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Abstract:

The adoption of electric vehicles has increased

the demand for high performance and long lasting

lithium-ion battery packs. This project investigates

the development of a battery management system

that uses active balancing through power electronic

switches. The aim is to improve battery efficiency,

safety, and longevity. The proposed method uses

an artificial neural network to generate control

signals for pulse width modulation of the switches.

This enables dynamic management of both the

state of charge and temperature across individual

battery cells. A battery cell model is developed

in MATLAB/Simulink, including state of charge

estimation, open circuit voltage estimation, an

equivalent circuit model, and a thermal model.

These are then made into a modular battery pack

model consisting of six cells. The artificial neural

network control is trained to minimize deviations in

state of charge and temperature, which it then uses

to compute modulation signals for controlling the

bypass switches. The simulation results show that

effective balancing and convergence of both the state

of charge and the temperature is done within 2500

seconds. A robustness test that included sensor noise

up to ±10% is also made and it confirms the stability

of the control. Furthermore, a virtual platform

is used to validate the bypass method without

involving real batteries. These results highlight

the potential of using power electronic switches and

a battery management system to improve battery

performance, longevity, and efficiency in electric

vehicle applications.
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Summary
This master thesis presents the development of a power electronics-enabled battery management

system for e-mobility applications. The work focuses on using artificial neural network control

and active balancing by power electronic switches to improve the performance and lifetime of

lithium-ion battery packs in electric vehicles.

The project includes a state of the art review which investigates state of charge estimation

methods, battery modeling techniques, and cell balancing strategies. Based on this review,

an equivalent circuit model is chosen due to its balance between accuracy and computational

efficiency.

The battery modeling is done using MathWorks MATLAB/Simulink, where a battery cell model

is built from four subsystems. These are state of charge estimation, open circuit voltage

estimation, an equivalent circuit model, and a thermal model. These cell models are then

connected in series to form a battery pack with switchable bypass paths. The switching is

controlled using pulse width modulation signals obtained from the artificial neural network

control.

Simulations show that the artificial neural network control achieves full state of charge and

temperature balancing within 2500 seconds. The robustness of the system is also tested by

adding noise to simulate sensor inaccuracies. The control remains effective, indicating high

robustness to noise.

A virtual platform using digital signal processors and a Google Coral board is used to safely

validate the system without real batteries. Here, the balancing method is tested which validated

the effectiveness of the bypass method.

Although the artificial neural network control is not implemented on the virtual platform,

the results support its potential as an efficient and intelligent control strategy. Future work

includes deploying artificial neural network control on hardware, developing switching circuits,

and testing on real battery cells.
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Acronyms
ANN Artificial Neural Network.

BMS Battery Management Systems.

DDPG Deep Deterministic Policy Gradient.

DSP Digital Signal Processor.

ECM Equivalent Circuit Model.

EIM Electrochemical Impedance Models.

EM Electrochemical Models.

EVs Electric Vehicles.

FS-MPC Finite Set Model Predictive Control.

HIL Hardware in the Loop.

KNN K-Nearest Neighbor.

LiB Lithium-ion Battery.

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor.

OCV Open Circuit Voltage.

PWM Pulse Width Modulation.

SOC State of Charge.
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Nomenclature
Units of measurement

Symbol Explanation Unit

A Surface area m2

C capacitance F

Cp Specific heat capacity J
K·kg

Ec Error signal -

g Activation function -

Hj Output function -

h Heat transfer coefficient W
m2·K

I Current A

K Iteration number -

ki Control gain -

L Number of neurons -

M Number of neurons -

m Mass kg

n Number of cells -

OC Output function -

OCV Open Circuit Voltage V

Q Heat generation rate W
m3

Qnom Nominal battery capacity Ah

R Resistance Ω

Rth Thermal resistance K
W

S Switch -

S′ Complementary switch -

SOC State of charge %

SOCAV Average state of charge %

T Temperature ◦C or K

TA Ambient temperature ◦C or K

Tf Temperature of fluid K

t Time s

V Voltage V

Vbat Battery voltage V

Vg Gate voltage V

VOC Open circuit voltage V

Vout Output voltage V

Vt Terminal voltage V

wij Weighted neurons -

wjc Weighted neurons -

yi Input signal -

Group PED4-1052 vii



Acronyms Aalborg University

Units of measurement

Symbol Explanation Unit

Z Impedance Ω

ZC Capacitor impedance Ω

Zeq Equivalent impedance Ω

Zeq,parallel Equivalent parallel impedance Ω

Zeq.series Equivalent series impedance Ω

ZR Resistor impedance Ω

η Learning rate -

δ Error signal -

ω Angular frequency rad/s

φ Bias -
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1 Introduction
Globally, efforts are made with the aim of reducing carbon emissions. The European Union,

among other regions, is committed to achieve net zero CO2 emissions by 2050. This requires

innovation in both power generation and transportation technologies. [1] One of the major

contributors to CO2 emissions is road transport, which accounts for 16% of cumulative emissions.

In this sector, electrification is the primary strategy for decarbonizing road transport. [2] As a

result, the number of Electric Vehicles (EVs) is increasing rapidly, leading to a growing demand

for Lithium-ion Battery (LiB), which are widely used due to their lower weight, high energy

density, superior output voltage, long lifespan, and safety. [3] [4] [5]

During the production of batteries, there are often challenges in achieving uniformity even within

the same production line. This affects the EVs performance, since each battery cell will not be

discharged evenly. To counteract this issue, a Battery Management Systems (BMS) is essential.

It ensures vehicle safety, extends battery lifetime, minimizes costs, and maximizes driving range.

[6] [7] As demand for LiB continues to rise, so does the need for advanced BMS solutions. [8]

A typical BMS is responsible for performing key functions such as monitoring cell voltage and

temperature, estimating the State of Charge (SOC), balancing cells to ensure uniform charge

distribution, and providing isolation sensing and protection.

Recent advances in battery management research have focused on approaches that utilize

machine learning, neural networks, and model estimations to improve precision and adaptability

in balancing the cells. While conventional BMS strategies primarily focus on SOC balancing,

recent studies also highlight the importance of temperature balancing in preventing accelerated

degradation. Uneven heat distribution among cells leads to nonuniform aging and reduced

overall battery capacity, which negatively impacts the longevity and performance of the battery

pack. [9] [10]
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1.1. Problem Formulation Aalborg University

1.1 Problem Formulation
The adoption of EVs has increased the demand for LiB. However, maintaining optimal battery

performance over time is a major challenge due to imbalanced charge and discharge distribution

among battery cells. This factor leads to reduced efficiency, safety risks, and shorter battery

lifespans due to capacity fading and thermal instability. BMS operates to balance the cells, thus

aiming to equalize the SOC and temperature across all cells in a battery pack. Conventional

passive balancing techniques dissipate excess energy as heat, reducing overall efficiency. In

contrast, active balancing methods redistribute energy among cells more efficiently but require

complex power electronics and control algorithms. The effectiveness of a BMS depends on

precise SOC estimation and efficient cell balancing strategies. Considering all this, the following

problem statement is formulated:

How can a Battery Management System be developed, using power electronic switches and

active balancing to improve battery performance, longevity, and efficiency in electric vehicle

applications?

1.1.1 Objectives

In this project the main objectives are:

• Develop digital models for individual cells and the entire battery pack, including dynamic

behaviors, cell connections, and bypass switches.

• Design a BMS that uses balancing strategies for both SOC and temperature.

• Validate the BMS method using Hardware in the Loop (HIL) testing.

1.1.2 Limitations

The project has the following limitations:

• The study focuses on the BMS. Therefore, an equivalent circuit model is used for SOC

estimations. While it is efficient, it does not account for electrochemical degradation in

the battery cell.

• The study does not explore alternative balancing architectures beyond using power

electronic switches. while the investigated method might be efficiency, a comparison with

other methods is not made.

• The study assumes ideal switching behavior when generating the PWM signals. It does

not consider switching delays in turn ON and OFF or the energy losses.

Group PED4-1052 2 of 30



2 State of the Art
A BMS is essential to ensure safe, efficient, and reliable operation of lithium ion battery packs.

The BMS monitors key parameters such as voltage, temperature and SOC, while implementing

a control strategy to enhance performance and extend battery lifespan. This section discusses

the core functionalities of a BMS, including SOC estimation and cell balancing techniques, such

as active balancing using power electronics and digital twin frameworks.

2.1 State of Charge Estimation Methods
SOC estimation determines the remaining charge within a battery relative to its full capacity.

The accuracy of SOC estimation directly impacts the efficiency and reliability of an electric

vehicle’s power system. There are different approaches to estimate SOC, which can be

categorized into three methods; Model-based, Ai-based and hybrid. The model-based methods

estimate the SOC using mathematical models. AI-Based methods employ machine learning

algorithms. Hybrid methods combine both model-based and ai-based methods. This project

focuses on model-based methods. These methods require accurate battery cell modeling to

develop a reliable BMS. Several modeling approaches exist, each with its own advantages and

limitations. The three primary categories of battery models are Equivalent Circuit Model

(ECM), Electrochemical Impedance Models (EIM) and Electrochemical Models (EM). [11]

2.1.1 Equivalent Circuit Models

The ECM is widely used due to their simplicity. These models represent battery behavior

using electrical components such as resistors, capacitors, and voltage sources, which makes

them computationally efficient for SOC estimation. Several ECM models can be used. Three

commonly used models are described below.

The Rint model is seen in Figure 2.1. This is a basic ECM model which only uses an ideal voltage

source and a resistor. This configuration allows for analysis of the dynamic behavior of the

battery. The resistor value, R0, varies with the SOC of the battery, the operating temperature,

and if it is charging or discharging.

Voc

R0

Vt

+

-

Figure 2.1 Rint model.[11]
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2.1. State of Charge Estimation Methods Aalborg University

The Thevenin model is seen in Figure 2.2. It uses an ideal voltage source and a resistor like

the Rint model but adds a resistor and capacitor in parallel. This is also called a first-order

RC model and it captures the transient response of a battery. It provides a balance between

accuracy and computational efficiency.

R1

C1

Voc

R0

Vt

+

-

Figure 2.2 Thevenin model.[11]

The second order RC model is seen in Figure 2.3. It extends the Thevenin model by adding an

extra RC pair to improve the representation of battery dynamics, particularly for more accurate

transient response modeling. By doing so, it is more accurate but also adds more computational

needs.

R1

C1

Voc

R0

R2

C2

Vt

+

-

Figure 2.3 Second order RC model.[11]

Although the ECM provide simplicity, their accuracy depends on parameter identification, which

can change due to aging, temperature variations, and operating conditions. [11] [12] [13]

2.1.2 Electrochemical Impedance Models

The EIM is based on impedance spectroscopy techniques, which characterize battery

performance by measuring impedance at different frequencies. These models provide highly

accurate representations of battery behavior, including internal resistance, charge transfer

effects, and diffusion processes. Despite their high precision, an EIM is complex and requires

specialized hardware to perform the impedance measurements. This makes them impractical

for the estimation of SOC in conventional BMS. They are often used in laboratory settings to

validate and improve the parameters of ECM. [11]

2.1.3 Electrochemical Models

EM provide a more physics based approach to battery modeling by capturing the internal

chemical and physical processes governing lithium-ion transport, reaction kinetics, and charge

dynamics. These models are derived from fundamental electrochemical equations. Although
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an EM offer high accuracy and detailed insights into battery behavior, they require more

computational resources and are therefore impractical for BMS applications. However, they

are valuable for research, battery design optimization, and degradation analysis. [11]

2.2 Equivalent Circuit Modeling
In summary of Section 2.1, a ECM is widely used in practical BMS implementations, such as EVs.

This is due to their computational efficiency. EIM and EM are primarily used in diagnostic and

research applications to improve the accuracy of battery modeling and prediction of performance.

Thus, this project will focus on ECM. Among the elaborated models, the Thevenin model is

commonly used in electric vehicle applications because of its balance between simplicity and

accuracy in representing battery impedance characteristics.

The Thevenin model captures the impedance response of lithium-ion cells over a wide frequency

range while maintaining a low parameter count. This model is preferred because it only

uses three parameters: R0, R1 and C1, which can be analytically evaluated using impedance

measurements at three discrete frequencies. The parameters of ECM correspond to specific

internal battery behaviors. The resistance R0 represents the electrolyte resistance, R1 accounts

for the charge transfer resistance, C1 represents the double layer capacitance modeling charge

accumulation on the electrode surface.[12][13]

2.2.1 Frequency Selection for ECM Parameter Extraction

The accuracy of the ECM parameters is highly dependent on the selection of frequencies for the

measurement of the impedance. Here, three frequency regions must be used. A high frequency

is used to determine R0. A low frequency is used to determine R1. A mid frequency is used to

determine C1. These frequencies are seen in Figure 2.4

ωlow

ωmid

ωhigh

Re(Z)

-Im(Z)

Figure 2.4 Discrete frequencies highlighted on a generic Nyquist plot, which is used to obtain the ECM
parameters.[13]
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2.2. Equivalent Circuit Modeling Aalborg University

2.2.2 Thevenin Modeling

To obtain the parameters of the Thevenin model, its electrical components are defined by their

impedance, which is given by Equation 2.1 and Equation 2.2.

ZR = R (2.1)

ZC =
1

jωC
(2.2)

Using the relationship of impedance in series and in parallel, the equivalent impedance is

determined, which is then isolated to obtain the parameters of the ECM. The general equations

of impedance in series and in parallel are seen in Equation 2.3 and Equation 2.4, respectively.

Zeq,series = Z1 + Z2 (2.3)

1

Zeq,parallel
=

1

Z1
+

1

Z2
(2.4)

The steps of which the equivalent impedance equations are formed and isolated to obtain the

parameters of the ECM are now elaborated.

First R0 is determined based on the chosen high frequency impedance. At high frequencies, the

impedance is dominated by the ohmic resistance. Thus, the equivalent inductance equation is

reduced to R0. This is seen in Equation 2.5.

Zeq(jωhigh) ≈ R0 (2.5)

Now that R0 is known, R1 is determined based on the chosen low frequency impedance. At

lower frequencies, the total impedance incorporates both resistive and reactive parts, meaning

the equivalent inductance reduces to Equation 2.6.

Zeq(jωlow) ≈ R0 +R1 (2.6)

Extracting the real part of the impedance yields Equation 2.7.

Zlow,real = R0 +R1 (2.7)

Last, to determine C1, the chosen mid frequency impedance is used. At mid frequencies, the

impedance is primarily influenced by capacitive effects. Thus, the equivalent inductance reflects

a parallel RC circuit. This is seen in Equation 2.8.

Zeq(jωmid) ≈ R0 +
R1

(1 + jωmidR1C1)
(2.8)

Separating this equation into its real and imaginary parts yields Equation 2.9 and Equation 2.10

respectively.

Zmid,real = R0 + α (2.9)

Zmid,imag = αωmidR1C1 (2.10)

Here, α is given by Equation 2.11.

α =
R1

1 + (ωmidR1C1)2
(2.11)
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2.3. Thermal Modeling Aalborg University

By using the real part of the impedance equation, α is determined. The capacitance C1 is then

determined by rearranging the imaginary part of the impedance. This is seen in Equation 2.12.

C1 =
Zmid,imag

αωmidR1
(2.12)

All parameters of the Thevenin model have now been defined.

2.3 Thermal Modeling
To effectively capture the thermal behavior of a battery, it is important to model the processes

of heat generation, accumulation, and dissipation. An approach that can be used in control

applications is the lumped-mass thermal model. An illustration of how this can be used in this

control application is seen in Figure 2.5.

Equivalent Circuit Model Heat generation Thermal Model

R0, R1 and C1 Q T
I

Tf

Voc, SOC and V1

Figure 2.5 Coupling relationship between the electrical and the thermal models.[13]

The lumped-mass thermal model offers a balance between simplicity and computational

efficiency. Here, the battery cell is represented as a single thermal mass, and its average

temperature is used to characterize the cell’s overall thermal condition. The thermal dynamics

are described by Equation 2.13.

dT (t)

dt
=

hA

mCp
T (t) +

1

mCp
Q(t) +

hA

mCp
Tf (t) (2.13)

In this equation, T is the bulk temperature of the cell, h is the heat transfer coefficient, A is the

surface area of the cell, m is the mass of the cell, Cp is the specific heat capacity, Q is the heat

generation rate, and Tf is the temperature of the surrounding fluid.

To determine the heat generation, a simplified model proposed by Bernardi et al. [14], is used.

The model is shown in Equation 2.14.

Q(t) = I(t)[Vt(t)− Voc(SOC)] + I(t)T (t) · ∂Voc

∂T
(SOC) (2.14)

When implementing these equations in control applications there is a need for discrete-time

thermal modeling. By using the zero-order hold method, Equation 2.13 and Equation 2.14

becomes Equation 2.15 and 2.16 respectively.

T (k + 1) = Tke
hA

mCp
∆t

+ (1− e
hA

mCp
∆t
)(
Qk

hA
+ Tf,k) (2.15)

Q(k) = I(k)2R0 + I(k)V1,k + IkTk ·
∂Voc

∂T
(SOCk) (2.16)
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2.4. Cell Balancing Techniques Aalborg University

2.4 Cell Balancing Techniques
non uniformity between cells lead to charge imbalances within a battery pack, reducing its

overall efficiency and lifespan. Cell balancing techniques address this issue by redistributing

energy among individual cells to ensure uniform charge levels. There are two primary types of

cell balancing passive and active balancing. Passive balancing is simple, since it uses resistors,

though this also means that energy is dissipated as heat. While being simple and having a low

cost, this method is inefficient and contributes to thermal stress. Active balancing on the other

hand, transfers energy between cells or modules by using power electronic components such as

capacitors, inductors, or switches. This significantly improves the efficiency by reducing energy

losses.[13]

Among the active balancing techniques, the one that utilizes power electronic switches is

especially interesting due to its high potential.[15] This active balancing technique uses switches

to insert or bypass battery cells in the battery pack allowing for precise control over SOC and

temperature distribution. The technique is illustrated in Figure 2.6

S1 S'1

Vbat1

S2 S'2

Vbat2

Sn S'n

Vbatn

Vout

I

Cell 1 Cell 2 Cell n

Smart Battery Pack

Figure 2.6 n series connected Smart Battery cells.[15]

The switches are configured in a half-bridge circuit in parallel to each cell. This results in two

states for each cell. When the left switch is ON, the cell is inserted into the pack, while when

the complementary switch to the right is ON, it will bypass the cell from the pack. This control

mechanism ensures balanced SOC and temperature levels while extending the overall battery

lifespan. [11][15]

Group PED4-1052 8 of 30



2.5. Balancing Control of Switches Aalborg University

2.5 Balancing Control of Switches
In Section 2.4 the concept of utilizing switches for active balancing is introduced. There are

different methods to control the switching behavior in order to achieve a smart balancing

structure. These methods are important since they allow efficient cell balancing and thus

improves the energy efficiency. The methods investigated in this project are Finite Set Model

Predictive Control (FS-MPC), Artificial Neural Network (ANN) and Deep Deterministic Policy

Gradient (DDPG).

FS-MPC is a control approach that applies predictive models of battery dynamics to determine

the optimal sequence of switch positions over a finite horizon. It uses a cost function in which

it minimizes deviations. It then selects the optimal control input for the next time step. [16]

ANN control are particularly effective in handling nonlinearities and uncertainties in battery

behavior. It uses a neural network to generate adaptive Pulse Width Modulation (PWM)

control signals for the switches. This enables dynamic balancing across all cells. It also provides

robustness against measurement noise and aging effects.[17].

DDPG is a reinforcement learning method capable of learning continuous control policies. A

DDPG does not require a battery model because it learns optimal switching strategies through

trial and error interactions with a simulation. Although DDPG achieves high performance

in terms of balancing precision and adaptability, it requires substantial training time and

computational resources.[18]
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3 Battery Modeling in Simulink
The modeling of the battery is fundamental for the development, testing, and validation

of a BMS. In this chapter, the process of implementing a lithium-ion battery model in

MATLAB/Simulink is presented. The objective is to create a simulation that resembles

the dynamic behavior of the battery under various SOC conditions, enabling the design and

evaluation of control algorithms. This chapter, is divided into two sections. modeling of the

individual cell and battery pack configuration. The first section focuses on making a battery

cell model. The second section explains how individual cell models are connected to form a

complete battery pack model.

3.1 Battery Cell Model
The modeled battery cells in this project are 3.7V/50Ah NMC CALB prismatic cells. The

battery cell model consist of four subsystems. These subsystems are SOC estimation, Open

Circuit Voltage (OCV) estimation, ECM, and a thermal model. Each of these subsystems is

responsible for modeling the specific parameters needed to capture the dynamic behavior of the

battery cell. A simplified illustration of how these are connected is seen in Figure 3.1. A print

of the actual Simulink model is seen in Appendix B.

SOC OCV ECM Thermal Model

Figure 3.1 Simplified battery cell model.

The SOC subsystem estimates the SOC over time based on an initial SOC, current flow, and

battery capacity. The OCV subsystem uses the SOC to determine the OCV, representing the

steady-state voltage of the battery when the cell is bypassed. The ECM subsystem uses the SOC,

OCV and a load dependent current to determine the voltage and current of the cell depending

on if it is inline or bypassed. Lastly, the thermal model uses the voltage and current of the

ECM to simulate the heat generation and dissipation in the cell. Each of these subsystems is

explained in more detail in separate subsections.

3.1.1 State of Charge Estimation

The estimation of SOC is done by using Coulomb counting method. This method is commonly

used due to its simplicity. It relies on current, capacity of the cell and an initial SOC value.

Although this method is easily applicable it assumes that the current is accurate and that the

capacity remains constant over time. The initial state of the battery is manually selected to
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introduce an imbalance between cells, allowing the active balancing algorithm to be tested. The

selected initial SOC values is seen in Table 3.1.

Table 3.1 Initial state of charge parameters.

Parameter Value

Cell 1 1.00
Cell 2 0.95
Cell 3 0.90
Cell 4 0.85
Cell 5 0.80
Cell 6 0.75

The Coulomb counting method continuously updates the SOC based on the current flow. The

SOC at any time t is calculated using Equation 3.1

SOC(t) = SOC0 −
1

Qnom
·
∫ t

t0

I(t)dt (3.1)

Where SOC(t) is the state of charge at time t. SOC0 is the initial state. Q is the nominal

capacity of the battery cell. I(t) is the current at time t, obtained from the ECM. A print of

this imputed in Simulink is seen in Appendix B.1.

3.1.2 Open Circuit Voltage Estimation

When a battery cell is bypassed, there is still an electrical potential between the positive

and negative terminals. This voltage is defined as the OCV. It is important to include this

parameter since it models the steady-state behavior of the cell when bypassed and thus result

in a more precise SOC estimation. To determine the OCV of the chosen cell, it is tested in the

laboratory. The battery cell is charged and discharged at a very low current, which is assumed

to be negligible. This ensures that the measured voltage closely approximates the true OCV

corresponding to each SOC level. The resulting curve is seen in Figure 3.2.

0 20 40 60 80 100

SOC [%]

2.5

3

3.5

4

4.5

O
C

V
 [V

]

Figure 3.2 OCV-SOC curve.
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By curve fitting the experimental data, the relationship between the SOC and the OCV is

expressed by a nonlinear function, which is shown in Equation 3.2.

OCV = p1 · x9 + p2 · x8 + p3 · x7 + p4 · x6 + p5 · x5+
p6 · x4 + p7 · x3 + p8 · x2 + p9 · x+ p10

(3.2)

Where x is the SOC. The parameters of the fitted OCV function are summarized in Table 3.2.

Table 3.2 Initial state of charge parameters.

Parameter Value Unit

p1 2.18e3 V
p2 −1.06e4 V
p3 2.18e4 V
p4 −2.47e4 V
p5 1.67e4 V
p6 −6.92e3 V
p7 1.72e3 V
p8 −2.43e2 V
p9 18.2 V
p10 2.93 V

These values are used as inputs to the battery cell model for better SOC estimation. The Matlab

code is shown in Appendix B.2.

3.1.3 Equivalent Circuit Model Implementation

In Section 2.2 it is decided to use the Thevenin model. To obtain the parameters experimental

inductance tests where made which is detailed in [15]. In short electrochemical impedance

spectroscopy is used to characterize the resistances and capacitance of the selected 3.7V/50Ah

NMC CALB prismatic cell. The setup consists of a battery tester, a thermal chamber and a

host PC for data gathering. Multiple experiments are carried out. First the SOC is adjusted

to different values while keeping the temperature constant. After which the temperature is

changed while maintaining the same SOC. Each measured impedance spectrum is represented

by a Nyquist plot. These are seen in Figure 3.3.

(a) Nyquist plot at different SOCs. (b) Nyquist plot at different temperatures.

Figure 3.3 Nyquist plot of 3.7V/50Ah NMC CALB prismatic cell. [15]
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Based on the average of these inductance measurement, the ECM parameters is then calculated

by the equations given in Section 2.2.2. The extracted parameters are summarized into Table

3.3.

Table 3.3 Initial state of charge parameters.

Parameter Value Unit

R0 1.47e−3 Ω
R1 0.159e−3 Ω
C1 5.08 F

These parameters are assigned to their respective electrical components in the ECM model in

Simulink. In addition to R0, R1 and C1, the model also include a controlled current source and

controlled voltage source. The current source provides the rated current when the cell is inline

while the voltage source represents the OCV when the cell is bypassed. A printed overview of

the ECM in Simulink is shown in Appendix B.3.

3.1.4 Thermal Model

To simulate the heat generation and dissipation in the battery cell, a thermal model is

implemented using the Simscape toolbox in Simulink. The thermal model estimates the

temperature of the battery cell based on power dissipation and thermal properties. The model

uses the current and voltage from the ECM and converts it into heat. This is done using the

mass m, specific heat capacity Cp, and thermal resistance Rth of the 3.7V/50Ah NMC CALB

prismatic cell. Each of these properties is seen in Table 3.4.

Table 3.4 Thermal model parameters.

Parameter Value Unit

m 0.076 kg

Cp 1100 J
K·kg

Rth 2.5 K
W

The output of the thermal model is the battery cell temperature, which dynamically updates

based on operating conditions. By adding this thermal model, the entire system can evaluate

the impact of current loads on temperature, which is then controllable by balancing strategies.

A printed overview of the thermal model in Simulink is shown in Appendix B.4.
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3.2 Battery Pack Model
The battery pack model consist of six individual cell models connected in series. Each cell has

the structure defined in Section 3.1. The pack is designed to share a fixed load, represented by

a controlled current source. The structure of the Battery pack model is seen in Figure 3.4.

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6

Load

Figure 3.4 Battery pack model consisting of 6 battery cell models in series.

Each individual cell can be switched ON or OFF based on a binary control signal. The switching

is later controlled by the BMS to enable balancing of SOC. If the cell is inline the current in

the cell is equal to the fixed current load. When the cell is bypassed it still has a electrical

potential equal to the OCV. The total voltage of the battery pack is the sum of all six cell

voltages, meaning it changes depending on how many cells that are inline and bypassed. Since

each cell has its own thermal model, the temperature of each cell is determined individually.

This allows the BMS to regulate thermal conditions. It is done by comparing the temperature

of each cell and bypassing them if the relative temperature is over a set level. This prevents one

cell from overheating. In summary the developed battery pack model serves as the foundation

for evaluating control strategies. Allowing testing, and validation of BMS.
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4 Battery Management System
In Section 2.5 different methods of controlling the switches is proposed. Among them, ANN is

selected due to its simplicity and ability to adapt to changes in the battery cells condition. The

goal of implementing ANN is to minimize SOC and temperature deviations from an average or

standard value. The output of ANN is modulation signals that are used to create PWM signals

for switches, thus obtaining balancing control. A schematic of the entire system is seen in Figure

4.1. Whereas a more detailed schematic of the proposed ANN balancing control system is seen

in Figure 4.2. Each part of this control system is explained further in separate sections.

Battery Cell

Smart Battery Pack

S'n

S1

S'1

Sn
I

R1

OCV(SOC)

R0

C1

T1-TA

Tn-TA

d
dt

d
dt

PWM

PWM

S1

Sn

I

Smart Control
SOC1-SOCAV

SOCn-SOCAV

Figure 4.1 Electrical schematic of smart balancing system for a battery pack consisting of n serially
connected cells.

ΔSOC1

dSOC1

ΔT1

dT1

Input layer: 
24 deviation signals

ΔSOCi

dSOCi

ΔTi

dTi

Hidden layer 1:
50 neurons

Hidden layer 2:
24 neurons

k1

kn

Output layer:
6 modulation signals 

wij wjc

ηη

y δ
Ec

Figure 4.2 Schematic of the ANN balancing control.
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4.1 Input Layer
To enable smart switching decisions, deviation input signals needs to be calculated. For

controlling the SOC, the average SOC across all six battery cells is calculated. This is done

in Equation 4.1.

SOCAV =
1

n

n∑
i=1

SOCi, for i ∈ n (4.1)

Here n is the number of cells and SOCi is the SOC of each cell. The SOC of each cell are

then compared to the average in order to determine the deviation for each cell. This is seen in

Equation 4.2.

∆SOCi = SOCAV − SOCi, for i = 1, 2, . . . , n (4.2)

For controlling the temperature, a fixed reference temperature of 25°C is used instead of an

average. This temperature is chosen based on the ideal operating condition of lithium-ion cells.

The temperature deviation is calculated by Equation 4.3.

∆Ti = 25◦C− Ti (4.3)

Additionally, To avoid large changes in the balancing control the rate of change is also considered.

This is done by taken the derivative of both SOC and temperature deviations. This is seen in

Equation 4.4.

dSOCi =
d∆SOCi

dt
, dTi =

d∆Ti

dt
(4.4)

In total 24 input signals are calculated to form the input layer of the ANN control. The objective

of the learning process is to reduce these deviations.

4.2 Hidden Layers
The implementation of ANN includes two hidden layers. Each layer uses processing units known

as neurons. These neuron consists of weights, w, an activation function, g(x), and a bias, φ.

The output function of hidden layer 1 is Hj and is given by Equation 4.5.

Hj = g(
n∑

i=1

wijyi + φ), for j = 1, 2, ..., L (4.5)

Where L is the total number of neurons in the hidden layer. In hidden layer 1 50 neurons are

used, each with its own weight. The weights are given by Equation 4.6.

wij(k + 1) = wij(k) + ηδy for i = 1, 2, ..., n, j = 1, 2, ..., L (4.6)

Here, wij is the weight at each iteration k. η is the learning rate, which determines how much

the weights are adjusted at each iteration. δ is the error signal from the output layer. y is

the input signal to the neural network. The activation function for this hidden layer is sigmoid

which is given by Equation 4.7.

g(x) =
1

1 + e−x
(4.7)

This hidden layer does not include a bias and thus it is equal to zero.
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Hidden layer 2 transforms the output of hidden layer 1 into a suitable number of outputs for

the output layer, which should consist of one output for each cell. It uses Hj as a input signal

and has the output function Oc, which is given by Equation 4.8.

Oc =
L∑

j=1

Hjwjc + φ, for c = 1, 2, ...,M (4.8)

Here, M is the number of neurons in the hidden layer. It uses 24 neurons with linear activation

and no bias. The weights are given by Equation 4.9.

wjc(k + 1) = wjc(k) + ηHjEc for j = 1, 2, ..., L, c = 1, 2, ...,M (4.9)

Where Ec is the error signal including the deviations of SOC and temperature. From the

output of hidden layer 2, selected neurons are combined to form six control gains, k1 to k6 each

representing an individual cell. The expressions of these are listed below:

k1 = 0.5 · (0.9 ·Oc(2)− 0.2 ·Oc(3)) (4.10)

k2 = 0.5 · (0.9 ·Oc(6)− 0.2 ·Oc(7)) (4.11)

k3 = 0.5 · (0.9 ·Oc(10)− 0.2 ·Oc(11)) (4.12)

k4 = 0.5 · (0.9 ·Oc(14)− 0.2 ·Oc(15)) (4.13)

k5 = 0.5 · (0.9 ·Oc(18)− 0.2 ·Oc(19)) (4.14)

k6 = 0.5 · (0.9 ·Oc(22)− 0.2 ·Oc(23)) (4.15)

These gains will serve as modulation signals for PWM control of the switches. From these gains

it is also seen that selected weights have been assigned, prioritizing SOC over temperature. The

Matlab code for the ANN control is shown in Appendix C.

4.3 Pulse Width Modulation
To allow for the balancing of the switches, the control gains k1 through k6 are used as modulation

signals in a PWM scheme. Each gain is compared to a sawtooth carrier waveform. When the

gain exceeds the carrier signal, the corresponding switch is turned ON and the cell is inline.

Otherwise, the cell is bypassed. An illustration of this is seen in Figure 4.3.

1

0

Sawtooth Carrier

Modulation signal

0

Vg

t

t

Figure 4.3 Generation of PWM signal.

This approach enables independent control of each cell, allowing some cells to be used more and

others less, thus achieving balancing of both SOC and temperature.
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4.4 Simulation Results
Simulations are conducted with the battery pack consisting of six 3.7V/50Ah NMC CALB

prismatic cell models, each with the characteristics explained in Chapter 3. Here, it is also

elaborated that each cell is given a different initial SOC. All cells have a uniform initial

temperature of 25°C. A constant external current of 50 Amps is applied through the entire

simulation. The results of the simulation are seen in Figure 4.4-4.7.

Figure 4.4 Current.

Figure 4.5 Voltage.
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Figure 4.6 SOC.

Figure 4.7 Temperature.

Figure 4.4 shows that the current is not uniformly distributed across all cells. Instead, each cell

conducts current for different time durations. This enables balancing, as cells with higher SOC

and lower temperatures are used more frequently to compensate for the imbalance.

In Figure 4.5, the cell voltages are shown. Initially, the cell with the highest SOC has the

highest voltage. This is because the SOC imbalance is reflected in the voltage. The voltage of a

battery is influenced by the electrochemical potential of the electrodes. This means that as the

cell stores more charge, the potential difference between the electrodes increases, increasing the

voltage. Over time, the voltages of all cells converge, which is a result of balancing.

Figure 4.6 shows the SOC. Here, it is seen that over time, the ANN balancing control successfully

aligns all SOC values. The cells with the highest initial SOC values are used more until they

begin to match the SOC values of the lower ones.

Group PED4-1052 19 of 30



4.5. Robustness Simulation Aalborg University

In Figure 4.7, the temperature of the cells are shown. All cells start at the reference temperature,

however the cells that are used more frequently also increases moderately in temperature because

of higher conduction activity. This is as expected and the temperature rise remains within

acceptable limits. This behavior is consistent with the control objective, where SOC balancing

is prioritized slightly more than temperature.

From these results, it is evident that the ANN balancing control works efficiently and achieves

convergence within a time span of 2500 seconds. The rapid convergence observed highlights the

effectiveness of the system in quickly correcting imbalances and stabilizing the battery pack. This

result shows the strength of the proposed intelligent balancing approach in managing complex

battery dynamics and achieving uniform operation.

4.5 Robustness Simulation
In the previous simulations the load current is modeled as a fixed value. In practical applications

the current value is obtained using sensors which are not precise and have accuracy limitations.

Current sensors typically have accuracy tolerances ranging from 1% and up to 10% depending

on their quality. To investigate the robustness of the ANN balancing control, sensor noise

is introduced in the simulation. This is done by adding a band-limited white noise block to

the current. This block generates normally distributed random noise which is constrained in

bandwidth to simulate the sensor behavior. The power level of this block is chosen assuming

the worst case, and thus allowing currents of approximately ±10% of the nominal load current.

The load current with simulated sensor noise is seen in Figure 4.8.

Figure 4.8 Current with noise.

Here, it is seen that the current now contains high frequency noise, which could be caused by

sensing. The results of noise on the rest of the system are seen in Figure 4.9 and Figure 4.10.
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Figure 4.9 SOC with noise.

Figure 4.10 Temperature with noise.

It is seen that despite the addition of sensor noise, the ANN balancing control maintains stable

and effective operation. In Figure 4.9 it is seen that the SOC still converges within 2500 seconds.

Similarly, in Figure 4.10, the same tendencies as without noise is seen. The temperature increases

moderately in the most used cells before they converge. These results shows that the ANN

control is robust against sensor measurement inaccuracies.
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5 Validation of Management System
The testing of control algorithms on modular smart batteries has safety challenges due to the

nature of batteries. To ensure a safe environment, a virtual platform is used. This is done by

using a Digital Signal Processor (DSP) instead of a battery cell. The aim is to validate the

performance of the bypass method without using physical batteries. This setup enables testing

under safe conditions and is used as a preliminary step before testing on actual batteries. An

overview of the setup is presented in Figure 5.1.[19]

Figure 5.1 Virtual platform overview.[19]

The system consists of eight slave DSPs, each running a simulation of a battery cell. The slave

devices are Texas Instruments CC2652R microcontrollers. A master DSP collects information

from all the slave units and provides it to the control unit, which is a Google Coral Dev Board

Mini. Here, the control algorithm is implemented. Additionally, the Coral board is connected

to a PC to monitor the battery system.

The control implemented on the Coral Board is based on a K-Nearest Neighbor (KNN)

classification algorithm. It works by connecting or bypassing individual cells to achieve a desired

output voltage from the battery pack while simultaneously balancing the SOC across the cells.

In general KNN algorithm works by selecting an optimal subset of cells using a given dataset

of points and a reference point. The algorithm computes the distance between each point in

the dataset and the reference and then selects the K points with the smallest distances to the

nearest neighbors. In this case, each cell is represented by its individual SOC. Whereas the

reference point is defined by a maximum SOC representing the ideal balancing target. The

distance between points is calculated by a weighted Euclidean norm, evaluating the deviation

of each cell’s SOC from the reference point. The number of selected neighbors K corresponds

to the number of cells required to achieve the desired output voltage, which in this test is 6.8V

meaning that two cells should be inline at all times. The functions of all boards are illustrated

in Figure 5.2.[19]
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(a) Functions of each DSP cell. (b) Functions of the control board.

Figure 5.2 Functions of all boards.[19]

The simulated dynamic behavior of each battery cell is then visualized to better validate the

performance of the control. Here, the key parameters are the slave voltage, current and SOC.

The results of the test is seen in Figure 5.3.

Figure 5.3 Results of virtual platform test.
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These results shows that SOC balancing is achieved among the simulated battery cells. Cells

are dynamically inline or bypassed based on their individual SOC levels. This means that the

bypass method operates as intended and enables selective usage of cells to ensure uniform SOC.

This will in turn increase the performance of the battery pack. Furthermore, it shows that the

virtual platform can be used to validate the control of modular smart battery systems without

involving real battery cells.
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6 Discussion
This chapter discusses the results presented in this project. The analysis includes an

investigation of the limitations in the model, control and validation.

6.1 Use of Equivalent Circuit Model
The ECM is a simple and computationally efficient way of simulating the behavior of a battery.

This comes at a cost due to its limitations in accuracy. ECMs simplify the electrochemical

processes inside a lithium-ion cell and may not capture the degradation effects or nonlinear

dynamics under varying load conditions. This could lead to inaccuracies in SOC and temperature

estimation. These inaccuracies will then affect the performance of the ANN balancing control,

as it relies on accurate input signals to make optimal switching decisions. This could affect the

efficiency of the BMS.

6.2 Simplified SOC Estimation
The SOC estimation is based on the Coulomb counting method. It integrates the current over

time in order to estimate the charge flow of the battery. While this approach is commonly used

due to its simplicity it is sensitive to measurement drift and sensor inaccuracies. Over time

small errors in current sensing or integration can lead to deviations in the estimated SOC. The

accuracy could be improved by including a correction technique.

6.3 Validation of ANN Control
Although the ANN control performed well in simulation, it is not implemented on the Coral

Dev Board in this project. As a result, the ANN control strategy is not validated. Deployment

to the Coral platform is essential to verify its responsiveness under discrete constraints.

6.4 Ideal Switching
In the simulations it is assumed that the switching behavior is ideal. In practical applications

there is always a delay between turn ON and turn OFF of a switching device. Transistors have

rise and fall times when going from a state of conducting to a state of blocking the current. In

this case, dead time might be needed to ensure that a battery cell is not shorted. By adding

dead time, it might increase the time before convergence of SOC and temperature is achieved

which will affect the overall efficiency of the BMS.
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6.5 Validation using Real Batteries
While the virtual platform is useful for testing control safely, testing on real batteries should be

done in order to fully validate the balancing methods. This is due to the limitations of the virtual

platform, which are the lack of electrical parasitics and real switching transients. These effects

can affect the switching behavior, introduce noise or voltage spikes. Without investigating

the effect of these, the control performance may seem ideal in simulation but degrade under

physical conditions. Therefore, hardware testing is essential to ensure the robustness, efficiency,

and safety of the proposed balancing system in practical applications.
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7 Conclusion
This project successfully develops a BMS, which is able to balance both SOC and temperature

in a modular smart battery pack. The project made digital models of a battery cell and the

battery pack, which includes dynamic behaviors, cell connections, and bypass switches. The

switches are successfully controlled by PWM signals generated from ANN outputs. ANN made

effective switching decisions based on inputs of cell SOC and temperature. Here, the simulation

results shows that the SOC and temperature converged within 2500 seconds.

To investigate the robustness of the system, a noise simulation is conducted by introducing

sensor inaccuracy into the measured current signal. Despite ±10% fluctuations from added

white noise, the ANN control strategy maintains a stable performance, successfully converging

the SOC of all cells within the same 2500 seconds. This result confirms the resilience of the

balancing method under more realistic sensing conditions.

Furthermore, the virtual prototyping platform enables safe validation of the balancing method

without using real battery hardware. This provides the possibility of implementing and testing

the ANN control algorithm in an safe environment.

These results highlight the potential of using power electronic switches and BMS to improve

battery performance, longevity, and efficiency in electric vehicle applications.
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8 Future Work
To build upon the results of this project, several key steps are proposed for future work.

The first step is to validate the ANN control algorithm using the virtual platform. To do this,

the ANN control should be programmed on the coral board. This would then allow the ANN

control to be tested under more realistic conditions without involving physical battery cells,

which ensures a safe environment for analyzing performance and improvement.

Once validated using the virtual platform, the next step would involve developing the necessary

hardware for the BMS method. This includes making the actual switching circuit. Here, Metal-

Oxide-Semiconductor Field-Effect Transistor (MOSFET)s could be considered due to their high

efficiency, fast switching capabilities, and compatibility with digital control signals. Testing on

hardware will allow analysis of the ANN control with actual switching devices needed to validate

the control performance when non-ideal switches are included.

The last step would then be to test the complete BMS. This includes the ANN control and

switching hardware. It should be tested on real battery cells. This step validates the system’s

performance under real electrical, thermal and dynamic conditions.
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A Simulink Model overview

I



B Battery Cell Model

Figure B.0.1 Overview of battery cell model in Simulink.

B.1 SOC Estimation

Figure B.1.1 SOC estimation in Simulink.

B.2 OCV Estimation
1 function OCV = fcn(SOC)

2 x=SOC;

3 p1 = 2.178780551152078e+03;

4 p2 = -1.059911178403064e+04;

5 p3 = 2.181082635032735e+04;

6 p4 = -2.467974815466170e+04;

7 p5 = 1.671355603708102e+04;

8 p6 = -6.915835559409158e+03;

9 p7 = 1.717673711564352e+03;

10 p8 = -2.430223804179180e+02;

11 p9 = 18.246620866965540;

12 p10 = 2.948413921752475-0.022;

13 OCV = p1*x^9 + p2*x^8 + p3*x^7 + p4*x^6 + p5*x^5 + p6*x^4 + p7*x^3 + p8*x^2 + p9*x +

p10;

14 end

II



B.3 ECM

Figure B.3.1 ECM in Simulink.

B.4 Thermal Model

Figure B.4.1 Thermal model in Simulink

III



C ANN Control Function
1 function [k1, k2 ,k3,k4, k5, k6]=

2

3 ANN_Tuner(e1,d1,e2,d2,e3,d3,e4,d4,e5,d5,e6,d6,eT1,dT1,eT2,dT2,eT3,dT3,eT4,dT4,eT5,dT5,

eT6,dT6)

4

5 numberinput=9;

6 neuronlayerone=50;

7 neuronlayertwo=24;

8 eta=0.2;

9

10 X=2*ones(numberinput,1);

11 w1old=ones(neuronlayerone,numberinput);

12 w2old=ones(neuronlayertwo,neuronlayerone);

13 deltaw1=zeros(size(w1old));

14 deltaw2=zeros(size(w2old));

15

16 for iteration=1:5

17 w1new=w1old+deltaw1;

18 w2new=w2old+deltaw2;

19 w1old=w1new;

20 w2old=w2new;

21 net1=w1new*X;

22 h=1./(1.+(exp(1)).^(-net1));

23 net2=w2new*h;

24 delta=[d1;e1;eT1;dT1;d2;e2;eT2;dT2;d3;e3;eT3;dT3;d4;e4;eT4;dT4;d5;e5;eT5;dT5;d6;e6;

eT6;dT6];%*(derive2);%.*derive;

25 deltaw2=eta*delta*h’;

26 sigmaj=(h.*(1-h)).*((w2new)’*delta);

27 deltaw1=eta*sigmaj*X’;

28 end

29

30 k1=0.5*(0.9*net2(2)-0.2*net2(3));

31 k2=0.5*(0.9*net2(6)-0.2*net2(7));

32 k3=0.5*(0.9*net2(10)-0.2*net2(11));

33 k4=0.5*(0.9*net2(14)-0.2*net2(15));

34 k5=0.5*(0.9*net2(18)-0.2*net2(19));

35 k6=0.5*(0.9*net2(22)-0.25*net2(23));

36

37 end

IV
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