
A SUMMARY OF ENERGYBENCH: A HOLISTIC AND SYSTEMATIC BENCHMARK FOR MEASURING THE
CORRECTNESS AND ENERGY-EFFICIENCY OF LLM-GENERATED CODE

The growing adoption of Artificial Intelligence (AI) is a primary contributor to increased energy demands in
data centers, raising environmental concerns for the Information, Communication, and Technology (ICT) sector
as a whole. In the last five years, advances in areas like natural language processing and computer vision have
significantly increased the global adoption of AI. An important topic of research lies at the intersection of Large
Language Models (LLMs) with modern software development. The software industry is currently facing a steady
transformation towards automated code generation, with LLM assistants and LLM-powered code editors at the
forefront. The negative environmental impact of running these large AI models is certain, but questions still remain
unanswered about the sustainability of LLM-generated code.

Striving to answer these questions, this paper introduces ENERGYBENCH as a new correctness and energy-efficiency
code generation LLM benchmark, which takes a holistic and systematic approach in the LLM evaluation process.
This paper makes transparent what is the effect of combining different programming problems, programming
languages and prompting strategies on the ability of LLMs to generate correct and energy-efficient code.

ENERGYBENCH start with the process of taxonomizing three key areas: 1) Scenarios, 2) Adaptations and 3)
Metrics. A Scenario contains detailed attributed related to a programming problem, how code must be executed,
the programming language, and the available libraries and operating system dependencies that LLM-generated
code must use to successfully run. Adaptation refers to the process of transforming a scenario into a prompt by
converting its attributes into a set of directives, which can be systematically processed by an LLM. The taxonomy
ends with the definition of the collected metrics which involve three complementary dimensions: correctness,
energy and runtime. LLMs are evaluated by executing runs on different scenarios, using different adaptations and
collecting different metrics. Using the metrics, the energy-efficiency of LLM-generated code can me measured,
and LLMs can be compared against each other using a formula called the Green Score.

To demonstrate the importance of the holistic and systematic approach of ENERGYBENCH, a set of experiments
is defined consisting of 5 adaptations, 4 problems, 5 implementations, and 7 LLMs from different vendors. In
addition, a set of tweaked scenarios for the worst performing problem is added to demonstrate the impact on Green
Score when changes in scenario attributes are made. Altogether, the set of experiments in this paper amounts to
840, and offers a good start in exploring the effect that the interplay of different LLM prompt components has on
the energy-efficiency of solutions.

From the experiments done using ENERGYBENCH, only the closed source models are able to generate solutions
that are both more accurate and energy-efficient when using optimization instructions, improving efficiency by
up to 91.9%. The approach that ENERGYBENCH takes identifies untested prompts that yield the most accurate
and energy-efficient results. A tweaked experiment reveals that LLMs are highly sensitive to the content found
in prompts: deleting half of a programming problem’s description and removing the dependency version numbers
led to GPT-4O achieving more than double the accuracy and over four times the energy efficiency. However, in
all other cases, these values dropped significantly. Moreover, this paper compares LLM-generated solutions to
human-optimized code, showing that LLMs lag considerably behind human solutions. The only notable exception
comes from one of OPENAI’S reasoning models, O3, which suggests that LLMs have the potential to surpass
humans in the future for the task of correct and energy-efficient coding.

ENERGYBENCH is implemented as a modular and extensible benchmark framework. Future work consists of
reaching a broader evaluation of scenarios, adaptations and LLMs by adding new test cases. In addition,
ENERGYBENCH can be further developed to include the LLM hyperparameters as tunable components in the
evaluation process, such as temperature, reasoning effort, and output budget tokens, which are elements that can
greatly affect an LLM’s performance.
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Abstract—The growing adoption of Artificial Intelligence
(AI) is a primary contributor to increased energy demands
in data centers, raising environmental concerns for the
Information, Communication, and Technology (ICT) sector
as a whole. In the last five years, advances in areas like
natural language processing and computer vision have sig-
nificantly increased the global adoption of AI. An important
topic of research lies at the intersection of Large Language
Models (LLMs) with modern software development. The
software industry is currently facing a steady transfor-
mation towards automated code generation, with LLM
assistants and LLM-powered code editors at the forefront.
The negative environmental impact of running these large
AI models is certain, but questions still remain unanswered
about the sustainability of LLM-generated code. Current
benchmarks show that LLMs have the ability to generate
energy-efficient code when given optimization prompts.
However, the results remain unclear when arguing for
which problems, programming languages, and prompting
strategies lead to the best trade-off between accuracy and
energy efficiency. To address these gaps, ENERGYBENCH
is introduced—a benchmarking framework that takes a
holistic and systematic approach to analyzing the elements
that most impact the ability of LLMs to generate correct
and energy-efficient code. Experiments show that prompts
focused on reducing two key performance metrics make
code more energy-efficient by as much as 91.9% in 5
out of the 7 tested LLMs, though this comes at the cost
of lowered overall accuracy. Additional experiments show
that the systematic approach ENERGYBENCH takes reveals
gaps unexplored by the current state-of-the-art. LLMs
are highly sensitive to prompt contents: two tweaks made
when defining a programming problem in an LLM prompt
have drastic and opposite effects on both accuracy and
energy efficiency. In one case, efficiency is increased by
more than 4×, while in another, accuracy drops to zero.
ENERGYBENCH’S implementation is released to the public,
inviting the community to contribute to the existing set of
tests in the hopes that a broader, more detailed view of the
sustainability of LLM coding is reached.

1 Introduction
The Information, Communication, and Technology (ICT)
sector is a fast-growing source of greenhouse gas (GHG)
emissions. ICT is a broad sector encompassing personal
computing devices like laptops and smartphones, or

infrastructure like data centers and networks—all being
key elements that enable digital communication. ICT
supports businesses and the lives of people globally,
and was responsible for 1.4–4% of total GHG emis-
sions in 2020 [38]. A recent report made by Ericsson
[18] estimates that the ICT sector released around 750
million metric tons of carbon dioxide (tCO2e) into the
atmosphere in 2023. In 2025, the European Union’s
(EU) Rolling Plan for ICT Standardization highlighted
the sector’s growing environmental footprint, noting that
the energy demand for data centers alone is expected
to reach 3.2% of the EU’s total energy consumption in
2030, a concerning increase of 28% from 2018 [19].
In 2020, France reported a total of 17.2 million tCO2e
emissions from the ICT sector [7], with data centers
and networks amounting to 3.6 million tCO2e. These
measurements are projected to increase to 25 million
tons by 2030.

Global objectives to reduce these metrics have gained
momentum, thanks to initiatives like EU’s 2030 climate
targets [20]. According to the EU’s Rolling Plan for ICT
Standardization, digital transformation has the chance to
reduce Europe’s total GHG emissions by 15–20% in the
near future [19]. To reach these goals, there is a need for
highly efficient data centers and an energy-aware digital
infrastructure.

However, it remains uncertain whether these projections
can be met in light of the recent emerging trends in
Artificial Intelligence (AI) technologies, particularly in
areas such as natural language processing and computer
vision. These new AI models require significant com-
putational resources for training and inference, which
uses a substantial amount of energy. For example, USA’s
Data Center Energy Usage Report identifies that total
data center energy demands have doubled between 2017
and 2023 due to demands in AI technology [39]. The
negative environmental impact of these new technologies
is clear and presents new challenges in reducing the
carbon footprint of the ICT sector.



# Power Hungry Average Calculator
import pandas as pd
import sys
df = pd.read_csv(sys.stdin)
means = df.mean(numeric_only=True)
print(means)

# Optimized for Low Energy Consumption
import sys, csv
from collections import defaultdict
totals = defaultdict(float)
counts = defaultdict(int)
for row in csv.DictReader(sys.stdin):

for col, val in row.items():
try:

totals[col] += (num := float(val))
counts[col] += 1

except (ValueError, TypeError):
pass

for col in totals:
print(f"{col:>10}

{totals[col]/counts[col]:10.3f}")↪→

Fig. 1: Two OPENAIGPT-4O solutions for the same problem. Left solution is the version where no optimization
instructions were used to generate it. Right solution was generated when pairing the instruction “Make your code
energy-efficient” with the problem description.

A rather unexplored topic is the environmental impact
AI has in regards to its growing role in modern soft-
ware development. With the advent of Large Language
Models (LLMs), developers now have access to AI-
powered assistants proficient at tackling a wide range of
coding tasks. Code generation, debugging, and problem-
solving are among the primary LLM use cases, with
76% of developers currently using or planning to use
AI tools in their development process [49]. The reliance
on tools that integrate these powerful features (e.g.,
editors like GitHub Copilot [23] or Cursor [37]) becomes
more established in the industry as time passes. This
drastic shift in how software is developed carries serious
environmental concerns.

Consider a junior data scientist tasked with displaying
the averages of every column in a table. If prompted
with this problem, OPENAI’S GPT-4O [44] will return
a perfectly functional solution, as shown in Fig. 1 (Left).
However, it uses up to 14.7× more energy than the
modestly optimized version in Fig. 1 (Right), which is
generated by the same model (the measurements are
shown in App. A). If the same unoptimized solution
is executed on multiple tables in the same day, the cu-
mulative energy impact becomes significant. Assuming
that the unoptimized code is executed 100 times on a
similar-sized data input, it uses approximately 1.5 kJ
more energy than the optimized version. The wasted
energy is equivalent to powering a 60 W light bulb for
25 seconds.

The ability of LLMs to consistently generate energy-
efficient code remains a difficult and uncertain question
to answer [11, 50, 56], and providing evidence to sup-
port this ability is highly valuable. Currently, it is not
well understood what are the effects of combining dif-
ferent programming problems, programming languages,
and prompting strategies on the energy use of LLM-
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Fig. 2: Energy efficiency of 7 top-performing LLMs
when prompted with optimization instructions versus
standard, unoptimized instructions. Only closed source
models improve in energy-efficiency when prompted for
optimizations. Code produced by OPENAI’S GPT-4O
has the largest gain compared to unoptimized alterna-
tives.

generated code. Recent studies show inconsistent re-
sults: LLMs can sometimes generate remarkably energy-
efficient solutions compared to unoptimized code [15],
while other experiments show that explicitly prompting
for optimized code can increase energy use [11]. LLMs
have shown impressive ability to tackle many aspects
of code generation [12, 30], particularly in the realm
of functional-level correctness [13]. However, it remains
unclear whether adding energy-efficiency constraints on
top of existing prompts creates a trade-off that compro-
mises both correctness and energy consumption.

To address the aforementioned gaps in current research,
ENERGYBENCH is introduced as a new correctness
and energy-efficiency code generation LLM benchmark,
which takes a holistic and systematic approach in the
LLM evaluation process. This paper makes transparent
what is the effect of combining different programming
problems, programming languages and prompting strate-
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gies on the ability of LLMs to generate correct and
energy-efficient code. From the experiments done using
ENERGYBENCH, only the closed source models are able
to generate solutions that are both more accurate and
energy-efficient when using optimization instructions,
improving efficiency by up to 91.9%, as shown in
Fig. 2. The approach that ENERGYBENCH takes iden-
tifies untested prompts that yield the most accurate and
energy-efficient results. A tweaked experiment reveals
that LLMs are highly sensitive to the content found in
prompts: deleting half of a programming problem’s de-
scription and removing the dependency version numbers
led to GPT-4O achieving more than 2× the accuracy
and over 4× the energy efficiency. However, in all other
cases, these values dropped significantly. Moreover, this
paper compares LLM-generated solutions to human-
optimized code, showing that LLMs lag considerably
behind human solutions. The only notable exception
comes from one of OPENAI’S reasoning models, O3,
which suggests that LLMs have the potential to surpass
humans in the future for the task of correct and energy-
efficient coding.

Key Contributions: ENERGYBENCH is introduced in
Sec. 4, a framework made to benchmark LLMs abilities
at generating correct and energy-efficient source code
in any programming language. The framework takes a
holistic approach to evaluate this ability, by systemati-
cally analyzing the components found in code generation
prompts that affect energy efficiency the most.

An implementation of ENERGYBENCH is introduced
in Sec. 4.6: a command-line utility written in Python,
designed to automate the evaluation process used in
the framework. In addition, it is used to compare how
well LLMs fare against each other and against human-
optimized solutions. The implementation is released to
the community in an open source repository [27]. It
features a modular and extensible framework which
enables the continuous evaluation of future LLMs.

Evaluation of 7 top-performing LLMs from three differ-
ent vendors (OPENAI, ANTHROPIC and DEEPSEEK) in
Sec. 5. The experiments include 5 closed source and
2 open source models, and their evaluation is facili-
tated by ENERGYBENCH and its implementation. The
set of experiments in this paper is comprised of 840
individual runs, which use 4 challenging problems across
5 programming language implementations. In addition,
several LLM instructions and prompting strategies are
tested in Sec. 5.1, including optimization instructions and
one-shot examples respectively. The results in Sec. 5.2
demonstrate that all evaluated closed source LLMs have
the ability to improve the energy efficiency of generated
code by using one of these setups.

2 Background

Measuring Energy: In the literature, two main ap-
proaches for measuring the overall energy consumption
of a computer are commonly cited [21, 28]: the use of
external power meters to measure the current draw of the
entire computer or individual components [8], and the
use of built-in sensors that don’t require any additional
hardware.

For measuring the energy consumption of software,
Running Average Power Limit (RAPL) [26] is a built-in
energy measuring technology that has gained widespread
adoption [31, 51, 52] thanks to its convenience and
integration into the CPU. RAPL is a technology available
on Intel and most AMD CPUs, and exposes energy
consumption metrics for several parts of the computer
[54]. The CPU package is the only metric universally
available on all RAPL-supported platforms. Depending
on the CPU vendor and model, additional metrics are
exposed. These include directly attached main memory,
CPU cores, integrated GPU, and an overall platform
consumption [26]. Perf [53] is a command-line tool
available for Linux which allows users to collect the
aforementioned RAPL energy metrics, as well as other
metrics related to the runtime performance of a process,
via Perf Events. Fig. 3 shows the energy consumption of
three energy metrics for the unoptimized version of the
power hungry calculator in Fig. 1 (Left).
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Fig. 3: Line chart showing the power consumption of
the unoptimized average calculator in Fig. 1 (Left).
Chart shows three energy metrics captured by Perf. CPU
Package includes CPU Cores.

The accuracy of modern RAPL is generally considered
high, and correlated with external meters, with studies
reporting a strong Pearson correlation coefficient of
around 0.95 when implemented in software measuring
tools [21, 28]. RAPL stores its energy metrics in un-
signed 32-bit CPU registers. These registers are updated
approximately every millisecond and wrap around every
minute on a heavy workload [26], which leads to a
loss of accuracy if not accounted for. In this work,
Perf is used to collect RAPL metrics using a high
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sampling rate to minimize issues related to accuracy and
robustness commonly encountered when using RAPL
[54]. However, no specific requirements about how to
collect energy metrics is enforced throughout this paper,
recognizing that RAPL is less accurate than external
meters, particularly when measuring the energy use of
memory hardware [2]. A disadvantage of using RAPL,
and by extension the tools that use it internally, is that
energy measurements cannot be performed on a per-
process basis, only on the whole computer. This makes
interference from other background processes very likely
while measuring.

LLM Benchmarks for Coding: The task of Code
Generation is the ability of an LLM to output source
code given a user description in natural language [25].
The quality of LLM-generated code has been extensively
studied in recent years, with research addressing aspects
such as number of introduced security exploits [63], code
correctness and mathematical reasoning [43], time and
space complexity [12], and the ability to solve issues
commonly found in code bases hosted on GitHub [30].

A recurring challenge for these benchmarks is satura-
tion, which is a phenomenon encountered when LLMs
achieve scores close to 100% on benchmark test cases,
making it impossible to gauge further improvements be-
yond the benchmark’s scope. For example, both OPENAI
and ANTHROPIC models achieve performances above
90% [48] on HUMANEVAL [13], which is a benchmark
that tests functional correctness of code. When newer,
more capable models surface, they will no longer be
challenged by benchmarks like HUMANEVAL, thus re-
quiring extended and more difficult test cases. Currently,
many dimensions of evaluating LLM generated code
remain overlooked [29], including the environmental
impact and sustainability of the generated code.

Terminology: Several terms are used to explain related
concepts throughout this paper. The problem refers to
a programming problem, which can be solved with
source code. A solution is the code attempting to solve
a problem, either made by a human, or generated
by an LLM. The host system refers to the computer
where the solution will be executed on, for the purpose
of acquiring measurements. A scenario stores the
necessary information to describe the problem, what
are its required host system dependencies, and how its
solution must be executed.

3 Related Work

Related Energy Benchmarks: A number of recent
papers have investigated the energy costs of executing
LLM solutions. Vartziotis et al. [62] takes a comprehen-
sive approach by collecting several sustainability metrics
using Perf, that go beyond raw energy consumption.
These include the number of Floating-Point Operations
(FLOPs) and peak memory use. Solely focusing on
Python, they found that prompting three commercial
LLMs for energy optimization can reduce energy use by
as much as 61%. However, the results are inconsistent
because in many cases, these prompts have little effect
or can even increase consumption.

Cursaru et al. [15] extend the evaluation scope with
two programming languages (C++, JavaScript), and mea-
sure consumption using an external hardware meter.
The evaluation using Code Llama shows that human
written solutions generally use substantially less energy.
Adding the prompt ”Make the code as energy-efficient
as possible” can reduce energy use, but these results
are inconsistent and highly dependent on the choice of
programming language and scenario. For example, Code
Llama generates a solution for the Two Sum problem in
C++ that has the single largest drop of about 250× less
energy compared to when the optimization prompt is not
used, while gains in other experiments are negligible.

Perhaps the broadest analysis of an emerging phe-
nomenon among the surveyed papers is found in
Solovyeva, Weidmann, and Castor [56], which evaluates
53 LeetCode problems across multiple programming
languages and LLMs. The study shows that, while LLMs
can generate code that uses less energy than top human
solutions, their performance is generally unreliable. No-
tably, the largest energy savings are confined to a small
subset of scenario categories, while solutions for C++
are almost always less efficient than those written by
humans.

Finally, Cappendijk, Reus, and Oprescu [11] test three
prompt instructions: 1) “Give me an energy-optimized
solution. . . ”, 2) “Use library functions. . . ”, and 3) “Use
a for loop instead of a while loop. . . ”, all intended at
reducing the computational costs of executing solutions.
Both for loop and library prompts have large single
energy drops of about 59%, yet they can also lead to
increases by more than four times, demonstrating that
no prompt is universally effective at saving energy.
The study concludes with a note on the importance of
covering a larger area of experimentation, considering
multiple prompts and hyperparameter tuning.
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Fig. 4: Taxonomy process of ENERGYBENCH visualized, inspired by HELM [35]. Includes the three key areas and
highlights the importance of analyzing gaps in the evaluation process.

Summary of Related Energy Benchmarks: Studying
the related work revealed several common themes:

• Optimized vs. Unoptimized: Using instructions
designed to produce energy-efficient or runtime-
optimized solutions [11, 15, 62].

• LLM vs. Human Optimized: All discussed papers
compare LLM solutions against human-made, opti-
mized code to evaluate relative energy consumption.

• Grouping Scenarios: Some form of grouping such
as computational bottlenecks [15], algorithm topic
[56] or implementation difficulty [11, 62]. These
groups are used to analyze the energy performance
trends of scenarios that relate to each other in
certain aspects.

• Reporting More Than Just Energy: Notably,
FLOPs, peak memory use, and runtime, either as
part of the sustainability metrics [62] or for direct
comparisons [11].

In addition, two of the four papers explore individual
unique themes, which are not considered by the others.

• Using Different Optimization Strategies: Various
optimization prompts demonstrate to have different
effects over the performance of the solution [11].

• Host System Transparency: An overlooked aspect
identified by Solovyeva, Weidmann, and Castor
[56] is the potential for LLM solutions to perform
differently depending on the host system.

ENERGYBENCH builds on all the concepts explored
in the related energy benchmarks, involving both the
common and unique themes of each paper to reach
a broader perspective than the current state-of-the-art.
An evaluation method similar to Vartziotis et al. [62]
is adopted, where multiple metrics beyond energy con-

sumption are considered. In addition, model accuracy is
evaluated as the ability of an LLM to produce a correct
solution on the first attempt, akin to the pass@1 metric
[13]. Comparisons against human-optimized solutions
are also included. Scenarios with related attributes are
grouped to achieve a better understanding of why their
performance behaves in similar ways.

Holistic Benchmarks: The space of scenarios and
prompting strategies involved in evaluating LLMs is vast
and complex, and certain factors are often overlooked or
underrepresented. For instance, the contextual time and
place and choice of natural language within the prompt
can significantly impact the performance of a model,
yet such variables are rarely captured in standard LLM
benchmarks. Liang et al. [35] address this by taking
a systematic approach at describing the full range of
possible scenarios, prompt strategies and metrics. They
introduce HELM, a generalized framework for creating
LLM benchmarks through an in-depth taxonomy of the
components that make up an accurate LLM evaluation.

ENERGYBENCH draws inspiration from HELM and its
many adopters [32, 33, 34] to analyze, with a high degree
of detail, which aspects of the code generation prompt
affect energy use the most. This work differentiates itself
from existing energy benchmarks [15, 56, 62] by taking a
holistic approach, as defined in HELM: “The taxonomy
not only facilitates the systematic selection of scenarios
and metrics, but it also makes explicit what is missing.”
[35].

This methodology allows gaps to be easily identified. For
instance, prior work makes no use of advanced prompt-
ing strategies like few-shot or chain-of-thought (these
strategies are explained in Sec. 4.4), and disregards the
use of main memory from their sensor-based measure-
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ments [11, 56, 62]. These shortcomings are addressed in
ENERGYBENCH by a systematic review of the problems,
scenarios, prompt strategies, captured metrics and host
system dependencies, all being components that play a
significant role in the evaluation process of an LLM for
the task of energy-efficient code generation. The holistic
approach in this work allows for greater transparency in
the evaluation process which reduces gaps related to the
interplay of different components.

4 The ENERGYBENCH Framework
ENERGYBENCH starts with the process of taxonomizing
key areas. Fig. 4 offers an overview of this process.

4.1 Scenario
A scenario contains detailed attributes related to a
problem. Besides a description in natural language, it
also specifies how the code must be executed, the pro-
gramming language implementation to be used, and the
available libraries and operating system dependencies.
All attributes defined in this section are part of the
prompt given to an LLM. A scenario is comprised of
three high-level components:

Task: Contains name and description. They are
the name and the description in natural language of
the problem. Simply using the task, without additional
scenario attributes, provides enough information such
that an LLM can produce accurate solutions. An example
of an LLM-generated solution for a scenario containing
only a name and a description is shown in Fig. 13.
However, many aspects of the task would be left out
to interpretation.

Domain: To align the scenario to a particular program-
ming setup, to minimize the chance of hallucinations
[36, 57], and to enforce the holistic view, all scenarios

must be grounded using a set of domain attributes. These
attributes relate to the contextual time and place of
the scenario. Moreover, they are grouped in four sub-
categories, each corresponding to a guiding question,
three from HELM (Who, When, What) and the last be-
ing an extension introduced by ENERGYBENCH (How).

• Who Includes the implementation (e.g. C,
Python, Java) and dependencies as the set of
technologies, compilers, interpreters and runtime
environments (e.g. GCC, .NET, NumPy) needed for
the solution to execute.

• When Dependencies are frozen in time by defining
their version. Often, dependencies have version
numbers suffixed to their names (e.g. GCC 15.1,
.NET 10.0, NumPy 2.2), which makes having to
explicitly state the versions redundant.

• What Defines a set of test cases for the sce-
nario, tests. Each test is a triple which includes
args, stdin, and the expected_stdout. All
attributes in a test are optional, as some scenarios
may not take any arguments or input, nor output
anything. When an expected output is defined in
a test case, it will be used to compare against the
actual output of the solution given the arguments
and input of that case.

• How Includes hardware and options. The first
attribute refers to the host system specifications
which are involved in the solution execution, while
the second refers to build flags used to create the
executable, or the options passed to the runtime
environment of the implementation. The hardware
attribute is included in the hopes that LLMs will
leverage the specifications to reach more efficient,
host system-tailored solutions.

name: Spectral Norm
implementation: C # Compiled implementation.
description: | # CPU-bound and technical task description.

Write a program that computes the spectral norm of an infinite matrix A,
where the entries follow A[i][j] = 1 / ( (i + j) * (i + j + 1) / 2 + i + 1 )
(This defines a symmetric infinite matrix where indices start from 0.)
Your program must:
- Print the result with correct formatting for N = 100 to verify correctness
- Support a larger input value like N = 5500 to evaluate performance

dependencies: [gcc14] # Must use GCC version 14.2.0.
options: [-O3, -fopenmp, -lm] # Has access to 'libm' and 'OpenMP'.
hardware: Ubuntu 22.04.5 x86_64, Intel i7-8700, 16GB RAM
--- # tests
args: [5500] # A single command-line argument.
expected_stdout: 1.274224153 # Output should be a single float.

Fig. 5: Example of a CPU-bound, technical scenario involving a compiled language implementation and explicit
hints about the host system, in YAML format. It shows the Spectral Norm problem, which has its task description
copied from The Computer Language Benchmarks Game (CLBG) [61].
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Language: Refers to the natural language used in
the task. HELM identifies that there is a dispropor-
tionate quantity of training data for LLMs in a select
few languages, such as English and Chinese [35]. This
component is used to reveal gaps in the ability of an
LLM to generate correct and energy-efficient code in
underrepresented languages.

The formal definition of the scenario can be established
using the aforementioned concepts. It is a triple which
makes up a central part of the LLM prompt.

scenario = (task, domain, language) (1)

Fig. 5 shows an example scenario of the Spectral Norm
problem [61], which is computationally intensive and
challenging to solve. The scenario is grouped as CPU-
bound due to its arithmetic-heavy nature, and as techni-
cal because of the specific terminology used in the task
description. The next section discusses how these groups
are created and argues their importance.

4.2 Scenario Groups:
Scenarios can be grouped based on attributes that share
similar traits. This process provides insight into why
certain attributes yield similar results across multiple
scenarios. It is the responsibility of the user to discern
which scenarios are related, and the groups are not
limited to a fixed set. Three group definitions that users
can adopt are considered.

Technicality: Is the binary classification given to a
scenario based on the level of programming specificity
found in the task. Non-technical users typically em-
phasize desired output in a goal-oriented fashion. This
happens without placing particular effort into describing
program flow, time complexity or data structures [41].
The difference in task specificity is illustrated in Fig. 6,
for a simple text reversal program.

It can also be argued that different levels or technicality
exist and have the potential to fundamentally change the
solution [12, 42]. To simplify this group, Non-Technical
tasks are those that do not explicitly state any code con-
cepts like function definitions, control flow structures,
data structures, or primitives like threads and mutexes.
Descriptions that include any of these are grouped as
Technical.

Performance Bounds: Runtime of all software is
computationally bound in some regard [1, 22, 55].
Similarly, ENERGYBENCH assumes that every problem
will fall under one of these bounds once a solution is
implemented. Users can place scenarios into one of the
following groups, solely by visually inspecting the task:

--- # Non-Technical Task
name: Text Flipper
description: Write a program that takes some text

and flips it backwards. For example, if given
'energy', it should output 'ygrene'. The output
text should be colored green.

↪→
↪→
↪→
--- # Technical Task
name: String Reversal Function
description: Implement a string-reversal function

with the signature 'reverse(text: str) -> str'.
It must handle empty strings and display output
using the color code \#00ff00.

↪→
↪→
↪→

Fig. 6: Non-Technical and Technical tasks describing the
same string reversal problem.

CPU-Bound for programs that are limited by the CPU’s
processing speed, Memory-Bound for programs making
frequent memory accesses in locations with large chunks
of data which do not fit in the CPU cache effectively,
or I/O-Bound for programs needing to spend more time
reading and writing data compared to performing CPU
operations.

Energy consumption and runtime efficiency is shaped
by the kinds of operations a program is doing. Memory-
bound tasks exhibit a large number of main memory
accesses and high rates of cache misses, due to large
data segments, poor spatial locality, or irregular access
patterns. Similarly, I/O-bound tasks are characterized by
a high number of read and write system calls, often
resulting in longer lasting CPU residency in both low-
power (C-states) and high-performance (P-states) due to
I/O idle waiting periods and computation bursts respec-
tively.

Execution Model: Similar to how tasks can be used
to group scenarios that have the same technicality or
performance bound, the choice of domain attributes
can determine a separate group related to an execution
model. Particularly, the pair (implementation, options)
derives one of the following: Compiled if the pair
produces a native executable, Managed if the produced
binary runs on a virtual machine or Interpreted if the
execution process involves some version of code in-
terpretation. This distinction is important because run-
time performance and energy consumption patterns are
closely linked to the chosen execution model [51, 52].

4.3 Metrics
Next, a multi-metric strategy is adopted. This section
discusses three complementary dimensions: correctness,
energy, and runtime, with a particular focus on the
energy metrics. A list of proposed energy and runtime
metrics, along with their mapped Perf Events, is available
in Tab. 1.
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Energy Metrics

Metric Perf Events Description
Core (PP0) power/energy-cores/ Total energy consumption of all CPU cores.
Uncore (PP1) power/energy-gpu/ Energy consumption of integrated GPU.
DRAM power/energy-ram/ Energy consumption of main memory directly attached to the CPU.
Package (Pkg) power/energy-pkg/ Combined energy of the entire CPU package, including Core (PP0), Uncore (PP1),

last-level cache (LLC), and internal I/O controllers.
Platform (Psys) power/energy-psys/ Overall system energy consumption, which may include Package (Pkg), DRAM,

dedicated GPUs, cooling fans, displays and disks depending on system configu-
ration.

Runtime Metrics

Elapsed Time --- Wall-clock runtime in milliseconds (ms).
FLOPs fp_arith_inst_retired.scalar Number of floating-point operations.
Peak Memory --- Maximum resident set size in megabytes (MB).
Branch/Cache Misses branch-misses,cache-misses Number of branch-prediction/cache misses.
C-State Residency cstate_core/c*-residency/ Time spent in low-power CPU states (ms or %).
P-State Residency --- Time spent in high-performance CPU states (ms or %).

Tab. 1: Examples of energy and runtime metrics used in LLM evaluation. Most metrics are mapped to a Perf
Event. Platform (Psys) is the most comprehensive energy metric exposed by RAPL; it makes measuring all three
computational-bound groups possible. When not available on the host system, the next closest approximation is
Package (Pkg) + DRAM, which only makes CPU-bound and memory-bound scenarios accurate.

Correctness: Is a binary classification indicating
whether all tests defined in the scenario produce the
expected output. To determine correctness, each test will
have its expected output compared byte by byte with
the actual output of the solution. Correctness carries the
most weight in the evaluation of an LLM, since scoring
a highly efficient solution is irrelevant if the output is
incorrect.

Energy Metrics: Are key metrics used to evaluate the
energy consumption of an LLM solution. To avoid de-
pending on external hardware meters, ENERGYBENCH
only imposes the energy consumed by the entire CPU
package and main memory directly attached to the CPU
of the host system.

Unfortunately, CPU and RAM metrics alone will un-
derestimate the energy used by I/O-bound scenarios,
since other components are active and draw power
during execution: storage devices, network interfaces,
and other peripherals. Ideally, comprehensive energy
measurements for I/O-bound scenarios would capture
every joule. In practice, obtaining such metrics is chal-
lenging because 1) orchestrating an energy measuring
setup using external hardware sensors requires extra
effort [15] and is error-prone if not synchronized with
the running software, and 2) built-in sensors typically
do not provide these metrics. Therefore, the framework
makes accurate energy measurements for I/O-bound sce-
narios entirely optional. If precise evaluation of I/O-
bound tasks is desired, the recommended minimal set
of components includes internal CPU I/O controllers,
network controllers, and disks.

Runtime Metrics: Several additional metrics related
to runtime performance are captured to provide a more
comprehensive view of the solution’s efficiency. These
metrics, separate from raw energy consumption, are also
used in the final LLM evaluation, similar to the approach
used by Vartziotis et al. [62] and Cappendijk, Reus, and
Oprescu [11]. A list of runtime metrics is shown in
Tab. 1.

4.4 Adaptation
Adaptation is the process of transforming a scenario
into a prompt by converting its attributes into a set
of directives, which can be systematically processed
by an LLM. To achieve this, a structured prompting
technique is used, leveraging XML-style formatting [5,
10, 14]. Each attribute is converted into a directive by
encapsulating its data in opening and closing XML tags.
In addition, attributes containing sequences of items (i.e.
dependencies, tests and args) are formatted as
JSON arrays. Fig. 7 shows the Spectral Norm scenario
from Fig. 5, adapted into directives using the structured
format.

Structured prompting is a widely adopted prompt engi-
neering technique [5, 10, 14] because it is effective at
helping LLMs parse and organize complex prompts that
involve multiple components. This approach is suitable
for ENERGYBENCH because a scenario can potentially
contain a lot of data, especially if multiple test cases are
defined.

Instructions: The adaptation makes use of a sequence
of instructions to help guide the solution generation
towards meeting specific objectives, given the scenario
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<!-- Scenario -->
<name>Spectral Norm</name>
<description>Write a program that computes the spectral norm...</description>
<implementation>C</implementation>
<dependencies>['gcc14']</dependencies>
<options>['-O3', '-fopenmp', '-lm']</options>
<hardware>Ubuntu 22.04.5 x86_64, Intel i7-8700, 16GB RAM</hardware>
<args>['5500']</args>
<expected_stdout>1.274224153</expected_stdout>
<!-- Instructions -->
- Solve the programming problem above.
- Solution must be production-ready.
- Solution must prioritize energy efficiency above all else for the provided hardware specs.
<!-- One-Shot Example -->
<name>Matrix Multiplication</name>
<description>Multiply two square matrices for size N×N; print the last cell</description>
<implementation>C</implementation>
<code>double *A = aligned_alloc(64, n*n*sizeof(double));...</code>
<!-- LLM-Generated Solution -->
<code>printf("%.9f\n", spectral_game(N));...</code>

Fig. 7: Scenario adapted into a set of encapsulated directives, instructions containing an energy optimization, a
one-shot example scenario and an LLM-generated solution at the bottom. The Spectral Norm scenario from Fig. 5
and a one-shot example of the Matrix Multiplication scenario are referenced here.

context. Initially, ENERGYBENCH users can experiment
with generic instructions such as “solve the coding
problem. . . ” or “solution must be production-ready. . . ”.
Instructions provide good flexibility. For example, they
can specify that the solution must be able to run multiple
times in a loop, making it possible to observe changes in
energy consumption over each iteration. Alternatively, a
more sophisticated instruction, called chain-of-thought,
can be used [64], which guides the LLM to generate a
sequence of reasoning steps leading to a final solution,
akin to the thought patterns of a human. Most notable
is the use of the optimization instruction, which is
an instruction aimed at reducing some metrics, either
runtime performance or energy consumption. In Fig. 7,
there are two generic code-generation instructions and
an energy optimization instruction targeted at the host
system specifications.

Examples: Refers to zero-shot, one-shot, and few-shot
prompting strategies. Optionally, including an example
in the adaptation increases the likelihood that the LLM
aligns with the given instructions [9]. For this approach
to be effective, the examples must reference relevant
aspects mentioned in the instructions. For instance, when
using chain-of-thought, examples suggesting a reasoning
pattern must be provided: “step 1: analyze the prob-
lem. . . step 2: consider a naive solution. . . step 3: eval-
uate energy efficiency and optimize code. . . ”. Similarly,
when instructing for runtime or energy optimizations, a
separate scenario including a human-optimized solution
written in the same implementation as the problem
scenario must be included as reference. Fig. 7 illustrates
this with the Matrix Multiplication scenario provided as
a one-shot example.

4.5 Evaluating Accuracy and Efficiency
Run: Is a function that takes a scenario, an adaptation
and a solution produced by either an LLM or a human,
which is then executed on the host system to return
the tuple (C,M). C ∈ {0, 1} is the correctness metric
and M is either a runtime or energy metric. For human
solutions, the adaptation value is null.

run(scenario, adaptation, solution) = (C,M) (2)

Green Score: Is a real number that shows how well
an LLM or human can produce correct solutions while
also minimizing a chosen runtime or energy metric. This
score is inspired by the Green Capacity formula found
in Vartziotis et al. [62]. Given a set of runs containing
solutions from either an LLM or a human, and a chosen
metric, the Green Score (GS) is calculated as follows:

GSM =
1

n

n∑
i=1

Ci

Mi + 1
(3)

• Ci: Indicates if the solution in run i is correct (1 if
correct, 0 if incorrect).

• Mi: Runtime or energy metric for run i once the
solution is executed and measured.

• n: Is the total number of runs.

This function returns real numbers between [0, 1] where
a value of 0 means that no correct solutions are gen-
erated, and a value of 1 is the theoretical perfect score
where all solutions are correct and the chosen metric
measures 0. A higher GS is better. To facilitate the
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direct comparison of multiple GS’s, returned values are
normalized to a common scale (e.g. by multiplying with
100).

Human Delta Percentage: Is the GS percentage dif-
ference between LLM-generated and human-made solu-
tions, given the same metric. A positive delta percentage
means that the LLM outperforms the human, while
a negative percentage means that the LLM performed
worse. This evaluation quantifies the performance dif-
ference by returning a concrete real number.

∆ =
GSLLM −GShuman

GShuman
% (4)

As mentioned in Sec. 4.4, LLMs can use adaptations
to influence the generated solution in some regard. The
most meaningful way to use the human delta percentage
involves comparing three categories of solutions: 1)
LLM solutions that have not used any optimization
instructions, 2) LLM solutions instructed to perform a
runtime or energy optimization, and 3) human-optimized
solutions serving as baselines. By comparing the per-
formance gap between each LLM approach and the
human baseline, the percentage improvement provided
by the adaptation in closing the human delta gap can be
quantified.

4.6 Implementation
To automate the process of generating solutions, metric
collection, and LLM evaluation, a Python command-
line tool implementing the features of ENERGYBENCH
is developed and is made available for Linux in a
public repository [27] under the MIT license. This tool
effectively mitigates benchmarking saturation concerns
by using a flexible implementation of scenarios, which
makes it possible to change or add new problems by
creating scenario files in YAML format. In addition,
the collected metrics are defined in an environment
file, and adaptations are modular because they can be
extended by creating new Python classes that define
which instructions are used in the prompt.

Technical Considerations: The tool uses the same
notion of scenarios as in Sec. 4.1, implemented as
YAML files. A scenario file consists of all the attributes
necessary to generate, build, and execute solutions, as
well as separate YAML documents used to test functional
correctness. Next, the scenarios are adapted as discussed
in Sec. 4.4, and fed into an LLM sequentially, or by
leveraging batch processing for platforms that support it,
like OPENAI and ANTHROPIC. Solutions that yield valid
source code are copied back into the scenario YAML,
and the files are stored on the system. Finally, a scenario

file that stores a solution can be executed, leveraging
the Who and How domain attributes (i.e., options,
implementation, dependencies).

To collect runtime and energy metrics, internally the
ENERGYBENCH tool uses Perf. Several Perf Events
directly correspond to runtime and energy metrics as
shown in Tab. 1, which are used to calculate the GS. The
accuracy and robustness of the measurements is ensured
by setting a high sampling frequency of 100Hz. The total
value for any captured event using Perf is computed by
summing all of its samples during one measurement.

5 Experiments
To demonstrate the importance of the holistic and sys-
tematic approach of ENERGYBENCH, a set of experi-
ments is defined consisting of 5 adaptations, 4 problems,
5 implementations, and 7 LLMs from different vendors.
In addition, a set of tweaked scenarios for the worst
performing problem is added to demonstrate the impact
on Green Score when changes in scenario attributes
are made. These tweaked scenarios apply to 4 out of
5 implementations. Altogether, the set of experiments
amounts to 700 base runs (5 adaptations × 4 problems
× 5 implementations × 7 LLMs) and 140 runs involving
tweaked scenarios for a single problem (5 adaptations ×
1 problem × 4 implementations × 7 LLMs), for a total
of 840 individual experiment runs. All chosen problems
are selected from The Computer Language Benchmarks
Game (CLBG) software project [24], which hosts a
collection of challenging micro benchmark descriptions.
These have been selected because they are accompanied
by community-made solutions that are optimized for
runtime performance, which will be used as human
baselines to compare against LLM solutions.

5.1 Setup

Evaluated LLMs: The chosen LLMs are released by
three vendors: OPENAI, ANTHROPIC and DEEPSEEK.
An overview of all evaluated models is shown in Tab. 3.
Each set of LLMs from a vendor includes a single
reasoning model, which can enter an extended thinking
mode before generating a solution. The thinking output
of these types of models is separate from the actual
solution, and is not taken into account when evaluating
the correctness or efficiency. Reasoning models are spe-
cially trained LLMs that use techniques like supervised
learning or reinforcement learning to incentivize the
chain-of-thought process described in Sec. 4.4, without
the need for special prompt strategies [16]. The choice
of these models is attractive because they display higher
performance in mathematical and code generation tasks
compared to standard LLMs [48].
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Implementations Problems

Implementation Options Group Task Description Group
C GCC 14.2.0 -O3 Compiled Binary Trees [58] Allocate, traverse and deallocate many trees Mem-Bound
C++ GCC 14.2.0 -O3 Compiled Fannkuch Redux [59] Indexed access to tiny integer sequence CPU-Bound
C# .NET 9.0 -c Release Managed N-Body [60] Double precision N-body simulation CPU-Bound
Java OpenJDK 23 — Managed Spectral Norm [61] Eigenvalue using the power method CPU-Bound
Java GraalVM 23 — Managed

Adaptations Optimization Instructions

Optimization Prompting Example Optimization Description
Unoptimized Zero-Shot — Energy Optimized ”CRITICAL! Your solution MUST prioritize energy-efficiency. . . ”
Unoptimized One-Shot MatMul Runtime Optimized ”CRITICAL! Your solution MUST be as efficient as possible. . . ”
Energy Optimized Zero-Shot —
Energy Optimized One-Shot MatMul
Runtime Optimized Zero-Shot —

Tab. 2: Overview of the experimental setup. Implementations are defined along with their version numbers.
Scenarios are grouped based on the choice of (implementation, options) pair, and task. Adaptations
use an optimization instruction and a prompting strategy. The bottom-right table shows the contents of the two
evaluated optimization instructions. Matrix Multiplication is abbreviated as MatMul.

All models are configured with temperature 0 to elim-
inate randomness in output [6]. LLMs are probabilistic
models, which means that the probability of generating
the next token (text word) in an output sequence is
determined by the previously seen context (e.g., a human
prompt or previously generated output). Configuring all
LLMs to the lowest possible temperature ensures that
they stick to the probabilities of their pretrained weights,
making the output more deterministic and better suited
for code generation. Following OPENAI’S recommen-
dations [47], all closed source reasoning models are
limited to 25,000 output tokens. For consistency, all
closed source non-reasoning models are limited to 8,192
output tokens, as this represents the maximum limit
supported by CLAUDE 3.5 SONNET. Moreover, O3 is
the only reasoning model that accepts a reasoning effort
parameter, which will be set to the default value of
medium. DEEPSEEK’S models only support the tem-
perature parameter.

Evaluated Problems: Each CLBG problem has
its description manually cleaned to remove content
unrelated to the actual task, like author notes and
comments. Using the cleaned problem and an
implementation, a unique scenario is created. The
remaining attributes reflect up-to-date dependencies
and production-level options. Finally, the scenarios are
grouped as described in Sec. 4.2, based on the execution
model of the chosen (implementation, options)
pair, and the derived performance bounds of the task
description, as shown in Tab. 2.

Vendor Model Reasoning Open

OPENAI GPT-4.1 [45] No No
OPENAI GPT-4O [44] No No
OPENAI O3 [46] Yes No
ANTHROPIC CLAUDE 3.5 SONNET [4] No No
ANTHROPIC CLAUDE 3.7 SONNET [3] Hybrid No
DEEPSEEK R1 [16] Yes Yes
DEEPSEEK V3 [17] No Yes

Tab. 3: Evaluated LLMs, reasoning capabilities and open
source status. For brevity in other figures, referring to the
models is kept concise: GPT 4.1, GPT 4O, O3, SONNET
3.5, SONNET 3.7, DEEPS. R1, DEEPS. V3.

Evaluated Host System and Metrics: All experiments
are executed on a headless Linux host system with a
minimal set of background processes. The host system
runs on a 64-bit architecture and an Intel i7-8700 CPU
with 16 GB of RAM. See Tab. 7 for a lengthier list of
specifications. To provide LLMs with context about the
host system where their generated solutions will execute,
scenarios are assigned the same specifications for the
hardware attribute. Experiment runs are executed 10
times, and the results are averaged. This is done to reduce
the effect that outlier data has on the Green Score, as en-
ergy measurements using Perf are unpredictable and are
influenced by the activity of background processes. The
captured energy metrics are Pkg and DRAM, because
they accurately reflect the consumption of the chosen
problems. The captured runtime metrics are Elapsed
Time and FLOPs. Energy consumption is generally
correlated with the time spent running a program [51].
Measuring the Elapsed Time metric offers a straightfor-
ward way to interpret the energy efficiency of different
solutions. In addition, FLOPs is a widely accepted metric
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Fig. 8: Heatmaps showing the GSE (left) and GST (right) of all evaluated LLMs. The results show a strong
correlation between the energy consumption and the time required to execute correct solutions.

for measuring the computational demand of software
[40], and energy use generally scales with this metric too.
Floating-point operations are computationally expensive,
and reducing their number is an effective way to lower
energy use. Throughout the experiments, GSE is the
combined Green Score of the captured energy metrics
Pkg + DRAM, while GST and GSF are the Green
Scores for the runtime metrics Elapsed Time and FLOPs,
respectively.

Evaluated Adaptations: The chosen adaptations in-
volve optimization instructions along with zero- or one-
shot prompting strategies. When one-shot is used, the
Matrix Multiplication (MatMul) scenario serves as the
reference example due to its simplicity and high op-
timization potential. The MatMul solution is modified
to reflect the specified optimization instruction. If the
Energy Optimized instruction is used, the solution will
be an energy-efficient version. See Tab. 2 for an overview
and Fig. 15 for the source code.

Selecting Human-Optimized Solutions: A human-
optimized solution is selected alongside the problem
based on two criteria:

• Must be the most efficient among all candidates for
the given problem.

• Must use the same hardware, dependencies
and implementation defined in the scenario. By
extension, it must be able to execute on the host
system.

5.2 Evaluation Results
Fig. 8 compares the GSE and GST of all models across
each adaptation. Inspecting the left heatmap reveals that
all closed source models improve their GSE by using
one of the three optimized adaptations. The largest score
increases using any optimized zero-shot adaptation are
seen in 3.7 SONNET (64.37%), 3.5 SONNET (41.59%),
O3 (24.86%), and GPT-4O (91.9%), when comparing to
their unoptimized alternatives. On the other hand, GPT-
4.1 achieves the highest score increase with the energy
optimized one-shot adaptation (6.02%), compared to the
unoptimized alternative. The only exceptions are the
open source DEEPSEEK V3 and R1 models, which uni-
versally gained lower scores using optimized adaptations
compared to the best unoptimized alternatives.

A notable aspect in this part of the evaluation is the
choice of optimization instruction. Prompting for run-
time efficiency instead of energy efficiency increases
the GSE of GPT-4.1 by 18.01%, and of GPT-4O by
67%, showing that energy efficiency instructions are not
always better at generating energy-efficient solutions. In
contrast, 3.5 SONNET achieves its largest score with an
energy optimized zero-shot adaptation, which is more
than 2× better than the runtime alternative. As previ-
ously shown, Fig. 2 highlights how much each model’s
GSE improves when the top performing optimized and
unoptimized adaptations are compared.

Surprisingly, all closed source reasoning models per-
formed worse on average compared to a non-reasoning
model from the same vendor. R1 is the only reasoning
model fairing better, with a 29.48% increase in average
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Fig. 9: Accuracy of evaluated LLMs with respect to the
ratio of correct solutions over attempted runs. Striped
bars indicate the use of an optimization instruction.
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Fig. 10: Green Score Delta Percentage of evaluated
LLMs compared to human-optimized solutions. Only
the best-rated optimized adaptations are chosen.

GSE compared to V3. These results are counterintuitive
because reasoning models are known to perform better
at tasks that require problem-solving, which is a highly
relevant trait for correct and energy-efficient code gen-
eration. It seems that the added reasoning capabilities of
O3, 3.7 SONNET and R1 do little to improve the GSE .

Model Accuracy: Fig. 9 shows the accuracy of each
model with respect to the number of correct solutions it
is able to generate using the zero-shot prompting strat-
egy. The figure compares results that use unoptimized in-
structions against energy- and runtime-optimized instruc-
tions. GPT-4.1 and O3 are the only models to achieve
at least 50% accuracy across these adaptations, while
the others generally remain below 40%. Surprisingly,
GPT-4O surpasses its unoptimized accuracy when using
the runtime optimization instruction. This shows that the
model produces more correct solutions when it is also
optimizing for runtime efficiency.

Accuracy directly affects the individual Green Scores in
Fig. 8, as models that generate more correct solutions
achieve higher scores. This relationship is evident when
comparing Fig. 8 and Fig. 9: GPT-4O achieves the
highest GSE , GST and accuracy when using the runtime
optimization instruction. Similarly, GPT-4.1 has a strong
overall performance, as illustrated by the high accuracy
and consistently high values on both heatmaps.

LLM vs. Human Optimized: LLM-generated solutions
remain behind human-optimized solutions, performing
between 48.57% and 86.11% worse on average for
∆GSE and ∆GST as shown in Fig. 10. The GSF score
is the only evaluated metric with the largest number of
positive delta instances (14) found across all adaptations,
problems, and LLMs, though they are rare and far

between. In Tab. 4, three models are highlighted showing
positive GSF deltas for the Binary Trees and N-Body
problems.

Model Problem Adaptation ∆GSF

GPT 4.1 Binary Trees Energy Opt. One-Shot +23.73%
O3 N-Body Runtime Opt. Zero-Shot +3.61%
SONNET 3.5 N-Body Energy Opt. One-Shot +2.82%

Tab. 4: Three instances where the GSF has positive
delta values across models, problems and adaptations.
All scenarios of a problem are averaged in this table.

There are only two notable exceptions in all experiments.
In Tab. 5, O3 generates solutions for the Binary Trees
problem that outperforms the human-optimized baseline
across two different adaptations.

Adaptation ∆GSE ∆GST ∆GSF

Energy Opt. Zero-Shot +4.73% -40.79% +216.79%
Energy Opt.One-Shot +18.68% +6.53% +743.47%

Tab. 5: O3 scoring better energy efficiency and lower
FLOPs count than the human-optimized baseline for the
Binary Trees problem.

Although these single successes are overshadowed
by the lower performance across all other scenarios,
O3 achieves the highest average delta against human
solutions. This demonstrates the model’s ability to
produce optimized solutions that come closest to the
human-optimized baseline.
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Tweaked Experiment: Out of all evaluated problems,
Fannkuch Redux performs the worst, with the lowest
average GSE and the second-lowest average accuracy
across all runs, as shown in Tab. 6. This last experiment
explores the effects on the performance of Fannkuch
Redux when applying two tweaks to the scenario at-
tributes. First, the dependency version numbers are
removed, using the intuition that LLMs are typically
trained on source code that does not leverage the most
up-to-date features of the specified dependencies. If this
hypothesis is correct, solutions will be at least more
accurate because LLMs will not generate code using the
dependencies they have not been trained on. Second, half
of the task description is omitted because it consists of
a lengthy list of implementation guidelines, which are
not essential to the task description itself. A new set
of scenarios is created using these tweaks for 4 out of 5
implementations (C, C++, C#, and Java with OpenJDK).

Problem Avg. Correct Avg. GSE

Binary Trees 81.71% 34.09%
Fannkuch Redux 19.42% 2.11%
N-Body 41.71% 32.2%
Spectral Norm 18.85% 37.59%

Tab. 6: Average accuracy and GSE of evaluated prob-
lems across all LLM runs, normalized to a scale of 100
and 10,000, respectively. All scenarios of a problem are
averaged in this table.

Fig. 11 shows that the tweaked version of Fannkuch
Redux only increases the accuracy and GSE for
GPT-4O by more 2× and 4× respectively, and V3
which only increases the GSE by 14.99%. All other
models show that the tweaks do not improve accuracy
or the Green Score, and in many cases it decreases
them. A concerning result appears for 3.5 SONNET, as
its accuracy drops to zero after the tweaks, indicating
that at least a full task description and dependency
versions are needed to generate some correct solutions.
This experiment further demonstrates the importance
of analyzing each scenario attribute carefully, as even
minor changes can have a great impact on the perceived
performance of LLMs for correct and energy-efficient
code generation.
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Fig. 11: LLM accuracy and GSE for the tweaked version
of Fannkuch Redux, which has half of its description and
all dependency version numbers removed. GPT-4O and
V3 are the only models benefiting from this change.

6 Conclusion
The environmental impact of the ICT sector within the
next five years are expected to rise, with the energy de-
mand of data centers being a primary driver. The energy
cost of operating new AI models and the widespread
adoption of LLMs in modern software development
has the potential to slow down global climate change
initiatives considerably.

Motivated by these concerns, this paper introduces EN-
ERGYBENCH, a benchmark framework capable of eval-
uating the correctness and energy-efficiency of LLM-
generated code. To expand the current state-of-the-art in
energy-efficiency benchmarks for code generation, EN-
ERGYBENCH adopts a holistic and systematic approach
in the evaluation process. This approach identifies with
a high degree of granularity, what are the elements of
an LLM prompt that have the biggest impact on the
generation of correct and energy-efficient solutions. Ex-
periments reveal large shifts when two tweaks are made
to the definition of a programming problem. OPENAI’S
GPT-4O achieves 4× better energy-efficiency when half
of the information found in the task description is
removed, while ANTHROPIC’S CLAUDE 3.5 SONNET
accuracy drops to zero.

Additional experiments show that, out of 7 evaluated
LLMs, 5 have the ability to generate correct and energy-
efficient code when being prompted with an optimization
instruction. The improvements measure up to 91.9%
compared to LLM-generated solutions that are not op-
timized. However, LLMs tend to decrease in overall
accuracy when these optimizations are used, indicating
that the added complexity of energy efficiency prompts
makes it harder for LLMs to correctly solve problems.
Finally, LLMs are almost universally worse at generating
energy-efficient solutions compared to humans, with
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only one notable exception. OPENAI’S O3 reasoning
model was capable of beating human-optimized solu-
tions in the Binary Trees problem by as much as 18.68%.
This result would suggest that ongoing LLM advances
can close this gap.

ENERGYBENCH is implemented as a modular and ex-
tensible benchmark framework. Future work consists of
reaching a broader evaluation of scenarios, adaptations
and LLMs by adding new test cases. In addition, ENER-
GYBENCH can be further developed to include the LLM
hyperparameters as tunable components in the evaluation
process, such as temperature, reasoning effort, and output
budget tokens, which are elements that can greatly affect
an LLM’s performance.
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Appendix
A Optimizing the Power Hungry Average Calculator
The simple average calculator in Fig. 1 is power hungry because it depends on Pandas and invokes
pandas.read_csv, which loads the entire dataset into memory and calculates the average all at once using
pandas.DataFrame.mean. The optimized version reads and processes one row at a time to calculate the
average.
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Fig. 12: Direct metric comparison between the power hungry calculator and the optimized version. To conduct this
experiment, 100 iterations were executed and averaged for both versions using the same setup in Sec. 5.1.

B Generating Solutions Without Grounding an LLM with Domain Attributes
In isolation, a task contains sufficient data such that, by passing it to an LLM without specifying any other
attributes, it could generate a correct solution. See Fig. 13. However, two main problems arise from this lack of
specificity. First, unpredictable solutions are to be expected from vague descriptions [25, 42], especially when key
aspects such as desired programming language or required libraries are missing. Unpredictable solutions are those
where it can’t be determined with a high degree of certainty, how to execute them before prompting the LLM. The
main problem arises from the fact that plain descriptions offer no clues about the technologies required to execute
the code. Second, it is well documented that current models are prone to hallucinations [36, 57]—the phenomenon
where models reference non-existent functions or libraries.

name: Fibonacci Finder
descrtiption: |

Given a number, the program should determine whether it appears in the
Fibonacci sequence. If it does, the program should return its position in the sequence;
otherwise, it should indicate that the number is not part of the sequence.

code: |
def find_fibonacci_position(n):

if n < 0:
return -1

a, b = 0, 1
position = 1
while a < n:

a, b = b, a + b
position += 1

return position if a == n else -1
number = int(input("Enter a number: "))
position = find_fibonacci_position(number)
if position != -1:

print(f"{number} is at position {position} in the Fibonacci sequence.")
else:

print(f"{number} is not in the Fibonacci sequence.")

Fig. 13: Example of a scenario which had its solution generated by OPENAI’s GPT-4o, only using the name
and description attributes. The solution is written in Python even though a programming language is never
explicitly mentioned.
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C Host System Specifications
Tab. 7 shows a partial list of the most important components involved in executing experiments.

Component Specification

OS Ubuntu 22.04.5 LTS x86 64
Host Komplett PC
Kernel 6.8.0-52-generic
Shell bash 5.3.0(1)-beta
CPU Intel i7-8700 (12 cores) @ 800 MHz–4.6 GHz
CPU Governor performance
CPU Min Frequency 1 GHz
CPU Max Frequency 4.6 GHz
GPU NVIDIA GeForce GTX 1060 3GB
Memory 15,911 MiB

L1d Cache 192 KiB (6 instances)
L1i Cache 192 KiB (6 instances)
L2 Cache 1.5 MiB (6 instances)
L3 Cache 12 MiB (1 instance)

NUMA Nodes 1
NUMA Node0 CPUs 0–11

Tab. 7: Host system specifications used to execute all experiments, including the operating system energy
consumption profile.

D Matrix Multiplication Solutions Given as Example to One-Shot Adaptations
The solution in Fig. 14 is given to a run that uses a one-shot unoptimized adaptation, while the solution in Fig. 15
is for one-shot energy optimized adaptation. Adaptations that use a zero-shot strategy do not receive any examples.
The specific Matrix Multiplication example solution is tied to the chosen implementation, which is Java GraalVM in
the referenced figures. Moreover, the optimized example solution is created for the same host system specifications
where the experiments are executed.

20



implementation: graalvm
name: Matrix Multiplication
description: |

Create two square matrices of size N×N.
Each cell within these two matrices will be initialized with the sum of their row and column indices.
Multiply the two matrices and output the contents of the last cell.

code: |
public class Program {

public static void main(String[] args) {
int n = Integer.parseInt(args[0]);
double[] A = new double[n * n];
double[] B = new double[n * n];
double[] C = new double[n * n];
for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {
A[i*n + j] = B[i*n + j] = i + j;

}
}
for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {
double sum = 0.0;
for (int k = 0; k < n; k++) {

sum += A[i*n + k] * B[k*n + j];
}
C[i*n + j] = sum;

}
}
System.out.printf("%.0f\n", C[n*n - 1]);

}
}

dependencies: [graalvm-ce] # 23.0.0
---
args: [200]
expected_stdout: 18487100

Fig. 14: Example solution for Matrix Multiplication given as reference to runs that use a one-shot unoptimized
adaptation.
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implementation: graalvm
name: Matrix Multiplication Optimized
description: |

Create two square matrices of size N×N.
Each cell within these two matrices will be initialized with the sum of their row and column indices.
Multiply the two matrices and output the contents of the last cell.

code: |
import java.util.concurrent.*;
import java.util.stream.IntStream;
public class Program {

private static final int L1 = 64;
private static final int L2 = 256;
public static void main(String[] args) {

int n = Integer.parseInt(args[0]);
double[] A = new double[n * n];
double[] B = new double[n * n];
double[] C = new double[n * n];
IntStream.range(0, n).parallel().forEach(i -> {

for (int j = 0; j < n; j++) A[i*n + j] = B[i*n + j] = i + j;
});
int threads = Math.min(Runtime.getRuntime().availableProcessors(), 6);
ForkJoinPool pool = new ForkJoinPool(threads);
pool.submit(() -> IntStream.range(0, (n + L2 - 1) / L2).parallel().forEach(i2Block -> {

int i2 = i2Block * L2;
for (int j2 = 0; j2 < n; j2 += L2)

for (int k2 = 0; k2 < n; k2 += L2)
for (int i1 = i2; i1 < i2 + L2 && i1 < n; i1 += L1)

for (int k1 = k2; k1 < k2 + L2 && k1 < n; k1 += L1)
for (int j1 = j2; j1 < j2 + L2 && j1 < n; j1 += L1)

mulBlock(A, B, C, n, i1, j1, k1);
})).join();
pool.shutdown();
System.out.printf("%.0f%n", C[n*n - 1]);

}
private static void mulBlock(double[] A, double[] B, double[] C, int n, int i0, int j0, int k0) {

for (int i = i0; i < i0 + L1 && i < n; i++) {
for (int k = k0; k < k0 + L1 && k < n; k++) {

double aik = A[i*n + k];
int jEnd = Math.min(j0 + L1, n);
for (int j = j0; j < jEnd; j++)

C[i*n + j] += aik * B[k*n + j];
}

}
}

}
dependencies: [graalvm-ce] # 23.0.0
---
args: [200]
expected_stdout: 18487100

Fig. 15: Example solution for Matrix Multiplication given as reference to runs that use a one-shot energy optimized
adaptation.
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