
Price determinants in the
German Intraday Power market

Written by Peter Michno

Master Thesis



Aalborg University Business School

Fibigerstræde 2

DK-9220 Aalborg Ø

Title

Price determinants in the German Intraday Power

market

Projectperiod

Spring 2025

Author

Peter Michno (20203824)

Supervisor

Douglas Eduardo Turatti

Pages

59

Submission date

June 2, 2025

The content of the report is available for free, but publication must only happen in agreement with the author.



Abstract
This thesis investigates the determinants of the price spread between the German day-

ahead and intraday power markets, focusing on fundamental factors and identifying

systematic patterns of behavior. Utilizing hourly price data from EPEX SPOT and

relevant fundamental data from the years 2023-2024, the analysis employs econometric

models including OLS, ARX, and GARCH to evaluate how forecast deviations in electricity

demand (load) and renewable energy generation (wind and solar), unplanned generation

outages, and cross-border electricity flows affect the price spread.

The findings show that forecast errors in wind and solar generation are highly significant in

explaining the spread, with actual underproduction leading to higher intraday prices relative

to day-ahead, and overproduction driving prices lower. Most results align with theoretical

expectations, but load forecast errors surprisingly exhibit a negative relationship, indicating

that excess demand lowers intraday prices, a deviation from standard assumptions. The

interconnector DE ↔ FR link stands out as the most statistically significant, reflecting its

central role in cross-border balancing and market integration. The GARCH model provides

additional insight into volatility dynamics, highlighting that variables like residual load

and some of the other interconnectors become more influential during periods of market

stress. Additionally, the analysis identifies clear intraday and weekly patterns. Wind

forecast errors are the only significant factor during night hours, while solar deviations

dominate midday. Load and net exports are mainly relevant during mid-peak hours, and

outages primarily impact evening prices. On a weekly level, Monday exhibits the strongest

sensitivity to forecast errors, suggesting elevated uncertainty after weekends.
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1 Introduction
Over the past few decades, energy markets have undergone notable structural change.

In Europe, the liberalization process initiated in the 1990’s led to the restructuring

of the previously vertically integrated electricity sector1, into a deregulated and more

competitive market framework. The current market landscape consists of various actors,

such as power generators, distribution system operators, trading firms, and large-scale

consumers, who interact either through bilateral contracts or organized platforms like the

European Power Exchange (EPEX Spot). The transition towards a decarbonized energy

system has significantly changed both the structure and operation of electricity markets.

Germany has been at the forefront of this energy transition, and was the first European

countries to implement feed-in tariffs in the 1990s. These tariffs provided guaranteed

prices for renewable energy producers, fostering rapid deployment of wind, solar, and other

renewable technologies. As a result, Germany quickly established itself as a frontrunner

in renewable energy adoption, with its policy framework serving as a model for other

European nations. After more than two decades of relying on feed-in mechanism, Germany

replaced this strategy in the beginning of 2017, to compile with the preferences of the

European Commission as the markets were moving towards a market-based structure

that emphasized competition across Europe (Leiren and Reimer, 2021). Despite the shift

away from traditional feed-in tariff policies, the share of renewable energy in Germany has

continued to grow, reaching a new record in 2024 by accounting for 62.7% of net public

electricity generation (Agora Energiewende and Ember, 2021). The German government

has set a target for renewables to cover 80% of electricity generation by 2030, underlying

the shift towards an even more renewable dominated grid in the future (Bömeke, 2024).

1The meaning of a vertically integrated electricity sector is that a single company in an area could
provide the whole value chain, including generation of power, transmission and distribution, and retailing
of power. Also considered a monopoly market structure
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CHAPTER 1. INTRODUCTION

Figure 1: Public net electricity generation from renewables. Source: Agora Energiewende
and Ember, 2021

The development of renewable energy sources (RES) in Germany has accelerated over the

past two decades, as illustrated in the graph above. In particular, wind and solar power

have experienced substantial growth and now constitute the dominant share of renewable

electricity generation. Onshore wind has consistently been a key supply source, while

offshore wind has expanded steadily since its introduction. Solar power has also grown

significantly, driven by supportive policies such as the mentioned feed-in tariffs and later

auction-based mechanisms. This consistent increase in RES reflects Germany’s continued

commitment to decarbonization. Unlike conventional thermal generation of power the

output of RES is intermittent and often unpredictable, which introduce greater volatility

and uncertainty into the power system. This intermittency of power generation requires

market participants to continuously adjust their positions for forecasting errors and to

maintain the balance of supply and demand. With the expectations of more RES in the

systems, the electricity markets will get even more complex and volatile, as it leaves more

room for forecasting errors, which will affect the intraday trading environment (Winter,

2023). In this context, the relationship between the day-ahead (DA) and intraday (ID)

markets becomes increasingly important. While the DA market sets a forward-looking,

auction based price using expected fundamentals, the ID market captures real-time market

reactions to deviations from those expectations. Understanding how and why prices diverge

2



1.1. POWER MARKET STRUCTURE CHAPTER 1. INTRODUCTION

between these two markets is not only critical for traders seeking to hedge or speculate, but

also for system operators, regulators, and renewable asset managers aiming to maintain

grid stability and optimize market performance.

Despite this relevance, existing literature often consider the DA and ID markets in isolation,

or focuses on general price behavior without examining the direct interplay between the

two. However, the growing importance of real-time balancing and continuous trading makes

it important to understand which specific factors drive ID price movements relative to the

DA benchmark. Germany, as Europe’s most liquid and renewable driven electricity market,

offers a particularly good setting to study these dynamics. With the DA market serving

as the formal equilibrium expectation, the ID market reflects the "correction" process

that unfolds as more accurate information becomes available. Hence studying the price

spread between the two markets, while identifying the drivers behind these spreads could

offer valuable insight into short-term market efficiency and the operational challenges of a

renewable dominated grid.

1.1 Power market structure in Germany

This section provides a basic overview of the power market in Germany, considering the

internal structure of the power system, tradable products and time ranges, while focusing

on the differences between the DA and ID market.

Electricity is traded across multiple time horizons, ranging from long-term futures and

forward contracts to real-time balancing markets. In that range, both physical and financial

products are offered, but this thesis will only focus on physical products. In the short-

term power market, the DA market and the ID market play an important role for the

operations. The European Unions has in the past two decades implemented market coupling

mechanism in both the DA and ID markets to facilitate a more seamless electricity trading

across national borders in Europe. This has created a unified trading framework across

Europe, increasing the competition and improving the overall efficiency of power allocation.

Especially the implementation of Single Intraday Coupling (SIDC) in 2018 has been a key

component to overcome the increasing share of intermittent renewables and ensure more

3



1.1. POWER MARKET STRUCTURE CHAPTER 1. INTRODUCTION

balanced systems in all of Europe (ENTSO-E, 2025). A total of 868 Twh was traded on

EPEX SPOT in 2024, surpassing the previous record from 2023 by 21%. The DA market

contributed with 654 TWh (2023: 542 TWh), meanwhile the volume from ID market was

215 TWh (2023: 176 TWh). Within the context of Europe, the German electricity market

is the largest and most liquid area (EPEX SPOT, 2025). Most of the short-term trading

in Germany occurs on EPEX SPOT, which is one of the exchanges that hosts both the DA

auctions and facilitate continuous ID trading.

1.1.1 The Day-Ahead Market

The DA market is a centralized auction that is conducted the day before delivery at 12:00

CET, acting as the main auction for supply and demand orders, setting the hourly price

of the next day’s electricity. A market clearing algorithm (PCR EUPHEMIA) is used to

match the supply and demand across Europe, to determine a clearing price for every hour

of all areas thar are a part of the Single Day-Ahead Coupling (SDAC). The algorithm

will consider social welfare in it’s price formation, as the goal is equal prices around all of

Europe. The result of the auction is to be determined at 12.45 CET, often referred to as DA

or spot prices. The spot price will reflect all area’s expected supply and demand balance

(equilibrium price) under the merit order principle, whereby the lowest-cost generators

(RES) are dispatched to the system first, and then more expensive generations (e.g. gas,

coal and oil plants) are delivering in periods of high demand or low availability of RES. The

DA auction is critical for price setting and forms the baseline schedule of both consumption

and generation for the following day (Winter, 2023). To enhance market efficiency and

better integration of RES, the DA market will transition from a 60-minute auction to a

15-minute auction in 2025, if it gets approved. This will allow plant owners to adjust their

hourly volumes for ramping periods and lead to a more stable and balanced market from

DA perspective (EPEX SPOT, 2024b).

1.1.2 The Intraday Market

In Germany and coupled European markets, ID trading for the delivery of tomorrow opens

in the afternoon at 15:00 CET, a couple of hours after DA results are published. The ID

market allows for both trading hourly and quarterly products, and the contracts can be
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traded until 5 minutes before delivery in Germany. Trades are executed as soon as a buy-

and sell order are to be matched in terms of price in the electronic orderbook. Besides the

continuous trading, there is also three ID auctions called IDA1, IDA2 and IDA3, closing at

15:00, 22:00 and 10:00 the next day (IDA3 is therefore only an auction for delivery of 12:00

to 24:00) (EPEX SPOT, 2024a). Participants in the ID market engage in trading for a

variety of reasons, below is some different needs of the flexibility that the ID market offer

(Winter, 2023):

• Owners or balancing responsible parties (BRPs) of RES adjust their positions to

account for forecast errors. As more accurate forecasts become available at ID level,

these generators buy or sell power to make up the difference between DA forecasts

and expected actual production. This helps them avoid imbalance penalties and

contributes to system stability.

• Conventional power plants can adjust their operations based on updated market

conditions. For instance, a gas-fired plant might ramp up or down and trade

accordingly in ID if a sudden change in RES output or demand requires it to

compensate. Such adjustments allow thermal generators to operate more economically

and reliably, given that they have more information closer to dispatch.

• Different types of load serving entities will have to adjust their forecasted load to

match their costumers’ actual consumption. Especially deviations in temperature

can push the demand for power in both directions and leave the need for adjustment.

• Exploiting short-term price discrepancies between the DA and ID market is of interest

to traders as well. Traders will try to take advantage of their expectations to price

behavior in the ID market or trade on new available information.

5
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1.1.3 Potential of Intraday price spreads

To evaluate the potential of short-term electricity price dynamics, this study will investigate

the hourly price spread between the German ID and DA electricity markets over the full

calendar years 2023 and 20242.The key variable of interest is the ID return, defined as the

difference between the volume-weighted average price (VWAP) of the intraday continuous

market and the corresponding DA spot auction price. This spread captures the behavior

of electricity prices as market participants update their positions based on for example,

revised forecasts, system imbalances, and liquidity flows during the trading day.

Variable Mean Median SD Min Max Skewness Kurtosis
Spot 86.81 88.83 50.94 -500.00 936.28 1.57 22.22
VWAP 89.11 89.78 59.70 -539.99 1168.15 4.22 64.84
Spread 2.30 0.68 29.72 -406.24 1021.94 13.65 364.92

Table 1: Summary statistics for Spot, VWAP, and Spread (in EUR/MWh).

The descriptive statistics for the DA spot price and the ID VWAP reveal broadly similar

distributions. However, WVAP displays greater variability with a standard deviation

(SD) of €8.76/MWh more than Spot and some slightly more extreme min and max

values. Combining this with the higher skewness (4.22) and kurtosis (64.84) of the VWAP

distribution relative to spot (1.57 and 22.22, respectively), further indicate that the ID

market is exposed to more volatility and tail risk, skewed to the bull side.

While these differences between Spot and VWAP highlight the dynamics of price formation

across market phases, the actual spread between them is more valuable to observe when

assessing ID opportunities. Over the sample period, the average spread was €2.30/MWh,

indicating a general upward adjustment of prices during the ID phase compared to the initial

DAH benchmark. However, the median return is much lower, at €0.68/MWh, suggesting

that the distribution is significantly right-skewed. This asymmetry is statistically confirmed

by a positive skewness of 13.65, which reflects the presence of a right tail. Meanwhile, the

kurtosis of 364.92 signals that the distribution is leptokurtic, with most spreads concentrated

near the mean, but with fat tails and a higher likelihood of extreme price events. The

22024-06-26 is excluded from the dataset due to decoupling. Further explanation about the full dataset
will be provided in the methodology.
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spread’s volatility is also substantial, as evidenced by a SD of €29.72/MWh. While most

values are clustered tightly around the center, the spread ranges over €1,428/MWh, with a

minimum of –€406.24/MWh and a maximum of €1,021.94/MWh. These extreme values

underscore the magnitude of price fluctuations that can arise within a single trading day.

To better understand this distributional profile, the core and tail behavior of the spread

are visualized separately. Figure 5 presents a histogram of the middle 98% of the spread’s

distribution where most trading activity occurs.

Figure 2: Distribution of intraday spread (1% - 99%). Source: Generated in R

Although the histogram provides clarity on the typical VWAP range, it omits the most

extreme deviations. To complement this, Figure 3 plots only the bottom and top 1% of

the observations, sorted by spread magnitude. This highlights the rare but significant

outliers that represent ID volatility, which may have been the result of large forecast errors,

unforeseen supply-demand imbalances, or market panic responses.

7
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Figure 3: Tail obs. of intraday spread (Bottom and top 1%). Source: Generated in R

Together, these plots illustrate the behavior of the ID spread. For market participants, this

signifies both opportunity and risk. Although the ID market can yield sizable returns in

response to changing conditions, those same conditions can introduce abrupt losses if you

are on the wrong side of the market. In that connection, it is important to acknowledge that

not all market participants are pursuing profits based only on continuous trading (VWAP).

A significant group of the participants, including BRPs, asset portfolio managers, and

utility companies must continuously adjust their production and consumption forecasts to

avoid imbalances. These actors are financially exposed to the imbalance price, which reflects

the cost of real-time system balancing. In Germany, BRPs are required to balance their

portfolios, and persistent deviations can lead to imbalance settlement charges or contractual

risks. In contrast, speculative trading houses are required to operate a flat position, meaning

they must not introduce physical imbalances into the system and therefore rely on spread

capture between market phases or within the ID trading window.

8



2 Problem formulation
As outlined in the introduction, the ID market is expected to become even more important

as the share of RES continues to grow. This will place additional pressure on the power

systems, leading to greater uncertainty and increased volatility between the DA and ID

markets. Building on that context, this thesis aim to answer the following research question:

“What are the main factors driving the price spread between the German

day-ahead and intraday markets?”

This thesis is thus not about forecasting the actual spread, but about measuring the

influence of different drivers (variables) for the price behavior from DA to ID. The study

will therefore focus on the spread between DA and ID prices, and analyze the spread’s

sensitivity to fundamental changes up until delivery. To address the research question, it

is essential to engage with existing literature and develop a set of guiding sub-questions.

These sub-questions serve to structure the analysis and will be introduced in chapter 4

with added insights gained through the literature review.

The remainder of the thesis is structured as follows. Chapter 3 presents a review of

relevant literature within the field. Chapter 4 outlines the data and methodology used

to conduct the empirical analysis, including the process of variable selection and the

econometric models that will be applied. Chapter 5 presents the results of the analysis

and addresses all sub-questions, while discussing the findings. Finally Chapter 6 will

review and conclude upon the research question, highlighting limitations and suggestions

for future research.

9



3 Literature review
This section reviews findings from the literature on short-term electricity markets, with

a focus on Germany. It covers fundamental price drivers in DA and ID markets in 3.1,

observed ID trading patterns and volatility in 3.2, and the methodological approaches

employed by previous studies in 3.3.

3.1 Fundamental factors in short-term power markets

Short-term power prices in both the DA and ID markets are largely determined by

fundamental supply and demand conditions. In a competitive market, electricity price

formation follows the merit-order principle, meaning generators bid in ascending order of

their short-run marginal costs, and the market-clearing price is set by the last (costliest)

unit needed to meet demand. Thus, the balance between available supply and demand

is a primary driver of price at any given hour. When demand is high or supply is scarce,

more expensive generation must come online, pushing prices up, whereas excess supply or

low demand leads to lower-cost units setting the price, pushing prices down. Empirical

studies confirm that short-term price movements respond strongly to these fundamental

changes (Wolff and Feuerriegel, 2017). Immediately after the DA auction, ID prices

initially align near the DA equilibrium, and then as time progresses, any ID deviations

(e.g. unexpected changes in demand or generation) shift the supply–demand equilibrium

and thus the price for continuous trading. Market participants have an incentive to trade

in the ID market to handle such deviations (rather than rely on costly TSO imbalance

settlements), which enhances overall system efficiency and security (Hagemann, 2015). A

large body of literature has identified several fundamental factors that drive ID electricity

price spreads. In particular, variations in renewable power generation (wind and solar),

deviations in electricity demand (load), unexpected supply outages, and cross-border power

exchanges (net exports or imports) are key determinants of hourly price differences (Shinde

and Amelin, 2019). Empirical studies on the German ID market by Hagemann (2015)

and others confirm that wind and solar forecast deviations, load forecast errors, power

10



3.2. INTRADAY TRADING PATTERNS CHAPTER 3. LITERATURE REVIEW

plant outages, and foreign supply/demand all have statistically significant impacts on ID

price spreads. The direction of these effects aligns with expectations as positive supply

shocks from wind or solar (more generation than anticipated) lead to lower prices, while

demand surges or generation shortfalls lead to higher prices. In Hagemann’s study from

the trading period 2010-2011, crossborder trades between French-German is included and

found to have no significant effect on German ID prices. But since his study, the influence

of interconnectors have grown as European ID markets become more coupled. In todays

market, interconnector availability and cross-border trades plays an important role by

altering the supply–demand balance between borders, especially during periods of system

stress. They will therefore be expected to have a significant impact on the spread.

3.2 Intraday trading patterns

In addition to real-time fundamentals, electricity price spreads exhibit strong seasonal

patterns within the day and across the week. Intraday prices follow some cycles driven

by typical demand patterns. Historically prices tend to be higher during morning and

evening peak hours and lower during low demand hours (Abramova and Bunn, 2020). The

introduction of intermittent renewables has modified these ID pattern slightly, as the share

of RES within the day can push prices in both directions. To account for these recurring ID

effects, researchers commonly include hour-of-day dummy variables or similar fixed-effect

terms in their models (Wolff and Feuerriegel, 2017). In that connection volatility closer

to delivery is also well documented, and especially how the volatility differs by delivery

hour. For instance, contracts for hours with steep ramps in load (e.g., morning ramp-up or

evening peak) or high renewable variability (e.g., solar peak) experience greater ID volatility.

Baule and Naumann (2021) find these contract-specific effects significant, highlighting

the importance of considering the delivery hour. Besides the hourly dynamics, electricity

price spreads also vary systematically across weekdays and weekends. Lower demand on

weekends and holidays typically results in different price dynamics compared to weekdays,

often compressing the ID spreads due to flatter demand profiles. It is a standard practice

in the literature to include day-of-week or weekend indicator variables to capture such

intra week seasonal effects. This is also done in (Abramova and Bunn, 2020) study, as they
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include a weekend/holiday dummy to reflect the reduced demand and different supply mix

in weekends.

3.3 Econometric approaches in the literature

Researchers have employed a range of econometric and statistical methods to investigate

the above phenomena in electricity markets. One of common approach in the reviewed

literature is to use time-series regression models to capture price dynamics and quantify

the influence of explanatory variables. For example, Wolff and Feuerriegel (2017) adopt an

autoregressive model with exogenous variables (ARX) to jointly model German DA and ID

prices. In their two-step procedure, they first remove regular seasonal patterns (hourly and

weekly seasonality) to avoid misleading results, and then estimate an ARX model including

demand, wind and solar feed-in, fuel prices, and other factors. The autoregressive terms

account for the autocorrelation in electricity prices (e.g. today’s ID price is correlated with

yesterday’s), while exogenous terms capture fundamentals. Similarly, many studies rely on

multiple linear regression (OLS) frameworks. Hagemann (2015), in the first analysis of ID

price drivers, performed OLS regressions for different blocks of hours to see how outages,

forecast errors, and other factors affect prices at various times of day. Pape et al. (2016)

took a related but twofold approach as they built a detailed fundamental supply-stack

model to compute theoretical prices, then used a linear regression on the difference between

actual and fundamental price to identify the impact of factors like startup costs, market

friction, and trading behavior. This combination of fundamental modeling and regression

allowed them to explain which price variations fundamentals alone could not account

for. In addition to these more standard econometrical approaches, several advanced or

alternative methodologies have been explored in recent literature. One notable example is

the use of panel data techniques by Gürtler and Paulsen (2018) employ a panel fixed-effects

regression with 24 hourly cross-sections (one for each hour of the day) to analyze DA and

ID prices from 2010–2016. Other studies are also exploring the use of machine learning

(such as neural networks), aiming to capture complex patterns without requiring a specified

parametric form.
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4 Methodology
The methodology chapter outlines the empirical strategy, presents the dataset and selected

variables, and introduces the theoretical basis for the diagnostic tools and econometric

models that will be used in the study.

4.1 Empirical strategy

This section outlines the empirical framework used to investigate the drivers and patterns

in the spread between the DA and ID electricity prices. Based on the insights from the

literature review, the analysis is structured around two sub-questions:

1. Which fundamental factors have an significant impact on the price spread between

the day-ahead and intraday markets?

2. Are there observable weekly or daily patterns in the price spread and how are

they related to the fundamental factors?

To address the first sub-question, the analysis begins with a OLS estimation to establish

a baseline mean model, before extending it to an ARX model that incorporates lagged

spread terms and exogenous market fundamentals. Given the expected presence of volatil-

ity clustering and structural breaks during ramp periods, a GARCH(1,1) model is also

implemented to capture time-varying volatility and conditional heteroskedasticity, to check

if it deviates from the ARX results. This allows for a deeper understanding of both the

mean and variance dynamics of the spread. To explore the second sub-question, dummy

interactions are introduced to the mean model. Two sets of dynamic dummies are applied,

one to capture the time-of-day effect and one to capture the day-of-week effect. These

interactions are used to assess whether their is an effect of the fundamentals changes across

time, and whether there are systematic ID or weekday-driven deviations that impact spread

formation.

All analysis will be conducted in R using packages such as tseries, lmtest, and FinTS.

R was chosen for its flexibility in statistical analysis and its strong visualization tools.
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The relevant tests and the packages used to perform them are introduced throughout the

methodology section

4.2 Data and variable description

The dataset used in the empirical analysis of this thesis is obtained via Centrica Energy’s

internal database, which collect data through API integration. The data sources will include

official platforms such as EPEX spot and the ENTSO-E Transparency platform, as well as

forecasts datasets that is accessible through subscription based services from Energy&Meteo

Systems. The dataset consists of variables with varying resolutions, including both quarterly

and hourly data. To ensure consistency, all quarterly values are converted to an hourly

frequency by averaging each set of four quarter hours into a single hourly value. The final

dataset spans the full period from 2023-01-01 to 2024-12-31 with a total of 17,520 hourly

observations. Within this period, only a single full day, 2024-06-26, is excluded from the

dataset. On this date, a technical incident led to a market decoupling, resulting in extreme

outliers in the spread between the DA spot price and the ID market. Specifically, the

DA price cleared as high as €2,325/MWh this day, while the corresponding ID VWAP

for that hour was only €129/MWh. The average spread for all hours that day was -€403,

illustrating the magnitude and abnormality caused by the event (EPEX SPOT, 2024c). In

addition, the full dataset also contained 108 missing hourly observations, including those

associated with daylight saving time adjustments. These missing values were replaced by

the average of the two surrounding hours1. Table 2 below include an statistical overview

of all the initial variables that will be used to form the independent variables. The DA

forecast values is denoted (Fct) and actual production/consumption values by (Act). The

use of them and further explanation will follow in the next sections. One thing to notice

from the table below, is the degree of similarity between forecasted and actual values across

all fundamental variables.

1All missing values for solar production occurred during nighttime hours and were therefore already "0".
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Variable Mean Median SD Min Max Skew Kurtosis
Spot 86.81 88.83 50.94 -500.00 936.28 1.57 22.22
VWAP 89.11 89.78 59.70 -539.09 1168.15 4.22 64.84
Total LoadFct 53.10 52.83 9.13 30.89 74.04 0.02 -1.01
Total LoadAct 53.21 53.16 9.22 31.28 76.30 0.06 -0.92
WindFct 16.38 13.60 11.83 0.03 53.20 0.80 -0.16
WindAct 15.96 13.28 11.44 0.04 52.40 0.79 -0.16
SolarFct 6.70 0.24 10.21 0.00 48.38 1.54 1.35
SolarAct 6.76 0.20 10.40 0.00 46.85 1.55 1.35

Table 2: Summary statistics of variable starting point. Spot and VWAP is €/MWh, and
all DA and Act variables is GW.

4.2.1 Dependent variable

The focus of the thesis is to explain ID price movements relative to DA prices, the dependent

variable is therefore constructed as the spread (or difference) between the ID and DA

electricity prices for each hour. The dependent variable will be calculated as:

Spreadt = P ID
t − P DA

t , (1)

where P ID
t is the ID VWAP and P DA

t is the DA Spot price (both in EUR/MWh) for delivery

hour t. A positive spread indicates that ID prices have increased relative to the DA market,

while a negative spread suggests that ID prices have decreased. The ID price P ID
t reflects

continuous trading up to shortly before delivery, and is taken as the volume-weighted

average of all trades for that hour on the EPEX continuous ID market. Using a weighted

average smooths out individual trade volatility and provides a representative price for the

hour and the full trading session. Alternatives to this would be to use the last traded price

as one may argue that all information should be incorporated at that time, but this price

would only be a equilibrium of that point in time and not a smoothing equilibrium of the

full trading session as the VWAP. The data for VWAP and Spot prices is from EPEX spot.
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4.2.2 Independent Variables

Based on the literature review and the refined sub questions, several independent variables

are already identified as key drivers and will be included in this thesis as well to investigate

the spread dynamics. A description and measure of each independent variable will follow

below.

Demand

Unexpected changes in electricity demand (load) are accounted for by including the load

forecast error (FE), defined as:

LoadFE
t = LoadAct

t − LoadFct
t (2)

This measures whether actual electricity demand was higher or lower than anticipated in

the DA timeframe. A higher than expected demand level would likely drive ID prices up as

additional supply had to be drawn or scarcity prevailed. Conversely, lower than expected

demand would put downward pressure on ID prices. The data for both the forecasted and

actual demand is from ENTSO-E.

Solar and wind

Renewable energy forecast errors are a central driver of ID price movements. These errors

will be included as independent variables defined as:

WindFE
t = WindAct

t − WindFct
t (3)

SolarFE
t = SolarAct

t − SolarFct
t (4)

A positive FE for renewables would indicate a surplus of generation compared to DA

forecast, whereas a negative FE is actual renewables coming in a deficit compared to

forecast. These FE reflect unforeseen supply deviations that arise after the DA market.

Based on prior findings, an excess supply from renewables should exert downward pressure

on ID prices, while a shortfall should push ID prices above the DA level. The forecast for
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both wind and solar is provided by Energy&Meteo Systems, and the actual generation

data is from ENTSO-E.

Residual load

Residual load reflects the net demand that must be met by dispatchable generation sources

after accounting for renewable energy. It will be calculated from DA forecasts, representing

the system operator’s expectations prior to ID market. It is defined as:

Residual loadFct
t = LoadFct

t −
(
WindFct

t + SolarFct
t

)
(5)

From a DA point of view, this variable is crucial in shaping market expectations and

bidding behavior. Higher residual load forecasts suggest a tighter supply-demand balance

and may lead to upward pressure on prices in both the DA and ID markets. Whereas lower

residual load forecasts imply a greater availability of renewable generation to meet demand,

potentially pushing spot prices toward zero or even negative levels due to excess supply.

Unplanned outages

To capture unexpected supply-side events that may affect short-term electricity price

dynamics, unplanned generation outages are included as an independent variable. These

outages reflect the sudden unavailability of generation capacity due to unforeseen technical

faults, accidents, or emergency shutdowns. The data is obtained from ENTSO-E’s and

specifically filtered to include only forced outages, which is events not scheduled in advance.

Furthermore, only outages with a minimum capacity loss of 200 MW are retained to focus

on systemically significant events. In order to isolate the short-term market impact, long

term outages are excluded, and the dataset therefore only includes outages that occur and

resolve within a day. This ensures that the variable reflects supply shocks rather than

long-term capacity constraints. Such unplanned outages are expected to tighten supply

conditions temporarily, which can drive ID price volatility and influence the spread between

ID and DA market prices.
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Cross-border flow

Germany is highly interconnected with neighboring countries, and cross-border electricity

flows play a critical role in shaping domestic supply and price dynamics. To account

for the effect of scheduled flows at DA, all of Germany’s interconnectors are included as

variables. The data is sourced from ENTSO-E, which publishes DA flow commitments

based on capacity allocations. The variable is constructed for each interconnector i linked

to Germany, measuring the scheduled net flow in MW from the DA market:

NetExportt,i = Exportt,i − Importt,i

Where a positive value of NetExportt,i indicates an export from Germany to country i,

and a negative value indicates an import to Germany from country i. Each interconnector

is treated as an independent variable in the model, resulting in 11 net export variables.

This disaggregated approach captures the directional impact of specific cross-border flows

on German ID price spreads, accounting for market coupling dynamics. Interconnectors

may be aggregated later in the analysis, if necessary.

4.2.3 Dummies

To address ID trading patterns (sub-question 2), a set of time dummy variables is included

to capture period-of-day, and day-of-week effects. The dummies will be used to capture

any systematic ID price premium/discount patterns. The period-of-day dummies are

constructed to capture variations in ID trading behavior throughout the day, based on

operational patterns in electricity demand, renewable generation, and trading intensity.

The 24-hour day is divided into the following five blocks:

• Night (00:00 – 06:00): Represents low-consumption hours with limited trading

activity.

• Morning ramp (06:00 – 09:00): Captures the sharp increase in demand as the market

transitions into peak hours. This is typically a volatile period.

• Mid peak (09:00 – 18:00): The period were solar is ramping up to it’s peak point

and also ramping down again. A period that can be very volatile.
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• Evening ramp (18:00 – 22:00): This period captures the rise in demand after sunset,

while solar output drops sharply. As a result, the system typically requires more

flexible capacity and regulation to maintain balance.

• Late evening (22:00 – 00:00): Covers the final trading hours of the day, typically

characterized by reduced liquidity and potential price noise.

In addition, day-of-week dummies (Monday to Sunday) are included to account for weekly

seasonality in electricity market behavior. These fixed effects capture systematic differences

in spread dynamics across weekdays and weekends, such as reduced industrial demand on

weekends or behavioral shifts in trading activity.

In terms of modelling, the dummies will interact with each variable, as shown in equation

6 and 7:

Spreadt = α +
∑
b∈B

n∑
i=1

β
(b)
i · xi,t · Blockb + εt (6)

Spreadt = α +
∑
d∈D

n∑
i=1

γ
(d)
i · xi,t · Weekdayd + εt (7)

where,

xi,t are the i-th explanatory variables at time t

Blockb and Weekdayd are dummy indicators

β
(b)
i , γ

(d)
i are interaction coefficients

α is the intercept and εt is the error term
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4.2.4 Full variable overview

Below in table 3 is an overview of all variables that will be included in the analysis.

Variable Mean Median SD Min Max Skew Kurtosis
Spread 2.30 0.68 29.72 -406.24 1021.94 13.65 364.92
LoadFE 109.27 65.57 2475.85 -9374.84 9325.87 0.09 0.21
WindFE -417.08 -194.25 2317.94 -18524.00 9427.25 -0.91 4.03
SolarFE 62.13 0.00 1134.22 -9939.50 7643.00 0.05 9.06
Residual Load 30.02 30.53 13.80 -14.94 66.82 -0.15 -0.21
Outages 71.90 0.00 186.16 0.00 1768.67 3.30 12.50
DE ↔ AT 0.82 0.84 1.40 -3.43 4.55 -0.14 -0.63
DE ↔ BE -0.11 -0.09 0.80 -1.01 2.00 0.43 -0.97
DE ↔ CH -0.37 -0.40 1.56 -4.00 2.00 -0.84 -0.56
DE ↔ CZ 0.19 0.25 0.91 -2.69 2.53 -0.30 -0.58
DE ↔ DK1 -1.13 -1.61 1.33 -2.50 2.50 1.25 0.80
DE ↔ DK2 -0.33 -0.42 0.47 -0.98 1.06 0.14 0.54
DE ↔ FR -0.75 -1.52 2.50 -6.98 9.24 0.83 0.00
DE ↔ NL -0.30 -0.26 1.53 -5.39 4.63 -0.24 -0.36
DE ↔ NO2 -0.52 -0.71 0.83 -1.40 1.40 0.96 0.00
DE ↔ PL 0.25 0.40 0.84 -2.90 2.40 -0.66 0.00
DE ↔ SE4 -0.32 -0.49 0.35 -0.62 0.62 0.98 -0.08

Table 3: Descriptive statistics of all included variables. Spread and Reg Price are in
€/MWh, all interconnectors and residual load is in GW and all other values are in MW.

As already discussed in the introduction, the dependent variable Spread exhibits a high

degree of variability, with extreme minimum and maximum values and pronounced positive

skewness and kurtosis. This suggests the presence of outliers and fat tails, which motivates

the need for robust estimation techniques and also volatility modeling using GARCH.

Looking at the explanatory variables, FE for load, wind, and solar generation also display

wide ranges and have some high standard deviations that could indicate some potential

importance in explaining price corrections between the DA and ID markets. Both the

mean and minimum value of wind FE seems extreme, but this is due to wind shutdowns,

when DA clear below €0, leaving some days with large deficit of actual wind production

compared to forecast. The observed range for residual load indicates substantial variation

in the share of conventional generation running. This may have important implications for

the spread behavior depending on whether the system is predominantly RES driven or

reliant on conventional sources. Outages holds a lot of data without any volume, limiting

the overall variation and thus their explanatory strength in a general regression setting.
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Their impact is likely more relevant within specific ID windows, as further explored in

the dynamic models. Finally, the net export flows between Germany and its neighbors

vary both in magnitude and direction. The minimum and maximum values indicate that

the largest available capacities are on the borders to FR and NL, with FR in particular

expected to play the most significant role as an interconnector.

4.3 Econometric Model Specification

Before estimating any models, a series of diagnostics will be conducted to assess whether

the data exhibits characteristics that may be unsuitable for modeling. These diagnostics

include tests for stationarity and multicollinearity across all variables, as well as model

testing for normality, autocorrelation, and conditional heteroskedasticity within the models.

4.3.1 Augmented Dickey-Fuller test

To test for stationarity, the Augmented Dickey-Fuller (ADF) test is performed. This test

is widely applied in time series analysis to determine whether a series maintains a constant

mean and variance over time, thus an essential assumption for econometric models. The

ADF test assesses whether a unit root is present, which would indicate non-stationarity

(Dickey & Fuller, 1979). The ADF is written as:

∆Yt = α + βt + γYt−1 +
p∑

i=1
δi∆Yt−i + εt (8)

In this equation, Yt is the original time series, ∆Yt is its first differenced form of the time

series, and α, β, γ, δ are parameters to be estimated. The term ϵt denotes the error term.

The hypotheses for the ADF is formulated as:

H0 : Non-stationary variable

H1 : Stationary variable

Identifying non-stationarity is critical, as it may otherwise result in misleading results. If

non-stationarity is found, transformations such as differencing are typically applied. The

test is implemented by using the adf.test() function from the tseries package in R.
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4.3.2 Jarque-Bera test

To assess whether the residuals of the estimated model follow a normal distribution, the

Jarque-Bera (JB) test is employed. Normality of residuals is an important assumption in

classical linear regression, as non-normality may lead to inefficient estimators and invalid

results in small samples (Tsay, 2010). The JB test is based on the sample skewness and

kurtosis of the residuals. The test statistic is given by:

JB = n

[
S2

6 + (K − 3)2

24

]
(9)

where n is the sample size, S is the sample skewness, and K is the kurtosis of the sample.

Under the null hypothesis of normality, the JB statistic asymptotically follows a chi-squared

distribution with 2 degrees of freedom (df). The hypotheses are formulated as follows:

H0 : The residuals are normally distributed

H1 : The residuals are not normally distributed

A rejection of H0 implies that the residuals deviate from normality, suggesting the presence

of asymmetry (skewness) and/or heavy tails (excess kurtosis). Detecting such deviations

is important for validating model assumptions and ensuring reliable results. The test is

implemented in R using the jarque.bera.test() function from the tseries package.

4.3.3 White test

To evaluate the presence of heteroskedasticity in the residuals of the regression models, the

White test is applied (Wooldridge, 2016). This diagnostic assesses whether the variance

of the residuals is constant across all levels of the independent variables. The null and

alternative hypotheses are formally stated as:

H0 : Homoskedasticity (constant error variance)

H1 : Heteroskedasticity is present
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The White test statistic follows a chi-squared distribution under the null hypothesis, with

degrees of freedom equal to the number of auxiliary regression terms. The White test will

be implemented in R using the white() function from the skedastic package.

4.3.4 Ljung-Box test

To assess the presence of autocorrelation in the residuals of a time series model, the

Ljung-Box test is applied. This diagnostic is critical for verifying that the residuals behave

like white noise, a key assumption in time series econometrics. If autocorrelation is present,

it suggests model misspecification and the need for further adjustments (Tsay, 2010). The

Ljung-Box statistic is defined as:

Q(m) = T (T + 2)
m∑

ℓ=1

ρ̂2
ℓ

T − ℓ
(10)

In this expression, T denotes the sample size, ρ̂ℓ is the estimated autocorrelation at lag

ℓ, and m is the number of lags to test. The Q-statistic follows a chi-squared distribution

with m df. The hypotheses for the Ljung-Box test are formulated as follows:

H0 : The autocorrelations are all zero

H1 : At least one autocorrelation is non-zero

A rejection of H0 indicates that residual autocorrelation is present, which may violate key

assumptions for consistent and efficient estimation. In addition to the formal Ljung-Box

test, Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots

are also inspected visually to support diagnostic evaluation of the residual dynamics.

The Ljung-Box test is implemented in R using the Box.test() function with the type =

"Ljung-Box" option from the stats package. The functions acf() and pacf() will be

used from the same package, to plot ACF and PACF.

4.3.5 ARCH-LM Test

To examine the presence of autoregressive conditional heteroskedasticity (ARCH) in the

residuals of the estimated model, the ARCH-LM test introduced by Engle (1982) is
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employed. This diagnostic is important for identifying whether the error variance is

constant over time or exhibits time-varying volatility. The test is conducted by regressing

the squared residuals ε̂2
t on their own lags in the following auxiliary regression:

ε̂2
t = α0 + α1ε̂2

t−1 + · · · + αmε̂2
t−m + ut (11)

where ε̂t denotes the residuals from the mean equation, m is the number of lags to be

tested, and ut is a white noise error term. The regression is tested by:

H0 : α1 = α2 = · · · = αm = 0

H1 : α1 = α2 = · · · = αm ̸= 0

Rejection of the null hypothesis suggests the presence of conditional heteroskedasticity,

indicating that a GARCH-type model may provide a better fit to account for time-varying

volatility. The test statistic follows a chi-squared distribution with m df, and is implemented

in this study using the ArchTest() function from the FinTS package in R.

4.3.6 Autoregressive exogenous model

To model the dynamics of the electricity price spread while accounting for both its own

past values and external influencing factors, an Autoregressive model with Exogenous

inputs (ARX) can be employed. The ARX model extends the traditional Autoregressive

(AR) framework by incorporating exogenous variables (Tsay, 2010). The ARX(p, q) model

is specified as:

Yt = α +
p∑

i=1
ϕiYt−i +

q∑
j=1

βjXt−j + εt (12)

where,

Yt represents the dependent variable at time t (spread)

Xt−j denotes the j-th lag of an exogenous predictor at time t

The coefficients ϕi and βj correspond to the autoregressive and exogenous components,

respectively.

α is a constant term (intercept)
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εt is the error term assumed to be white noise.

An ARX model will be estimated only if significant autocorrelation is detected in the resid-

uals of the preliminary OLS model, ensuring that lagged dependent terms are meaningfully

incorporated. The ARX model estimation is performed using the dynlm package in R,

which allows for efficient handling of dynamic linear models with exogenous variables.

4.3.7 GARCH Model

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model can

capture the time-varying volatility in a time series, also knowns as volatility clustering

(Tsay, 2010). A common feature in financial and energy time series where large changes in

a variable tend to be followed by further large changes. The GARCH(m, s) model extends

the ARCH framework by incorporating both past squared residuals and past conditional

variances. It consists of the following two equations:

at = σtϵt, ϵt ∼ N (0, 1)

σ2
t = α0 +

m∑
i=1

αia
2
t−i +

s∑
j=1

βjσ2
t−j

(13)

where,

at is the residual at time t

ϵt is a standard normal white noise error term

σ2
t is the conditional variance at time t

α0 is a constant

αi are the coefficients for the ARCH terms (a2
t−i)

βj are the coefficients for the GARCH terms (σ2
t−j)

The model assumes that current volatility depends both on past forecast errors and its

own past values, allowing it to effectively capture clustering and persistence in volatil-

ity. A GARCH model will be estimated only if the ARCH-LM test confirms significant

ARCH effects in the residuals of the mean model, ensuring the relevance of conditional

heteroskedasticity modeling. The GARCH model will be implemented in R using the

rugarch package that includes ugarchspec() and ugarchfit().
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5 Empirical analysis and discussion
The analysis chapter begins with a preliminary assessment of the data, including checks

for stationarity and multicollinearity. It then proceeds to address the sub-questions, first

by identifying the fundamental drivers of the spread in 5.2, and subsequently by exploring

seasonality patterns in 5.3.

5.1 Preliminary assessment

Before estimating any econometric models, a preliminary assessment of the dataset is

conducted to ensure it meets the necessary statistical requirements for time series modeling.

This includes evaluating the stationarity of the variables and testing for potential multi-

collinearity. These diagnostics provide an important foundation for ensuring the validity of

the models used later in the analysis.

Stationarity

Since non-stationary time series can produce unreliable regression results, the stationarity

of all variables is assessed using the Augmented Dickey-Fuller (ADF) test. The test results,

displayed in table 6 in appendix B, indicate that all variables are stationary at the 1%

significance level. The null hypothesis of a unit root is rejected for each series, suggesting

that mean and variance stability over time can be assumed throughout the modeling

process. This satisfies a key assumption required for linear regression and time series

models.

Multicollinearity

To detect multicollinearity, Variance Inflation Factor (VIF) scores were calculated for the

full set of independent variables. The results for the base model1 are provided in appendix

B, table 7. While most variables present acceptable VIF values below the commonly

accepted threshold of 5, the variable representing net scheduled cross-border flow from

1Base OLS model, including all independent variables.
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the Czech Republic (DE ↔ CZ) exhibits a VIF of 14.81, indicating strong collinearity

with other variables, particularly DE ↔ AT. To mitigate this, a revised specification

was introduced, combining DE ↔ AT and DE ↔ CZ into a single aggregate variable

(DE ↔ ATCZ). This adjustment reduced the VIF to a manageable level of 4.29. The effect

of this revision is visualized in the updated correlation matrix in appendix A.2, figure 10.

The final dataset used for model estimation therefore includes only stationary variables

and exhibits no problematic multicollinearity, providing a reliable basis for the subsequent

analysis.

5.2 Drivers of Intraday spread

5.2.1 Mean model construction

The analysis begins with the estimation of a baseline OLS model to examine the linear

relationship between the selected fundamental variables and the dependent variable. This

serves as an initial benchmark to assess the directional impact and statistical significance

of the explanatory variables under standard linear assumptions. While the preliminary

assessment in section 5.1 ensured the inclusion of only stationary and non-collinear variables,

it is necessary to examine the residual structure of the OLS model to validate its adequacy

as a mean equation. The Ljung-box test is performed on the residuals baseline model and

indicate highly significant autocorrelation, with the test rejecting the null hypothesis. This

is further substantiated by the autocorrelation and partial autocorrelation function (ACF

and PACF) plots of the residual series, which display persistent lag structures that do not

dissipate immediately. Test results and plots can be found in appendix C.1. These findings

suggest that the spread series exhibits time dependent dynamics that are not adequately

captured by a static OLS specification.

Consequently, the model is extended to account for autoregressive structure in the dependent

variable, leading to the implementation of an ARX model. The first version of the ARX

will include the first lag of the dependent variable, as the PACF plot of the OLS residuals

showed a prominent spike at lag 1, suggesting that the current value of the spread is

partially dependent on the first past value. The estimation results from the ARX model
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reveal several key improvements. Most notably, the lagged variable spreadt-1 is highly

significant (p < 0.01), with a large positive coefficient. This confirms the presence of

meaningful autocorrelation in the dependent series that the static OLS model could not

capture. Incorporating this autoregressive structure substantially improves the model fit,

as reflected in the increase in R2 from 0.275 in the OLS model to 0.603 in the ARX model.

The diagnostics of the residuals also show improvements, although autocorrelation is still

present when running the Ljung-box test, but the test statistic dropped from 12.571 to

182.54. Looking at the ACF and PACF plots of the ARX’s residuals, it’s clear that the

dominant autocorrelation of the OLS has been effectively addressed by adding a lagged

variable. However, despite the improvements there is still autocorrelation present. To

adress this, the model got extended by including additional lags of the dependent variable at

strategically selected intervals (spreadt-2, spreadt-3, spreadt-24, spreadt-168), to account for

more of the past, including daily and weekly cyclical effects that may influence the behavior

of ID trading. The extended ARX model improved marginally on adjusted R2 (0.6054),

the Ljung-box statistic reduced considerably to 69.36 and most lags falling within the

confidence bounds in both ACF and PACF. Nevertheless, the Ljung-Box test still indicates

some remaining autocorrelation. While this suggests that the model does not fully capture

all temporal dynamics, the magnitude and structure of the residual autocorrelation are

sufficiently reduced to proceed. Further diagnostics of the residuals include a Jarque-Bera

test and White test. The result of the Jarque-bera test, with a test statistic of 3.94×108

and a p-value < 2.2×10-16, strongly rejects the null hypothesis of normal distribution.

While normality is not a strict requirement, non-normal residuals may affect the model

results. The results of White’s test for heteroskedasticity also confirms the presence of

non-constant variance in the residuals. To address this issue and ensure valid results,

heteroskedasticity-consistent standard errors (HC robust) are computed. The full results of

that, can be found in appendix C.1, table 15, but all the variables that remains statistically

significant can be found below in table 4. The lagged dependent variable L(Spread, 1) is

highly significant and positively signed (0.71161), suggesting a strong degree of persistence

in the spread series. This implies that a 1€ increase in the spread during the previous hour

leads, on average, to a 0.71€ increase in the current spread, highlighting the similarity of

behavior from hour to hour in the ID market. The LoadFE carries a negative and significant
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coefficient (-0.00012). This indicates that when actual load is higher than forecasted by

1GW (a positive forecast error), the spread is expected to decrease by approximately €0.12.

This somewhat contradicts the intuitive expectation that underforecasted demand would

push up ID prices and thus widen the spread. One possible explanation is that load forecast

errors are typically small or mitigated in real time through balancing mechanisms.

Variable Estimate Std. Error t-Value Signif.
Intercept -1.38500 0.48074 -2.8815 **
L(Spread, 1) 0.71161 0.11268 6.3154 ***
LoadFE -0.00012 0.00005 -2.5231 **
WindFE -0.00106 0.00018 -5.9800 ***
SolarFE -0.00102 0.00029 -3.5731 ***
Outages 0.00177 0.00079 2.2486 *
DE ↔ BE 0.00053 0.00025 2.1427 *
DE ↔ DK1 -0.00040 0.00016 -2.5692 **
DE ↔ FR -0.00029 0.00006 -4.4725 ***

Table 4: ARX model results with robust standard errors (significant variables only). Source:
Generated in R

The WindFE and SolarFE both exhibit negative and highly significant coefficients, with

values of -0.00106 and -0.00102, respectively. This implies that an overestimation of wind

or solar generation by 1GW leads to a reduction in the spread by approximately €1.06 and

€1.02, respectively. Outages are positively signed (0.00177) and significant at the 5% level.

This suggests that the loss of generation capacity exerts upward pressure on ID prices,

thereby increasing the spread, but only by €1.7 per 1 GW outages. Three cross-border flow

variables also show significance. Increased scheduled exports from Germany to Belgium

are positively associated with the spread (0.00053), suggesting that greater outflows to

Belgium contribute to tighter local conditions and upward ID price pressure. In contrast,

increased exports to Denmark (DK1) and France are negatively associated with the spread

(-0.00040 and -0.00029, respectively), indicating that these interconnectors are putting

more downside pressure to the German Intraday market, when exporting more at DA state.

Lastly, to assess the presence of autoregressive conditional heteroskedasticity, the ARCH

LM test is applied to the extended model’s residuals. The null hypothesis of no ARCH

effects is rejected at the 1% level, with a test statistic of 1682 (df = 24, p < 2.2×10-16).
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This result indicates the presence of time-varying volatility in the residuals, which justify

the transition to a GARCH framework in the following section.

5.2.2 GARCH

Following the ARX analysis in section 5.2.1, a GARCH(1,1) will now be estimated to

capture time-varying volatility in the spread. This GARCH model includes the same set of

exogenous regressors in the mean equation as the ARX model, allowing a direct comparison

of the drivers identified previously while adding an additional layer of insight through the

conditional variance. Below in table 5 is all the significant results from the GARCH(1,1),

the full table can be found in appendix C.1.

Variable Estimate Std. Error t-Value Signif.
Intercept (mu) -1.97339 0.60162 -3.2801 ***
L(Spread, 1) (ar1) 0.79021 0.00837 94.4108 ***
WindFE -0.00154 0.00009 -16.3203 ***
SolarFE -0.00216 0.00012 -18.5095 ***
Residual load 0.00004 0.00002 1.94892 *
DE ↔ ATCZ 0.00076 0.00011 6.6854 ***
DE ↔ CH 0.00065 0.00009 6.9101 ***
DE ↔ FR -0.00039 0.00006 -5.8903 ***
DE ↔ NO2 -0.00046 0.00020 2.2667 **
DE ↔ PL -0.00076 0.00021 -3.3518 ***
ω 2.85134 0.12842 22.2065 ***
α1 0.79975 0.06687 11.9631 ***
β1 0.19916 0.02240 8.8680 ***
shape 2.85172 0.08355 34.1320 ***

Table 5: GARCH(1,1) model results with robust standard errors (significant variables
only). Source: Generated in R

The volatility dynamics captured by the GARCH(1,1) model also provide important insights.

The parameter ω is significantly positive, indicating a stable baseline level of conditional

variance in the spread. The ARCH term α1 is large and highly significant, suggesting that

recent shocks to the spread, such as unexpected renewable forecast errors or price spikes,

have a strong and immediate impact on future volatility. Meanwhile, the GARCH term β1

is also significant, indicating that once volatility rises, it tends to persist across multiple

trading intervals. This meaning that periods of high uncertainty tend to be followed by

further uncertainty. From a trading perspective, these dynamics are crucial. Traders should
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be aware that ID market conditions are not independent from past volatility. In addition,

diagnostic testing supports the robustness of the model specification. The ARCH LM test

results show that all p-values are close to 1 across multiple lags, indicating no remaining

ARCH effects in the standardized residuals. This suggests that the GARCH(1,1) model

adequately captures the time-varying volatility present in the spread, and that conditional

heteroskedasticity has been successfully modeled.

Comparing the results from the extended ARX and the GARCH, several differences in

terms of significance can be captured. The variables LoadFE, DE ↔ BE, and DE ↔ DK1

are not significant anymore. Meanwhile the variables residual load, DE ↔ ATCZ, CH, NO2

& PL, did not appear significant in the ARX model, they became statistically significant

in the GARCH framework. This highlights that their contribution to the spread is more

prominently linked to periods of heightened volatility. For example, interconnector flows

may not strongly affect the average spread but becomes more critical when markets are

under stress or reacting to forecast surprises.
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5.3 Seasonality

Intraday price spreads in electricity markets are inherently shaped by recurring temporal

patterns. These seasonal effects often stem from systematic behavioral trends, market

operation routines, demand patterns, and fluctuations in renewable energy production.

Mean spread and standard error for hourly timeframe

Mean spread and standard error for weekdays

Figure 4: Mean spread and it’s standard error. Source: Generated in R

In figure 4 above, it is clear that the mean spread and it’s standard error vary throughout

the day and week. This visual evidence suggests the presence of time-dependent pricing

behavior, particularly with elevated spreads and uncertainty during specific hours and on

32



5.3. SEASONALITY CHAPTER 5. EMPIRICAL ANALYSIS

early weekdays. In the two following sections 5.3.1 and 5.3.2 the time-dependent spread

behavior will be addressed by estimating models with dummies included.

5.3.1 Daily effect

To capture the ID dynamics of the spread, the day was segmented into five distinct blocks,

which include, night (00:00–06:00), morning ramp (06:00–09:00), mid peak (09:00–18:00),

evening ramp (18:00–22:00), and late evening (22:00–00:00). The OLS regression was

specified with interaction terms between these time blocks and the key independent variables,

including forecast errors2 and market fundamentals, using the night block as reference.

Before interpreting the results, it is important to acknowledge that residual diagnostics

reveal the presence of both autocorrelation and heteroskedasticity. The Ljung-Box test

strongly rejects the null hypothesis of no autocorrelation (p < 2.2 × 10−16), and White’s

test similarly rejects the null of homoskedasticity (p = 1.91 × 10−24). Consequently, robust

standard errors (HC) are applied using the coeftest function. The results of that can be

found in Appendix C.2, table 21.

Looking at the results, a number of interesting patterns emerge. Interestingly, the base

effect of the time blocks themselves ( Block_FactorMP) is not statistically significant,

suggesting that the conditional spread level alone does not shift markedly throughout the

day once the explanatory variables are accounted for. Then looking at the fundamentals,

load FE are only significant during the mid peak, and interestingly enough not the ramps.

This suggests that during the central hours of the day, when demand is relatively stable

and solar generation is at its peak, deviations in expected load can have an effect on the

spread. In contrast, during the ramping periods, system flexibility and increased dispatch

activity may buffer the impact of load forecast errors, making the influence on price spreads

statistically insignificant. Wind FE are significantly negative across all time blocks (and the

only variable that is significant in the night) but notably less significant in the mid peak.

This aligns with the dominance of solar during this period, which may reduce the marginal

influence of wind forecast errors on the spread. With solar generation driving much of

the supply variability in mid peak hours, the system’s pricing sensitivity may shift away

2Solar is not included in this setup, as the production is limited to the two mid peak blocks, and thus
not as informative
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from wind deviations, explaining the relative drop in significance. Outages are positively

significant during the evening ramp and late evening blocks, when system flexibility is

generally more constrained. This is intuitive, as reduced generation availability during

these hours heightens reliance on more expensive balancing mechanisms, thus widening

the spread. It would have been expected, that outages also had a significant effect on the

morning ramp, but that is not the case. Net export is only significant during the mid

peak hours, reflecting the complexity of this period in the European power system where

RES deviate a lot between countries. The results suggest that when Germany exports

more in the DA market, the ID price tends to trade lower than the spot price during these

hours, possibly due to over scheduled exports amplifying supply side pressure that is later

corrected in ID market.

5.3.2 Weekday effect

To examine whether the spread dynamics vary systematically across the days of the

week, the model is extended with interaction terms between weekday dummies and the

explanatory variables, using monday as reference. The regression thus captures not only the

direct weekday effect, but also whether the influence of forecast errors and fundamentals

varies depending on the day. As with the daily block model, the residual diagnostics

indicate a clear presence of both autocorrelation and heteroskedasticity. The Ljung-Box

test strongly rejects the null of no autocorrelation (p < 2.2 × 10−16), while the White test

similarly rejects the null of homoskedasticity (p = 3.39 × 10−63). Hence, the coeftest

function with heteroskedasticity-consistent standard errors (HC) is again employed to

ensure more valid results. The results can be found in appendix C.2, table 24 and 25.

The model reveals several patterns. First, the weekday dummy coefficients, particularly

for Tuesday, Thursday, and Friday are statistically significant, indicating that the average

spread on these days differs from Monday even when controlling for all other variables. In

contrast, Wednesday and the weekend are not statistically significant, implying that the

average spread on these days does not differ meaningfully from monday after accounting

for market fundamentals. Among the fundamentals, the load FE only show slightly sign

of significance for some of the days. This suggests that FE in load are not systematically
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associated with spread variations on specific days of the week, likely due to the relatively

predictable nature of demand patterns across the week. Wind FE exhibit a particularly

interesting weekday pattern. The baseline coefficient for Monday (the reference category)

is highly significant and strongly negative, indicating that on Mondays, wind FE tend to

reduce the ID prices relative to the spot price (if supply surplus). Meanwhile the rest of

the week is also significant (besides Wednesday), but with positive coefficients. Notably,

the strongest effects compared to Monday are seen on weekends (Saturday and Sunday),

which may reflect less flexible generation portfolios and lower trading volumes. Solar FE

exhibit the same behavior as wind, with Monday being highly significant and strongly

negative. The interaction terms for the other weekdays for solar FE are also generally

positive, but only marginally significant, suggesting a weakening of this negative effect

from Monday. Residual load is different from wind and solar FE, as it have a significant

and positive base effect on Mondays, indicating that spreads are strongly influenced by

the level of conventional generation early in the week. However, the interaction terms for

rest of the week is only significant for Tuesday, Thursday and Friday, but with negative

coefficients. Outages are mostly insignificant across the weekdays, indicating that their

effect on the spread is not strongly tied to the day of the week. This aligns with earlier

findings showing that outages matter more in specific time windows, such as the evening

ramp, where system flexibility is limited, rather than exhibiting a consistent weekday

pattern. Finally, net export is very similar to wind FE in terms of weekly interactions.

Net export is highly significant and negatively signed on the Monday reference, suggesting

that increased DA exports are associated with lower ID prices relative to spot on that

day. Then for rest of the week, net export have positive coefficients that gets even more

significant as we approach Friday to Sunday. This is implying that the price impact of net

exports intensifies during the end of the week and especially in the weekends.
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6 Conclusion
This study identifies some of the fundamental factors driving the price spread between the

German DA and ID electricity markets. It finds that the spread is significantly affected by

discrepancies between forecasted and actual electricity supply by wind and solar, forecast

deviations for demand, combined with scheduled DA interconnector flows also proven

significant on certain borders.

When addressing the first sub-question, the results from the ARX model aligned with

expectations for most significant variables. However, the load FE deviated from theoretical

expectations, showing a negative coefficient. This indicates that when actual demand

exceeds forecasts it led to lower ID prices compared to DA prices, contradicting standard

theoretical assumptions. Among the interconnectors, the net export for DE ↔ FR was

found to be the most statistically significant, which aligns with its high capacity and

strategic role in balancing the German market, especially during system stress or large

forecast deviations. Considering the insights from the GARCH(1,1) model further reveals

that factors such as residual load and additional interconnector flows becomes signifant

during periods of heightened market volatility, even if their average effect on the spread

is limited. Regarding the second sub-question, the analysis reveals some patterns in the

price spread, both ID and across the week. From a daily perspective, wind forecast error is

the only variable that shows a significant effect during the night hours (also significant for

the rest of the day, but less in mid peak, where solar deviations kick in), indicating that

unexpected wind deviations overnight have a measurable impact on ID prices, possibly

due to low liquidity and limited flexibility in those hours. Additionally, both the load

and net export is only significant during the mid peak block, suggesting that load FE

and cross-border flows play a more active role in price formation during the most liquid

and operationally intensive part of the trading day, but are less relevant during ramping

or off-peak hours. Besides that, outages is only significant in the evening. On a weekly

level, interaction effects show that both wind and solar forecast errors are most impactful

on Mondays, where they are highly significant and negatively signed. This implies that
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on Mondays, forecast errors tend to drive ID prices below DA levels (if in a surplus or

above DA levels if in a deficit). The pattern for Monday is likely due to higher system

uncertainty and residual adjustments from the weekend. For the remainder of the week,

the coefficients turn positive, suggesting a shift in market behavior and improved alignment

between forecasts and actual conditions.

While the findings of this study offer meaningful insights into the drivers of ID price spreads,

certain limitations should be acknowledged. The results are based on historical data from

a specific period, and the applied econometric models involve simplifications that may

limit generalizability. Dynamics such as market liquidity and strategic trading behavior

were not quantified and used in this study. However, these limitations also point towards

opportunity of future research, which could be with the use of more advanced modeling

from machine learning. Developing a forecasting model for spread behavior could provide

valuable tools for short-term trading and operational decision-making.
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A Plots

A.1 Variables

Figure 5: Lineplot for the spread. Source: Generated in R
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Load FE

Wind FE

Solar FE

Figure 6: Lineplots of Load FE, Wind FE, and Solar FE. Source: Generated in R
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Residual load Fct

Unplanned outages

Figure 7: Lineplots of Residual load and unplanned outages. Source: Generated in R
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DE ↔ AT DE ↔ BE

DE ↔ CH DE ↔ CZ

DE ↔ DK1 DE ↔ DK2

Figure 8: Lineplots of the net export for all interconnectors. Figure (1/2). Source:
Generated in R
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DE ↔ FR DE ↔ NL

DE ↔ NO2 DE ↔ PL

DE ↔ SE4

Figure 9: Lineplots of the net export for all interconnectors. Figure (2/2). Source:
Generated in R
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A.2 Correlation

Correlation matrix, version 1

Correlation matrix, version 2

Figure 10: Correlation matrix with and without variable update. Source: Generated in R
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B Tables

B.1 Preliminary diagnostics

Variable ADF Statistic p-value
Spread -22.779 < 0.01
LoadFE -10.460 < 0.01
WindFE -18.808 < 0.01
SolarFE -17.041 < 0.01
Residual Load -16.892 < 0.01
Outages -21.691 < 0.01
DE ↔ AT -13.357 < 0.01
DE ↔ BE -13.458 < 0.01
DE ↔ CH -11.467 < 0.01
DE ↔ CZ -15.356 < 0.01
DE ↔ DK1 -14.378 < 0.01
DE ↔ DK2 -13.617 < 0.01
DE ↔ FR -12.821 < 0.01
DE ↔ NL -15.214 < 0.01
DE ↔ NO2 -13.657 < 0.01
DE ↔ PL -16.800 < 0.01
DE ↔ SE4 -12.812 < 0.01

Table 6: ADF test results for all variables. P-value is smaller than the printed p-value.
Source: Generated in R
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(a) Base Model VIF

Variable VIF
LoadFE 1.09
WindFE 1.14
SolarFE 1.05
Residual Load 2.43
Outages 1.01
DE ↔ AT 6.80
DE ↔ BE 1.64
DE ↔ CH 1.83
DE ↔ CZ 14.78
DE ↔ DK1 3.29
DE ↔ DK2 2.60
DE ↔ FR 1.70
DE ↔ NL 1.25
DE ↔ NO2 3.40
DE ↔ PL 5.74
DE ↔ SE4 2.39

(b) Revised Model VIF (after
combining de_atcz)

Variable VIF
LoadFE 1.07
WindFE 1.13
SolarFE 1.04
Residual load 2.20
Outages 1.01
DE ↔ ATCZ 4.29
DE ↔ BE 1.63
DE ↔ CH 1.79
DE ↔ DK1 3.20
DE ↔ DK2 2.59
DE ↔ FR 1.66
DE ↔ NL 1.24
DE ↔ NO2 3.35
DE ↔ PL 3.43
DE ↔ SE4 2.39

Table 7: Comparison of Variance Inflation Factor (VIF) before and after variable reduction.
Source: Generated in R
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C Models
For all models, the following significance levels is applied:

*** p < 0.01, ** p < 0.05, * p < 0.1

C.1 SQ1

OLS

Variable Estimate Std. Error t-Value Signif.
Intercept -6.203e+00 7.199e-01 -8.617 ***
LoadFE 9.859e-05 8.890e-05 1.109
WindFE -3.418e-03 9.878e-05 -34.918 ***
SolarFE -4.555e-03 1.917e-04 -23.764 ***
Residual Load 1.808e-04 2.287e-05 7.908 ***
Outages 2.947e-03 1.150e-03 2.563 *
DE ↔ ATCZ 3.538e-04 1.965e-04 1.801
DE ↔ BE 1.370e-03 3.408e-04 4.020 ***
DE ↔ CH -2.176e-04 1.828e-04 -1.189
DE ↔ DK1 -1.214e-03 2.858e-04 -4.246 ***
DE ↔ DK2 2.760e-04 1.593e-04 1.732
DE ↔ FR -6.478e-04 1.098e-04 -5.901 ***
DE ↔ NL -1.221e-04 1.546e-04 -0.790
DE ↔ NO2 1.734e-03 4.696e-04 3.693 ***
DE ↔ PL -9.519e-04 4.724e-04 -2.015 *
DE ↔ SE4 -3.358e-03 9.296e-04 -3.641 ***

Table 8: Baseline OLS regression results. Source: Generated in R

Note: Residual Std. Error: 28.19 on 17,504 df. R2 = 0.1011, Adj. R2 = 0.1003. F-statistic = 131.2 on 15
and 17,504 df, p < 2.2 × 10−16.

Test Statistic Degrees of Freedom p-value
12,571 20 < 2.2 × 10−16

Table 9: Ljung-Box test result for residual autocorrelation in baseline OLS model. Source:
Generated in R
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C.1. SQ1 APPENDIX C. MODELS

ACF of the OLS’s residuals

PACF of the OLS’s residuals

Figure 11: ACF and PACF for the baseline OLS model. Source: Generated in R
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C.1. SQ1 APPENDIX C. MODELS

ARX

1. version

Variable Estimate Std. Error t-Value Signif.
Intercept -1.606e+00 4.958e-01 -3.240 **
L(Spread, 1) 7.245e-01 5.182e-03 139.825 ***
LoadFE -5.495e-05 6.110e-05 -0.900
WindFE -9.732e-04 6.957e-05 -13.990 ***
SolarFE -1.424e-03 1.336e-04 -10.658 ***
Residual Load 1.692e-04 1.575e-05 10.740 **
Outages 1.624e-03 7.906e-04 2.055 *
DE ↔ ATCZ 1.741e-04 1.354e-04 1.285
DE ↔ BE 3.661e-04 2.348e-04 1.560
DE ↔ CH -1.196e-04 1.253e-04 -0.953
DE ↔ DK1 -4.414e-04 1.965e-04 -2.249 *
DE ↔ DK2 4.823e-04 5.004e-04 0.965
DE ↔ FR -2.198e-04 7.552e-05 -2.911 **
DE ↔ NL -1.034e-04 1.063e-04 -0.970
DE ↔ NO2 5.414e-04 3.229e-04 1.677 .
DE ↔ PL -6.534e-04 3.247e-04 -2.012 *
DE ↔ SE4 -4.031e-04 6.393e-04 -0.631

Table 10: ARX regression results including first lag. Source: Generated in R

Note: Residual Std. Error: 19.37 on 17,502 df. R2 = 0.5754, Adj. R2 = 0.5751. F-statistic = 1483 on 16
and 17,502 df, p < 2.2 × 10−16.

Test Statistic Degrees of Freedom p-value
296.58 20 < 2.2 × 10−16

Ljung-Box test result for residual autocorrelation in ARX model. Source: Generated in R
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C.1. SQ1 APPENDIX C. MODELS

ACF of the ARX’s residuals

PACF of the ARX’s residuals

Figure 12: ACF and PACF for the first ARX model. Source: Generated in R
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C.1. SQ1 APPENDIX C. MODELS

2. version

Variable Estimate Std. Error t-Value Signif.
Intercept -1.681e+00 4.969e-01 -3.382 ***
L(Spread, 1) 8.053e-01 7.602e-03 105.932 ***
L(Spread, 2) -1.399e-01 9.701e-03 -14.416 ***
L(Spread, 3) 4.450e-02 7.533e-03 5.908 ***
L(Spread, 24) -1.534e-02 4.955e-03 -3.097 **
L(Spread, 168) -1.907e-02 4.949e-03 -3.853 ***
LoadFE -1.415e-05 6.181e-05 -0.229
WindFE -1.039e-03 7.082e-05 -14.667 ***
SolarFE -1.493e-03 1.338e-04 -11.158 ***
Residual Load 5.022e-05 1.584e-05 3.170 **
Outages 2.015e-03 8.008e-04 2.516 *
DE ↔ ATCZ 1.985e-04 1.358e-04 1.462
DE ↔ BE 4.852e-04 2.368e-04 2.049 *
DE ↔ CH -1.299e-04 1.253e-04 -1.036
DE ↔ DK1 -4.461e-04 1.973e-04 -2.261 *
DE ↔ DK2 4.600e-04 5.004e-04 0.919
DE ↔ FR -2.282e-04 7.582e-05 -3.010 **
DE ↔ NL -9.859e-05 1.066e-04 -0.925
DE ↔ NO2 5.124e-04 3.248e-04 1.578
DE ↔ PL -6.865e-04 3.255e-04 -2.109 *
DE ↔ SE4 -4.382e-04 6.415e-04 -0.683

Table 11: ARX regression results including multiple lags of spread. Source: Generated in
R

Note: Residual Std. Error: 19.31 on 17,331 df. R2 = 0.5811, Adj. R2 = 0.5806. F-statistic = 1202 on 20
and 17,331 df, p < 2.2 × 10−16.

Test Statistic Degrees of Freedom p-value
85.335 20 4.792 × 10−10

Table 12: Ljung-Box test result for residual autocorrelation in extended ARX model.
Source: Generated in R

Test Statistic Degrees of Freedom p-value
450748324 2 < 2.2 × 10−16

Table 13: Jarque-Bera test result for residual normality in extended ARX model. Source:
Generated in R
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C.1. SQ1 APPENDIX C. MODELS

ACF of the extended ARX’s residuals

PACF of the extended ARX’s residuals

Figure 13: ACF and PACF for the extended ARX model. Source: Generated in R
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C.1. SQ1 APPENDIX C. MODELS

Test Statistic Degrees of Freedom p-value
1546 40 1.54 × 10−298

Table 14: White’s test result for heteroscedasticity in extended ARX model. Source:
Generated in R

Variable Estimate Std. Error t-Value Signif.
Intercept -1.6807 0.47005 -3.5756 ***
L(Spread, 1) 0.8533 0.10564 7.6233 ***
L(Spread, 2) -0.1399 0.09138 -1.5008
L(Spread, 3) -0.0493 0.05493 -0.9022
L(Spread, 24) -0.1535 0.13918 -1.1025
L(Spread, 168) -0.2862 0.15375 -1.8630
LoadFE -0.00005 0.00047 -0.2849
WindFE -0.00157 0.00027 -5.7806 ***
SolarFE -0.00285 0.00029 -5.1870 ***
Residual load 0.00022 0.00006 3.4825 ***
Outages 0.00082 0.00034 2.3998 *
DE↔ATCZ 0.00124 0.00079 1.5640
DE↔BE 0.00085 0.00044 1.9436 .
DE↔CH -0.00111 0.00058 -1.9140
DE↔DK1 -0.00118 0.00047 -2.6158 **
DE↔DK2 0.00046 0.00055 0.8355
DE↔FR -0.00213 0.00061 -3.4897 ***
DE↔NL -0.00098 0.00161 -0.9256
DE↔NO2 -0.00135 0.00052 -2.5966 *
DE↔PL -0.00186 0.00073 -2.5318 *
DE↔SE4 -0.00083 0.00104 -0.7953

Table 15: Extended ARX model results with robust standard errors. Source: Generated in
R

Test Statistic Degrees of Freedom p-value
1093.9 24 < 2.2 × 10−16

Table 16: ARCH LM test result for ARCH effects in extended ARX model residuals.
Source: Generated in R
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C.1. SQ1 APPENDIX C. MODELS

GARCH

Variable Estimate Std. Error t-Value Signif.
Intercept (µ) -1.91029 0.60150 -3.1759 ***
AR(1) (ϕ1) 0.79137 0.00825 95.9398 ***
LoadFE -0.00002 0.00006 -0.3302
WindFE -0.00154 0.00009 -16.5271 ***
SolarFE -0.00212 0.00011 -18.6785 ***
Residual load 0.00004 0.00002 2.8513 ***
Outages 0.00003 0.00007 0.4526
DE↔ATCZ 0.00076 0.00011 6.4502 ***
DE↔BE 0.00088 0.00020 4.3383
DE↔CH 0.00065 0.00009 6.9384 ***
DE↔DK1 -0.00004 0.00003 -1.9631
DE↔DK2 -0.00046 0.00029 -1.5673
DE↔FR -0.00075 0.00013 -5.9094 ***
DE↔NL -0.00018 0.00019 -0.9866
DE↔NO2 -0.00044 0.00020 -2.1663 **
DE↔PL -0.00044 0.00022 -1.9830 ***
DE↔SE4 0.00035 0.00036 0.9692
ω 31.89182 2.90161 10.9917 ***
α1 0.80047 0.06715 11.9206 ***
β1 0.19854 0.02292 8.6621 ***
shape 2.84222 0.08297 34.2583 ***

Table 17: GARCH(1,1) model results with robust standard errors and labeled external
regressors. Source: Generated in R

ARCH Lag Statistic Shape p-value
5 2.441e-05 0.500 0.9961
13 5.268e-03 1.440 0.9998
20 8.983e-03 2.315 1.0000

Table 18: ARCH LM test results for standardized residuals from GARCH(1,1) model.
Source: Generated in R
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C.2. SQ2 APPENDIX C. MODELS

C.2 SQ2

Daily effect

Test Statistic Degrees of Freedom p-value
19,348 20 < 2.2 × 10−16

Table 19: Ljung-Box test result for the block dummy model. Source: Generated in R

Test Statistic Degrees of Freedom p-value
217 48 2.01 × 10−23

Table 20: White’s test result for the block dummy model. Source: Generated in R

Variable Estimate Std. Error t-Value Signif.
Intercept 0.60331 0.19210 3.1396 **
LoadFE 0.00003 0.00020 0.3818
Block_Morningramp -0.09120 0.05869 -0.1566
Block_MP 0.05134 0.05320 0.9960
Block_Eveningramp -0.08147 0.05105 -1.6246
Block_Lateevening -0.03331 0.06956 -0.7094
WindFE -0.00227 0.00012 -18.8728 ***
Outages -0.00188 0.00108 -1.6674 .
Net export -0.00028 0.00025 -1.1358
LoadFE × Morningramp -0.00027 0.00033 -0.8175
LoadFE × MP 0.00048 0.00015 3.1131 ***
LoadFE × Eveningramp 0.00105 0.00023 4.5763 .
LoadFE × Lateevening 0.00060 0.00032 1.8961 .
WindFE × Morningramp -0.00273 0.00065 -4.2078 ***
WindFE × MP -0.00079 0.00024 -3.7122 *
WindFE × Eveningramp -0.00399 0.00195 -1.2493 ***
WindFE × Lateevening -0.00268 0.00064 -4.1971 ***
Outages × Morningramp -0.00548 0.00227 -0.2411
Outages × MP -0.00131 0.00192 -0.6854
Outages × Eveningramp 0.00583 0.00195 2.9989 ***
Outages × Lateevening 0.00286 0.00029 5.7585 ***
Net export × Morningramp -0.00133 0.00018 -7.0830 .
Net export × MP -0.00460 0.00046 -9.9461 ***
Net export × Eveningramp -0.00370 0.00042 -8.7430
Net export × Lateevening -0.00197 0.00015 -1.3462

Table 21: OLS model with block-wise interaction terms and robust standard errors. Source:
Generated in R
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C.2. SQ2 APPENDIX C. MODELS

Weekday effect

Test Statistic Degrees of Freedom p-value
17,484 20 < 2.2 × 10−16

Table 22: Ljung-Box test result for residual autocorrelation in the weekday interaction
model. Source: Generated in R

Test Statistic Degrees of Freedom p-value
541 96 3.39 × 10−63

Table 23: White’s test result for heteroskedasticity in the weekday interaction model.
Source: Generated in R

Variable Estimate Std. Error t-Value Signif.
Intercept -7.30200 1.73560 -4.2073 ***
Weekday Tuesday 1.21060 1.96380 6.1661 ***
Weekday Wednesday -4.51610 4.30220 -1.0497
Weekday Thursday 6.69380 2.41730 2.7342 **
Weekday Friday 8.97840 1.97530 4.5435 ***
Weekday Saturday 2.91660 1.87180 1.5586
Weekday Sunday -0.73910 1.32720 -0.3176
LoadFE -0.00264 0.00139 -1.8969
WindFE -0.00494 0.00043 -11.6204 ***
SolarFE -0.00771 0.00175 -4.4090 ***
Residual load 0.00031 0.00006 5.3192 ***
Outages -0.00159 0.00219 -0.7253
Net export -0.00041 0.00011 -3.7386 ***
Tuesday × LoadFE 0.00075 0.00337 0.2226
Wednesday × LoadFE 0.00115 0.00054 2.1508 *
Thursday × LoadFE 0.00385 0.00352 1.0942
Friday × LoadFE 0.00563 0.00332 1.6985 .
Saturday × LoadFE 0.00352 0.00289 1.0703
Sunday × LoadFE 0.00089 0.00301 0.2960 .
Tuesday × WindFE 0.00171 0.00045 3.7749 ***
Wednesday × WindFE -0.00132 0.00048 -2.7612
Thursday × WindFE 0.00218 0.00048 2.6283 **
Friday × WindFE 0.00189 0.00045 4.2023 ***
Saturday × WindFE 0.00266 0.00045 2.9272 ***
Sunday × WindFE 0.00276 0.00046 4.9544 ***

Table 24: OLS model results with weekday interaction terms and robust standard errors
(1/2). Source: Generated in R
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C.2. SQ2 APPENDIX C. MODELS

Variable Estimate Std. Error t-Value Signif.
Tuesday × SolarFE 0.00412 0.00175 2.3538 *
Wednesday × SolarFE 0.00252 0.00179 1.4072
Thursday × SolarFE 0.00237 0.00184 2.3063 *
Friday × SolarFE 0.00439 0.00176 2.4811 *
Saturday × SolarFE 0.00251 0.00176 2.4175 *
Sunday × SolarFE 0.00282 0.00176 1.6047
Tuesday × Residual Load -0.00044 0.00006 -6.8302 ***
Wednesday × Residual Load 0.00070 0.00006 2.6803
Thursday × Residual Load -0.00028 0.00008 -3.3400 ***
Friday × Residual Load -0.00036 0.00007 -5.5235 ***
Saturday × Residual Load -0.00011 0.00006 -1.7444 .
Sunday × Residual Load 0.00028 0.00008 0.3168
Tuesday × Outages 0.00399 0.00274 1.4579
Wednesday × Outages 0.00692 0.00398 1.5820
Thursday × Outages 0.00287 0.00292 0.9866
Friday × Outages 0.00433 0.00246 1.7520 .
Saturday × Outages 0.00405 0.00345 1.1344
Sunday × Outages 0.00701 0.00553 1.2671
Tuesday × Net Export 0.00043 0.00019 2.0284 *
Wednesday × Net Export 0.00042 0.00014 1.5121
Thursday × Net Export 0.00039 0.00012 3.5872 *
Friday × Net Export 0.00038 0.00012 3.3058 ***
Saturday × Net Export 0.00032 0.00013 2.3422 ***
Sunday × Net Export 0.00047 0.00014 3.3149 ***

Table 25: OLS model results with weekday interaction terms and robust standard errors
(2/2). Source: Generated in R
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