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ABSTRACT
This study explores the application of voice recordings and ma-
chine learning to support early detection of Chronic Obstructive
Pulmonary Disease (COPD). Audio data were collected from 96
participants through three vocal tasks, and features were extracted
using openSMILE and SpeechBrain. Four models were tested across
multiple data configurations. Results show that SVM and Random
Forest models performed consistently well, especially with openS-
MILE features. While limitations include reliance on self-reported
diagnoses and inconsistent task execution, the findings suggest
that voice-based analysis has potential as a non-invasive, scalable
screening tool for COPD.
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1 INTRODUCTION
Recent advancements in mobile health and artificial intelligence
(AI) have demonstrated the growing potential of machine learn-
ing in supporting medical diagnostics and empowering patients

beyond traditional clinical environments. Mobile-first technologies
and wearable devices are increasingly being used for private, in-
home health assessments and pre-clinical consultations [7, 28, 41].
With the combination of sophisticated machine learning techniques
and access to large-scale medical datasets, AI-based systems have
achieved significant success in fields such as radiology, cardiology,
and disease prediction [2].

One area that stands to benefit significantly from these tech-
nological advancements is the diagnosis of respiratory diseases,
particularly Chronic Obstructive Pulmonary Disease (COPD). Af-
fecting over 390 million people globally, COPD is a progressive
and frequently underdiagnosed condition that severely impacts
patients’ quality of life. Research indicates that up to 80% of COPD
cases remain undiagnosed, with many individuals experiencing
symptoms for years before receiving a clinical diagnosis [51]. This
trend is also reflected locally in Denmark, where the present study
was conducted. According to the director of The Lung Association
of Denmark (Lungeforeningen), approximately 400,000 people in
Denmark are estimated to have COPD, but only about half have
received an official diagnosis – largely because many are unaware
they have the disease [40]. While relatively few studies have ex-
plored non-invasive approaches to identifying COPD, a notable



exception is the work by Batliner et al. at the Technical Univer-
sity of Munich (TUM), who used speech analysis during COPD
exacerbations to predict clinical status with an accuracy of 84%
[52].

Recent advances in biomedical audio analysis indicate that bio-
metric signals, such as speech may contain valuable markers of
respiratory health. Subtle variations in vocal characteristics – such
as airflow, pitch, and voice intensity – can serve as non-invasive
indicators of underlying pulmonary conditions [29]. Leveraging
machine learning techniques, these acoustic features can be system-
atically extracted and analyzed to support the detection of diseases
like COPD – potentially even before symptoms become clinically
apparent. This approach aligns with broader trends in mobile health
and passive sensing technologies, which aim to extend diagnostic
capabilities beyond traditional healthcare settings and into every-
day environments [2].

1.1 Research Question
Building on these advancements, this study investigates the po-
tential of machine learning models to detect COPD using voice
recordings. The aim is to evaluate whether acoustic features ex-
tracted from speech can be used to distinguish individuals with
COPD from those without. Specifically, the study poses the follow-
ing research question:

(How) can COPD be detected through voice recordings
captured with common mobile devices using machine
learning techniques?

Furthermore, this study investigates whether and how metadata
such as age and gender, in combination with different machine
learning models and audio feature extraction toolkits, influence
the accuracy and performance of COPD detection across various
demographic groups.

2 BACKGROUND
This section provides an overview of COPD, including its progres-
sion, impact on quality of life, and challenges in diagnosis. Further-
more, it explores the role of machine learning in medicine, with
a specific focus on its applications in speech analysis for COPD
status.

2.1 COPD in the Medical Context
Chronic Obstructive Pulmonary Disease (COPD) is a progressive
respiratory disorder characterized by limited airflow function, pri-
marily caused by chronic bronchitis and damaged alveoli, called
emphysema. It affects over 390 million people globally and caused
around 3.5 million deaths in 2021, which were roughly 5% of all
deaths globally [51]. COPD is a major public health challenge, with
mortality rates expected to rise due to aging populations and persis-
tent exposure to risk factors such as smoking tobacco, air pollution
levels, and occupational hazards [11].

2.1.1 COPDStages and the Progression of theDisease. COPD
is not a static condition but rather a spectrum of disease that is
commonly classified into several stages according to the severity of

airflow limitation [18]. The Global Initiative for Chronic Obstruc-
tive Lung Disease (GOLD) guidelines divide COPD into four stages:
Mild (GOLD 1), moderate (GOLD 2), severe (GOLD 3), and very
severe (GOLD 4). COPD may be almost asymptomatic in the early
stage, with patients experiencing only subtle symptoms, such as
mild shortness of breath during exertion or the occasional cough
[50]. As the condition progresses to advanced stages, the limitation
of airflow becomes increasingly pronounced. People with moderate
to severe disease commonly have a chronic cough, greater volume
of sputum expectoration, and shortness of breath that considerably
restricts their ability to function normally. This gradual decline
illustrates the progressive component of COPD and shows why the
initial signs are so frequently ignored or attributed to becoming
older or being unfit [18].

2.1.2 Living with COPD andQuality of Life. COPD can affect
people’s lives beyond just a decline in lung function that can be
measured. Due to intermittent symptoms in the early stages, many
people do not recognize the progression of their condition. Later
stages are often associated with substantial physical limitations
that negatively affect people’s activities of daily living, work, exer-
cise, and socializing [3]. Patients may report chronic breathlessness,
fatigue, and frequent respiratory infections, all of which have detri-
mental effects on physical activity and may lead to psychological
comorbidities such as anxiety and depression [18]. For most people,
living with COPD means a life of ongoing adjustment to changing
abilities – modifying daily activities, depending on oxygen therapy,
or attending pulmonary rehabilitation programs to preserve the
quality of life. The complex relationship between physical symp-
toms and emotional status underscores the need for comprehensive
care that responds to both medical and psychosocial concerns [3].

2.1.3 The Burden of Undiagnosed COPD. As previously pre-
sented in this paper, COPD is a major global health burden, with
approximately 60–86% of cases remaining undiagnosed [21]. Undi-
agnosed COPD is linked to poor clinical outcomes, including signif-
icantly higher rates of exacerbations, hospitalization, respiratory-
related mortality, and impaired quality of life. Delayed diagnosis
also accelerates disease progression and the likelihood of increased
comorbid conditions [35]. This source further describes that de-
tection is critical since the treatment of mild-to-moderate COPD,
the stage that most individuals have before diagnosis, can slow
the progression of the disease. Quitting smoking, medication, and
lung rehabilitation have revealed evident benefits in preserving
lung function, minimizing exacerbations, and enhancing quality of
life. Nevertheless, the paper highlights issues, such as insufficient
use of spirometry, overlooking early symptoms, and overemphasis
on tobacco hazards, which hinder the timely diagnosis of patients.
Guidelines now recommend targeted case-finding in high-risk in-
dividuals (e.g., adults over the age of 35–40 years with respiratory
symptoms, smoking history, or environmental exposure). Tech-
nological advances in portable spirometry devices and validated
risk assessment questionnaires maximize detection efficiency but
are limited by their high cost and low availability. Proactive case-
finding strategies, coupled with risk factor evaluation and testing,
are required to reduce undiagnosed COPD, improve patient out-
comes, and alleviate pressures on healthcare systems [35].
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2.1.4 Under- and Overdiagnosis of COPD. COPD is a com-
mon condition yet is often misdiagnosed with both under- and
overdiagnosis that can lead to challenges to patient care and the
healthcare systems. An underdiagnosis occurs when a patient liv-
ing with COPD has not yet been identified with the disease [14].
In many cases, individuals may live with COPD for years before
receiving a diagnosis, during which their condition can progress
untreated [24]. A significant factor contributing to underdiagnosis
is the failure to perform spirometry, which is used to confirm ir-
reversible airflow obstruction and is a key characteristic of COPD
[23].

Another concern related to the often delayed diagnosis and treat-
ment of COPD is the stigma associated with the disease, largely
due to its strong link to smoking. Individuals with COPD are fre-
quently assumed to be smokers and may experience stigmatization
from others as a result [53]. This perception frames COPD as a
preventable and self-inflicted condition, which can lead to feelings
of guilt or self-blame among those affected. Such stigma has the
potential to negatively influence both the willingness of individu-
als to seek medical attention and the quality of care they receive,
ultimately affecting the diagnosis and treatment of the disease [53].

An overdiagnosis of COPD happens when a patient is misdiag-
nosed with COPD when, in reality, they have a different disease or
health complication [23]. Overdiagnosis occurs when a spirometry
test is not performed, and healthcare personnel diagnose the patient
based on other tests or symptoms. Overdiagnosis often occurs in
older patients, whose natural age-related decline in lung function
may be misinterpreted as COPD. Additionally, comorbidities like
asthma or bronchiectasis can mimic COPD symptoms, leading to
misdiagnosis [23].

2.2 Machine Learning in Medicine
Machine learning algorithms leverage statistical methods and com-
putational techniques to identify patterns in large datasets, includ-
ing text, numerical data, images, and audio. Machine Learning
underpins various modern applications, such as search engines, rec-
ommendation systems, and AI chatbots [22], as well as numerous
advancements in medical diagnostics and treatment. Advances in
processing power, memory, and storage have enabled computers
to analyze and identify patterns in vast amounts of medical data
–analyses that would have been infeasible just a few years ago [13].
An example of machine learning in this field is the automation of
electrocardiogram (EKG) interpretation by cardiologists. Machine
learning algorithms analyze EKG test results, identifying patterns to
assist in diagnosing cardiac conditions [13]. In radiology, machine
learning is used for the automated detection of lung nodules in chest
X-rays. Both this and automated electrocardiogram interpretation
illustrate how technology can assist trained medical professionals.
In these cases, the computer approximates the diagnostic capabili-
ties of a physician with high accuracy, but at a significantly faster
pace and fewer resources [13].

2.3 Machine Learning & Speech Analysis
Speech Analysis utilizes speech and voice characteristics to extract
and classify audio signals [6]. This is achieved through feature
extraction techniques such as energy, jitter, and spectral features

– including flux, roll-off, and centroid – among many others. The
extracted features are then stored as structured data, enabling their
use in training machine learning models [5].

2.3.1 The Role of Speech Analysis in Medicine. Speech Analy-
sis has gained interest in the medical field, as paralinguistic analysis
can assess a wide range of health conditions due to the complexity
of speech production in relation to overall health [39]. This includes
both neurological and respiratory health, as even slight changes in
these areas can affect a person’s ability to control the vocal appara-
tus, thereby altering acoustic properties [29]. The unique insights
derived from pathological speech changes, combined with the ease
of collecting, storing, and programmatically analyzing speech data
with AI [48], have contributed to the growing role of speech analy-
sis in medicine. This trend is further reflected in the work of Milling
et al., where AI-based speech analysis is emerging as a powerful
tool for detecting a wide range of diseases – potentially becoming
as integral to medical diagnostics as blood tests [36].

2.3.2 Speech Analysis in COPD. With the increasing applica-
tion of AI technology in COPD management, modern tools are
frequently used for diagnosis, treatment, and post-diagnosis care.
However, speech analysis particularly in the early diagnosis of
COPD, remains relatively underutilized [25]. One of the most no-
table studies in this field comes from the Technical University of
Munich (TUM), where researchers have explored the use of speech
analysis to assess the clinical and functional status of participants
with COPD during and after exacerbation [52]. In this study, scien-
tists programmatically analyzed voice recordings of participants
with COPD both upon admission for critical treatment and after dis-
charge. The research led to the development of a machine learning
model capable of predicting patient readiness for discharge with
84% accuracy, based on data from 50 participants with COPD in the
category of GOLD 2, GOLD 3, and GOLD 4 [52].

3 METHODS
This section outlines the methodological approach taken to col-
lect and analyze data for the purpose of developing a machine
learning model capable of detecting COPD based on voice record-
ings. It describes the procedures used for participant recruitment,
data collection, audio processing, and complementary qualitative
interviews. This process was meant to ensure both technical con-
sistency and ethical compliance while capturing a diverse range
of phonatory and respiratory characteristics from individuals with
and without COPD. The following subsections provide an overview
of the dataset, recording protocols, and interview techniques em-
ployed during the study.

3.1 Data Collection
The primary dataset in this study consists of audio recordings
from human participants, including both individuals diagnosed
with COPD and a control group without any known respiratory
conditions. Recordings were collected using microphones on smart-
phones (iPhone 13 Pro, iPhone 12 Pro, iPhone 10) in quiet, controlled
environments. See Figure 2.
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Participants were primarily recruited in person through visits to
local activity centers, lung cafés, lung choirs, and COPD-specific
fitness groups in Aalborg and Aarhus. A smaller number of par-
ticipants were recruited online through COPD-related Facebook
groups, Google Forms, and E-mail. Recordings were conducted
either in person or remotely by the participants themselves. In
total, data was collected from 48 participants with varying stages
of COPD (GOLD 1 to 4) and 48 participants in the control group, all
aged between 26 and 88 years, with each group having a median
age of 72. Details are further described in Table 1 and Figure 1.

Statistic COPD Non-COPD

COPD GOLD Stages

GOLD 1 14 (29.2%) -
GOLD 2 14 (29.2%) -
GOLD 3 14 (29.2%) -
GOLD 4 1 (2.1%) -
GOLD unknown 5 (10.4%) -
Gender Distribution

Females 41 (age: 49-85) 36 (age: 34-88)
Males 7 (age: 64-74) 12 (age: 26-83)
Total 48 48
Median Age 72 72

Table 1: COPD and Non-COPD Statistics

Figure 1: Age Profile of COPD Participants

Each participant was asked to perform three specific vocal tasks
designed to capture a broad spectrum of respiratory and phonatory
characteristics.

(1) Sustained vowel pronunciation: Participants continuously
pronounced a sequence of Danish vowels – “A, E, O, Ø, and
Å” – to assess vocal steadiness and airflow control.

(2) Reading aloud: Participants read the short fable The North
Wind and the Sun aloud. This test was selected for its stan-
dardized structure.

(3) Coughing: Participantswere instructed to cough three times
into the microphone to capture forced expiratory sounds
typically affected by respiratory illness.

This data protocol was adapted by Batilener et al. [52].

3.2 Dataset Preparation
The average duration of each participant session was approximately
1–2 minutes. Recordings were manually segmented into individual
audio files for each task and stored in WAV format at a sample
rate of 44.1 kHz. The only preprocessing method used was silence
trimming, using a Python library called "pydub". In addition, Adobe
Auditionwas used to reduce background noise in a few audio record-
ings where excessive noise was present. File naming conventions
and metadata, such as age, gender, and COPD status, were stored
in a structured format to support model training. This structure
also included additional, unused metadata, such as the COPD stage
and remarks or comments made during the recording sessions.
These supplementary data points could be leveraged in future work
to train models with alternative focuses or to support more fine-
grained analyses. An example can be seen in snippet 1 of the JSON
metadata file.

{
" name " : " 0 0 0 1 2 " ,
" s i l e n c e _ t h r e s h " : −40 ,
" age " : 7 2 ,
" gender " : "M" ,
" COPD_status " : 1 ,
"COPD_GOLD " : 3 ,
" comment " : " Th i s person
cou ld not read the s c r i p t ,
so he t o l d a s ho r t s t o r y i n s t e a d "
}

Listing 1: Metadata for Audio Recordings

3.3 Interview Data
To complement the quantitative audio data, short, informal, semi-
structured interviews were conducted with a subset of participants
after they had completed their recordings. These followed the qual-
itative methodology of Brinkmann and Kvale, using an interview
guide designed to elicit reflections on respiratory health, recent
symptoms, and participants’ experiences with the recording process
[8]. Given the participant demographic, the interviews were con-
ducted in a conversational and approachable manner to promote
comfort and openness [47]. All interviews were audio-recorded
and anonymized in accordance with GDPR and institutional ethical
guidelines.

Although the interview data was not used to train the machine
learning models, it played an important role in validating the inter-
pretation of the audio recordings and enriched the overall dataset.
The conversations also confirmed several assumptions drawn from
existing literature and consultations with medical professionals –
particularly the insight that many individuals may unknowingly
live with COPD for years before receiving a formal diagnosis. Addi-
tionally, the interviews revealed a generally positive attitude among
participants, with many expressing appreciation for contributing
to research that has the potential to benefit future generations of
patients.
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Figure 2: An example of an audio recording

3.4 Data Processing
To evaluate robustness, generalizability, and overall performance,
the data processing pipeline incorporated two different toolkits for
audio feature extraction: openSMILE and SpeechBrain. Addition-
ally, four distinct machine learning models were tested: Random
Forest, Support Vector Machine (SVM), Logistic Regression, and a
Neural Network. Various configurations were explored to better
understand model behavior and generalizability, including models
trained exclusively on female participants, models excluding age
metadata, and models including both male and female data. This
comparative approach was designed to identify potential biases
and assess the influence of demographic features on prediction
accuracy. Model evaluation was carried out using GridSearchCV in
combination with StratifiedGroupKFold cross-validation, enabling
a thorough comparison of average precision, recall, and F1-score
across different hyperparameter settings and data splits [32, 33]. A
visualization of this process is shown in figure 3.

Figure 3: A general overview of the COPD prediction work-
flow

3.4.1 Audio Feature Extraction. After collecting audio record-
ings from both COPD and non-COPD participants, two open-source
toolkits — SpeechBrain and openSMILE—were used to extract voice
features potentially indicative of respiratory illness [6, 43]. Speech-
Brain is a deep learning-based speech processing toolkit built on
PyTorch. In this study, speaker embeddings were generated, which
are dense vector representations that capture subtle vocal character-
istics, such as articulation, prosody, and vocal tract dynamics [42].
These embeddings were produced using pre-trained models trained

on the VoxCeleb1 and VoxCeleb2 datasets, which include over one
million utterances from thousands of speakers in diverse real-world
conditions [38]. In the context of COPD, these embeddings may
reflect subtle respiratory-related changes in speech patterns, such
as:

• Shortness of breath affecting phrasing and intonation
• Altered speech rhythm due to reduced airflow
• Weakened voice intensity

OpenSMILE, on the other hand, offers a more traditional feature
extraction approach. Unlike SpeechBrain, it does not rely on deep
learning or pre-trained models. Instead, it extracts a wide range of
well-documented acoustic features directly from the audio signal.
These include:

• Jitter and shimmer, which reflect vocal stability and are
often affected by respiratory strain

• Energy and pitch variation, which may be reduced in indi-
viduals with impaired breath control

• Speech rate and pause patterns, which can change due to
respiratory fatigue

While openSMILE provides less abstract representations than
SpeechBrain, its features are highly interpretable and commonly
used in speech research, demonstrations, and prototyping appli-
cations [6]. The features extracted by both toolkits were used as
input to various machine learning models to evaluate whether vocal
patterns could be used to distinguish between individuals with and
without COPD.

3.4.2 Models. Given the manual labeling of audio data, a super-
vised learning approach is suitable. Supervised models learn to map
input features to known output labels, enabling predictions on new,
unseen data. We employed four common supervised models: Lo-
gistic Regression, Random Forest, Support Vector Machine (SVM),
and Neural Networks – each offering different strengths for this
task [49].

Logistic Regression is a simple linear model ideal for binary
classification. It is efficient and interpretable, making it a good
baseline for distinguishing between COPD and non-COPD cases
[30].

Random Forest is an ensemble model that combines multiple
decision trees to enhance robustness and mitigate overfitting. It
handles noisy data well and can capture more complex feature
interactions [27].

The Support Vector Machine (SVM) excels at separating classes
with a clear margin and performs well in high-dimensional fea-
ture spaces. With kernel functions, it can also capture non-linear
patterns in the audio data [26].

Neural Networks are well-suited for modeling complex, non-
linear relationships. They can detect subtle patterns in voice and
cough features but require more tuning and computational re-
sources [20, 44].

Each model was implemented using Scikit-learn or TensorFlow,
with training and evaluation performed using an 80/20 train-test
split and StratifiedGroupKFold cross-validation to ensure repro-
ducibility and account for group structure in the data [45, 46].
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Table 2: Performance Metrics for COPD Prediction Models Across Datasets and Feature Sets (0 = non-COPD, 1 = COPD)

Model Dataset Precision (0) Recall (0) F1 (0) Precision (1) Recall (1) F1 (1) Accuracy

Random Forest
SpeechBrain (w/ age) 0.52 0.57 0.49 0.69 0.66 0.65 0.6034
SpeechBrain (w/o age) 0.51 0.61 0.50 0.69 0.62 0.62 0.5938
SpeechBrain Females (w/ age) 0.53 0.39 0.40 0.72 0.81 0.75 0.6582
SpeechBrain Females (w/o age) 0.53 0.39 0.40 0.72 0.81 0.75 0.6582
openSMILE (w/ age) 0.6427 0.5896 0.6120 0.6575 0.7036 0.6772 0.6508
openSMILE (w/o age) 0.6391 0.5954 0.6131 0.6604 0.6978 0.6765 0.6509
openSMILE Females (w/ age) 0.5801 0.5486 0.5578 0.6754 0.7034 0.6848 0.6378
openSMILE Females (w/o age) 0.6025 0.5662 0.5774 0.6864 0.7199 0.6985 0.6530

SVM
SpeechBrain (w/ age) 0.53 0.57 0.53 0.69 0.66 0.66 0.6215
SpeechBrain (w/o age) 0.53 0.57 0.54 0.69 0.66 0.66 0.6233
SpeechBrain Females (w/ age) 0.45 0.44 0.42 0.74 0.75 0.74 0.6519
SpeechBrain Females (w/o age) 0.53 0.57 0.54 0.69 0.66 0.66 0.6233
openSMILE (w/ age) 0.6371 0.6809 0.6527 0.6953 0.6485 0.6659 0.6612
openSMILE (w/o age) 0.6403 0.6566 0.6424 0.6853 0.6650 0.6700 0.6595
openSMILE Females (w/ age) 0.5827 0.6429 0.6065 0.7108 0.6531 0.6766 0.6529
openSMILE Females (w/o age) 0.5731 0.6660 0.6065 0.7171 0.6159 0.6548 0.6439

Logistic Regression
SpeechBrain (w/ age) 0.52 0.58 0.53 0.69 0.65 0.66 0.6145
SpeechBrain (w/o age) 0.52 0.58 0.53 0.69 0.65 0.66 0.6146
SpeechBrain Females (w/ age) 0.40 0.51 0.43 0.75 0.65 0.69 0.6111
SpeechBrain Females (w/o age) 0.42 0.54 0.46 0.76 0.67 0.71 0.6288
openSMILE (w/ age) 0.6328 0.6724 0.6485 0.6924 0.6502 0.6673 0.6602
openSMILE (w/o age) 0.6402 0.6566 0.6424 0.6852 0.6649 0.6700 0.6595
openSMILE Females (w/ age) 0.5791 0.6934 0.6262 0.7332 0.6200 0.6671 0.6578
openSMILE Females (w/o age) 0.5886 0.6982 0.6315 0.7434 0.6287 0.6747 0.6657

Neural Network
SpeechBrain (w/ age) 0.44 0.54 0.46 0.63 0.54 0.57 0.5407
SpeechBrain (w/o age) 0.45 0.58 0.49 0.64 0.53 0.56 0.5434
SpeechBrain Females (w/ age) 0.35 0.64 0.44 0.74 0.44 0.55 0.52
SpeechBrain Females (w/o age) 0.40 0.33 0.36 0.59 0.66 0.62 0.5077
openSMILE (w/ age) 0.6404 0.6431 0.6308 0.6682 0.6544 0.6504 0.6452
openSMILE (w/o age) 0.6384 0.6333 0.6230 0.6760 0.6653 0.6609 0.6497
openSMILE Females (w/ age) 0.5716 0.6660 0.6128 0.7213 0.6249 0.6665 0.6533
openSMILE Females (w/o age) 0.5737 0.6741 0.6135 0.7182 0.6187 0.6589 0.6464

4 RESULTS
This section presents the results of the experiments and perfor-
mance evaluation. A total of 32 model outputs were generated by
combining the four machine learning models with the two different
feature extraction toolkits. Each combination was tested under four
distinct data configurations:

• Including both male and female participants with age
• Including both male and female participants without age
• Female-only participants with age
• Female-only participants without age

This stratification enabled the exploration of how gender and age
metadata influence model performance and generalizability. Each
experiment yielded metrics for both COPD-positive (label: 1) and
COPD-negative (label: 0) classes 1. The metrics reported include:

• Precision: the proportion of true positives among all pre-
dicted positives.

• Recall: the proportion of true positives identified among all
actual positives.

• F1 Score: the harmonic mean of precision and recall, pro-
viding a balance between the two.

• Accuracy: the overall proportion of correct predictions. [1]

1Class “0” corresponds to non-COPD individuals. Class “1” refers to those diagnosed
with COPD

Thesemetrics were calculated using 5-fold and 10-fold cross-validation.
Cross-validation is a technique used to evaluate how well a ma-
chine learning model generalizes to unseen data. In a 5-fold cross-
validation, the dataset is split into five equal parts (folds). The model
is then trained on four folds and tested on the remaining one fold.
This is repeated five times, each time using a different fold as the
test set. The final performance metrics (e.g., accuracy, F1 score) are
averaged across all five runs. The same logic applies to the 10-fold,
but with the data split into ten parts instead of five. This provides a
more stable estimate of performance, especially on smaller datasets,
though it takes more time to compute [10].

A summary of these performance metrics is presented in Table 2.
This comprehensive comparison illustrates how different combina-
tions of feature sets, model types, and demographic configurations
affect model performance.

These findings are further explored in the Discussion section,
which examines key limitations and reflects on the impact of factors
such as gender imbalance, the inclusion of age metadata, differences
between audio feature extraction toolkits, and other challenges
encountered during the project.

4.1 Confusion Matrix
Figure 4 presents the averaged confusion matrix for the SVMmodel
trained, using features extracted with the openSMILE toolkit. Due
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to its strong performance, this model was selected for detailed
illustration through a confusion matrix. The matrix displays the
model’s predictions on individual audio chunks across all validation
folds. Each chunk was labeled based on the participant’s known
COPD status (non-COPD and COPD).

Figure 4: Averaged Confusion Matrix of SVM Model (openS-
MILE)

The vertical axis represents the true class labels, while the hori-
zontal axis shows the predicted labels. The confusion matrix shows
that the model correctly classified 237 non-COPD chunks and 264
COPD chunks. On the other hand, 126 non-COPD chunks were
misclassified as COPD and 137 COPD chunks were misclassified
as non-COPD. These outputs serve as the basis for evaluating the
model’s performance using several key metrics, from which ac-
curacy, precision, recall, and F1-score can be calculated. These
calculated values are presented in Table 2 for all models.

The color intensity in the matrix reflects the frequency of predic-
tions, where darker shades represent higher counts. The confusion
matrix provides an overview of how the SVM model performs in
distinguishing between the two classes, serving as the basis for
further analysis in the discussion section.

5 DISCUSSION
This section presents the key findings of the study, examining both
the strengths and limitations of the methodological approach and
model performance. It aims to contextualize the results presented
in the previous section by examining potential sources of bias,
data-related challenges, and the implications of demographic varia-
tion and model behavior. Additionally, this section outlines critical
factors that may influence the generalizability and robustness of
the findings while highlighting avenues for future research and
improvement.

5.1 Method Limitations
While the methods employed in this study were carefully designed
to ensure consistency and reliability, several limitations emerged
during data collection and model development. These limitations

may have impacted both the quality of the dataset and the general-
izability of the machine learning models. The following subsections
outline key challenges and considerations that should be addressed
in the future development of our models.

5.1.1 CollectingOnlineRecordings. Asmentioned in Section 3.1,
recruitment was initiated by publishing a post in several Facebook
groups aimed at reaching potential participants. Individuals were
given the option to either record themselves or meet in person
for assistance with the recording process. The majority chose to
record themselves. However, many did not follow up, and some
withdrew after reviewing the provided instructions for completing
and submitting the recording.

It was initially assumed that a portion of users in these forums
might have limited technical proficiency. To address this poten-
tial barrier, a short video guide was developed to clearly outline
each step required for creating and submitting the recording. How-
ever, this did not have any effect on gathering more data from this
demographic online.

5.1.2 Imbalanced Gender in Dataset. During the collection
of the recordings from COPD and non-COPD participants, we at-
tendedmultiple events wheremost participants werewomen, which
resulted in an imbalance in our dataset. However, this imbalance
in our dataset could also be a result of the prevalence of COPD
in females has increased, and the number of females diagnosed
with COPD in the United States now outnumbers males. A possible
reason for this is females may be more susceptible to the effects of
cigarettes compared to males [37]. The imbalance could limit our
research, as vocal characteristics differ between men and women
due to physiological factors that influence their voice patterns. A
dataset dominated by women might affect the model’s ability to
generalize to the broader population, particularly male patients.

5.1.3 Unverified Self-Reported Diagnoses. A significant limi-
tation of this study is the verification of participants’ COPD status.
The classification of individuals into COPD and non-COPD groups
was based solely on self-reporting. No medical records, diagnostic
test results (such as spirometry), or clinical documentation were
obtained to confirm diagnoses. As a result, there is a risk of mis-
classification, especially among participants in the control group,
where undiagnosed COPD may have gone unrecognized. This in-
troduces potential noise into the training data, which could affect
model performance.

5.1.4 Age Limitations. An age-related limitation was present
during the data collection process, as the median age of the partici-
pants was 72. To ensure the most valid and generalizable results, the
control group needed to be of a similar age, aligning with the typi-
cal age range at which individuals are commonly diagnosed with
COPD [16]. However, completely excluding younger individuals
would reduce the model’s precision if used by a broader demo-
graphic. To address this, a smaller subset of younger participants
in their late 20s, 30s and 40s was also included in the final model.

Another limitation related to age is that COPD symptoms typi-
cally begin to manifest in individuals over the age of 40 [9]. Addi-
tionally, research shows that many people experience symptoms
for several years before receiving a formal diagnosis. This presents
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a potential issue in the dataset – especially at scale – as some indi-
viduals labeled as "non-COPD" may, in fact, unknowingly exhibit
early signs of the disease without yet being diagnosed. As a result,
the model may learn from mislabeled data, inadvertently treating
early-stage COPD cases as healthy controls. This could reduce the
model’s overall precision and hinder its ability to accurately distin-
guish between healthy and affected individuals, particularly in the
early stages of the disease.

5.1.5 Inclusion of Active Smokers. This limitation of the study
concerns the composition of the control group, which includes
individuals who are current or former smokers. While these partici-
pants reported no known respiratory conditions, it cannot be ruled
out that some might have undiagnosed or early-stage COPD. This
introduces a risk of false positives in the classification task, as the
model may learn to associate smoking-related vocal characteristics
with COPD.

However, excluding smokers entirely from the control group
would have introduced another bias, where we would be comparing
primarily non-smokers with a COPD group largely composed of
participants with a history of smoking. This would risk training
the model to distinguish between smoking status rather than the
status of their disease. Including smokers in the control group,
therefore, reflects a more realistic scenario, where early COPD is
often undiagnosed, but also underlines the need for awareness in
interpreting borderline cases.

5.1.6 Sustained Vowels. Another limitation relates to the vari-
ability in how participants performed the sustained vowel pronun-
ciation task. The purpose of this task was to capture long, steady
vowel sounds that could help highlight vocal or respiratory dif-
ferences between individuals with and without COPD. However,
several participants did not follow the instructions as intended. In
some cases, vowels were pronounced quickly or with little effort to
sustain the sound, while others varied in how long or clearly they
vocalized the vowels. Furthermore, some participants were either
uncomfortable with or unable to read aloud. In such cases, they
instead shared a short anecdote or a personal story.

This inconsistency in task execution may have introduced dif-
ferences in the recordings that are unrelated to COPD, which can
affect how the machine learning models interpret and learn from
the data. When the input quality varies from one participant to
another, it becomes more difficult for the model to focus on the
disease-related patterns. Although this kind of variation reflects
real-world user behavior, it also highlights the importance of pro-
viding clearer instructions and possibly excluding recordings that
do not meet the expected task format in future studies.

5.1.7 Post-Processing of Audio. During the post-processing of
the collected audio recordings, several samples contained back-
ground noise or music that needed to be removed to prevent confu-
sion for the models. However, even when applied carefully, noise
reduction tools can unintentionally eliminate important speech
features. This may result in the loss of relevant information critical
for accurately detecting patterns associated with COPD, potentially
degrading the model’s performance.

Having discussed the limitations of the methods utilized, we now
turn to the performance and interpretation of our model.

5.2 Performance of the Models
This section evaluates and compares the performance of the vari-
ous machine learning models trained to classify COPD from voice
recordings. The discussion is structured around model types, fea-
ture sets, and the impact of demographic information.

Reviewing the results of the trained models in Table 2, one of the
first notable observations is the overall consistency in performance
across most models. However, the neural network—particularly
when using the SpeechBrain toolkit, exhibits the lowest accuracy
among all evaluated models. Several factors likely contribute to this
outcome. Neural networks generally require substantially larger
datasets to generalize effectively and avoid overfitting. A commonly
cited rule of thumb suggests that a neural network needs at least
ten times more training samples than the number of parameters
in the model [15]. When using openSMILE, the eGeMAPSv02 fea-
ture set was applied, which includes up to 88 acoustic features —
potentially with even more trainable parameters depending on the
network architecture [4]. This suggests that a minimum of approx-
imately 880 samples would be necessary to fully exploit a neural
network’s capacity. In contrast, the SpeechBrain model employs a
deep learning-based feature extractor (spkrec-xvect-voxceleb) that
outputs 512-dimensional speaker embeddings and likely contains
thousands of trainable parameters [17]. Consequently, several thou-
sand recordings would be required for effective training — far more
than were available in this study.

In addition to data limitations, the architectural design of neural
networks may also influence performance. Unlike traditional ma-
chine learning models, neural networks are often considered “black
boxes,” as the internal processes by which inputs are transformed
into outputs are not easily interpretable. This lack of transparency
complicates efforts to diagnose performance issues, whichmay stem
from data scarcity, overfitting, or suboptimal model design—such
as the number and type of layers, the number of nodes per layer,
or the choice of activation functions. It is, therefore, plausible that
the neural network implemented in this study was not optimally
configured for the relatively small dataset and high-dimensional
feature representation, further contributing to its lower accuracy
[31].

When evaluating models for the early detection of diseases such
as COPD, achieving a high recall for positive cases is particularly
important. In this context, it is generally preferable to produce false
positives – identifying healthy individuals as potentially having
COPD – than tomiss actual cases, as the latter could delay necessary
treatment. However, this prioritization must be properly balanced
to avoid overwhelming false positive rates. Notably, the Random
Forest models trained exclusively on female participants using the
SpeechBrain toolkit stood out with a recall of 81% for COPD class
(1). Despite this strong performance in identifying positive cases,
the same models showed a recall of only 39% for non-COPD cases,
suggesting a significant bias toward predicting the presence of the
disease. This imbalance indicates a high rate of false positives for
healthy individuals. Such skewed performance is consistent across
most models trained using SpeechBrain, likely due, as previously
mentioned, to the fact that deep learning-based toolkits require
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substantially larger datasets to generalize effectively and maintain
balanced predictions across classes.

When evaluating the top-performing model triads – Random
Forest, SVM, and Logistic Regression trained with the openSMILE
feature set – all demonstrate accuracy within the range of 64–66%.
Notably, the SVM model trained on both male and female par-
ticipants, without incorporating age metadata, achieves a well-
balanced recall: 66.5% for COPD cases and 65.6% for non-COPD
cases. Logistic Regression shows a similar trend, while Random
Forest tends to prioritize recall for COPD cases (72%) at the cost
of reduced performance for non-COPD cases. These differences
can be attributed to the fundamental mechanics of each algorithm.
Random Forest, an ensemble method based on decision trees, is
generally robust against overfitting and does not require feature
scaling [19]. However, this robustness may come at the expense
of nuanced predictions in smaller datasets, especially for under-
represented classes. Like Neural Networks, Random Forest models
typically perform better with larger datasets, where their ensemble
nature can leverage greater variance [12]. Conversely, SVM and
Logistic Regression may perform adequately on smaller datasets
but are more sensitive to issues such as class imbalance and the ab-
sence of detailed feature scaling. While these models are also more
prone to overfitting under these conditions, the use of validation
techniques such as StratifiedGroupKFold helps mitigate these risks
by preserving class distributions across training and test folds [34].

Finally, in examining gender-specific classification, the models
generally demonstrate slightly higher precision in detecting COPD
when trained exclusively on female participants. Performance also
varies depending on the inclusion of age metadata. This trend is
likely influenced by the dataset’s imbalance, with a significantly
higher number of female recordings. Moreover, the relatively small
overall dataset size may limit the generalizability and robustness
of the models. These observations suggest that model performance
could benefit not only from a more balanced and diverse dataset
– particularly one with a greater proportion of male participants
– but also from a larger volume of samples overall. Notably, the
SVM model appears to utilize age metadata more heavily in its
decision-making process, especially regarding COPD recall, where
a performance difference of approximately 4 percentage points is
observed. This highlights a potential area where feature scaling
could enhance model accuracy, particularly if the model is overly
sensitive or biased toward raw age values.

5.2.1 SVM Confusion Matrix. As shown in Figure 4, the con-
fusion matrix illustrates the number of true positive (TP), true
negative (TN), false positive (FP), and false negative (FN) predic-
tions.

When diagnosing COPD, balancing false positives and false nega-
tives is crucial, as it reflects the broader challenge of underdiagnosis
and overdiagnosis. In this case, the model had a recall of 65.83%
for the COPD class, meaning it failed to identify about 34.17% of
actual COPD cases (false negatives). This is concerning, as missing a
COPD diagnosis early can delay treatment and worsen the patient’s
condition. Although the model’s precision was slightly higher at
67.69%, the number of false positives (126) remains significant and
could lead to unnecessary stress for the user.

5.2.2 Proof of Concept. While the current findings highlight
promising avenues for classifying COPD from voice recordings, the
modest accuracy and class imbalance underscore limitations in the
existing dataset. A pronounced gender skew and a limited overall
sample size constrain both the generalizability and robustness of
the results. Future research should prioritize expanding the dataset
– particularly by including more male participants and increasing
the total number of samples. Furthermore, incorporating domain
knowledge for feature selection or exploringmultimodal data fusion
(e.g., combining audio with sensor or questionnaire data) could
further enhance model performance.

An additional opportunity lies in utilizing the collected COPD-
GOLD status data (see listing 1). Training models specifically on
early-stage cases (GOLD 1–2), combined with a larger and more
diverse dataset, could potentially enhance the ability to detect early
signs of COPDmore effectively. Another promising direction would
be to train models capable of distinguishing between GOLD stages.
Such a system could be valuable for monitoring disease progression
in diagnosed patients, assessing whether their condition is improv-
ing or worsening – potentially estimating lung function remotely
without requiring a hospital visit.

These findings demonstrate the feasibility of using voice features
to classify COPD, particularly when combined with metadata such
as age. While the models are not yet robust enough for clinical
deployment, the observed performance, especially in female par-
ticipants, provides compelling proof of concept. Future work with
larger, more balanced datasets and additional feature engineering
could further improve predictive accuracy and generalizability.

6 CONCLUSION
This study explored the feasibility of utilizing voice recordings
and machine learning techniques to detect Chronic Obstructive
Pulmonary Disease (COPD). Audio data were collected from in-
dividuals diagnosed with COPD as well as from a control group
without known respiratory conditions. Four classification models
— Logistic Regression, Support Vector Machine (SVM), Random
Forest, and a Neural Network were trained on acoustic features
extracted using both the openSMILE and SpeechBrain toolkits.

The findings demonstrate that several models, particularly those
utilizing openSMILE features, are capable of distinguishing between
COPD and non-COPD cases with moderate accuracy, recall, and F1-
scores. While performance varied depending on model architecture
and metadata configurations such as gender and age, the results
provide a compelling proof of concept for leveraging voice analysis
in COPD screening. In particular, the SVM and Random Forest
models showed consistently balanced classification outcomes across
multiple experimental setups.

Nevertheless, several limitations must be acknowledged. The
relatively small sample size, gender imbalance, and reliance on
self-reported diagnoses may have introduced bias and limited the
generalizability of the results. Furthermore, some participants did
not consistently perform the required tasks – such as sustained
vowel pronunciation – potentially introducing noise into the feature
extraction process. These challenges highlight the importance of
standardized recording procedures and the use of clinically verified
datasets in future research.
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Despite these constraints, the project makes a meaningful con-
tribution to the emerging field of speech analysis by demonstrating
the potential of low-cost, non-invasive diagnostic tools based on
voice. This approach holds promise for scalable, at-home screen-
ing of COPD. Future work should aim to significantly expand the
dataset, especially by including more male participants and clini-
cally validated cases, and explore whether machine learning models
can not only detect COPD but also assess its severity or progression.
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See Appendix 1: Thesis summary: Detecting COPD Through Speech
Analysis: A Dataset and Machine Learning Approach.
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