map 𝒆𝟏: We have that ⟦𝑒⟧Γ
𝑜 = (Δ, Π, 𝑃) where

XXXVIII



𝑃 = (𝜈𝑜1 : ch(⟦(𝜏1 → 𝜏2, [𝜏1])⟧)).(𝜈ℎ1 : ⟦[𝜏2]⟧).(⟦𝑒1⟧𝑜1
|

𝑜1(ℎ2 : ⟦(𝜏1 → 𝜏2, [𝜏1])⟧).ℎ2 ⋅ tup (𝑓 : ⟦𝜏1 → 𝜏2⟧, ℎ3 : ⟦[𝜏1]⟧).
ℎ3 ⋅ len (𝑛 : 𝐈𝐧𝐭).(𝜈ℎ4 : ch(𝐈𝐧𝐭, ⟦𝜏1⟧)).

ℎ3 ⋅ all:⟨ℎ4⟩.(𝜈𝑟1 : ch(𝐈𝐧𝐭)).(𝜈𝑑 : ch(𝐈𝐧𝐭)).

(𝑅𝑒𝑝𝑒𝑎𝑡(𝑛, 𝑟1, 𝑑) | !ℎ4(𝑖 : 𝐈𝐧𝐭, 𝑣1 : ⟦𝜏1⟧).

(𝜈𝑟2 : ch(⟦𝜏2⟧)).𝑓⟨𝑣1, 𝑟2⟩.𝑟2(𝑣2 : ⟦𝜏2⟧)
.𝑟1(_ : 𝐈𝐧𝐭). 𝐶𝑒𝑙𝑙(ℎ1, 𝑖, 𝑣2, ⟦𝜏2⟧) |

∙ 𝑑(_ : 𝐈𝐧𝐭).𝑜⟨ℎ1⟩ | !ℎ1 ⋅ len⟨𝑛⟩))

We assume that Δ(𝑜) = ch(𝑡) where 𝑡 = ⟦𝜏⟧. By the induction hypothesis we
that ⟦𝑒1⟧Γ

𝑜1
= (Δ1, Π1, 𝑃1) where Δ(𝑜1) = ch(⟦(𝜏1 → 𝜏2, [𝜏1])⟧) such that Γ ⊢ 𝑒1 : (𝜏1 →

𝜏2, [𝜏1]). Then if 𝑃  is well-typed the following sub-process must well-typed: 𝑜⟨ℎ1⟩. From
the restriction we get (𝜈ℎ1 : ⟦[𝜏2]⟧) which is the type of the object that 𝑜 carries and
therefore we must have that Γ ⊢ 𝑒 : [𝜏2]. From Definition 3.3 we get the type of map :
(𝜏1 → 𝜏2, [𝜏1]) → [𝜏2] and by (BT-App) we get that Γ ⊢ map 𝑒1 : [𝜏2].

⬜

E.8 Proof of Theorem 4.2
Proof of Theorem 4.2.

Let ℬ be the set of all BtF programs and let 𝑅 be the following relation 𝑅 = {(𝑒, ⟦𝑒⟧Γ
𝑜 ) | 𝑒 ∈

ℬ, 𝑜 fresh}. We show that 𝑅 is an administrative operational correspondences. As per
Definition 4.4 we only consider pairs where 𝑒 → 𝑒′ and where ⟦𝑒⟧Γ

𝑜  contains ∙.

𝐀𝐫𝐫𝐚𝐲: For arrays we have 𝑒 = [𝑒1, …, 𝑒𝑛] and must prove that the two parts of opera-
tional correspondence hold.

𝐒𝐨𝐮𝐧𝐝𝐧𝐞𝐬𝐬: For the first part we have that if 𝑒 → 𝑒′ then there is a 𝑃 ′ such that
⟦𝑒⟧Γ

𝑜 ⇒∙ 𝑃 ′ and 𝑃 ′ ≈𝛼
⋅ ⟦𝑒′⟧Γ

𝑜 . From the rule (B-Array) we know there must exist
an 𝑖 such that 𝑒𝑖 → 𝑒′

𝑖. The translation ⟦𝑒⟧Γ
𝑜  contains (𝜈𝑜𝑖 : 𝑡𝑖).(⟦𝑒𝑖⟧Γ

𝑜𝑖
). By our

assumption that (𝑒, ⟦𝑒⟧Γ
𝑜 ) ∈ 𝑅 we have that (𝑒𝑖, ⟦𝑒𝑖⟧Γ

𝑜𝑖
) ∈ 𝑅. Then it follows that we

have ⟦𝑒𝑖⟧Γ
𝑜𝑖

⇒∙ 𝑄 and that 𝑄 ≈𝛼
⋅ ⟦𝑒′

𝑖⟧Γ
𝑜𝑖

.

We let the subprocess ⟦𝑒𝑖⟧Γ
𝑜𝑖

 in ⟦𝑒⟧Γ
𝑜  be replaced by 𝑄. We then have that when ⟦𝑒𝑖⟧Γ

𝑜𝑖

is unguarded we know that ⟦𝑒⟧Γ
𝑜 ⇒∙ 𝑃 ′ and 𝑃 ′ ≈𝛼

⋅ ⟦𝑒′⟧Γ
𝑜 .

𝐂𝐨𝐦𝐩𝐥𝐞𝐭𝐞𝐧𝐞𝐬𝐬: If ⟦𝑒⟧Γ
𝑜 ⇒∙ 𝑃 ′, then 𝑃 ′ ≈𝛼

⋅ ⟦𝑒′⟧Γ
𝑜  where 𝑒 → 𝑒′. However as the

translation of (B-Array) on page 27 contains no ∙ then the important reduction must
be in one of the elements of 𝑒. Then by our assumption that ⟦𝑒⟧Γ

𝑜 ⇒∙ 𝑃 ′ there must
exist an 𝑖 s.t in the sub-process ⟦𝑒𝑖⟧Γ

𝑜𝑖
 the important reduction occurs. As (𝑒𝑖, ⟦𝑒𝑖⟧Γ

𝑜𝑖
) ∈

𝑅 we know that ⟦𝑒𝑖⟧Γ
𝑜𝑖

⇒∙ 𝑄 for any 𝑄 and 𝑒′
𝑖 where 𝑄 ≈𝛼

⋅ ⟦𝑒𝑖⟧Γ
𝑜𝑖

 and 𝑒𝑖 → 𝑒′
𝑖.

XXXIX



Then we select 𝑒′ to be 𝑒 where 𝑒𝑖 is replaced by 𝑒′
𝑖. Therefore 𝑃 ′ ≈𝛼

⋅ ⟦𝑒′⟧Γ
𝑜  as only

administrative transitions has been taken.

𝐓𝐮𝐩𝐥𝐞: For tuples we have 𝑒 = (𝑒1, …, 𝑒𝑛) and must prove that the two parts of opera-
tional correspondence hold.

𝐒𝐨𝐮𝐧𝐝𝐧𝐞𝐬𝐬: For the first part we have that if 𝑒 → 𝑒′ then there is a 𝑃 ′ such that
⟦𝑒⟧Γ

𝑜 ⇒∙ 𝑃 ′ and 𝑃 ′ ≈𝛼
⋅ ⟦𝑒′⟧Γ

𝑜 . From the rule (B-Tuple) we know there must exist
an 𝑖 such that 𝑒𝑖 → 𝑒′

𝑖. The translation ⟦𝑒⟧Γ
𝑜  contains (𝜈𝑜𝑖 : 𝑡𝑖).(⟦𝑒𝑖⟧Γ

𝑜𝑖
). By our

assumption that (𝑒, ⟦𝑒⟧Γ
𝑜 ) ∈ 𝑅 we have that (𝑒𝑖, ⟦𝑒𝑖⟧Γ

𝑜𝑖
) ∈ 𝑅. Then it follows that we

have ⟦𝑒𝑖⟧Γ
𝑜𝑖

⇒∙ 𝑄 and that 𝑄 ≈𝛼
⋅ ⟦𝑒′

𝑖⟧Γ
𝑜𝑖

.

We let the subprocess ⟦𝑒𝑖⟧Γ
𝑜𝑖

 in ⟦𝑒⟧Γ
𝑜  be replaced by 𝑄. We then have that when ⟦𝑒𝑖⟧Γ

𝑜𝑖

is unguarded we know that ⟦𝑒⟧Γ
𝑜 ⇒∙ 𝑃 ′ and 𝑃 ′ ≈𝛼

⋅ ⟦𝑒′⟧Γ
𝑜 .

𝐂𝐨𝐦𝐩𝐥𝐞𝐭𝐞𝐧𝐞𝐬𝐬: For the second part we have that if ⟦𝑒⟧Γ
𝑜 ⇒∙ 𝑃 ′ then there is an 𝑒′

such that 𝑒 → 𝑒′ and 𝑃 ′ ≈𝛼
⋅ ⟦𝑒′⟧Γ

𝑜 . However as the translation of (B-Tuple) on page
27 contains no ∙ then the important reduction must be in one of the elements of 𝑒.
Then by our assumption that ⟦𝑒⟧Γ

𝑜 ⇒∙ 𝑃 ′ there must exist an 𝑖 such that in the sub-
process ⟦𝑒𝑖⟧Γ

𝑜𝑖
 the important reduction occurs. As we have that (𝑒𝑖, ⟦𝑒𝑖⟧Γ

𝑜𝑖
) ∈ 𝑅 we

know that ⟦𝑒𝑖⟧Γ
𝑜𝑖

⇒∙ 𝑄 for any 𝑄 and 𝑒′
𝑖 where 𝑄 ≈𝛼

⋅ ⟦𝑒𝑖⟧Γ
𝑜𝑖

 and 𝑒𝑖 → 𝑒′
𝑖.

Then we select 𝑒′ to be 𝑒 where 𝑒𝑖 is replaced by 𝑒′
𝑖. Therefore we have 𝑃 ′ ≈𝛼

⋅ ⟦𝑒′⟧Γ
𝑜

as only administrative transitions has been taken.

𝐈𝐧𝐝𝐞𝐱𝐢𝐧𝐠: For indexing we have 𝑒 = 𝑒1[𝑒2] and must prove that the two parts of
operational correspondence hold.

𝐒𝐨𝐮𝐧𝐝𝐧𝐞𝐬𝐬: For the first part we have that if 𝑒 → 𝑒′ then there is a 𝑃 ′ such that
⟦𝑒⟧Γ

𝑜 ⇒∙ 𝑃 ′ and 𝑃 ′ ≈𝛼
⋅ ⟦𝑒′⟧Γ

𝑜 . For indexing we have three rules for 𝑒 to take a step:
(B-Index), (B-Index1) and (B-Index2). The two rules, (B-Index1) and (B-Index2),
are used for evaluating each sub-expression. By our assumption that (𝑒, ⟦𝑒⟧Γ

𝑜 ) ∈ 𝑅 we
have that (𝑒1, ⟦𝑒1⟧Γ

𝑜1
) ∈ 𝑅, and then if 𝑒1[𝑒2] → 𝑒′

1[𝑒2] we have ⟦𝑒1⟧Γ
𝑜1

⇒∙ ⟦𝑒′
1⟧Γ

𝑜1
 and

⟦𝑒1⟧Γ
𝑜1

≈𝛼
⋅ ⟦𝑒′

1⟧Γ
𝑜1

. We have that when ⟦𝑒1⟧Γ
𝑜1

 is unguarded we know that ⟦𝑒⟧Γ
𝑜 ⇒∙ 𝑃 ′

and 𝑃 ′ ≈𝛼
⋅ ⟦𝑒′⟧Γ

𝑜 . The same holds for 𝑒2.

For the last rule (B-Index) we have that if 𝑣1[𝑣2] → 𝑣3 then a corresponding operation
exists. By (B-Index) we have 𝑣1 being an array of size 𝑛 and 𝑣2 being a integer with
a value of at most 𝑛. By Lemma 4.5 we have that the translation of two expression
have observable action on their respective 𝑜 channel and these are administrative
reductions. Then from the third case of Lemma 4.1 we have (𝜈ℎ : 𝑡ℎ).(𝑄ℎ | ℎ ⋅ 𝑖(𝑣 :
𝑡). ∙ 𝑜⟨𝑣⟩, 𝟎) where 𝑡ℎ = (𝑖 : ch(𝑡1), all : ch(𝑡1), len : ch(𝐈𝐧𝐭)) with 𝑡1 = (𝑖 : 𝐈𝐧𝐭, 𝑣 : 𝑡)
and 𝑄ℎ is the leftovers from the reduced array (⟦𝑒1⟧Γ

𝑜1
) and index (⟦𝑒2⟧Γ

𝑜2
). Using

Lemma 4.4 we can remove 𝑄ℎ and then we have ⟦𝑒⟧Γ
𝑜 ⇒∙ 𝑃 ′ and ⟦𝑒′⟧Γ

𝑜 ≈𝛼
⋅ 𝑃 ′.

𝐂𝐨𝐦𝐩𝐥𝐞𝐭𝐞𝐧𝐞𝐬𝐬: If ⟦𝑒⟧Γ
𝑜 ⇒∙ 𝑃 ′, then 𝑃 ′ ≈𝛼

⋅ ⟦𝑒′⟧Γ
𝑜  where 𝑒 → 𝑒′. From the translation

of (B-Index) in Chapter 4.1.1.1 there are three possible locations for important

XL



reductions ⟦𝑒1⟧Γ
𝑜1

, ⟦𝑒2⟧Γ
𝑜2

 and by the index check. Therefore we get two sub-cases one

for where the important reduction is in the sub-processes and one where it is before
the output of the value.

Then because ⟦𝑒⟧Γ
𝑜 ⇒∙ 𝑃 ′ there must exist an 𝑖 where 𝑖 ∈ {1, 2} s.t in the sub-process

⟦𝑒𝑖⟧Γ
𝑜𝑖

 the important reduction occurs. We assume that exists some (𝑒𝑗, ⟦𝑒𝑗⟧Γ
𝑜𝑗

) ∈ 𝑅

and from that assumption we have that ⟦𝑒𝑗⟧Γ
𝑜𝑗

⇒∙ 𝑄 for any 𝑄 and 𝑒′
𝑗 where 𝑄 ≈𝛼

⋅

⟦𝑒𝑖⟧Γ
𝑜𝑖

 and 𝑒𝑗 → 𝑒′
𝑗. Then we select 𝑒′ to be 𝑒 where 𝑒𝑖 is replaced by 𝑒′

𝑖. Therefore

𝑃 ≈𝛼
⋅ ⟦𝑒′⟧Γ

𝑜  as only administrative transitions has been taken.

Then because ⟦𝑒⟧Γ
𝑜 ⇒∙ 𝑃 ′ there must be a process listening on ℎ ⋅ 𝑖 and this is the

only case when the array and index is fully reduced. We have that we can only listen
on ℎ ⋅ 𝑖 if the array size is larger or equal to 𝑖. Therefore 𝑒 → 𝑒′ by (B-Index) and
𝑃 ′ ≈𝛼

⋅ ⟦𝑒′⟧Γ
𝑜 .

𝐁𝐢𝐧𝐨𝐩: For Binop we have 𝑒 = 𝑒1 ⊙ 𝑒2 and must prove that the two parts of operational
correspondence hold.

𝐒𝐨𝐮𝐧𝐝𝐧𝐞𝐬𝐬: For the first part we have that if 𝑒 → 𝑒′ then there is a 𝑃 ′ such that
⟦𝑒⟧Γ

𝑜 ⇒∙ 𝑃 ′ and ⟦𝑒′⟧Γ
𝑜 ≈𝛼

⋅ 𝑃 ′.

Just like indexing we have three rules for 𝑒 to take a step: (B-Bin), (B-Bin1) and
(B-Bin2). The two rules, (B-Bin1) and (B-Bin2), are used for evaluating each sub-
expression. By our assumption that (𝑒, ⟦𝑒⟧Γ

𝑜 ) ∈ 𝑅 we have that (𝑒1, ⟦𝑒1⟧Γ
𝑜1

) ∈ 𝑅, and

then if 𝑒1 ⊙ 𝑒2 → 𝑒′
1 ⊙ 𝑒2 we have ⟦𝑒1⟧Γ

𝑜1
⇒∙ ⟦𝑒′

1⟧Γ
𝑜1

 and ⟦𝑒1⟧Γ
𝑜1

≈𝛼
⋅ ⟦𝑒′

1⟧Γ
𝑜1

. We have

that when ⟦𝑒1⟧Γ
𝑜1

 is unguarded we know that ⟦𝑒⟧Γ
𝑜 ⇒∙ 𝑃 ′ and 𝑃 ′ ≈𝛼

⋅ ⟦𝑒′⟧Γ
𝑜 . The same

holds for 𝑒2.

For the last rule (B-Bin) we have that if 𝑣1 ⊙ 𝑣2 → 𝑣3. By Lemma 4.5 we have that the
two sub-expressions will output on their respective channel after som administrative
reductions. On the important reduction we have that ⟶∙ 𝑜⟨𝑣1 ⊙ 𝑣2⟩ and thereby we
have ⟦𝑒⟧Γ

𝑜 ⇒∙ 𝑃 ′ and ⟦𝑒′⟧Γ
𝑜 ≈𝛼

⋅ 𝑃 ′.

𝐂𝐨𝐦𝐩𝐥𝐞𝐭𝐞𝐧𝐞𝐬𝐬: For the second part we have that if ⟦𝑒⟧Γ
𝑜 ⇒∙ 𝑃 ′ then there is an

𝑒′ such that 𝑒 → 𝑒′ and 𝑃 ′ ≈𝛼
⋅ ⟦𝑒′⟧Γ

𝑜 . We have three cases: one where the important
reduction happens in ⟦𝑒1⟧Γ

𝑜1
, one where it happens in ⟦𝑒2⟧Γ

𝑜2
 or where it happens on

the communication on 𝑜.

First case the ⇒∙  transition happens inside ⟦𝑒1⟧Γ
𝑜1

. We let 𝑒′ = 𝑒′
1 ⊙ 𝑒2 where 𝑒1 →

𝑒′
1. By our assumption that (𝑒, ⟦𝑒⟧Γ

𝑜 ∈ 𝑅) we have that (𝑒1, ⟦𝑒1⟧Γ
𝑜1

) ∈ 𝑅 which means

we know that 𝑃 ′ ≈𝛼
⋅ ⟦𝑒′⟧Γ

𝑜 . The same argument follows for the second case where ⇒∙

happens in ⟦𝑒2⟧Γ
𝑜2

.

In the last case we have that we receive on 𝑜1 and 𝑜2 and therefore by Lemma 4.6 we
know that both 𝑒1 and 𝑒2 must be values. We then select 𝑒′ = 𝑣3 and then we have
𝑃 ′ ≈𝛼

⋅ ⟦𝑒′⟧Γ
𝑜 .

XLI



𝐀𝐩𝐩𝐥𝐢𝐜𝐚𝐭𝐢𝐨𝐧: For application we have 𝑒 = 𝑒1𝑒2 and must prove that the two parts of
operational correspondence hold.

𝐒𝐨𝐮𝐧𝐝𝐧𝐞𝐬𝐬: For the first part we have that if 𝑒 → 𝑒′ then there is a 𝑃 ′ such that
⟦𝑒⟧Γ

𝑜 ⇒∙ 𝑃 ′ and 𝑃 ′ ≈𝛼
⋅ ⟦𝑒′⟧Γ

𝑜 . There are two cases for when 𝑒 → 𝑒′: One when the
sub-expressions can take a step and one when they cannot.

For the first case we have that there are two application rules for the sub-expressions
𝑒1 and 𝑒2 to take a step: (B-App1) and (B-App2). By our assumption that (𝑒, ⟦𝑒⟧Γ

𝑜 ) ∈
𝑅 we have that (𝑒1, ⟦𝑒1⟧Γ

𝑜 ) ∈ 𝑅. The same holds for 𝑒2. When ⟦𝑒1⟧Γ
𝑜1

 and ⟦𝑒2⟧Γ
𝑜2

 is

unguarded we know that ⟦𝑒⟧Γ
𝑜 ⇒∙ 𝑃 ′ and 𝑃 ′ ≈𝛼

⋅ ⟦𝑒′⟧Γ
𝑜 .

For the second case we have that neither 𝑒1 and 𝑒2 cannot take a step and by
Lemma 4.6 we know that 𝑒1 and 𝑒2 must be values and therefore must be on the form
𝑒1 = 𝜆(𝑥 : 𝜏1).𝑒𝜆 and 𝑒2 = 𝑣. In this case we can take a step with (B-Abs) and this
can be matched in the translation of application. As this case is more complicated
we will show how the translation will match this. First the two sub-expression is
evaluated and this will give us the process on the following form:

(𝜈𝑜1 : ch(⟦𝜏1 → 𝜏2⟧)).(𝜈𝑜2 : ch(⟦𝜏1⟧)).

(
((
(((𝜈ℎ : ⟦𝜏1 → 𝜏2⟧).(𝑜⟨ℎ⟩ | !ℎ(𝑥 : ⟦𝜏1⟧, 𝑟 : ch(⟦𝜏2⟧)).⟦𝑒𝜆⟧Γ

𝑟 )⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
⟦𝑒1⟧Γ

𝑜1

| (𝜈𝑣 : ⟦𝜏1⟧).𝑜2⟨𝑣⟩ | 𝑆⎵⎵⎵⎵⎵⎵⎵⎵
⟦𝑒2⟧Γ

𝑜2

| 𝑜1(ℎ : ⟦𝜏1 → 𝜏2⟧).𝑜2(𝑣 : ⟦𝜏1⟧). ∙ ℎ⟨𝑣, 𝑜⟩

)
))
))

As the translation of 𝑒1 is an abstraction it is substituted with the translation
of abstraction. The translation of 𝑒2 is substituted with a value ready to be sent
on 𝑜2 in parallel with a processes 𝑆 that maintains the value. To not confuse the
reader, the expression in the translation of abstraction has been renamed to 𝑒𝜆. After
communication on 𝑜1 and 𝑜2 happens the application will be on the following form:

(𝜈ℎ : ⟦𝜏1 → 𝜏2⟧).(𝜈𝑣 : ⟦𝜏1⟧).!ℎ(𝑥 : ⟦𝜏1⟧, 𝑟 : ch(⟦𝜏2⟧)).⟦𝑒𝜆⟧Γ
𝑟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵

Abstraction

| 𝑆 | ∙ ℎ⟨𝑣, 𝑜⟩

Now we can send on the function handle ℎ and thus proceed to ⟦𝑒𝜆⟧Γ
𝑟  where 𝑟 is the

return channel substituted with the output channel 𝑜 and value 𝑣. We denote this as
the process 𝐻 which then corresponds to 𝐻 = ⟦𝑒𝜆⟧Γ

𝑜 { /𝑣
𝑥}. By Lemma 4.2 we have

that this corresponds to 𝑒𝜆{𝑣 ↦ 𝑥} which is our 𝑒′. Thereby we have the ⟦𝑒⟧Γ
𝑜 ⇒∙

𝑃 ′ and 𝑃 ′ ≈𝛼
⋅ ⟦𝑒′⟧Γ

𝑜 .

𝐂𝐨𝐦𝐩𝐥𝐞𝐭𝐞𝐧𝐞𝐬𝐬: For the second part we have that if ⟦𝑒⟧Γ
𝑜 ⇒∙ 𝑃 ′ then there is an 𝑒′

such that 𝑒 → 𝑒′ and 𝑃 ′ ≈𝛼
⋅ ⟦𝑒′⟧Γ

𝑜 . We have two cases: first if the important transition
happens in either ⟦𝑒1⟧Γ

𝑜1
 or ⟦𝑒2⟧Γ

𝑜2
, or second when sending on the handle ℎ.

XLII



In the first case we can select 𝑒′ to be either 𝑒′
1𝑒2 or 𝑒1𝑒′

2 depending on where the
important transition happens and then by one of the two application rules we have
𝑒 → 𝑒′.

In the second case both ⟦𝑒1⟧Γ
𝑜1

 and ⟦𝑒2⟧Γ
𝑜2

 can send on their respective 𝑜 after some

administrative reductions. By Lemma 4.6 we know that 𝑒1 and 𝑒2 are values and as
such no important transition exists in those. We know that ⟦𝑒1⟧Γ

𝑜1
 is an abstraction

and therefore by (B-Abs) we have that 𝑒 → 𝑒′.

𝐂𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧𝐚𝐥: For conditional we have 𝑒 = if 𝑒1 then 𝑒2 else 𝑒3 and must prove that
the two parts of operational correspondence hold.

𝐒𝐨𝐮𝐧𝐝𝐧𝐞𝐬𝐬: For the first part we have that if 𝑒 → 𝑒′ then there is a 𝑃 ′ such that
⟦𝑒⟧Γ

𝑜 ⇒∙ 𝑃 ′ and ⟦𝑒′⟧Γ
𝑜 ≈𝛼

⋅ 𝑃 ′. We have three rules for conditionals: (B-If), (B-Ift) and
(B-Iff).

We start by looking at the case for evaluating 𝑒1. By our assumption that
(𝑒, ⟦𝑒⟧Γ

𝑜 ) ∈ 𝑅 we have that (𝑒1, ⟦𝑒1⟧Γ
𝑜1

) ∈ 𝑅 and then if if 𝑒1 then 𝑒2 else 𝑒3 →

if 𝑒′
1 then 𝑒2 else 𝑒3 by (B-If) we have ⟦𝑒1⟧Γ

𝑜1
⇒∙ ⟦𝑒′

1⟧Γ
𝑜1

 and ⟦𝑒1⟧Γ
𝑜1

≈𝛼
⋅ ⟦𝑒′

1⟧Γ
𝑜1

. We

then have that when ⟦𝑒1⟧Γ
𝑜1

 is unguarded we know that ⟦𝑒⟧Γ
𝑜 ⇒∙ 𝑃 ′ and 𝑃 ′ ≈𝛼

⋅ ⟦𝑒′⟧Γ
𝑜 .

When 𝑒1 has evaluated and a value has been sent on 𝑜1 we have one of two possible
reductions left. Since 𝑒1 ↛ we know by Lemma 4.6 that 𝑒1 is a value and then we
have either [𝑛 ≠ 0].⟦𝑒2⟧Γ

𝑜 , ⟦𝑒3⟧Γ
𝑜 ⟶∙ ⟦𝑒2⟧Γ

𝑜  (which can be matched using (B-Ift)) or ⟶∙

⟦𝑒3⟧Γ
𝑜  (which can be matched using (B-Iff)). We then have ⟦𝑒⟧Γ

𝑜 ⇒∙ 𝑃 ′ 𝑃 ′ ≈𝛼
⋅ ⟦𝑒′⟧Γ

𝑜 .

𝐂𝐨𝐦𝐩𝐥𝐞𝐭𝐞𝐧𝐞𝐬𝐬: For the second part we have that if ⟦𝑒⟧Γ
𝑜 ⇒∙ 𝑃 ′ then there is a 𝑒′

such that 𝑒 → 𝑒′ and 𝑃 ′ ≈𝛼
⋅ ⟦𝑒′⟧Γ

𝑜 . We have two cases to look at.

First case the ⇒∙  transition happens inside ⟦𝑒1⟧Γ
𝑜1

. We let 𝑒′ = if 𝑒′
1 then 𝑒2 else 𝑒3

where 𝑒1 → 𝑒′
1. By our assumption that (𝑒, ⟦𝑒⟧Γ

𝑜 ∈ 𝑅) we have that (𝑒1, ⟦𝑒1⟧Γ
𝑜1

) ∈ 𝑅

which means we know that 𝑃 ′ ≈𝛼
⋅ ⟦𝑒′⟧Γ

𝑜 .

For the second case we have received values on 𝑜1 and therefore by Lemma 4.6 we
know that 𝑒1 must be a value. We can then select 𝑒′ to be either 𝑒2 or 𝑒3. Depending
on how the match concludes we have that either ⟶∙ ⟦𝑒2⟧Γ

𝑜2
 or ⟶∙ ⟦𝑒3⟧Γ

𝑜  and given

our assumption that (𝑒, ⟦𝑒⟧Γ
𝑜 ∈ 𝑅) we have that {(𝑒2, ⟦𝑒2⟧Γ

𝑜 ), (𝑒3, ⟦𝑒3⟧Γ
𝑜 )} ⊆ 𝑅 and

then we have 𝑃 ′ ≈𝛼
⋅ ⟦𝑒′⟧Γ

𝑜 .

𝐌𝐚𝐩: For map we have 𝑒 = map 𝑒1 and must prove that the two parts of operational
correspondence hold.

𝐒𝐨𝐮𝐧𝐝𝐧𝐞𝐬𝐬: For the first part we have that if 𝑒 → 𝑒′ then there is a 𝑃 ′ such that
⟦𝑒⟧Γ

𝑜 ⇒∙ 𝑃 ′ and 𝑃 ′ ≈𝛼
⋅ ⟦𝑒′⟧Γ

𝑜 .

For the first case we have that 𝑒1 has not yet been evaluated to a tuple. We can then
use (B-App2) to take a step.

XLIII



𝑒2 → 𝑒′
2

(B-App2) 
𝑒1𝑒2 → 𝑒1𝑒′

2

As map is a variation of application we can use (B-App2). By our assumption that
(𝑒, ⟦𝑒⟧Γ

𝑜 ) ∈ 𝑅 we have that (𝑒1, ⟦𝑒1⟧Γ
𝑜1

) ∈ 𝑅. When ⟦𝑒1⟧Γ
𝑜1

 is unguarded we know that

⟦𝑒⟧Γ
𝑜 ⇒∙ 𝑃 ′ and 𝑃 ′ ≈𝛼

⋅ ⟦𝑒′⟧Γ
𝑜 .

For the second case we have that by (B-Map) we can take a step and therefore 𝑒1 is
the tuple (𝜆𝑥.𝑒𝜆, [𝑣1, …, 𝑣𝑛]). As this is one of the more complicated cases we will show
how this is matched in the translation. First have that 𝑒′ = [𝑒𝜆{𝑥 ↦ 𝑣1}, …, 𝑒𝜆{𝑥 ↦
𝑣𝑛}] from (B-Map). From the translation we have:

(𝜈𝑜1 : ch(𝑡1)).(𝜈ℎ1 : ⟦[𝜏2]⟧).⟦𝑒1⟧Γ
𝑜1

| 𝑜1(ℎ2 : 𝑡1).ℎ2 ⋅ tup (𝑓 : ⟦𝜏1 → 𝜏2⟧, ℎ3 : ⟦[𝜏1]⟧)⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
(𝜆𝑥.𝑒𝜆,[𝑣1,…,𝑣𝑛])

.

Here we receive the tuple after the unguarded ⟦𝑒1⟧Γ
𝑜1

. Only administrative reductions

has happened so far. Next we receive the length of the input array and the values
located at each index.

ℎ3 ⋅ len (𝑛 : 𝐈𝐧𝐭)⎵⎵⎵⎵⎵⎵⎵
Input array length

.(𝜈ℎ4 : ch(𝐈𝐧𝐭, ⟦𝜏1⟧)).ℎ3 ⋅ all:⟨ℎ4⟩⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
∀(𝑛,𝑣)∈[𝑣1,…,𝑣𝑛]

.(𝜈𝑟1 : ch(𝐈𝐧𝐭)).(𝜈𝑑 : ch(𝐈𝐧𝐭)).

Next, using Repeat, we apply the abstraction to each value and pass it to the Cell
process to create the new array. Again only administrative reduction has happened.
Only when the Repeat process has finished will we receive on 𝑑 which is an important
reduction.

(
((
(𝑅𝑒𝑝𝑒𝑎𝑡(𝑛, 𝑟1, 𝑑) | !ℎ4(𝑖 : 𝐈𝐧𝐭, 𝑣1 : ⟦𝜏1⟧)⎵⎵⎵⎵⎵⎵⎵⎵

Index & argument

.(𝜈𝑟2 : ch(⟦𝜏2⟧)).𝑓⟨𝑣1, 𝑟2⟩.𝑟2(𝑣2 : ⟦𝜏2⟧)⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
𝜆𝑥.𝑒𝜆𝑣𝑖

.𝑟1(_ : 𝐈𝐧𝐭). 𝐶𝑒𝑙𝑙(ℎ1, 𝑖, 𝑣2, ⟦𝜏2⟧) | ∙ 𝑑(_ : 𝐈𝐧𝐭).𝑜⟨ℎ1⟩ | !ℎ1 ⋅ len⟨𝑛⟩
)
))
)

This is our 𝑃 ′ and as we output the new updated array we have that 𝑃 ′ ≈𝛼
⋅ ⟦𝑒′⟧Γ

𝑜 .

𝐂𝐨𝐦𝐩𝐥𝐞𝐭𝐞𝐧𝐞𝐬𝐬: For the second part we have that if ⟦𝑒⟧Γ
𝑜 ⇒∙ 𝑃 ′ then there is a 𝑒′

such that 𝑒 → 𝑒′ and 𝑃 ′ ≈𝛼
⋅ ⟦𝑒′⟧Γ

𝑜 .

We know that 𝑃 ′ has received on ∙ 𝑑(_ : 𝐈𝐧𝐭), and as we are well-typed we know that
⟦𝑒1⟧Γ

𝑜1
 where

𝑜1 : ch(@{ch(ch(𝑡1, ch(𝑡2)), @{ch(𝐈𝐧𝐭, 𝑡1), ch(𝑡1), ch(𝐈𝐧𝐭)})} = ⟦((𝜏1 → 𝜏2), [𝜏1])⟧)

Then on 𝑃 ′ we observe 𝑃 ′ ↓𝑜 where 𝑜 : ch(@{ch(𝐈𝐧𝐭, 𝑡2), ch(𝑡2), ch(𝐈𝐧𝐭)})
and @{ch(𝐈𝐧𝐭, 𝑡2), ch(𝑡2), ch(𝐈𝐧𝐭)} = ⟦[𝜏2]⟧. Therefore 𝑒 is of the form
map (𝜆𝑥.𝑒𝜆, [𝑣1, …, 𝑣𝑛]) and from the observation on 𝑃 ′ we have that 𝜆𝑥.𝑒𝜆 is applied
to each element of [𝑣1, …, 𝑣𝑛].

XLIV



We set 𝑒′ = [𝑒𝜆{𝑥 ↦ 𝑣1}, …, 𝑒𝜆{𝑥 ↦ 𝑣𝑛}] and we know that 𝑒 → 𝑒′ by (B-Map). Then
we have 𝑃 ′ ≈𝛼

⋅ ⟦𝑒′⟧Γ
𝑜 .

𝐈𝐨𝐭𝐚: For Iota we have 𝑒 = iota 𝑒1 and must prove that the two parts of operational
correspondence hold.

𝐒𝐨𝐮𝐧𝐝𝐧𝐞𝐬𝐬: For the first part we have that if 𝑒 → 𝑒′ then there is a 𝑃 ′ such that
⟦𝑒⟧Γ

𝑜 ⇒∙ 𝑃 ′ and 𝑃 ′ ≈𝛼
⋅ ⟦𝑒′⟧Γ

𝑜 .

Just like map we have two cases. The first case follows the same argument as map.

For the second case we can take a step by (B-Iota) and therefore 𝑒1 is an number.
Thereby 𝑒′ = [0, 1, …, 𝑛 − 1]. Just like map we will go through the translation. First
we create some restriction for the channels the communication will happen on.

(𝜈𝑜1 : ch(⟦𝐈𝐧𝐭⟧))⎵⎵⎵⎵⎵⎵⎵
Input number

.(𝜈𝑟 : ch(𝐈𝐧𝐭)).(𝜈𝑑 : ch(𝐈𝐧𝐭))⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
𝑅𝑒𝑝𝑒𝑎𝑡 Process

.

(𝜈ℎ : @{ch(𝐈𝐧𝐭, 𝐈𝐧𝐭), ch(𝐈𝐧𝐭), ch(𝐈𝐧𝐭)})⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
Output array

.

Next we receive the value on 𝑜1 after some administrative reductions. Then the
Repeat process is started to create the array with each value being its index. Only
when the Repeat process has finished will we receive on 𝑑 which is an important
reduction.

(⟦𝑒1⟧Γ
𝑜1

| 𝑜1(𝑛 : ⟦𝐈𝐧𝐭⟧).(𝑅𝑒𝑝𝑒𝑎𝑡(𝑛, 𝑟, 𝑑) | !𝑟(𝑖 : 𝐈𝐧𝐭). 𝐶𝑒𝑙𝑙(ℎ, 𝑖, 𝑖) | ∙ 𝑑(_ : 𝐈𝐧𝐭).

𝑜⟨ℎ⟩ | ℎ. len⟨𝑛 : 𝐈𝐧𝐭⟩))

We then have our 𝑃 ′ and as we output the new array we have that 𝑃 ′ ≈𝛼
⋅ ⟦𝑒′⟧Γ

𝑜 .

𝐂𝐨𝐦𝐩𝐥𝐞𝐭𝐞𝐧𝐞𝐬𝐬: For the second part we have that if ⟦𝑒⟧Γ
𝑜 ⇒∙ 𝑃 ′ then there is a 𝑒′

such that 𝑒 → 𝑒′ and 𝑃 ′ ≈𝛼
⋅ ⟦𝑒′⟧Γ

𝑜 .

We know that 𝑃 ′ has received on ∙ 𝑑(_ : 𝐈𝐧𝐭), and as we have received on 𝑜1 an
𝑛 : 𝐈𝐧𝐭, 𝑒 must be a value on the form 𝑛 after some administrative reductions by
Lemma 4.5. We then select 𝑒′ = [0, 1…, 𝑛 − 1] and by (B-Iota) we have that 𝑒 → 𝑒′

and 𝑃 ′ ≈𝛼
⋅ ⟦𝑒′⟧Γ

𝑜 .

𝐒𝐢𝐳𝐞: For Size we have 𝑒 = size 𝑒1 and must prove that the two parts of operational
correspondence hold.

𝐒𝐨𝐮𝐧𝐝𝐧𝐞𝐬𝐬: For the first part we have that if 𝑒 → 𝑒′ then there is a 𝑃 ′ such that
⟦𝑒⟧Γ

𝑜 ⇒∙ 𝑃 ′ and 𝑃 ′ ≈𝛼
⋅ ⟦𝑒′⟧Γ

𝑜 .

Just like map we have two cases. The first case follows the same argument as map.

For the second case we can take a step by (B-Size) and therefore 𝑒1 is an array.
Thereby 𝑒′ = 𝑛. In the translation we receive the array handle on 𝑜1 and by
Lemma 4.5 we have that the sub-expression will output on its respective channel
after som administrative reductions. We then receive the length of the array on ℎ ⋅

XLV



len as 𝑛 followed by the important reduction and then our 𝑃 ′ = 𝑛⟨𝑜⟩. We then have
that ⟦𝑒⟧Γ

𝑜 ⇒∙ 𝑃 ′ and 𝑃 ′ ≈𝛼
⋅ ⟦𝑒′⟧Γ

𝑜 .

𝐂𝐨𝐦𝐩𝐥𝐞𝐭𝐞𝐧𝐞𝐬𝐬: For the second part we have that if ⟦𝑒⟧Γ
𝑜 ⇒∙ 𝑃 ′ then there is a 𝑒′

such that 𝑒 → 𝑒′ and 𝑃 ′ ≈𝛼
⋅ ⟦𝑒′⟧Γ

𝑜 .

We have that 𝑃 ′ = 𝑜⟨𝑛⟩. We know that 𝑃 ′ has received on 𝑜1 and given we are
well-typed that 𝑜1 : ch(@{ch(𝐈𝐧𝐭, ⟦𝜏⟧), ch(⟦𝜏⟧), ch(𝐈𝐧𝐭)}) = ⟦[𝜏]⟧. Therefore 𝑒 is on
the following form: [𝑣1, …, 𝑣𝑛]. We then select 𝑒′ = 𝑛 and by (B-Size) we have that
𝑒 → 𝑒′ and 𝑃 ′ ≈𝛼

⋅ ⟦𝑒′⟧Γ
𝑜 .

⬜

XLVI


	Introduction
	Futhark - a Functional Array Programming Language
	The π-calculus - a Process Calculus
	Translations to the π-calculus
	Structure of the Report

	Preliminaries
	Basic Untyped Futhark
	Syntax for ButF
	Semantics for ButF

	Extended π-calculus
	Syntax for Eπ
	Semantics for Eπ

	Translation of ButF to Eπ
	Translation
	Translation of Expressions
	Translation of Arrays and Tuples
	Translation of Array Operations

	Examples of Translations
	Example of Indexing
	Example of Abstraction
	Example of Map



	A Typed Setting
	Basic Typed Futhark
	Types for BtF
	Syntax and Semantics of BtF
	Type rules

	Soundness of BtF
	BtF Lemmas
	Proving Soundness
	Proof of Preservation
	Proof of Progress


	Typed Eπ
	Syntax and Semantics of TEπ
	Type System

	Soundness of TEπ
	Soundness Theorem
	Proof of lemmas
	Proving Soundness
	Proof of Subject Reduction
	Proof of Type Safety



	Translation and Correctness
	Translation of BtF to TEπ
	Translation
	Translation of Basic Expressions
	Translation of Arrays and Tuples
	Translation of Types and Environments
	Translation of Array Operations

	Examples of Translations
	Example of Indexing
	Example of Abstraction
	Example of Map


	Correctness of the Translation
	Defining Bisimulation
	Defining Correctness
	Proof of Correctness


	Conclusion
	Results
	Future Work
	From Array Operations to Functions
	with Construct
	Sized Types


	Bibliography
	Appendix for Preliminaries
	ButF Definitions
	ButF Semantics
	Eπ Definitions

	Proofs About the Type System for BtF
	Proof of Lemma 3.1
	Proof of Lemma 3.2
	Proof of Lemma 3.3
	Proof of Theorem 3.1 - preservation
	Proof of Theorem 3.1 - progress

	The error predicate of TEπ
	Proofs About the Type System for TEπ
	Proof of Lemma 3.4
	Proof of Lemma 3.5
	Proof of Lemma 3.6
	Proof of Lemma 3.7
	Proof of Lemma 3.8
	Proof of Lemma 3.9
	Proof of Lemma 3.10
	Proof of Theorem 3.2 - subject reduction
	Proof of Theorem 3.2 - type safety

	Proofs for the Translation of BtF to TEπ
	Proof of Lemma 4.1
	Proof of Lemma 4.2
	Proof of Lemma 4.3
	Proof of Lemma 4.4
	Proof of Lemma 4.5
	Proof of Lemma 4.6
	Proof of Theorem 4.1
	Proof of Theorem 4.2


