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CHAPTER 1. INTRODUCTION

1 Introduction

The rapid progression of Computer Vision (CV) and Deep Learning (DL) technologies in recent years

has enabled new directions in machine perception, making it possible to tackle complex visual un-

derstanding tasks. Among these, Action Recognition stands out as a vital research area. Its primary

goal is to accurately identify and classify human actions captured in video sequences [106]. It is

a non-trivial task demanding systems capable of discriminating subtle variations in movement and

temporal dependencies. The successful deployment of robust action recognition systems is critical

for numerous real-world applications, including but not limited to: sport analysis, robotics, health-

care monitoring, advanced surveillance, and enabling more robust interaction in human-computer

interfaces [50, 6].

1.1 Computer Vision and Action Recognition

Defined broadly as the science of enabling computers to ”see”, interpret, and understand visual data

from images or videos, Computer Vision (CV) has recently aided an abundance of real-world prob-

lems. A significant catalyst for this transformation was the integration of neural networks, particularly

the rise of the Convolutional Neural Network (CNN) [82]. CNNs gained substantial traction follow-

ing the groundbreaking performance of AlexNet on the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) [58], which revolutionized image processing by effectively learning hierarchi-

cal feature representations directly from raw pixel data. Initially applied primarily to static image

tasks like object classification and detection [34, 58, 44], the success of Convolutional Neural Net-

works paved the way for applying Deep Learning techniques to the more complex domain of video

analysis.

Analyzing video, however, introduces the complexity of a temporal dimension. Unlike static images,

understanding actions requires processing not just spatial features within individual frames, but also

their temporal relationships across a sequence of frames. This necessity drove the development of

spatio-temporal deep learning architectures specifically designed for video, such as 3D Convolutional

Neural Networks [91], Temporal Segment Networks (TSN) [95], Temporal Shift Module (TSM)s

[63], and more recently, Vision Transformers adapted for video, such as the Video ViT from Arnab et

al. [9]. These models extend the feature learning capabilities of 2D Convolutional Neural Networks

to capture motion and temporal context, making robust action recognition feasible.

Despite these architectural advancements and the growing capabilities of models and hardware, a per-

sistent challenge in action recognition, as with many data-hungry Deep Learning tasks, is the reliance

on large-scale, diverse, and well-annotated video datasets for training. Acquiring and labeling such

datasets is often a time-consuming, expensive, and labor-intensive process. Furthermore, real-world

data can suffer from inherent biases and inconsistencies. Lastly, a significant downside is the privacy

concern and GDPR-related issues associated with creating or using datasets featuring individuals.
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CHAPTER 1. INTRODUCTION

These limitations in data availability can impede the training of models capable of generalizing to the

multitude of environments, viewpoints, and action variations encountered in practical applications.

These inherent data constraints necessitate the exploration of alternative data sources and training

strategies. One promising direction lies in leveraging synthetic data: artificially generated data that

can potentially overcome the limitations of real-world datasets in terms of scale, diversity, annotation

accuracy, and privacy concerns. The following section delves into the motivation for employing

synthetic data, specifically data derived from 3D fractals, as a novel approach to address the data

scarcity challenge in action recognition through effective pre-training.

1.2 Research Motivation

Building upon the identified challenges regarding the availability and limitations of real-world video

datasets for training robust action recognition models, this research is fundamentally motivated by ex-

ploring alternative data generation strategies. While one synthetic generation strategy might involve

generating videos of simulated human avatars, such methods are costly and labor-intensive. It dimin-

ishes the idea that leveraging synthetic data offers a promising approach to overcome issues of scale,

diversity, annotation cost and privacy inherent in real-world data collection. While various forms of

synthetic data have been applied in Computer Vision, this thesis investigates the novel application of

data derived from 3D fractals as a source for pre-training for action recognition. The rationale stems

from the unique properties of fractals: their ability to be generated computationally with infinite vari-

ability and their inherent visual complexity, including intricate shapes and contours. A large benefit

of fractal generation originates from Formula-Driven Supervised Learning (FDSL) [40], as it enables

labels to be assigned automatically and with perfect correspondence to the generation parameters.

In contrast to real-world datasets, where annotation errors and ambiguities can arise, synthetic frac-

tal data ensures that every sample is labeled with complete accuracy by design, eliminating labeling

noise during pre-training. It is hypothesized that training a model on dynamic sequences of such ab-

stract, yet structured, patterns can inject powerful feature learning capabilities transferable to the task

of action recognition. Moreover, the approach holds the ability for extension to other domains, such

as animal action recognition.
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CHAPTER 2. BACKGROUND AND RELATED WORK

2 Background and Related Work

This chapter is devoted to providing a comprehensive overview of the foundational concepts and

relevant prior research underlying this thesis. The field of action recognition is first introduced,

with its key challenges and the evolution of approaches used to address them being outlined. The

domain of synthetic data generation in computer vision is subsequently examined, with existing

methodologies and their respective advantages and disadvantages being reviewed. Fractal geome-

try is then introduced, with particular emphasis placed on the unique properties of 3D fractals that

render them promising for synthetic data generation in the context of deep learning. Pre-training

techniques are then discussed and a comparative analysis of supervised, self-supervised and formula-

driven paradigms is undertaken. Finally, prior research utilizing synthetic or abstract data patterns for

pre-training is surveyed, thereby situating the focus of this work, specifically the use of 3D fractal-

based synthetic data, within the broader landscape of computer vision studies.

2.1 Introduction to Action Recognition

Action recognition, a crucial problem in video analysis, involves identifying and classifying ac-

tions from video sequences. Unlike image-based tasks that analyze static scenes, action recognition

requires understanding dynamic processes unfolding over time. This introduces several key chal-

lenges [13]:

• Spatio-temporal Variability: Actions can be performed at different speeds, durations and with

variations in style and execution. Capturing the interaction between spatial appearance and tem-

poral motion is vital.

• Viewpoint Changes: The same action can appear significantly different when viewed from various

camera angles. Robust models aim to be invariant to viewpoint variations.

• Background Clutter and Occlusions: Distractions in the background and partial occlusions of

the actor or action of interest can make it difficult to isolate and identify the action.

• Illumination and Resolution Changes: Variations in lighting conditions and video quality can

impact the appearance of actions.

• Inter-class and Intra-class Variability: Different instances of the same action can vary greatly

(e.g., different people performing ”walking”), while different actions can look very similar (e.g.,

”waving” and ”clapping” from a distance).

• Data Scarcity and Annotation Cost: As discussed in the Introduction Chapter 1, obtaining large,

diverse and accurately labeled video datasets for training is a significant obstacle.

Historically, traditional approaches to action recognition primarily relied on hand-crafted features

designed to capture motion and shape. These methods often involved detecting interest points or local

features in space and time, describing them and then using classical machine learning classifiers like

Support Vector Machines (SVM) or Hidden Markov Models (HMMs) for recognition [78]. Specific
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CHAPTER 2. BACKGROUND AND RELATED WORK

examples include techniques based on Space-Time Interest Points (STIPs) and optical flow-based

features [61]. Beyond these, other hand-crafted approaches leveraged depth information captured

from RGB-D cameras to extract human body poses and corresponding actions [100]. Furthermore, the

skeletonization of the human body into a low-dimensional data representation also proved successful

for action extraction [25]. While these techniques provided initial progress, they often struggled with

the nuances of complex actions and the high variability encountered in real-world scenarios [69].

The involvement of deep learning has revolutionized action recognition, enabling end-to-end learning

of spatio-temporal features directly from raw video data. Early approaches adapted 2D CNNs by pro-

cessing individual frames or using two-stream networks that separately processed spatial information

from RGB frames and temporal information from optical flow fields [85].

More advanced architectures explicitly model the spatio-temporal nature of video:

• 3D CNNs: Extend standard 2D convolutions to three dimensions (width, height and time), allow-

ing kernels to capture features across consecutive frames [91]. Models like I3D [16] are a notable

example, which inflated 2D CNN kernels into 3D to learn spatio-temporal features.

• Recurrent Neural Networks (RNNs): Particularly Long Short-Term Memory (LSTM) networks,

were used to model the temporal dependencies between features extracted from individual frames

by CNNs [96].

• Temporal Modeling Architectures: Networks like Temporal Segment Networks (TSN) [95] sam-

ple sparse frames across the video and combine their predictions, while Temporal Shift Modules

(TSM) [63] enable efficient temporal modeling in 2D CNNs by shifting channels across frames.

• SlowFast Networks: The SlowFast architecture [32] introduces a dual-pathway approach, where a

”slow” pathway operates at a low frame rate to capture semantic information, and a ”fast” pathway

processes video at a higher frame rate to capture motion dynamics.

• Transformers: Originally dominant in natural language processing, Transformer architectures

have been adapted for video. Models like the Video Vision Transformer (ViViT) [9] process video

as sequences of spatio-temporal patches, leveraging self-attention mechanisms to capture long-

range dependencies in both space and time [83].

These deep learning approaches have significantly advanced the State of the Art (SotA) in action

recognition by learning powerful hierarchical spatio-temporal representations. Deep learning archi-

tectures have become the dominant paradigm. However, their success is heavily conditioned on the

availability of massive annotated video datasets, leading back to the data challenges that motivate this

research.

2.1.1 Benchmark Datasets for Action Recognition

To evaluate and compare action recognition models, several benchmark datasets have been estab-

lished, each offering unique characteristics in terms of scale, modality, and complexity:

• UCF101 [86]: Comprising 13,320 video clips across 101 action categories, UCF101 includes a
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CHAPTER 2. BACKGROUND AND RELATED WORK

diverse set of human actions ranging from sports to daily activities. The videos are sourced from

YouTube, exhibiting variations in camera motion, object appearance, and background clutter.

• HMDB51 [59]: This dataset contains 6,766 video clips spanning 51 action categories. The videos

are collected from movies and online sources, presenting challenges such as camera motion, view-

point changes, and occlusions, making it suitable for evaluating robustness of recognition models.

• Kinetics [54]: A large-scale dataset with approximately 500,000 video clips covering 600 human

action classes. Each clip lasts around 10 seconds and is sourced from YouTube, providing a wide

variety of scenes, subjects, and actions, which aids in training deep learning models with high

generalization capabilities. Due to its extensive size and diversity, Kinetics is commonly used for

pre-training action recognition models (similar to ImageNet’s role in image classification).

• Something-Something V2 [38]: Focused on fine-grained human-object interactions, this dataset

comprises over 220,000 video clips annotated with 174 action categories. The actions are defined

by templates requiring models to understand subtle temporal dynamics and object manipulations.

• NTU RGB+D [84]: Featuring 56,880 video samples across 60 action classes, this dataset includes

RGB videos, depth maps, infrared videos, and 3D skeletal data. Captured with Microsoft Kinect

v2 sensors, it provides multi-modal data suitable for 3D human activity analysis and cross-view

evaluation.

These datasets serve as standard benchmarks for developing and assessing action recognition models.

Figure 2.1 illustrates representative frames from the benchmark datasets that are of particular interest

in this thesis. Their varying complexities and modalities highlight the challenges in capturing spatio-

temporal patterns and emphasize the need for models that can generalize across diverse scenarios. The

reliance on large-scale annotated datasets further underscores the motivation for exploring synthetic

data generation and pre-training strategies, as discussed in the following sections.

(a) Sample frames from the HMDB51 dataset [59]

(b) Sample frames from the UCF101 dataset [86]

Figure 2.1: Examples of video frames from the two benchmark action recognition datasets used in this thesis:
(a) HMDB51 and (b) UCF101. [88].

2.2 Synthetic Data Generation in Computer Vision

The increasing demand for large, diverse and accurately annotated datasets for training deep learning

models in computer vision has led to a growing interest in synthetic data generation. Synthetic data
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CHAPTER 2. BACKGROUND AND RELATED WORK

refers to artificially created data that mimics the properties of real-world data but is generated pro-

grammatically. This approach offers a compelling solution to the limitations of real data, particularly

the high cost and labor associated with manual collection and annotation, as well as privacy concerns.

To illustrate the rising public awareness of this topic, Figure 2.2 shows worldwide Google Search

interest for ”synthetic data generation” The y-axis indicates relative search interest (0-100), with 100

being peak popularity for the period.

Figure 2.2: Google Search trends for ”synthetic data generation” (Worldwide, May 2020 - May 2025), show-
ing a general upward trajectory [1].

Figure 2.2 reveals a visible upward trend in search queries for ”synthetic data generation,” suggesting

expanding curiosity from a broad audience. While not a direct measure of academic output or industry

adoption, this trend serves as a proxy for the increasing mindshare and relevance of synthetic data.

This aligns with synthetic data becoming a key solution for data challenges in AI and computer vision,

potentially fostering further research and development.

2.2.1 Existing Methods for Synthetic Data Generation

Various methodologies have been developed to generate synthetic data for diverse computer vision

tasks:

• Procedural Generation of Textures and Scenes: Simple algorithms can generate textures like

Perlin noise [77] for realistic-looking surfaces or ”dead leaves” patterns [62] for abstract scene un-

derstanding, often used in tasks related to material perception or visual reasoning. These methods

allow for infinite variations by simple parameter adjustment.

• Rule-Based or Geometric Models: For tasks requiring specific object shapes or arrangements,

synthetic data can be generated using explicit geometric models. This includes creating simple

sinusoidal waves [89] or basic shapes with defined properties.

• Simulation Environments: More complex synthetic datasets are often generated within 3D sim-

ulation environments (e.g., Unity [93], Unreal Engine [29], Blender [18]). These environments
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CHAPTER 2. BACKGROUND AND RELATED WORK

allow for rendering more realistic images and videos of objects, scenes and even human avatars

performing actions, with ideal ground truth labels (e.g., bounding boxes, depth maps, semantic

segmentation and action labels) automatically available. One such high-fidelity simulator used

for autonomous driving systems is Carla [27], while some examples of synthetic datasets include

houses, aerial scenery, human poses and many more. [71, 94, 55]

• Generative Models (e.g., GANs, VAEs): While not offering ”out-of-the-box” synthetic data in

the same procedural sense, generative adversarial networks (GANs) [103] and variational autoen-

coders (VAEs) [24] can learn to generate new data samples that resemble a given real dataset.

However, these models typically require real data to learn from and can struggle with generating

truly novel or out-of-distribution samples.

• Synthetic Data for Action Recognition: For action-related tasks, synthetic data has been explored

to teach models motion and temporal understanding. This can involve animating simple abstract

shapes (e.g., a ”moving octopus” or other basic geometric transformations) [88] or generating

synthetic human motion sequences in virtual environments [94]. These methods aim to provide a

controlled environment for learning spatio-temporal patterns before fine-tuning on more complex

human actions.

Figure 2.3 illustrates examples of existing synthetic datasets, highlighting the diversity of their gen-

eration methods and visual complexity. For instance, the abstract texture in 2.3a, generated by Perlin

noise, is computationally much simpler than the photorealistic scenes produced by the CARLA sim-

ulator in 2.3c.
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CHAPTER 2. BACKGROUND AND RELATED WORK

(a) Perlin noise [2] (b) Visual atom [89]

(c) CARLA Simulator [27] (d) Moving octopus [88]

Figure 2.3: Representative examples of synthetic datasets used in computer vision research: (a) Perlin noise [2]
provides a simple procedural texture; (b) visual atom [89] represents structured, abstract patterns; (c) CARLA
simulator [27] enables generation of realistic urban driving scenes; and (d) the moving octopus dataset [88]
exemplifies animated, abstract shapes. The diversity of visual appearances and underlying generative processes
is apparent.

2.2.2 Advantages and Disadvantages of Synthetic Data

The use of synthetic data for training deep learning models presents several compelling advantages:

• Cost-Effectiveness and Scalability: Generating synthetic data is generally far less expensive

and time-consuming than collecting and annotating real-world data. It allows for the creation

of arbitrarily large datasets on demand [11].

• Ideal Annotation and Ground Truth: Synthetic data inherently comes with precise and exhaus-

tive labels (e.g., object poses, semantic masks, action classes, depth information), eliminating hu-

man annotation errors, subjectiveness and ambiguities. This is particularly beneficial for complex

tasks like action recognition where spatio-temporal labeling is challenging.

• Diversity and Control: Synthetic environments allow for precise control over scene parameters,

lighting, viewpoints, object properties and action variations. This enables the generation of highly

diverse datasets that can cover rare scenarios or edge cases that are difficult to capture in the real

world. It also helps in creating balanced datasets, mitigating biases present in real data.

• Privacy Compliance: Since synthetic data does not depict real individuals, it inherently avoids
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CHAPTER 2. BACKGROUND AND RELATED WORK

privacy concerns and compliance issues (e.g., GDPR [30]), making it suitable for sensitive appli-

cations [67].

• Reproducibility: Most of the time, the generation process is deterministic (given the same param-

eters and fixed random seeds), ensuring experiments can be perfectly reproduced.

However, synthetic data also comes with inherent disadvantages and challenges:

• Domain Gap: The most significant challenge is the ”domain gap” or ”reality gap”: the difference

between synthetic and real data. Models trained solely on synthetic data may not generalize well

to real-world scenarios due to differences in visual fidelity, texture, lighting, or physical proper-

ties [92].

• Fidelity and Realism: Achieving high visual fidelity and realism in synthetic data can be com-

putationally intensive and requires sophisticated rendering techniques. Moreover, if synthetic data

derived from simulations of real-world environments lacks adequate visual fidelity, this can further

widen the domain gap.

• Complexity of Generation: While cost-effective in the long run, setting up robust synthetic data

generation pipelines, especially for complex scenarios like human actions, can be technically chal-

lenging and require upfront labor to create such a pipeline [27].

• Representativeness: Ensuring that the synthetic data truly represents the variability and distribu-

tion of the target real-world domain is crucial. If the synthetic data is too simplistic or does not

capture the underlying complexities, the benefits may be limited [90].

Despite these challenges, ongoing work in domain adaptation and synthetic-to-real transfer for action

recognition seeks to align simulated motion distributions with real-world video dynamics, making

synthetic sequences an increasingly powerful asset for training robust spatio-temporal deep learning

models. This sets the stage for exploring novel sources of synthetic data, such as fractals, which offer

unique properties that may help address some of these challenges. [104]

2.3 Fractals

Beyond conventional synthetic data generation techniques, this thesis places particular emphasis on

the utility of fractal-based synthetic data. Fractals, in mathematical terms, are sets that exhibit self-

similarity across different scales of magnification. This means that a small part of the fractal, when

magnified, can resemble the larger structure. Often, they are characterized by a Hausdorff dimension

that is greater than their topological dimension, a concept that quantifies their complexity and space-

filling properties. [31]

The inherent visual complexity of fractal geometry, manifested in intricate edges, diverse shapes and

nuanced contours, is particularly valuable for pre-training computer vision models. These rich visual

features can equip models to better discriminate fine-grained details and improve their generalization
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capabilities across varied visual contexts. [33]

Fractals are exceptionally well-suited for generating large-scale datasets due to their algorithmic na-

ture. They can be generated through simple iterative rules or recursive functions, such as Iterated

Function System (IFS) [10], allowing for the creation of virtually infinite variations with unique de-

tails yet consistent underlying structures. The computational efficiency of this generation process,

requiring relatively low computation power, makes fractals a highly promising candidate for scal-

able synthetic data generation. The characteristic property of self-similarity can be highly beneficial,

potentially enabling models to learn features that exhibit inherent invariance to scale and resolution,

qualities often pursued in robust vision systems [8].

Furthermore, many natural phenomena, from coastlines and mountains to biological structures like

ferns or snowflakes, exhibit fractal-like characteristics [23]. Consequently, synthetic data derived

from fractals can possess an organic visual complexity that may more closely approximate certain

aspects of real-world scenes compared to simpler procedurally generated patterns. This ability to em-

ulate natural visual textures and structures could play a role in mitigating the ”domain gap” between

synthetic and real data, thereby enhancing the transferability of learned features to practical applica-

tions [21, 90].

While 2D fractals, such as the well-known Mandelbrot or Julia sets [28], offer significant visual

complexity on a plane, their utility for representing the three-dimensional world is inherently limited.

They primarily provide intricate boundaries and textural details but lack the dimension of depth.

This thesis extends its focus to the generation of 3D fractals. This progression is pivotal because

3D fractals allow for the creation of volumetric and spatially rich synthetic environments. Such

environments provide a more comprehensive representation of real-world objects and scenes, which

are fundamentally three-dimensional. [98]

(a) 2D Mandelbrot Set [12] (b) 3D Mandelbulb (ray-marched) [51]

Figure 2.4: Comparison between 2D and 3D fractals.

As illustrated in Figure 2.4, the transition from the 2D Mandelbrot set to the 3D Mandelbulb demon-

strates the increased complexity and spatial depth achievable with three-dimensional fractals.
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The advantages of 3D fractals become particularly apparent for tasks like action recognition. Actions

unfold in three-dimensional space, often involve interactions with 3D objects, and are perceived from

varying viewpoints. By leveraging fractal geometry in three dimensions, we can generate datasets

that feature not only intricate surface details but also complex internal structures and authentic spatial

relationships. Pre-training on dynamic sequences derived from 3D fractals can therefore expose a

model to more relevant geometric and spatio-temporal cues, such as changes in apparent shape due to

rotation in depth or the movement of spatially distinct components within a 3D coordinate frame. This

approach provides cues that are vital for learning depth perception and understanding multi-view ge-

ometry. Although the computational demands for generating and rendering 3D fractal sequences are

typically higher than for their 2D counterparts due to higher number of parameters needed to sample,

the anticipated benefit is the cultivation of more robust and transferable foundational representations

that help interpret more complex, real-world visual dynamics. For these reasons, 3D fractals present

a compelling path for the pre-training strategies explored in this thesis.

2.4 Pre-training Techniques in Deep Learning

The remarkable success of deep learning in computer vision and related fields has been strongly

driven by the adoption of pre-training strategies. Pre-training refers to the process of initializing a

neural network by training it on a large, often generic dataset before adapting (fine-tuning) it to a more

specific target task or a commonly smaller dataset. This approach leverages knowledge learned in the

pre-training phase, providing a set of robust initial weights and representations that can accelerate

convergence and enhance performance in downstream tasks. The broader framework that utilizes this

paradigm is commonly known as transfer learning [73, 101].

2.4.1 Transfer Learning: Concept and Motivation

Transfer learning addresses the common problem of insufficient labeled data for a target task by uti-

lizing representations learned from related data-rich domains. For example, models pre-trained on the

large-scale ImageNet dataset [22] have shown substantial improvements when fine-tuned for a wide

variety of computer vision problems, including image classification, object detection and semantic

segmentation [57]. In the context of video understanding and action recognition, similar transfer

learning strategies have been employed, with pre-training often conducted on large video datasets

such as Kinetics [54]. The fundamental hypothesis underpinning transfer learning is that the features

learned from one (often broader or synthetic) domain can generalize to different but related target

domains, particularly when both domains share low-level or high-level statistical regularities.
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2.4.2 Supervised, Self-supervised and Formula-Driven Pre-training Paradigms

Pre-training can be broadly categorized into supervised and self-supervised paradigms, each with

distinct methodologies and trade-offs.

Supervised Pre-training. In supervised pre-training, the model is first trained to perform a specific

task (e.g., classification) using large datasets with explicit labels. Notable examples include train-

ing on ImageNet or COCO [64] for images or on Kinetics or HMDB51 [59] for videos. Supervised

pre-training tends to produce highly discriminative feature representations relevant to the annotated

task [44, 16]. When transferred to a downstream task, these representations can accelerate learning

and improve generalization, especially when the downstream dataset is limited in size or diversity.

However, this approach requires large-scale, manually labeled datasets, which are costly and some-

times impractical to obtain. Additionally, models trained in this manner may encode biases present in

the original labeled data, potentially hindering generalization to different domains [49].

Self-supervised Pre-training. Self-supervised Learning (SSL) bypasses the need for manual labels

by designing pretext tasks where the supervision signal is derived from the inherent structure of the

data itself. In computer vision, popular self-supervised tasks include image colorization [102], context

prediction [26] and, more recently, contrastive learning [17, 45], where the model learns to distinguish

between different views or augmentations of the same data sample. In video, self-supervised methods

often exploit temporal order prediction, future frame generation, or contrastive tasks across video

clips [68, 41]. SSL methods can utilize vast amounts of unlabeled data, making them attractive

for scenarios where labeled data is scarce. However, the effectiveness of SSL depends strongly on

the design of the pretext task; poorly chosen tasks can yield representations that are not useful for

downstream applications.

2.4.3 Formula-Driven Supervised Learning (FDSL)

An emerging paradigm in pre-training is Formula-Driven Supervised Learning (FDSL), which

leverages mathematically generated synthetic data paired with automatically derived labels. This

approach automates the dataset creation process, eliminating the need for manual annotation and

addressing issues related to data scarcity, privacy and ethical concerns [40].

FDSL involves generating synthetic data (e.g. images, point clouds) using mathematical formulas,

such as fractals and assigning labels based on the parameters used in the generation process. For

instance, in FractalDB [52], images are synthesized using Iterated Function System and labels cor-

respond to the specific formula parameters [70]. This method enables the creation of large-scale,

diverse datasets without manual labeling, facilitating efficient pre-training of deep learning models.

Recent studies have demonstrated that models pre-trained using FDSL can achieve competitive per-

formance on downstream tasks. For example, pre-training vision transformers on synthetic datasets

like FractalDB has yielded results comparable to, or even surpassing those obtained with traditional
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supervised pre-training on datasets like ImageNet [70]. Additionally, FDSL has been applied to audio

domains, where synthetic patterns are used for pre-training audio encoders, achieving performance

comparable to models pre-trained on large-scale real audio datasets [47].

2.4.4 Comparative Discussion of Pre-training Strategies

The choice between supervised, self-supervised, and formula-driven supervised pre-training strategies

depends on various factors, including the availability of labeled data, computational resources, and

the specific requirements of the downstream task. Supervised pre-training remains the standard when

suitable large-scale labeled datasets are available and when the downstream task is closely related

to the pre-training labels. Self-supervised approaches are increasingly adopted in domains where

unlabeled data is abundant and manual annotation is impractical. FDSL offers a promising alternative

by providing a means to generate large-scale, labeled datasets synthetically, thus circumventing the

challenges associated with data collection and annotation.

In the specific context of action recognition, recent works have demonstrated that self-supervised

pre-training on either real or synthetic video sequences can yield strong performance [48, 79]. Fur-

thermore, the use of synthetic data, such as procedurally generated geometric patterns or, as explored

in this thesis, three-dimensional fractals, opens new ways for pre-training without the risks and limi-

tations associated with real video datasets. Such approaches are particularly attractive for addressing

data scarcity, privacy, and generalization issues, provided that the synthetic data adequately captures

relevant visual and temporal properties for transfer learning.

Overall, pre-training remains a cornerstone technique in deep learning for vision, enabling efficient

knowledge transfer, improving robustness, and reducing reliance on scarce annotated data in chal-

lenging tasks such as action recognition.

2.5 Related Work

This section reviews key contributions in the domain of synthetic data and abstract pattern-based pre-

training, highlighting advancements in fractal-based pre-training, extensions to video and 3D data

and alternative synthetic approaches. The exploration of such methods has gained significant traction,

offering promising alternatives to the traditional reliance on large-scale natural image datasets.

2.5.1 Fractal-Based Pre-training

The concept of Formula-Driven Supervised Learning was introduced by Kataoka et al. [52]. This

approach leverages mathematically generated fractal images to pre-train CNNs, demonstrating that

models can achieve competitive performance without exposure to natural images.

Building upon this Anderson and Farrell proposed enhancements in [7] by introducing heuristics to

ensure that the sampled fractals were not degenerate (e.g. too constrained or sparse). Their work
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emphasizes the potential of fractal-based datasets in reducing the dependency on large, labeled image

collections.

Further pushing the boundaries, Nakamura et al. [70], explored the efficacy of pre-training with ex-

tremely limited synthetic data. Remarkably, they demonstrate that even a single fractal image, when

subjected to perturbations, can suffice for effective pre-training, challenging conventional notions of

dataset scale requirements.

2.5.2 Extensions to Video and 3D Data

The application of fractal-based pre-training has been extended to the video domain by Svyezhentsev

et al. [88]. They generate synthetic video clips by interpolating between two 2D fractals and applying

video effects such as camera shake and zoom, as illustrated in Figure 2.5. Their findings indicate that

such pre-training can rival traditional methods on benchmarks like HMDB51 and UCF101 [86].

In the realm of 3D data, Yamada et al. [99] applied FDSL to generate synthetic point cloud datasets.

This method facilitates the pre-training of models for 3D object recognition tasks, reducing the need

for extensive real-world 3D data collection.

Expanding on this, the same group [97] proposed integration of synthetic images and point clouds

to train unified transformers capable of handling both modalities. This cross-modal approach under-

scores the versatility of formula-driven synthetic data in multi-modal learning scenarios.

Figure 2.5: Decomposed interpolation between two 2D fractals, as proposed by Svyezhentsev et al. [88]

2.5.3 Alternative Synthetic Approaches

Beyond fractals, researchers have explored other synthetic patterns for pre-training. Takashima et

al. [89] utilized sinusoidal wave patterns to train vision transformers. Their work highlights the effec-

tiveness of structured, non-natural patterns in model pre-training.

Similarly, Kataoka et al. [53] demonstrated that models pre-trained on auto-generated contour images

can achieve performance comparable to those trained on large-scale natural image datasets. This

approach offers a promising method for reducing reliance on labeled real-world data.

In [39], researchers explore pre-training with 3D mesh renders to instill a strong 3D inductive bias in

models. This technique aims to enhance generalization capabilities in tasks requiring spatial under-

standing.

These studies collectively underscore the potential of synthetic and abstract pattern-based data in pre-

training deep learning models. By leveraging mathematically generated structures, researchers can

mitigate challenges associated with data collection, labeling and privacy, paving the way for more

efficient and accessible model training methodologies.
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3 Problem Statement and Research Objectives

The need for large, diverse, and high-quality video datasets remains a significant bottleneck in the

development of robust action recognition models. While Chapter 2 detailed the evolution of deep

learning architectures and the challenges inherent in collecting real-world data, this chapter formulates

the core research problem addressed in the thesis, building directly upon the conceptual foundations,

prior work, and gaps identified earlier.

3.1 Motivation and Problem Statement

As established in Chapter 2, collecting and curating extensive, annotated video datasets for action

recognition is resource-intensive, expensive, and fraught with privacy and bias concerns [50, 11].

Traditional approaches relying on large-scale real-world data are not only costly but also potentially

limited by annotation errors and domain-specific biases [49, 90].

Pre-training on large generic datasets, such as ImageNet or Kinetics, has proven effective for trans-

fer learning and model initialization [73, 101]. However, these methods largely adhere to the core

limitations of manual annotation and real-world data dependence [22, 54].

Chapters 2 and 2.4.3 have discussed the emerging paradigm of formula-driven supervision (FDSL),

which leverages programmatically generated data with labels that are intrinsically tied to the gener-

ation process. The use of FDSL enables perfectly aligned, error-free supervision at scale, bypassing

the annotation bottleneck entirely [52, 40]. Despite its success in domains such as image classification

or object detection [98, 7, 52], there remains a clear lack of research on applying FDSL and synthetic

data generation to video-based action recognition; an important gap this thesis seeks to address.

Fractal-based datasets represent a particularly attractive source for FDSL due to their infinite vari-

ability, algorithmic complexity, and capacity for rich structural diversity [10, 31]. Importantly, each

sample is automatically labeled according to its underlying generative parameters. Compared to syn-

thetic data produced by other means (such as 2D fractal interpolations [88]), 3D fractal data inherently

incorporates depth and more realistic spatial relationships, potentially yielding richer visual features

for model pre-training. Prior works focused on interpolating 2D fractals may be limited by their lack

of depth, spatial expressiveness, and applicability to three-dimensional perception tasks.

3.2 Research Questions and Objectives

This thesis seeks to answer the following central research question:

Can pre-training on synthetic datasets generated from 3D fractals enhance the down-

stream performance of action recognition models, compared to conventional pre-training

datasets?

To address this question, the following objectives are pursued:
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• Develop a pipeline for algorithmically generating diverse 3D fractal-based synthetic datasets, in-

cluding point clouds and video sequences, with a range of geometric and temporal transformations.

• Pre-train widely adopted and empirically validated action recognition architectures (such as ResNet50 [44]

equipped with a Temporal Shift Module [63]) on these fractal-derived datasets using FDSL prin-

ciples.

• Benchmark the resulting models against counterparts pre-trained on standard real-world datasets

(e.g., ImageNet, Kinetics) and models trained from scratch, utilizing widely-used benchmarks such

as HMDB51 [59] and UCF101 [86].

• Analyze the learned representations in terms of generalizability, robustness, and transferability,

identifying both the strengths and limitations of fractal-based pre-training.

This structured approach aims to provide a rigorous assessment of the viability and advantages of

leveraging 3D fractal-based synthetic data in Deep Learning for action recognition.
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4 Technical Foundations

In this chapter, the key principles underlying 3D fractal generation are introduced. The formulation

of Iterated Function Systems (IFS) and the associated Chaos Game theory are first presented. Sub-

sequently, the parameters that control fractal shape are detailed, followed by an overview of multiple

dataset representations for 3D fractals and the motivation behind the chosen representation. Lastly,

the notion of class actions is then discussed.

4.1 Principles of 3D Fractal Generation

Fractals are complex geometric structures exhibiting self-similarity across different scales. The gen-

eration of 3D fractals extends the concept of 2D fractals into three-dimensional space, allowing for

more intricate and realistic models. This section delves into the mathematical foundations and algo-

rithms used for creating 3D fractals.

4.1.1 Iterated Function Systems (IFS)

An Iterated Function System (IFS) is a foundational mathematical framework used to construct self-

similar fractals. At its core, an IFS consists of a finite set of contraction mappings on a complete

metric space (X ,d). Specifically, let { fi : X → X | i = 1,2, . . . ,N} be a collection of contraction

mappings, where each mapping fi satisfies

d( fi(x), fi(y))≤ λi ·d(x,y) for all x,y ∈ X ,

with λi ∈ [0,1) denoting the contraction constant for fi [10]. The requirement that λi < 1 ensures

that each function brings points closer together, a key property of contraction mapping. This property

guarantees, via Banach’s Fixed Point Theorem [56], that every contraction has a unique fixed point.

The collective action of all such functions in the IFS can be described using the Hutchinson operator,

introduced by Hutchinson [46]. The operator acts on the space of non-empty compact subsets of X ,

denoted K (X), and is defined as

F (A) =
N⋃

i=1

fi(A), for any A ∈K (X).

Importantly, the Hutchinson operator is itself a contraction with respect to the Hausdorff metric

H [43], which quantifies the distance between sets and is defined as

H(A,B) = max
{

sup
a∈A

inf
b∈B

d(a,b),sup
b∈B

inf
a∈A

d(a,b)
}
,

where sup denotes the supremum operator and inf the infimum operator [80].
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A central concept in IFS theory is the attractor: a non-empty compact set A∗ ⊆ X that satisfies

F (A∗) = A∗. Hutchinson’s theorem ensures that, starting from any non-empty compact set A0, the

sequence defined recursively by An+1 = F (An) converges to this unique attractor in the Hausdorff

metric:

lim
n→∞

H(An,A∗) = 0.

In practice, this iterative process generates increasingly precise approximations of a fractal, the attrac-

tor, by repeatedly applying the set of contraction mappings. Each iteration constructs the next level

of self-similarity, with every function fi responsible for producing a scaled-down copy of the current

structure. Thus, IFSs naturally produce self-similar fractal objects, which is the mathematical essence

behind many natural and synthetic fractal shapes.

The mathematical framework of IFS provides a reliable way to construct detailed, self-similar patterns

in both two and three dimensions. Thanks to their versatility, IFS-based methods can be adapted to a

wide range of uses, from procedural graphics to generating synthetic datasets, making them especially

useful for applications like action recognition explored in this thesis.

4.1.2 Chaos Game Algorithm

The Chaos Game is a stochastic method to generate fractals, particularly useful for visualizing the

attractor of an IFS [10]. Starting from an arbitrary point x0 ∈ Rn, the algorithm iteratively applies

randomly selected functions from the IFS:

xk+1 = fik(xk) (4.1)

where ik is chosen randomly from {1,2, ...,N} at each iteration. The entire sequence of generated

points, denotes as {xk}k≥0 or x0,x1,x2, ..., converges to the fractal attractor.

In practical programming implementations, the Chaos Game is executed over a large number of iter-

ations, with each computed point plotted to reveal the fractal pattern. Additionally, each function fi

can be selected according to a set of probability weights, allowing for the adjustment of point density

in different regions of the resulting fractal [10, 7].

4.2 Key Parameters Controlling Fractal Shape

The construction of 3D fractals using IFSs relies on specifying the affine transformation for each

function fi. Each transformation is typically parameterized by a 3×3 real matrix A and a translation

vector b ∈ R3. In the simplest case, these parameters (matrix entries and vector components) are

sampled independently from a uniform distribution over a predetermined range (e.g., [−1,1]). This

naive approach allows for fast random exploration of the transformation space and, by extension, a

wide variety of fractal shapes.
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However, purely uniform sampling can often result in a high proportion of transformation matrices

that do not yield contractive or visually interesting fractals. Many sampled matrices may not sat-

isfy the contraction condition required for convergence, or may lead to degenerate and unbalanced

attractors.

To address these issues and gain better control over the generated fractal geometries, matrix decom-

position techniques, most notably the Singular Value Decomposition (SVD), are employed in the

parameterization and filtering of affine transformations.

SVD is a primary concept in analyzing and generating affine transformations for fractal geometry.

For any real m×n matrix A, SVD provides the factorization:

A =UΣV T (4.2)

where U is an m×m orthogonal matrix, V is an n×n orthogonal matrix, and Σ is an m×n diagonal

matrix whose non-negative entries σi are the singular values of A [87].

Geometrically, this decomposition interprets any affine transformation as a sequence of operations:

an initial rotation (by V T ), followed by axis-aligned scaling (by Σ), and a final rotation (by U). This

view is especially useful in the context of Iterated Function Systems, where each function is an affine

contraction mapping and its effect on the fractal’s shape can be directly understood via the scaling

and rotation parameters influenced by the SVD.

In order for an affine map to be contractive, a requirement for the existence of a unique fractal at-

tractor, the largest singular value σmax of the transformation matrix must satisfy σmax < 1 [46]. This

ensures that all points are brought closer together under the transformation, guaranteeing convergence

of the iterated process.

Traditionally, random sampling of IFS parameters is followed by rejecting those systems that are not

contractive. This approach can be inefficient, as a large fraction of randomly sampled transformations

may not satisfy the contraction condition. By instead sampling the singular values directly within the

interval (0,1) and then constructing the transformation matrix, one ensures contractivity by design.

This method both increases the efficiency of the sampling process and allows for better geometric

control, directly influencing properties such as anisotropy and the overall complexity of the generated

fractals.

Earlier research on 2D fractals has shown that the sum of the singular values associated with the lin-

ear components of each affine transformation, commonly referred to as the σ -factor, exhibits a strong

empirical correlation with the appearance of fractal sets that are both visually complex and struc-

turally connected [7]. In particular, Anderson and Farrell demonstrated that constraining the σ -factor

within a specific range results in a significantly higher proportion of fractals exhibiting appealing and

non-degenerate geometry. Conversely, when the sum of singular values is too low, the attractor tends
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to be overly contractive resulting in a collapse and lack of detail; when too high, the structure can

become excessively expansive and shapeless. Thus, principled selection and control of transforma-

tion parameters, including the number of component functions and the σ -factor play a decisive role

in ensuring diversity and visual richness within generated fractal datasets.

Directly sampling or filtering affine transformation parameters based on singular values (and derived

measures such as the σ -factor) provides a mathematically principled and efficient method for produc-

ing fractals with desirable structural characteristics.

Although the majority of this analysis has focused on the geometry of 2D fractals, the underlying

principles have an inherent extension to higher-dimensional systems. Figure 4.1 provides a 3D visu-

alization of the qualitative effects of key parameters: it contrasts examples of fractals that are overly

contractive, well-balanced, and too dense in three dimensions. This visualization serves to highlight

how parameter selection in 3D IFS generation directly influences the spatial organization and visual

complexity of the resulting attractors.

(a) Overly contractive (b) Well-balanced (c) Too dense

Figure 4.1: Qualitative examples of 3D fractals generated with different parameterizations: (a) overly contrac-
tive, (b) well-balanced, and (c) too dense.

In addition to transformation matrices, each affine function in an IFS is assigned a sampling proba-

bility pi. While these probabilities do not alter the overall shape of the attractor, they do control the

frequency with which points in different regions of the attractor are visited and rendered during the

Chaos Game algorithm. Empirically, setting pi proportional to the magnitude of the determinant of

the linear part of the transformation, i.e., pi ∝ |det Ai|, ensures more uniform coverage of the attrac-

tor, especially when some transformations are much ”larger” than others [7]. In contrast, uniform

probabilities may result in under-representation of regions associated with transformations of larger

determinant, producing artifacts or ”gaps” in the rendered fractal. Example of different probability

sampling methods is depicted in Figure 4.2.
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Figure 4.2: Comparison of probability sampling strategies for fractal generation in 2D, as illustrated in [7].
Left: determinant-based sampling, where the probability of selecting each affine transformation is proportional
to the absolute value of its determinant; right: uniform probability sampling. The choice of sampling method
has a visible effect on the final appearance of the fractals.

4.3 Dataset Representation from 3D Fractals

The process of transforming 3D fractal structures into datasets suitable for action recognition tasks

involves careful consideration of data modality, temporal encoding, and compatibility with modern

neural architectures. This section discusses common representation strategies in the literature and the

reasoning behind the adopted approach in this thesis.

4.3.1 Types of Representations for 3D Fractal Data

Multiple modalities are available for representing 3D fractal structures in a form suitable for machine

learning:

• Point Clouds: A direct encoding of the fractal as a set of 3D points, commonly used in geo-

metric deep learning and 3D object recognition [99, 97]. While point clouds retain full geomet-

ric information, they pose challenges for action recognition, particularly regarding the design of

temporally-aware neural architectures and the lack of standardized spatial alignment.

• Voxel Grids and Mesh Sequences: Voxelization discretizes space into a grid, providing a vol-

umetric representation that is naturally compatible with 3D convolutional networks, though it is

often computationally intensive and may lose fine detail at practical resolutions.

• Image Sequences (Rendered Frames): Projecting the evolving 3D fractal onto 2D planes over

time allows the use of well-established video recognition architectures. This is the dominant
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paradigm in video-based action recognition [9, 95, 91] and has also been successfully applied

to synthetic datasets [88]. Image-based representations leverage the efficiency and flexibility of

convolutional or transformer models.

• Parameter Trajectories: Sequences of parameter vectors (e.g., transformation matrices over time)

provide a compact and interpretable modality, but are less commonly used directly as input for

end-to-end visual models [15].

In recent formula-supervised and fractal-based pre-training studies, point patch embeddings, image

patch embeddings, and their combinations have been explored as input modalities for vision trans-

formers [97]. However, to the best of my knowledge, the explicit construction of evolving 3D fractal

sequences for action recognition remains largely unexplored.

4.3.2 Key Design Considerations

Effective dataset representation for action recognition depends on several factors:

• Temporal Coherence: Effective action recognition relies on the ability to capture motion and

temporal dependencies. Raw data representations that preserve the continuity and ordering of

transformations or states over time allow models to learn meaningful dynamics, analogous to those

found in real-world video or motion capture data [9, 91, 81].

• Spatial Fidelity: The granularity and geometric richness of the underlying fractal structure, whether

encoded as dense point clouds, high-resolution images or detailed mesh sequences, influence the

capacity of downstream models to distinguish subtle features and patterns.

• Consistency and Diversity: A useful dataset should balance class consistency (similarity among

instances within a class) with sufficient intra-class diversity. For fractal-based datasets, this can

be controlled through the selection of transformation parameters, initial states, or random seeds,

ensuring a broad yet coherent sampling of possible motions and structures.

• Annotation and Labeling: Synthetic fractal datasets benefit from automatic annotation, as class

or action labels can be programmatically defined by the generative process. This enables scalable

creation of large datasets without manual labeling effort.

• Computational Tractability: The efficiency of generating and rendering fractal data is a practical

consideration. Chosen representations should facilitate the creation of large-scale datasets in a

computationally reasonable manner, enabling extensive experimentation and model training [7,

88].

These considerations collectively shape the suitability of a representation for learning temporally and

spatially complex actions from synthetic fractal data.

4.3.3 Motivation for the Adopted Representation

Selecting an appropriate dataset representation is crucial for enabling effective learning of spatio-

temporal patterns in synthetic action recognition tasks. Among the various modalities available for
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3D fractal data, such as raw point clouds, mesh sequences, parameter trajectories or volumetric grids,

rendered image sequences have distinct advantages.

Firstly, projecting evolving 3D fractals onto 2D frames produces data closely aligned with the in-

put format of most proven action recognition architectures, including convolutional and transformer-

based models [9, 91, 95]. This alignment enables direct comparison with established benchmarks and

leverages the strengths of well-tested computer vision pipelines.

Secondly, rendered image sequences efficiently capture both spatial detail and temporal dynamics,

preserving essential geometric cues and motion patterns while remaining computationally tractable.

The use of fixed or systematically varied viewpoints ensures consistency across samples, while

transformation-driven changes encode action-like temporal coherence.

Other modalities, such as direct point cloud sequences or mesh-based representations, offer higher

geometric fidelity but often require specialized neural architectures (e.g., point-based or graph neural

networks) and introduce challenges in standardizing input formats. Meanwhile, parameter trajectories

are compact but may not provide the visual richness or interpretability needed for effective action

recognition in typical settings.

Thus, representing fractal actions as sequences of 2D rendered frames strikes a practical balance be-

tween information richness, visual interpretability and compatibility with widely used Deep Learning

models. This approach also facilitates systematic study and fair ”head-to-head” comparison with prior

work in synthetic action recognition, particularly studies based on 2D fracals [88, 7].

4.4 Encoding Actions within Synthetic Fractal Data

For synthetic datasets to be useful in action recognition, it is necessary to define and encode tempo-

rally coherent ”actions” that neural networks can learn to discriminate. While natural video datasets

rely on semantic human or object activities, synthetic fractal data requires designing meaningful ana-

logues to such actions using transformations and parameterized dynamics.

A general strategy involves selecting a base fractal structure (e.g., the attractor of a particular 3D

IFS) and applying systematic geometric or parametric transformations over time to create sequences.

These temporal sequences can simulate a variety of motion or deformation patterns, including but not

limited to:

• Affine Transformations: Rotations, translations, scaling, and shearing of the entire fractal point

cloud or its localized components.

• Parameter Animation: Smoothly varying the parameters of the underlying fractal-generating

functions, such as altering contraction ratios or rotation angles in the IFS.

• Camera Movements: Changing the viewpoint or projection direction over time, emulating camera

motion as in natural video.

• Compositional Transformations: Combining or morphing between different fractal attractors, or

overlaying noise and perturbations to simulate complex dynamics.
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• Simulation-based Rendering: Leveraging physics engines or virtual environments to generate

video sequences where motion is governed by real-world physical laws.

Each unique transformation sequence or family of parameter evolutions can be associated with a

distinct action class, allowing for systematic dataset construction. The temporal coherence of these

sequences is crucial: frames must evolve gradually, enabling models to learn temporal dependencies

analogous to those found in real-world action videos [88].

This paradigm of defining synthetic ”actions” through controlled transformations is supported by pre-

vious work in procedural action recognition datasets, which have used parameterized shape morphing

or interpolations between pattern templates to generate temporal data [88, 7, 89]. Notably, these

approaches demonstrate that, even in the absence of semantic human motion, carefully designed

transformations can produce class-separable and learnable temporal structures.

In this thesis, these principles guide the definition of action classes within the fractal dataset. Specifi-

cally, sequences are generated by applying a variety of affine transformations, such as rotation, trans-

lation and shearing, to 3D fractal point clouds over time. While prior literature explores a wider range

of transformation paradigms, including parameter morphing and compositional augmentations [88,

7, 89], this work focuses on affine geometric transformations due to their interpretability, implemen-

tation efficiency, and proven effectiveness in creating temporally coherent, class-separable action se-

quences. The precise implementation details and labeling protocols are presented in the Methodology

Chapter 5.
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5 Methodology

This chapter provides a detailed protocol of the procedures employed to construct the 3D fractal-

based synthetic video dataset and to train neural networks for action recognition. The methodology

encompasses the sampling of fractal parameters, the generation and preprocessing of point clouds,

the synthesis of video sequences via temporal transformations, dataset organization and the training

of action recognition models. All implementations were conducted in Python utilizing open-source

libraries including Open3D [105], NumPy [42] and PyTorch [75], with scripts and configuration files

made for full reproducibility.

5.1 3D Fractal Generation

The generation of 3D fractals for this thesis follows a carefully designed process, drawing from es-

tablished mathematical foundations and recent developments in fractal dataset creation. This section

provides an overview of the core methods used to sample parameters, generate fractal instances, and

ensure dataset quality. The approach is structured to facilitate large-scale, reproducible, and geomet-

rically diverse datasets suitable for training deep neural networks in action recognition tasks.

5.1.1 Parameter Sampling and IFS Construction

Building on the mathematical foundations of fractals described in Section 4.1, the generation of a sin-

gle fractal instance follows a systematic process grounded in Iterated Function Systems. To generate

each point in a fractal, the following elements are required: (i) an initial coordinate, typically set to the

origin (0,0,0); (ii) a set of N affine transformation systems, each comprising a transformation matrix

A and a translation vector b. The Chaos Game algorithm is then employed to iteratively generate the

sequence xi+1 = A · xi +b, where xi,xi+1 ∈ R3.

The dataset construction commences by generating a large collection of such 3D fractal point clouds,

with the following procedure applied for each class:

1 Randomly s e l e c t the system size N ∈ [2,8] ( i . e . , the number o f a f f i n e f u n c t i o n s ) .

2 For each f u n c t i o n k from 1 to N :

3 Sample 12 pa ramete r s from a Uniform d i s t r i b u t i o n U(−1,1) .

4 Matr i x Ak = f i r s t 9 pa ramete r s r e shaped to 3×3 .

5 Vector bk = l a s t 3 pa ramete r s .

6 For each mat r i x Ak :

7 Ca l c u l a t e dk = |det(Ak)| .
8 Ass i gn samp l ing p r o b a b i l i t y pk based on dk ( as d i s c u s s e d i n S e c t i o n 4 . 2 ) .

9 Accumulate unno rma l i z ed p r o b a b i l i t i e s (dk ) from a l l N sy s t ems .

10 Norma l i ze a l l p r o b a b i l i t i e s such tha t ∑
N
k=1 pk = 1 .

Listing 5.1: Algorithm for Iterated Function System (IFS) Parameter Sampling
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This parameter sampling process is repeated C times, where C corresponds to the total number of

classes required for training. Each class is represented as a separate .csv file containing the transfor-

mation parameters and their associated probability as 13 entries per system.

5.1.2 Point Cloud Generation and Filtering

The previously saved .csv parameter files are subsequently processed to generate the fractal point

clouds as follows:

1. For each parameter set (i.e., each IFS defined by a system size N, with N pairs of matrix A and

vector b), a point cloud of m points is generated for the fractal. Each point is produced by iteratively

applying the Chaos Game algorithm: at each iteration, one of the N system functions is selected

randomly according to its assigned probability pi, and the transformation is applied to the current

point to generate the next. To obtain m samples for the point cloud, m number of iterations are

applied per IFS for each class.

2. The point cloud is recentered at the origin by subtracting the centroid.

3. The variance along each axis is computed and degenerate point clouds (e.g., collapsed or empty)

are filtered out by requiring that the variance along each axis exceeds a threshold (variance > 0.05).

4. Only point clouds passing the variance check are saved as Open3D PointCloud objects for down-

stream processing.

All datasets in this thesis were generated with m = 10000 points per fractal. The combination of

min-max normalization and centroid alignment is crucial for ensuring numerical stability and consis-

tency across the dataset, particularly when applying subsequent geometric transformations. Centering

each point cloud at the origin is a standard preprocessing step that simplifies downstream processing,

including transformations and variance-based filtering. To maintain a high standard of geometric di-

versity, only point clouds whose variance along all axes exceeds a threshold (variance > 0.05) are

retained. This filtering step ensures that degenerate fractals, such as collapsed or nearly empty sets,

are excluded. All structurally valid fractals that pass these criteria are then stored in the .ply format,

making them readily accessible for further processing.

During dataset creation, the initial parameter sampling strategy was adopted from Wang et al. [99],

who demonstrated the utility of large-scale 3D fractal point cloud datasets for 3D object detection.

However, visual inspection revealed that such naive unconstrained parameter sampling often resulted

in degenerate or aesthetically suboptimal fractals. Drawing inspiration from the geometric quality

criteria proposed by Anderson and Farrell [7], in which subjectively labeled 2D fractals were analyzed

to identify empirical parameters of fractal quality, additional geometric constraints were considered

for 3D fractal generation. The specific criteria explored, and their impact on dataset properties, are

presented in the Improving Fractal Geometry Chapter 8.
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5.2 Video Dataset Generation Pipeline

The process of creating a synthetic video dataset from 3D fractal point clouds involves several key

stages, ranging from generating temporally coherent video sequences to organizing the resulting data

for downstream trasnfer learning tasks. The main components of this pipeline are detailed below.

5.2.1 Action Definition and Temporal Transformation

The creation of each action class is achieved by applying a controlled sequence of geometric trans-

formations to a 3D fractal point cloud, producing a temporally coherent video sequence. The core

process is outlined below:

1. For each valid point cloud:

a) The number of frames per video is randomly sampled within the range of 18 to 20 per [88].

b) For each video, target transformation parameters are randomly selected. These include rotation

angles (up to 360◦ per axis), shear factors (up to 0.8 per axis), translation vectors (up to 0.8

per axis), and parameters for a non-affine spatial warp. These ranges represent the defaults;

alternative values have also been explored in experimental settings to assess their impact on the

dataset and downstream model performance.

c) A fixed coloring scheme is most commonly employed, mapping the z-coordinate of each point

to the ”viridis” colormap from the matplotlib library. Additional coloring strategies are available

such as coloring by x- or y-coordinate, distance from the center, or using random colors and their

effects are compared in the experimental section.

d) Transformation parameters are interpolated between the identity (no transformation, at frame

0) and the sampled target values (final frame), using either a linear or sinusoidal (ease-in-out)

temporal profile, chosen at random for each sequence.

e) For each frame, the interpolated transformation is applied to the entire point cloud, and the

resulting point set is rendered as a 256× 256 RGB image using the Open3D library, which is

captured directly into an uncompressed in-memory pixel buffer to avoid intermediate saving to

lossy image formats like JPEG.

2. The sequence of rendered frames is assembled into a video (.mp4, 12 FPS) using the ffmpeg

toolkit, an industry standard for efficient and widely supported video encoding. The MP4 format

is chosen for its broad compatibility and favorable trade-off between file size and visual quality, as

a consequence of the use of lossy compression.

3. Each video is saved with a unique file name, which also encodes its corresponding class label.
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Figure 5.1: Example of a synthetic fractal video, showing every second frame as a 3D fractal undergoes a
geometric transformation. Colors reflect the z-coordinate mapped to the ”viridis” colormap. Noticeable non-
affine deformation caused by the spatial warp appears toward the end of the sequence.

Figure 5.1 depicts a sample sequence from the synthetic fractal dataset, with every second frame

displayed. The fractal point cloud undergoes a temporally coherent geometric transformation, illus-

trating both affine and non-affine effects. Points are colored by their z-coordinate using the ”viridis”

colormap, with more pronounced deformation visible toward the final frames.

This entire process, from fractal parameter sampling to video file export and dataset organization is

summarized in Algorithm 1:

Algorithm 1 Pipeline for Generating 3D Fractal-Based Synthetic Video Dataset
Input : Nclasses: Total number of unique fractal classes,

Ninstance per class: Number of video sequences per class,
Mpoints: Target number of points per fractal point cloud,
Vthresh: Minimum variance threshold for point cloud validity,
Tranges: Parameter ranges for randomized temporal transformations,
Lvideo range: Range for video length in frames,
Scon f ig: Configuration for train/validation split,
Out putDir: Base directory for storing generated videos,
ServerCredentials: Credentials for server transfer

Output: Synthetic video dataset generated and transferred to the server

// PHASE 1: FRACTAL STRUCTURE AND VIDEO GENERATION

i← 0 while i < Nclasses do
IFSparams← SampleIFSParameters()
Praw← GenerateRawPointCloud(IFSparams,Mpoints)
Pprocessed ← ProcessPointCloud(Praw) // Normalize, center

is valid pc← ValidatePointCloud(Pprocessed,Vthresh) // Variance check

if is valid pc then
for j← 1 to Ninstance per class do

video← CreateTransformedVideo(Pprocessed,Lvideo range,Tranges)
SaveVideo (video,Out putDir)

end
i← i+1

end
end

// PHASE 2: DATASET ORGANIZATION AND TRANSFER

TrainFiles,ValFiles← OrganizeAndSplitDataset(Out putDir,Scon f ig)
Dataset.zip← ZipDataset(TrainFiles,ValFiles)
TransferDatasetToServer (Dataset.zip,ServerCredentials)

It is worth noting that, instead of pre-generating all video sequences, the dataset pipeline could likely

be adapted for ”on-the-fly” generation during training, leveraging the just-in-time (JIT) compilation
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tools such as Numba [60], as demonstrated in [7]. However, implementing such dynamic data gen-

eration was not prioritized in this thesis, as the focus remained on controlled dataset analysis and

reproducibility.

To expedite the processing of large numbers of point clouds, multiprocessing is leveraged throughout

the pipeline. The embarrassingly parallel nature of applying transformations to independent fractal

instances allows for substantial speedup, making it feasible to generate large-scale video datasets in

a reasonable time-frame. To illustrate, generating one transformed fractal video instance requires

approximately 100 ms of computation on a typical laptop-grade CPU. Consequently, producing a

dataset of 55 000 such video instances (e.g., 50 000 for training and 5 000 for validation) corresponds

to a total computational workload of roughly 1.5 hours. The implementation further facilitates future

extensions, such as experimenting with alternative transformation parameters, coloring schemes, or

rendering resolutions, which are discussed in later chapters.

5.2.2 Augmentation and Dataset Organization

Given the high degree of geometric and temporal diversity introduced by the randomized transforma-

tion targets during video synthesis, no additional explicit spatial or temporal augmentations (such as

cropping, flipping, or noise injection) are applied at this stage. This approach ensures that the ob-

served variability in the dataset is directly attributable to the range of transformations applied to the

underlying fractal point clouds, simplifying the analysis of how such transformations affect down-

stream model performance.

The resulting dataset is organized in a hierarchical directory structure, where each class is represented

by a separate subdirectory containing its associated video samples. This structure is compatible with

common data loading utilities in deep learning frameworks and facilitates straightforward assignment

of class labels based on directory names.

For evaluation purposes, the dataset is partitioned into training and validation splits by randomly se-

lecting a fixed number of video samples from each class (e.g., 10 per class) to form the validation

set, while the remaining videos are designated for training. This strategy ensures balanced represen-

tation of all classes in both splits and enables robust evaluation of model generalization. The splitting

process is automated to guarantee reproducibility and to prevent data leakage between training and

validation sets.

5.2.3 Dataset Properties

The pipeline detailed in this chapter allows for the generation of synthetic video datasets with a range

of configurable characteristics. The specific values for these properties are adapted according to the

goals of individual experiments and are therefore detailed in the Experimental Chapter 7. The primary

configurable properties that define each dataset instance are outlined below:
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• Total Number of Classes: Defines the quantity of distinct fractal transformation categories. This

parameter is typically varied in experiments to explore model scalability and performance on tasks

of differing complexity.

• Instances per Class: Specifies the number of unique video sequences generated for each class.

Adjusting this property allows for studies on data efficiency, model generalization, and robustness

to intra-class variation.

• Input Frame Resolution: The final resolution of video frames that are provided as input to the

neural network models, typically after preprocessing steps such as downsampling (e.g., 112×112

pixels to match baseline requirements).

• Video Length (Frames): The number of individual frames that compose each video sequence

(e.g., ranging from 18 to 20 frames). This, along with frame rate, determines the temporal extent

of the depicted action.

• Frame Rate: The rate at which video frames are sampled or rendered, measured in Frames Per

Second (FPS) (e.g., 12 FPS). While frame rate directly affects the perceived speed and smoothness

of transformations from a human perspective, it can also have practical implications during model

training and evaluation: lower frame rates may limit the temporal resolution available to the neu-

ral network, potentially impacting its ability to capture fine-grained motion cues, whereas higher

frame rates increase data volume and computational load.

• Point Cloud Density: The number of 3D points used to construct and represent the fractal in each

video frame (e.g., 10,000 points). This property affects the visual detail and complexity of the

rendered fractals.

• Train/Validation Split Ratio: The proportional division of the generated video samples into train-

ing and validation sets, typically performed per class to ensure balanced representation (e.g., 90%

of videos for training and 10% for validation).

This framework of configurable properties provides the flexibility to systematically investigate the

impact of different dataset configurations on the performance of action recognition models.

5.3 Training Data Augmentation Pipeline

To enhance model generalization and robustness, a comprehensive data augmentation pipeline is ap-

plied to all training videos. These augmentations are performed on-the-fly during training, ensuring

that each batch is exposed to diverse spatial and appearance variations. This strategy mitigates over-

fitting and simulates real-world variability.

The augmentation pipeline consists of both spatial and appearance-based transformations, imple-

mented using PyTorch and the pytorchvideo library. The key components are adapted from [88]

and are as follows:

• Random Resized Crop: Each video is randomly cropped and resized to the target input size

(typically 112×112 pixels), with the crop scale sampled from a specified range (e.g., 0.9-1.0) and
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aspect ratio variation. This introduces variability in spatial framing.

• Horizontal Flip: With configurable probability, the video frames are horizontally flipped to sim-

ulate viewpoint changes.

• RandAugment: RandAugment [19] is applied, randomly selecting a sequence of parameterized

transformations (such as color jitter, rotation, or contrast adjustment) with user-defined magnitude

and number of operations per video.

• Gaussian Blur: With specified probability, Gaussian blur is applied to each frame to increase

robustness to focus and quality variation and simultaneously reduce noise.

• Random Perspective and Camera Motion: Additional transformations such as random perspec-

tive distortion and camera motion (shift, zoom, shake) are applied with specified probabilities,

mimicking real-world camera effects and temporal jitter.

• Normalization: All input frames are normalized to match the mean and standard deviation of

ImageNet images, ensuring compatibility with pre-trained models and stable optimization.

The order and parameterization of these augmentations are modular, enabling fine-grained ablation

studies and adaptation to different experimental setups. Crucially, the application of each augmenta-

tion is probabilistic: each transformation (e.g., blur, shift, zoom, shake) is activated independently for

each video in a batch according to a user-specified probability (e.g., prob blur, prob shift, etc.).

This design allows for flexible control of augmentation strength and diversity, as well as clear tracking

of the exact augmentation policy used in each experiment (see Chapter 6 for explicit values).

5.4 Workflow Automation and Practical Implementation

To enable systematic and fast experimentation while ensuring full reproducibility, the entire dataset

generation process is modularized and automated. Each key stage, including parameter search, fractal

generation, transformation, dataset splitting and packaging, is implemented as a standalone Python

script that can be flexibly configured via command-line arguments and configuration files.

The orchestration of these components is handled through a master shell script, which sequences

each phase of the pipeline and manages data flow between modules. This approach allows for rapid

adjustment of parameters such as the number of classes, point cloud density, transformation ranges,

or dataset splits, supporting both parameter sweeps and ablation studies.

This modular and script-driven workflow ensures that the entire process, from parameter search to

dataset packaging, can be executed in a single command, minimizing manual intervention and risk of

error. Furthermore, logs and configuration snapshots are saved for each run, allowing exact reproduc-

tion of any dataset version generated for experimentation.

After local preparation, datasets are compressed and securely transferred via SSH to a high-performance

AI server (AI-LAB) [3], where model training and evaluation are performed. This separation of data

generation and model training supports decoupled experimentation and efficient use of computational
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resources.

5.5 Neural Network Architecture: ResNet-50 and Temporal Shift

Module

The backbone architecture selected for all experiments is a ResNet-50 [44] integrated with the Tem-
poral Shift Module (TSM) [63], a design that balances computational efficiency with the ability to

capture temporal dependencies crucial for action recognition from video data.

5.5.1 ResNet-50 Backbone

ResNet-50 is a deep Convolutional Neural Network originally developed for large-scale image classi-

fication. It comprises 50 layers with residual connections that facilitate the training of deep networks

by mitigating the vanishing gradient problem [74]. In this work, the standard 2D ResNet-50 serves as

the base spatial feature extractor, processing each frame of the video sequence.

5.5.2 Temporal Shift Module (TSM)

To adapt the spatial backbone for video inputs and enable the modeling of temporal relationships

across frames, the Temporal Shift Module (TSM) is inserted into each residual block of the ResNet-50

architecture. The TSM operation is a parameter-free temporal operator that shifts a fraction of feature

channels along the temporal dimension, thereby enabling information exchange between adjacent

frames without a significant increase in model complexity or memory usage. Specifically, for a feature

map tensor of shape [N,C,T,H,W ] (where N is batch size, C is channel, T is time, H is height, and

W is width), the operation divides the channel dimension and shifts:

x′n,c,t,h,w =


xn,c,t−1,h,w if c ∈C f

xn,c,t+1,h,w if c ∈Cb

xn,c,t,h,w otherwise

(5.1)

Here, C f and Cb denote the sets of channels shifted forward and backward in time, respectively, while

the remaining channels remain unshifted. In practice, it is common to shift one-eighth of the channels

forward (|C f | = C
8 ), one-eighth backward (|Cb| = C

8 ), and to leave the remaining three-fourths of

channels unchanged. This simple yet effective mechanism enables temporal information exchange

between adjacent frames with minimal computational overhead.

This operation preserves the spatial feature extraction capability of the ResNet-50 backbone while

introducing temporal awareness into the network. The overall process is illustrated in Figure 5.2.
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Figure 5.2: Schematic illustration of the Temporal Shift Module (TSM), as adapted from [63]. The figure
shows the temporal channel shifting mechanism, where a subset of feature channels is shifted forward and
backward in time, while the remainder are unaltered. In this thesis, the ”offline” temporal shift (b) is employed.

5.5.3 Adaptation for Synthetic Fractal Videos

The network is modified to accept a sequence of T frames as input, with each frame of a fixed size

(e.g. 112×112 pixels) and three color channels (RGB). All frames in a sequence are jointly processed,

with the TSM modules facilitating temporal information flow across the sequence. The final output

of the network is fed into a global average pooling layer followed by a fully-connected layer whose

size is adapted to the number of classes in the current experiment (corresponding to the number of

unique fractal-generated actions or real-world action classes in downstream tasks).
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6 Training Setup

This chapter details the experimental protocols established to evaluate the effectiveness of pre-training

action recognition models on synthetic 3D fractal-based datasets. The setup covers both the pre-

training phase on synthetic data and the subsequent transfer and evaluation on real-world video action

recognition benchmarks. The goal is to rigorously assess whether the features learned from 3D fractal

geometry generalize to natural video tasks, as well as to ensure full reproducibility of all experiments.

6.1 Pre-training Setup

The core pre-training objective is supervised video classification, where the network is trained to

distinguish between action classes corresponding to distinct fractal transformation patterns. Each

class is defined by a set of IFS parameters and associated temporal transformation, as described

in Chapter 5. The model receives as input a clipped video sequence of rendered frames ( 18-20

frames, each of size 112×112 pixels, 3 channels), where each video represents a temporally coherent

transformation of a unique 3D fractal point cloud.

For the backbone architecture, a ResNet-50 [44] equipped with a Temporal Shift Module (TSM) [63]

is used as the primary action recognition model, given its established effectiveness in prior synthetic

pre-training work and its efficiency in spatio-temporal modeling. The input to the model consists of

downsampled RGB frame sequences (e.g., 112× 112 pixels per frame, 8 frames per video, as per

dataset generation). The TSM module is integrated into the ResNet-50 backbone, allowing efficient

exchange of temporal information across feature channels without substantially increasing model

complexity.

The model is trained in a supervised manner using the standard cross-entropy loss [36], appropriate

for the multi-class video classification scenario. The loss is computed between the predicted logits

and the ground-truth class labels over each batch.

The model is implemented in PyTorch, using the official TSM repository as a reference [4]. All

training is conducted using mixed-precision (AMP) and multi-GPU support where available. The ar-

chitecture is compatible with the modular video dataset and training pipeline described in Section 5.2.

6.1.1 Training Environment

All experiments are conducted on a dedicated high-performance computing server (AI-LAB), with

the following environment:

• GPU: NVIDIA L4

• CPU: 16 cores

• RAM: 24 GB
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• Software: Python 3.12, PyTorch 2.6, CUDA 12.8

• Experiment tracking: Weights and Biases [14] for full logging and visualization

6.1.2 Training Parameters

Unless otherwise specified, the following hyperparameters, adopted from [88], are used for pre-

training:

• Batch size: 32

• Learning rate: 0.0008

• Learning rate schedule: Cosine Annealing [66]

• Optimizer: AdamW [65] (betas = 0.9, 0.999; epsilon = 1e-8)

• Weight decay: 0.01

• Number of epochs: 25

• Clip length: 8 frames per clip (randomly sampled for each batch)

• Mixed-precision training: Enabled (PyTorch AMP)

• Seed: 1 (fixed for reproducibility)

All major parameters, training logs, and model checkpoints are saved for each experiment to support

full reproducibility and ablation analysis.

6.1.3 Pre-Training Data Augmentation: Experimental Parameters

As detailed in Section 5.3, all training and fine-tuning employ a modular augmentation pipeline, with

the exact parameters and activation probabilities determined by the experiment’s configuration file.

For full transparency and reproducibility, the specific augmentation settings used in this thesis are

inspired from [88] and are reported below.

Pre-training Augmentation. Unless otherwise specified, pre-training on fractal-based datasets uses

the following augmentation parameters:

• Random cropping and resizing: Minimum crop scale of 0.9 (i.e., MIN SCALE = 0.9)

• Horizontal flip: Enabled (HOR FLIP = 1)

• RandAugment: Magnitude M = 7, N = 2 operations per sample

• Mixup: Enabled with background blending (TYPE MIXUP = back)

• Probabilities for advanced augmentations:

◦ Perspective distortion: p = 0.8

◦ Scaling: p = 1.0

◦ Shift: p = 0.3

◦ Shake: p = 0.3

◦ Zoom: p = 0.3
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◦ Clone (object copy-paste): p = 0.15

◦ Gaussian blur: 0.5

Each augmentation (except cropping and flipping) is applied independently per video with the listed

probability.

6.1.4 Training Framework

The training framework is a modular PyTorch codebase with custom dataset loaders for the fractal

video format, distributed training support (multi-GPU) and full configuration via configuration file

or command-line arguments. The pipeline supports experiment resumption, evaluation at regular

intervals, and on-the-fly dataset augmentation. All runs are tracked using Weights and Biases (wandb)

for transparent reporting of results [14].

6.2 Downstream Task Setup: Action Recognition

The pre-trained models are adapted to each downstream dataset by replacing the output head with a

randomly initialized fully-connected layer sized for the number of downstream classes. Fine-tuning

is performed end-to-end with all weights updated, unless otherwise specified. The backbone may

optionally be frozen for several epochs before full training, though in most experiments all layers

are trainable. Augmentation during fine-tuning includes random cropping, horizontal flipping, and

normalization as per ImageNet statistics.

To evaluate the transferability of fractal-based pre-training, models are fine-tuned and tested on es-

tablished action recognition benchmarks:

• UCF101 [86]: 13,320 videos, 101 action categories, diverse scenes and camera motion.

• HMDB51 [59]: 6,766 videos, 51 action categories, challenging due to realistic occlusion and

variability.

All datasets are preprocessed to match the input size and format used in pre-training (e.g., 112×112

pixels, 8-frame clips).

6.2.1 Downstream Training Parameters

Standard training hyperparameters for fine-tuning are adopted from [88] and are as follows:

• Batch size: 32

• Learning rate: 0.0008

• Learning rate schedule: Cosine Annealing

• Optimizer: AdamW (betas = 0.9, 0.999; epsilon = 1e-8)

• Weight decay: 0.01

• Number of epochs: 100
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• Clip length: 8 frames per clip

• Evaluation: Standard train/validation split for each dataset, following official protocols

6.2.2 Downstream Training Data Augmentation: Experimental Parameters

Similar to the pre-training data augmentation, the exact augmentation parameters are reported below.

Downstream Training Augmentation. For fine-tuning and evaluation on real-world datasets (UCF101,

HMDB51), the augmentation settings revert to the default, more conservative configuration as per [88]:

• Random cropping and resizing: Minimum crop scale of 0.2 (MIN SCALE = 0.2)

• Horizontal flip: Enabled (HOR FLIP = 1)

• RandAugment: Magnitude M = 7, N = 2 operations per sample

• Mixup: Disabled (TYPE MIXUP = none)

• Probabilities for advanced augmentations:

◦ Gaussian blur: p = 0.5

◦ Perspective distortion: p = 0.0

◦ Scaling: p = 0.0

◦ Shift: p = 0.0

◦ Shake: p = 0.0

◦ Zoom: p = 0.0

◦ Clone: p = 0.0

6.2.3 Evaluation Metrics

The evaluation of action recognition models in this thesis is guided by metrics that are widely adopted

in the field and are tailored to the scope and objectives of this work. Since the primary focus is on

assessing classification performance of models pre-trained on synthetic fractal datasets, the following

metrics are used throughout all experiments:

• Top-1 Accuracy: The proportion of test samples for which the model’s highest-confidence pre-

diction exactly matches the ground truth class label. This is the principal metric used for reporting

final model performance.

• Top-5 Accuracy: The percentage of test samples where the ground truth label appears among

the model’s five highest-confidence predictions. This metric provides additional insight into the

model’s ranking ability and its sensitivity to visually similar actions.

These classification metrics are computed on validation splits according to the established protocols

for each dataset.

Training Loss Monitoring:
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In addition to accuracy, the cross-entropy loss is monitored over the course of training and validation.

While not a direct indicator of final task performance, loss curves are used to analyze convergence

behavior, detect overfitting or underfitting, and to compare optimization stability across different ex-

perimental settings.

Computational Efficiency:
To provide a holistic assessment of model practicality, the total wall-clock time required to train each

model to completion on the target dataset is recorded and reported. Monitoring training time is es-

sential for evaluating the feasibility of deploying these methods in real-world or resource-constrained

environments.

Qualitative Evaluation of Synthetic Datasets:
As universally accepted quantitative metrics for evaluating the quality of synthetic datasets—such as

3D fractal video sequences—are lacking, this thesis emphasizes qualitative research. Methods for

generating representative samples are investigated to help ensure structural complexity, diversity, and

the exclusion of degenerate or trivial examples from the training data. The ongoing challenge of de-

veloping standardized, objective measures for synthetic data quality is acknowledged as an important

area for future work.

6.3 Reproducibility and Experiment Management

To ensure the reproducibility and transparency of all experiments, scripts, configuration files, and

random seeds are archived for each run. Model checkpoints and logs are systematically saved for

every training and evaluation session. Furthermore, all experimental results, including training and

validation metrics, are tracked in real time using the Weights and Biases platform. This approach

enables transparent reporting, facilitates in-depth analysis, and supports future benchmarking efforts.
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7 Experiments and Results

This chapter presents the experimental evaluation of pre-training action recognition models using

3D fractal-based synthetic datasets. The experiments are designed to systematically investigate how

variations in fractal generation parameters, transformation regimes, and color augmentation strategies

impact both pre-training effectiveness and downstream performance on real-world video benchmarks.

The chapter begins with an overview of the experimental design and a summary table of all experi-

ments. Subsequent sections present quantitative and qualitative results, comparative analysis against

standard baselines, and ablation studies.

7.1 Overview and Experimental Design

To ensure full reproducibility and interpretability, each experiment varies only one fundamental factor

at a time, such as the magnitude of geometric transformations, the coloring augmentations or the size

of the dataset, while holding all other variables fixed. Table 7.1 provides a concise summary of all

experimental conditions, highlighting the key differences across runs. This controlled design enables

meaningful insight of observed effects to specific dataset or augmentation modifications.

Table 7.1: Summary of main experiments: Each experiment varies a single key property (transformation mag-
nitude, color scheme or class/instance size) to isolate its impact on downstream action recognition. All experi-
ments use the same fractal generation pipeline unless noted otherwise.

ID Total size Instances / Class Transformation Color Scheme
1 50 000 100/500 None Low
2 50 000 100/500 Low Low
3 50 000 100/500 Moderate Low
4 50 000 100/500 High Low
5 50 000 100/500 Moderate Moderate
6 50 000 100/500 Moderate High
7 100 000 200/500 Moderate Moderate
8 100 000 400/250 Moderate Moderate
9 200 000 400/500 Moderate Moderate

7.2 Description of Experiments

Systematic variation of experimental conditions is essential for understanding which factors most

significantly influence pre-training effectiveness and downstream action recognition performance. In

this thesis, each experiment is designed to isolate the impact of a single variable, such as the strength

of geometric transformations, the coloring strategy or dataset size, while all other parameters are held

fixed as described in Chapter 6. The tri-level design (low, moderate, high) for each variable was

chosen to efficiently explore the experimental space within practical time constraints, and to show the

positive direction required in further optimization.
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For clarity, unless otherwise noted, the fractal generation pipeline, training augmentation settings, and

training protocol remain unchanged across experiments.

7.2.1 Transformation Level Experiments

This set of experiments investigates the effect of geometric transformation strength during fractal

video generation. Specifically, four types of transformations are considered: rotation, shear, transla-

tion, and non-affine warp. Notably, the non-affine spatial warp is defined by six parameters:

[scale x, freq x, scale y, freq y, scale z, freq z]. For each axis, scale controls the max-

imum displacement amplitude, while freq determines the spatial frequency of the sinusoidal deforma-

tion, which is applied based on the point’s coordinates on the other two axes. For each fractal video

instance, the parameters for these transformations are randomly sampled up to a maximum value cor-

responding to the designated ”Low”, ”Moderate”, or ”High” transformation level. The precise upper

bounds for each transformation type at each level are listed in Table 7.2.

The ”Moderate” setting was established as a baseline, selected empirically based on visual inspection

for reasonable but non-degenerate deformation of the 3D fractal point cloud. The “Low” and ”High”

settings provide a controlled range around this baseline. Importantly, for each video instance, the

actual transformation parameters are drawn randomly from a uniform distribution between zero and

the maximum value specified for that experiment level, ensuring transformational diversity within

each generated video.

Table 7.2: Transformation Experiment: Magnitude of individual transformations applied to the fractal.

Magnitude Rotation Shear Translation Warp
No Transformation [0.0, 0.0, 0.0] [0.0, 0.0] [0.0, 0.0, 0.0] [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

Low [270, 270, 270] [0.6, 0.6] [0.6, 0.6, 0.6] [0.2, 4.0, 0.2, 4.0, 0.2, 4.0]
Moderate [360, 360, 360] [0.8, 0.8] [0.8, 0.8, 0.8] [0.4, 6.0, 0.4, 6.0, 0.4, 6.0]

High [450, 450, 450] [1.0, 1.0] [1.0, 1.0, 1.0] [0.6, 8.0, 0.6, 8.0, 0.6, 8.0]

7.2.2 Color Level Experiments

Following the tri-level approach used for transformation strength, a series of experiments were con-

ducted to assess how different color augmentation strategies affect model pre-training and down-

stream recognition. Three distinct levels of color augmentation were defined:

• Low: Grayscale coloring based on the z-coordinate, reducing depth information to a single inten-

sity channel without color diversity.

• Moderate: Application of the ”viridis” colormap [5] to the z-axis, introducing consistent color-

depth mapping while adding three-channel input information.

• High: Diverse coloring strategies randomly selected for each instance, including a range of col-

ormaps and coloring bases (e.g., by x, y, or z axis, distance from center, random solid color, or

random color per point).
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Table 7.3 summarizes these three levels and the core strategy used in each.

Table 7.3: Color Experiment: Magnitude of color augmentation applied to the fractal.

Magnitude Strategy
Low Grayscale along z-axis

Moderate Viridis along z-axis
High Multiple strategies

The “High” color augmentation magnitude utilizes a variety of coloring strategies, which are ran-

domly assigned to instances. Table 7.4 details these strategies, while Figure 7.1 presents visual ex-

amples.

Table 7.4: Color Experiment: Levels of color augmentation applied to the fractals in a dataset.

Strategy Random Choice
X-axis coloring [’viridis’, ’plasma’, ’jet’, ’coolwarm’]
Y-axis coloring [’viridis’, ’plasma’, ’jet’, ’coolwarm’]
Z-axis coloring [’viridis’, ’plasma’, ’jet’, ’coolwarm’]
Radial coloring [’viridis’, ’plasma’, ’jet’, ’coolwarm’]

Random solid color All colors
Random color per point All colors
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(a) Grayscale along z-axis (b) Viridis along x-axis (c) Plasma along y-axis

(d) Jet along z-axis (e) Coolwarm by distance from center (f) Random solid color

(g) Random color per point

Figure 7.1: Comparison of different coloring strategies applied to the same 3D fractal structure.

This experimental structure allows for controlled investigation of how both the amount and the nature

of color information influence feature learning. To avoid an unmanageable number of permutations,

the best-performing transformation regime (Moderate) was fixed when exploring color augmentation

effects.

Note: The specific coloring strategies applied at the ”High” augmentation level are detailed in Ta-

ble 7.4, while Figure 7.1 shows visual examples of each approach. Together, the table and figure

provide both a technical reference and an intuitive sense of how different coloring schemes alter the

appearance of the synthetic fractal actions.
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7.2.3 Ablation Experiments

After identifying the best-performing settings in the transformation and color augmentation experi-

ments, further ablation studies were conducted to examine the effect of dataset scale. Specifically,

these experiments varied the number of instances per class and the total number of classes, with the

goal of determining whether and how increased data diversity or quantity translates to improved per-

formance on downstream tasks. The guiding hypothesis was that larger and more varied synthetic

datasets may yield better generalization and higher accuracy in real-world action recognition bench-

marks.

7.3 Pre-training Performance

This section presents the quantitative results of all pre-training experiments, corresponding to the

experiment configurations summarized in Table 7.1. For each experiment, the report contains key

metrics including Top-1 and Top-5 classification accuracy on both training and validation sets and the

lowest achieved train loss.

Table 7.5 provides a side-by-side comparison across all runs, enabling clear and direct interpretation

of the impact of transformation magnitude and color augmentation on pre-training effectiveness. Each

experiment used the same training configuration and required approximately 3 hours and 15 minutes

to complete.

Ablation experiments investigating variations in class and instance count are discussed separately in

Section 7.5.

Table 7.5: Pre-training performance summary for all experiment runs. Each row corresponds to an experiment
ID as defined in Table 7.1. Metrics are reported for the final checkpoint. Best and second best results per
column are highlighted in underlined bold and bold, respectively.

ID Transform Color ↑Train Top-1 ↑Train Top-5 ↑Val Top-1 ↑Val Top-5 ↓Train Loss
1 None Low 100.00% 100.00% 100.00% 100.00% ≈ 0
2 Low Low 17.85% 39.14% 43.30% 76.88% 3.91
3 Moderate Low 17.92% 40.44% 49.18% 82.06% 3.84
4 High Low 13.96% 34.54% 38.08% 74.02% 4.07
5 Moderate Moderate 22.06% 45.62% 50.98% 81.96% 3.58
6 Moderate High 14.30% 34.30% 34.50% 69.44% 4.09

The learning curves in Figure 7.2 complement the tabular results by providing a detailed tempo-

ral perspective on training performance. In particular, validation accuracies (Figures 7.2b and 7.2d)

demonstrate not only the best-performing runs but also the differences in learning stability and gener-

alization, while the training loss (Figure 7.2e) consistently decreases across all experiments, confirm-

ing effective training. The training loss curve doesn’t show a plateau, suggesting that increasing the

number of epochs could improve the model’s accuracy.
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(a) Train set Top-1 accuracy over epochs. (b) Validation set Top-1 accuracy over epochs.

(c) Train set Top-5 accuracy over epochs. (d) Validation set Top-5 accuracy over epochs.

(e) Training Loss over epochs

Figure 7.2: Evolution of pre-training performance metrics across 25 epochs for all experiments. (a)–(d): Top-
1 and Top-5 accuracy on the train and validation sets, respectively. These curves show increasing accuracy
with diminishing slope near the end of training. (e): Training loss (cross-entropy), which steadily decreases,
confirming effective learning throughout pre-training.

7.3.1 Analysis and Notes on Individual Experiments

Experiment 1 (No Transformation, Low Color): This run yielded perfect accuracy (100%) and

near-zero loss on both training and validation sets. However, these results are not meaningful for
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representation learning: without any transformations, the generated fractals are highly similar within

each class, making classification trivial. The model likely memorized superficial static patterns in-

stead of learning features that could generalize. As further discussed in Section 7.4, this is confirmed

by the poor downstream transfer performance. Accordingly, this run is excluded from further com-

parative analysis.

Experiments 2–4 (Varying Transformation Magnitude, Low Color): Introducing geometric trans-

formations increases dataset complexity and improves the quality of learned features. Among these,

the Moderate transformation (ID=3) achieves the highest accuracy (Val Top-1: 49.18%, Top-5: 82.06%),

with the Low transformation (ID=2) also performing well (Val Top-1: 43.30%). However, the High

transformation (ID=4) results in a substantial drop in performance (Val Top-1: 38.08%), likely due

to excessive deformation that makes feature learning more difficult. The learning curves (see Fig-

ures 7.2b and 7.2d) show a clear separation between Moderate/Low and High transformation regimes,

supporting this conclusion.

Experiments 5–6 (Effect of Color Augmentation): With transformation magnitude fixed at the

optimal ”Moderate” level, color augmentation is varied:

• Moderate color (ID=5), using a three-channel ”viridis” colormap along the z-axis, achieves the

best overall performance except for Top-5 validation accuracy (Val Top-1: 50.98%, Train Top-

1: 22.06%, Loss: 3.58). This highlights the benefit of three-channel information with consistent

color-depth encoding.

• High color (ID=6), with randomly selected coloring strategies, reduces accuracy across the board

(Val Top-1: 34.50%), suggesting that excessive color variation can obscure underlying geometric

information and weaken the network performance, as visualized in the slower and poor performing

validation accuracy plots (Figures 7.2b, 7.2d).

General Trends: Moderate levels of both transformation and color augmentation yield the highest

pre-training accuracy and best balance between diversity and learnability. Overly aggressive augmen-

tation, either in geometric transformations or color variation, diminishes model performance. Run

with no transformation should be disregarded as it fails to induce meaningful feature learning.

7.4 Downstream Performance

This section presents a detailed analysis of the downstream fine-tuning performance achieved on two

widely used action recognition benchmarks: HMDB51 and UCF101. The same experiment config-

urations as those described for pre-training are adopted from [88], allowing for a direct evaluation

of how differences in fractal dataset design and augmentation affect real-world task transfer. Re-

sults are reported for the final model checkpoint, and are presented using both summary tables and

training/validation curves to enable exact comparison across experimental settings.
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Overview of Presented Results: Key metrics include Top-1 and Top-5 classification accuracy for

both the training and validation sets, as well as final training loss. The main findings are summarized

in Table 7.6 (HMDB51) and Table 7.7 (UCF101). For each dataset, corresponding training and vali-

dation curves (Figures 7.3 and 7.4) provide further insight into training dynamics and generalization.

Note: While strong pre-training metrics are often viewed as a sign of effective feature learning,

downstream performance does not always correlate perfectly with pre-training results. This section

highlights both consistencies and discrepancies, emphasizing that downstream transfer is the ultimate

test of representation quality.

7.4.1 HMDB51 Fine-Tuning Results

Table 7.6: Fine-tuning performance summary on HMDB51. Each row corresponds to an experiment ID.
Metrics are reported for the final checkpoint. Best and second best results per column are highlighted in
underlined bold and bold, respectively.

HMDB51 Fine-tuning Results
ID Transform Color ↑Train Top-1 ↑Train Top-5 ↑Val Top-1 ↑Val Top-5 ↓Train Loss
1 None Low 62.39% 87.36% 35.95% 69.93% 1.3327
2 Low Low 64.67% 89.50% 49.02% 78.82% 1.2029
3 Moderate Low 63.80% 88.77% 48.56% 79.15% 1.2439
4 High Low 64.67% 88.20% 48.04% 79.02% 1.2371
5 Moderate Moderate 66.27% 88.60% 47.25% 78.10% 1.1806
6 Moderate High 66.02% 89.92% 49.35% 79.41% 1.1930
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(a) HMDB51: Train set Top-1 accuracy. (b) HMDB51: Validation set Top-1 accuracy.

(c) HMDB51: Train set Top-5 accuracy. (d) HMDB51: Validation set Top-5 accuracy.

(e) HMDB51: Training loss over epochs.

Figure 7.3: Performance metrics during training on the HMDB51 dataset. (a)-(d): Top-1 and Top-5 accuracy
curves for the training and validation sets, respectively, showing learning progression. (e): Training loss (cross-
entropy) over epochs, indicating model optimization.

Table 7.6 provides a side-by-side comparison of all experimental runs on HMDB51. Figure 7.3

shows the evolution of Top-1 and Top-5 accuracy as well as loss throughout training. All training

configurations were kept identical to ensure a fair comparison across experiments. Each training run

required approximately 1 hour and 17 minutes to complete.
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HMDB51 Result Analysis

• Impact of Color Augmentation: The HMDB51 results show that the ”Moderate Transform, High

Color” configuration (ID=6) slightly outperforms other settings, achieving the best validation Top-

1 (49.35%) and Top-5 (79.41%) accuracy. This contrasts with the pre-training phase, where mod-

erate color augmentation yielded the highest scores. This suggests that, for HMDB51, a more

challenging and diverse dataset generated with higher color diversity during pre-training better

prepares the model to generalize to the complexities of real-world actions.

• Transformation Magnitude: All runs consistently outperform runs with no transformation (ID=1),

again confirming that diversity and geometric complexity in the synthetic pre-training data are es-

sential for transferable feature learning.

• Comparison to Pre-training Performance: Notably, experiments with the best pre-training met-

rics do not always translate directly to superior downstream results. For example, while ”Moderate

Transform, Moderate Color” was best for pre-training, the ”High Color” setting edges it out on

HMDB51. This reinforces that tuning pre-training for downstream objectives is nontrivial, and

that some degree of mismatch between pre-train and downstream performance is to be expected.

7.4.2 UCF101 Fine-Tuning Results

Table 7.7: Fine-tuning performance summary on UCF101. Each row corresponds to an experiment ID.
Metrics are reported for the final checkpoint. Best and second best results per column are highlighted in
underlined bold and bold, respectively.

UCF101 Fine-tuning Results
ID Transform Color ↑Train Top-1 ↑Train Top-5 ↑Val Top-1 ↑Val Top-5 ↓Train Loss
1 None Low 90.45% 98.07% 67.99% 89.19% 0.3496
2 Low Low 89.81% 98.12% 78.17% 94.61% 0.3528
3 Moderate Low 89.64% 98.19% 78.32% 94.74% 0.3572
4 High Low 89.37% 98.20% 77.53% 94.90% 0.3628
5 Moderate Moderate 89.93% 98.28% 77.72% 95.11% 0.3415
6 Moderate High 89.54% 98.30% 77.37% 94.85% 0.3505
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(a) UCF101: Train set Top-1 accuracy. (b) UCF101: Validation set Top-1 accuracy.

(c) UCF101: Train set Top-5 accuracy. (d) UCF101: Validation set Top-5 accuracy.

(e) UCF101: Training loss over epochs.

Figure 7.4: Performance metrics during training on the UCF101 dataset. (a)-(d): Top-1 and Top-5 accuracy
curves for the training and validation sets, respectively, illustrating learning behavior. (e): Training loss (cross-
entropy) over epochs, demonstrating model convergence.

Table 7.7 summarizes results on the UCF101 dataset, while Figure 7.4 presents the associated learning

curves. All training configurations were kept identical to ensure a fair comparison across experiments.

Each training run required approximately 3 hour and 24 minutes to complete.

UCF101 Result Analysis
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• Best Overall Setting: The ”Moderate Transform, Moderate Color” experiment (ID=5) emerges as

the most effective configuration for the UCF101 dataset. It achieves the best validation Top-5 ac-

curacy (95.11%) and the lowest training loss, indicating a strong balance between feature learning

and generalization. While the ”Moderate Transform, High Color” setting (ID=6) is competitive,

the moderate color augmentation appears to provide slightly more stable and ultimately higher val-

idation performance. This aligns with observations from the pre-training phase, where moderate

augmentation settings were generally found to be optimal.

• Effect of Color Augmentation Levels: Unlike the HMDB51 dataset, UCF101 does not show a

significant benefit from high levels of color diversity in pre-training. The ”High Color” configura-

tion (ID=6), while performing strongly, does not surpass the results obtained with moderate color

settings. This suggests that the visual patterns and actions within the UCF101 dataset are effec-

tively captured when the model is pre-trained with moderately varied yet consistent color cues,

rather than extreme color augmentation.

• Learning Curves and Training Dynamics: The learning curves across all experimental con-

figurations for UCF101 display similar positive trends. Both training and validation accuracies

consistently increase throughout the training process, with no indications of premature plateauing.

The continued improvement in both Top-1 and Top-5 validation accuracy suggests that extending

the number of training epochs could potentially yield further performance gains.

• Generalization and Overfitting Insights: As is typical, training accuracy figures are generally

higher than their validation counterparts across all UCF101 experiments. However, the observed

gap between training and validation performance is narrower for UCF101 compared to HMDB51,

indicating more robust generalization on this particular dataset. Consistent with previous findings,

the experiment run without any pre-training transformations (ID=1) shows a significant lag in

validation accuracy despite achieving high training performance, underscoring the importance of

learning meaningful features through diverse transformations during the pre-training stage.

7.4.3 General Observations and Comparison

• Pre-train vs. Downstream Alignment: The Moderate-Moderate setting (moderate transforma-

tion, moderate color) generally provides the best or nearly-best results on both datasets, confirm-

ing it as the most balanced and robust approach overall. However, there is no perfect mapping

between pre-train and downstream ranking, highlighting the value of downstream validation as the

final judge of model effectiveness.

• Color Augmentation Insights: High color diversity is most advantageous for HMDB51. For

UCF101, moderate color offers the most stable improvements, indicating that over-augmentation

may dilute the underlying spatial cues critical for recognition.

• Impact of Training Duration: The learning curves for both datasets rise steadily up to the last

epoch, with no convergence plateau reached. This suggests that extending training could yield

better results.
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• Consistency with Dataset Design: The trends observed here are consistent with those found in

the synthetic pre-training experiments: diversity in the pre-training data (via geometric transforma-

tion and color augmentation) is necessary, but excessive augmentation can harm generalizability.

Finding the right balance is key to maximizing downstream performance.

7.5 Ablation Study

To evaluate the sensitivity of downstream performance to the scale of synthetic pre-training data, an

ablation study was conducted. As described previously in Section 7.2.3, these experiments system-

atically vary both the number of instances per class and the total number of classes in the fractal

dataset. The primary objective is to assess how expanding dataset size and class diversity during pre-

training impacts final performance on both the synthetic validation set and the downstream bench-

marks HMDB51 and UCF101.

Table 7.8 summarizes the pre-training results for each ablation configuration, while Tables 7.9 and 7.10

present the corresponding fine-tuning results on HMDB51 and UCF101, respectively. Each row

matches an experiment ID from Table 7.1, clearly indicating the number of instances and classes

used. In addition to the ablation study results, a best performing non-ablation run is shown for easier

comparision.

The duration of the pre-training phase is influenced by the dataset’s overall scale and complexity,

specifically the total number of instances and the diversity of classes. The recorded training times for

the configurations explored in the ablation study (corresponding to IDs 7, 8, and 9 in Table 7.8) were

as follows:

• ID 7 (200 instances/class, 500 classes; 100 000 total instances): 8 hours 41 minutes

• ID 8 (400 instances/class, 250 classes; 100 000 total instances): 6 hours 22 minutes

• ID 9 (400 instances/class, 500 classes; 200 000 total instances): 16 hours 2 minutes

Table 7.8: Pre-training performance for dataset size ablation: Varying the number of classes and instances in
the fractal dataset. Best and second best results per column are highlighted.

PRE-TRAIN Dataset Size Experiment Results
ID #Instance #Class ↑Train Top-1 ↑Train Top-5 ↑Val Top-1 ↑Val Top-5 ↓Train Loss
5 100 500 22.06% 45.62% 50.98% 81.96% 3.58
7 200 500 66.40% 81.64% 96.79% 99.16% 1.4875
8 400 250 40.39% 65.64% 86.20% 97.88% 2.4903
9 400 500 83.76% 91.36% 98.53% 99.38% 0.7251
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Table 7.9: HMDB51 downstream performance for different synthetic pre-training dataset sizes. Rows show
the effect of scaling the number of classes and instances on downstream accuracy. Best and second best results
per column are highlighted.

HMDB51 Fine-tuning Results (Dataset Size Experiments)
ID #Instance #Class ↑Train Top-1 ↑Train Top-5 ↑Val Top-1 ↑Val Top-5 ↓Train Loss
5 100 500 66.27% 88.60% 47.25% 78.10% 1.1806
7 200 500 73.73% 93.27% 49.02% 78.04% 0.9014
8 400 250 69.20% 91.24% 47.97% 79.87% 1.0564
9 400 500 80.32% 95.02% 50.85% 79.87% 0.6919

Table 7.10: UCF101 downstream performance for different synthetic pre-training dataset sizes. Rows show
the effect of scaling the number of classes and instances on downstream accuracy. Best and second best results
per column are highlighted.

UCF101 Fine-tuning Results (Dataset Size Experiments)
ID #Instance #Class ↑Train Top-1 ↑Train Top-5 ↑Val Top-1 ↑Val Top-5 ↓Train Loss
5 100 500 89.93% 98.28% 77.72% 95.11% 0.3415
7 200 500 91.35% 98.48% 78.38% 95.14% 0.2916
8 400 250 90.33% 98.27% 78.09% 94.32% 0.3240
9 400 500 94.17% 99.01% 80.41% 95.37% 0.2090

7.5.1 Analysis of the Ablation Study

The ablation study demonstrates clear trends regarding the scalability of fractal-based synthetic datasets

for pre-training:

• Effect of Increasing Dataset Size: Across all three tables (Pre-train, HMDB51, and UCF101

results), the largest dataset configuration (ID=9: 400 instances/class, 500 classes) consistently

achieves the best or near-best outcomes in both pre-training and downstream benchmarks. For

example, the Top-1 validation accuracy on UCF101 reaches 80.41%, while on HMDB51 it attains

50.85%. This highlights the substantial benefits of increasing both data volume and class diversity

for improving transferable representation learning.

• Impact of Classes versus Instances: Comparing experiment ID=7 (200 instances/class, 500

classes) to ID=8 (400 instances/class, 250 classes), both of which have the same total dataset

sizes but different distributions between class count and instance count, reveals a clear trend: the

configuration with more classes and fewer instances per class (ID=7) outperforms the alternative

in both pre-training and downstream performance. This suggests that class diversity is a stronger

driver of model generalizability than merely increasing the number of examples per class.

• Pre-training and Downstream Performance Alignment: The best-performing pre-training setup

(ID=9) also yields the strongest downstream results on both HMDB51 and UCF101, reinforcing

the conclusion that scaling up the diversity and volume of synthetic pre-training data directly en-

hances the model’s transferability. Nonetheless, it should be noted that improvements diminish
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somewhat with increasing dataset size, indicating a saturation effect or the need for additional

diversity through more advanced augmentation or fractal generation techniques.

• Performance of Smaller Dataset Configurations: The smaller dataset configurations (ID=7 and

ID=8) perform competitively, especially on UCF101, but are consistently outperformed by the

largest dataset (ID=9). This demonstrates that while moderate-sized synthetic datasets can still

provide meaningful pre-training, maximizing both class diversity and the number of instances per

class is generally optimal for downstream action recognition.

• Training Loss and Generalization: Lower training loss during pre-training is generally associ-

ated with higher downstream accuracy on both evaluation benchmarks. However, as established

throughout this thesis, it is the validation accuracy on downstream tasks that provides the measure

of generalization. Notably, the configuration with the largest pre-training dataset (ID=9) achieves

both the lowest training loss and the highest fine-tuning accuracy, supporting the value of large,

diverse synthetic pre-training sets.

Overall, these results reinforce the importance of maximizing both class diversity and overall dataset

size when constructing synthetic pre-training data for transfer learning. The clear trend that greater

class variety is more beneficial than simply increasing the number of instances per class underscores

the necessity for representational breadth in synthetic datasets. This insight aligns well with the

general objective of promoting generalization across diverse real-world action categories.

7.6 Comparison to Prior Work and Standard Pre-training

Table 7.11 presents a direct comparison of downstream Top-1 validation accuracy (%) between this

thesis’s best 3D fractal pre-trained models and the most relevant prior 2D fractal pre-training re-

sults [88]. Results are grouped by total dataset size and class/instance split to ensure a fair compari-

son.

While the 3D fractal video pre-training does not surpass the top-performing 2D fractal pre-training

method or standardized Kinetics pre-training on either HMDB51 or UCF101, it consistently outper-
forms training from scratch by a substantial margin. For example, on the largest synthetic dataset

(400 instances/class, 500 classes; 200k total), the 3D fractal pre-training achieves a Top-1 accuracy of

50.9% on HMDB51 and 80.4% on UCF101, compared to the scratch baseline of 31.5% and 70.3%,

respectively (see Table 7.12).

To contextualize the results further, Table 7.12 also includes Kinetics pre-training as a reference. It

should be emphasized that this is not a direct comparison: the Kinetics-400 results are obtained us-

ing a larger dataset (250,000 videos), with a higher input resolution of 224x224 pixels (four times the

area per frame) and four times the pre-training epochs (100 epochs versus 25 for fractal pre-training).

As such, Kinetics pre-training serves as an upper-bound benchmark.

These findings highlight that, although there remains room for improvement relative to 2D fractal-
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based approaches, scaling up synthetic 3D fractal video pre-training provides strong benefits over
random initialization. The clear gain over from-scratch models underlines the practical value of

synthetic video pre-training, especially when large-scale real video data (such as Kinetics-400 [54])

is not available. The reasons for the observed performance gap with 2D fractals, and strategies for

further closing it, are discussed in detail in Discussion Chapter 9.

Table 7.11: Comparison of downstream Top-1 validation accuracy (%) on HMDB51 and UCF101 between
this thesis (3D Fractal) and the best-matching 2D fractal pre-training methods from [88] (2D Fractal). Cor-
responding configurations based on total dataset size and class/instance distribution are shown. For each row
(experimental setup), the best and second best accuracies across the methods and datasets are highlighted.

#Instances per Class #Classes Total Size 2D Fractal [88] 3D Fractal (This Thesis)
HMDB51 UCF101 HMDB51 UCF101

100 500 50 000 56.5 81.8 49.4 78.3
200 500 100 000 61.5 84.9 49.0 78.4
400 250 100 000 60.3 85.3 47.97 78.1
400 500 200 000 61.5 86.0 50.9 80.4

Table 7.12: Comparison of Top-1 Validation Accuracy (%) on HMDB51 and UCF101 between models trained
from scratch, models pre-trained with 3D Fractals (this thesis), and models pre-trained with Kinetics dataset.
All results correspond to an input resolution of 112x112 except Kinetics, which uses 224x224 and a much
larger dataset (250k videos). The best result per dataset is highlighted, with the other being second best. [88]

Method HMDB51 UCF101
Scratch 31.5 70.3
3D Fractal 50.9 80.4
Kinetics* 70.1 95.3

While the current approach does not surpass the very best results from 2D fractal-based pre-training

and Kinetics pre-training, it robustly outperforms models trained from scratch, validating the value of

large-scale synthetic video for pre-training in data-scarce domains. The findings suggest that further

advances in fractal data generation or augmentation could help close the remaining gap to state-of-

the-art synthetic video pre-training.

These findings comprehensively address the thesis objectives, demonstrating that synthetic 3D frac-

tal video pre-training can yield significant performance gains in real-world action recognition tasks,

especially in the absence of large-scale annotated video datasets.
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8 Improving Fractal Geometry

This chapter presents additional research aimed at enhancing the geometric quality of the generated

fractals. Visual inspection of the initial datasets revealed that a portion of classes exhibited degen-

erate or non-representative geometry, motivating a deeper investigation into fractal parameterization.

These research was further motivated by plateauing in training results by tuning transformation and

color augmentations. The methods and findings discussed in this chapter are closely aligned with the

approaches in [7].

8.1 Revisiting Fractal Shape Controlling Parameters

The baseline parameter sampling strategy used thus far is rudimentary, with the primary filtering

criterion being sufficient variance across all three axes. While this approach does help eliminate the

most trivial degenerate fractals, it remains insufficient in non-representative and poorly structured

fractals that still leak into the training dataset.

Given these limitations, it became necessary to revisit and refine the parameters governing fractal

shape to further improve dataset quality and, by extension, downstream model performance.

Following the method in [7], each A matrix of the IFS was decomposed into four component matrices

using Singular Value Decomposition, as detailed in Section 4.2:

Ai = Rθ ,i ·Σi ·Rφ ,i ·Di (8.1)

Here, R denotes rotation matrices, Σ is a diagonal matrix of singular values, and D is a diagonal matrix

with entries in {−1,1} to allow reflections.

To enforce contractivity, the elements of Σ: [σ1,σ2,σ3] were sampled from [0,1] and sorted in de-

scending order according to SVD theorem. Rotation matrices were sampled from [−π,π]. This

decomposed sampling approach was visualized and manually inspected to determine if it led to sat-

isfactory fractal geometry. While this method guaranteed contractivity, it did not, by itself, yield

universally well-formed fractals, as illustrated in Figure 8.1.
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(a) Unconstrained σ1 to σ3 ratio. (b) Unconstrained σ1 to σ3 ratio.

(c) Constrained σ1 to σ3 ratio. (d) Constrained σ1 to σ3 ratio.

Figure 8.1: Examples of fractals with and without constrained σ1/σ3 ratio. Top: Unconstrained systems yield
anisotropic or degenerate shapes; Bottom: Constraining σ1/σ3 promotes isotropy but does not guarantee non-
degenerate geometry.

Notably, the constraint σ1
σ3
≤ 1.5 was applied to each function in the system, ensuring no function

exceeded this anisotropy ratio. Empirical inspection confirmed that reducing this ratio produced

fractals with more isotropic (well-balanced) geometry. The relevance of this ratio is further explored

through its connection to the matrix condition number, discussed in the next section.
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8.2 Condition Number

Formally, the condition number of a matrix A with respect to a given norm is defined as:

κ(A) = ∥A∥ · ∥A−1∥.

When the Euclidean norm (2-norm) is used, the condition number simplifies to the ratio of the largest

to the smallest singular value of A:

κ(A) =
σmax

σmin
,

where σmax and σmin denote the largest and smallest singular values of A, respectively.

A high condition number indicates that the matrix is ill-conditioned, meaning that small perturbations

in the input can lead to large changes in the output. This property is important for fractal geometry,

as high condition numbers may result in numerically unstable or highly anisotropic transformations.

Conversely, a low condition number suggests numerical stability and more isotropic, well-behaved

fractal shapes.

It was observed that many samples exhibited pronounced anisotropy, with fractals tending to align

along certain directions in 3D space, resulting in visually poor geometry. Because the condition

number is determined by the singular values, controlling its upper bound provides a direct handle on

the directionality of the generated fractal.

Through iterative empirical testing, constraining the condition number to σ1
σ3
≤ 1.5 was found to re-

liably produce fractals with satisfactory isotropy and structural complexity. However, as shown in

Figure 8.1, condition number alone is not sufficient. Other factors also play a role in the emergence of

undesirable or degenerate shapes. This observation motivated a more nuanced exploration of fractal

geometry using the α (sigma-factor) formula.

8.3 Alpha Formula

As discussed in Section 4.2, the alpha formula (or σ -factor) [7] provides a single quality measure for

fractal geometry in 2D. It uses a weighted sum of singular values across all function in the IFS and

was empirically found to be:

α =
N

∑
i=1

(σi,1 +2 ·σi,2) (8.2)

While effective in the 2D case, a direct extension to 3D is nontrivial, as 3D fractals involve three

singular values per function.

A simple naive extension to 3D:
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α =
N

∑
i=1

(σi,1 +2 ·σi,2 +3 ·σi,3) (8.3)

However, the same alpha range bounds as used in 2D (αl =
1
2(5+N), αu =

1
2(6+N)) do not guarantee

visually satisfying fractals in 3D. Therefore, the naive extension formula was abandoned. Both the

sigma weights and the optimal alpha bounds require re-estimation, which led to the use of linear

SVMs to empirically determine optimal weights.

8.4 SVM-based Weighting of Singular Values

Inspired by [7], a binary labeling process was undertaken, assigning “Good” or “Bad” geometry labels

to fractals. A custom pipeline was developed for rapid annotation, producing a labeled dataset of 800

fractals across four system sizes (N = 2,4,6,8). Examples of labeled “Good” and “Bad” fractals are

shown in Figure 8.2.

(a) Examples of label ”Good”.

(b) Examples of label ”Bad”.

Figure 8.2: Visual examples of fractals labeled as “Good” (top) and “Bad” (bottom) for training the SVM
classifier.

To learn the sigma weights, a linear SVM was trained for each system size by providing the concate-

nated singular values as input, using 10-fold cross-validation within the scikit-learn [76] framework.

The SVM coefficients were interpreted as the relative importance of each singular value. Table 8.1

summarizes the mean coefficients across folds and system sizes.
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Table 8.1: Mean learned SVM coefficients (c1,c2,c3) for singular values (σ1,σ2,σ3) across IFS system sizes,
indicating their importance for classifying fractal geometry.

N c1 c2 c3

2 0.6867 1.2504 1.5885
4 -0.0406 0.1585 1.3995
6 -0.9884 -0.1982 0.2464
8 -0.3594 -0.4300 -0.7421

Average -0.1754 0.1952 0.6231

The results indicate that σ3 generally receives the largest absolute weight (most often positive), sug-

gesting it is the most critical singular value for determining fractal quality across most system sizes.

Notably, for N = 8, this trend does not hold as strongly, reflecting variability in the data or the poten-

tial influence of subjective labeling and limited sample size. The weights assigned by the SVM can be

either positive or negative, with the absolute value indicating the strength of the contribution of each

singular value to the decision boundary. This trend is visualized in Figure 8.3, where the right column

(SVM weights) demonstrates improved separation between “Good” and “Bad” fractals compared to

the left column (uniform weights).

The two alpha formulas compared are:

Uniform Weights: αuni =
N

∑
i=1

(1 ·σi,1 +1 ·σi,2 +1 ·σi,3) (8.4)

SVM Weights: αsvm =
N

∑
i=1

(−0.1754 ·σi,1 +0.1952 ·σi,2 +0.6231 ·σi,3) (8.5)
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(a) N=2 (Uniform Weights) (b) N=2 (SVM Weights)

(c) N=4 (Uniform Weights) (d) N=4 (SVM Weights)

(e) N=6 (Uniform Weights) (f) N=6 (SVM Weights)

(g) N=8 (Uniform Weights) (h) N=8 (SVM Weights)

Figure 8.3: Comparison of alpha value distributions for “Good” and “Bad” fractals using uniform (left) versus
SVM-learned (right) singular value weights for each IFS system size.
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For system sizes N = 2 and N = 4, the SVM-based weighting yields notably better separation between

good and bad examples, supporting the idea that more nuanced, data-driven weighting leads to better

geometric control. For larger systems (N = 6,8), the separation is less pronounced, possibly due to

subjective labeling, limited sample size, or increased geometric complexity.

Overall, these findings suggest that a higher weight on σ3 leads to improved geometric separability

and that an optimal alpha value, informed by SVM-learned weights and combined with condition

number constraints, can guide efficient sampling of well-behaved fractals.

The research presented in this chapter suggests that targeted control of fractal parameters, particularly

through bounding the condition number and applying SVM-informed singular value weights, can

enhance the quality and utility of generated 3D fractal datasets. While these geometric improvements

appear promising, their full impact on synthetic pre-training and downstream transfer tasks remains

to be systematically evaluated. These methods offer practical tools and a foundation for future work

in 3D fractal-based data generation and action recognition.
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9 Discussion

9.1 Interpretation of Experimental Results

The experimental results presented in this thesis demonstrate that pre-training action recognition mod-

els on large-scale synthetic datasets generated from 3D fractal geometry offers a significant advantage

over training from scratch and narrows the performance gap with standard real-world pre-training

(e.g., Kinetics-400). Systematic evaluation across multiple experimental configurations shows that,

with careful dataset design and augmentation, 3D fractal pre-training yields robust and transferable

representations for video action recognition.

A key finding is that the best downstream performance on both UCF101 and HMDB51 benchmarks

was achieved with a ”moderate” regime of geometric transformations and color augmentation. The

moderate-moderate configuration provides the most consistent improvements, balancing the diver-

sity of fractal video data with sufficient learnability. Notably, while higher levels of augmentation

introduce more variability, they can in some cases reduce model performance, particularly when the

augmentations distort the geometric structure or obscure informative patterns. This confirms that

augmentation must be carefully calibrated to foster generalizable features without degrading the core

structure of the data.

It is also evident that strong pre-training accuracy does not always guarantee optimal transfer to

downstream tasks. For instance, the ”no transformation” configuration achieves perfect accuracy

on the pre-training task but fails to generalize to real-world datasets, highlighting the importance

of meaningful dataset complexity over mere memorization. Conversely, models pre-trained with

well-balanced fractal datasets showed both strong in-distribution and transfer learning performance,

confirming the utility of the proposed synthetic data approach.

When compared with previous work on 2D fractal-based pre-training, the 3D fractal pipeline devel-

oped in this thesis does not yet surpass the best reported 2D results. Nonetheless, it still consistently

and substantially outperforms models trained from scratch, underscoring the practical value of syn-

thetic pre-training, especially where real data is scarce or privacy-restricted. The gap with 2D fractal

results is discussed further below, with potential improvement strategies identified in the Future Work

Section 9.4.

9.2 Insights from Dataset Generation

The characteristics of the generated fractal dataset were found to have a profound effect on learned

representations and transferability:

• Dataset Complexity and Diversity: The results from the ablation study demonstrate that both the

number of classes and the total number of video instances are strong drivers of model performance.
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Increasing class diversity, in particular, yields greater improvements than simply increasing the

number of instances per class, confirming the need for a broad and varied action space in synthetic

datasets.

• Effect of Augmentation: Controlled augmentation, specifically moderate geometric transforma-

tions and color diversity, enables models to learn features that are robust to spatial and appearance

variations. However, excessive augmentation can harm both in-distribution and transfer perfor-

mance by introducing artificial variability that is not representative of the target domain.

• Fractal Generation Parameters: Attempts to improve the geometric quality of fractals, such as

constraining the condition number or using SVM-informed singular value weights, have proven

to be promising directions for further reducing the prevalence of degenerate or non-representative

classes. While these geometric enhancements have not yet been exhaustively evaluated in the

transfer learning pipeline, their impact on visual quality and sample diversity provides a strong

foundation for subsequent work.

9.3 Limitations

Despite the encouraging results, several limitations must be acknowledged:

• Computational Constraints: The scope and scale of experiments were limited by available com-

putational resources, particularly in generating and processing large 3D fractal datasets and run-

ning extensive ablation studies.

• Dataset Size and Diversity: While the synthetic datasets generated were large compared to many

prior works, further increases in scale, both in the number of classes and instance count, could

further enhance performance but were not exhaustively explored.

• Augmentation Scope: The augmentation regimes for transformation and color in this thesis were

explored using a tri-level (low, moderate, high) approach, which, while systematic, may be overly

simplistic. More granular or physics-inspired transformations (such as free fall, elastic collisions,

or other motion models) were not implemented and could expand the diversity of synthetic actions

in future work.

• Model Architecture Choices: The evaluation focused primarily on the ResNet-50 backbone with

TSM. While this choice is well-motivated and consistent with prior synthetic pre-training work, it

is possible that alternative architectures (e.g., video transformers) may benefit differently from 3D

fractal pre-training.

• Hyperparameter Sweep: No comprehensive search for optimal hyperparameters was conducted,

either for pre-training or fine-tuning. As a result, some of the chosen hyperparameter values may

have been sub-optimal, potentially limiting overall model performance.

• Limited Exploration of Alternative Representations: The experiments primarily utilized ren-

dered video frames from fractal point clouds. Other data representations, such as raw point cloud

sequences or mesh-based videos, were not explored in depth due to time and implementation con-
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straints.

• Synthetic-Real Domain Gap: Despite improvements, a domain gap remains between synthetic

fractal videos and real-world human action videos. Bridging this gap remains an open challenge,

particularly in capturing high-level semantics and dynamics present in real actions.

• Subjectivity in Geometric Quality Assessment: The identification of “good” versus “bad” fractal

geometries relied on subjective visual inspection and manual labeling, which could introduce bias

into SVM-guided quality experiments.

• Fractal Geometry Improvements: The effectiveness of SVM-learned singular value weights and

the condition number constraint for improving fractal quality is currently limited by the amount

of labeled data available for SVM training. It is possible that a larger and more diverse labeled

dataset, as well as a more refined exploration of condition number thresholds, would yield better

geometric sampling and higher downstream performance.

• Class Similarity in FDSL: While Formula-Driven Supervised Learning (FDSL) ensures perfect

label correspondence to generation parameters, it does not guarantee that all sampled classes are

visually distinct. Some classes may appear quite similar despite differing parameterizations, po-

tentially hindering downstream discrimination [20].

9.4 Implications and Future Work

The findings of this thesis support the value of large-scale synthetic fractal datasets for pre-training

action recognition models, especially when access to large real video datasets is limited or impractical.

The demonstrated transfer gains, even relative to strong baselines, suggest several promising avenues

for further research:

• Improved Fractal Sampling and Filtering: Future work should further refine the geometric

quality of fractal datasets by expanding the use of condition number constraints and data-driven

weighting (e.g., SVM-learned weights) to maximize the proportion of visually meaningful and di-

verse samples. Collecting a larger set of manually labeled fractal geometries would support the

development of more robust SVM or other machine learning models for automated quality assess-

ment, and a finer grid search over condition number thresholds may help optimize the balance

between isotropy and variety.

• Scaling Dataset Size: Increasing both the number of action classes and the diversity of transfor-

mations may further boost performance, as indicated by the ablation study. Leveraging distributed

or cloud-based resources may help overcome current computational bottlenecks.

• Richer Augmentation Strategies: Future research should move beyond the tri-level color and

transformation augmentation regime, exploring a broader and more continuous spectrum of aug-

mentation magnitudes. Incorporating physically-inspired transformations, such as free fall, elastic

or inelastic collisions, or dynamics derived from simple physics simulations, could enrich the mo-

tion complexity in synthetic videos and better mimic real-world variability.
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• Alternative Data Representations: Exploring alternative representations of fractal data, such as

mesh sequences or direct point cloud inputs, could further enhance the utility of synthetic datasets

and support evaluation with a wider range of neural architectures.

• Cross-Domain Applications: The pipeline and methodologies developed here may be extended

to other vision tasks (e.g., object recognition, segmentation) or domains (e.g., medical imaging,

animal behavior analysis) that face similar data scarcity challenges.

• Integration with Domain Adaptation: Combining fractal-based pre-training with domain adap-

tation or self-supervised learning techniques could help further bridge the synthetic-real gap and

improve transferability.

• Automated Assessment of Fractal Quality: Developing objective, automated metrics for eval-

uating the quality and diversity of fractal geometry would enable more systematic filtering and

sampling, reducing the reliance on subjective visual inspection.

• Class Diversity Enforcement in FDSL: To address the issue of visually similar classes, future

work could explore automatic embedding of fractal point clouds into a learned feature space (e.g.,

via a shallow neural network), then use this representation to enforce a minimum separation be-

tween class prototypes when generating new classes. Such approaches could help ensure that each

synthetic action class is not only parametrically unique but also visually distinct, supporting better

downstream discrimination [20].

• Exploring Other Fractal Types and Generative Models: Expanding beyond the current IFS-

based approach to other fractal models, or integrating with deep generative models, may yield new

forms of complexity and transfer learning benefit.
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10 Conclusion

This thesis set out to investigate whether synthetic data generated from 3D fractal geometry could

serve as an effective foundation for pre-training action recognition models. Motivated by the limita-

tions and costs associated with large-scale real video datasets, a comprehensive methodology was de-

veloped for the procedural generation, augmentation, and evaluation of fractal-based synthetic video

datasets. Leveraging Iterated Function System (IFS) and controlled transformation pipelines, large

and diverse datasets were created and used to pre-train neural networks, whose learned representa-

tions were then transferred to real-world benchmarks.

The experiments conducted demonstrated that 3D fractal pre-training substantially outperforms train-

ing from scratch and achieves competitive results relative to standard real-data pre-training, particu-

larly in the context of privacy-sensitive or resource-limited settings. Key findings include:

• The choice and calibration of fractal transformation and color augmentation strategies significantly

influence the learnability and transferability of synthetic datasets, with moderate levels proving

most effective.

• Scaling up both the number of classes and instances per class in the fractal dataset leads to robust

improvements in both pre-training and downstream action recognition performance.

• Improvements in fractal geometry, such as constraining condition numbers or employing data-

driven singular value weighting, provide further avenues for enhancing dataset quality and down-

stream utility.

• While the 3D fractal approach did not surpass the highest-reported results for 2D fractal pre-

training, it consistently outperformed models trained from scratch and provides a strong foundation

for further research.

The research questions posed at the outset, concerning the utility of 3D fractal-based synthetic data

for pre-training, and the effectiveness of formula-driven supervision in action recognition, have been

affirmatively answered. The thesis demonstrates that with principled dataset design and augmenta-

tion, synthetic fractal data can meaningfully bridge the gap to large-scale annotated video datasets,

enabling scalable and privacy-preserving pre-training.

Contributions of the thesis include:

• The development and validation of a full 3D fractal video generation and augmentation pipeline

for action recognition research.

• A systematic evaluation of how dataset parameters and geometric properties influence representa-

tion learning and transfer performance.

• Introduction of new techniques for improving 3D fractal geometry using SVM-guided weighting

and condition number constraints.

• An empirical comparison to prior 2D synthetic approaches and to conventional baselines.
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In conclusion, this work highlights the potential of fractal-based synthetic data as a powerful, flex-

ible, and privacy-friendly alternative for training deep learning models in computer vision. While

challenges and opportunities for further improvement remain, the results underscore the promise of

formula-driven synthetic data generation for advancing action recognition and related tasks.
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complexes”. In: (1984).

[29] Epic Games. Unreal Engine. Version 4.22.1. Apr. 25, 2019. URL: https://www.unrealengine.

com.

[30] European Parliament and Council of the European Union. Regulation (EU) 2016/679 of the

European Parliament and of the Council. of 27 April 2016 on the protection of natural persons

with regard to the processing of personal data and on the free movement of such data, and

repealing Directive 95/46/EC (General Data Protection Regulation). May 4, 2016. URL: https:

//data.europa.eu/eli/reg/2016/679/oj (visited on 04/13/2023).

[31] Kenneth Falconer. Fractal Geometry: Mathematical Foundations and Applications. 3rd. John

Wiley Sons, 2014.

70

http://www.blender.org
https://arxiv.org/abs/1909.13719
https://arxiv.org/abs/1909.13719
https://arxiv.org/abs/1912.10154
https://arxiv.org/abs/1912.10154
https://doi.org/10.1117/12.3015657
https://doi.org/10.1117/12.3015657
https://gauss.math.yale.edu/fractals/Panorama/Nature/NatFracGallery/NatFracGallery.html
https://gauss.math.yale.edu/fractals/Panorama/Nature/NatFracGallery/NatFracGallery.html
https://arxiv.org/abs/2111.08095
https://arxiv.org/abs/2111.08095
https://doi.org/10.1109/TCYB.2014.2350774
https://arxiv.org/abs/1505.05192
https://arxiv.org/abs/1505.05192
https://arxiv.org/abs/1505.05192
https://www.unrealengine.com
https://www.unrealengine.com
https://data.europa.eu/eli/reg/2016/679/oj
https://data.europa.eu/eli/reg/2016/679/oj


BIBLIOGRAPHY

[32] Christoph Feichtenhofer et al. SlowFast Networks for Video Recognition. 2019. arXiv: 1812.

03982 [cs.CV]. URL: https://arxiv.org/abs/1812.03982.

[33] Robert Geirhos et al. “ImageNet-trained CNNs are biased towards texture; increasing shape

bias improves accuracy and robustness”. In: (2022). arXiv: 1811.12231 [cs.CV]. URL: https:

//arxiv.org/abs/1811.12231.

[34] Ross Girshick et al. Rich feature hierarchies for accurate object detection and semantic seg-

mentation. 2014. arXiv: 1311.2524 [cs.CV]. URL: https://arxiv.org/abs/1311.2524.

[35] GitHub and OpenAI. GitHub Copilot. https://github.com/features/copilot. Accessed: 2025-

06-04. 2021.

[36] Tilmann Gneiting and Adrian E Raftery and. “Strictly Proper Scoring Rules, Prediction, and

Estimation”. In: Journal of the American Statistical Association 102.477 (2007), pp. 359–378.

DOI: 10.1198/016214506000001437. eprint: https://doi.org/10.1198/016214506000001437.

URL: https://doi.org/10.1198/016214506000001437.

[37] Google. Gemini. 2025. URL: https://gemini.google.com/.

[38] Raghav Goyal et al. The ”something something” video database for learning and evaluating

visual common sense. 2017. arXiv: 1706.04261 [cs.CV]. URL: https://arxiv.org/abs/1706.

04261.

[39] Shubhaankar Gupta, Thomas P. O’Connell, and Bernhard Egger. Beyond Flatland: Pre-training

with a Strong 3D Inductive Bias. 2021. arXiv: 2112.00113 [cs.CV]. URL: https://arxiv.org/

abs/2112.00113.

[40] Abdul Mueed Hafiz, Mahmoud Hassaballah, and Adel Binbusayyis. “Formula-Driven Super-

vised Learning in Computer Vision: A Literature Survey”. In: Applied Sciences 13.2 (2023).

ISSN: 2076-3417. DOI: 10.3390/app13020723. URL: https://www.mdpi.com/2076-3417/13/

2/723.

[41] Tengda Han, Weidi Xie, and Andrew Zisserman. “Video Representation Learning by Dense

Predictive Coding”. In: Proceedings of the IEEE/CVF International Conference on Computer

Vision Workshops. 2019. URL: https://www.robots.ox.ac.uk/∼vgg/publications/2019/Han19/

han19.pdf.

[42] Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825 (Sept. 2020),

pp. 357–362. DOI: 10.1038/s41586-020-2649-2. URL: https://doi.org/10.1038/s41586-020-

2649-2.

[43] Felix Hausdorff. Grundzüge der Mengenlehre. Leipzig: Veit & Comp., 1914.

[44] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015. arXiv: 1512.03385

[cs.CV]. URL: https://arxiv.org/abs/1512.03385.

[45] Kaiming He et al. Momentum Contrast for Unsupervised Visual Representation Learning.

2020. arXiv: 1911.05722 [cs.CV]. URL: https://arxiv.org/abs/1911.05722.

71

https://arxiv.org/abs/1812.03982
https://arxiv.org/abs/1812.03982
https://arxiv.org/abs/1812.03982
https://arxiv.org/abs/1811.12231
https://arxiv.org/abs/1811.12231
https://arxiv.org/abs/1811.12231
https://arxiv.org/abs/1311.2524
https://arxiv.org/abs/1311.2524
https://github.com/features/copilot
https://doi.org/10.1198/016214506000001437
https://doi.org/10.1198/016214506000001437
https://doi.org/10.1198/016214506000001437
https://gemini.google.com/
https://arxiv.org/abs/1706.04261
https://arxiv.org/abs/1706.04261
https://arxiv.org/abs/1706.04261
https://arxiv.org/abs/2112.00113
https://arxiv.org/abs/2112.00113
https://arxiv.org/abs/2112.00113
https://doi.org/10.3390/app13020723
https://www.mdpi.com/2076-3417/13/2/723
https://www.mdpi.com/2076-3417/13/2/723
https://www.robots.ox.ac.uk/~vgg/publications/2019/Han19/han19.pdf
https://www.robots.ox.ac.uk/~vgg/publications/2019/Han19/han19.pdf
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1911.05722
https://arxiv.org/abs/1911.05722


BIBLIOGRAPHY

[46] JOHN E. HUTCHINSON. “Fractals and Self Similarity”. In: Indiana University Mathematics

Journal 30.5 (1981), pp. 713–747. ISSN: 00222518, 19435258. URL: http://www.jstor.org/

stable/24893080 (visited on 05/23/2025).

[47] Yuchi Ishikawa, Tatsuya Komatsu, and Yoshimitsu Aoki. “Pre-training with Synthetic Patterns

for Audio”. In: arXiv preprint arXiv:2410.00511 (2024). URL: https://arxiv.org/abs/2410.

00511.

[48] Simon Jenni, Givi Meishvili, and Paolo Favaro. “Video Representation Learning by Recog-

nizing Temporal Transformations”. In: Proceedings of the European Conference on Computer

Vision (ECCV). 2020. URL: https://arxiv.org/abs/2007.10730.

[49] Heinrich Jiang and Ofir Nachum. “Identifying and Correcting Label Bias in Machine Learn-

ing”. In: (2019). arXiv: 1901.04966 [cs.LG]. URL: https://arxiv.org/abs/1901.04966.

[50] Misha Karim et al. “Human Action Recognition Systems: A Review of the Trends and State-

of-the-Art”. In: IEEE Access 12 (2024), pp. 36372–36390. DOI: 10 .1109/ACCESS.2024.

3373199.
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