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1 Introduction
Between 2018 and 2020[1], there were 75.4 thousand nonfatal injuries reported. Out of those, over
20% were due to Work-related Musculoskeletal Disorders (WMSDs). These injuries are not only
common but also a leading cause of lost work time and reduced productivity across various industries.
WMSDs [2] are caused by fixed or constrained body positions, continual repetition of movements,
force concentrated on specific parts of the body, such as the hand or wrist, or a pace of work that
does not allow sufficient recovery between movements. Tasks that demand overhead work or static
load-bearing postures are particularly demanding and frequently result in shoulder, neck, and upper
back strain.

In response to these challenges,[3] exoskeleton technology has emerged as a promising solution for
assisting workers during physically demanding tasks. These systems are designed to reduce muscular
strain, delay fatigue, and lower the risk of injury by providing mechanical support to the body. Among
recent developments, variable stiffness exoskeletons offer enhanced adaptability, adjusting their sup-
port in real time based on the task at hand. They also enable workers to maintain natural movement
while still receiving the necessary assistance, particularly during physically taxing activities such as
holding tools overhead or performing repetitive upper-limb actions

However, for active exoskeletons to provide effective and intuitive assistance, they must be capable
of predicting or detecting the user’s intention. It is vital to detect when a user is initiating movement,
adjusting posture, or applying force so that the system can ensure seamless reaction to support the
user without interfering with voluntary motion. Achieving this requires a control strategy that not
only interprets user intent in real time, but also adjusts support accordingly based on task dynamics.
This report focuses on the development of such a control system, aimed at enabling responsive and
adaptive assistance in upper-limb exoskeletons used for overhead or static work tasks.

1.1 Initial problems statement
Work-related musculoskeletal disorders remain a major issue, especially in tasks involving overhead
work or static load-bearing. Existing exoskeletons may struggle to adapt to different tasks or user
movements, which may lead to reduced support or restricted mobility. There is a need for a control
strategy that enables real-time, intention-aware assistance to reduce fatigue and injury risk, particu-
larly in overhead work scenarios.

”How can user-intent-aware control be implemented to manage stiffness and support in variable
stiffness exoskeletons?”
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2 State of the art
The development of exoskeletons, has seen significant progress over last year. These devices are
designed to augment human performance, support physical rehabilitation, and reduce occupational
injuries in industrial settings. A growing body of research and commercial innovation is driving ad-
vancements in their mechanical design, control strategies, and integration with human operators.

This chapter provides a comprehensive overview of the current state of the art in exoskeleton tech-
nologies. The study commences with a survey of industrial exoskeletons, with a focus on their appli-
cations and design. Subsequently, an exploration of devices and systems developed utilising Variable
Stiffness Mechanism (VSM) principles is presented, with the objective of enhancing adaptability and
safety during human-robot interaction. The final section of this study examines the control of ex-
oskeletons in which a review of various approaches to exoskeleton control is presented and discussed.

2.1 Industrial Exoskeletons
Industrial exoskeletons can be broadly categorized into two main groups: passive and active systems.

Passive Exoskeletons
Passive exoskeletons operate without powered actuators, instead utilizing mechanical components
such as springs and levers to support human motion and redistribute physical loads. These systems
are typically lighter and afford a greater range of motion, but provide limited assistance when handling
heavy or variable loads.
One example is the Ottobock Shoulder exoskeleton, which uses a spring/leverage system to relieve
shoulder strain and weighs approximately 1.9 kg [4]. Its design is compact and ergonomic, as seen in
Figure 2.1.

Figure 2.1: Ottobock Shoulder exoskeleton. Taken from[4]
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CHAPTER 2. STATE OF THE ART

Another similar system is the Auxivo DeltaSuit, which provides support through an adjustable spring
mechanism offering torque between 5.2 Nm and 6.6 Nm. The DeltaSuit features a sleek design with
minimal protruding components [5], shown in Figure 2.2.

Figure 2.2: Auxivo DeltaSuit exoskeleton. Taken from[5]

The SuitX IX Shoulder Air is a 2.22 kg passive exoskeleton that stores energy during downward
arm motion and releases it during lifting [6]. Its design, depicted in Figure 2.3, builds upon previous
passive systems.

Figure 2.3: SuitX IX Shoulder Air exoskeleton. Taken from[6]
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CHAPTER 2. STATE OF THE ART

Ekso Bionics’ EVO is another spring-based exoskeleton offering 2.2–6.8 kg of lift assistance per
arm [7], illustrated in Figure 2.4.

Figure 2.4: Ekso EVO exoskeleton. Taken from[7]

Lastly, the HAPO UP model by Ergosanté offers up to 3.8 kg of support per arm through a lightweight
design similar to its counterparts [8], as shown in Figure 2.5.

Figure 2.5: HAPO UP exoskeleton. Taken from[8]
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CHAPTER 2. STATE OF THE ART

Despite their shared “backpack-style” form factor and ergonomic benefits, passive exoskeletons are
limited in terms of lifting power and adaptability. Some designs integrate mechanical adjustment
systems to offer varying levels of support for different tasks.

Active Exoskeletons
In contrast, active exoskeletons utilize powered actuators—such as electric motors or pneumatics—to
provide stronger and adjustable support. These systems are more complex and typically heavier, but
excel in tasks requiring higher force output and real-time adaptability.
The ExoIQ S700, shown in Figure 2.6, is a pneumatically powered shoulder exoskeleton that weighs
6.5 kg and provides up to 5 kg of assistance per arm, powered by a battery-operated compressor [9].

Figure 2.6: ExoIQ S700 exoskeleton. Taken from[9]

Another advanced model is the Agadexo Shoulder exoskeleton, a semi-active system enhanced by
artificial intelligence that adapts support based on detected intent and payload. It supports up to 8 kg
per arm and payloads up to 25 kg, with an operating time of approximately 8 hours [10], visualized
in Figure 2.7.

5 of 80



CHAPTER 2. STATE OF THE ART

Figure 2.7: Agadexo Shoulder exoskeleton. Taken from [10]

For heavy-duty industrial applications, the Ant-WA1 exoskeleton provides over 40 kg of lifting as-
sistance and weighs 8.4 kg. It includes four electric motors located at the shoulders and hips, making
it highly capable for lifting-intensive environments [11], as depicted in Figure 2.8.

Figure 2.8: Ant-WA1 exoskeleton. Taken from [11]

In conclusion, passive exoskeletons present a lightweight, cost-effective solution for reducing fa-
tigue and musculoskeletal strain during repetitive or overhead tasks. Their simple mechanical design
ensures reliability, minimal maintenance, and a high degree of user mobility. However, their fixed
assistance levels and limited adaptability might make them insufficient for tasks involving variable or
heavy loads.
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On the other hand, active exoskeletons leverage powered actuators, sensors, and sometimes artificial
intelligence to dynamically adjust the level of assistance based on user intent and task demands.
These systems are better suited for complex, high-load industrial applications where assistance and
task adaptability are critical. Despite their advantages in performance, active exoskeletons come with
trade-offs such as increased weight, energy dependency, and greater system complexity, which can
impact usability and cost.

2.2 VSM - Based exoskeleton
At Aalborg University (AAU), there has been sustained research into the development of upper-limb
exoskeletons, with a particular emphasis on enhancing human-robot interaction through adaptive
mechanical properties [12]. The VIEXO project, in particular, focuses on incorporating variable
impedance to better emulate the compliant and responsive nature of human arm movement. This ap-
proach is intended to improve both the safety and efficiency of exoskeleton systems in dynamic work
environments.

A core element of this approach is the implementation of Variable Stiffness Mechanisms (VSMs),
which enable the mechanical stiffness of joints to be tuned either structurally or in real time. These
mechanisms form the basis for various actuation strategies that enable exoskeletons to offer the right
level of assistance depending on user intention, movement phase, or external load, as illustrated in Fig-
ure 2.9.

Figure 2.9: Concept of VSM. Taken from [13]

Building on the goals of the VIEXO project, recent research at AAU has explored multiple designs
of Variable Stiffness Mechanisms (VSMs) tailored for passive and semi-passive exoskeletons. These
VSMs are designed to passively joint stiffness passively or semi-actively to align with biomechanical
demands during industrial tasks. Several innovative concepts have been developed using zero-length
four-bar linkages combined with compliant elements, such as linear springs and cable-pulley sys-
tems [13], [14].
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One of the earliest implementations featured a reconfigurable revolute joint where stiffness profiles
(softening, linear, or hardening) could be adjusted via cable routing and spring pretension, without
active actuation. This compact and modular architecture demonstrated strong potential for wearable
applications, enabling energy-efficient and safe torque support in multi-joint systems.

Subsequent advancements have led to the integration of VSM into wearable shoulder exoskele-
tons [15], [16], seen in Figure 2.10. These designs applied parametric optimization methods to match
human arm torque requirements across a wide range of motion. Notably, the latest prototype demon-
strated three degrees of freedom (DOFs), compact dimensions (under 0.8 kg), and adjustable preten-
sion modules, providing customizable assistance while preserving shoulder mobility.

Figure 2.10: Passive shoulder exoskeleton equipped with VSM. Taken from [16]

Experimental validation, including surface electromyography (sEMG) analysis, confirmed that these
VSM-based exoskeletons effectively reduce muscle activity in key muscle groups such as the anterior
deltoid and biceps brachii during overhead load lifting. Compared to commercial systems like the
Skelex 360, AAU’s VSM exoskeletons achieved greater muscle activity reduction while maintaining
full mobility.

The most recent development at AAU involves a hybrid exoskeleton prototype shown in Figure 2.11
capable of operating in multiple modes. This multi-mode configuration allows the exoskeleton to not
only provide passive support via the VSM, but also to engage a motor for additional torque assistance
when required. Furthermore, when no assistance is needed, both the VSM and motor can be disen-
gaged, enabling free and unobstructed movement for the user.

8 of 80
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Figure 2.11: Shoulder exoskeleton prototype developed at AAU.

Despite their benefits, VSMs present challenges due to inherent nonlinearities—particularly when de-
ployed in systems requiring large motion ranges. These complexities necessitate robust and adaptive
control strategies to ensure intuitive and reliable human assistance.

2.3 Control of Exoskeletons
Effective control of assistive exoskeletons presents a complex challenge due to the nonlinear and
human-in-the-loop nature of such systems. The integration of Variable Stiffness Mechanisms (VSMs),
nonlinear joint dynamics, and user intention introduces the need for advanced control strategies that
can ensure stability, responsiveness, and adaptability across various tasks. In this section, several
promising control approaches are reviewed, based on recent literature covering predictive control,
impedance-based methods, hybrid high- and low-level structures, and learning-based intent predic-
tion.
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Model Predictive Control (MPC) and Nonlinear MPC

Model Predictive Control (MPC) is gaining traction in exoskeleton applications due to its ability to
handle multi-variable systems with constraints, especially when nonlinearity is involved. In solution
proposed by Szumowski et al. [17], MPC is applied to a system composed of a DC motor with gear
reduction, a spring-based variable stiffness mechanism, and an inertial load. Although the spring
element introduces nonlinear behavior, the authors formulate an optimization problem suitable for
matrix-based solution methods. The controller calculates the optimal spring stiffness and then actu-
ates the motor accordingly. Results demonstrate significant performance improvements over a tradi-
tional PID controller, particularly in tracking accuracy and control effort, as shown in Figure 2.12a,
Figure 2.12b and Figure 2.12c.

(a) MPC step signal.
Taken from [17]

(b) MPC ramp signal.
Taken from [17]

(c) MPC sin wave signal.
Taken from [17]

Figure 2.12: Response of MPC to different signals

A similar effort is presented by Tahamipour et al. [18], where a Nonlinear MPC (NMPC) is used in
a simulated exoskeleton system. The NMPC controller predicts the desired torque using a human-
exoskeleton model and includes a filtering layer that defines the level of assistance provided to the
user. This filtering is manually tuned, allowing user-specific adaptation. While position tracking
showed only modest improvement compared to a PID baseline, the NMPC exhibited superior energy
efficiency and smoother control actions. However, this work remains at the simulation stage, and
real-world validation is needed.

Impedance Control with Intention Prediction

Impedance control remains one of the most widely used strategies for compliant human-robot in-
teraction, owing to its ability to regulate the mechanical interaction dynamics between human and
exoskeleton. The Khan et al. [19] implement an impedance controller in a 7-DOF exoskeleton, with
two actively controlled joints at the elbow and shoulder. To enhance intention detection, they employ
a Radial Basis Function Neural Network (RBFNN) trained on data from a Muscle Circumference
Sensor (MCS)—a novel alternative to conventional electromyography (EMG) sensors. However, the
study highlights several limitations: MCS data is only effective on muscle groups with significant
volume change, such as the biceps, and it is not suitable for estimating desired movement speed.
These constraints pose challenges for real-time implementation and suggest that additional sensing or
hybrid models may be required.
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Hierarchical Control with Mode Switching

An interesting hybrid control architecture is explored by Ding et al. [20], where the focus is on assist-
ing workers during overhead tasks. The proposed system employs a two-layer control strategy. The
low-level controller consists of a PD controller with force feedback and a feedforward disturbance
observer to reduce steady-state errors and compensate for user-induced perturbations. A high-level
controller determines the assistive mode based on IMU-derived shoulder flexion angles and joint
accelerations. Three assistive sub-modes are defined—holding, raising, and lowering—each with
customized control parameters. Additionally, a safety mode is triggered when shoulder acceleration
exceeds a defined threshold, temporarily setting the desired torque to zero. Although the system
shows promising reductions in muscle activation, it requires extensive calibration and lacks robust-
ness across varied tasks. The authors suggest that future work could incorporate EMG signals to
improve intention detection within the high-level controller.

Predictive Control Using Deep Learning

Souza et al. [21] investigate two Long Short-Term Memory (LSTM)-based neural network strategies
for predicting torque commands in an exoskeleton controller. The first strategy, PJ+ID, predicts future
joint positions and computes torque via inverse dynamics. The second, ID+PT, uses inverse dynamics
on past joint positions to directly predict the desired torque. The latter method outperformed the for-
mer due to a lower-dimensional prediction target (four values instead of twenty), which significantly
reduced training complexity and improved accuracy. Although trained on simulated data, the study
points out a key limitation: the human-exoskeleton interaction loop is not fully modeled during train-
ing. This indicates the need for further research in combining physical sensing with neural prediction
to close the control loop in a real-world setting.

Neural Network PID Control for Variable Stiffness
Hu et al. [22] design a control scheme tailored for a variable stiffness joint intended for upper-limb
rehabilitation. Their solution leverages a Neural Network PID (NN-PID) controller that dynamically
adjusts the PID gains KP,KI ,KD based on desired torque, external disturbances, and current stiffness
settings. Using MATLAB Simulink, they first model the joint dynamics and optimize the gain param-
eters under different stiffness conditions. This training data is then fed into a Backpropagation Neural
Network with one hidden layer using a tansig activation function and a purelin output layer. The NN
is trained offline.
Simulation results show notable improvements in system performance, including reduced rise and
settling times for step responses. The controller is further validated in hardware, where a subject per-
forms elbow flexion from 0° to 90° and back, with an 8 Nm resistance torque applied. Experiments
with both low and high stiffness settings confirm the controller’s effectiveness in torque trajectory
tracking. This work demonstrates the feasibility of intelligent gain tuning for exoskeleton control,
offering a scalable path for adaptive rehabilitation systems.
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Online Learning-Based Impedance Adaptation
Xiong at al [23] propose a novel learning-based control model for portable elbow exoskeletons that
provides both Assist-as-Needed (AAN) and Resist-as-Needed (RAN) functionalities. Uniquely, the
controller operates without external sensors such as EMG or force sensors, and without passive com-
pliance mechanisms like springs. Instead, it relies solely on internal joint position and velocity feed-
back. The model combines an Iterative Learning Mechanism (ILM), which gradually learns feedfor-
ward torque based on previous task errors, with an Online Impedance Adaptation Mechanism (OIAM)
that adjusts joint stiffness and damping in real time. In AAN mode, both mechanisms work together
to minimize tracking error and compensate for involuntary user movement. In RAN mode, only the
impedance adaptation is used to provide resistance, simulating a virtual adjustable spring-damper
system that increases effort required from the user. Experiments on three human subjects using the
lightweight POW-EXO exoskeleton (0.425 kg) show that the controller effectively adapts to individ-
ual user dynamics, improving accuracy and involvement over repeated trials. This model stands out
as a low-sensor, multifunctional solution for personalized exoskeleton assistance and training, partic-
ularly in home-based or minimally-instrumented settings.

Force Myography-Based Control

While electromyography (EMG) remains a standard for intention detection, it suffers from practical
issues such as signal variability due to electrode placement, skin conditions, and the need for prepa-
ration. Islam et al. [24], the authors explore the use of Force Myography (FMG) as a more robust
alternative. FMG sensors measure changes in muscle volume and pressure using pressure bands,
offering a higher signal-to-noise ratio and more consistent readings under dynamic conditions. In
this study, FMG data is used to estimate the external load being carried by the user and to deter-
mine the appropriate assistive torque. Results show promising accuracy in payload estimation and
torque adaptation. However, the authors also note that FMG systems are sensitive to external interac-
tions—particularly when the exoskeleton structure applies pressure on the sensor band—which can
result in incorrect torque predictions. This highlights the need for careful integration between wear-
able sensing and the mechanical interface.

Overall, the literature reveals a trend toward hybrid and adaptive control systems that integrate robust
low-level controllers with high-level intent recognition and context awareness. Methods such as MPC
and NMPC address system nonlinearity and constraint handling, while impedance-based and hierar-
chical controllers facilitate safe human-robot interaction. Learning-based approaches, including FMG
and neural networks, offer new avenues for user intention prediction but require further development
for real-time reliability and integration with wearable hardware. Moving forward, control strategies
that combine mechanical compliance with intelligent, sensor-driven adaptation are likely to play a
central role in achieving intuitive, responsive, and task-aware exoskeleton assistance.

12 of 80



3 Requirements
3.1 Final problem statement
Thus, based on the findings and research conducted in chapter 2, it can be concluded that multi-
ple control strategies, both at the low and high levels, are available and can be combined to control
exoskeletons incorporating Variable Stiffness Mechanisms. Based on these findings, the problem
statement is refined to:

”What type of control strategy can best support an upper-limb exoskeleton equipped with a variable
stiffness mechanism?”

3.2 Design Requirements
Based on the research conducted, the objectives of this project can be formulated as a set of design
requirements that must be addressed to achieve a complete solution. These are defined as follows:

1. The controller has to be implemented into embedded system board.

2. The overshoot of the system response must not exceed 5% of the reference signal amplitude.

3. The rise time of the controller must be within 1 ± 0.1 seconds.

4. The trajectory tracking error should not exceed 5°.

5. The intention prediction system must detect the desired joint angle within 5° of error.

6. The intention prediction system must reliably distinguish between movement initiation and posi-
tion holding.

7. The intention prediction system must detect the load that the user is holding within 0.5kg.

3.3 Delimitations
One major limitation of the current exoskeleton design is the use of a non-backdrivable motor. This
means the motor cannot be driven passively by external forces acting on its output shaft. As a result,
when the motor is idle but still connected with the coupler, it effectively locks the exoskeleton in
place. This restricts natural movement and limits usability in certain scenarios.
Due to this constraint, implementation and testing of control algorithms for the VSM had to be con-
ducted theoretically using Simulink simulations. Practical validation would be carried out on an
alternative exoskeleton system.
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4 Exoskeleton design adn modeling
This chapter describes setup of the exoskeleton design and dynamic modeling.

4.1 Exoskeleton
The entire exoskeleton system consists of four main components: the ESCON 50/5 motor controller,
an Arduino Due microcontroller, a Maxon EC motor, and the physical exoskeleton frame. Each
component plays a crucial role in the system’s operation and will be briefly described below. The
Figure 4.1 shows whole exoskeleton system fixed on the table with 1 exoskeleton fixed to frame,
2 Control Hardware and 3 safety switch whuchg would be used to stop any unwanted behaviour.

Figure 4.1: Whole exoskeleton setup

Motor
The motor used in the exoskeleton is a brushless EC motor [25] manufactured by Maxon, as seen in
Figure 4.2. It includes an integrated Hall sensor for position and speed feedback. Additionally, the
motor is paired with a high-ratio gearbox featuring a 1:1221 reduction. This setup enables high torque
output, which is necessary for the exoskeleton’s operation. The presence of the Hall sensor supports
precise closed-loop control of the motor’s behavior.

Figure 4.2: Maxon motor removed from frame
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Control Hardware
The motor is driven by the ESCON 50/5 controller [26], selected for its configurability. The controller
parameters were configured using Maxon’s Motion Studio software. An Arduino Due microcontroller
serves as the main interface between the sensors and the ESCON controller. It is responsible for gen-
erating the control signals and handling data acquisition from the exoskeleton’s sensors.

Initially, the Arduino Due [27] used PWM (Pulse Width Modulation) for speed control. However, due
to issues with the PWM frequency, the control method was switched to analog voltage control. The
maximum motor speed of 10,600 rpm corresponds to an analog input of 3.3 V—the maximum output
voltage by the Arduino Due. To prevent unintended movement when the motor is idle, a minimum
offset voltage of 0.05 V is used. This ensures the ESCON receives a clean zero-speed signal, avoiding
the interpretation of small PWM fluctuations as movement commands. Both the ESCON and Arduino
Due are housed in a custom 3D-printed enclosure to improve system integration and safety, shown in
Figure 4.3.

Figure 4.3: ESCON 50/5 and Arduino Due in custom box

Sensors
In addition to the Hall sensor built into the motor, the exoskeleton is equipped with two absolute
encoders mounted on the components of the Variable Stiffness Mechanism (VSM). One encoder
RMB20VB [28] tracks the position of the bevel gear connected to the pendulum, shown in Figure 4.4,
while the other AksIM [29] monitors deflection in the VSM, shown in Figure 4.5. These sensors are
crucial for feedback control and system evaluation.
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Figure 4.4: Exoskeleton’s position encoder Figure 4.5: Deflection encoder

Sensor calibration

To calibrate the encoders, a protractor was attached to the exoskeleton. Angular positions were manu-
ally set using the protractor, and corresponding raw encoder values were read using the Arduino. The
full calibration setup is shown in Figure 4.6
The angle 0° was exoskeleton’s natural position with VSM and motor disengaged and 180° was
upritght position of the exoskeleton. The collected data was then plotted, and a linear fit was applied
to establish a mapping between raw sensor readings and physical angles. This calibration process
enables accurate angle estimation during experiments.
The equation used later to calculate the angle of the shaft was determined as:

θp =−0.324x+181.75 (4.1)

The final linear fit and raw data can be seen in Figure 4.7, the offset comes from manual adjustments
after initial equation was implemented on Arduino.
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Figure 4.6: Encoder calibration setup

Figure 4.7: Calibration data from shaft encoder and linear fit
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4.2 Modeling
This section will discuss modeling of the system and its implementation of low and high level control.

Figure 4.8: Free body diagram of the exoskeleton system

Based on free body diagram Figure 4.8 the system has been modeled as followed. All forces acting
on the motor can written as:

τm +
τvsm

N
−

τp

N
=

Jp

N
θ̈p +

B
N

θ̇p (4.2)

This can be rearranged to have pendulum acceleration as output of equation.

Nτm

Jp
+

τvsm

Jp
−

τp

Jp
−

Bp

Jp
θ̇p = θ̈p (4.3)

The torque acting from pendulum and additional payload can be written as

τp = lexomexogsin(θp)+ lpaympaygsin(θp) (4.4)

Which can be rearranged to:

τp = (lexomexo + lpaympay)gsin(θp) (4.5)
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The torque from VSM has been modeled based on previous experiment in which torque was measured
against deflection of the VSM, Figure 4.9 shows data gathered in experiment and polynomial fit.

Figure 4.9: Polynimal fit of the data gathered on VSM

Final equation that was calulated by Matlab was. The constant value at the end was removed to make
polynomial equal to 0 while deflection is equal 0.

τvsm(θd) = 9.9697θ
3
d +0.8738θ

2
d +1.6786θd (4.6)

Where:

θd = θvsm −θp (4.7)

Therefore final equation used to model the plant can be written as:

θ̈p =
Nτm

Jp
+

τvsm(θd)

Jp
−

(lexomexo + lpaympay)gsin(θp)

Jp
−

Bp

Jp
θ̇p (4.8)
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All variables used in Equation 4.8 are presented in Table 4.1.

Variable Description

θ ,θ̇ ,θ̈ Pendulum’s position, velocity and acceleration respectively
τm Torque generated by motor
τV SM(θd) Torque generated by VSM
τp Tourqe generated by pendulum and additional payload
N Final gear ratio
Jp Pendulum’s moment of inertia
Bp Pendulum’s damping ratio
lexo,lpay Exoskeleton’s and payload’s center of gravity respectively in regards to pivot point
mexo,mpay Exoskeleton’s and payload’s mass respectively in regards to pivot point

Table 4.1: Description of variables

Simulink model
Final equation Equation 4.8 was used in Plant of the model made in Simulink shown in Figure 4.10

Figure 4.10: Simulink plant

The final gear ratio was calculated by multiplying the motor’s gearbox and bevel’s gear ratio, which
were found to be 1:1221 and 1:2, respectively. Therefore, the final gear ratio is 1:2442. The mass
of the exoskeleton can be easily obtained, the remaining values presented in Table 4.1. Variables
Explained proved more challenging to obtain. Therefore, in order to approximate the moment of
inertia of the exoskeleton, the exoskeleton itself was assumed to be a point mass, occupying one-third
of the length of the exoskeleton. This point mass was attached to two other masses, which represented
the motors. The new center of mass and moment of inertia were thus calculated to be 0.2401 m and
0.0318 kgm2, respectively. The complete calculations can be found in Appendix B.
Moreover, it is not possible to predict the damping of the system. Therefore, this value has been
empirically established on the basis of recorded data gathered from the shaft encoder while the VSM
was locked at a position of 90°. Following a comprehensive evaluation of the available options, it
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was determined that the optimal value for the system as a whole was 0.45Nms/rad. The empirical
data and the results obtained from the Simulink model are presented in Figure 4.11 and Figure 4.12,
respectively.

Figure 4.11: Recorded pendulum’s position
based on shaft encoder

Figure 4.12: Recreated experiment in Simulink

The discrepancy between real and simulated data might be due to unaccounted friction in the system
or wrongly predicted center of mass.

To simulate how control signals propagate through the system—from the Arduino, through the ES-
CON controller, and finally to the motor—a simplified motor model was implemented in Simulink.
The objective of this model was to approximate the behavior of the motor under the influence of con-
trol inputs generated by a PID controller.

The first step was to convert the PID controller’s output into signals that are compatible with the ES-
CON’s control interface. In the real system, the Arduino outputs either a PWM signal or an analog
voltage to command motor speed. In the simulation, the PID output is mapped to a PWM duty cycle
using a scaling formula based on speed tourque constant 16.1 rad

min mNm and the maximum output volt-
age of 3.3V and a 12-bit PWM resolution. A snippet of the function block used for this conversion is
shown below in Listing 4.1
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1 function [PWM ,direction] = PWM_calc(PID_out)

2 % PID signal to PWM convertion

3 speed = PID_out *16.1e3;

4
5 I = (speed /3.3) *4095; %12-bit resolution

6
7 % Calculate direction

8 if I<0

9 direction = -1;

10 else

11 direction = 1;

12 end

13
14 II = abs(I);

15
16 if II >= 4095 % Overflow prevention

17 PWM = 4095;

18 else

19 PWM = round(II); % Change to integer

20 end

Listing 4.1: PWM calculation from PID output

This simple conversion maps the PID output into a corresponding PWM signal, where:

speed = PIDout ∗16.1e3 (4.9)

PWM = (speed/3.3)∗4095 (4.10)

Here, 4095 represents the maximum value for a 12-bit signal. The direction of rotation is determined
based on the sign of the PID output: a positive value indicates forward motion, while a negative value
indicates reverse. To prevent overflow, the PWM value is clamped at a maximum of 4095.
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Next, to estimate the mechanical response of the motor, the PWM value is used to compute the motor
speed. This simulated speed is then converted into torque using the again motor’s speed/torque con-
stant KT . A simplified function block handling this computation is shown below in Listing 4.2

1 function [tau_m ,motor_speed] = tau_calc(PWM , direction)

2 % PWM to speed convertion

3 motor_speed = PWM /4095*10600; % RPM

4
5 % Speed to torque convertion

6 tau_m = motor_speed /(16.1 e3)*direction; % Nm

Listing 4.2: Torque calculation based on PWM input

The constants used in simulation are summarised in Table 4.2

Variable Value

N 2442
Jp 0.0318 kgm2

Bp 0.45Nms
rad

lexo,lpay 0.2401m, 0.2m
mexo 1.938kg
KT 16.1 rad

min mNm

Table 4.2: Variables used in model
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5 Controller Design
The subsequent chapter will provide a discussion on the conceptual ideal design of the system. It is
acknowledged that the preceding research and requirements have been given due consideration in the
formulation of this study.

5.1 Low-level control
As discussed in chapter 2, several control strategies were considered for low-level control of the ex-
oskeleton, including:

• Model Predictive Control (MPC)

• Nonlinear Model Predictive Control (NMPC)

• Impedance control (with neural network assistance)

• Classical PD or PID controllers

• Neural Network Scheduled PID

While MPC and NMPC offer strong performance in managing multivariable and nonlinear dynamics,
they require accurate system modeling and substantial computational resources. These requirements
exceed the capabilities of embedded systems such as the Arduino platform, especially under real-time
constraints.

PID controllers, on the other hand, are computationally lightweight and well-suited for microcontroller-
based platforms. However, a standard PID controller tuned at one operating point often performs
poorly when system dynamics change—such as with varying joint angles or external loads. This
limitation is especially problematic in systems incorporating Variable Stiffness Mechanisms (VSMs),
where the nonlinearity is significant.

Impedance control, particularly when combined with neural network-based intention prediction as
presented in [19], offers a biologically inspired approach to compliant control. However, even in this
approach, the computational overhead of real-time neural estimation can be prohibitive for resource-
limited hardware unless heavily optimized.

Given these constraints and goals, this project will implement a PID controller with a neural network-
based gain scheduler for low-level control. This hybrid approach combines the real-time feasibility
of PID with adaptability to nonlinear system behavior via intelligent gain tuning.

This approach enables flexible and responsive control across different operating regimes without re-
quiring complex physical modeling or computationally expensive real-time optimization.

24 of 80



CHAPTER 5. CONTROLLER DESIGN

5.2 High-level control
For the purposes of this design, only sensing modalities and prediction strategies discussed in sec-
tion 2.3 are considered. These include:

• Inertial Measurement Units (IMUs)

• Force Myography (FMG) armbands

• Electromyography (EMG) armbands

• Prediction of assistive tourque based on joint position history

Each of these methods presents distinct advantages and trade-offs:

IMUs are relatively easy to implement and provide reliable measurements of joint orientation and
acceleration. However, they offer limited information about the external load being carried or the
user’s muscular effort, which reduces their effectiveness in predicting user intention under varying
load conditions.

FMG armbands measure pressure changes in the forearm caused by muscle contractions. They are
non-invasive, can be worn over clothing, and generally offer a higher signal-to-noise ratio than EMG.
FMG can estimate both the user’s intention and the approximate load on the limb. However, they may
be sensitive to external pressure, such as contact with the exoskeleton frame, which can interfere with
signal quality.

EMG armbands detect electrical activity from muscle activation and can offer high-fidelity intention
prediction. Yet, they require direct skin contact, careful sensor placement, and consistent skin condi-
tions, making them less suitable for industrial or long-term use.

Joint position history-based prediction, often used in conjunction with machine learning models, can
be effective for tracking movement trends. However, this approach struggles with intention classifi-
cation, especially in static or load-bearing tasks, and does not provide insights into external force or
user effort.

Given the application context—an upper-limb exoskeleton designed for industrial use—FMG arm-
bands offer the best balance of practicality and data richness. Their ease of deployment, ability to
be worn over clothing, and relevance for estimating muscular activity and load make them an ideal
candidate. To complement the FMG, an IMU placed on the upper arm will be used to measure joint
angles in real time, enabling closed-loop control and tracking.

To interpret these continuous, time-dependent signals, a Long Short-Term Memory (LSTM) Neural
Network is selected. LSTMs are particularly effective for time-series data like FMG and IMU sig-
nals, as they can capture long-range dependencies and temporal dynamics essential for user intention
prediction.
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5.3 Final Design
Based on the research conducted and trade-offs discussed in Chapter 2, the control system for the
variable stiffness exoskeleton is structured into two hierarchical layers, each addressing distinct con-
trol challenges:

Low-Level Control
The low-level controller is tasked with accurate joint tracking and stabilization despite the nonlinear
behavior introduced by the Variable Stiffness Mechanism (VSM). A conventional PID controller is
employed due to its computational efficiency, which makes it suitable for implementation on an em-
bedded platform such as Arduino. However, to compensate for the inherent limitations of fixed-gain
PID in nonlinear systems, a neural network-based gain scheduler is integrated. This scheduler adjusts
the PID parameters dynamically based on the estimated load and target joint angle, enhancing robust-
ness and adaptability across varying conditions.

High-Level Control
The high-level controller is responsible for user intention recognition and adaptive task mode switch-
ing. For this purpose, a Force Myography (FMG) band is used in conjunction with an IMU sensor
placed on the arm. FMG offers a non-invasive and user-friendly sensing modality that can detect mus-
cle pressure changes even over clothing, making it well-suited for industrial environments. The IMU
provides complementary kinematic data, such as joint angles and movement patterns. An LSTM neu-
ral network is utilized to analyze temporal patterns in these continuous signals, classifying the user’s
intent—such as movement, load application, or holding position—with high temporal resolution and
adaptability.

Final overview of the system can be seen in Figure 5.1

Figure 5.1: Overview of the system
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6 Implementation
Based on design in chapter 5 and delimitation in chapter 3 this chapter will go in depth into imple-
mentation.

6.1 Low-Level Control
This section describes the implementation of the PID controller, the data acquisition process, and the
training procedure for the neural network-based scheduling system, which is later used during testing.

Controller
The proposed control strategy for the exoskeleton combines a Neural Network PID (NN PID) con-
troller with a torque observer. The observer estimates the torque currently acting on the system, which
is then subtracted from the PID controller’s output. This counteracting torque helps to stabilize the
exoskeleton by compensating for natural gravitational movement.
The torque observer is based on the rearranged system dynamics shown in Equation 4.8.

τm =
Jp

N
θ̈p +

Bp

N
θ̇p −

τvsm(θd)

N
+

(lexomexo + lpaympay)gsin(θp)

N
(6.1)

This estimated torque is subtracted from the PID output, which is calculated based on the position
error. The motivation behind this approach is to address a limitation in simple PID position control:
when the motor does not actively generate torque, the pendulum can swing freely by up to 30° even
with the VSM locked at 90°. This unopposed motion causes instability, overshooting, and rapid rise
times when the desired angle is below the locked VSM angle. The observer compensates for this by
providing an opposing torque input.
The complete control system implemented in Simulink, including both the observer and the initial
PID controller, is shown in Figure 6.1. This PID controller is later replaced with the NNS PID for
evaluation.
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Figure 6.1: Control system in Simulink
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Although the current setup requires manual input of the load, this step will eventually be replaced by
a high-level control module capable of predicting the load automatically.

Optimiser
Since the neural network requires large quantities of training data, the PID controller must be tuned for
various scenarios, including different VSM lock positions, target angles, and payloads. This creates
a large set of combinations, making manual tuning impractical. To automate the tuning process, an
autotuning system was developed. The optimiser utilitised Particle Swarm Optimization (PSO) to
tune the PID gains (KP, KI , KD) for the shoulder exoskeleton controller. PSO is a population-based
global optimizer that searches for optimal parameters by simulating social behavior among particles.
In this setup, 5 particles were initialized randomly within defined bounds [0,100] for each parameter.
The simulation was run with guessed values and based on cost function Equation 6.2 the performance
was evaluated. The optimizer was allowed to run for up to 3 iterations per test case. To refine the
results, a hybrid approach was used by integrating MATLAB’s fmincon which is a local minima
search method.

cost =
∫

Error2 (6.2)

Error is firstly squared in order to prevent negative area. Additionally to speed up optimisatiom in
case of small cost, lower than 1 it is set up as 0
Once all predefined scenarios are processed, the optimised PID gains are saved to a CSV file for later
use in neural network training. Each scenario was defined by a combination of three theoretical input
variables:

1. VSM lock position — the position at which the VSM was engaged. This value represents reading
that would be obtained from a shaft encoder.

2. VSM deflection - deflection of the VSM. Based on that value and lock position the target value
was defined.

θtarget = θV SM +θde f (6.3)

3. Load - load applied to the pendulum

The combination of these variables forms the the training dataset, with all values used during simula-
tion shown in Table 6.1.

Variable Values

VSM lock position 60°,90°,120°
VSM deflection -40°,-30°,-20°,-10°,0°,10°,20°,30°,40°
Load 0.1 kg, 0.2 kg, 0.3 kg, 0.4 kg, 0.5 kg

Table 6.1: Variables used in training
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Althighether optimiser gathered 135 data points, whchich can be seen in Appendix C. Furthermore,
visualised data can be seen Figure 6.2, where X and Y axis are inputs to the optimiser and on Z axis
is the output KP, KI , KD respectively.

(a) KP (b) KI (c) KD

Figure 6.2: Output from optimiser for VSM locked at 120°

Neural Network
To train the neural network effectively for PID parameter prediction, a prevoiusly gathered dataset
consisting of three input features—VSM, Desired Position, and Load—and their corresponding Kp,
Ki, and Kd outputs was collected and imported into the system. Figure 6.3 shows how does inputs are
being processed in order to obtained PID outputs.

Figure 6.3: Diagram of Neural Network

Given the nature of this prediction task and the lack of prior benchmarks for comparison, it was de-
cided to explore multiple training strategies to evaluate the network’s performance.

To accomplish this, three different optimization algorithms were implemented and compared:
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• Gradient Descent: A basic optimization method where the weights are iteratively adjusted in
the opposite direction of the gradient of the loss function. It is simple and widely used but may
converge slowly or get trapped in local minima.

• Adam: An improvement over standard gradient descent that computes adaptive learning rates for
each parameter. It uses running averages of both the gradients and their squares to provide efficient
and stable updates.

• Particle Swarm Optimization (PSO): A population-based metaheuristic that simulates social
behavior observed in flocks of birds or fish schools. Each ”particle” (a potential solution) adjusts
its position based on its own experience and the experience of its neighbors, optimizing the network
weights based on the global best solution.

Each of these optimizers was tested under the same network architecture: a single hidden layer, taking
in 3 input features and producing 3 outputs. The number of neurons has been empirically determined
to be 20. This should be sufficient to produce varied output, and the Arduino will be capable of
rapid calculation. The output activation function was deliberately set to none (linear), to ensure direct
regression output of the predicted PID values. Moreover hidden layer activation function was also
varied across three common choices to assess their impact on performance. The functions are Sig-
moid, Tanh, and ReLU (Rectified Linear Unit) all of them can be seen in Figure 6.4a, Figure 6.4b,
and Figure 6.4c

(a) Sigmoid (b) Tanh (c) ReLu

Figure 6.4: Neuron activation functions

The weights and biases of the neural network were initialized randomly. Before training the data is
being split into Training and Test data. The training set accounts for 80% of the total dataset, with
the remaining 20% designated for testing purposes. During training, the network computed mean
squared error (MSE) at each epoch for each output Kp, Ki, Kd , which was tracked and plotted to
visualize learning progress over time. Similarly the test data is used to evaluate performance of the
Network against unknown data. The training was conducted for 1000 epochs with a learning rate of
0.02. Figure 6.5 shows that mean squared error of training and testing data converges.
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Figure 6.5: Example of the out put from Neural network training

The trained matrices for weights and biases were later saved and used in Simulation, final overview
of the low-level control implemented in Simulink can be seen in Figure 6.6

Figure 6.6: Final Low-level control diagram implemented in Simulink

32 of 80



CHAPTER 6. IMPLEMENTATION

Hardware Implementation
As previously mentioned as in chapter 4 due to back drivability issues of prototype exoskeleton,
the actual hardware implementation would be done on different elbow exoskeleton. Although the
exoskeleton is equipped with VSM the configuration is different, as it can be seen in Figure 6.7. The
motor acts on pendulum through VSM not directly like in shoulder exoskeleton.

Figure 6.7: Free body diagram of the elbow joint exoskeleton

As in this setup VSM can not be locked neural network implemented to the will have only two inputs
load on pendulum and desired position. Furthermore all data has to be gathered by manually tuning
PID values. Figure 6.8 shows whole setup of the exoskeleton, 1 Maxon motor, 2 Arduino Due
and 3 Escon controller. To ensure safety and prevent exoskeleton from damaging the whole setup
4 safety switch was added to setup.

Figure 6.8: Elbow exoskeleton setup
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Furthermore, the angle 0° was defined in full elbow’s extension and 180° in full flexion, as shown in
Figure 6.9.

Figure 6.9: Angle of the elbow joint of the exoskeleton

The variables used during tuning are summarised in Table 6.2.

Variable Values

Target angle 30°,45°,60°,75°,90°
Load 0.06 kg, 0.075 kg, 0.1 kg, 0.16 kg, 0.175 kg, 0.2kg

Table 6.2: Variables used in training of elbow exoskeleton
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The Ziegler–Nichols tuning method was implemented in order to obtain approximation of the most
optimal Kp, Ki, Kd . This method requires increasing Kp value while keeping the rest as 0 until
the system start to oscillate, then using this Kp values and oscillation period by equations shown in
Table 6.3 approximations of optimal values can estimated. The equations used were no overshoot.

Control Type Kp Ti Td Ki Kd
P 0.5Ku – – – –

PI 0.45Ku 0.83Tu –
0.54Ku

Tu
–

PD 0.8Ku – 0.125Tu – 0.10KuTu

Classic PID 0.6Ku 0.5Tu 0.125Tu
1.2Ku

Tu
0.075KuTu

Pessen Integral Rule 0.7Ku 0.4Tu 0.15Tu
1.75Ku

Tu
0.105KuTu

Some Overshoot 0.33Ku 0.5Tu 0.33Tu
0.66Ku

Tu
0.11KuTu

No Overshoot 0.2Ku 0.5Tu 0.33Tu
0.4Ku

Tu
0.066KuTu

Table 6.3: PID Tuning Parameters Based on Ziegler–Nichols Method Variants

As those values were still making system osculate to further improve accuracy of the system the values
the final values were obtain by keeping Kp same as obtained and dividing Ki, Kd by some value. A
trial and error method used to obtain proper Ki, Kd values. Data obtained through this processes can
be seen in Appendix D. This data was used as input for Neural Network and trained as described
before.
In order to accelerate the calculation of the gains, the BasicLinearAlgebra[30] library for Arduino
was implemented. This method was found to be significantly more efficient in terms of calculation
speed than the previously utilised for loop approach.
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6.2 High-level controll
For high-level control, the primary goal is to accurately predict the load a user is carrying, as this
information is essential for the observer used in low-level control. Therefore, the current implemen-
tation of high-level control focuses on estimating the carried load based on biosignal data.

Figure 6.10: BioX FMG arm band

The wearable sensor used for this purpose is the BIOX FMG (Force Myography) armband, shown in
Figure 6.10. This armband is equipped with eight force-sensitive resistor (FSR) sensors positioned
evenly around the band, as well as an inertial measurement unit (IMU) and a gravimeter. The FSR
sensors detect pressure through changes in resistance, which is converted into a voltage signal. These
signals are transmitted via Bluetooth to a computer, where a MATLAB script receives and logs the
data, whole setup can Figure 6.11.

Figure 6.11: Overview of the setup for BioX arm band, taken from [31]

During initial connection and testing, it was observed that the FSR output varied slightly, even for
the same subject without repositioning the armband. This variation is likely due to the internal auto-
calibration mechanism of the FSRs, which adjusts the resistance reference based on the initial applied
force, amplifying the signal to improve resolution. To ensure consistency, this calibration was dis-
abled, reducing the signal range to 0–1. Additionally, care was taken to wear the armband with similar
tightness across all tests. Example of the signal received form the arm band can be seen in Figure 6.12.
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Figure 6.12: Example of data gathered from the band

Data gathering
To collect training data, the armband was worn continuously without removal during the recording
session. The placement of the band was consistently positioned on the right arm in the middle of the
biceps, with sensor number eight situated on the upper portion of the biceps, facing outwards from
the subject.

Figure 6.13: Arm band placed on the subject
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Subjects were asked to hold various weights with their elbow flexed at a 90° angle for 10 seconds per
sample, as shown in Figure 6.14. The following weights were used in the experiments:

• 0 kg

• 1 kg

• 2 kg

• 3 kg

• 4 kg

• 5 kg

Figure 6.14: Subject during data gathering while holding the 5kg weight

Neural Network Setup
The neural network for load prediction was implemented in MATLAB using a Long Short-Term
Memory (LSTM) architecture, as previously introduced in 5. This model is designed to estimate the
weight carried by the user based solely on force myography (FMG) signals. It is set up as a sequence-
to-one regression model, where an input sequence of sensor readings is used to predict a single scalar
output representing the carried load in kilograms.

The input consists of eight FSR signals, each of which is normalized using z-score normalization
to account for inter-subject variability. Output labels correspond to the known weights held by the
subject. Raw data is stored in CSV format, with each file representing a specific recording session.
The data is segmented into fixed-length windows of 5 seconds (100 time steps) and formatted into
input-output pairs. These pairs are then shuffled and split into training and test datasets, with 80% of
the data used for training.
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The structure of the neural network is visualized in Figure 6.15

Figure 6.15: LSTM Network visualised in Deep Network Designer

Network Architecture:

• sequenceInputLayer: Accepts 8-dimensional FSR input vectors

• lstmLayer: Processes temporal patterns across the time series

• fullyConnectedLayer: Reduces the output to a single scalar value

• regressionLayer: Computes loss between predicted and actual load values using Mean Squared
Error (MSE)

The network was trained using two commonly used optimizers: Adam and Stochastic Gradient De-
scent (SGD), both available in MATLAB’s training functions as discussed in 6.1. Each model was
trained for 1000 epochs with a mini-batch size of 32. The results of the training process are shown
Figure 6.16 and Figure 6.17.
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Figure 6.16: Training progress for SGD

Figure 6.17: Training progress for Adam

The blue line (RMSE) represents the Root Mean Squared Error, which measures how close the net-
work’s predictions are to the actual known data points. A lower RMSE indicates more accurate pre-
dictions. This metric reflects the overall performance of the network. The orange line (Loss) shows
the value being minimized during training. It drives the learning process by guiding how the network
updates its internal parameters.
As seen SGD network fails at before 20th epoch and attempts were made to fix that but probably due
to some signals from FSR being 0 it kept failing. Therefore only Adam was used in further testing.
The trained network is saved for later use in a modified version of the MATLAB script that was
originally used to gather the data. This modified version includes continuous data streaming and seg-
mentation into windows of size 8×100 for real-time prediction.
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7 Testing
In order to check and evaluate systems performance a number of tests have been designed. All tests
has been designed to check if requirements in chapter 3 have been fullfiled. The test were divided
into two categories Low- and High-level control. Subsequent sections describe the testing scenario
and results.

7.1 Low-Level Controller
This section outlines the testing scenarios and presents the results of the low-level controller perfor-
mance, both in Simulink simulation and on the physical hardware.

Simulation
To evaluate the Neural Network PID (NNPID) controller in simulation, the VSM was tested under
conditions different from those used during training. Specifically, the VSM’s locked position was set
to 100°, and two target deflections of +35° and −35° were tested, with an attached load of 350 g.
These test parameters were selected to assess the controller’s adaptability to previously unseen con-
ditions.

Additionally, a trajectory tracking task was implemented, following a sinusoidal trajectory centered
at 100° with a ±35° amplitude at a frequency of 0.5 Hz.
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Results

The results have been divided into step response and sin wave response. Data was obtained from
Simulink by running simulation and each time changing Neural Network.

Step response

The following section will present the results for the step response of the system.

Gradient Descent

(a) Target 65° with load 0.35kg (b) Target 135° with load 0.35kg

Figure 7.1: Results for Gradient Descent with Sigmoid activation function

(a) Target 65° with load 0.35kg (b) Target 135° with load 0.35kg

Figure 7.2: Results for Gradient Descent with Tanh activation function
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(a) Target 65° with load 0.35kg (b) Target 135° with load 0.35kg

Figure 7.3: Results for Gradient Descent with ReLu activation function

As can be seen in Figure 7.1a, Figure 7.2a and Figure 7.3a, in all cases of target angle of 65° the
exoskeleton reaches steady state error of 69° in smooth manner. Additionally cases in with Sigmoid
and ReLu activation function suddenly drop below target and only Tanh function after drop reaches
target. Moreover none of the cases shown in Figure 7.1b, Figure 7.2b and Figure 7.3b outperform
other. All of them show high oscillation of the exoskeleton of around 5° with no sign of settling.
Additionally smaller oscillations between timestep can be seen making the signal uneven.

Adam

(a) Target 65° with load 0.35kg (b) Target 135° with load 0.35kg

Figure 7.4: Results for Adam with Sigmoid activation function

43 of 80



CHAPTER 7. TESTING

(a) Target 65° with load 0.35kg (b) Target 135° with load 0.35kg

Figure 7.5: Results for Adam with Tanh activation function

(a) Target 65° with load 0.35kg (b) Target 135° with load 0.35kg

Figure 7.6: Results for Adam with ReLu activation function

As can be seen in Figure 7.4a, Figure 7.5a and Figure 7.6a, similarly to Gradient Descent cases of
target angle of 65° the exoskeleton reaches steady state error of 69° in smooth manner. The differ-
ence is that this time it is ReLu activation function that shows sign of settling on target and rest cases
show sudden drop below target. Furthermore out of all cases shown Figure 7.4b, Figure 7.5b and
Figure 7.6b, the ReLu case shows promising results. Although small oscillations occur between time
step making signal not very clear, it settles on target angle with very small oscillations up to 1.5°. The
other cases have more unstable response of oscillations of 5°.
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PSO

(a) Target 65° with load 0.35kg (b) Target 135° with load 0.35kg

Figure 7.7: Results for PSO with Sigmoid activation function

(a) Target 65° with load 0.35kg (b) Target 135° with load 0.35kg

Figure 7.8: Results for PSO with Tanh activation function
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(a) Target 65° with load 0.35kg (b) Target 135° with load 0.35kg

Figure 7.9: Results for PSO with ReLu activation function

All cases of 65° seen in Figure 7.7a, Figure 7.8a and Figure 7.9a, have same response quick raise and
steady state error at 69°. Also all cases for 135° shown Figure 7.7b, Figure 7.8b and Figure 7.9b, have
same response of big oscillations around target.
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Sin wave response

The following section will present the results for the sin wave response of the system.

Gradient Descent

Figure 7.10: Trajectory tracking for Gradient Descent with Sigmoid activation function

Figure 7.11: Gain scheduling for Gradient Descent with Sigmoid activation function
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Figure 7.12: Trajectory tracking for Gradient Descent with Tanh activation function

Figure 7.13: Gain scheduling for Gradient Descent with Tanh activation function
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Figure 7.14: Trajectory tracking for Gradient Descent with ReLu activation function

Figure 7.15: Gain scheduling for Gradient Descent with Relu activation function

The results for neural networks trained with Gradient Descent are shown in Figure 7.10, Figure 7.12,
and Figure 7.14. Sigmoid and ReLU activation functions gave better results with errors around ±10°,
while Tanh resulted in errors up to ±20°. Additionally, the Tanh-based network showed significant
changes to PID gains (Figure 7.13). Although scheduling with Sigmoid (Figure 7.11) was functional,
the changes were marginal. ReLU-based scheduling (Figure 7.15) maintained constant gains.

49 of 80



CHAPTER 7. TESTING

Adam

Figure 7.16: Trajectory tracking for Adam with Sigmoid activation function

Figure 7.17: Gain scheduling for Adam with Sigmoid activation function
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Figure 7.18: Trajectory tracking for Adam with Tanh activation function

Figure 7.19: Gain scheduling for Adam with Tanh activation function
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Figure 7.20: Trajectory tracking for Adam with ReLu activation function

Figure 7.21: Gain scheduling for Adam with Relu activation function

Adam based trained neural networks that used Sigmoid and Tanh, seen in Figure 7.16 and Figure 7.18
respectively, have position error of ±10°. Although the ReLu based neural network achieved lower
accuracy it only has peaks of 20° when target is 135°. While it has small error while reaching 65°.
Furthermore, the more accurate networks, the Simoid and Tanh have marginal change in the gains,
which is presented in Figure 7.17 and Figure 7.19. The network that uses ReLu activation schedules
the gains more aggressively and overall changes are more distinct, as shown in Figure 7.21.
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PSO

Figure 7.22: Trajectory tracking for PSO with Sigmoid activation function

Figure 7.23: Gain scheduling for PSO with Sigmoid activation function
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Figure 7.24: Trajectory tracking for PSO with Tanh activation function

Figure 7.25: Gain scheduling for PSO with Tanh activation function
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Figure 7.26: Trajectory tracking for PSO with ReLu activation function

Figure 7.27: Gain scheduling for PSO with Relu activation function

The PSO results seen in Figure 7.22, Figure 7.24 and Figure 7.26 show low accuracy. Regardless
the activation function the error oscillates ±50°. Moreover it can be seen that while target is 135°
the controller overshoots and target of 65° exoskeleton stops goes quickly to target and stops until
signal raises again to 135°. Furthermore the gains creatad by shown in Figure 7.22, Figure 7.24 and
Figure 7.26.
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Results Discussion
Overall performance of the NNPID in Simulation varies across used neural network and used activa-
tion function the summarised results can be seen in Table 7.1. The main issue seen is big discrepancy
of results between 135° and 65°. As neural network is as good as training data it learns from. There-
fore the source of this behavior is probably due to either poor data obtained from the optimiser for
in that specific range or overall data output from optimiser did not have any corelation between data
points which resulted in semi-working Neural Network.
Futhermore, most unreliable results were seen from PSO as target of 135° render system unstable,
similar response was seen in sin wave response. This was probably due to overfitting data by PSO
as it looks globally for local minima. Furthermore the Gradient Descent results show better response
compared to PSO, but the response both for step and sin wave are not desirable. The poor results from
this network might be due to training algorithms getting stuck in local minium.
Out of all results the neural network trained with Adam and using ReLu activation function gave
best results for step reaction. The reason to it’s success is that the fact that adam algorithm doesn’t
get stuck in firs local minima and is capable of finding of better fit for data unlike gradient descent.
Although sin wave results are still not satisfactory it is one of better performing networks in that cate-
gory. Furthermore issues of networks with sin wave might be due to the fact that they were all trained
on step input.
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Physical Testing
For testing on the physical elbow exoskeleton, combinations of two different loads (83 g and 238 g)
and two target angles (37° and 82°) were used. These conditions were also outside the training dataset
and intended to evaluate the NNPID’s generalization capability.

Trajectory tracking was additionally tested on hardware, using a sinusoidal path centered at 90° with
a ±30° amplitude and a 0.5 Hz frequency. For comparison, a conventional PID controller gains were
chosen from the gathered data one set per load and used as a performance benchmark.

Results

The results are divided into two categories: step response and sin wave tracking. Data was gathered
using Matlab code which had live plotting of the data send from Arduino and GUI that enabled to
change target value. A Before each test the for step response the initial target was set to 0°. For the
sin wave as some PID values were unstable the code would move the arm to 90° in two step signals
before changing the singal to sin wave.

Step response

Figure 7.28: Results for Load 83g and Target angle 37°

As shown in Figure 7.28, the NNPID exhibits a fast response to the step signal. While some jerk
movement is observed, the controller with a rise time of approximately 6 seconds, reaches the target
without overshooting and maintains 2° steady-state error untill it overshoots the refrence signal by 3°.
In contrast, the PID controller has 40 seconds rise time and steady state-error is 2°.
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Figure 7.29: Results for Load 83g and Target angle 99°

Figure 7.29 in this setup NNPID slightly outperformed normal PID. Rise time NNPID is 10second
but it takes another 10 second to reach target with 0° steady error. Moreover the NNPID had moments
in which position us doesn’t change. The PID controller, follows similar trajectory as NNOID but is
slower to reach 90% of signal in 20 seconds and achives target in 40seconds.

Figure 7.30: Results for Load 238g and Target angle 37°

In Figure 7.30, NNPID is has fast response but first settles for 5 seconds in 30° position to overshoot
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by around 10° after 20 second it reaches the target but at the end of recording it goes to 35°. PID
response is better in terms of rise time and steady state error which is about 2°. The response to the
signal is slow as it takes 10 seconds for motor to start moving.

Figure 7.31: Results for Load 238g and Target angle 99°

As illustrated in Figure 7.31, both controllers have quick response. NNPID has rise time of 2.5
seconds and settle in 6 seconds. Addionnaly NNPID overshoots 7°. The PID controller has 9 second
rise time and 3° steady state error
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Sin wave response
show results from sin wave trajectory tracking.

Figure 7.32: Results for trajectory track with Neural Network load 83g

Figure 7.33: PID gains change for trajectory track with Neural Network and load 83g

Figure 7.32 shows that the trajectory tracing is not working with NNPID and position is changes only
by couple degrees. Nevertheless, Figure 7.33 shows that Neural Network actively changes PID gains
based on given angle.
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Figure 7.34: Results for trajectory track with PID load 83g

As seen in Figure 7.34 the arm tracks the wave signal, but not very efficiently as the position constantly
osciclates around signal.

Figure 7.35: Results for trajectory track with Neural Network load 238g
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Figure 7.36: PID gains change for trajectory track with Neural Network and load 238g

Figure 7.35 shows that gains produced by Neural Network are not suitable for trajectory tracking as
the arm is in steady position. Furthermore Figure 7.36 shows that gains scheduling works in real time,
Moreover the values produced for this scenario are different from 83g case.

Figure 7.37: Results for trajectory track with PID load 238g

In Figure 7.37 the peroformance of PID controller can be seen. Overall the position does not follow
sin wave signal. after two moves the position settles at 90° positio
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In the case of a load of 37g, both the NNPID and the regular PID demonstrated an inadequate re-
sponse. Despite the presence of small oscillations in NNPID, they are insufficient to be considered
as successful tracking. It is observable that for 238g, the response for NNPID is more favourable, yet
the controller is out of phase and exhibits an additional jerk on top of the sinusoidal waveform. This
configuration exhibits superior performance in comparison to the conventional PID controller, as the
response approaches a square signal prior to settling at 90°.

Results Discussion
The results show promising performance of the proposed system. Although a properly tuned PID
would yield better results than the NNPID, it would be difficult to determine PID values for every
case. Therefore, NNPID demonstrates its superiority, being based on scarce data. Based on perfor-
mance of the both tuned values could definitely be improved. This can be seen as the quality of the
network correlates directly with the quality of the data points. As for trajectory tracking, the main
reason for poor results is that the PID values were tuned for a step response with high initial error.
During trajectory tracking, small errors arise at each time step between the reference and the current
position. Therefore, the training function should also be trained in multiple different scenarios that
the initial state of the exoskeleton is not equal to zero for example 30° to 90°.

7.2 High-level control
The testing procedure followed the same setup as the data collection phase, with the key difference be-
ing that a continuous MATLAB script was used to record data in real time while running the uploaded
neural network for live load prediction. Tests were conducted on three subjects, who were tasked with
lifting and holding various loads, as well as swapping them while data recording continued. The loads
used during testing were 1kg, 4kg,and 5kg.
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7.2.1 Results

Figure 7.38: Results obtained from Subject 1

Figure 7.38 shows that before grabbing the load the network’s initial prediction is about 2kg. For
Subject 1 in 1kg scenario the prediction oscilates around 1kg. In 4kg scenario the prediction to 5kg
and 7kg. In last scenario prediction is just below 5kg.

Figure 7.39: Results obtained from Subject 2
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Figure 7.39 shows that before grabbing the load the network’s initial prediction is about 2kg. For
Subject 2 in 1kg scenario the prediction jumps to 7kg. In 4kg and 5kg scenarios goes to 7kg.

Figure 7.40: Results obtained from Subject 3

Figure 7.40 shows that before grabbing the load the network’s initial prediction is about 2kg. For
Subject 3 in 1kg scenario the prediction jumps to 7kg. In 4kg and 5kg scenarios goes to 6kg.

Results Discussion
The results show that live prediction does not work accurately. This is due poor data. Although
a lot of care was put into gathering data it was proved difficult to get consistent data. There are
multiple factors that have an effect on signal like circumference of the arm, biceps circumference.
This changes overall tightness of the band during data gathering and testing. Moreover some subjects
had to be rejected from data gathering due to arm band being too short to go around their arms.
Although testing was a failure if more reliable way to ensure clarity of data the system would be able
to predict holding the load in the arm.
Furthermore, based on raw data it seams that main sensor activated by holding the weight in elbow
bend 90° is FSR number 7 which is on more on the inside of the arm. Although it was expected to
have sensors 7 and 8 to have higher activation than other, that fact limits prediction as only 2 out of
8 sensors can hold valuable information. Additionally the muscles that are responsible on the back,
therefore shoulder activation can not be detected through armband.
Moreover it was also noticed that grip the participant were using also change the activation of the
muscles in arm which also affected the prediction. Therefore during testing they were asked to hold
the weight in same way as during data gathering.
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8 Discussion
The implementation of a control system for a shoulder exoskeleton equipped with a Variable Stiffness
Mechanism (VSM) has provided insight into industrial-grade exoskeletons. Furthermore, this project
has presented a unique opportunity to explore the challenges associated with the control of non-linear
systems and the prediction of user intention. Although the system was not incorporated into the final
exoskeleton, the simulation and demonstration were successfully carried out.

8.1 Modeling
The main issue with the model was its low accuracy. Although the simulated behavior resembled that
of the physical system, the numerical values showed noticeable discrepancies. This was likely due to
unaccounted friction within the system. Additionally discrepancy between real life and model of the
exoskeleton, was that moment of inertia and center of gravity was calculated wrongly. For the future
simulations the CAD model of the exoskeleton should be used to obtain that data. Moreover, as the
spring’s elongation for the VSM can be changed. It is possible that worm gear was moved between
VSM torque test and idle system performance check.

Although the optimiser created in MATLAB performed well, the initial fmincon function often got
stuck around the initial guess. This resulted in all the data points being very close to each other. To in-
troduce more randomness to the search, the PSO was introduced to the optimiser. While the optimizer
produced usable results, the existence of multiple gain combinations that satisfied the cost function
suggests potential variability in the training data. This could have negatively impacted the neural
network’s ability to generalize, as it relies on consistent patterns within the dataset. Consequently, the
quality and consistency of training data became a limiting factor.

8.2 Low-level control
The performance of the neural network controller was found to be highly dependent on three factors:
the quality of the training data, the choice of training algorithm, and the activation function used.
Results from physical testing indicated that the neural network can perform reliably—provided it
operates within the range of data it was trained on. While the network performed well during step
responses—which were part of the training set—it failed during trajectory tracking scenarios for
which it had no prior data. It failed during trajectory tracking scenarios, which it did not have data
on. This suggests that the training dataset needs to be expanded to include wider variety of scenarios.
Moreover, the mechanical bandwidth of both exoskeletons should be assessed to determine whether
the selected oscillation frequencies were appropriate for the system. Without aligning the controller’s
dynamic requirements with the actuator capabilities.
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8.3 High-level control
The load prediction system utilized only 8 out of the 21 available signal channels from the armband
sensors. Furthermore, the testing scenarios were static, which limited the model’s ability to generalize
to dynamic situations. Future implementations should focus on dynamic data collection, such as
moving the shoulder up and down while maintaining a fixed elbow angle, to better simulate real-world
conditions. These more complex movement patterns could also be leveraged to train the intention
prediction model.

8.4 Other Consideration
Furthermore in order to test system in real time Matlab code was implemented to send desired angle
and record data. It was noticed noticed that plotting has considerable delay about 5 seconds. It did not
affected the system’s performance as Matlab script was just listening to what Arduino was sending
through Serial port. This delay affected the performance of the prediction as each prediction was
actually prediction from 5 seconds ago. This delay was probably due to how Matlab is processing
Serial data and plots that data in real-time.

Finally the system was not tested on humans. This was due to delimitations that were described in
Chapter chapter 3. The system was not tested on human subjects due to project limitations, as outlined
in Chapter chapter 3.
Human testing was not conducted in this project, primarily due to the mechanical design limitations
of the exoskeleton described in Chapter chapter 3. Furthermore, based on the performance of the
control systems during physical testing, the reliability of the current setup was not sufficient to justify
human trials.
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9 Conclusion
In this thesis, a complete control framework for a robotic exoskeleton system was developed, simu-
lated, and tested. The simulation environment was implemented in Simulink, where automatic PID
tuning was employed to obtain baseline control performance. Building on this, nine different neural
network architectures were trained and evaluated for integration into a nonlinear control system. One
of these, based on the Adam optimizer with ReLU activation, demonstrated the most promising re-
sults in simulation.

The chosen neural network-based PID controller (NNPID) was then deployed on an embedded sys-
tem (Arduino Due) to validate real-time performance. While some performance metrics were met
in hardware, others—such as rise time and overshoot under specific conditions—did not consistently
meet the specified thresholds. These outcomes highlight the challenges of translating simulation per-
formance into embedded implementation.

In parallel, an LSTM-based load prediction module was developed and tested. Although the imple-
mentation was completed successfully, its accuracy was insufficient to meet the defined criteria. The
intention prediction system, originally planned as part of the work, could not be realized within the
available time frame and remains an open area for future development.

Overall, while not all functional requirements outlined in Chapter 3 were fully achieved, the project
successfully demonstrated the feasibility of using neural network-based control for nonlinear sys-
tems and embedded applications. The insights gained from the simulation, hardware integration, and
neural network evaluations provide a strong foundation for future work aimed at refining controller
robustness and extending system capabilities to include prediction-based assistance.
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CHAPTER 9. CONCLUSION

Future Works
One of the primary limitations observed in this study was the quality of the training data used for the
neural network-based controller. Future work should therefore prioritize improving and validating a
high-fidelity model of the new exoskeleton. With a reliable model in place, data for neural network
training could be generated automatically using optimization algorithms, reducing the need for man-
ual data collection and thereby saving significant development time and effort.

Moreover, to properly train the neural network, the initial conditions should vary by starting from
different joint angles rather than always beginning from the position in which the VSM was locked.
This would expand the input space of the neural network to four key features: the VSM lock position,
the current joint position, the target position, and the load. Incorporating these variables would allow
the network to generalize more effectively across a wider range of motion scenarios.

For the load prediction component, future efforts should focus on improving the consistency of data
acquisition. In the current setup, variations in the tightness of the armband significantly affected sig-
nal quality. A more robust solution would involve using two armbands — one on the upper arm and
one on the forearm — to better estimate the load position relative to the exoskeleton and provide
richer sensory input. Additionally, the load prediction model should be retrained on a more diverse
dataset, including movements such as forearm lifting while varying shoulder positions.

Finally, the intention prediction system, which was not implemented in this work, represents a promis-
ing direction. An LSTM-based model could be trained using data captured in a motion capture lab-
oratory in combination with armband sensors (FSR and IMU). As with the load prediction, using
two armbands during data collection could significantly improve the robustness and accuracy of the
intention prediction system.
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A Github repository
The github repository for this project can be found at:

https://github.com/Psycho-Night/P10-Exo
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B Gravity center and Moment of Inertia cal-
culations

The total mass of the system is:

mtot = mm1 +mm2 +mex = 0.444kg+0.261kg+1.233kg = 1.938kg (B.1)

The positional parameters are defined as:

ym1 = 0.17m (B.2)
xm2 = 0.05m (B.3)
ym2 = 0.17m (B.4)
yex = 0.28m (B.5)

The moment of inertia around the base is given by:

Jp = mm1y2
m1 +mm2(x2

m2 + y2
m2)+mex

(yex

3

)2
(B.6)

The coordinates of the center of gravity are:

xgrav =
mm2x2

mtot
(B.7)

ygrav =
mm1ym1 +mm2ym2 +mexyex

mtot
(B.8)

The distance from the origin to the center of gravity is:

r =
√

x2
grav + y2

grav (B.9)
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C Data gathered in Simulink
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APPENDIX C. DATA GATHERED IN SIMULINK

VSM [°] Desired Position [°] Load [kg] Kp Ki Kd
60 20 0.1 81.472 9.754 15.761
60 20 0.2 99.023 29.755 11.851
60 20 0.3 95.909 96.318 12.712
60 20 0.4 99.025 73.783 15.241
60 20 0.5 91.057 67.219 12.008
60 30 0.1 77.358 83.044 18.815
60 30 0.2 98.169 96.165 12.654
60 30 0.3 66.712 81.115 23.141
60 30 0.4 99.014 40.513 12.375
60 30 0.5 100 63.046 17.541
60 40 0.1 67.459 97.955 48.384
60 40 0.2 85.69 13.378 19.343
60 40 0.3 98.758 98.747 31.247
60 40 0.4 69.913 27.904 26.051
60 40 0.5 76.044 33.199 12.952
60 50 0.1 59.342 13.976 8.437
60 50 0.2 82.81 28.948 12.338
60 50 0.3 91.318 60.034 11.885
60 50 0.4 75.379 2.124 72.904
60 50 0.5 79.388 76.993 49.672
60 60 0.1 9.595 89.512 42.425
60 60 0.2 47.223 87.572 3.975
60 60 0.3 72.026 86.752 65.392
60 60 0.4 37.716 93.323 20.791
60 60 0.5 89.777 65.107 65.292
60 70 0.1 76.266 32.095 43.276
60 70 0.2 84.016 63.1 1.276
60 70 0.3 57.569 63.162 44.387
60 70 0.4 68.004 35.897 50.911
60 70 0.5 55.693 18.272 95.055
60 80 0.1 92.698 24.682 37.251
60 80 0.2 96.025 14.163 19.526
60 80 0.3 79.889 24.331 29.259
60 80 0.4 100 72.203 13.846
60 80 0.5 48.015 39.745 35.1
60 90 0.1 55.449 45.454 25.171
60 90 0.2 86.974 79.829 20.001
60 90 0.3 60.919 52.831 28.518
60 90 0.4 67.189 4.83 28.609
60 90 0.5 68.894 10.48 19.927
60 100 0.1 91.266 16.537 20.268
60 100 0.2 57.315 99.816 13.375
60 100 0.3 100 59.083 13.85
60 100 0.4 99.01 0.99 18.778
60 100 0.5 23.294 65.144 19.586
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APPENDIX C. DATA GATHERED IN SIMULINK

VSM [°] Desired Position [°] Load [kg] Kp Ki Kd
90 50 0.1 56.389 68.636 11.647
90 50 0.2 92.893 19.459 12.926
90 50 0.3 90.885 5.204 12.207
90 50 0.4 44.043 97.122 31.804
90 50 0.5 75.825 23.725 15.984
90 60 0.1 34.883 100 33.682
90 60 0.2 98.702 1.123 12.079
90 60 0.3 67.106 11.675 16.095
90 60 0.4 57.749 99.016 23.279
90 60 0.5 88.665 0.99 22.405
90 70 0.1 69.913 27.904 26.051
90 70 0.2 76.044 33.199 12.952
90 70 0.3 100 28.489 34.769
90 70 0.4 82.81 28.948 12.338
90 70 0.5 91.318 60.034 11.885
90 80 0.1 75.379 2.124 72.904
90 80 0.2 79.388 76.993 49.672
90 80 0.3 9.595 89.512 42.425
90 80 0.4 47.223 87.572 3.975
90 80 0.5 72.026 86.752 65.392
90 90 0.1 37.716 93.323 20.791
90 90 0.2 89.777 65.107 65.292
90 90 0.3 76.266 32.095 43.276
90 90 0.4 84.016 63.1 1.276
90 90 0.5 57.569 63.162 44.387
90 100 0.1 68.004 35.897 50.911
90 100 0.2 55.693 18.272 95.055
90 100 0.3 22.685 25.962 68.469
90 100 0.4 17.999 78.459 7.314
90 100 0.5 34.498 87.124 87.502
90 110 0.1 63.613 68.258 17.577
90 110 0.2 100 98.013 28.372
90 110 0.3 95.544 61.467 22.876
90 110 0.4 65.963 34.397 21.903
90 110 0.5 56.032 65.646 28.656
90 120 0.1 65.074 20.913 20.125
90 120 0.2 100 83.807 11.966
90 120 0.3 99.276 41.907 15.786
90 120 0.4 76.117 0.99 20.842
90 120 0.5 56.11 35.638 17.954
90 130 0.1 67.503 84.029 12.338
90 130 0.2 77.855 13.582 11.622
90 130 0.3 93.107 48.316 11.7
90 130 0.4 90.112 70.929 11.954
90 130 0.5 39.231 85.244 14.774
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APPENDIX C. DATA GATHERED IN SIMULINK

VSM [°] Desired Position [°] Load [kg] Kp Ki Kd
120 80 0.2 95.774 54.351 12.382
120 80 0.3 95.606 96.267 11.808
120 80 0.4 86.069 92.122 9.59
120 80 0.5 93.785 1.631 31.993
120 90 0.1 60.278 43.476 26.992
120 80 0.1 99.907 8.453 11.3
120 90 0.2 98.867 98.69 14.972
120 90 0.3 99.01 0.99 19.809
120 90 0.4 29.097 47.066 27.256
120 90 0.5 98.871 1.398 24.243
120 100 0.1 99.318 88.398 9.775
120 100 0.2 90.129 100 30.812
120 100 0.3 94.034 93.247 32.904
120 100 0.4 93.252 93.626 25.811
120 100 0.5 70.998 100 16.261
120 110 0.1 49.81 88.839 93.8
120 110 0.2 85.635 83.503 13.229
120 110 0.3 24.327 68.246 81.135
120 110 0.4 82.7 24.187 37.471
120 110 0.5 53.396 50.675 20.35
120 120 0.1 10.241 8.957 71.271
120 120 0.2 96.175 91.892 25.15
120 120 0.3 29.15 86.873 11.898
120 120 0.4 82.891 78.578 75.978
120 120 0.5 79.329 39.409 46.055
120 130 0.1 97.025 53.046 0.235
120 130 0.2 89.683 76.764 26.209
120 130 0.3 55.046 53.278 40.643
120 130 0.4 84.184 0.908 30.115
120 130 0.5 32.417 16.888 31.303
120 140 0.1 69.715 21.923 28.071
120 140 0.2 100 100 16.605
120 140 0.3 70.733 34.588 30.572
120 140 0.4 30.491 29.775 32.161
120 140 0.5 35.976 13.944 24.087
120 150 0.1 100 21.733 12.774
120 150 0.2 93.256 14.154 18.466
120 150 0.3 91.197 45.279 18.711
120 150 0.4 94.227 38.182 24.321
120 150 0.5 95.06 41.149 15.456
120 160 0.1 79.304 54.711 16.999
120 160 0.2 96.936 1.147 13.067
120 160 0.3 99.811 47.151 16.432
120 160 0.4 68.737 80.325 15.59
120 160 0.5 65.537 9.474 19.803
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D Elbow joint tuned PID

Table D.1: Training data for Neural Network on Arduino

θ° Load (g) KP KI KD
30 60 1.16 1.589708405 0.04463448
45 60 1.26 1.550698152 0.1012473
60 60 1.04 0.391592066 0.045573957
75 60 0.54 0.489490083 0.036459166
90 60 0.24 0.302417582 0.03228225
30 75 0.5 0.86380402 0.03228225
45 75 1.5 0.952380952 0.1155
60 75 1.1 0.705806866 0.09428925
75 75 1.1 0.405588103 0.1098405
90 75 1.1 0.28038643 0.09547395
30 100 1.56 0.989533777 0.010821096
45 100 0.9 0.796460177 0.0839025
60 100 1.2 0.995437578 0.0954756
75 100 0.78 0.415252545 0.003223292
90 100 0.82 0.321990372 0.03445631
30 160 1.72 1.889071939 0.06890664
45 160 0.88 0.907450374 0.02503248
60 160 0.86 0.673519334 0.005798034
75 160 0.9 0.43956044 0.02027025
90 160 0.66 0.311982983 0.023037795
30 175 1.64 1.751785833 0.011518897
45 175 0.86 1.378945427 0.035399225
60 175 0.78 0.722556739 0.00326898
75 175 0.8 0.495547813 0.028413
90 175 0.6 0.33941451 0.0233343
30 200 1.5 2.070607723 0.01103355
45 200 1 1.180202109 0.003728175
60 200 0.78 0.682014917 0.002943807
75 200 0.7 0.479452055 0.038544
90 200 0.58 0.306270627 0.02416425
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