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Chapter 1

Introduction

Image classification in the real world is a tricky problem. Traditionally, a classifica-
tion model is trained with fully labeled datasets, seeing only a subset of all classes
that it can encounter in the wild, which is categorized as closed-world learning.
While semi-supervised learning approaches also incorporate unlabeled data, they
still assume that the unlabeled data belongs to the same set of classes as the la-
beled data. These scenarios struggle in the wild when a new sample from an
unseen class is encountered, also known as open-world learning, in which case the
model would classify the new sample into one of the seen classes.

Some approaches try to train the model to recognize samples from unseen classes
and categorize them as "unknown"[8, 28]. However, this ignores the potential of
learning from the new objects. The Generalized Category Discovery (GCD) task
aims to tackle this problem by requiring the model to be able to correctly classify
already seen classes, while also being able to cluster new samples into unseen
classes[31]. Another advantage to the GCD setup is that it no longer assumes that
unlabeled data comes from the same set of classes as the labeled data, extending
the amount of data that can be used in self-supervised learning.

The clustering of seen and unseen classes in GCD can be split into two main cat-
egories. Non-parametric methods[26, 32] utilize a non-parametric algorithm, such
as K-Means, to cluster the samples, while parametric methods[30, 34, 35, 37] utilize
parametric Fully Connected (FC) layers to cluster the samples.

The State of The Art (SOTA) GCD method by Rastegar et al. [26] is a non-parametric
method that learns data embeddings through contrastive learning using hierarchi-
cal pseudo-labels. They use Balanced Semi-Supervised K-Means (BSSK) and define
the Hierarchical Semi-Supervised K-Means (HSSK) algorithms to generate clusters
of different levels of hierarchies. Rastegar et al. [26]’s method showcases the ben-
efits of utilizing the latent hierarchies present in the datasets to solve the GCD
task.
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4 Chapter 1. Introduction

Concurrently, work in the field of hyperbolic machine learning has shown that
learning embeddings in hyperbolic geometry leads to increased performance in
hierarchical tasks[12, 24], as hyperbolic geometry is more suited for representing
hierarchies than traditional Euclidean geometry[10, 17, 23]. With works show-
casing success by learning embeddings in the Poincaré and Lorentz models of
hyperbolic geometry[5, 12, 24].

The potential of hyperbolic geometry for the GCD task was concurrently explored
in a recently published paper by Liu et al. [20]. They adapt three GCD models, two
non-parametric and one parametric, to learn embeddings in the Poincaré model of
hyperbolic geometry. For the parametric method, they utilize the hyperbolic FC
layer developed by Ganea et al. [6] to cluster the data, while for non-parametric
methods, they perform K-Means on the Euclidean embeddings.

Liu et al. [20] leave the potential of using hyperbolic embeddings directly for non-
parametric clustering uninvestigated. Furthermore, it is worth investigating an-
other model for hyperbolic space, as the Lorentz model is known to be more nu-
merically stable, and has achieved successes in large data representation learning
as shown by Desai et al. [5]. This lays the foundation for this thesis, in which the
effects of using Lorentz hyperbolic learning and hyperbolic clustering algorithms
for GCD are explored.

Chapter 2 presents a detailed analysis of the existing literature within GCD and hy-
perbolic visual learning. Chapter 3 fully fleshes out the research questions based on
the analyzed literature. Chapter 4 details the novel implementations and modifica-
tions used throughout this project. Chapter 5 presents the experiment setups and
the results of these experiments, followed by numerous ablation studies. Lastly,
Chapter 6 highlights some potential future directions, followed by the conclusion
in Chapter 7.



Chapter 2

Technical Review

It is important to understand the existing literature within Generalized Category
Discovery (GCD) and hyperbolic visual learning to combine the two fields. This
chapter describes the GCD task and some of the methods used to solve it, followed
by a review of the hyperbolic visual learning literature, before finally highlighting
the work done by Liu et al. [20] within hyperbolic GCD.

2.1 Generalized Category Discovery

Generalized Category Discovery (GCD) is an open world classification problem,
where only a subset of a dataset is labeled, and the labeled subset does not neces-
sarily contain all considered classes in the dataset. An example would be training
a model on partially labeled datasets, such as animal datasets from camera traps.
This results in a labeled subset, which includes labels from a set known classes YL,
and an unlabeled subset including labels from both known and unknown classes
YU . The model is then tasked with classifying images from both the known (seen)
and novel (unseen) classes.

Therefore, when running GCD experiments, two data subsets are used:

• DL = {xi, yi} ∈ X ,YL A data subset whose labels are available to the model
during training. This dataset only includes known classes YL and is only
used for training.

• DU = {xi, yi} ∈ X ,YU A data subset whose labels are not available to the
model during training. This dataset includes both known and novel classes
YL ⊂ YU and is used for training and testing.

The goal is to classify the samples in DU , regardless of which set of classes the
samples belong to. The model is trained using samples from both DL and DU .

5



6 Chapter 2. Technical Review

However, since only labels from DL are available, the training method usually
includes both supervised and self-supervised learning.

GCD has typically been approached via either non-parametric or parametric meth-
ods. Non-parametric methods cluster input data based on proximity to class pro-
totypes (e.g. K-Means), whereas parametric methods classify based on proximity
to classification hyperplanes (e.g., cross-entropy classification).

While the class assignment methods differ, both methods use self-supervised learn-
ing to learn the feature embeddings of the samples. The following section will list
some of the training techniques used in the GCD literature.

2.1.1 Non-Parametric Methods

Vanilla GCD

Vaze et al. [31] introduces the GCD task and presents a method to solve it based on
contrastive learning to learn embeddings and K-Means to cluster the classes and
find class prototypes.

When learning the embeddings, they use a Vision Transformer (ViT) pre-trained
with DINO[2] and ImageNet as the backbone and a Multi-Layer Perceptron (MLP)
projector. They fine-tune the projector and the last layer of the ViT using self-
supervised contrastive learning and supervised contrastive learning. The function
for the self-supervised contrastive learning is:

Lu
i = − log

(
exp(zi · z′i/τ)

∑n 1[n ̸=i] exp(zi · zn/τ)

)
(2.1)

where z and z′ are two augmentations of one image, τ is a temperature constant
and 1[n ̸=i] is an indicator function that evaluates to 1 if and only if n ̸= i. The
function for the supervised contrastive learning is:

Ls
i = −

1
N (i) ∑

q∈N (i)
log

(
exp(zi · zq/τ)

∑n 1[n ̸=i] exp(zi · zn/τ)

)
(2.2)

where N (i) is a set of indices of features with the same label as zi in the mini-batch
B, excluding zi itself. These two losses are combined into:

Lt = (1− λ) ∑
i∈B
Lu

i + λ ∑
i∈BL

Ls
i (2.3)

Where λ is a weighting hyperparameter, B is the entire mini-batch, and BL is the
labeled part of the mini-batch, as labels are needed for the supervised contrastive
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loss.

After training is finished, the features from the training set are extracted and used
to find class prototypes using a semi-supervised K-Means algorithm, which takes
the labels of the labeled part of the training dataset into account. This is done
by fixing the labeled features to the centers corresponding to their labels when
iteratively finding new prototypes. This algorithm assumes prior knowledge of the
number of classes in the dataset. Vaze et al. [31] introduced a method for finding
for finding the number of classes by performing binary search for the number of
classes that maximizes the clustering accuracy. However, another way to do this is
to use the true number of classes.

SelEx

Rastegar et al. [26] introduce the concept of "expertise", i.e., the ability to gen-
eralize across abstraction layers (e.g., hierarchies). This is achieved by combining
pseudo-labels and contrastive learning into self-expertise losses. The pseudo-labels
are created using the Balanced Semi-Supervised K-Means (BSSK) and Hierarchical
Semi-Supervised K-Means (HSSK) algorithms, which are then used to calculate the
unsupervised and supervised self-expertise losses.

The BSSK algorithm builds upon the semi-supervised K-Means algorithm used in
Vanilla GCD by ensuring that the generated clusters have a minimum number of
samples. BSSK is first used to generate the cluster centers µ0 = {µ0

1, µ0
2, · · · , µ0

|YU |}
corresponding to the most granular hierarchy. Thereafter, coarser hierarchies are
generated by halving the number of clusters using HSSK. In HSSK, the clusters
corresponding to the seen classes YL are combined, and the remaining unseen
clusters are generated using BSSK with half the number of clusters and double the
minimum cluster sizes, resulting in µ1 = {µ1

1, µ1
2, · · · , µ1

|YU |/2}. In the end, a total
of ⌈log2 (|YU |) + 1⌉ hierarchies are generated.

Unsupervised self-expertise builds upon unsupervised contrastive learning by in-
tegrating the hierarchical pseudo-labels. This is done by assigning weights to the
negative samples depending on how far up the hierarchy a common cluster be-
tween the anchor and negative sample exists. This is done by constructing the
objective matrix as:

Y = yij =
⌈|YU |⌉

∑
k=0

1(ck
i ̸= ck

j )

2k , yii = 1 (2.4)

Where ck
i is the pseudo-label of i at the kth hierarchy. This objective matrix leads to

samples closer semantically being treated as harder negatives, with samples with
the same pseudo-label being the hardest. Counter-intuitively, this leads to samples
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Figure 2.1: The objective matrix in traditional unsupervised contrastive learning (left) compared
to unsupervised self-expertise learning (right). In unsupervised contrastive learning, only the aug-
mentation is treated as a positive, while all other samples are hard negatives. In unsupervised
self-expertise, the weights of the negative samples are dependent on the hierarchical pseudo-labels,
with semantically closer samples being treated as harder negatives[26].

in the same cluster being split apart the most, which Rastegar et al. [26] argue
"can significantly enhance the purity of the cluster". It is also possible to combine the
expertise and contrastive objective matrices:

O = αY + (1− α)I (2.5)

Where I is the identity matrix and α is a weighting hyperparameter. A lower α

leads to sharper logits, reducing to the original contrastive loss objective matrix
when α = 0. The unsupervised self-expertise loss is then computed as:

Lu
SE = LBCE(P, O) (2.6)

Where P is the logits matrix produced using cosine similarity. Figure 2.1 shows an
example of the objective matrix in unsupervised contrastive learning vs unsuper-
vised self-expertise learning.

The hierarchical pseudo-labels are also used in the supervised self-expertise loss:

Ls
SE =

1
2

log2(|YU |)

∑
k=0

Lk
s | D2k

2k (2.7)

Where Lk
s is supervised contrastive learning applied to the pseudo-labels at hierar-

chical level k, and Lk
s | D2k means that the loss is only applied to the first D

2k elements
out of the embedding vector of dimension D. This leads to higher hierarchies uti-
lizing only a sub-set of the full embedding dimension, as they have a lower number
of clusters and a larger number of positive samples. When working with the lowest
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hierarchy level k = 0, only labeled samples DL are used alongside ground-truth
labels.

When training the SelEx model, the hierarchical pseudo-labels are recomputed
every epoch, and the full loss is computed as:

LSE = (1− λ)Lu
SE + λLs

SE (2.8)

2.1.2 Parametric Methods

SimGCD

Figure 2.2: Figure from the SimGCD paper showing the different building blocks on the left, and
how they are utilized in the different models on the right. The arrow → signifies a separation of
learning between the steps[35]

.

Wen et al. [35] investigate and find that previous parametric methods have a bias
towards old labels, where they misclassify many new instances as old classes. They
conclude that this is due to the poor quality of the pseudo-labels used in training.
Therefore, they utilize self-distillation to generate the pseudo-labels. They also
show that joint training with contrastive learning and classification objectives pro-
vides improved performance with the improved pseudo-labels. Figure 2.2 shows
the difference between the training procedure of Vanilla GCD and SimGCD.

They follow Vanilla GCD’s formula for representation learning, where they use
supervised contrastive loss Ls

rep,i, i ∈ BL on labeled data, and self-supervised con-
trastive loss on all the data Lu

rep,i, i ∈ B. Combining the two losses with a weight
hyperparameter λ:

Lrep = (1− λ) ∑
i∈B
Lu

rep,i + λ ∑
i∈BL

Ls
rep,i (2.9)
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They generate their pseudo-labels using a student/teacher setup. The student
model is a model comprised of a Vision Transformer (ViT) pre-trained with DINO[2]
and ImageNet as the backbone and a Multi-Layer Perceptron (MLP) projector to
perform the classification. The teacher model is a replica of the student model, but
with sharper predictions. If the student model is f (x) then the teacher model is
h(x) = f (x)/τ, where τ is a sharpening variable. A smaller value for τ leads to
sharper distributions with narrower peaks, making the teacher more confident in
its predictions.

For classification training, they utilize a simple cross-entropy loss between student
predictions and ground truth labels for the supervised loss:

Ls
cls,i = −

|YU |

∑
k=1

yi,k log( f (x)i,k) (2.10)

Ls
cls =

1
|BL|

|BL|

∑
i=1
Ls

cls,i (2.11)

Where |YU | is the number of classes, both seen and unseen, and the subscript k
corresponds to the classification score of class k in the output classification proba-
bilities vector and ground truth vector.

For the unsupervised loss, the cross-entropy between the student’s output of an
image x and the teacher’s output of another view of the same image x′ is utilized:

Lu
cls,i = −

|YU |

∑
k=1

h(x′)i,k log( f (x)i,k) (2.12)

The unsupervised loss also utilizes a mean-entropy maximization regularizer:

H(x̄) = −
|YU |

∑
k=1

x̄k log(x̄k) (2.13)

x̄ =
1

2|B|

|B|

∑
i=1

f (x)i + f (x′)i (2.14)

Where x̄k is the k’th element of the vector x̄. The full unsupervised clustering loss
is then:

Lu
cls =

1
|B|

|B|

∑
i=1
Lu

cls,i − εH(x̄) (2.15)
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With ε being a weighting factor for the entropy regulariser. The classification losses
are combined as:

Lcls = (1− λ)Lu
cls + λLs

cls (2.16)

Using the same weight λ that is used in the representation objective. Lastly the full
loss for the learning objective is the sum of the representation and classification
losses:

L = Lrep + Lcls (2.17)

This way the model performs joint learning on both the representation and classi-
fication tasks, unlike in Vanilla GCD, which separates the representation task from
the clustering task.

SPTNet

Wang et al. [34] build upon SimGCD by using Visual Prompt Tuning (VPT)[13].
VPT works by introducing learnable parameters Ps = {pj; j = 1, · · · , n} to the
input images as they are passed through the model. They introduce Spatial Prompt
Tuning (SPT), where the parameters are added to the borders of the individual
image patches used by the ViT. Given the image patches ϕ(X) = {xi; i = 1, · · · , n},
where ϕ(X) is the patchify operation, SPT provides ϕ(X) + Ps = {x1 + p1, · · · , xn +

pn} as the patch inputs to the ViT backbone.

Figure 2.3: Spatial prompts applied to image patches. Compared to global prompts applied to the
entire image[34].

SPTNet uses spatial prompts of width m = 1 applied to each patch, with global
prompts of width m = 30 applied to the entire image. Figure 2.3 shows how
the prompts are applied to the edge of an image. As they build upon SimGCD,
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they utilize the same training loss functions, which are a mix of supervised and
unsupervised representation and classification learning losses:

L = (1− λ)Lu
rep + λLs

rep + (1− λ)Lu
cls + λLs

cls (2.18)

Training is done in two alternating stages:

• In the first stage, the model parameters are frozen, while the prompt param-
eters are trained.

• In the second stage, the prompt parameters are frozen, while the model pa-
rameters are trained.

This is due to training being unstable when both model and prompt parameters
are trained concurrently. Therefore, they alternate the training stages every 20
iterations. Lastly, classification is performed in the same way as SimGCD, using
the output of the projector to classify the input samples into clusters.

2.1.3 Datasets

CIFAR10 CIFAR100 ImageNet-100 CUB SCars Aircraft

|YL| 5 80 50 100 98 50
|YU | 10 100 100 200 196 100

|DL| 12.5K 20K 31.9K 1.5K 2.0K 1.7K
|DU | 37.5K 30K 95.3K 4.5K 6.1K 3.3K

Table 2.1: Number of seen classes |YL| and total classes |YU | and the sample sizes in the labeled
|DL| and unlabeled |DU | data subsets for each of the datasets commonly used for evaluating GCD
methods[31, 32].

GCD methods are most commonly evaluated on a combination of generic classi-
fication datasets and fine-grained classification datasets. The generic classification
datasets are CIFAR10[18], CIFAR100[18], and ImageNet-100[4], which is a subset
of the ImageNet dataset with only 100 of its classes sub-sampled. The fine-grained
classification datasets are:

• Caltech-UCSD Birds (CUB): A fine-grained dataset featuring 200 different
species of birds with 312 binary attributes describing the bird’s visual ap-
pearance [33].

• Stanford Cars: Featuring 196 classes of different car makes. The fine-grained
nature comes from having to classify car type, brand, make, and year[16].
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• FGVC-Aircraft: Containing 100 different variants of aircrafts as separate classes.
Furthermore, it contains three hierarchy levels being manufacturer, family,
and variant. For example, the variant Boeing 737-700 would also have labels
737 as family and Boeing as manufacturer[21].

Figure 2.4 shows example images from the fine-grained datasets, which highlights
the difficulty in performing fine-grained classification between semantically similar
classes.

The generic classification datasets are split by taking the first classes to be the
seen classes YL, while the fine-grained datasets follow the splits provided by the
Semantic Shift Benchmark (SSB), which uses the hierarchy present in the class
labels to split the classes in a semantically coherent manner[31, 32]. The labeled
data subset is created by taking 50% of the samples from seen classes, while the
unlabeled data subset is generated by the remaining 50% plus all samples from
unseen classes YU/YL. Table 2.1 shows the numerical statistics for each dataset.

FGVC-Aircraft

Stanford Cars

CUB

Ferrari 458 Italia Coupe 2012 BMW X3 SUV 2012 BMW X5 SUV 2007

Florida JayBlue JayBlack Footed Albatross

Cessna 525 A340-300 A340-600

Figure 2.4: Example images from the SSB datasets. Three different classes are shown from each
dataset, with the middle and right classes being semantically similar. This is to show the difficulty
present in doing classification on fine-grained datasets.
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2.1.4 Evaluation of GCD

The performance of a method solving the GCD task is evaluated using the cluster-
ing accuracy metric introduced by Vaze et al. [31]. The metric is mathematically
formulated as the following:

ACC = max
p∈P(YU )

1
M

|DU |

∑
i=1

1{yi = p(ŷi)} (2.19)

Where P(YU ) is the set of all permutations of clusters in the unlabeled set, and
ŷi is the cluster assigned to the sample i. The maximizing cluster permutation
is found using the Hungarian algorithm, assigning labels to the unlabeled clusters
that can lead to maximum accuracy. After the permutation is found and the overall
accuracy is calculated, two further metrics are reported:

• Old ACC: The accuracy calculated only using data belonging to the seen
classes YL

• New ACC: The accuracy calculated only using data belonging to the unseen
classes YU/YL

These two accuracies are used to evaluate the model’s ability to cluster data belong-
ing to seen and unseen classes separately, aiding in the analysis of the method.

Pre-training Model CUB Stanford Cars FGVC-Aircraft Cifar10 Cifar100
All Old New All Old New All Old New All Old New All Old New

DINO

Vanilla GCD 51.3 56.6 48.7 39.0 57.6 29.9 45.0 41.1 46.9 91.5 97.9 88.2 73.0 76.2 66.5
SimGCD (P) 60.3 65.6 57.7 53.8 71.9 45.0 54.2 59.1 51.8 97.1 95.1 98.1 80.1 81.2 77.8
SPTNet (P) 65.8 68.8 65.1 59.0 79.2 49.3 59.3 61.8 58.1 97.3 95.0 98.6 81.3 84.3 75.6
SelEx 73.6 75.3 72.8 58.5 75.6 50.3 57.1 64.7 53.3 95.9 98.1 94.8 82.3 85.3 76.3

DINOv2

Vanilla GCD 71.9 71.2 72.3 65.7 67.8 64.7 55.4 47.9 59.2 97.8 99.0 97.1 79.6 84.5 69.9
SimGCD (P) 71.5 78.1 68.3 71.5 81.9 66.6 63.9 69.9 60.9 98.7 96.7 99.7 88.5 89.2 87.2
SPTNet (P) 76.3 79.5 74.6 - - - - - - - - - - - -
SelEx 87.4 85.1 88.5 82.2 93.7 76.7 79.8 82.3 78.6 98.5 98.8 98.5 87.7 90.8 81.5

Table 2.2: Performance of the introduced GCD methods on the most common GCD datasets[20]. (P)
denotes that a model performs parametric clustering. The highest accuracy under every column for
each backbone is highlighted.

Table 2.2 shows the accuracy of the different methods solving GCD. SelEx achieves
the best performance on most datasets using both DINO and DINOv2 pre-training.
Regardless, SPTNet performs better on three out of the 6 datasets when using
DINO, showing that there is no clear advantage to non-parametric methods, with
both parametric and non-parametric methods having potential.
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2.2 Hyperbolic Machine Learning

Many computer vision problems are hierarchical in nature[7, 12, 23]. Hierarchies
can exist in the classes of a dataset, either explicitly where different levels of hier-
archies are labeled, or implicitly where classes such as car, plane, boat can all be
considered to share the parent class "vehicle" even when not explicitly labeled as
such[32]. Hierarchies can also exist between objects and scenes in an image[12] or
between different-sized patches[7].

Machine learning is traditionally performed in Euclidean geometry, due to its in-
tuitive grid-like structure and pre-existing concepts and formulas developed for
it. However, in Euclidean geometry, the volumes of hyperspheres grow polynomi-
ally, which makes it unsuitable for representing hierarchical structures that grow
exponentially the deeper into the hierarchy one goes[10, 23].

Figure 2.5: Comparison between representing a tree-like hierarchical structure in Euclidean space
(left) vs Hyperbolic space (right)

Hyperbolic geometry is a non-Euclidean geometry where the parallel postulate be-
haves differently. In Euclidean geometry, for different points A and B, and a line
L passing through A but not B, there exists only one line passing through B par-
allel to L. On the other hand, in hyperbolic geometry, there exist at least two lines
passing through B parallel to L[27]. This leads to many differing properties, with
one important property being the exponential growth of volumes of hyperspheres
compared to the polynomial growth in Euclidean space[17, 23]. Furthermore, hy-
perbolic geometry has a more tree-like structure compared to the grid structure of
Euclidean geometry, making it more suitable for representing hierarchies[10]. Fig-
ure 2.5 shows a tree contained within a circular subspace in Euclidean geometry vs
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hyperbolic geometry. The exponential growth in hyperbolic geometry allows for
deeper trees with more nodes to be represented in a circle with the same radius[27].

Another property of hyperbolic geometry is that it has a constant negative curva-
ture −κ, which has the effect that every point in hyperbolic geometry is a saddle
point. This is in contrast to Euclidean geometry with constant zero curvature, and
spherical geometry with constant positive curvature.

2.2.1 Representing Hyperbolic Space

There exist multiple isometric models to represent hyperbolic geometry, with each
its own metrics and properties. In this section, three models will be described,
namely the Lorentz hyperboloid[5, 27], the Poincaré[15, 23, 27], and the Klein[22,
27] models. The models will be defined, and relevant properties and formulas will
be introduced, such as the distance between two points and the mapping function
from Euclidean geometry to the respective model.

The Lorentz Hyperboloid Model

Hyperbolic geometry in the Lorentz hyperboloid model Ln is represented as the
upper sheet of a hyperboloid in Rn+1:

Ln
κ = {x ∈ Rn+1|⟨x, x⟩L = −1

κ
, x0 > 0} (2.20)

Where ⟨x, x⟩L = −x2
0 + x2

1 + · · ·+ x2
n is the Lorentz inner product. Borrowing from

special relativity theory, a point in the Lorentz hyperboloid model can be written
as xL = [xtime; xspace]. Representing the axis of symmetry of the hyperboloid as the
time dimension and simplifying the Lorentz inner product to:

⟨xL, yL⟩L = −xtimeytime + ⟨xspace, yspace⟩ (2.21)

Where, ⟨x, y⟩ is the Euclidean dot product. Additionally, due to the constraint
⟨x, x⟩L = − 1

κ it is possible to calculate the value of xtime from xspace:

xtime =
√

1/κ + ⟨xspace, xspace⟩ =
√

1/κ + ∥xspace∥2 (2.22)

This leads to only needing to store xspace when working with vectors in the Lorentz
hyperboloid model. Furthermore, the distance between two points on the Lorentz
hyperboloid is given as:

dL(x, y) =

√
1
κ

cosh−1(−κ⟨x, y⟩L) (2.23)
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And lastly, the exponential map 1can be used to map vectors from the Euclidean
space to the Lorentz hyperboloid:

xspace = expm(v) =
sinh(

√
κ∥v∥)√

κ∥v∥
v (2.24)

Where v ∈ Rn is a point in Euclidean geometry. For convenience, the Lorentz
hyperboloid model will be called the Lorentz model in the rest of the thesis.

The Poincaré Model

Figure 2.6: Figure showing the projection mapping from the Lorentz hyperboloid L2 to the Poincaré
disc P2 in R3. Also highlighting how the projected geodesics end up becoming arcs in the Poincaré
disc that are perpendicular to the disc’s edge[25].

The Poincaré model is isometric to the Lorentz model, and can be constructed by
projecting the Lorentz hyperboloid in Rn+1 into an n-dimensional hypersphere of

1This exponential map works only when ⟨OL, v⟩L = 0, or in other words, when v is in the tangent
space of OL, where OL is origo of the hyperboloid. This is always the case for vectors in Rn and
a hyperboloid in Rn+1. There exists a more general exponential map[5], but it requires explaining
projections, which are not relevant to the project. The exponential map for the other models will also
be only valid at origo.
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radius 1/
√

κ at the origin of Rn+1:

xP =
xspace

xtime +
√

κ
(2.25)

Where xP is a point in the Poincaré model, and an example of this projection is
shown in Figure 2.6. Due to this projection, the set of points in the Poincaré model
are:

Pn
κ = {x ∈ Rn; ∥x∥2 <

1
κ
} (2.26)

and the distance between two points in the Poincaré hypersphere is derived as:

dP(x, y) =
1√
κ

cosh−1
(

1 +
2∥x− y∥2

(1− ∥x∥2)(1− ∥y∥2)

)
(2.27)

One property of the Poincaré model is that its geodesics, or lines of shortest dis-
tance, are circular arcs perpendicular to the boundary of the hypersphere. Fig-
ure 2.6 shows an example on the Poincaré disc P2. Another property is that the
Poincaré model is conformal, meaning that the hyperbolic angles in the Poincaré
model are measured as one would normally measure angles in Euclidean space:

∠(x, y) = cos−1
(
⟨x, y⟩
∥x∥∥y∥

)
(2.28)

This makes it is possible to utilize cosine similarity in the Poincaré model. Lastly,
the exponential map in the Poincaré model is:

xP = expm(v) =
tanh(

√
κ∥v∥)√

κ∥v∥
v, v ∈ Rn (2.29)

The Klein Model

The Klein model is also isometric to the Lorentz model, and is constructed by
projecting the Lorentz hyperboloid in Rn+1 into an n-dimensional hypersphere of
radius 1/

√
κ with center at the origo of the hyperboloid OL = [1/

√
κ; 0]:

xK =
xspace√
κxtime

(2.30)

Where xK is a point in the Klein model, and an example of this projection can be
seen in Figure 2.7. As the Klein model is also a hypersphere of radius 1/

√
κ, its set

of points is the same as the Poincaré model:

Kn
κ = {x ∈ Rn; ∥x∥2 <

1
κ
} (2.31)
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Figure 2.7: Figure showing the projection mapping from the Lorentz hyperboloid L2 to the Klein
disc K2 in R3. Also highlighting how the projected geodesics end up as straight lines in the Klein
disc[25].

However, since it is mapped differently from the Lorentz hyperboloid, its distance
function between two points is different from the Poincaré model, and is derived
as:

dK(x, y) =
1√
κ

cosh−1

(
1− ⟨x, y⟩√

1− ∥x∥2
√

1− ∥y∥2

)
(2.32)

and geodesics in the Klein model are straight lines in Rn, as seen in Figure 2.7 for
the Klein disc K2. This makes it straightforward to define a mid-point in the Klein
model[23], with one such midpoint being the Einstein mid-point:

µK =
∑i=1 γixK,i

∑i=1 γi
(2.33)

Where γi are the Lorentz factors:

γi =
1√

1− κ∥xK,i∥2
(2.34)
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Lastly, the exponential map in the Klein model2 is:

xK = expm(v) =
tanh(

√
κ∥v∥)√

κ∥v∥
v, v ∈ Rn (2.35)

2.2.2 Hyperbolic Visual Learning

Hyperbolic geometry has been used in many computer vision models, ranging
from simple classification to generative models, and used in both supervised and
unsupervised learning scenarios[23]. This section will describe methods utilizing
hyperbolic machine learning to construct feature space embeddings of visual data.

Hyperbolic Self-Supervised Learning

Most hyperbolic learning methods utilize a Euclidean backbone network to gen-
erate Euclidean embeddings. This is followed by an exponential map to map the
Euclidean embeddings into one of the hyperbolic models, usually the Poincaré
model[23]. Therefore, when performing unsupervised or self-supervised learning,
it is important to modify the loss functions to work with the hyperbolic embed-
dings. This can be done by replacing the original distance or similarity function
with the hyperbolic distance. For example, the hyperbolic triplet loss proposed by
Hsu et al. [12] is:

Li = max(0, dH(zi, z′i)− dH(zi, zn) + α) (2.36)

Where dH is a hyperbolic distance function, z′i is an augmentation of zi, and zn

is a negative sample. On the other hand, the hyperbolic contrastive loss proposed
Yue et al. [36] is:

Li = − log

(
exp(−dH(zi, z′i)/τ)

∑n 1[n ̸=i] exp(−dH(zizn)/τ)

)
(2.37)

Replacing the dot product similarity with the negative hyperbolic distance dH.

Furthermore, to take advantage of hyperbolic geometry’s ability to represent hi-
erarchies. Hsu et al. [12] argue that there exist hierarchies within medical images
and create multiple levels of patches in 3D voxel-grid biomedical images. They
then use triplet loss to learn hierarchies between parent patches, and smaller child
batches within them:

Li = max(0, dH(zp, zc)− dH(zp, zn + α) (2.38)

2While this is identical to the Poincaré exponential map, this is only the case for points in the
tangent space of the origo.
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Where zp are the parent patches, zc are the child patches within the parent patches,
and zn are negative patches that do not overlap with the parent patches.

Ge et al. [7] utilize the hierarchy present between a scene and the objects within
it. They define a scene as a bounding box region with multiple objects in it. Then
they utilize the contrastive loss function:

Lhyp = − log
exp

(
− dH(z1,z2)

τ

)
exp

(
− dH(z1,z2)

τ

)
+ ∑n exp

(
− dH(z1,zn)

τ

) (2.39)

Where z1 is the scene, z2 is an object in the scene, and zn are negative objects. They
show that this loss is minimized when the objects are moved closer to the center
of the Poincaré hypersphere. Furthermore, it ensures that a scene’s embedding is
close to the embeddings of the objects inside it.

Desai et al. [5] train MERU, a large-scale vision-language model utilizing hyper-
bolic contrastive learning and entailment loss to learn the hierarchy present be-
tween an image and its textual description. They utilize the contrastive loss func-
tion in Eq. 2.37 to learn embeddings for the images y and their text descriptions x
in the Lorentz model and define the entailment loss as:

Lentail(x, y) = max(0, ext(x, y)− aper(x)) (2.40)

Where ext(x, y) is the exterior angle between two points and aper(x) is the aper-
ture of a point’s entailment cone. This loss penalizes the model only if the image
embedding is outside its text embeddings’ entailment cone. However, in order to
calculate this loss, they derive equations for the aperture of an embedding and
the exterior angle between two embeddings in the Lorentz model. The derived
aperture is:

aper(x) = sin−1

(
2K√

κ∥xspace∥

)
(2.41)

Where κ is the curvature and K is a constant, setting boundary conditions near the
origin. While the derived exterior angle between the image and text embeddings
is:

ext(x, y) = cos−1

(
ytime + xtimeκ⟨x, y⟩L

∥xspace∥
√
(κ⟨x, y⟩L)2 − 1

)
(2.42)

2.2.3 Hyperbolic Classification

Classification in hyperbolic geometry requires using different algorithms than its
Euclidean counterpart. This section will describe some of the algorithms used to
perform hyperbolic classification using either class prototypes or Fully Connected
(FC) layers to find class logits.
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Prototype-Based Classification

Prototype-based classification aims at learning class prototypes or representatives,
which can be used under inference to classify new samples[9]. One example of a
method performing prototypical classification is Vanilla GCD by Vaze et al. [31], as
they utilize k-Means to find class prototypes, and assign a new sample to the class
whose prototype is closest to the sample’s embedding.

K-Means is also utilized in hyperbolic learning. Khrulkov et al. [14] create a hy-
perbolic prototypical network using the Einstein midpoint to calculate class pro-
totypes. In order to find the Einstein midpoint for embeddings in the Poincaré
model, they first map the points to the Klein model, calculate the Einstein mid-
point, and then map the midpoint back to the Poincaré model. On the other hand,
Hsu et al. [12] compute the prototypes using the weighted Lorentz centroid pro-
posed by Law et al. [19]:

µL =
1√
κ

∑i=1 wixi

|∥∑i=1 wixi∥L|
(2.43)

Where wi are arbitrary sample weights and |∥x∥L| = |
√
⟨x, x⟩L| is the modulus

of the imaginary Lorentz norm, as the Lorentz inner product can be negative. To
compute this centroid, they first map the Poincaré embeddings into the Lorentz
hyperboloid, compute the Lorentz centroid, and then map the centroid back to the
Poincaré model.

Ghadimi Atigh et al. [9] use ideal points, or points at infinity, as prototypes. In
the Poincaré model, the ideal points are the points at the edge of the hypersphere
∥x∥2 = 1/κ. First, they pre-initialize a prototype for each class, then they train
using a loss based on the Busemann function. The Busemann function in a Poincaré
model of curvature κ = 1 is:

bp(z) = log
(
∥p− z∥2

1− ∥z∥2

)
(2.44)

Where p is the ideal prototype. The Busemann function is used to measure distance
to the prototype, and the Busemann loss they use is:

L(z, p) = bp(z)− ϕ(d)log(1− ∥z∥2) (2.45)

Where ϕ(d) is a scaling factor for the regularization term log(1−∥z∥2) based on the
dimension of the Poincaré ball d. Using the Busemann function as a loss teaches
the model to get embeddings closer to their prototypes (the numerator), while
penalizing embeddings too close to the edge of the hypersphere (the denominator).
The regularization term is used to increase the penalty of the denominator and
force embeddings farther away from the edge of the hypersphere.

This makes it possible to initialize prototypes without prior knowledge, proving
helpful in few-shot learning scenarios.
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Logits-Based Classification

Logit-based classification aims at computing a probability vector containing the
probability of a sample belonging to a class k:

ln = p(y = k|x) (2.46)

This is commonly accomplished by using a Fully Connected (FC) layer f (x) =

Wx + b : Rm → Rn with W being a weights matrix and b being the bias vector.
The FC layer can also be understood as evaluating the distance between the vector
x and n hyperplanes, one for each class k.

Ganea et al. [6] define the hyperbolic FC layer in the Poincaré model as:

fP(x) = W⊗κ x⊕κ b (2.47)

Where W ∈ Rm×n, x ∈ Pm, b ∈ Pn, ⊗κ is the gyrovector-matrix product defined
as:

W⊗κ x =
1√
κ

tanh
(
∥Wx∥
∥x∥ tanh−1(

√
κ∥x∥)

)
Wx
∥Wx∥ (2.48)

And ⊕κ is the gyrovector addition operator:

x⊕κ y :=
(1 + 2κ⟨x, y⟩) + κ∥y∥2)x + (1− κ∥x∥2)y

1 + 2κ⟨x, y⟩+ κ2∥x∥2∥y∥2 (2.49)

However, their definition of the gyrovector-matrix multiplication first maps the
Poincaré vector back to Euclidean space, then computes the Euclidean vector-
matrix multiplication, then transforms the produced vector back to the Poincaré
model. This is only equivalent to computing the distance to Poincaré hyperplanes
if b = 0[29]. That is why Shimizu et al. [29] define their hyperbolic FC layer as:

fP(x) = v(1 +
√

1 + κ∥v∥2)−1 (2.50)

v := [κ−1/2 sinh(
√

κ(vk(x))]nk=1 (2.51)

Where vk(x) is the hyperbolic multinomial logistic regression they define as:

vk(x) = 2κ−
1
2 ∥wk∥ sinh−1 (λκ

x⟨
√

κx, wk⟩
)

cosh
(
2
√

κbk
)
− (λκ

x − 1) sinh
(
2
√

κbk
)

(2.52)
Where wk are the rows of the weight matrix W ∈ Rm×n and bk are elements in
the bias vector b ∈ Pn. This formulation of the FC layer produces Poincaré hyper-
planes for any bias vector b.

Chen et al. [3] developed a FC layer for the Lorentz model. First they define the

matrix parameters M =

[
v⊺

W

]
∈ R(m+1)×(n+1). Then they define the function

fx(M) =

[√
∥Mx∥2+1/κ

v⊺x v⊺

W

]
(2.53)
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Ensuring that the product produces a vector on the Lorentz hyperboloid fx(M)x ∈
Ln and ⟨ fx(M)x, fx(M)x⟩L = −1/κ. They show that the matrix M can represent
any Lorentz transformation. Furthermore, they generalize the FC layer to adding
activation, bias and normalization:

f (x) =
[√
∥ϕ(Wx, v)∥2 + 1/κ

ϕ(Wx, v)

]
(2.54)

Where:

ϕ(Wx, v) =
λσ(v⊺x + b′)
∥Wh(x) + b∥ (Wh(x) + b) (2.55)

This includes the activation h(x), biases b ∈ Rn, b′ ∈ R and normalization ∥Wh(x)+
b∥. Furthermore, σ(x) is the sigmoid function and λ > 0 controls the scaling range.
However, despite the output still being on the Lorentz hyperboloid, this relaxation
is no longer fully hyperbolic and incorporates Euclidean operations, introducing
a trade-off between adding extra functionality to the FC layer and performing all
operations in hyperbolic geometry.

2.3 Hyperbolic Generalized Category Discovery

Pre-training Model CUB Stanford Cars FGVC-Aircraft Cifar10 Cifar100
All Old New All Old New All Old New All Old New All Old New

DINO

Vanilla GCD 51.3 56.6 48.7 39.0 57.6 29.9 45.0 41.1 46.9 91.5 97.9 88.2 73.0 76.2 66.5
Hyp-GCD 61.0 67.0 58.0 50.8 60.9 45.8 48.2 43.6 50.5 92.9 97.5 90.6 74.0 80.0 62.0
SimGCD 60.3 65.6 57.7 53.8 71.9 45.0 54.2 59.1 51.8 97.1 95.1 98.1 80.1 81.2 77.8
Hyp-SimGCD 64.8 65.8 64.2 62.8 73.4 57.7 58.7 58.9 58.5 96.8 95.9 97.2 82.4 83.1 81.2
SelEx 73.6 75.3 72.8 58.5 75.6 50.3 57.1 64.7 53.3 95.9 98.1 94.8 82.3 85.3 76.3
Hyp-SelEx 79.8 75.8 81.8 62.9 80.0 54.7 65.9 67.3 65.1 96.7 97.6 96.3 82.4 85.1 77.0

DINOv2

Vanilla GCD 71.9 71.2 72.3 65.7 67.8 64.7 55.4 47.9 59.2 97.8 99.0 97.1 79.6 84.5 69.9
Hyp-GCD 75.6 75.1 75.9 72.8 80.4 69.1 62.7 70.0 59.0 97.5 98.9 96.7 84.5 87.5 78.5
SimGCD 71.5 78.1 68.3 71.5 81.9 66.6 63.9 69.9 60.9 98.7 96.7 99.7 88.5 89.2 87.2
Hyp-SimGCD 77.6 77.9 77.4 82.5 85.8 81.0 76.4 70.3 79.4 98.9 97.7 99.5 91.5 90.0 94.6
SelEx 87.4 85.1 88.5 82.2 93.7 76.7 79.8 82.3 78.6 98.5 98.8 98.5 87.7 90.8 81.5
Hyp-SelEx 90.7 85.3 93.4 83.8 93.3 79.2 83.4 82.0 84.1 98.6 98.1 98.9 88.6 91.5 82.8

Table 2.3: Performance of the hyperbolic GCD methods compared to their Euclidean counter-
parts[20]. The highest accuracy under every column for each backbone is highlighted.

In parallel with this thesis, Liu et al. [20] released a paper titled "Hyperbolic Cate-
gory Discovery", which analyzes the performance of different GCD models when
trained with Hyperbolic machine learning algorithms.

Liu et al. [20] adapt three GCD method, namely the Vanilla GCD, SimGCD and
SelEx. For all three methods, they adapt the representation learning by doing
joint contrastive learning based on hyperbolic distance and angles. Since they use
the Poincaré model, which is conformal to Euclidean geometry, the angle-based
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contrastive loss becomes the usual contrastive loss that uses dot product similarity.
The full loss function is:

L = (1− λ)((1− α)Ls
dis + αLs

ang) + λ((1− α)Lu
dis + αLu

ang) (2.56)

Where λ balances between supervised and self-supervised contrastive learning,
and α balances between distance and angle losses. They also choose to linearly
decrease α from 1 to 0 during training.

To avoid vanishing gradients[11], they clip their Euclidean embeddings before
mapping them to the Poincaré model using the function:

C(z) = min
(

1,
r
∥z∥

)
z (2.57)

Where z is the embedding and r is a hyperparameter for the maximum embed-
ding norm. Then, following the exponential map zP = expmP(C(z)), they clip the
Poincaré embedding to avoid having embeddings close to the edge of the hyper-
sphere, as they cause numerical instabilities:

CP(zP) = min
(

1,
1− 10−3
√

κ∥zP∥

)
zP (2.58)

For non-parametric clustering, they remove the projector after training, and per-
form Euclidean K-Means on the embeddings outputted by the ViT backbone. For
parametric clustering, they implement the Poincaré FC layer developed by Ganea
et al. [6], utilizing a Riemannian Adam optimizer[1] and the original classification
losses from SimGCD to learn its parameters.

They achieve State of The Art (SOTA) results, showing the benefits of utilizing
hyperbolic machine learning to solve the GCD task. Table 2.3 shows the results
they report in their paper.





Chapter 3

Problem Statement

The GCD task was described in Section 2.1, alongside four different methods that
tried to solve it. One notable method was the SOTA SelEx method, which uses
Hierarchical Semi-Supervised K-Means (HSSK) to generate hierarchical clusters to
use as pseudo-labels. The SelEx method demonstrated the importance of taking
hierarchies present in the data into account.

Section 2.2 highlighted Euclidean geometry’s sub-optimal ability to represent hi-
erarchies and presented hyperbolic geometry, which is much more suited for rep-
resenting hierarchies. This makes hyperbolic geometry a more suitable candidate
for solving the GCD task. This is later demonstrated to be true in Section 2.3 in the
recent work by Liu et al. [20], who adapt numerous GCD methods to hyperbolic
geometry and show improved performance.

Liu et al. [20] only adapt the GCD tasks to the Poincaré model, while it was shown
by Desai et al. [5] that the Lorentz model can be used to train on large text-image
datasets and is suitable for learning hierarchies between text and images. This
makes it worth investigating if it can model the hierarchies that are beneficial for
the GCD task.

Another choice made by Liu et al. [20] is to perform non-parametric clustering in
Euclidean geometry, by utilizing the output embeddings from the ViT backbone
instead of the MLP projector. This could potentially lead to a loss of performance,
as removing the projector and utilizing Euclidean geometry can lead to a loss
of some of the learned hierarchical representation. This makes it interesting to
investigate the performance of non-parametric clustering in hyperbolic geometry
instead of Euclidean geometry, for both the Lorentz and Poincaré models.

27
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With these facts in mind, this thesis aims to answer the following two research
questions:

"Does the GCD task benefit from learning representations in the Lorentz Hyperboloid
model of hyperbolic geometry?

"Does using a hyperbolic non-parametric clustering algorithm increase clustering
accuracy?"



Chapter 4

Methods

Following the problem statement, this thesis will adapt one non-parametric and
one parametric GCD method to use hyperbolic learning in the Lorentz model
to analyze their performance in comparison to using Euclidean learning. The
non-parametric method will be Vanilla GCD and the parametric method will be
SimGCD. Furthermore, the HypCD methods presented by Liu et al. [20] for Vanilla
GCD and SimGCD will also be adapted to act as hyperbolic baselines, and to test
the accuracy of hyperbolic K-Means in both Lorentz and Poincaré space.

Section 4.1 will present the hyperbolic representation learning setup that will be
used to learn representations in hyperbolic geometry. Section 4.2 will formalize
the hyperbolic K-Means algorithms for the Lorentz and Poincaré models. Lastly,
Section 4.3 will detail how parametric clustering in hyperbolic geometry will be
performed using the different hyperbolic FC layers.

4.1 Hyperbolic Representation Learning

Following previous GCD methods, a pre-trained ViT backbone with a MLP pro-
jector is utilized, with the projector and the last layer of the ViT being fine-tuned.
Passing an image through the backbone and projector produces the Euclidean em-
bedding z, which is then clipped and mapped into the Lorentz model:

zspace = exmpL(C(z)) (4.1)

Where expmL(x) is the Lorentz exponential map defined in Eq. 2.24, C(x) is the
Euclidean clipping function defined in Eq. 2.57, and zspace is the space component
of the embedding in the Lorentz model.

Following HypCD by Liu et al. [20], hyperbolic representation learning will be
done using a combination of distance-based and angle-based contrastive loss, as

29
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this setup was empirically shown to produce the best results in Section 5.3.2 The
contrastive losses from Eq. 2.1 and Eq. 2.2 are adapted to the Lorentz model by
using the distance for the Lorentz model defined in Eq. 2.23:

Lu
dist,i = − log

(
exp(−dL(zL,iz′L,i)/τ)

∑n 1[n ̸=i] exp(−dL(zL,izL,n)/τ)

)
(4.2)

Ls
dist,i = −

1
N (i) ∑

q∈N (i)
log

(
exp(−dL(zL,izL,q)/τ)

∑n 1[n ̸=i] exp(−dL(zL,izL,n)/τ)

)
(4.3)

And the exterior angle derived by Desai et al. [5] and found in this thesis report at
Eq. 2.42:

Lu
ang,i = − log

(
exp(ext(zL,iz′L,i)/τ)

∑n 1[n ̸=i] exp(ext(zL,izL,n)/τ)

)
(4.4)

Ls
ang,i = −

1
N (i) ∑

q∈N (i)
log

(
exp(ext(zL,izL,q)/τ)

∑n 1[n ̸=i] exp(ext(zL,izL,n)/τ)

)
(4.5)

Similar to HypCD, the four losses are combined as:

L = (1− λ)((1− α)Ls
dis + αLs

ang) + λ((1− α)Lu
dis + αLu

ang)

With λ being the weighting hyperparameter between self-supervised and super-
vised contrastive loss, and α being the weighting hyperparameter between distance
and angle-based losses, whith the α weight being linearly decayed from 1 to 0 as
training progresses.

4.2 Hyperbolic K-Means

The K-Means algorithm is an iterative algorithm that aims to find K prototypes to
represent a dataset. K-Means iteratively performs the following two steps:

• Assign every datapoint to one of the K prototypes

• Update prototype K by moving it to the center of all datapoints assigned to
it

In order to adapt this algorithm to hyperbolic geometry, a distance function and a
centroid calculation function are needed for both the Poincaré and Lorentz models.
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4.2.1 Computing Centroid in Hyperbolic Geometry

Two closed-form solutions to finding centroids in hyperbolic geometry are the
Einstein midpoint[23] in the Klein model µK and the Lorentz centroid[19] in the
Lorentz model µL:

µK =
∑i=1 γixK,i

∑i=1 γi

µL =
1√
κ

∑i=1 wixL,i

|∥∑i=1 wixL,i∥L|

Where γi =
1√

1−κ∥xK∥2
are the Lorentz factors and wi are arbitrary sample weights.

While neither of these two centroid functions can be directly computed in the
Poincaré model, they can still be computed by mapping the points from Poincaré
to Klein or Lorentz, computing the centroid there, and then mapping the centroid
back to Poincaré. However, despite the two equations finding midpoints in two
different hyperbolic models, it can be proven that mapping the Lorentz centroid to
the Klein model produces the Einstein midpoint.

In order to prove that the Lorentz centroid maps to the Einstein midpoint, it is
necessary to derive the reverse mapping from points in the Klein model to points
on the Lorentz hyperboloid:

Theorem 1. The function mapping points from the Klein model to points on the Lorentz
hyperboloid is:

πK→L(xK) =
1√

κ − κ2∥xK∥2
[1;
√

κxK] (4.6)

Proof. Using the property xtime =
√

1/
√

κ + ∥xspace∥2, the Function 2.22 mapping
points from the Lorentz hyperboloid to the Klein model can be written as:

xK = πL→K(xL) =
xspace√
κxtime

=
xspace

√
κ
√

1/κ + ∥xspace∥2
(4.7)

On the other hand, by rearranging the same mapping function, one gets:

xspace =
√

κxtimexK (4.8)

By replacing xspace in Eq. 4.7 with the value in Eq. 4.8:

xK =

√
κxtime√

κ
√

1/κ + ∥
√

κxtimexK∥2
xK =

xtime√
1/κ + κx2

time∥xK∥2
xK (4.9)
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Meaning that:

1 =
xtime√

1/κ + κx2
time∥xK∥2

1/κ + κx2
time∥xK∥2 = x2

time

1/κ = (1− κ∥xK∥2)x2
time

1
κ(1− κ∥xK∥2)

= x2
time

1√
κ − κ2∥xK∥2

= xtime

Inserting the value of xtime into Eq. 4.8:

xspace =
√

κ
1√

κ − κ2∥xK∥2
xK (4.10)

Hence:
πK→L(xK) = [xtime; xspace] =

1√
κ − κ2∥xK∥2

[1;
√

κxK]

With this proof, it is possible to compute the Einstein midpoint directly from points
on the Lorentz hyperboloid:

Corollary 1.1. The Lorentz factors in the Einstein midpoint can be written as:

γi =

√
κ√

κ − κ2∥xK∥2
=
√

κxtime (4.11)

Hence, in combination with Eq. 4.7, the Einstein midpoint can be written as:

µK =
∑i=1

√
κxtime,i

xspace,i√
κxtime,i

∑i=1
√

κxtime,i
=

∑i=1 xspace,i√
κ ∑i=1 xtime,i

(4.12)

Lastly, proving that the Einstein midpoint is the Lorentz centroid mapped to the
Klein model:

Theorem 2. The Einstein midpoint µK can be found by passing the Lorentz Centroid µL

through the map πL→K:
µK = πL→K(µL) (4.13)

Proof. The Lorentz centroid can be split into its separate space and time compo-
nents as:

µtime =
1√
κ

∑i=1 wixtime

|∥∑i=1 wixL,i∥L|
(4.14)

µspace =
1√
κ

∑i=1 wixspace,i

|∥∑i=1 wixL,i∥L|
(4.15)
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Using these components the mapping πL→K(µL) evaluates to:

πL→K(µL) =
µspace√
κµtime

=

1√
κ

∑i=1 wixspace,i
|∥∑i=1 wixL,i∥L|√

κ 1√
κ

∑i=1 wixtime
|∥∑i=1 wixL,i∥L|

=
∑i=1 wixspace,i√
κ ∑i=1 wixtime

(4.16)

Which is equal to the Einstein midpoint µκ if the weights wi are all equal.

With this proof, it can be concluded that choosing either of the two midpoints is
equivalent. The Lorentz centroid is the obvious choice for finding centroids in
the Lorentz model, as no mappings between models are needed. However, it is
not possible to avoid mapping between models to find a centroid in the Poincaré
model. Therefore, the Einstein midpoint will be used to compute centroids in the
Poincaré model, as mapping between Klein and Poincaré model is more numeri-
cally stable than mapping between Lorentz and Poincaré spaces[3]. The mapping
functions between Klein and Poincaré are[23]:

πP→K =
2xP

1 + κ∥xP∥2 (4.17)

πK→P =
xK

1 +
√

1− κ∥xK∥2
(4.18)
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4.2.2 Adapting the K-Means Algorithm to Hyperbolic Geometry

The K-Means algorithm can be seen in Algorithm 1. As input, it takes the input
vectors X, the number of prototypes or centroids to find K, and a tolerance value
to stop iterating ε. It starts by initializing the prototypes, then every iteration it
assigns labels to the data samples according to the prototype with the minimum
distance. Thereafter, for each label, it computes the centroid of the points assigned
to it and assigns it as the new prototype. The distance shift of all prototypes is
saved in δ and the algorithm stops when δ < ε, where it returns a matrix µ of K
prototypes.

Algorithm 1: General K-Means algorithm
Input: Data: X
Number of centroids: K
Center shift tolerance: ε

Output: Matrix of K centroid prototypes: µ

1 Initialize the matrix µ with K vectors
2 δ← 0
3 while δ > ε do
4 δ← 0
5 Compute pairwise distance between X and µ

6 Assign each point in X to µk with lowest distance, d
7 for k← 1 to K do
8 µk,old ← µk
9 Xk ← Points in X with labels µk

10 µk ← centroid(Xk)
11 δ← δ + d(µk, µold,k)

12 return µ

It is possible to modify the K-Means algorithm to work in any geometry by simply
using an appropriate distance and centroid functions. For example, Euclidean K-
Means is done by using the Euclidean distance function d(x, y) = ∥x − y∥ and
assigning the centroid as the mean of all the points in matrix X. Similarly, for the
Lorentz model of hyperbolic geometry, the Lorentz hyperboloid distance and the
Lorentz centroid can be used as distance and centroid functions:

dL(x, y) =

√
1
κ

cosh−1(−κ⟨x, y⟩L)

µL =
1√
κ

∑i=1 wixL,i

|∥∑i=1 wixL,i∥L|

While for the Poincaré model of hyperbolic geometry, the Poincaré distance and
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Figure 4.1: Figure showing the K-Means algorithm performed in Eulcidean (Top left), Poincaré
(Bottom left), and Lorentz (Right) spaces on a set of points and four cluster.

Einstein midpoint can be used:

dP(x, y) =
1√
κ

cosh−1
(

1 +
2∥x− y∥2

(1− ∥x∥2)(1− ∥y∥2)

)
µP = πK→P(µK) = πK→P

(
∑i=1 γiπP→K(xP,i)

∑i=1 γi

)

With the points being mapped to the Klein model to find the Einstein midpoint,
and then mapping the Einstein midpoint back to the Poincaré model. An example
of K-Means in each of the three spaces can be seen in Figure 4.1, where K-Means
is performed on 25 points with 4 prototypes.

Lastly, the semi-supervised K-Means algorithm is shown in Algorithm 2. In ad-
dition to the classic K-Means algorithm, it works with a labeled data subset XL,
where the prototypes for the points in the labeled subset are assigned according to
the ground truth labels yL instead of nearest distance. Everything else remains the
same, including the adjustments needed for each of the three spaces.
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Algorithm 2: Semi-supervised K-Means algorithm
Input: Labeled data: XL

Data labels: yK

Unlabeled data: XU

Number of centroids: K
Center shift tolerance: ε

Output: Matrix of K centroid prototypes: µ

1 Initialize the matrix µ with K vectors
2 δ← 0
3 while δ > ε do
4 δ← 0
5 Assign each point in XL to the centroid µk, where k is the

corresponding label value in yk
6 Compute pairwise distance between XU and µ, d
7 Assign each point in X to µk with lowest distance
8 for k← 1 to K do
9 µk,old ← µk

10 Xk ← Points in XL and XU with labels µk
11 µk ← centroid(Xk)
12 δ← δ + d(µk, µold,k)

13 return µ

4.3 Parametric Clustering

To adapt SimGCD to hyperbolic geometry, it is necessary to calculate logit proba-
bilities directly from hyperbolic embeddings. This can be done with the FC layers
introduced in Section 2.2.3.

For embeddings in the Lorentz model, the FC layer proposed by Chen et al. [3] can
be used:

ŷL = fxL
(M)xL =

[√
∥Mx∥2+1/κ

v⊺x v⊺

W

]
xL

Where M ∈ R(n+1)×(m+1) is the weights matrix and ŷL is the logits vector in the
Lorentz model. This layer is used instead of the relaxed layer, as computing logits
does not require a bias term or an activation function. Furthermore, the layer is
simplified to:

ŷspace = WxL (4.19)

As the time component of the logit vector is not needed. This reduces the need for
the vector v and the function fxL

(M), only needing to optimize the weights matrix
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W ∈ Rn×(m+1).

For embeddings in the Poincaré model, both the layer proposed by Ganea et al. [6]:

ŷP = W⊗κ x =
1√
κ

tanh
(
∥Wx∥
∥x∥ tanh−1(

√
κx)
)

Wx
∥Wx∥

And the layer proposed by Shimizu et al. [29]:

ŷP = fP(x) = v(1 +
√

1 + κ∥v∥2)−1

v := [κ−1/2 sinh(
√

κ(vk(x))]nk=1

Can be used, as both calculate the distance to valid hyperplanes in the Poincaré
model when the bias term is removed. ŷP is the logits vector in the Poincaré model
and vk(x) is the multinomial logistic regression from Eq. 2.52.





Chapter 5

Results

This chapter describes the training and testing setup used for the hyperbolic Vanilla
GCD and SimGCD implementations. Presenting the main results using Euclidean,
Poincaré and Lorentz based clustering methods. Followed by several ablation stud-
ies on the Lorentz space Vanilla GCD model.

5.1 Experiment Setup

In order to present comparable results, it was necessary to train all models on
the same machine. Therefore, the training code for HypCD was written from
scratch following the details from the paper by Liu et al. [20], as no code for their
experiments had been released by the time this thesis was written. This potentially
leads to different performance results being reported in this thesis compared to
what Liu et al. [20] have in their paper.1

5.1.1 Dataset Setup

The datasets used are the three SSB fine-grained datasets (CUB, Stanford Cars
and FGVC-Aircraft), alongside CIFAR-10 and CIFAR-100 as generic datasets. The
splitting of the classes and data subsets follows the splitting by Vaze et al. [31]
detailed in Section 2.1.3. The data augmentation procedure during training is:

• Resize image to a size of 224× 224

• Random horizontal flip with 50% chance

1The code for the hyperbolic Vanilla GCD can be found at https://github.com/MohamadDalal/
hyperbolic-generalized-category-discovery, while the code for the hyperbolic SimGCD can be
found at https://github.com/MohamadDalal/Hyperbolic-SimGCD.
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• Normalize image following ImageNet normalization parameters. With mean
µ = [0.485, 0.456, 0.406] and standard deviation σ = [0.229, 0.224, 0.225]. Each
value corresponds to height, width and depth, respectively.

During testing, the same augmentations are used with the exception of the random
horizontal flip.

5.1.2 Vanilla GCD Setup

ViT Projector

Expm_L(z)

C(z)

K-Means

Figure 5.1: The full inference pipeline for the Vanilla GCD model with Lorentz representation learn-
ing and clustering. During training, the last clustering step is removed, and contrastive learning is
performed on the embeddings on the Lorentz hyperboloid.

ViT

Figure 5.2: The inference pipeline for the Vanilla GCD model when using Euclidean K-Means. The
embeddings directly from the ViT backbone are used to perform clustering.

Three models were trained, each performing contrastive learning in a different
geometry or hyperbolic model. All models use a ViT-b-14 backbone pre-trained
with DINOv2, and a projector with 4 linear layer and Gaussian Error Linear Unit
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(GELU) activations in-between. The last layer is special in that it has no bias or
activation.

The model performing contrastive learning in Euclidean geometry follows Vanilla
GCD[31] by using embeddings of 65536 dimensions, leading to a projector with
the following setup:

RI → R2048 → R2048 → R256 → R65536

Where I = 768 is the embedding dimension from the ViT backbone. The su-
pervised and self-supervised contrastive learning in Euclidean geometry only use
cosine similarity as the similarity function.

The models performing contrastive learning in hyperbolic geometry follow the
HypCD training setup[20] by using embeddings of 256 dimensions:

RI → R2048 → R2048 → R256 → R256

As hyperbolic learning benefits from embeddings of lower dimensions[20, 23].
Similar to HypCD, these output embeddings from the projector are then clipped
with a clipping value of r = 2.3 and mapped into their respective hyperbolic mod-
els. As an example, for the Lorentz model, this mapping can be represented as:

R256 expm(C(z))−−−−−−→ L256

The supervised and self-supervised contrastive learning in hyperbolic geometry
uses a combination of distance and angle-based similarity, as described in Section
4.1. Furthermore, the weight of the angle-based contrastive loss is decreased lin-
early from 1 to 0 throughout training. Lastly, the curvature is frozen to a value of
κ = 0.05, as is the case in HypCD.

All experiments are run with a batch size of 128. The learning rate is initialized as
0.1 with a cosine annealing scheduler reducing it to 0.0 at the end of training and
Stochastic Gradient Descent (SGD) is used to optimize all models. The hyperbolic
models utilize gradient clipping, where all gradients are first clipped to a max
of 1.0, and then the mean value of all gradients is clipped to 0.25. This is due to
hyperbolic representation learning being unstable, especially in the Lorentz model,
where exploding gradients were frequently encountered. The Euclidean model
does not utilize any gradient clipping.

After the models are trained, K-Means is used to find cluster prototypes. When
using Euclidean K-Means, the projector is removed, and the embeddings directly
from the backbone are used as shown in Figure 5.2. On the other hand, the hy-
perbolic K-Means algorithms use the embeddings in hyperbolic space, which do
not require removing the projector, as the exponential map is performed on the
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clipped projector outputs. Figure 5.1 shows the full pipeline for a Lorentz model
with Lorentz K-Means.

During testing, the trained model is used to compute embeddings for the test
samples. Then the embeddings are assigned to the closest prototype, and the
assignment is evaluated by the protocol described in Section 2.1.4.

5.1.3 SimGCD Setup

ViT Projector

Expm_L(z)

C(z)

Lorentz
FC Layer

Class
logits

Figure 5.3: The full pipeline for the hyperbolic SimGCD model with embeddings and classification
in Lorentz space. During training, the embeddings from the Lorentz hyperboloid are used for the
contrastive losses before being passed to the Lorentz FC layer, while the class logits from the FC layer
are used for the classification losses.

Much of the setup for SimGCD is identical to that for Vanilla GCD. Therefore, only
the differences will be highlighted in this chapter, and anything omitted is identical
to Vanilla GCD’s setup.

The first difference is in the projector’s last layer, as it is now used to output class
logits. For the Euclidean model, the last layer has an output of |YU |:

RI → R2048 → R2048 → R256 → R|YU |

While for the hyperbolic models, the embedding is clipped and mapped to hyper-
bolic space before being passed through a hyperbolic FC layer for classification.
For example, in Lorentz space:

RI → R2048 → R2048 → R256 expm(C(z))−−−−−−→ L256 → L|YU |
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All three hyperbolic FC layers shown in Section 4.3 are implemented, and an ex-
ample of the SimGCD pipeline with Lorentz embeddings can be seen in Figure
5.3.

The input embeddings to the last layer in the projector are used in the contrastive
losses. Otherwise, the contrastive loss setup for SimGCD is identical to that of
Vanilla GCD.

For classification loss, the same setup used in the original SimGCD by Wen et al.
[35] is used. As described in Section 2.1.2, for labeled data, cross-entropy loss is
computed between ground truth values and computed logits. For unlabeled data, a
pseudo-label is generated using another view of the same image and with sharper
logit values. Then cross-entropy loss is computed between the pseudo-labels and
the computed logits minus a mean-entropy maximization regularizer.

Identical to the Vanilla GCD setup, all experiments are run with a batch size of
128. The learning rate is initialized as 0.1 with a cosine annealing scheduler, and
Stochastic Gradient Descent (SGD) is used to optimize all models. The hyperbolic
models utilize gradient clipping, with max clipping of 1.0 and mean clipping of
0.25, while the Euclidean model does not utilize any gradient clipping.

During testing, the trained model is used to generate class logits, which are used
to assign each sample to a class. Then the assignment is evaluated by the protocol
described in Section 2.1.4.

5.2 Results

The results from the different Vanilla GCD and SimGCD setups are presented and
discussed in the following section. All experiments were run using a single Nvidia
L4 GPU, and the model with the least overall loss was used to perform clustering
and testing.

5.2.1 Vanilla GCD

The results from the Vanilla GCD experiments can be seen in Tables 5.1 and 5.2.
The experiments aim to investigate the performance of representation learning in
the Lorentz model for hyperbolic geometry and whether using a hyperbolic K-
Means algorithm to perform clustering can benefit the GCD task.

Focusing on the first investigation point, Table 5.1 highlights the benefits of training
using embeddings in the Lorentz model, compared to the Poincaré model and
Euclidean geometry. The models trained on embeddings in the Lorentz model
achieve the highest accuracy in the fine-grained datasets, with the exception of
FGVC-Aircraft, where they only outperform in the accuracy of unseen classes. As
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Contrastive K-Means CUB Stanford Cars FGVC-Aircraft
Training Algorithm All Old New All Old New All Old New

Euclidean Euclidean 55.20 69.66 40.86 65.20 82.22 48.79 45.48 58.57 32.37
Poincaré Poincaré 00.52 01.04 00.00 00.85 00.00 01.66 59.11 74.46 43.72
Poincaré Euclidean 70.47 78.92 62.10 72.62 88.45 57.34 64.36 73.32 55.38
Lorentz Lorentz 73.04 83.70 62.47 76.18 90.98 61.91 61.69 66.13 57.25
Lorentz Euclidean 72.95 82.07 63.92 72.50 86.07 58.66 60.97 70.32 51.59

Table 5.1: Accuracy of the Vanilla GCD models on the fine-grained SSB datasets. For the hyperbolic
models, performance is reported using both the Euclidean and hyperbolic K-Means algorithms. The
highest accuracy for each column is highlighted.

Contrastive K-Means CIFAR-10 CIFAR-100
Training Algorithm All Old New All Old New

Euclidean Euclidean 88.97 88.16 78.78 81.70 88.31 55.25
Poincaré Poincaré 10.00 20.00 00.00 01.00 00.00 05.00
Poincaré Euclidean 88.17 98.99 78.46 83.23 83.84 80.80
Lorentz Lorentz 72.16 98.26 46.06 88.62 91.45 77.30
Lorentz Euclidean 88.04 98.04 78.04 85.50 91.99 62.75

Table 5.2: Accuracy of the Vanilla GCD models on the generic CIFAR datasets. For the hyperbolic
models, performance is reported using both the Euclidean and hyperbolic K-Means algorithms. The
highest accuracy for each column is highlighted.

for the accuracy on the generic dataset in Table 5.2, the Lorentz models achieve
much higher accuracy on CIFAR100, while achieving mixed results on CIFAR10.
This might suggest that learning embeddings in the Lorentz model is better when
more classes are involved. However, this requires further testing to be conclusive.

For the second investigation point, only performance between models using the
same embeddings is considered. One striking result is the poor performance of the
Poincaré K-Means algorithm, achieving very low accuracy in almost all datasets.
Upon further investigation, it was discovered that the Poincaré K-Means algorithm
is very sensitive to the initialization of the prototypes. Most of the time, all unla-
beled points end up being assigned to a single prototype, which leads to non of the
other prototypes being updated. This then leads to all test samples being assigned
to a single cluster, resulting in very low accuracies.

While it is not fully known why the Poincaré K-Means algorithm is unstable, it is
safer to use Euclidean K-Means when training embeddings in the Poincaré model.
On the other hand, the Lorentz K-Means algorithm leads to clear improvements
in accuracy for all fine-grained datasets and the CIFAR100 generic dataset. This
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showcases the importance of performing non-parametric clustering in hyperbolic
geometry when performing representation learning in the Lorentz space.

5.2.2 SimGCD

Contrastive FC CUB Stanford Cars FGVC-Aircraft
Training Layer All Old New All Old New All Old New

Euclidean Euclidean 64.70 79.99 49.55 74.24 87.31 61.64 67.18 68.94 65.41
Poincaré Poincaré 59.73 67.79 51.75 56.40 66.03 47.10 48.33 48.68 47.99
Poincaré Poincaré++ 66.47 61.27 71.62 64.83 65.40 64.28 54.13 52.58 55.68
Lorentz Lorentz 51.38 77.77 25.22 55.69 78.44 33.74 54.94 66.13 43.72

Table 5.3: Accuracy of the SimGCD models on the fine-grained SSB datasets. The FC layer column
highlights the layer used to calculate logits for parametric clustering. Euclidean is a simple matrix
multiplication, Poincaré corresponds to the layer by Ganea et al. [6], Poincaré++ corresponds to the
layer by Shimizu et al. [29], and Lorentz corresponds to the layer by Chen et al. [3]. The highest
accuracy for each column is highlighted.

The SimGCD experiments highlight new results from using the Hyperbolic Neural
Networks++ layer by Shimizu et al. [29] for the Poincaré model and the Lorentz FC
layer by Chen et al. [3] for the Lorentz model. These are compared to the Euclidean
SimGCD by Wen et al. [35] and the hyperbolic SimGCD by Liu et al. [20]. Only
results for the fine-grained SSB datasets are shown due to the long training time
needed to train the SimGCD models.

The results for all 4 models are shown in Table 5.3. In contrast to the results
produced by Liu et al. [20], which are shown in Table 2.3, the Euclidean SimGCD
performs the best in almost all datasets, while the Lorentz and Poincaré SimGCD
produce much lower performance. These results show that SimGCD would not
benefit from hyperbolic learning. However, further experimentation and analysis
would be needed to understand the contrast to the results provided by Liu et al.
[20].

The results in Table 5.3 do showcase a much improved performance when using
the Poincaré layer defined by Shimizu et al. [29] (denoted as Poincaré++ in the
table).

5.3 Ablations

Several ablation studies are carried out to investigate the effect of different hyper-
parameter values and training regimes. All ablations were done using the Vanilla
GCD setup with Lorentz representation learning and only on the fine-grained SSB
datasets.
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5.3.1 Euclidean Clipping

Euclidean K-Means CUB Stanford Cars FGVC-Aircraft
Clipping Algorithm All Old New All Old New All Old New

✓ Lorentz 73.04 83.70 62.47 76.18 90.98 61.91 61.69 66.13 57.25
✗ Lorentz 73.82 82.73 65.05 74.93 89.31 61.06 65.92 80.10 51.71
✓ Euclidean 72.95 82.07 63.92 72.50 86.07 58.66 60.97 70.32 51.59
✗ Euclidean 71.49 80.86 62.20 70.87 86.75 55.56 65.41 72.30 58.60

Table 5.4: Accuracy of the Lorentz embeddings Vanilla GCD model when trained with a Euclidean
clipping of r = 2.3 and without any Euclidean clipping. The highest accuracy for each column is
highlighted.

The main issues encountered while training the models during this thesis were
exploding gradients rather than vanishing gradients. Therefore, the need for the
Euclidean clipping function C(z) is investigated.

Table 5.4 presents the results of this ablation study. From these results, it can
be seen that clipping the Euclidean embeddings is not needed when training in
the Lorentz model and clustering using Lorentz K-Means, with a large gain in
performance for the FGVC-Aircraft dataset. However, removing the clipping does
have a slight impact when clustering with the Euclidean K-Means algorithm.

5.3.2 Angle Loss

Contrastive K-Means CUB Stanford Cars FGVC-Aircraft
Metric Algorithm All Old New All Old New All Old New

Distance&Angle Lorentz 73.04 83.70 62.47 76.18 90.98 61.91 61.69 66.13 57.25
Angle Only Lorentz 54.37 73.54 35.36 56.24 78.47 36.72 44.79 58.27 31.29

Distance&Angle Euclidean 72.95 82.07 63.92 72.50 86.07 58.66 60.97 70.32 51.59
Angle Only Euclidean 65.43 78.88 52.10 65.92 81.31 51.09 53.20 65.17 41.20

Table 5.5: Accuracy of the Lorentz embeddings Vanilla GCD model when trained with a combination
of angle-based and distance-based losses, and when trained with only angle-based loss. The highest
accuracy for each column is highlighted.

While training the different hyperbolic models, it was observed that using Eu-
clidean clipping can lead to all Euclidean embeddings having the same norm, and
hence all lying on a hypersphere with radius r. Therefore, it is worth investigat-
ing the importance of using both angle-based and distance-based losses when all
embeddings have the same norm.

Table 5.5 presents the results from this ablation study. It can be seen that a combi-
nation of angle and distance losses is needed to achieve high performance, despite
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all Euclidean embeddings lying in a hypersphere with radius r.

5.3.3 Embedding Dimension

Embedding K-Means CUB Stanford Cars FGVC-Aircraft
Dimension Algorithm All Old New All Old New All Old New

128 Lorentz 73.01 84.12 61.99 74.57 89.69 59.98 65.56 72.12 58.98
256 Lorentz 73.04 83.70 62.47 76.18 90.98 61.91 61.69 66.13 57.25
768 Lorentz 70.61 87.52 55.68 75.95 90.35 62.06 58.42 61.87 54.95

65536 Lorentz 72.56 84.36 60.86 75.54 89.06 62.50 59.32 77.40 50.15
128 Euclidean 71.14 82.14 60.24 72.09 88.22 56.54 63.91 72.00 55.80
256 Euclidean 72.95 82.07 63.92 72.50 86.07 58.66 60.97 70.32 51.59
768 Euclidean 70.07 79.37 60.86 71.77 85.22 62.67 61.99 70.38 53.57

65536 Euclidean 72.21 81.45 63.06 74.57 88.60 61.03 59.71 65.47 53.93

Table 5.6: Accuracy of the Lorentz embeddings Vanilla GCD model when trained with different
embedding dimensions. The highest accuracy for each column is highlighted.

To investigate the fact that representation learning benefits from lower embedding
dimensions, models with four different embedding dimensions were trained. The
dimensions chosen are 128, 256, 768, and 65536. 256 is the output of the second-to-
last layer of the projector and the value used by Liu et al. [20] in HypCD, while 128
is half of that value. 768 is the dimension of the outputs from the ViT backbones,
and 65536 is the dimension used in the original Vanilla GCD paper for Euclidean
training.

Table 5.6 presents the results of this ablation study. The accuracy scores are very
mixed across all embedding dimensions, except with FGVC-Airplane, which ben-
efits from the lowest dimension of 128. These results showcase that representation
learning in the Lorentz space can perform well in both high and low embedding
dimensions. However, more experiments are needed to investigate how low the
dimension can be decreased before a loss in performance is incurred.

5.3.4 Learning Curvature Value

Desai et al. [5] opt to learn the curvature value when training their large vision-
language model MERU. This ablation aims to see if the Lorentz Vanilla GCD model
can benefit from learning the curvature instead of freezing it to a value of κ = 0.05.
Similar to Desai et al. [5], the curvature is learned in logarithmic space, and is
clipped between the values [0.1κI , 10κI ], where κI is the initial curvature. The
initial curvature value is chosen to be 0.1 for this ablation study. Furthermore, to
avoid instability in training the curvature, the gradient of the curvature value was
clipped to a maximum of 0.1.



48 Chapter 5. Results

Learned K-Means CUB Stanford Cars FGVC-Aircraft
Curvature Algorithm All Old New All Old New All Old New

✓ Lorentz 73.04 83.70 62.47 76.18 90.98 61.91 61.69 66.13 57.25
✗ Lorentz 64.07 81.90 46.39 66.93 83.69 50.77 61.36 75.84 46.85
✓ Euclidean 72.95 82.07 63.92 72.50 86.07 58.66 60.97 70.32 51.59
✗ Euclidean 67.22 81.10 53.47 67.07 81.48 53.16 63.37 74.82 51.89

Table 5.7: Accuracy of the Lorentz embeddings Vanilla GCD model when trained with a frozen cur-
vature of κ = 0.05 and with learned curvature. The highest accuracy for each column is highlighted.

Table 5.7 presents the results of this ablation study. Learning the value of the
curvature leads to a decrease in accuracy for the CUB and Stanford Cars datasets,
while leading to an increase in accuracy for the FGVC-Aircraft dataset. However,
during training on all datasets, the curvature value increases to the maximum value
of 1.0 within the first 30 epochs and remains there for the rest of the training. With
this information, it is safe to conclude that freezing the curvature would be more
beneficial.

5.3.5 AdamW Optimizer

Optimizer K-Means CUB Stanford Cars FGVC-Aircraft
Algorithm All Old New All Old New All Old New

SGD Lorentz 73.04 83.70 62.47 76.18 90.98 61.91 61.69 66.13 57.25
AdamW Lorentz 29.22 39.94 18.59 36.14 55.29 17.66 41.37 60.85 21.86

SGD Euclidean 72.95 82.07 63.92 72.50 86.07 58.66 60.97 70.32 51.59
AdamW Euclidean 30.69 40.19 21.27 34.29 46.63 22.38 42.09 48.98 35.20

Table 5.8: Accuracy of the Lorentz embeddings Vanilla GCD model when trained with a the SGD
optimizer and the AdamW optimizer. The highest accuracy for each column is highlighted.

All models were optimized using the SGD optimizer. However, it is worth investi-
gating their performance when optimized with another optimizer. Therefore, the
models are trained with the AdamW optimizer to compare the performance of
training between the two optimizers.

Table 5.8 presents the results of this ablation study. Using the AdamW optimizer
leads to a decrease in accuracy by almost half for most of the datasets. This show-
cases the benefits of using the SGD for learning Lorentz embeddings in Vanilla
GCD. However, it is worth investigating other optimizers or different hyperparam-
eter setups to see if higher accuracy can be achieved.
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Future Work

This chapter lists some possible further work and analysis for the proposed meth-
ods in this thesis, along with some future directions for hyperbolic GCD.

Further Work

The main results of the Vanilla GCD model presented very low accuracy from using
the Poincaré K-Means algorithm. This was hypothesized to be due to sensitivity
to the initialization of the prototypes, where all samples were assigned to one
prototype in the assignment phase of the algorithm. Therefore, further work is
needed to pinpoint if this hypothesis is correct. One direction would be to adapt
the BSSK algorithm to the Poincaré model, and evaluate if it resolves these issues.

Furthermore, the main results of the SimGCD model presented the superiority of
the Euclidean model, which is in contrast to the results presented in the HypCD
paper by Liu et al. [20]. Therefore, it is worth performing ablations on the different
SimGCD models and further analyzing the models’ outputs to be able to present
a more robust conclusion. Another factor can also be the missing Riemannian
optimizer, as in contrast to the HypCD paper, the setup in this thesis utilizes the
normal SGD optimizer for all layers, while Liu et al. [20] choose to optimize the
hyperbolic FC layer using Riemannian Adam.

Lastly, further analysis of the hyperbolic embeddings and clustering results could
be carried out to analyze the hierarchical capabilities of the hyperbolic GCD meth-
ods. This analysis can be used to understand where the models fail and where
they succeed, and also to closely analyze whether hyperbolic representation learn-
ing discovers hierarchies present in the data.
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Future Directions

One future direction for hyperbolic GCD is to modify the SOTA Euclidean method,
SelEx, to learn embeddings in the Lorentz model, and perform hierarchical K-
Means in hyperbolic geometry by modifying the BSSK and the HSSK algorithms
for the Poincaré and Lorentz models.

Furthermore, this thesis assumes that the GCD methods would implicitly learn
hierarchies in hyperbolic geometry. Making it worth investigating explicitly using
the hierarchical labels in the fine-grained SSB datasets to learn embeddings using
entailment loss. For example, by representing variant labels as child nodes of the
manufacturer labels in the FGVC-Aircraft dataset.



Chapter 7

Conclusion

This thesis focused on exploring the potential of utilizing hyperbolic visual learn-
ing for solving the Generalized Category Discovery (GCD) task. To this end, the
GCD and hyperbolic visual learning literature were analyzed.

Motivated by the success of SelEx in utilizing hierarchical pseudo labels for solving
GCD, and the results presented by Liu et al. [20] in their Hyperbolic Category Dis-
covery (HypCD) paper, which was concurrently published with this thesis. It was
chosen to analyze the effect of using the Lorentz model for hyperbolic geometry
to learn representations of data, and the impact of performing K-Means clustering
directly on hyperbolic embeddings.

To this end, the Vanilla GCD method by Vaze et al. [31] and the SimGCD method
by Wen et al. [35] were adapted to learn representations in the Lorentz model.
Furthermore, the K-Means algorithm was adapted for hyperbolic geometry for
non-parametric clustering in Vanilla GCD, and hyperbolic Fully Connected (FC)
layers were used for parametric clustering in SimGCD.

The adapted Vanilla GCD and SimGCD models were tested alongside the orig-
inal and HypCD models. The results showed that utilizing the Lorentz model
for Vanilla GCD does lead to increased performance in most datasets. However, it
showed worse performance in comparison to all other models with SimGCD, while
the original Euclidean SimGCD achieved the best performance, in contrast to the
results reported by Liu et al. [20], showing the need for further experimentation.

Experiments were also run on the adapted Vanilla GCD to test the performance
of performing non-parametric clustering directly on the hyperbolic embeddings
using the hyperbolic K-Means algorithms. The results showed that embeddings
in the Lorentz space benefit from the hyperbolic K-Means algorithm, achieving
the best performance. However, the K-Means algorithm in Poincaré space was
found to be too unstable, with the algorithm completely failing most of the time,
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depending on the prototype initialization.

Lastly, ablation studies were carried out on the Lorentz Vanilla GCD model. The
conclusions from the five ablation studies were the following:

• Clipping Euclidean embeddings is not necessary for training in the Lorentz
model.

• Using a combination of angle-based and distance-based contrastive learning
is essential for hyperbolic learning.

• The embedding dimension of the Lorentz embeddings does not affect perfor-
mance. However, further experimentation is needed for dimensions below
128.

• Learning the curvature instead of freezing it does not lead to improved per-
formance for representation learning in the Lorentz space.

• The Stochastic Gradient Descent (SGD) is a much better fit for hyperbolic
GCD than the AdamW optimizer.
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