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Abstract:

This project aims to test the feasbility of controlling
two cube satellites with magnetorquers for swarm-
ing capabilities. This novel concept for swarm con-
trol based on magnetic actuation is investigated. The
success criterion is to make the controller generate
enough electromagnetic force to have two satellites
attract and settle at some desired distance in be-
tween.

A linear state-space control strategy is developed for
a highly non-linear system by a means of translation
and scheduled gains. An analysis of this non-linear
is conducted and an approximation of the model is
done. This is followed by linearization at the desired
operating point and also at different points in order
to schedule gains for the linear controller. A fictitious
force is calculated that acts on the satellites in differ-
ent orbits around Earth, which acts as the minimum
requirement for the feasibility of this project. This is
followed by the controller design.

The strategy, namely, observer based control with
full state-feedback is finally implemented in MAT-
LAB Simulink platform and tested for the derived
requirements.
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Chapter 1

Introduction

CubeSats are a category of small satellites that have a standard size and form factor. They
have become very popular nowadays due to their compactness, cheap cost of development,
testing and deployement. A standard CubeSat uses ‘one unit’” or "1U" which measures
10x10x10 centimetres [6]; which can be extended to larger units by stacking up the “units’,
depending on the mission requirements.

1U 15U 2U 3uU 6U 12U

Figure 1.1: Different configurations of CubeSats

Thanks to the concept of CubeSats, it has become much more feasible to conduct scientific
investigations and technology demonstrations. One such effort is the concept of satellite
swarms. So far, the CubeSats have majorly operated alone as independent units, but com-
bining these multiple mini satellites could prove useful in undergoing larger scale missions.
Some of the applications for satellite swarms are discussed as following;:

¢ Imagery - Due to the small size of CubeSats, the on-board camera sensors are small
as well, which cannot output very detailed imagery. So multiple CubeSats could be
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combined for imaging earth, resulting in a bigger effective camera sensor, improving
the resolution and depth. Similarly, it can also be used to photograph space.

Communication - The small sized antennas on CubeSats could be combined on de-
mand to effectively make a bigger antenna. This could be used as a make-shift an-
tenna for telecommunication, broadcasting, in emergency situations for instaneous
coverage, or generally, for remote sensing and navigation.

Space observations - Satellite swarms could be useful to conduct experiments and
observations in low-Earth orbits. Many different CubeSats from different launches
could come together and act as a single test lab unit.

Docking - The method for satellite swarming could be tested for spatial docking of
spacecrafts, which requires high precision and accuracy.
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Project Formulation

It is desired to test the feasibiilty and control of magnetorquer based cube satellites, for
swarming applications. This work investigates a control strategy for electromagnetic force
based actuation to keep two satellites in a swarm formation. As illustrated in Figure a
current controller is to be designed which can make two satellites get close for swarming
and maintain a desired distance in-between.

Satellite

Controller

Figure 2.1: Desired closed loop of the satellite
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Requirements

From the project formulation in chapter |2 it is possible to derive a series of requirements

for this project. The requirements are presented in the following Table

come the fictitious force acting on
the satellite due to orbital velocity,
within the maximum available cur-
rent limit of 1A.

ID | Specification Note

R.1 | The controller must be able to cre- | Work here is defined as being able
ate a force of attraction between the | to create an attractive force and
two satellites at some distance and | maintain it.
keep them 10cm apart, without any
oscillations.

R.2 | The controller must be able to over- | Work here is defined whether

the controller is able to generate
enough actuation to overcome this
force and does not let the two satel-
lites drift apart.

Table 3.1: Requirements




Chapter 4

Methodology

In the following sections, a general overview of the theory involved will be presented,
along with a more in-depth study of the magnetorquer based control system.

4.1 Magnetorquers

A magnetorquer or magnet torquer is an electromagnetic coil which is used for attitude
control of cube satellites. Situated on the six sides of the cube, it creates a magnetic dipole
which when interacted with the ambient magnetic field of Earth, produces useful torque
which can detumble and stabilize the satellite [10]. The torque T with dipole moment 7
and Earth’s magnetic field B is related as:

T=1mxB 4.1)

The magnetic dipole generated by the magnetorquer is given by:

m=nlA 4.2)

where 71 is the number of loops of wire in the coil, I the current supplied and A the area
enclosed by the coil. It can be seen from the relation that the dipole moment is directly
proportional to the number of wire turns and the supplied current. The area of the coil is
constrained to the maximum length of a side of a CubeSat, which is 10 centimetres.
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4.2 Magnetic Forces

From the last section about Magnetorquers, it is evident that magnetic forces are involved.
Magnetic forces arise whenever electrical current flow through conductors. This magnetic
force is given by the Lorentz force law [1] in the following Equation

F=g(E+vxB) (4.3)

Which says that a charged particle ¢ moves with a velocity v through an electric field E and
magnetic field B, it experiences a total electromagnetic force given by the above Equation
Although the Lorentz law originally concerns point charges, it extends to continuous
currents as well. For a straight wire of length L oriented along some unit vector /, the force
becomes:

F=ILxB (4.4)

If the wire is curved, then the cross product is integrated along the wire as follows:

F— I/(dl x B) (4.5)

To find the magnetic field B at a point in space produced by a steady current I, the Biot-
Savart law [8] gives a relation for that. For an infinitesimal current element dI at a position
r', the magnetic field at the field point r is given as:

_po Idl x (r—1")
=P
Where 1, i the vaccuum permeability. To find the total B, integration is done over the entire
current path:

dB(r) (4.6)

_ W Idl x (r—1")
B(r) = 12 /W e 4.7)

For a circular loop of radius R, at a point on the its axis at a distance x from center, the
total magnetic field is given as [4]:

‘uo]Rz
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4.3 Coaxial Force between Two Coils

As discussed above, the magnetorquers are basically coils of current carrying wire. In
practice, these coils are square shaped, that follow the perimeter of the CubeSat’s square
sides. So, the analysis will be done using a simple setup of two square coaxial current
carrying coils, which represent one out of six sides of the CubeSat, facing another CubeSat
side with some distance in between, as depicted in Figure

Figure 4.1: Two coaxial magnetorquer square coils

To get the dynamics of the system, it is necessary to take into consideration the forces acting
on these magnetorquer coils. Hence, a model is required which describes the magnetic
force acting between two current carrying coaxial coils. One such model is presented in [3]]
using the Lorentz force law and the Biot-Savart law, as follows:

= Ho T =
F— —51112?{7{725111 - dl, 4.9)

Where:
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E | Force acting on coil 2 due to coil 1 [N]
uo | Permeability of free space [N.A72]
# | Unit vector pointing along the line connecting two segments [1]
r Distance between two coils [m]
dTl Wire segment of coil 1 [m]
de Wire segment of coil 1 [m]

Now a resultant force is needed from the Equation 4.9/ that gives a force value due to all the
segments on first coil onto the second coil’s segments. Hence, the following section will
discuss a vector analysis to solve for the double surface integrals.

4.3.1 Vector Analysis

The double closed surface integral is needed to be solved in order to find the resultant force
on coil 2 due to coil 1. Which means that resultant force will be the sum of forces from
all the infinitesimal wire segments of coil 1 on all the infinitesimal wire segments of coil 2.
To do so, a parametrization of the coil segments will be done. As shown in the following
Figure center of coil 1 is assumed to be at origin of a local three dimensional cartesian
coordinate system. The x-axis and y-axes are in the plane of the coil, while the z-axis is
perpendicular to the plane and pointing towards the center of coil, which is placed at a
distance d from coil 1.

(t.a,0) (a,a,0) (x,ad) _J(-aad)
('3,3,0) ) (a,a,d),mi—./‘
X :
O (R 2 4
(0,00 Z o 0,0,d)
Coil 1 Coil 2

Figure 4.2: Electromagnetic force due to coil 1 top wire on coil 2 top wire (top-top)

As shown in the Figure it is the case when the top wire of coil 1 is exerting electromag-
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netic force on the top wire segment of coil 2. Assumptions for all the different cases will
be made from this top-top arrangement. For parametrization, it is assumed that the length
of the side of the square is 24, and the infinitesimal point on the side of wire segment on
coil 1 is situated at some point (¢,a,0), where t € [—a, a]. Similarly for coil 2, the point lies
at (x,a,d), where x € [—a,a]. With this established, the vectors of Equation 4.9 could be
derived.

dl, = (dt,0,0) (4.10)

dl, = (—dx,0,0) (4.11)

7= (x,a,d) — (t,a,0) = (x — t)i + dk (4.12)
7| =/ (x — t)? 4+ d? (4.13)

Now, the equation of force for this case becomes:

a ra _ 07 T
Ho / N Gl (4.14)

hi
L Y N FE e

Solving this integral will give the force vector on coil 2’s top wire due to the top wire of
coil 1. Similarly, all sixteen possible cases, including the top-top case will be derived. For
the cases where the wire segments are perpendicular to each other, the dot product of dly
and d72 becomes zero, resulting in zero force. Hence, including all the parallel cases, the
resultant force vector is found by summing all the non-zero integrals. This operation is
done in MATLAB with varying the distance between the coils from 0.01m to 1m. The force
versus distance graph is plotted in Figure The values of the constants are as follows:

1. Length of square side: a/2 = 0.05m
2. Permibiliity of free space: yo =4+ 1077

3. The choice of current is dependent on the expected real world value of maximum
current allowed. Equal currents in both coils: I1 = 12 = 1A

4. Number of coil turns: N = 250 (multiplied as N? due to the presence of two coils)
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Lo Coaxial Force Between Coils
. T T T T T

Force (N)
o
(o)}
T
|

0.4 [ |

o L Il | | | | | |
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Distance (m)

Figure 4.3: Electromagnetic force between two coaxial coils

As it can be seen from the Figure 4.3|that the model is highly non-linear. To save computing
power on the double closed surface integral, a function approximation will be done. This
approximation will be useful for the controller, as it will speed up the calculations rather
than computing the integrals at every time step.

4.3.2 Model Approximation

In this section, an approximation of the highly non-linear model will be done. The choice
of approximation method is log-log regression, which involves transforming both the de-
pendent and independent variables to their logarithms and then fitting a polynomial to the
transformed data. The reason for using this method is due to the fact that the model is
exponential in nature, so log-log transformations can linearize the relationship for precise
curve fitting. The following are the steps taken for this approximation:
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* Transforming the relationship by taking the logarithm of both the independent vari-
able (r) and the dependent variable (F).

log1oF = an(logior)" + an_1(log107)" 1 + ay_2(logior)" 2. . . ag (4.15)

e Fitting a polynomial with a suitable degree using least-squares regression to the log-
transformed data. It is favorable to have the mean error of less than five percent. After
testing with different degree of polynomials, the polynomial of degree 5 is chosen as
it has the mean error of 3.6% as illustrated in Figure 4.5| which fulfills the requirement
of less than 5%. The fitted function of degree 5 along with its constants is as follows:

logioF = 0.5161(logor)° + 1.7131(log1r)* + 1.1754(logyo7)?

) (4.16)
—0.5115(log1or)” — 2.1781(log1or) — 7.8197

The plot of the log transformed original and fitted polynomial is shown in Figure

Log-Log Plot of Original and Approximated Function

—— Approximated 1
—— Original ]

10°F

10

10 10 10°

Figure 4.4: Transformed original function to log-scale and fitted polynomial
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Percent Error in Polynomial Fitting

35
- Errormax= 33.9%
30 [ - = Ermrmean= 3.6%
25 [
&
= 20 H
S
B
L4
-
=]
o
£ 157
o
-
10
5H
0 L L L Il I}
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Distance (m)

Figure 4.5: Percent error in polynomial fitting in antilog scale

* Taking the antilog of the fitted polynomial to convert it to linear scale. The original
non-linear model with the approximated function can be seen in the Figure

Approximated Force Between Coils
T T T T T

—— Approximated
Original
14 4
0.8 H —
g
13 H -
8 0.6
S
<%
0.4 4
0.2 [ 4
° I I I I I I
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Distance (m)

Figure 4.6: Approximated function and original function

As can be seen from the Figure |4.6| that the approximated function is a very good approx-
imation of the highly non-linear model. Only at very close distances of less than 5cm that
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the approximation starts behaving erratic, as shown in Figure

%104 Approximated Force Between Coils
T T T
1 —— Approximated | |
—— Original

0.9 - m

Force (N)

o 0.05 0.1 0.15
Distance (m)

Figure 4.7: Approximated function and original function (zoomed)

But that is not a problem since the operating point of the system will be at least at 10cm,
as the length of each side of CubeSat is 10cm. Hence, this approximated model will now
represent the highly non-linear model of the satellite system.

4.3.3 Model Linearization

As the model of the system is highly non-linear, a linearization is required around the
operating point to design and apply linear control techniques. As mentioned before, the
operating point of the satellite system will be around 10cm, so linearization will be done at
the same point.

From Newton’'s law,
F=ma=mo=md (4.17)

The attractive force on coil 2 due to coil 1 will make it accelerate towards coil 1. But, due
to the absence of friction, coil 1 will also move towards coil 2, thus making it a non-inertial
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frame. So, Newton’s law will become,

2F = m(a; — ap) (4.18)
ma
F="0 (4.19)

Now, linearizing at the operating point x:

F(d,I) = Lf(d) =md (4.20)
oF oF| . OF
~ —| d+—| d+ | I 4.21
od|, = odl, 9, (4.21)
oF of(d)
= =12 = .
ol od |, =l (4.22)
Where I is the current at linearization and m is the slope of the line.
a—F. =0 (4.23)
ad |,
L ) p— (4.24)
oI, %
m.d
L = Ip.m.d + (m.xo+c).I (4.25)
i 107’” mxo + ¢
:d—v—ZMCH—Z i I (4.26)

Where M is the mass of the coil and c is the y-intercept of the linear function.

The perturbations in the linearization will be considered negligible as the linearization will
be done for the exact point and not for the small region around it. The reason for doing
so is because there will be multiple linearizations that will be done along the non-linear
function. This will result in multiple controllers for different points on the curve, which
will be taken care by scheduled gains of the slopes and y-intercepts.

Iomd mxg + ¢

) =2 2 I 4.27
4 YRR (4.27)

In state-space form, with Iy = 1A and x¢ = 0.1m the linearization becomes:

d 0 1| |d 0
9270 0[] azn
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d= [1 o} [Z.] (4.29)

As mentioned earlier, the values of m and ¢ will be found out for different points on the
curve, with a fixed current Ip. So m and c¢ are dependent on the distance d, making this
state-space non-linear. This behaviour will be treated in next section by a way of translation.
Now that the model is developed, in the following sections, the controller design will be
discussed.

4.4 Control Analysis

It is chosen to design a state-space controller for the SISO system, where the output will be
distance d. From the state-space representation in Equation the model is non-linear
due to m(d) and c(d). So an analysis will be done on a linear second order integrator with
a translated input. Since the control variable is current I and the input to the system will
be force F, the input translation will be done like so:

RS

d= [1 o} [Z] (4.31)

Where the control input & will be given as:

1 .
h=—rF=d (4.32)

Taking the linearized function F from Equation

h= %(Io.m.d + (m.xp+¢)I) (4.33)

To make the current as input, isolating I:

Mh — 2Igm(d)d
2(m(d)xp+c(d))

[— (4.34)

Now, the idea is to design a controller for the linear system in Equation that can be
used for the original non-linear system by using scheduled gains to translate the inputs for
non-linearities. It is better illustrated in following Figure
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d Oref

d
P error

/ Satellite Non-Linear
—>
Model
Scheduled h Linear Model
Gains (m,c) Controller
A
| d

Figure 4.8: General control scheme

Where [ is the control current that goes in as input into the satellite’s non-linear model
which gives out the distance between the two satellites. This distance is compared with
the desired separation distance dref/ which gives out the error distance d,,,. This error in
the distance is the input to the linear controller which gives out the signal &, which will be
translated to the required current I by the means of scheduled gains, as derived in Equation
The controlled current I will be the input to the non-linear function f(d) which will
give out the input F for the double integrator system in Equation since F = I.f(d).
Hence, making a linear controller work for a non-linear model. A more detailed illustration
of the scheme can be seen in the following Figure

| 4
f(d)

Satellite Non-linear Model

!

[ _ Mh—2lym(d)d

~ 2(m(d)xo +c(d))

Scheduled Gains (m,c)

d
Controller 8oL

Linear Model Controller

Figure 4.9: Detailed control scheme
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4.5 Forces Acting on the Satellite

When the CubeSats are launched in space, they might acquire different orbits. Or, it might
be needed to swarm different satellites in different orbits generally. The orbital velocities
differ with the satellite’s distance from the Earth. In order for two satellites to have a swarm
formation, this difference in velocities have to be overcome.

r d
< \ > <€ >
F ; RZR
Earth e« centripetal
F, magnet l
’I'V1 ’,'vz
A e

Figure 4.10: Forces acting on two satellites

The figure above illustrates the forces acting on the satellites in orbit, which consists of the
following parameters:

r Radius of orbit for the satellite [m]
Distance between two satellites [m]
2a Length of a side of CubeSat [m]
Eeentripetar | Centripetal force acting on satellite towards center of Earth [N]
Fnagnet Electromagnetic force acting between the satellites [N]
"1 Orbital velocity of satellite 1 [m/s]
Uy Orbital velocity of satellite 2 [m/s]

As can be seen from the Figure that there are two forces acting on a satellite: cen-
tripetal force towards the center of Earth and tangential force which provides the orbital
velocity to the satellite. The orbital velocity [7] is given by following Equation [4.35;
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p= ) G Mearth Z;/I“’”h (4.35)

G Gravitational constant [6.67430 10~ 11 I\{(gf]
Where:  M,,,;, | Mass of Earth [5.97210%kg]
r Radius of orbit for the satellite [m]

It can be deduced from the orbital velocity Equation that a satellite at lower orbit will
have greater velocity than the satellite at higher orbit. Due to this fact, if the satellite 2 has
to electromagnetically attract satellite 1, the actuation force should be greater than at least
this fictitious force that acts on the satellite 1, due to difference in orbits. This fact will be
crucial for controller validation. Now, it is required to find this minimum force that needs
to be overcome by the controller. Since the CubeSats are often operated in low Earth orbits,
the orbital radii is around 2000 km [9]]. Taking this radii as r, further analysis will be done.

Since v; > vy, it is needed to find the force needed to pull satellite 1 by satellite 2. In other
words, force required to make v; = v;. So, initial velocity is v; and final velocity is v.

v = / G-“;Ieurth (436)
G.Mearin

= —_— 4- 7

27N T d (*.37)

F=mua (4.38)

Therefore:

From Newton’s laws of motion:

v* = u® +2ad (4.39)
Where v is the final velocity and u is the initial velocity.

Uz—l/lz

ST g

(4.40)

2 2 2 2
L F=ma=m" Zdu :m.UZZdU1 (4.41)

Where m is the mass of the satellite m = 1kg.
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Force needed to reduce orbit gap

49.8215

49.821

49.8205
2
Q
|5}
—
=
- 49.82
L
B
g
&~

49.8195

49.819

498185 1 | | | 1 | | | |
o 10 20 30 40 50 60 70 80 90 100
Distance between satellites (m)

Figure 4.11: Force needed to reduce orbit gap

As per the project requirements, the desired distance between the satellites is d = 0.1m.
For this distance, the value of this fictitious force after calculating is F = 49.8214N. For
different distances (0.01m — 100m) between the satellites, the following Figure shows

the change. The force versus distance almost seems linear without much change in the
force over this separation range.
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System Development

The following sections will present the theory on the chosen state-space control strategy:
Observer based control with full state-feedback, followed by its implementation and test-
ing. The reason for choosing this control strategy is because of the requirement R1 which
demands that there should be no oscillations in between the two satellites. So, with full
state-feedback, the system can be made critically damped to achieve this goal.

5.1 State-Feedback Control

From the last chapter Methodology, the linear state-space system was established as follows,

with mass M = 1Kg:

(1) F (5.1)
d
J (5.2)

From the general state-space format, the matrices A, B, C and D are as follows:

A=

01
00

] (5.3)

(5.4)
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C= [1 o} (5.5)

D=0 (5.6)

Before proceeding further, it is crucial to check for open-loop stability and to find out
whether the above system is controllable, so the closed loop poles can be placed via state
feedback, and observable, so an observer can be made to estimate the states.

5.1.1 Open-Loop System

Firstly, an analysis will be done on the open-loop system, which is without any control, to
check for stability via its poles and step response. The eigenvalues of the system matrix A
determine stability, since they are the poles of the transfer function [5]. The eigenvalues of
the system matrix is given as the values of s that are the solutions of:

det(s —A) =0 (5.7)

Solving the above Equation gives two poles at 0, which is expected from a double
integrator. The significance of having both poles at origin means there is no inherent decay
in the system. The following Figure [5.1]illustrates the same, where the step response is a
quadratic ramp. This behaviour comes from the fact that in the first integration, the step
input (constant) is integrated, producing a ramp proportional to time f. And in the second
integration, this ramp is integrated, which is proportional to t?, producing a quadratic
ramp, which grows unbounded over time.
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Step Response of Open-Loop System

Amplitude
&

o —_ L | .
o 100 200 300 400 500 600 700 800 900
Time (seconds)

Figure 5.1: Open-loop step response

Due to this open-loop instability, there is need for appropriate feedback gains to stabilize
in the closed-loop.

5.1.2 Controllability and Observability

As mentioned earlier, it is important to know the system’s controllability and observability
before proceeding with the control design. A system is is said to be controllable if there
exists a suitable sequence of inputs that when applied over a finite time interval, can steer
a state from any initial value to a desired final value. In other words, it is the ability of
controlling a system’s behaviour through its inputs. To check for controllability, an LTI
system is controllable only if its controllability matrix C has full rank, or rank(C) = number
of states.

C = [B AB A2B .. A"-lB} (5.8)

After solving the Equation the rank of the controllability matrix C is found to be 2,
which is in fact equal to the number of states. Hence, the system is controllable. Next,
the system is checked for observability. A system is observable if the initial states can be
uniquely inferred from the knowledge of its measured outputs and inputs over a finite time
interval. For a system to be observable, its observability matrix O must have full rank, or
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rank(O) = number of states.

C
CA

O = | CA? (5.9)

C An-1
By solving the above Equation the rank of the observability matrix O is found to be
2, which is equal to the number of states. Hence, the system is observable. Since both
controllability and observability are dual concepts, they cannot exist without the other
being true [5].

5.1.3 Closed-Loop System with Full-State Feedback

In this section, the step response of the system will be analyzed by closing the loop with
pole placement approach, also known as full-state feedback. By full-state feedback, it
means that all the states of the systems are known at all times, which would not be required
for the desired controller, as only the first state d is of interest. Also, the other state is simply
the derivative of the first state, so it can be easily calculated. In this section, for the proof
of concept, all the states are being considered.

Since it is desirable to have a critically damped system, the poles need to be real, negative
and equal. The pole placement scheme is shown in the following Figure

Open-Loop Plant

> B 1/s —» C >

ref u

A [«

K €«

Figure 5.2: Closed loop with full-state feedback
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Where K is the state-feedback gain matrix. It is assumed that the reference is zero. Then
the input, with the state vector x, becomes:

u = —Kx (5.10)
The state-space equations for this closed-loop feedback system are as follows:

x = (A — BK)x (5.11)

y = Cx (5.12)

Now with the state-feedback gain matrix K, the poles of the system can be adjusted based
on the requirements. Assuming the poles are needed to be placed at [—1, —1]. The closed
loop state matrix is now:

Ag=A-BK (5.13)

With:
K = [k ko] (5.14)

Finding its characteristic polynomial and matching coefficients with the desired polyno-
mial:
s2+kos+ky = (s+1)2 (5.15)

Hence:
K = [ky ko] = [1 2] (5.16)

Now, the closed loop state matrix becomes:

Acl =

0 1
o 2] (5.17)

Whose eigen values are indeed both at -1. As can be seen from the step response in Figure
the system behaves critically damped. Now, poles can be adjusted based on how fast or
slow the response is needed and how much actuation power is available in the real system.
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Step Response of Closed-Loop System with Pole Placement

1 r T T Y i ———

_—

0.9

0.8

S o
=)} N
~—

I

Amplitude
&

0 1 1 1 1 1 1

4 5
Time (seconds)

Figure 5.3: Closed-loop step response with poles at —1

5.1.4 Observer Design

As it is chosen to have the state-feedback controller, it is desirable to design an observer.
The reason being that it is often difficult to measure all the states of the system, so an
observer is needed to estimate them. It is basically a copy of the original system, with the
same output. The measured output of the original plant is compared with the estimated
output of the observer, which helps to correct the estimates of the states. As mentioned
before, that only the first state d is of interest, so now onward the term full-state feedback
would denote the same. The required observer design is illustrated in the following Figure
as described by [2].
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Figure 5.4: Full state-feedback with observer

The state-space equations for the observer are as follows:

£=A%+Bu+L(y—79) (5.18)

= C# (5.19)

<<

In full-state observer, the F matrix behaves like the state-feedback gain matrix K. The
observer gain matrix L decides the poles for the observer, which can make the estimation
faster or slower. It is wanted to make the dynamics of the observer faster than the system,
so the poles must be placed farther to the left than the dominant poles of the system. The
farthest they can be put is limited by the noise in the system, because the observer gain
amplifies the noise as well.

5.2 Controller Implementation

Now that the controller design is derived in Figure 5.4} it will be implemented in MATLAB
Simulink platform.
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Sat-Saturation

c-gains

m-gains

Figure 5.5: Controller implementation in MATLAB Simulink

In the above Simulink model, the m and ¢ gains are derived by linearizing at twenty points
on the non-linear model between 0.01m and 0.2m. The reason being the model is highly
non-linear in this range, whereas is becomes almost linear beyond 0.2m. Also, the operating
point of the system is chosen to be 0.1m. To simulate the actual non-linear model f(d) of
the satellite setup, the approximated model derived in Equation is used here.

Now, this controller will be tested for the requirements in the next chapter Acceptance
Testing.



Chapter 6

Acceptance Testing

As prescribed in the chapter Requirements, it is desired to test the derived observer based
control system and check for the requirements R1 and R2.

6.1 Test of R.1

R.1 criteria:

¢ The controller must be able to create a force of attraction between the two satellites at
some distance and keep them 10cm apart, without any oscillations.

Procedure R.1

1. Initialize all the constants and variables to MATLAB workspace.

2. Set the initial conditions of the system and observer at distance 0.2m.
3. Set the reference signal to be 0.1m

4. Run the simulation for 100 seconds.

5. Check the response of the system in Simulink scope.

Success criterion R.1:

28
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e If the controller is able to create an attractive force and maintains the distance of 0.1m
between them.

Results of R.1:

Figure 6.1: Response of the controlled system (x-axis: Time(s), y-axis: Distance(m))

As can be seen from the response of the controlled system in Figure the system is
behaving as expected. There are oscillations in the system and steady state error, as it does
not settle on the reference value 0.1m. Thus, requirement R.1 is not met.
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6.2 Test of R.2

R.2 criteria:

¢ The controller must be able to overcome the fictitious force acting on the satellite due
to orbital velocity, within the maximum available current limit of 1A.

Procedure R.2

1. Initialize all the constants and variables to MATLAB workspace.

2. Set the initial conditions of the system and observer at distance 0.2m.
3. Set the reference signal to be 0.1m.

4. Set the saturation block for current limit constraint.

5. Run the simulation for 100 seconds.

6. Check the input F generated by the controller and current I.

Success criterion R.2:

¢ The controller must be able to generate enough actuation within current limit to
overcome this force and does not let the two satellites drift apart.

Results of R.2:

The generated input F and I is shown in the following Figure[6.2] and Figure
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Figure 6.2: Force generated (x-axis: Time(s), y-axis: Force(m))

Figure 6.3: Current generated (x-axis: Time(s), y-axis: Current(A))
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As can be seen from responses, they are irregular and erratic. The force value never reaches
the required value but there seems to be some error in the simulation, so it might not be
the true response. Similarly with current, the value reaches unrealistic levels, much greater
than the limit. Hence, the requirement R.2 is not met.

In summary, both the requirements are not fulfilled by the implemented controller.

Requirement | Fulfilled
R.1 No
R.2 No

Table 6.1: Summary of tested requirements.
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Discussion

During the development of this project, multiple questions were encountered. While most
of them were highlighted in the report, there are some that need to be discussed. This
chapter will be an attempt to address them here.

7.1 Acceptance Testing

As presented in the chapter Acceptance Testing, the tests for two requirement R.1 and R.2
were not successful. The reason for that is most likely due to an implementation mistake
in MATLAB Simulink, because the theory behind checks out. This shall be thoroughly
investigated before the evaluation and attempt will be made to get concrete result out of it.

7.2 Future Work

Since this work deals with electromagnetic forces in one-dimension due to simplified inter-
action between two magnetorquer coil, it will be important to extend it to higher dimen-
sions to consider real world scenarios. The CubeSats have at least three magnetorquers in
its three sides, but also can be extended to all six faces as well. This availability of extra
coils should be included to find the equivalent force of attraction for swarming applica-
tions. So the model presented in this work should be extended to incorporate the other
magnetorquers available in the system.

Since the magnetorquers are already used to de-tumble and stabilize CubeSats, this attitude
control should be used in conjunction with the swarming system so that different satellites

33
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in various orbits can be used for swarming.

The fictitious forces acting on satellites due to their orbits should be investigated further. In
this work, the force derivation only holds true for the moment when both magnetorquers
are coaxial. This should be extended to the cases when the actuation is initiated by both
satellites with a means of tracking each other’s attitude, so the resulting elctromagnetic
force vector can be adjusted accordingly.



Chapter 8

Conclusion

In the chapter Project Formulation, it was specified to test the feasibiilty and control of
magnetorquer based cube satellites, for swarming applications.

To be able to conclude whether it is possible for the satellites to use their magnetorquers
for swarm formations, two major requirements were established in the chapter Require-
ments. In the following chapter Methodology, the theory involved was presented and an
analysis was conducted for the highly non-linear system. From this chapter, the choice of
controller design was concluded: Observer based full state-feedback, which was developed
in the following chapter System Development. From initial tests, the linear controller looked
promising and it was extended to the full setup, with the non-linear translations.

In the final phase of development, the controller was checked was the requirements pre-
scribed in the chapter Requirements. The tests were not successful, as mentioned in the the
chapter Discussion, likely due to faulty implementation in MATLAB Simulink. Again, this
will be thoroughly investigated until the evaluation so more concrete conclusion can be
made for this project’s goals.

35



Bibliography

[1]

2]

3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

Britannica. Lorentz Force. https://www.britannica.com/science/Lorentz-force/.
(Accessed on 04/06/2025). 2025.

Abbas Emami-Naeini Gene Franklin J. Powell. Feedback Control of Dynamic Systems,
8th Edition. ISBN: 1-292-27452-2. Pearson, 2020.

David ]. Griffiths. Introduction to Electrodynamics, 3rd Edition. ISBN: 0-13-805326-X.
Prentice Hall, 1999.

Hyperphysics. Magnetic Field of Current Loop. https://hyperphysics.phy-astr.gsu.
edu/hbase/magnetic/curloo.html/. (Accessed on 04/06/2025).

Detroit Mercy Michigan Carnegie-Mellon. Introduction: State-Space Methods for Con-
troller Design. https://ctms.engin.umich.edu/CTMS/index.php?example=Introduction&
section=ControlStateSpace/. (Accessed on 03/06/2025).

NASA. What are SmallSats and CubeSats? https : / / www . nasa . gov / what - are -
smallsats-and-cubesats/. (Accessed on 21/05/2025). 2024.

the Physics Classroom. Mathematics of Satellite Motion. https://www.physicsclassroom.
com/class/circles/lesson-4/mathematics-of-satellite-motion/. (Accessed on
03/06/2025).

Wikipedia. Biot-Savart law. https://en.wikipedia.org/wiki/BiotaASSavart_law/.
(Accessed on 04/06/2025). 2025.

Wikipedia. Low Earth Orbit. https://en.wikipedia.org/wiki/Low_Earth_orbit/.
(Accessed on 03/06/2025). 2025.

Wikipedia. Magnetorquer. https://en.wikipedia.org/wiki/Magnetorquer/. (Ac-
cessed on 29/05/2025). 2025.

36


https://www.britannica.com/science/Lorentz-force/
https://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/curloo.html/
https://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/curloo.html/
https://ctms.engin.umich.edu/CTMS/index.php?example=Introduction&section=ControlStateSpace/
https://ctms.engin.umich.edu/CTMS/index.php?example=Introduction&section=ControlStateSpace/
https://www.nasa.gov/what-are-smallsats-and-cubesats/
https://www.nasa.gov/what-are-smallsats-and-cubesats/
https://www.physicsclassroom.com/class/circles/lesson-4/mathematics-of-satellite-motion/
https://www.physicsclassroom.com/class/circles/lesson-4/mathematics-of-satellite-motion/
https://en.wikipedia.org/wiki/Biot–Savart_law/
https://en.wikipedia.org/wiki/Low_Earth_orbit/
https://en.wikipedia.org/wiki/Magnetorquer/

	Front page
	English title page
	Preface
	Contents
	1 Introduction
	2 Project Formulation
	3 Requirements
	4 Methodology
	4.1 Magnetorquers
	4.2 Magnetic Forces
	4.3 Coaxial Force between Two Coils
	4.3.1 Vector Analysis
	4.3.2 Model Approximation
	4.3.3 Model Linearization

	4.4 Control Analysis
	4.5 Forces Acting on the Satellite

	5 System Development
	5.1 State-Feedback Control
	5.1.1 Open-Loop System
	5.1.2 Controllability and Observability
	5.1.3 Closed-Loop System with Full-State Feedback
	5.1.4 Observer Design

	5.2 Controller Implementation

	6 Acceptance Testing
	6.1 Test of R.1
	6.2 Test of R.2

	7 Discussion
	7.1 Acceptance Testing
	7.2 Future Work

	8 Conclusion
	Bibliography

