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time-independent Schrödinger equation under the given
potential. The corresponding dipole matrix elements and
oscillator strengths are subsequently found. The model
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Chapter 1

Introduction

Quantum computing is a framework wherein quantum mechanical systems are used to perform computational
tasks. Quantum computers aim to exploit certain quantum mechanical phenomena such as superposition and
entanglement for the purposes of computation. The information stored on quantum computers is encoded
in quantum bits, or qubits, rather than bits. As opposed to classical bits, qubits can be in a superposition
of both zero and one and may be entangled with other qubits so that the state of one is correlated with the
state of another [de Wolf, 2023]. Utilization of these properties in turn allows for the creation of quantum
algorithms that offer significant computational advantages and speed-up for certain tasks in comparison
with classical computer algorithms [Zhahir et al., 2023, de Wolf, 2023]. This includes the simulation of
quantum systems, factorization of large numbers, searching in unstructured data, solving linear equations
and more, which see applications in cryptography, finance, machine learning, physics research and other
fields [Zhahir et al., 2023]. The field of quantum computation originally began in the early 1980s with
the introduction of the first framework for a reversible quantum Turing machine [Benioff, 1980]. Richard
Feynmann shortly thereafter proposed using these quantum computers to simulate quantum mechanical
systems as a means of avoiding the exponential computational costs associated with classical computers
[Feynman, 1982]. The viability of quantum computers for such tasks was subsequently confirmed and
extended to more general systems [Lloyd, 1996, Deutsch, 1985]. The first quantum algorithms were then
developed [Deutsch and Jozsa, 1992, Simon, 1997], which later inspired Shor’s algorithm in 1994, which
finds the prime factorization of an integer [Shor, 1997]. The first two-qubit quantum computer was built
in 1997 and succesfully ran the algorithm reported by Deutsch and Jozsa [Chuang et al., 1998]. Later, in
2001, a five-qubit quantum computer was used to find the prime factorization of 15 using Shor’s algorithm
[Vandersypen et al., 2001]. Since then, interest and research in quantum computing have continued to grow.
In 2025, IBM is planning to introduce the "Kookaburra" chip featuring 1.386 qubits [IBM Quantum, 2023].

The practical challenges involved in realizing a real-world large-scale quantum computer are very con-
siderable [de Wolf, 2023, Dykman and Platzman, 2000]. A fully realized quantum computer requires an
appreciable number of qubits, which can all interact with one another and yet not couple to other objects
external to the system [Dykman and Platzman, 2000]. A computation in such a system involves manipulating
the individual electrons, which includes changing their states and mutual interaction, on a time-scale less
than their expected coherence time. Once a computation is completed, we must then be able to perform
a read-out of the system so that the result of said computation may be extracted [Dykman and Platzman,
2000]. One of the most prominent problems facing a practical quantum computer is decoherence of the
quantum states on which the qubits are encoded [Gill et al., 2025]. This occurs when the qubits inadvertently
interact with the environment and causes the encoded information to be lost. This problem may be mitigated
in several ways such as environmental control, like cooling, or quantum error-correction codes, but the
practical implementation is still in its infancy [de Wolf, 2023]. Another significant problem is finding ways
of effectively controlling and entangling qubits, and doing it on a scale where enough qubits are present to
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allow for meaningful computational capacity [Gill et al., 2025]. Numerous potential qubit platforms have
been proposed as a result of the research conducted in response to these challenges including trapped-ion
qubits [Bernardini et al., 2023], spin qubits [Harvey, 2022], superconducting qubits [Huang et al., 2020],
photonic qubits [Romero and Milburn, 2024] and others, each of which come with their own set of strengths
and weaknesses. The present work will focus on a particular type of these qubit platforms, namely the
Electron-on-Helium qubit.

The Electron-on-Helium qubit was originally proposed by Platzman and Dykman in 1999 [Dykman and
Platzman, 2000]. This platform proposes using electrons bound to a cryogenic substrate of Helium as
qubits. The originally proposed setup involves placing a cryogenic substrate of Helium on a plate capacitor.
The electron qubits would then be confined and controlled using small electrodes embedded in the Helium
substrate [Dykman and Platzman, 2000]. The electron qubits’ out-of-plane confinement would primarily
be determined by the relative difference of permitivity between the substrate and the medium, usually a
vacuum, which induces an image charge effect that binds the electron relatively weakly to the substrate. The
negative electron affinity of the substrate also induces a finite potential barrier at the interface of roughly
one electronvolt [Jennings et al., 2024], which in turn quantizes the out-of-plane states of the electrons. A
possible read out mechanism could then be state-selective ionization induced by an electric field provided
by the capacitor plates. The ground state and first excited state were originally proposed as the two qubit
basis states. It has since been extended to Neon substrates [Chen et al., 2022]. The physics of such systems
have been studied already in the 1960s [Bruschi et al., 1966, Cole and Cohen, 1969], but was only proposed
for quantum computing purposes by the end of the millennium. Subsequent research of this platform has
since been made [Dykman et al., 2003, Lyon, 2006, Kawakami et al., 2023]. The electron-on-Helium
qubit platform faces certain challenges such as mechanical disturbances [Jennings et al., 2024], but also has
several promising features including long coherence times, efficient qubit control and scalability [Dykman
and Platzman, 2000].

The main focus of this thesis will be to study the electron-on-Helium qubit platform with particular emphasis
on the out-of-plane qubit control using electric fields. In particular, we ultimately aim to describe aspects
of the electron qubits’ response due to both static and dynamic perturbations induced by external electric
fields. We do this by first examining the details of the potential induced by the image charge effect and
then determining the unperturbed out-of-plane electron states. The resulting theoretical framework is
then subsequently extended using quantum defect theory as a means of accurately modelling experimental
observations that are not immediately reproduced by the bare image charge effect. We then introduce
external electric fields and study the induced effects, including Stark shifts and electric polarizability, using
non-degenerate quantum mechanical perturbation theory for both the static and dynamic case. By restricting
ourselves to single electron qubit systems and using simpler models for the out-of-plane states, we can use
analytical and exact approaches to model the effects of perturbations induced by external electric fields. The
results from perturbation theory are subsequently extended to non-perturbative regimes such as field-induced
ionization processes. These approaches allow us to find out-of-plane electron states with energy eigenvalues
agreeing with experimental findings, analytical Stark shifts and ionization rates and closed-form electric,
frequency-dependent polarizabilities. The results from this work is compared with numerical methods and
experimental findings. By doing so we aim to demonstrate the viability and ease for which qubits may be
electrically controlled on this platform.
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Chapter 2

Electron Qubit on Cryogenic Substrate

In this chapter, we construct the electron qubit system from the perspective of classical electromagnetism
and derive the image potential binding the electron to the substrate. We then construct and solve the
time-independent Schrödinger equation pertaining to the electron qubit system, which includes finding the
energy eigenvalues and eigenstates in both the bound and unbound case. In addition, we find the diagonal
and off-diagonal dipole matrix elements of the system, as well as the corresponding oscillator strengths and
oscillator strength moments. We then discuss the energy transitions, reintroduce the electron as a quantum
defect atom and thereby construct a phenomenological extension of the image potential. With the new
potential, we solve the time-independent Schrödinger equation once more and determine the corresponding
matrix elements, oscillator strength and oscillator strength moments.

2.1 One-dimensional Electron on Cryogenic Substrate

In this section, we initially wish to examine some basic properties of the electron-on-Helium qubit platform,
which includes developing a simple one-dimensional model for the electron qubits floating on the cryogenic
substrate composed of liquid Helium or solid Neon. This will allow us to determine the out-of-plane electron
states yielding correct energy eigenvalues and ultimately prepare us for the later analysis concerning qubit
control using external electric fields. The basic qubit platform is shown in Figure 2.1 below, where an
electron of charge 𝑞 = −𝑒 is placed at a position 𝑧0ẑ and lies in a medium with dielectric constant 𝜀1. The
origin is placed in the boundary plane between the medium occupied by the electron qubit and the cryogenic
substrate, which is treated as a separate medium with dielectric constant 𝜀2. In this way, the entire system
is composed of two semi-infinite dielectric media separated by an interface lying in the 𝑥𝑦-plane. The
qubit platform has been proposed with both liquid Helium and solid Neon substrates, which have dielectric
constants 𝜀He = 1.057 [Lide, 2005] and 𝜀Ne = 1.244 [Zhou et al., 2022], respectively. The medium occupied
by the electron is usually chosen to be a vacuum so that 𝜀1 = 1.
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2.1. One-dimensional Electron on Cryogenic Substrate Aalborg University

Figure 2.1: Sketch of Electron Lying Above Cryogenic Substrate. The electron lies in medium 1, which in the
present case is composed of a vacuum and hence 𝜀1 = 1. The cryogenic substrate corresponds to the second
medium of permitivity 𝜀2. Important examples of cryogenic substrates for the purposes of qubit platforms
are liquid Helium and solid Neon, which have dielectric constants 𝜀2 = 1.057 and 𝜀2 = 1.244, respectively.
The electron induces an image charge in the substrate due to the relative difference in permitivity. The
electron and its image both lie a distance 𝑧0 from the interface separating the two media, which in this case
is the 𝑥𝑦-plane. The figure is based on [Pedrotti et al., 2018].

The main idea now is that the electron induces an image charge 𝑞′ placed at −𝑧0ẑ in the cryogenic
substrate due to the relative difference in permitivity between the two media [Landau and Lifshitz, 1984].
The interaction between the electron qubit and its image in the cryogenic substrate in turn produces a
Coulomb-like potential V that binds the electron qubit relatively weakly to the surface of the substrate
[Dykman and Platzman, 2000]. In addition to the Coulomb-like potential, the electron also faces a finite
potential barrier at the interface between the two media due to the negative electron affinity of the substrate
[Jennings et al., 2024]. The magnitude of this barrier for a liquid Helium substrate is roughly 𝑉0 ≃ 1 eV
[Dykman and Platzman, 2000]. In the case of a solid Neon substrate, this barrier is around 30% lower [Zhou
et al., 2022]. We may then write the potential confining the qubit electron to the substrate as

V(𝑧) =

𝑉0, if 𝑧 ≤ 0

𝑉 (𝑧), if 𝑧 > 0
, (2.1.1)

where 𝑉0 is the magnitude of the potential barrier and 𝑉 (𝑧) is the potential induced by interaction with the
image charge. For the purposes of determining the electron qubits energy eigenstates, we will on account
of the relatively large potential barrier assume that 𝑉0 → ∞ and hence restrict the problem to the positive
𝑧-axis [Jennings et al., 2024]. This corresponds to imposing a Dirichlet boundary condition and hence
ignoring potential spill-out effects into the substrate. This ultimately allows us to determine the eigenstates
and energy eigenvalues of the electron qubit by solving a problem similar to the one-dimensional Hydrogen
atom. Before doing so, we must first determine the form of the potential 𝑉 (𝑧) that binds the electron qubit
to the substrate. We accomplish this using a classical electrodynamics approach described in [Landau
and Lifshitz, 1984]. This involves determining the magnitude of the image charge 𝑞′ using the method of
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images, which ensures that the two point charges satisfy the electromagnetic boundary conditions. In the
first medium, we seek the electric potential 𝜙1 due to the two point charges 𝑞 and 𝑞′, whereas in the second
medium we seek the electric potential 𝜙2 due to another fictitious charge 𝑞′′ lying at 𝑧0ẑ. The total electric
potential 𝜙 in the system may then be expressed as

𝜙 =
1

4𝜋𝜀0
×


𝑞′′/𝜀2𝑟, if 𝑧 ≤ 0

𝑞/𝜀1𝑟 + 𝑞′/𝜀1𝑟
′, if 𝑧 > 0

, (2.1.2)

where 𝑟 and 𝑟 ′ are the distances from some point of observation to the charge and its image, respectively.
We may now determine the two fictitious charges 𝑞′ and 𝑞′′ by ensuring that 𝜙 satisfies the electromagnetic
boundary conditions, which in this case require that both the parallel component of the electric field E∥

and the perpendicular component of the displacement field D⊥ = 𝜀E⊥ are continuous across the interface
shown in Figure 2.1. We can relate the electric field to the electric potential by E = −∇𝜙. In terms of the
electric potential therefore, the boundary conditions read

BCs :

𝜙1 = 𝜙2

𝜀1𝜕𝑧𝜙1 = 𝜀2𝜕𝑧𝜙2
. (2.1.3)

We can now substitute the two electric potentials 𝜙1 and 𝜙2 from equation (2.1.2) into the electromagnetic
boundary conditions given in equation (2.1.2), which gives

𝑞′

4𝜋𝜀0𝜀1
√︁
𝑥2 + 𝑦2 + (𝑧 + 𝑧0)2

�����
𝑧=0

=
1

4𝜋𝜀0
√︁
𝑥2 + 𝑦2 + (𝑧 − 𝑧0)2

(
𝑞′′

𝜀2
− 𝑞

𝜀1

)�����
𝑧=0

, (2.1.4)

−2𝜀1𝑞
′ (𝑧 + 𝑧0)

8𝜋𝜀0𝜀1
√︁
𝑥2 + 𝑦2 + (𝑧 + 𝑧0)2

�����
𝑧=0

=
−2(𝑧 − 𝑧0)

8𝜋𝜀0
√︁
𝑥2 + 𝑦2 + (𝑧 − 𝑧0)2

(
𝑞′′𝜀2
𝜀2

− 𝑞𝜀1
𝜀1

)�����
𝑧=0

, (2.1.5)

where we have evaluated both electric potentials at an arbitrary point along the interface, meaning 𝑧 = 0.
Substituting 𝑧 = 0 then reduces equations (2.1.4) and (2.1.5) significantly and just leaves

𝜀2 (𝑞 + 𝑞′) = 𝜀1𝑞
′′, (2.1.6)

𝑞 − 𝑞′ = 𝑞′′. (2.1.7)

The magnitude of the two fictitious charges 𝑞′ and 𝑞′′ can now be determined by solving the system given
in equation (2.1.6) and (2.1.7). For the purposes of this calculation, we are only interested in the image
charge 𝑞′. Solving the system above shows that

𝑞′ =
𝜀1 − 𝜀2
𝜀1 + 𝜀2

𝑞. (2.1.8)

We have now determined the magnitude of the image charge 𝑞′, which in the present case of Helium and
Neon are relatively weak. Specifically, we have 𝑞′ = −0.0277𝑞 and 𝑞′ = −0.1087𝑞 for Helium and Neon,
respectively. Using equation (2.1.8), we are now able to determine the potential 𝑉 (𝑧) by first calculating
the image force F and then exploiting the fact that it is conservative. The standard Coulombic image force
becomes

F =
𝑞2

4𝜋𝜀0𝜀1 (2𝑧)2
𝜀1 − 𝜀2
𝜀1 + 𝜀2

ẑ

=
𝑞2

16𝜋𝜀0𝜀1𝑧2
𝜀1 − 𝜀2
𝜀1 + 𝜀2

ẑ. (2.1.9)
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2.1. One-dimensional Electron on Cryogenic Substrate Aalborg University

Because the image force is conservative, we know that F = −∇𝑉 [Kibble and Berkshire, 2004]. Because
the image force acts solely along ẑ, we can determine 𝑉 (𝑧) by simple integration, which gives

𝑉 = −
∫

𝑞2

16𝜋𝜀0𝜀1𝑧2
𝜀1 − 𝜀2
𝜀1 + 𝜀2

d𝑧

= − 𝑞2

16𝜋𝜀0𝜀1𝑧

𝜀2 − 𝜀1
𝜀1 + 𝜀2

. (2.1.10)

We now substitute 𝜀1 = 1 and define 𝜀2 ≡ 𝜀, where 𝜀 is the permitivity of the chosen substrate. This allows
the potential in equation (2.1.10) to be written as

𝑉 (𝑧) = − Z𝑒2

4𝜋𝜀0𝑧
, where Z =

1
4
𝜀 − 1
𝜀 + 1

. (2.1.11)

For the particular cases of Helium and Neon, we find that ZHe = 0.006928 and ZNe = 0.027184. The
potential that binds the electron to the substrate is therefore quite weak, especially in comparison with the
potential of the Hydrogen atom, which is two orders of magnitude stronger. With the potential of the electron
qubit determined and the corresponding boundary conditions imposed, we are now ready to determine the
out-of-plane energy eigenstates and corresponding energy eigenvalues. This is accomplished by solving the
time-independent Schrödinger equation under the imposed one-dimensional potential, which reads

𝐻̂𝜓 = 𝐸𝜓, where 𝐻̂ = − ℏ2

2𝑚
d2

d𝑧2 − Z𝑒2

4𝜋𝜀0𝑧
, (2.1.12)

where 𝐸 is the energy eigenvalue and 𝑚 is the mass of the electron. The eigenvalue problem in equation
(2.1.12) is as mentioned above restricted to the positive 𝑧-axis due to the infinite potential barrier approxi-
mation at the interface. We want to solve equation (2.1.12) for both the bound states and unbound states.
We start with the bound states 𝜓 = 𝜓𝑛, which have a set of discrete energy levels 𝐸 = 𝐸𝑛 < 0 for each
principal quantum number 𝑛. Before proceeding, we convert the problem at hand to modified atomic units.
In particular, we define the modified Bohr radius and Hartree energy in terms of

𝑎0 =
4𝜋𝜀0ℏ

2

𝑚𝑒2Z
, 𝐸𝑛 = − Ha

2𝑛2 =
ℏ2

2𝑚𝑎2
0𝑛

2
, (2.1.13)

which we will be our characteristic length and energy scales, respectively. In the presented units, we in
the case of Helium have 𝑎0 = 7.609 nm and Ha = 1.316 meV = 318.2 GHz, and in the case of Neon have
𝑎0 = 1.939 nm and 𝐸0 = 20.267 meV = 4.901 THz. We then note that the more realistic finite barrier
𝑉0 ≃ 1 eV for the Helium substrate is approximately 1500 times larger than the ground state energy as
provided by equation (2.1.13). Similarly for the Neon substrate, the finite barrier is roughly 70 times larger.
Using the units outlined in equation (2.1.13), the eigenvalue problem reads(

1
2

d2

d𝑧2 + 1
𝑧
− 1

2𝑛2

)
𝜓𝑛 = 0. (2.1.14)

The eigenvalue problem has now been converted appropriate units and we are ready to proceed. We can
determine the eigenstates 𝜓𝑛 by assuming that they are products of a number of simpler functions [Nieto,
2000]. These simpler functions are found by investigating by investigating the limiting behaviour of 𝑧. We
start by considering the asymptotic behaviour of 𝜓𝑛 as 𝑧 → ∞. In this limit, one finds that equation (2.1.14)
reduces to (

d2

d𝑧2 − 1
𝑛2

)
𝜓𝑛 → 0, for 𝑧 → ∞. (2.1.15)
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It is clear that equation (2.1.15) is asymptotic to both exp(𝑧/𝑛) and exp(−𝑧/𝑛). We will later require
that ⟨𝜓𝑛 |𝜓𝑚⟩ = 𝛿𝑛𝑚, where 𝛿𝑛𝑚 is the Kronecker delta, and hence we discard exp(𝑧/𝑛) because it is not
square-integrable on R≥0. Thus, we can then conclude that

𝜓𝑛 ∼ e−𝑧/𝑛. (2.1.16)

We now consider the opposite limiting behaviour equation (2.1.14), where instead 𝑧 → 0. In this limit, we
find that the third term −1/2𝑛2 vanishes and hence(

1
2

d2

d𝑧2 + 1
𝑧

)
𝜓𝑛 → 0, for 𝑧 → 0. (2.1.17)

As with the three-dimensional Hydrogen atom, we see that a factor of the eigenstates 𝜓𝑛 is a power function
𝑧
𝑝
𝑛 for some 𝑝. Substituting this factor into equation (2.1.17) above then shows that 𝑝(𝑝−1) = 0 in the small
𝑧𝑛 limit, from which we conclude that 𝑧 is a factor. We now write the eigenstates as 𝜓𝑛 = 𝑓 𝑧 exp(−𝑧/𝑛),
where 𝑓 = 𝑓 (𝑧) is an as of yet unknown function. Substituting this proposal into equation (2.1.14) then
shows that (

1
2

d2

d𝑧2 + 1
𝑧
− 1

2𝑛2

)
𝑓 𝑧e−𝑧/𝑛 = 0. (2.1.18)

We now expand the above equation by letting the differential operator act on the proposed solution, which
in turn yields (

1
2
𝑧

d2 𝑓

d𝑧2 + d 𝑓
d𝑧

− 𝑧

𝑛

d 𝑓
d𝑧

+ 𝑧 𝑓

2𝑛2 − 𝑓

𝑛
+ 𝑓 − 𝑓 𝑧

2𝑛2

)
e−𝑧/𝑛 = 0. (2.1.19)

It is clear that the fourth and last terms in equation (2.1.19) cancel. Reducing further and multiplying
through by 𝑛 exp(𝑧/𝑛) then gives

𝑧′
d2 𝑓

d𝑧′2
+ (2 − 𝑧′) d 𝑓

d𝑧′
+ (𝑛 − 1) 𝑓 = 0, (2.1.20)

where we in addition have made the change of variable 𝑧′ = 2𝑧/𝑛. The condition given in equation (2.1.20)
requires that 𝑓 is an associated Laguerre polynomial, as shown in equation (A.0.2). In this particular case,
we have 𝑎 = 1 and 𝑏 = 𝑛−1, which in turn means that 𝑓 = 𝐿 (1)

𝑛−1 (2𝑧/𝑛). We can now formulate the complete
eigenfunction by combining all three factors, which in turn yields

𝜓𝑛 = N𝑛𝑧e−𝑧/𝑛1𝐹1

(
1 − 𝑛; 2,

2𝑧
𝑛

)
, (2.1.21)

where we have introduced the normalization constant N𝑛 and applied equation (A.0.6) to express the
eigenstates in terms of the confluent hypergeometric function. We note that the normalization constant has
absorbed a factor 𝑛 from equation (A.0.6). We now only need to determine N𝑛, which we accomplish by
enforcing the 𝑚 = 𝑛 case of the orthonormalization condition, meaning ⟨𝜓𝑛 |𝜓𝑛⟩ = 1. Applying this to the
wave function found above in equation (2.1.21) yields∫ ∞

0
N2

𝑛 𝑧
2e−2𝑧/𝑛

[
1𝐹1

(
1 − 𝑛; 2,

2𝑧
𝑛

)]2
d𝑧 = 1. (2.1.22)

To evaluate the integral above, we first change the variable of integration so that 𝑧′ = 2𝑧/𝑛, which in turn
means that d𝑧 = 𝑛d𝑧′/2 and hence

1
8
𝑛3N2

𝑛

∫ ∞

0
𝑧′2e−𝑧

′ [1𝐹1 (1 − 𝑛; 2, 𝑧′)]2 d𝑧′ = 1. (2.1.23)

12



2.1. One-dimensional Electron on Cryogenic Substrate Aalborg University

The integral in equation (2.1.23) is a special case of the W. Gordon integral shown in equation (A.0.10);
J1,0

2 (1 − 𝑛, 1 − 𝑛; 1, 1, 1) in particular. Rearranging equation (2.1.23) above and applying the identity then
shows that

N𝑛 =

{
1
8
𝑛3J1,0

2 (1 − 𝑛, 1 − 𝑛; 1, 1, 1)
}−1/2

=

{
1
8
𝑛3 Γ(3) (𝑛 − 1)!

(2)𝑛−1
3𝐹2 (1 − 𝑛,−1, 2, 2, 1, 1)

}−1/2

=

{
1
8
𝑛3 2Γ(𝑛)

Γ(𝑛 + 1) · 𝑛
}−1/2

= 2𝑛−3/2, (2.1.24)

where we applied the identity Γ(𝑥 + 1) = 𝑥Γ(𝑥). Using the expression for the normalization constant N
given in equation (2.1.24) then shows that the fully normalized eigenstate are

𝜓𝑛 = 2𝑛−3/2𝑧e−𝑧/𝑛1𝐹1

(
1 − 𝑛; 2,

2𝑧
𝑛

)
. (2.1.25)

The bound eigenstates given above are products of an 𝑛′th order polynomial and a decaying exponential.
Now that we have determined the normalized eigenstates, we will be able to calculate the probability density
using |𝜓𝑛 |2 = 𝜓★

𝑛𝜓𝑛, from which expectation values may be found. The wave function of the ground state
and first three excited states are shown in Figure 2.2 below.
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Figure 2.2: Wave Function of the bound electron plotted as a function of distance 𝑧 from the interface,
which lies in the 𝑥𝑦-plane. The eigenstates corresponding to principal quantum numbers 𝑛 ∈ {1, 2, 3, 4} are
shown. The eigenstates asymptotically settle to zero at infinity. In the case of a Helium substrate, we have
20𝑎0 = 152.18 nm, whilst in the case of a Neon substrate, we have 20𝑎0 = 38.78 nm.

Because the dielectric constant of Helium is close to that of air, then it is clear that Z ≪ 1 and hence
the characteristic length 𝑎0 is relatively large. For this reason one finds that the probability density first
vanishes for relatively large distance, especially for the excited states. As seen in Figure 2.2, the ground
state decays at roughly 𝑧 = 7.5, which in the case of Helium and Neon corresponds to 𝑧 = 57.1 nm and
𝑧 = 14.5 nm, respectively. Now that we have determined the bound eigenstates and their corresponding
eigenvalues, we turn to the unbound eigenstates 𝜓 = 𝜓𝑘 . The unbound eigenstates form a continuum in the

13



Group 5.323C 2. Electron Qubit on Cryogenic Substrate

wavenumber 𝑘 > 0 rather than the discrete set given in the bound case. The corresponding energy levels
are 𝐸 = 𝐸𝑘 > 0. Like the bound eigenstates, we determine the unbound eigenstates by first converting the
eigenvalue problem to atomic units using equation (2.1.13) and

𝐸𝑘 = Ha
𝑘2

2
=

ℏ2𝑘2

2𝑚𝑎2
0
. (2.1.26)

Using these units, the corresponding eigenvalue problem given in equation (2.1.12) then reads(
1
2

d2

d𝑧2 + 1
𝑧
+ 1

2
𝑘2

)
𝜓𝑘 = 0. (2.1.27)

As with the bound eigenstates, we can now determine the unbound eigenstates by assuming that they may
be written as a product of several other functions. The same line of reasoning, which we used in the
previous case concerning the bound eigenstates, can be applied for the unbounded eigenstates to deduce
that 𝜓𝑘 = 𝑓 𝑧 exp(−𝑖𝑘𝑧), where 𝑓 = 𝑓 (𝑘) is an unknown function. The reason for this is that the unbound
eigenstates, in terms of the governing differential equation, inhibit the same behaviour in both the 𝑧 → 0
and 𝑧 → ∞ limits . Although both exp(±𝑖𝑘𝑧) are valid in this case, we choose the negative sign for the sake
of consistency. Inserting the proposed solution into equation (2.1.27) above and expanding terms then gives(

1
2
𝑧

d2 𝑓

d𝑧2 − 𝑖𝑘𝑧d 𝑓
d𝑧

+ d 𝑓
d𝑧

− 1
2
𝑘2𝑧 𝑓 − 𝑖𝑘 𝑓 + 𝑓 + 1

2
𝑘2 𝑓 𝑧

)
e−𝑖𝑘𝑧 = 0. (2.1.28)

Once again, the fourth and last terms cancel. Multiplying the resulting equation through by a factor
exp(𝑖𝑘𝑧)/𝑖𝑘 then shows that

𝑧′
d2 𝑓

d𝑧′2
+ (2 − 𝑧′) d 𝑓

d𝑧′
+

(
1
𝑖𝑘

− 1
)
𝑓 = 0, (2.1.29)

where we also have introduced the change of variable 𝑧′ = 2𝑖𝑘𝑧. This shows that 𝑓 is an associated Laguerre
polynomial, for which 𝑎 = 1 and 𝑏 = −1 − 𝑖/𝑘 such that 𝑓 = 𝐿

(1)
−1−𝑖/𝑘 (2𝑖𝑘𝑧). Combining all three factors

then allows the unbound eigenstates to be written as

𝜓𝑘 = N𝑘𝑧e−𝑖𝑘𝑧1𝐹1

(
1 + 𝑖

𝑘
, 2, 2𝑖𝑘𝑧

)
, (2.1.30)

where the conversion factor from equation (A.0.6) has been absorbed into the normalization constant N𝑘 .
It is important to note that the unbound eigenstates are not square-integrable and hence we cannot enforce
the orthonormalization condition ⟨𝜓𝑘 |𝜓𝑘′⟩ = 𝛿𝑘𝑘′ to find N𝑘 . Instead, we require that∫ ∞

0
𝜓★
𝑘𝜓𝑘′d𝑧 = 𝛿(𝑘 − 𝑘 ′), (2.1.31)

where 𝛿(𝑘 − 𝑘 ′) is the Dirac delta function [Bethe and Salpeter, 1957]. Eigenstates satisfying equation
(2.1.31) are said to be normalized on the 𝑘-scale or 𝛿-normalized. Determining N𝑘 so that this condition
holds is a more involved calculation compared to the regular normalization procedure. An outline of how
it is accomplished is described in the appendix, see section B. The resulting calculation shows that

N𝑘 =
2𝑘1/2

√
1 − e−2𝜋/𝑘

. (2.1.32)

Accordingly, the 𝛿-normalized eigenstates may be written as

𝜓𝑘 =
2𝑘1/2

√
1 − e−2𝜋/𝑘

𝑧e−𝑖𝑘𝑧1𝐹1

(
1 + 𝑖

𝑘
, 2, 2𝑖𝑘𝑧

)
. (2.1.33)
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2.1. One-dimensional Electron on Cryogenic Substrate Aalborg University

The hypergeometric series in the unbound eigenstates no longer truncates because the first argument is not
a negative integer. The unbound eigenstates therefore consist of a hypergeometric series and a complex
exponential, that asymptotically approaches the wave function of a free particle. Similarly to the bound states,
using the eigenstates given in equation (2.1.33) now allows us to compute the corresponding probability
density |𝜓𝑘 | = 𝜓★

𝑘
𝜓𝑘 for the unbound states. The unbound wave functions with wavenumbers 𝑘 = 1/4,

𝑘 = 1/8 and 𝑘 = 1/12 are shown in Figure 2.3 below.
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Figure 2.3: Wave function of the unbound electron plotted as a function of distance from the interface,
which lies in the 𝑥𝑦-plane. The eigenstates corresponding to wavenumbers 𝑘 ∈ {1/4, 1/8, 1/12} are shown.
The eigenstates asymptotically settle to free particle waves of unit amplitude. This takes significantly longer
for the smaller wavenumber eigenstates.

As a consequence of the unbound eigenstates not being normalizable, we find that the probability
density never decays to zero, but rather asymptotically approaches the wave function of a free particle. This
is shown for three particular eigenstates in Figure 2.3 above, where the wave function simply oscillates. The
original eigenvalue problem given in equation (2.1.12) has now been solved for both the bound and unbound
states. In the following section, we turn to calculating the expectation values and matrix elements, which
will also be put to use later in the project.

2.1.1 Qubit Electron Matrix Elements & Oscillator Strengths

Now that both the bound and unbound eigenstates of the electron-on-Helium qubit system have been found,
we are able to apply the results and determine the dipole matrix elements of the described system. The
resulting calculations provides both the expectation value 𝑍𝑛𝑛 = ⟨𝜓𝑛 |𝑧 | 𝜓𝑛⟩ of the position coordinate 𝑧
and the more general off-diagonal matrix element 𝑍𝑛𝑚 = ⟨𝜓𝑛 |𝑧 | 𝜓𝑚⟩ that quantifies the strength of an
electric dipole transition under an electric field [Sakurai and Napolitano, 2017], both of which will useful
later. There are in general three types of matrix elements, namely the bound-bound, bound-unbound and
unbound-unbound cases. The unbound-unbound elements are difficult to calculate and will not be presented
in this thesis. An attempt to determine them using the methods presented in [Gordon, 1929, Ji et al., 2024]
was tried, but later abandoned due to the scope of the thesis. We start with the bound-bound matrix elements
𝑍𝑛𝑚 = ⟨𝜓𝑛 |𝑧 | 𝜓𝑚⟩ pertaining to the position operator 𝑧. In the case of 𝑚 = 𝑛, we retrieve the diagonal
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matrix elements corresponding to the expectation value of the positional coordinate 𝑧. Using the bound
electron’s eigenstates as given in equation (2.1.25), one finds that a direct calculation of the inner product
yields

𝑍𝑛𝑛 = 4𝑛−3
∫ ∞

0
𝑧2𝑧e−2𝑧/𝑛

[
1𝐹1

(
1 − 𝑛; 2,

2𝑧
𝑛

)]2
d𝑧

=
1
4
𝑛

∫ ∞

0
𝑧′3e−𝑧

′ [1𝐹1 (1 − 𝑛; 2, 𝑧′)]2 d𝑧′, (2.1.34)

where we have used the change of variable of integration such that 𝑧′ = 2𝑧/𝑛. The integral given in equation
(2.1.34) is a special case of the W. Gordon integral, the details of which is described in the appendix,
see section A. To evaluate it, we make use of equation (A.0.15) given in the appendix. Comparing to the
aforementioned formula, we then find that

𝑍𝑛𝑛 =
1
4
𝑛J2,0

2 (1 − 𝑛, 1 − 𝑛; 1, 1, 1)

=
1
4
𝑛
Γ(4) (𝑛 − 1)!

(2)𝑛−1
3𝐹2 (1 − 𝑛,−2, 3, 2, 1, 1)

=
3𝑛Γ(𝑛)

2Γ(𝑛 + 1) · 𝑛
2

=
3
2
𝑛2, (2.1.35)

which agrees with the standard result of the Hydrogen atom in the ℓ = 0 case [Shankar, 1994]. We now
move onto the off-diagonal matrix elements 𝑍𝑛𝑚, for which 𝑚 ≠ 𝑛. A direct calculation initially shows that

𝑍𝑛𝑚 = 4(𝑛𝑚)−3/2
∫ ∞

0
𝑧e−𝑧/𝑛1𝐹1

(
1 − 𝑛; 2,

2𝑧
𝑛

)
𝑧𝑧e−𝑧/𝑚1𝐹1

(
1 − 𝑚; 2,

2𝑧
𝑚

)
d𝑧

=
𝑛5/2

4𝑚3/2

∫ ∞

0
𝑧′3e−

𝑛+𝑚
2𝑚 𝑧′

1𝐹1 (1 − 𝑛; 2, 𝑧′) 1𝐹1

(
1 − 𝑚; 2,

𝑛

𝑚
𝑧′
)

d𝑧′, (2.1.36)

where we have changed the variable of integration to 𝑧′. The integral found in equation (2.1.36) is another
example of the W. Gordon integral. This allows us to write the off-diagonal matrix elements as

𝑍𝑛𝑚 =
𝑛5/2

4𝑚3/2 J2,0
2

(
1 − 𝑛, 1 − 𝑚, 1, 𝑛

𝑚

)
. (2.1.37)

To evaluate this integral, we make use of the recurrence relation given in equation (A.0.14). This requires
us to compute a J1,0

2 integral and two J0,0
2 integrals. For the given integral, we first note that the parameter

A =
1
2
· 2

(
1 − 𝑛

𝑚

)
− (1 − 𝑛) + 𝑛

𝑚
(1 − 𝑚)

= 0. (2.1.38)

It is then clear that the integral J1,0
2 vanishes and has no contribution to the matrix element. Substituting

this into equation (A.0.14) then leaves

𝑍𝑛𝑚 =
𝑛5/2

4𝑚3/2
4

1 − (𝑛/𝑚)2

{
(2 − 2(1 − 𝑚)) J0,0

2

(
1 − 𝑛, 1 − 𝑚, 1, 𝑛

𝑚

)
+ 2(1 − 𝑚)J0,0

2

(
1 − 𝑛, 2 − 𝑚, 1, 𝑛

𝑚

)}
=

2𝑛5/2𝑚1/2

𝑚2 − 𝑛2

{
𝑚J0,0

2

(
1 − 𝑛, 1 − 𝑚, 1, 𝑛

𝑚

)
+ (1 − 𝑚)J0,0

2

(
1 − 𝑛, 2 − 𝑚, 1, 𝑛

𝑚

)}
. (2.1.39)

We now use equation (A.0.10) to compute the J0,0
2 integrals. The first of these, for which the second

argument is 1 − 𝑚, becomes

J0,0
2

(
1 − 𝑛, 1 − 𝑚, 1, 𝑛

𝑚

)
=

22Γ(2) (1 + 𝑛/𝑚)1−𝑛+1−𝑚−2

(𝑛/𝑚 − 1)1−𝑛 (1 − 𝑛/𝑚)1−𝑚 2𝐹1

(
1 − 𝑛, 1 − 𝑚, 2, −4𝑛/𝑚

(𝑛/𝑚 − 1)2

)
=

4(−1)𝑛−1𝑚2

(𝑚 − 𝑛)2

(𝑚 − 𝑛
𝑚 + 𝑛

)𝑛+𝑚
2𝐹1

(
1 − 𝑛, 1 − 𝑚, 2, −4𝑛𝑚

(𝑛 − 𝑚)2

)
. (2.1.40)
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In identical fashion, the second integral becomes

J0,0
2

(
1 − 𝑛, 2 − 𝑚, 1, 𝑛

𝑚

)
=

4(−1)𝑛−1𝑚2

(𝑚 − 𝑛)2

(𝑚 − 𝑛
𝑚 + 𝑛

)𝑚+𝑛−1
2𝐹1

(
1 − 𝑛, 2 − 𝑚, 2, −4𝑛𝑚

(𝑛 − 𝑚)2

)
. (2.1.41)

Substitution both integrals back into equation (2.1.39) then yields

𝑍𝑛𝑚 =
2𝑛5/2𝑚1/2

𝑚2 − 𝑛2

{
𝑚

4(−1)𝑛−1𝑚2

(𝑚 − 𝑛)2

(𝑚 − 𝑛
𝑚 + 𝑛

)𝑛+𝑚
2𝐹1

(
1 − 𝑛, 1 − 𝑚, 2, −4𝑛𝑚

(𝑛 − 𝑚)2

)
+ (1 − 𝑚) 4(−1)𝑛−1𝑚2

(𝑚 − 𝑛)2

(𝑚 − 𝑛
𝑚 + 𝑛

)𝑚+𝑛−1
2𝐹1

(
1 − 𝑛, 2 − 𝑚, 2, −4𝑛𝑚

(𝑛 − 𝑚)2

) }
. (2.1.42)

We can now collect similar terms in equation (2.1.42) and finally express the off-diagonal matrix elements
as

𝑍𝑛𝑚 =
8(−1)𝑛 (𝑛𝑚)5/2

(𝑚 − 𝑛)4

(𝑚 − 𝑛
𝑚 + 𝑛

)𝑚+𝑛

×
{
𝑚
𝑛 − 𝑚
𝑚 + 𝑛 2𝐹1

(
1 − 𝑛, 1 − 𝑚, 2, −4𝑚𝑛

(𝑚 − 𝑛)2

)
+ (𝑚 − 1)2𝐹1

(
1 − 𝑛, 2 − 𝑚, 2, −4𝑚𝑛

(𝑚 − 𝑛)2

)}
. (2.1.43)

We now have obtained all the matrix elements for the bound states of the electron. The matrix elements
𝑍𝑛𝑚 are plotted for particular 𝑛, 𝑚 in Figure 2.3 below.
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Figure 2.4: The bound-bound matrix elements 𝑍𝑛𝑚 for fixed 𝑛 ∈ {5, 10, 15, 20, 25, 30, 35} are plotted for
every 1 ≤ 𝑚 ≤ 40. In addition, the diagonal matrix elements 𝑍𝑛𝑛 = 3𝑛2/2 are plotted alongside. The dotted
lines are meant as a visual aid to see the pattern and not represent any matrix elements because they are of
course discrete. The off-diagonal matrix elements spike around 𝑛 = 𝑚 and decays as 𝑚 recedes.

As seen in Figure 2.3, the off-diagonal matrix elements attain non-zero values only within a short
interval around the diagonal 𝑛 = 𝑚 case, which grow quadratically with 𝑛. The same general pattern holds
for all the off-diagonal matrix elements, which grow in step with the expectation value of 𝑧. With the
bound-bound matrix elements calculated, we now move on to the bound-unbound matrix elements 𝑍𝑛𝑘 .
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Using the unbound states found in equation (2.1.33), the immediate calculation gives

𝑍𝑘𝑚 =
4𝑚−3/2𝑘1/2
√

1 − e−2𝜋/𝑘

∫ ∞

0
𝑧e𝑖𝑘𝑧1𝐹1

(
1 − 𝑖

𝑘
, 2,−2𝑖𝑘𝑧

)
𝑧𝑧e−𝑧/𝑚1𝐹1

(
1 − 𝑚; 2,

2𝑧
𝑚

)
d𝑧

=
𝑚5/2𝑘1/2

4
√

1 − e−2𝜋/𝑘

∫ ∞

0
𝑧′3e−(1−𝑖𝑘𝑚)𝑧′/2

1𝐹1

(
1 − 𝑖

𝑘
, 2,−𝑖𝑘𝑚𝑧′

)
1𝐹1 (1 − 𝑚; 2, 𝑧′) d𝑧′

=
𝑚5/2𝑘1/2

4
√

1 − e−2𝜋/𝑘
J2,0

2

(
1 − 𝑖

𝑘
, 1 − 𝑚,−𝑖𝑘𝑚, 1

)
, (2.1.44)

where we have introduced 𝑧′ = 2𝑧/𝑚 and introduced the W. Gordon integral representation. We now apply
the same procedure as with the bound-bound matrix elements. We note that A = 0 once more and hence
we can evaluate the integral using equation (A.0.14), where the J1,0

2 integral vanishes. This leaves

𝑍𝑘𝑚 =
𝑚5/2𝑘1/2

4
√

1 − e−2𝜋/𝑘

4
(−𝑖𝑘𝑚)2 − 1

{
(2 − 2(1 − 𝑚)) J0,0

2

(
1 − 𝑖

𝑘
, 1 − 𝑚,−𝑖𝑘𝑚, 1

)
+ 2(1 − 𝑚)J0,0

2

(
1 − 𝑖

𝑘
, 2 − 𝑚,−𝑖𝑘𝑚, 1

) }
=

−2𝑚5/2𝑘1/2

(1 + 𝑘2𝑚2)
√

1 − e−2𝜋/𝑘

{
𝑚J0,0

2

(
1 − 𝑖

𝑘
, 1 − 𝑚,−𝑖𝑘𝑚, 1

)
+ (1 − 𝑚)J0,0

2

(
1 − 𝑖

𝑘
, 2 − 𝑚,−𝑖𝑘𝑚, 1

) }
. (2.1.45)

We now calculate the two J0,0
2 integrals using equation (A.0.10). For the first integral with second argument

1 − 𝑚, we acquire

J0,0
2

(
1 − 𝑖

𝑘
, 1 − 𝑚,−𝑖𝑘𝑚, 1

)
=

22Γ(2) (−𝑖𝑘𝑚 + 1)1−𝑖/𝑘+1−𝑚−2

(1 − (−𝑖𝑘𝑚))1−𝑖/𝑘 (−𝑖𝑘𝑚 − 1)1−𝑚 2𝐹1

(
1 − 𝑖

𝑘
, 1 − 𝑚, 2, −4 − 𝑖𝑘𝑚

(1 − (−𝑖𝑘𝑚))2

)
=

4(−1)𝑚−1

(1 − 𝑖𝑘𝑚)2

(
1 − 𝑖𝑘𝑚
1 + 𝑖𝑘𝑚

)2−𝑖/𝑘−𝑚

2𝐹1

(
1 − 𝑖

𝑘
, 1 − 𝑚, 2, 4𝑖𝑘𝑚

(1 + 𝑖𝑘𝑚)2

)
,

(2.1.46)

whilst for the second integral with second argument 2 − 𝑚, we get

J0,0
2

(
1 − 𝑖

𝑘
, 2 − 𝑚,−𝑖𝑘𝑚, 1

)
=

4(−1)𝑚
(1 − 𝑖𝑘𝑚)2

(
1 − 𝑖𝑘𝑚
1 + 𝑖𝑘𝑚

)3−𝑖/𝑘−𝑚

2𝐹1

(
1 − 𝑖

𝑘
, 2 − 𝑚, 2, 4𝑖𝑘𝑚

(1 + 𝑖𝑘𝑚)2

)
.

(2.1.47)

Substituting both integrals back into equation (2.1.45) then yields

𝑍𝑘𝑚 =
−2𝑚5/2𝑘1/2

(1 + 𝑘2𝑚2)
√

1 − e−2𝜋/𝑘

{
𝑚

4(−1)𝑚−1

(1 − 𝑖𝑘𝑚)2

(
1 − 𝑖𝑘𝑚
1 + 𝑖𝑘𝑚

)2−𝑖/𝑘−𝑚

2𝐹1

(
1 − 𝑖

𝑘
, 1 − 𝑚, 2, 4𝑖𝑘𝑚

(1 + 𝑖𝑘𝑚)2

)
+ (1 − 𝑚) 4(−1)𝑚

(1 − 𝑖𝑘𝑚)2

(
1 − 𝑖𝑘𝑚
1 + 𝑖𝑘𝑚

)3−𝑖/𝑘−𝑚

2𝐹1

(
1 − 𝑖

𝑘
, 2 − 𝑚, 2, 4𝑖𝑘𝑚

(1 + 𝑖𝑘𝑚)2

) }
. (2.1.48)

Reducing now shows that

𝑍𝑘𝑚 =
8(−1)𝑚𝑚5/2𝑘1/2

(1 + 𝑖𝑘𝑚)4
√

1 − e−2𝜋/𝑘

(
1 − 𝑖𝑘𝑚
1 + 𝑖𝑘𝑚

)−𝑖/𝑘−𝑚
(2.1.49)

×
{
𝑚

1 + 𝑖𝑘𝑚
1 − 𝑖𝑘𝑚 2𝐹1

(
1 − 𝑖

𝑘
, 1 − 𝑚, 2, 4𝑖𝑘𝑚

(1 + 𝑖𝑘𝑚)2

)
+ (𝑚 − 1)2𝐹1

(
1 − 𝑖

𝑘
, 2 − 𝑚, 2, 4𝑖𝑘𝑚

(1 + 𝑖𝑘𝑚)2

) }
,

which is the final expression of the unbound-bound matrix elements. As with the bound-bound matrix
elements, we now also plot the bound-unbound matrix elements. This is shown for particular 𝑘, 𝑚 in
Figure 2.3 below.
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Figure 2.5: The bound-unbound matrix elements 𝑍𝑘𝑚 for fixed 𝑛 ∈ {1, 2, 3, 4, 5, 6, 7} are plotted in the
range 0 ≤ 𝑘 ≤ 0.8.

Similarly to the bound-bound matrix elements, we see that the bound-unbound matrix elements grow
with increasing principle quantum number and eventually decays. This is shown in Figure 2.3 above, where
the matrix elements from between the first few bound states and a portion of the continuum are plotted. We
have now calculated the desired matrix elements and aim to apply them. In particular, we want to calculate
the associated oscillator strengths 𝑔𝑛𝑚 that will be used extensively in later sections. In addition, they help
verify the calculations in this section through sum rules. The oscillator strength is a dimensionless measure
of the degree to which a transition from one state to another is allowed [Sakurai and Napolitano, 2017] and
is in atomic units defined as

𝑔𝑚𝑛 = 2(𝐸𝑛 − 𝐸𝑚) |𝑍𝑛𝑚 |2 . (2.1.50)

To showcase the simplest examples of this quantity, we can consider the oscillator strengths from the ground
state to an excited state lying either in the discrete or continuous spectra. For the bound-bound transitions
from the ground state, we need the matrix elements 𝑍𝑛1 using the expression above. These reduce to

𝑍𝑛1 =
8(−1)𝑛 (𝑛)5/2

(1 − 𝑛)4

(
1 − 𝑛
1 + 𝑛

)1+𝑛

×
{
1
𝑛 − 1
1 + 𝑛 2𝐹1

(
1 − 𝑛, 1 − 1, 2,

−4𝑚𝑛
(1 − 𝑛)2

)
+ (1 − 1)2𝐹1

(
1 − 𝑛, 2 − 1, 2,

−4𝑚𝑛
(1 − 𝑛)2

)}
=

−8𝑛5/2

(𝑛 − 1)4

(
𝑛 − 1
𝑛 + 1

)𝑛+2
, (2.1.51)

where we note that the first hypergeometric function truncates immediately because it has argument zero.
Using equation (2.1.50), the bound-bound oscillator strength becomes

𝑔1𝑛 = 2
(
− 1

2𝑛2 −
(
−1

2

)) ����� −8𝑛5/2

(𝑛 − 1)4

(
𝑛 − 1
𝑛 + 1

)𝑛+2
�����2

=
𝑛2 − 1
𝑛2

64𝑛5

(𝑛 − 1)8

(
𝑛 − 1
𝑛 + 1

)2𝑛+4

=
64𝑛3

(𝑛2 − 1)3

(
𝑛 − 1
𝑛 + 1

)2𝑛
. (2.1.52)
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Similarly, we now compute the bound-unbound transitions, we instead require the matrix elements 𝑍𝑘1,
which we calculated above. For transitions from the ground state, we acquire

𝑍𝑘1 =
8(−1)115/2𝑘1/2

(1 + 𝑖𝑘)4
√

1 − e−2𝜋/𝑘

(
1 − 𝑖𝑘
1 + 𝑖𝑘

)−𝑖/𝑘−1

×
{
1

1 + 𝑖𝑘
1 − 𝑖𝑘 2𝐹1

(
1 − 𝑖

𝑘
, 1 − 1, 2,

4𝑖𝑘𝑚
(1 + 𝑖𝑘𝑚)2

)
+ (1 − 1)2𝐹1

(
1 − 𝑖

𝑘
, 2 − 1, 2,

4𝑖𝑘𝑚
(1 + 𝑖𝑘𝑚)2

) }
=

−8𝑘1/2

(𝑘2 + 1)2
√

1 − e−2𝜋/𝑘

(
1 − 𝑖𝑘
1 + 𝑖𝑘

)−𝑖/𝑘
. (2.1.53)

We can reduce the second fraction in equation (2.1.53) by introducing polar form. Because |1±𝑖𝑘 | =
√

1 + 𝑘2,
it is clear that the fraction has unit modulus. Using arg(𝑧1/𝑧2) = arg 𝑧1 − arg 𝑧2, we may then write

arg
(

1 − 𝑖𝑘
1 + 𝑖𝑘

)
= arg (1 − 𝑖𝑘) − arg (1 + 𝑖𝑘)

= −2 arg (1 + 𝑖𝑘)

= −2 tan−1 𝑘, (2.1.54)

where we also have applied arg(𝑧) = − arg(𝑧★). It is then clear that(
1 − 𝑖𝑘
1 + 𝑖𝑘

)−𝑖/𝑘
=

(
e−2𝑖 tan−1 𝑘

)−𝑖/𝑘
= e−2𝑘−1 tan−1 𝑘 . (2.1.55)

Substituting this representation back into equation (2.1.53) then yields

𝑍𝑘1 =
−8𝑘1/2e−2𝑘−1 tan−1 𝑘

(𝑘2 + 1)2
√

1 − e−2𝜋/𝑘
. (2.1.56)

Using equation (2.1.57), we may then write the bound-unbound oscillator strengths as

𝑔1𝑘 = 2
(

1
2
𝑘2 −

(
−1

2

)) ����� −8𝑘1/2e−2𝑘−1 tan−1 𝑘

(𝑘2 + 1)2
√

1 − e−2𝜋/𝑘

�����2
=

64𝑘e−4𝑘−1 tan−1 𝑘

(𝑘2 + 1)3 (1 − e−2𝜋/𝑘)
. (2.1.57)

Equations (2.1.52) and (2.1.57) form all the oscillator strengths from the ground state. From these we may
construct various sum rules by means of the oscillator strength moments, which we define as

G𝑚,𝑝 =

∞∑︁
𝑛=1
𝑛≠𝑚

𝑔𝑚𝑛 (𝐸𝑛 − 𝐸𝑚) 𝑝 +
∫ ∞

0
𝑔𝑚𝑘 (𝐸𝑘 − 𝐸𝑚) 𝑝 d𝑘. (2.1.58)

The most important case is 𝑝 = 0. For the ground state oscillator strengths derived above, we find that∑
𝑛>1 𝑔1𝑛 ≈ 0.33701694 and

∫ ∞
0 𝑔1𝑘d𝑘 ≈ 0.66298244 such that G1,0 = 1. This is the Thomas–Reiche–Kuhn

sum rule, see [Bethe and Salpeter, 1957]. The expected result verifies the above matrix element calculations.
The observation that the continuum contribution to G1,0 is roughly twice as large as the discrete contribution
tells us that transitions to the continuum in some sense are more accessible. In other words, ionization plays
a significant role and is a testament to the electron’s weak coupling to the substrate. This concludes the
present section and we can now move on to the next, in which we discuss the transition energies.
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2.2 Electron as Quantum Defect Atom

At this point, we want to consider the transition energies of the electron lying above a cryogenic substrate.
We can do this now using the energy expression given in equations (2.1.13) and (2.1.26). Accordingly, the
transition energy Δ𝐸 from the ground state to the 𝑛′th excited state is

Δ𝐸1𝑛 = |𝐸1 | − |𝐸𝑛 |

= Ha
(
1 − 1

𝑛2

)
. (2.2.1)

Electrons bound the liquid Helium substrates have been predicted to have a bound spectrum corresponding
to a one-dimensional hydrogen atom [Nieto, 2000]. Experiments show however, that the transition energies
are roughly ∼ 7 GHz too large as discussed in [Nieto, 2000]. This discrepancy demonstrates that the
image potential model alone may be inadequate in describing the system. Fortunately, it can be remedied
analytically using quantum defect theory, which in this case is a phenomenological extension of the principle
quantum number 𝑛. In particular, we introduce the quantum defect parameter 𝛿 = 𝛿(ℓ), which ordinarily is
a function of the orbital quantum number ℓ. For the purposes of studying the electron system however, it is
approximately constant. The quantum defect parameter is an empirical parameter used to fit potentials so
that the observed energy eigenvalues are reproduced [Seaton, 1958]. Using the quantum defect parameter,
we define the effective principle quantum number 𝓃 = 𝑛− 𝛿, which in turn allows us to rewrite the transition
energies above as

Δ𝐸1𝑛 = Ha
(

1
(1 − 𝛿)2 − 1

(𝑛 − 𝛿)2

)
(2.2.2)

= Ha
{(

1 − 1
𝑛2

)
+ 2𝛿

(
1 − 1

𝑛3

)
+ 3𝛿2

(
1 − 1

𝑛4

)
+ . . .

}
,

where we in the second line have expanded the transition energy expression in a Taylor series. The
image potential model may have certain limitations for various reasons. For instance, a small energy shift,
analogous to the linear term 2𝛿Ha(1 − 𝑛−3) but significantly weaker in magnitude, arises due to radiative
corrections, as discussed in [Shakeshaft and Spruch, 1980] and [Grotch, 1981]. Additionally, the presence
of an infinite barrier cut-off at the substrate interface introduces further modifications to the energy levels,
as treated in [Grimes et al., 1976]. A simple estimate of the quantum defect parameter that will attempt to
account for these effects can be made by fitting equation (2.2.2) to the observed transition energies provided
in [Grimes et al., 1976] or [Lambert and Richards, 1981]. Using the 1 → 2 transition Δ𝐸12 = 125.9 GHz
and the 1 → 3 transition Δ𝐸13 = 148.6 GHz of the former, we find

125.9 GHz = Ha
(

1
(1 − 𝛿)2 − 1

(2 − 𝛿)2

)
148.6 GHz = Ha

(
1

(1 − 𝛿)2 − 1
(3 − 𝛿)2

) ⇒
Ha = 158.4 GHz

𝛿 = 0.0237
. (2.2.3)

This corresponds to a one-dimensional Rydberg atom. Using this to calculate the transition energies, one
finds an increase of ∼ 7.8 GHz, which is in accordance with the reported values [Nieto, 2000]. The
modified Hartree is reproduced within 0.44% in the case of Helium and only requires a small quantum
defect parameter. In addition to altering the energy eigenvalues, the effective principal quantum 𝓃 also
affects the corresponding eigenstates. We cannot simply let 𝑛 → 𝑛 − 𝛿 and apply it to the eigenstates as
given in equation (2.1.25) since 𝓃 = 𝑛 − 𝛿 is not an integer. Instead, we exploit a mathematical observation
used in quantum defect theory, such as in [Nieto, 2000]. The key insight here is that the solutions of the
radial hydrogen atom do not actually require that both the principal quantum number 𝑛 and orbital quantum
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number ℓ be integers, but rather only that 𝑛− ℓ ∈ Z≥0. In other words, the factor ℓ(ℓ + 1) in the 𝑟−2 effective
potential term found in radial Hydrogen atom need not have ℓ ∈ Z≥0 for a finite order solution to exist.
For the purposes of the electron lying on a cryogenic substrate, this allows us to incorporate the effective
principal quantum number by phenomenologically introducing the potential

𝑉𝛿 (𝑧) = −Z𝑒2

𝑧
+ ℏ2

2𝑚
(−𝛿) ((−𝛿) + 1)

𝑧2 , 𝑧 > 0, (2.2.4)

where we effectively have set ℓ = −𝛿 if we compare with the ordinary radial hydrogen atom. This is an
example of the Kratzer potential, see for instance [Flügge, 1999], which essentially is a Coulomb potential
with an added 1/𝑧2 contribution. The 𝛿 = 0 case returns the Coulomb potential. In the case of the potential
given in (2.2.4), it is clear that the condition 𝑛 − ℓ ∈ Z>0 is satisfied if we let 𝑛 → 𝓃 given that ℓ = −𝛿
and 𝓃 = 𝑛 − 𝛿. We can now find the corresponding eigenstates by solving the eigenvalue problem as given
in equation (2.1.12) under the new potential introduced above. This is accomplished in a similar manner
to that of the original problem. We start with the bound states, for which the corresponding eigenvalue
problem reads (

− ℏ2

2𝑚
d2

d𝑧2 − Z𝑒2

4𝜋𝜀0𝑧
− ℏ2

2𝑚
𝛿(1 − 𝛿)
𝑧2

)
𝜓𝓃 = 𝐸𝓃𝜓𝓃, 𝑧 > 0, (2.2.5)

where 𝐸𝓃 < 0. As with the original eigenvalue problem, we move forward by first converting the problem
to atomic units as given in equation (2.1.13), which in turn gives(

1
2

d2

d𝑧2 + 1
𝑧
+ 𝛿(1 − 𝛿)

2𝑧2 − 1
2𝓃2

)
𝜓𝓃 = 0. (2.2.6)

Once again, we assume that 𝜓𝓃 is a product of several other functions whose form we determine by
investigating the limiting behaviour of 𝜓𝓃 for small and large 𝑧. Looking at equation (2.2.6), it is clear
that the quantum defect eigenstates exhibit the same asymptotic behaviour and hence we can conclude that
exp(−𝑧/𝓃) is a factor of the final eigenstate. In the opposite limit, we again assume that the eigenstates
behave like a power function 𝑧𝑝 . In the 𝑧 → 0 limit, equation (2.2.6) reduces to(

1
2

d2

d𝑧2 + 𝛿(1 − 𝛿)
2𝑧2

)
𝜓𝓃 → 0, for 𝑧 → 0. (2.2.7)

Substituting the power function proposal into equation (2.2.7) then shows that 𝑝(𝑝 − 1) = 𝛿(𝛿 − 1), which
is satisfied for both 𝑝 = 𝛿 and 𝑝 = 1 − 𝛿. We want to ensure that the quantum defect eigenstates reduce to
the original eigenstates given in equation (2.1.25) once 𝛿 = 0. For this reason we must choose 𝑝 = 1 − 𝛿
and hence we conclude that 𝑧1−𝛿 is a factor of the eigenstates. As such, we deduce that the eigenstates take
the form 𝜓𝓃 = 𝑓 𝑧1−𝛿 exp(−𝑧/𝓃), where 𝑓 = 𝑓 (𝑧) is an unknown function. Substituting this proposal into
the eigenvalue problem given in equation (2.2.6) then gives(

1
2

d2

d𝑧2 + 1
𝑧
+ 𝛿(1 − 𝛿)

2𝑧2 − 1
2𝓃2

)
𝑓 𝑧1−𝛿e−𝑧/𝓃 = 0. (2.2.8)

We can now let the differential operator act on the product in the above equation and expand terms. Doing
so and reducing then eventually allows us to write

𝑧′
d2 𝑓

d𝑧′2
+ (2 − 2𝛿 − 𝑧′) d 𝑓

d𝑧′
+ (𝓃 − 1 + 𝛿) 𝑓 = 0, (2.2.9)

where we have introduced the substitution 𝑧′ = 2𝑧/𝓃. This implies that 𝑓 is another associated Laguerre
polynomial with 𝑎 = 1 − 2𝛿 and 𝑏 = 𝓃 − 1 + 𝛿 = 𝑛 − 1 as given in equation (A.0.2), meaning 𝑓 =

𝐿
(1−2𝛿 )
𝑛−1 (2𝑧/𝓃). As such, the bound eigenstates take the form

𝜓𝓃 = N𝓃𝑧
1−𝛿e−𝑧/𝓃1𝐹1

(
1 − 𝑛, 2 − 2𝛿,

2𝑧
𝓃

)
, (2.2.10)
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where the conversion factor from equation (A.0.6) has been absorbed into the newly introduced normalization
constant N𝓃. We determine the normalization constant N𝓃 by enforcing the normalization condition for
the bound states, ⟨𝜓𝑚 |𝜓𝑛⟩ = 𝛿𝑚𝑛. The direct calculation initially shows that(

𝓃

2

)3−2𝛿
N2

𝓃

∫ ∞

0
𝑧′2−2𝛿e−𝑧

′ [1𝐹1 (1 − 𝑛, 2 − 2𝛿, 𝑧′)]2 d𝑧′, (2.2.11)

where we again have made the substitution 𝑧′ = 2𝑧/𝓃. The integral in equation (2.2.11) is a special case
of the W. Gordon integral as written in equation (A.0.10), which when applied allows us to write the
normalization constant as

N𝓃 =

{(
𝓃

2

)3−2𝛿 ∫ ∞

0
𝑧′2−2𝛿e−𝑧

′ [1𝐹1 (1 − 𝑛, 2 − 2𝛿, 𝑧′)]2 d𝑧′
}−1/2

=

{(
𝓃

2

)3−2𝛿
J1,0

2−2𝛿 (1 − 𝑛, 1 − 𝑛; 1, 1, 1)
}−1/2

=

{(
𝓃

2

)3−2𝛿 Γ(2 − 2𝛿 + 1) (𝑛 − 1)!
(2 − 2𝛿)𝑛−1

3𝐹2 (1 − 𝑛,−1, 2, 2 − 2𝛿, 1, 1)
}−1/2

=

{(
𝓃

2

)3−2𝛿 Γ(2 − 2𝛿 + 1) (𝑛 − 1)!
(2 − 2𝛿)𝑛−1

𝑛 − 𝛿
1 − 𝛿

}−1/2

=
21−𝛿 (𝑛)1/2

1−2𝛿
𝓃2−𝛿Γ(2 − 2𝛿)

, (2.2.12)

where we in the final step have applied the identity Γ(𝑥 + 1) = 𝑥Γ(𝑥) and the definition of the Pochhammer
symbol. Using the normalization constant given in equation (2.2.12), we then find that the eigenstates may
be written as

𝜓𝓃 =
21−𝛿 (𝑛)1/2

1−2𝛿
𝓃2−𝛿Γ(2 − 2𝛿)

𝑧1−𝛿e−𝑧/𝓃1𝐹1

(
1 − 𝑛, 2 − 2𝛿,

2𝑧
𝓃

)
. (2.2.13)

We have now determined the bound eigenstates of the quantum defect electron. We can see that the
eigenstates reduce to those given in equation (2.1.25) as the quantum defect parameter 𝛿 goes to zero. To
compare these new eigenstates to the originals, we have plotted the wave functions of the ground state and
the first excited state for a select few quantum defect parameters 𝛿. This is shown in Figure 2.6 below.
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Figure 2.6: Wave function of the bound quantum defect electron plotted as a function of distance from the
substrate, which lies in the 𝑥𝑦-plane. The first excited state is included for various quantum defect parameters
as well as the Coulomb ground state. The quantum defect parameters included are 𝛿 ∈ {0, 0.1, 0.2, 0.5, 0.9}.
As the quantum defect parameter increases, one finds that the electron is more strongly bound to the interface,
meaning the eigenstate decays closer to the origin. As the quantum defect parameter approaches unity for the
first excited state, we find that 𝜓2−𝛿 → −𝜓1. In terms of the probability density 𝜓★

2−𝛿
𝜓2−𝛿 , this "transition"

to the lower state is smooth.

The quantum defect parameter 𝛿 can generally be chosen freely, even negative values that alter that
sign of the potential. The only exceptions are the positive integers and those satisfying 𝑛 + 1 − 2𝛿 ∈ Z≤0,
which induce poles in the gamma functions found in the normalization constant. An example of this is
provided in Figure 2.6, where 𝜓2−𝛿 → −𝜓1 as the quantum defect parameter approaches unity. In these
cases however, another 𝛿 can be chosen, which produces an equivalent potential. In addition, we see that
the electron effectively becomes more strongly bound to the surface of the substrate as the quantum defect
parameter 𝛿 increases. We now turn to the unbound states. Here, we refrain from defining an effective
wavenumber because the unbound eigenstates already form a continuum in 𝑘 and because it introduces
complications when verifying sum rules. As such, we again introduce energy eigenvalues 𝐸𝑘 = Ha𝑘2/2 for
the Kratzer potential. Using the previously introduced atomic units, the eigenvalue problem for the unbound
states eventually read (

1
2

d2

d𝑧2 + 1
𝑧
+ 𝛿(1 − 𝛿)

2𝑧2 + 1
2
𝑘2

)
𝜓𝑘 = 0. (2.2.14)

We can now apply the same argumentation as with the bound case to deduce that 𝜓𝑘 = 𝑓 𝑧1−𝛿 exp(−𝑖𝑘𝑧),
where we again choose exp(−𝑖𝑘𝑧) for consistency. Substituting the proposed expression back into equation
(2.2.5) above and reducing then eventually shows that 𝑓 must satisfy

𝑧′
d2 𝑓

d𝑧′2
+ (2 − 2𝛿 − 𝑧′) d 𝑓

d𝑧′
+

(
𝛿 − 1 − 𝑖

𝑘

)
𝑓 = 0, (2.2.15)

where we also have introduced the change of variable 𝑧′ = 2𝑖𝑘𝑧. This corresponds to an associated Laguerre
polynomial for 𝑎 = 1 − 2𝛿 and 𝑏 = 𝛿 − 1 − 𝑖/𝑘 as given in equation (A.0.2). This allows the unbound
eigenstates to be written as

𝜓𝑘 = N𝑘𝑧
1−𝛿e−𝑖𝑘𝑧1𝐹1

(
1 − 𝛿 + 𝑖

𝑘
, 2 − 2𝛿, 2𝑖𝑘𝑧

)
, (2.2.16)
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where we again have absorbed the conversion factor from equation (A.0.6) into the normalization constant
N𝑘 . We now 𝛿-normalize the unbound states given in equation (2.2.16) according to∫ ∞

0
𝜓★
𝑘𝜓𝑘′d𝑧 = 𝛿(𝑘 − 𝑘 ′). (2.2.17)

Using the argumentation outlined in section B shows that the normalization constant is

N𝑘 =
(2𝑘)1−𝛿

��Γ(1 − 𝛿 − 𝑖𝑘−1)
��

√
2𝜋e−𝜋/2𝑘Γ(2 − 2𝛿)

. (2.2.18)

Applying equation (2.2.18) then allows us write the 𝛿-normalized eigenstates as

𝜓𝑘 =
(2𝑘)1−𝛿

��Γ(1 − 𝛿 − 𝑖𝑘−1)
��

√
2𝜋e−𝜋/2𝑘Γ(2 − 2𝛿)

𝑧1−𝛿e−𝑖𝑘𝑧1𝐹1

(
1 − 𝛿 + 𝑖

𝑘
, 2 − 2𝛿, 2𝑖𝑘𝑧

)
. (2.2.19)

Using equation (2.2.19), we may now determine the corresponding probability density |𝜓𝑘 |2 = 𝜓★
𝑘
𝜓𝑘 . The

wave function of the unbound states with wavenumber 𝑘 = 1/16 are shown in Figure 2.7 below for variety
of quantum defect parameters.
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Figure 2.7: Wave function of the unbound quantum defect electron plotted as a function of distance from the
cryogenic substrate, which lies in the 𝑥𝑦-plane. The principle quantum number is fixed to 𝑘 = 1/16, whilst
the quantum defect parameters 𝛿 ∈ {0, 0.1, 0.2, 0.5, 0.9} are chosen. Again, the larger the quantum defect
parameter, the more tightly bound the electron is to the substrate as indicated by the fact the eigenstates
settle to free states more slowly.

As with the original unbound eigenstates, the eigenstates eventually settle to that of a free particle as we
move far enough away from the substrate. As the quantum defect parameter 𝛿 increases, it takes longer for
the probability density to settle to its final amplitude. We have now extended the original Coulombic model
to a Kratzer potential and determined the corresponding eigenstates and energy eigenvalues. Similarly to
the original potential, we now move forward and compute the matrix elements.

2.2.1 Quantum Defect Matrix Elements & Oscillator Strengths

We now turn to calculating the matrix elements for the quantum defect electron, where we make use of the
eigenstates calculated in the previous section. Again, we focus on the bound-bound and bound-unbound
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matrix elements. We start with the bound-bound matrix elements 𝑍𝓃𝓂 = ⟨𝜓𝓃 |𝑧 | 𝜓𝓂⟩, where 𝜓𝓃 are given
in equation (2.2.13). We initially consider the 𝑛 = 𝑚 case, which corresponds to the expectation value of
the position coordinate 𝑧. A direct calculation gives

𝑍𝓃𝓃 =
41−𝛿 (𝑛)1−2𝛿

𝓃4−2𝛿Γ2 (2 − 2𝛿)

∫ ∞

0
𝑧3−2𝛿e−2𝑧/𝓃

[
1𝐹1

(
1 − 𝑛, 2 − 2𝛿,

2𝑧
𝓃

)]2
d𝑧

=
(𝑛)1−2𝛿

4Γ2 (2 − 2𝛿)

∫ ∞

0
𝑧′3−2𝛿e−𝑧

′ [1𝐹1 (1 − 𝑛, 2 − 2𝛿, 𝑧′)]2 d𝑧′, (2.2.20)

where we have changed the variable of integration so that 𝑧′ = 2𝑧/𝓃. The integral in equation (2.2.20)
above is another W. Gordon integral, which may be evaluated by applying equation (A.0.15). This in turn
yields

𝑍𝓃𝓃 =
(𝑛)1−2𝛿

4Γ2 (2 − 2𝛿)
J2,0

2−2𝛿 (1 − 𝑛, 1 − 𝑛; 1, 1, 1)

=
(𝑛)1−2𝛿

4Γ2 (2 − 2𝛿)
Γ(4 − 2𝛿) (𝑛 − 1)!

(2 − 2𝛿)𝑛−1
3𝐹2 (1 − 𝑛,−2, 3, 2 − 2𝛿, 1, 1)

=
(𝑛)1−2𝛿

4Γ2 (2 − 2𝛿)
Γ(4 − 2𝛿) (𝑛 − 1)!

(2 − 2𝛿)𝑛−1

3𝑛2 + 𝛿(2𝛿 + 1 − 6𝑛)
(𝛿 − 1) (2𝛿 − 3)

=
3
2
𝑛2 − 𝛿

(
3𝑛 − 1

2
− 𝛿

)
, (2.2.21)

which clearly reduces to the original result when 𝛿 approaches zero. We now turn to the corresponding
off-diagonal matrix elements 𝑍𝓃𝓂, for which 𝑛 ≠ 𝑚. Calculating the matrix elements directly gives

𝑍𝓃𝓂 =
41−𝛿 (𝑛)1/2

1−2𝛿 (𝑚)
1/2
1−2𝛿

(𝓃𝓂)2−𝛿Γ2 (2 − 2𝛿)

∫ ∞

0
𝑧1−𝛿e−𝑧/𝓃1𝐹1

(
1 − 𝑛, 2 − 2𝛿,

2𝑧
𝓃

)
𝑧𝑧1−𝛿e−𝑧/𝓂

× 1𝐹1

(
1 − 𝑚, 2 − 2𝛿,

2𝑧
𝓂

)
d𝑧

=
𝓃

2−𝛿 (𝑛)1/2
1−2𝛿 (𝑚)

1/2
1−2𝛿

4𝓂2−𝛿Γ2 (2 − 2𝛿)

∫ ∞

0
𝑧′3−2𝛿e−

𝓃+𝓂
2𝓂 𝑧′

1𝐹1 (1 − 𝑛, 2 − 2𝛿, 𝑧′) e−𝑧/𝓂 (2.2.22)

× 1𝐹1

(
1 − 𝑚, 2 − 2𝛿,

𝓃𝑧′

𝓂

)
d𝑧′

=
𝓃

2−𝛿 (𝑛)1/2
1−2𝛿 (𝑚)

1/2
1−2𝛿

4𝓂2−𝛿Γ2 (2 − 2𝛿)
J2,0

2−2𝛿

(
1 − 𝑛, 1 − 𝑚, 1, 𝓃

𝓂

)
. (2.2.23)

where we have changed the variable of integration so that 𝑧′ = 2𝑧/𝓃 and introduced the W. Gordon integral
representation. Again, we use equation (A.0.14) to reduce the integral to a J1,0

2−2𝛿 integral and two J0,0
2−2𝛿

integrals. We immediately note that the parameter

A =
1
2
(2 − 2𝛿)

(
1 − 𝓃

𝓂

)
− 1(1 − 𝑛) + 𝓃

𝓂
(1 − 𝑚)

= 0, (2.2.24)

which again means that the contribution from J1,0
2−2𝛿 vanishes. Using equation (A.0.14), this just leaves

𝑍𝓃𝓂 =
𝓃

2−𝛿 (𝑛)1/2
1−2𝛿 (𝑚)

1/2
1−2𝛿

4𝓂2−𝛿Γ2 (2 − 2𝛿)
4

1 − (𝓃/𝓂)2

{
(2 − 2𝛿 − 2(1 − 𝑚)) J0,0

2−2𝛿

(
1 − 𝑛, 1 − 𝑚, 1, 𝓃

𝓂

)
+ 2(1 − 𝑚)J0,0

2−2𝛿

(
1 − 𝑛, 2 − 𝑚, 1, 𝓃

𝓂

) }
=

2𝓃2−𝛿 (𝑛)1/2
1−2𝛿 (𝑚)

1/2
1−2𝛿

(𝓂2 −𝓃2)𝓂−𝛿Γ2 (2 − 2𝛿)

{
𝓂J0,0

2−2𝛿

(
1 − 𝑛, 1 − 𝑚, 1, 𝓃

𝓂

)
+ (1 − 𝑚)J0,0

2−2𝛿

(
1 − 𝑛, 2 − 𝑚, 1, 𝓃

𝓂

) }
. (2.2.25)
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We now turn to calculating the J0,0
2−2𝛿 integrals using equation (A.0.10). For the first integral with second

argument 1 − 𝑚, we acquire

J0,0
2−2𝛿

(
1 − 𝑛, 1 − 𝑚, 1, 𝓃

𝓂

)
=

22−2𝛿Γ(2 − 2𝛿) (1 +𝓃/𝓂)1−𝑛+1−𝑚−2+2𝛿

(𝓃/𝓂 − 1)1−𝑛 (1 −𝓃/𝓂)1−𝑚 2𝐹1

(
1 − 𝑛, 1 − 𝑚, 2 − 2𝛿,

−4𝓃/𝓂
(𝓃/𝓂 − 1)2

)
=

41−𝛿 (−1)𝑛−1Γ(2 − 2𝛿)
𝓂2𝛿−2 (𝓂 −𝓃)2−2𝛿

(
𝓂 −𝓃

𝓂 +𝓃

)𝓂+𝓃

× 2𝐹1

(
1 − 𝑛, 1 − 𝑚, 2 − 2𝛿,

−4𝓃𝓂

(𝓃 −𝓂)2

)
. (2.2.26)

Similarly for the second integral with second argument 2 − 𝑚, we acquire

J0,0
2−2𝛿

(
1 − 𝑛, 2 − 𝑚, 1, 𝓃

𝓂

)
=

41−𝛿 (−1)𝑛−1Γ(2 − 2𝛿)
𝓂2𝛿−2 (𝓂 −𝓃)2−2𝛿

(
𝓂 −𝓃

𝓂 +𝓃

)𝓃+𝓂−1

× 2𝐹1

(
1 − 𝑛, 2 − 𝑚, 2 − 2𝛿,

−4𝓃𝓂

(𝓃 −𝓂)2

)
. (2.2.27)

Substituting back into equation (2.2.25) then yields

𝑍𝓃𝓂 =
2𝓃2−𝛿 (𝑛)1/2

1−2𝛿 (𝑚)
1/2
1−2𝛿

(𝓂2 −𝓃2)𝓂−𝛿Γ2 (2 − 2𝛿)

{
𝓂

41−𝛿 (−1)𝑛−1Γ(2 − 2𝛿)
𝓂2𝛿−2 (𝓂 −𝓃)2−2𝛿

(
𝓂 −𝓃

𝓂 +𝓃

)𝓂+𝓃

× 2𝐹1

(
1 − 𝑛, 1 − 𝑚, 2 − 2𝛿,

−4𝓃𝓂

(𝓃 −𝓂)2

)
+ (1 − 𝑚) 41−𝛿 (−1)𝑛−1Γ(2 − 2𝛿)

𝓂2𝛿−2 (𝓂 −𝓃)2−2𝛿

×
(
𝓂 −𝓃

𝓂 +𝓃

)𝓃+𝓂−1
2𝐹1

(
1 − 𝑛, 2 − 𝑚, 2 − 2𝛿,

−4𝓃𝓂

(𝓃 −𝓂)2

) }
=

23−2𝛿 (−1)𝑛 (𝓃𝓂)2−𝛿 (𝑛)1/2
1−2𝛿 (𝑚)

1/2
1−2𝛿

Γ(2 − 2𝛿) (𝓂 −𝓃)4−2𝛿

(
𝓂 −𝓃

𝓂 +𝓃

)𝓂+𝓃
(2.2.28)

×
{
𝓂

𝓃 −𝓂

𝓂 +𝓃
2𝐹1

(
1 − 𝑛, 1 − 𝑚, 2 − 2𝛿,

−4𝓃𝓂

(𝓃 −𝓂)2

)
+ (𝑚 − 1)2𝐹1

(
1 − 𝑛, 2 − 𝑚, 2 − 2𝛿,

−4𝓃𝓂

(𝓃 −𝓂)2

) }
,

We have now found the matrix elements of the bound states and move to the bound-unbound matrix elements
𝑍𝓃𝓀. The immediate calculation yields

𝑍𝑘𝓂 =
(4𝑘)1−𝛿 (𝑚)1/2

1−2𝛿

��Γ(1 − 𝛿 − 𝑖𝑘−1)
��

√
2𝜋𝓂2−𝛿e−𝜋/2𝑘Γ2 (2 − 2𝛿)

∫ ∞

0
𝑧1−𝛿e𝑖𝑘𝑧1𝐹1

(
1 − 𝛿 − 𝑖

𝑘
, 2 − 2𝛿,−2𝑖𝑘𝑧

)
𝑧𝑧1−𝛿e−𝑧/𝓂

× 1𝐹1

(
1 − 𝑚, 2 − 2𝛿,

2𝑧
𝓂

)
d𝑧

=
𝓂

2−𝛿 (𝑚)1/2
1−2𝛿

��Γ(1 − 𝛿 − 𝑖𝑘−1)
��

4
√

2𝜋𝑘 𝛿−1e−𝜋/2𝑘Γ2 (2 − 2𝛿)

∫ ∞

0
𝑧′3−2𝛿e−(1−𝑖𝑘𝓂)𝑧′/2

1𝐹1

(
1 − 𝛿 − 𝑖

𝑘
, 2 − 2𝛿,−𝑖𝑘𝓂𝑧′

)
× 1𝐹1 (1 − 𝑚, 2 − 2𝛿, 𝑧′) d𝑧′

=
𝓂

2−𝛿 (𝑚)1/2
1−2𝛿

��Γ(1 − 𝛿 − 𝑖𝑘−1)
��

4
√

2𝜋𝑘 𝛿−1e−𝜋/2𝑘Γ2 (2 − 2𝛿)
J2,0

2−2𝛿

(
1 − 𝛿 − 𝑖

𝑘
, 1 − 𝑚,−𝑖𝑘𝓂, 1

)
, (2.2.29)

where we have introduced 𝑧′ = 2𝑧/𝓂 and introduced the W. Gordon integral representation. Here, we again
apply equation (A.0.14) to compute the integral. We note that the parameter A = 0 and hence the J2,0

2−2𝛿
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integral can be represented using two J0,0
2−2𝛿 integrals. In particular, we find

𝑍𝑘𝓂 =
𝓂

2−𝛿 (𝑚)1/2
1−2𝛿

��Γ(1 − 𝛿 − 𝑖𝑘−1)
��

4
√

2𝜋𝑘 𝛿−1e−𝜋/2𝑘Γ2 (2 − 2𝛿)
4

(−𝑖𝑘𝓂)2 − 1

{
(2 − 2𝛿 − 2(1 − 𝑚))

× J0,0
2−2𝛿

(
1 − 𝛿 − 𝑖

𝑘
, 1 − 𝑚,−𝑖𝑘𝓂, 1

)
+ 2(1 − 𝑚)J0,0

2−2𝛿

(
1 − 𝛿 − 𝑖

𝑘
, 2 − 𝑚,−𝑖𝑘𝓂, 1

) }
=

−2𝓂2−𝛿 (𝑚)1/2
1−2𝛿

��Γ(1 − 𝛿 − 𝑖𝑘−1)
��

√
2𝜋𝑘 𝛿−1 (1 + 𝑘2𝓂2)e−𝜋/2𝑘Γ2 (2 − 2𝛿)

{
𝓂J0,0

2−2𝛿

(
1 − 𝛿 − 𝑖

𝑘
, 1 − 𝑚,−𝑖𝑘𝓂, 1

)
+ (1 − 𝑚)J0,0

2−2𝛿

(
1 − 𝛿 − 𝑖

𝑘
, 2 − 𝑚,−𝑖𝑘𝓂, 1

) }
. (2.2.30)

We now turn to the two J0,0
2−2𝛿 integrals, which we calculate using equation (A.0.10). The first integral with

second argument 1 − 𝑚 becomes

J0,0
2−2𝛿

(
1 − 𝛿 − 𝑖

𝑘
, 1 − 𝑚,−𝑖𝑘𝓂, 1

)
=

22−2𝛿Γ(2 − 2𝛿) ((−𝑖𝑘𝓂) + 1)1−𝛿−𝑖/𝑘+1−𝑚−2+2𝛿

(1 − (−𝑖𝑘𝓂))1−𝛿−𝑖/𝑘 ((−𝑖𝑘𝓂) − 1)1−𝑚

× 2𝐹1

(
1 − 𝛿 − 𝑖

𝑘
, 1 − 𝑚, 2 − 2𝛿,

−4((−𝑖𝑘𝓂))
(1 − (−𝑖𝑘𝓂))2

)
=

41−𝛿 (−1)𝑚−1Γ(2 − 2𝛿)
(1 + 𝑖𝑘𝓂)2−2𝛿

(
1 − 𝑖𝑘𝓂
1 + 𝑖𝑘𝓂

)−𝑖/𝑘−𝓂
× 2𝐹1

(
1 − 𝛿 − 𝑖

𝑘
, 1 − 𝑚, 2 − 2𝛿,

4𝑖𝑘𝓂
(1 + 𝑖𝑘𝓂)2

)
. (2.2.31)

Similarly for the second integral with second argument 2 − 𝑚, we acquire

J0,0
2−2𝛿

(
1 − 𝛿 − 𝑖

𝑘
, 2 − 𝑚,−𝑖𝑘𝓂, 1

)
=

41−𝛿 (−1)𝑚Γ(2 − 2𝛿)
(1 + 𝑖𝑘𝓂)2−2𝛿

(
1 − 𝑖𝑘𝓂
1 + 𝑖𝑘𝓂

)1−𝑖/𝑘−𝓂

× 2𝐹1

(
1 − 𝛿 − 𝑖

𝑘
, 2 − 𝑚, 2 − 2𝛿,

4𝑖𝑘𝓂
(1 + 𝑖𝑘𝓂)2

)
. (2.2.32)

Substituting the two integrals back into equation (2.2.30) then yields

𝑍𝑘𝓂 =
−2𝓂2−𝛿 (𝑚)1/2

1−2𝛿

��Γ(1 − 𝛿 − 𝑖𝑘−1)
��

√
2𝜋𝑘 𝛿−1 (1 + 𝑘2𝓂2)e−𝜋/2𝑘Γ2 (2 − 2𝛿)

{
𝓂

41−𝛿 (−1)𝑚−1Γ(2 − 2𝛿)
(1 + 𝑖𝑘𝓂)2−2𝛿

(
1 − 𝑖𝑘𝓂
1 + 𝑖𝑘𝓂

)−𝑖/𝑘−𝓂
× 2𝐹1

(
1 − 𝛿 − 𝑖

𝑘
, 1 − 𝑚, 2 − 2𝛿,

4𝑖𝑘𝓂
(1 + 𝑖𝑘𝓂)2

)
+ (1 − 𝑚) 41−𝛿 (−1)𝑚Γ(2 − 2𝛿)

(1 + 𝑖𝑘𝓂)2−2𝛿

×
(

1 − 𝑖𝑘𝓂
1 + 𝑖𝑘𝓂

)1−𝑖/𝑘−𝓂

2𝐹1

(
1 − 𝛿 − 𝑖

𝑘
, 2 − 𝑚, 2 − 2𝛿,

4𝑖𝑘𝓂
(1 + 𝑖𝑘𝓂)2

) }
=

23−2𝛿 (−1)𝑚𝓂2−𝛿 (𝑚)1/2
1−2𝛿

��Γ(1 − 𝛿 − 𝑖𝑘−1)
��

√
2𝜋𝑘 𝛿−1 (1 + 𝑖𝑘𝓂)4−2𝛿e−𝜋/2𝑘Γ(2 − 2𝛿)

(
1 − 𝑖𝑘𝓂
1 + 𝑖𝑘𝓂

)−𝑖/𝑘−𝓂 {
𝓂

1 + 𝑖𝑘𝓂
1 − 𝑖𝑘𝓂 (2.2.33)

× 2𝐹1

(
1 − 𝛿 − 𝑖

𝑘
, 1 − 𝑚, 2 − 2𝛿,

4𝑖𝑘𝓂
(1 + 𝑖𝑘𝓂)2

)
+ (𝑚 − 1)2𝐹1

(
1 − 𝛿 − 𝑖

𝑘
, 2 − 𝑚, 2 − 2𝛿,

4𝑖𝑘𝓂
(1 + 𝑖𝑘𝓂)2

) }
,

which is the final expression of the bound-unbound matrix elements. In conjunction with equation (2.2.28),
equation (2.2.33) yields all the matrix elements for the quantum defect electron. We note that both reduce to
equations (2.1.43) and (2.1.49) in the 𝛿 = 0 case as they should. In addition, the Thomas–Reiche–Kuhn is
still satisfied for arbitrary 𝛿. The contribution from bound versus unbound states however do depend on 𝛿.
In the ground state case for instance, one finds that

∑
𝑛>1 𝑔1𝑛 ≈ 0.02230407 and

∫ ∞
0 𝑔1𝑘d𝑘 ≈ 0.97769592

for 𝛿 = 0.8, whereas
∑

𝑛>1 𝑔1𝑛 ≈ 0.59997693 and
∫ ∞

0 𝑔1𝑘d𝑘 ≈ 0.40002301 for 𝛿 = −0.8. Moving forward,
when referring to various quantities such as energies 𝐸𝑛, eigenstates 𝜓𝑘 or matrix elements 𝑍𝑛𝑘 and so on,
we implicitly mean the quantum defect atom variants, for which 𝛿 = 0 is a special case, meaning we abandon
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the italic subscripts𝓃. We have now fully developed the one-dimensional model describing the out-of-plane
eigenstates and energy eigenvalues for the electron-on-Helium qubit system. With these results, we now
move forward and begin introducing external electric fields as a means of qubit control.
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Chapter 3

Electrostatic Perturbation of Qubit

In this chapter, we develop the results of Chapter one further by studying the effects of introducing an external
electrostatic field to the electron qubit system using perturbative methods. By expanding the energies and
eigenstates in perturbative series, we find the resulting corrections due to the external field to various orders
using two methods. Energy corrections and static polarizabilities are then found. The divergence of the
resulting energy expansion is considered and a means of regularization is introduced, which also allows
ionization rates to be found. A numerical approach is used to verify the results.

3.1 Electrostatic Perturbation of Qubit

We now aim to apply and further develop the results of chapter one, where we developed the one-dimensional
quantum defect model for the electron-on-Helium qubit system. Using these results, we are now able to
begin describing qubit control by perturbing the qubit platform with external electric fields. In this chapter,
we focus on the electrostatic perturbations of the form E = E0ẑ. The field is chosen so that it points away
from the substrate, as shown in Figure 3.1 below. In terms of the modified atomic units introduced in the
previous chapter, the electric field is measured in units of Ha/𝑒𝑎0, which in the case of Helium and Neon
corresponds to Ē0 = 0.173 V/𝜇m and Ē0 = 10.45 V/𝜇m, respectively.

Figure 3.1: Electron-on-Helium qubit system perturbed by the electrostatic field E = E0ẑ, which is chosen
so that it points away from the substrate. The figure is based on [Pedrotti et al., 2018].
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To describe how the electric field affects the Hamiltonian, we will employ the dipole approximation,
which is valid when the electric field is approximately spatially uniform over the atom or molecule in
question [Pedersen, 2022]. The electron qubit will in the presence of the electric field produce an induced
dipole moment p = 𝑞𝑑ẑ = −𝑒𝑧ẑ. To this dipole moment we, in dipole approximation, associate an energy
𝑈 = −p ·E = 𝑒E0𝑧. For the quantum mechanical treatment of this problem, we treat the positional coordinate
as an operator and hence the contribution to the Hamiltonian due to the electric field is 𝑒E0𝑧. The modified
potential in the presence of an electrostatic field distorts the wave function and alters energy eigenvalues.
Physically, this skews the electron cloud in the direction opposite of the field. In modified atomic units, we
may write the new full problem as {

𝐻̂0 + 𝐻̂1
}
𝜓̃ = 𝐸̃𝜓̃, (3.1.1)

where 𝐻̂0 is the original, unperturbed Hamiltonian and 𝐻̂1 = E0𝑧 is the so-called perturbation. Because
the field is chosen to point away from the substrate, we expect tunnelling to be induced for negative field
strengths E0 < 0 [Pedersen, 2024]. The reason for this is that the Kratzer potential effectively becomes
barrier for the electrons to tunnel through. The ease of which this may accomplished increases with field
strength. The problem given in equation (3.1.1) is impractical to solve analytically, so we instead employ
perturbative methods. Perturbation theory is a selection of methods used to solve a particular class of
problems such as this, where an initially exactly solvable problem is perturbed by some small amount.
The application of perturbation theory in the context of problems such as this will involve expanding the
unknown quantities in powers series’ in the perturbation. Before explaining this further, we will for the sake
of convenience introduce the notation

𝑠
𝑖, 𝑗
𝑛,𝑚 = ⟨𝜓̃𝑛,𝑖 |𝜓̃𝑚, 𝑗⟩, 𝑆

𝑖, 𝑗
𝑛,𝑚 = ⟨Ψ̃𝑛,𝑖 |Ψ̃𝑚, 𝑗⟩,

𝐸𝑛𝑚 = 𝐸𝑛 − 𝐸𝑚, H 𝑖, 𝑗
𝑛,𝑚 =

〈
𝜓̃𝑛,𝑖

��𝐻̂0
�� 𝜓̃𝑚, 𝑗

〉
, H̃ 𝑖, 𝑗

𝑛,𝑚 =
〈
𝜓̃𝑛,𝑖

��𝐻̂1
�� 𝜓̃𝑚, 𝑗

〉
.

(3.1.2)

The starting point is the perturbed time-independent Schrödinger equation given in equation (3.1.1), which
we will eventually solve using two different perturbative methods. The first step lies in expanding the
unknown eigenstate and corresponding energy eigenvalue in a perturbative expansions of the form

𝜓̃𝑛 =

∞∑︁
𝑗=0
𝜓̃𝑛, 𝑗 ∧ 𝐸̃𝑛 =

∞∑︁
𝑗=0

𝐸̃𝑛, 𝑗 . (3.1.3)

The initial state of the qubit system will be a bound state and hence the unbound states will not be of
importance in this derivation. The 𝑗 ′th term in the power series’ given in equation (3.1.3) can be thought of
as the correction term of order 𝑗 to the unperturbed energy or eigenstate due to the applied field. In fact, the
perturbative expansions given above are power series’ in E0. The first correction is then the linear response,
the second correction is quadratic response and so on. The correction order is denoted by the second
subscript 𝑗 . We note that the zeroth order correction terms are simply the unperturbed eigenfunctions and
eigenvalues pertaining to the original Hamiltonian 𝐻̂0, meaning 𝜓̃𝑛,0 = 𝜓𝑛 and 𝐸̃𝑛,0 = 𝐸𝑛, respectively.
We now proceed by substituting both perturbative expansions into equation (3.1.1), which after rearranging
terms gives (

𝐻̂0 + 𝐻̂1 − 𝐸̃𝑛,0 − 𝐸̃𝑛,1 − 𝐸̃𝑛,2 − . . .
) (
𝜓̃𝑛,0 + 𝜓̃𝑛,1 + 𝜓̃𝑛,2 + . . .

)
= 0. (3.1.4)

We now want to determine all the corrections to the eigenstate and energy eigenvalue in such a way that
equation (3.1.4) holds for all 𝑧 and E0. We accomplish this by grouping terms of equal order, meaning
𝐻̂𝑖𝜓̃𝑛, 𝑗 and 𝐸̃𝑛,𝑖𝜓̃𝑛, 𝑗 such that 𝑖 + 𝑗 = 𝑝 for some perturbative order 𝑝, and requiring each grouping to
vanish. This ensures that every correction holds for all E0. The reason for this is that every correction
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of order 𝑝 is proportional to E
𝑝

0 and hence the E0-dependence can be divided out in each grouping when
requiring them to vanish. This approach allows us to construct a sequence of iteratively solvable equations
starting at first order. Expanding (3.1.4) and grouping terms of equal order then gives(

𝐻̂0𝜓̃𝑛,0 − 𝐸̃𝑛,0𝜓̃𝑛,0
)
+

(
𝐻̂0𝜓̃𝑛,1 + 𝐻̂1𝜓̃𝑛,0 − 𝐸̃𝑛,0𝜓̃𝑛,1 − 𝐸̃𝑛,1𝜓̃𝑛,0

)
+ · · · = 0. (3.1.5)

The first grouping corresponds to the unperturbed system, which we have already solved. For every other
perturbative order, we find that

𝐻̂0𝜓̃𝑛,𝑝 + 𝐻̂1𝜓̃𝑛,𝑝−1 −
𝑝∑︁
𝑗=0

𝐸̃𝑛, 𝑗 𝜓̃𝑛,𝑝− 𝑗 = 0, for 𝑝 > 0. (3.1.6)

We now aim to solve (3.1.6) for each 𝑝 by determining the corrections of the eigenstate and corresponding
energy eigenvalues. The two aforementioned perturbative methods that will be put to use mainly differ
in terms of finding the eigenstate corrections. Before proceeding to both methods therefore, we first use
equation (3.1.6) to find 𝐸̃𝑛,𝑝 for all 𝑝. To do so, we multiply equation (3.1.6) through by 𝜓𝑛 from the left
and integrate over R≥0, which in turn yields

H0, 𝑝
𝑛,𝑛 + H̃0, 𝑝−1

𝑛,𝑛 −
𝑝∑︁
𝑗=0

𝐸̃𝑛, 𝑗 𝑠
0, 𝑝− 𝑗
𝑛,𝑛 = 0. (3.1.7)

We now exploit the fact that 𝐻̂0 is a Hermitian operator and deduce that H0, 𝑝
𝑛,𝑛 = 𝐸𝑛𝑠

0, 𝑝
𝑛,𝑛 , where we have

used the unperturbed eigenvalue problem 𝐻̂0𝜓𝑛 = 𝐸𝑛𝜓𝑛 to eliminate the Hamiltonian. It is then clear that
the second term in equation (3.1.7) cancels with the 𝑗 = 0 term of the sum. In addition, we see that the
𝑗 = 𝑝 term reads 𝐸̃𝑛,𝑝𝑠

0,0
𝑛,𝑛 = 𝐸̃𝑛,𝑝 because 𝜓𝑛 is normalized. In the 𝑝 = 1 case therefore, the energy

correction is simply 𝐸̃𝑛,1 = H̃0,0
𝑛,𝑛. In other words, the first-order energy correction is the expectation value

of the perturbation. For the higher-order corrections, we instead have

𝐸̃𝑛,𝑝 = H̃0, 𝑝−1
𝑛,𝑛 −

𝑝−1∑︁
𝑗=1

𝐸̃𝑛, 𝑗 𝑠
0, 𝑝− 𝑗
𝑛,𝑛 , for 𝑝 > 1. (3.1.8)

The expression in equation (3.1.8) will become usable once the eigenstate corrections are known. Before
determining them using the two methods mentioned earlier, we must first construct a set of conditions that
ensure that these eigenstate corrections keep the full eigenstate 𝜓̃𝑛 normalized, meaning ⟨𝜓̃𝑛 |𝜓̃𝑛⟩ = 1. We
accomplish this by substituting the perturbative expansion into the normalization condition, which in turn
yields

∞∑︁
𝑗=0

∞∑︁
𝑙=0

𝑠
𝑗 ,𝑙
𝑛,𝑛 = 1. (3.1.9)

The very first term in the double sum given in equation (3.1.9) above is 𝑠0,0
𝑛,𝑛 = 1 because 𝜓𝑛 is normalized.

This cancels with the right-hand side and hence the remaining terms mush vanish. By grouping terms of
equal order, we can ensure that the normalization condition is enforced for all E0. By expanding equation
(3.1.9) and grouping terms of equal order, we then find the condition

𝑝∑︁
𝑗=0

𝑠
𝑗 , 𝑝− 𝑗
𝑛,𝑛 = 0, for 𝑝 > 0. (3.1.10)

For every 𝑝, equation (3.1.10) places a constraint on 𝜓̃𝑛,𝑝 . To make this condition more explicit, we now
extract the first and last terms of the sum above. These two terms are each others complex conjugate and
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hence 𝑠0, 𝑝
𝑛,𝑛 + 𝑠𝑝,0𝑛,𝑛 = 2Re 𝑠0, 𝑝

𝑛,𝑛 . Subtracting the remaining sum over to the right-hand side then leaves the final
condition. In the 𝑝 = 1 case, we have Re 𝑠0,1

𝑛,𝑛 = 0, whereas for every other perturbative order, the condition
reads

Re 𝑠0, 𝑝
𝑛,𝑛 = −1

2

𝑝−1∑︁
𝑗=1

𝑠
𝑗 , 𝑝− 𝑗
𝑛,𝑛 , for 𝑝 > 1. (3.1.11)

With the conditions provided by equation (3.1.11), we are now ready to move forward and determine the
eigenstate corrections. This is done using the two methods mentioned above, which will be presented in
two subsequent sections.

3.1.1 Basis Expansion Method

In this section, we present the first method of determining the eigenstate corrections, which we for the
purposes of this thesis will be denoted the basis expansion method. In this more traditional method, we
assume that the eigenstate corrections can be written in terms of an expansion of the unperturbed eigenstates
that form a basis under 𝐻̂0. This involves summing over the bound states and integrating over the unbound
states such that

𝜓̃𝑛,𝑝 =

∞∑︁
𝑚=1

𝑐𝑚,𝑝𝜓𝑚 +
∫ ∞

0
𝑐𝑘, 𝑝𝜓𝑘d𝑘

≡
⨋

𝑗∈𝐼
𝑐 𝑗 , 𝑝𝜓 𝑗 , (3.1.12)

where 𝑐 𝑗 , 𝑝 is the set of basis expansion coefficients associated with the 𝑝′th correction to the eigenstate and
𝐼 is the set of all eigenstates, bound and unbound. This representation allows us to determine the eigenstates
if only we determine the basis expansion coefficients. We start with the equal-index coefficients, meaning
𝑐𝑛,𝑝 , which are determined using the normalization condition found in equation (3.1.11). Substituting the
above expansion into said condition then yields

Re
∫ ∞

0
𝜓𝑛

⨋
𝑗∈𝐼

𝑐 𝑗 , 𝑝𝜓 𝑗d𝑧 = −1
2

𝑝−1∑︁
𝑗=1

𝑠
𝑗 , 𝑝− 𝑗
𝑛,𝑛 . (3.1.13)

We now multiply the eigenstate 𝜓𝑛 into the sum-integral on the left-hand side. This allows us to interchange
the outer spatial integral with the sum-integral. Using the notation given in (3.1.12) and recognizing the
resulting inner products, we may write

Re
⨋

𝑗∈𝐼
𝑐 𝑗 , 𝑝𝑠

0,0
𝑛, 𝑗

= −1
2

𝑝−1∑︁
𝑗=1

𝑠
𝑗 , 𝑝− 𝑗
𝑛,𝑛 . (3.1.14)

By orthonormality, it is clear that the left-hand side of equation (3.1.14) vanishes entirely except for the
𝑗 = 𝑛 case. In the 𝑝 = 1 case, the right-hand side of equation (3.1.14) vanishes and hence 𝑐𝑛,1 = 0. For
higher perturbative orders, we instead have

𝑐𝑛,𝑝 = −1
2

𝑝−1∑︁
𝑗=1

𝑠
𝑗 , 𝑝− 𝑗
𝑛,𝑛 , for 𝑝 > 1, (3.1.15)

which gives all the equal-index coefficients. We now turn to the remaining coefficients, which are found
using equation (3.1.6). Substituting in the basis expansion yields⨋

𝑗∈𝐼

{
𝐻̂0𝑐 𝑗 , 𝑝 + 𝐻̂1𝑐 𝑗 , 𝑝−1 −

𝑝∑︁
𝑙=0

𝐸̃𝑛,𝑙𝑐 𝑗 , 𝑝−𝑙

}
𝜓 𝑗 = 0, (3.1.16)
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Letting the unperturbed Hamiltonian act on the 𝑖′th eigenstate in equation (3.1.16) returns the corresponding
energy eigenvalue 𝐸𝑖 . We can then multiply through by 𝜓𝑚 for some 𝑚 ∈ 𝐼\𝑛 from the left and integrate
over R≥0, which after interchanging integrals and sums gives⨋

𝑗∈𝐼

{
𝐸 𝑗𝑐 𝑗 , 𝑝𝑠

0,0
𝑚, 𝑗

+ 𝑐 𝑗 , 𝑝−1H̃0,0
𝑚, 𝑗

−
𝑝∑︁
𝑙=0

𝐸̃𝑛,𝑙𝑐 𝑗 , 𝑝−𝑙𝑠
0,0
𝑚, 𝑗

}
= 0. (3.1.17)

By orthonormality, we know that 𝑠0,0
𝑚, 𝑗

= 𝛿𝑚𝑗 and hence vanishes for all but 𝑗 = 𝑚, where the inner product
returns unity. Extracting the 𝑙 = 0 term from the sum then yields

𝐸𝑚𝑐𝑚,𝑝 +
⨋

𝑗∈𝐼
𝑐 𝑗 , 𝑝−1H̃0,0

𝑚, 𝑗
− 𝐸𝑛𝑐𝑚,𝑝 −

𝑝∑︁
𝑙=1

𝐸̃𝑛,𝑙𝑐𝑚,𝑝−𝑙 = 0. (3.1.18)

We can now solve for the coefficient 𝑐𝑚,𝑝 , which gives

𝑐𝑚,𝑝 =
1
𝐸𝑚𝑛

𝑝∑︁
𝑙=1

𝐸̃𝑛,𝑙𝑐𝑚,𝑝−𝑙 −
1
𝐸𝑚𝑛

⨋
𝑗∈𝐼

𝑐 𝑗 , 𝑝−1H̃0,0
𝑚, 𝑗
. (3.1.19)

Equation (3.1.19) holds for all 𝑚 ≠ 𝑛, so in conjunction with equation (3.1.15), we have now found every
coefficient 𝑐𝑚,𝑝 for every 𝑚 ∈ 𝐼 and 𝑝 > 0. For the sake of completeness, we note that the zeroth-order
coefficients 𝑐𝑚,0 are delta functions in 𝑚 that pick out exactly 𝜓𝑚 in the basis expansion. We are now able
to construct a recursive algorithm that calculates all 𝐸̃𝑛,𝑝 and 𝜓̃𝑛,𝑝 . Starting at 𝑝 = 1, we compute the
first-order energy correction 𝐸̃𝑛,1 = H̃0,0

𝑛,𝑛. The corresponding eigenstate correction 𝜓̃𝑛,1 can then be found
by calculating its expansion coefficients in the 𝑝 = 1 case of equations (3.1.15) and (3.1.19). We can then
move on to the next order of perturbation, where the same procedure is repeated but for energy corrections
found using equation (3.1.8). In this way, we can keep calculating corrections of higher order using all the
previously computed corrections. In particular, the order of calculation is given in the sequence below:

𝐸̃𝑛,1 ⇒ 𝑐𝑚,1 ⇒ 𝜓̃𝑛,1 ⇒ 𝐸̃𝑛,2 ⇒ 𝑐𝑚,2 ⇒ 𝜓̃𝑛,2 ⇒ 𝐸̃𝑛,3 ⇒ . . . . (3.1.20)

To showcase the procedure in a specific example, we consider the perturbation of the 𝛿 = 0 ground state,
for which 𝜓1 = 2𝑧e−𝑧 , and compute up to the second-order energy. The first-order energy correction is

𝐸̃1,1 = H̃0,0
1,1

= E0𝑍11

=
3
2
E0, (3.1.21)

where we have applied the diagonal matrix element given in equation (2.1.35). The first-order equal index
coefficient is 𝑐1,1 = 0. Using equation (3.1.19), the remaining first-order coefficients are

𝑐𝑚,1 =
1
𝐸𝑚1

𝐸̃1,1𝑐𝑚,0 −
1
𝐸𝑚1

⨋
𝑗∈𝐼

𝑐 𝑗 ,0H̃0,0
𝑚, 𝑗

=
𝐸̃1,1

𝐸𝑚1
𝛿1𝑚 −

H̃0,0
𝑚,1

𝐸𝑚1

=
H̃0,0

𝑚,1

𝐸1𝑚

= E0
𝑍𝑚1
𝐸1𝑚

, (3.1.22)
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where we have used the fact that 𝑚 ≠ 1 to eliminate the first term in the second line. Using the basis
expansion in conjunction with the above coefficient, we then have

𝜓̃1,1 =

⨋
𝑗∈𝐼
𝑗≠1

𝑐 𝑗 ,1𝜓 𝑗 + 𝑐1,1𝜓1

= E0

⨋
𝑗∈𝐼
𝑗≠1

𝑍 𝑗1

𝐸1 𝑗
𝜓 𝑗 , (3.1.23)

where the off-diagonal matrix elements are given in equations (2.2.28) and (2.2.33). Moving up to pertur-
bative order 𝑝 = 2, the second-order energy correction is given by equation (3.1.8), which yields

𝐸̃1,2 = H̃0,1
1,1 − 𝐸̃1,1𝑠

0,1
1,1

=

⨋
𝑗∈𝐼
𝑗≠1

{
E0
𝑍 𝑗1

𝐸1 𝑗
H̃0,0

1, 𝑗 − 𝐸1,1E0
𝑍 𝑗1

𝐸1 𝑗
𝑠

0,0
1, 𝑗

}
= E2

0

⨋
𝑗∈𝐼
𝑗≠1

|𝑍 𝑗1 |2

𝐸1 𝑗

=
1
2
E2

0

⨋
𝑗∈𝐼
𝑗≠1

𝑔 𝑗1

𝐸1 𝑗𝐸 𝑗1

= −1
2
E2

0G1,−2, (3.1.24)

where we have introduced the oscillator strength moment. The next terms to calculate would be the second-
order coefficients 𝑐𝑚,2 that provide the second-order eigenstate correction. This second-order correction
becomes tricky to calculate because it contains unbound-unbound matrix elements 𝑍𝑘𝑘′ . The method also
quickly becomes more computationally expensive because an additional sum-integral is introduced at every
higher order. Additionally, due to the complex form of the matrix elements, the sum-integrals generally
cannot be evaluated analytically in closed form. As a result, this approach is, for all practical purposes,
numerical. We now move onto the second method for computing the eigenstate corrections.

3.1.2 Dalgarno-Lewis Method

In the second method, which is attributed to Dalgarno and Lewis [Dalgarno and Lewis, 1955], we instead
determine the eigenstate corrections by solving equation (3.1.6) directly. An advantage of this is that we
are able to provide closed-form eigenstate corrections instead of the basis expansions found in the previous
section. The initial trick to accomplish this is to assume that 𝜓̃𝑛,𝑝 = 𝑓𝑝𝜓𝑛 for every 𝑝, where 𝜓𝑛 is
the unperturbed eigenstate and 𝑓𝑝 is the so-called field factor. This allows us to determine the eigenstate
corrections if only we can find 𝑓𝑝 . We accomplish this by first substituting the proposed form of the
eigenstate correction into equation (3.1.6), which in turn yields(

−1
2

d2

d𝑧2 +𝑉
)
𝑓𝑝𝜓𝑛 + 𝐻̂1 𝑓𝑝−1𝜓𝑛 −

𝑝∑︁
𝑗=0

𝐸̃𝑛, 𝑗 𝑓𝑝− 𝑗𝜓𝑛 = 0, (3.1.25)

where we have written the unperturbed Hamiltonian 𝐻̂0 explicitly in terms of its kinetic and potential energy
operators. We now let the differential operator in equation (3.1.25) act on the product 𝑓𝑝𝜓̃𝑛 and expand
terms. Rearranging the resulting terms then shows that

𝑓𝑝

(
−1

2
d2

d𝑧2 +𝑉 − 𝐸𝑛

)
𝜓𝑛 −

1
2

d2 𝑓𝑝

d𝑧2 𝜓𝑛 −
d 𝑓𝑝
d𝑧

d𝜓𝑛

d𝑧
+ 𝐻̂1 𝑓𝑝−1𝜓𝑛 −

𝑝∑︁
𝑗=1

𝐸̃𝑛, 𝑗 𝑓𝑝− 𝑗𝜓𝑛 = 0, (3.1.26)
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where we have moved the first term of the sum into the parenthesis. An important observation to make
at this point is that the parenthesis must vanish because it simply is the Hamiltonian minus its expectation
value, see equation (2.2.6). This then leaves

d2 𝑓𝑝

d𝑧2 𝜓𝑛 + 2
d 𝑓𝑝
d𝑧

d𝜓𝑛

d𝑧
= 2

𝐻̂1 𝑓𝑝−1𝜓𝑛 −
𝑝∑︁
𝑗=1

𝐸̃𝑛, 𝑗 𝑓𝑝− 𝑗𝜓𝑛

 , (3.1.27)

where we have multiplied through by a factor 2. We now divide equation (3.1.27) through by 𝜓𝑛. Using
logarithmic differentiation, this allows us to write

d 𝑓 ′𝑝
d𝑧

+ 2 𝑓 ′𝑝
d ln𝜓𝑛

d𝑧
= 2

𝐻̂1 𝑓𝑝−1 −
𝑝∑︁
𝑗=1

𝐸̃𝑛, 𝑗 𝑓𝑝− 𝑗

 , (3.1.28)

where 𝑓 ′𝑝 = d 𝑓𝑝/d𝑧 is the derivative. We note that the first term on the right-hand side reduces to 𝐻̂1 𝑓𝑝−1

because the perturbation is a multiplicatively commutative operator. Equation (3.1.28) is exactly solvable
since it is a first-order linear differential equation in 𝑓 ′𝑝 . To solve it, we start by multiplying the equation
through by an integrating factor exp(2

∫
{ln𝜓𝑛}′ d𝑧) = 𝜓2

𝑛, which in turn yields

d 𝑓 ′𝑝𝜓2
𝑛

d𝑧
= 2

𝐻̂1 𝑓𝑝−1 −
𝑝∑︁
𝑗=1

𝐸̃𝑛, 𝑗 𝑓𝑝− 𝑗

 𝜓2
𝑛, (3.1.29)

where we have factored the left-hand side using the product rule of differentiation. We can now find the
derivative 𝑓 ′𝑝 by integrating equation (3.1.29) and dividing through by a factor 𝜓2

𝑛, which in turn gives

𝑓 ′𝑝 = 2
∫ 𝐻̂1 𝑓𝑝−1 −

𝑝∑︁
𝑗=1

𝐸̃𝑛, 𝑗 𝑓𝑝− 𝑗

 𝜓2
𝑛d𝑧𝜓−2

𝑛 + 2𝐶 (1)
𝑝 𝜓−2

𝑛 , (3.1.30)

where 𝐶 (1)
𝑝 is the first of two integration constants. We now have the derivative 𝑓 ′𝑝 , which means that the

field factor 𝑓𝑝 is found by integrating once more. This yields

𝑓𝑝 = 2
∬ 𝐻̂1 𝑓𝑝−1 −

𝑝∑︁
𝑗=1

𝐸̃𝑛, 𝑗 𝑓𝑝− 𝑗

 𝜓2
𝑛d𝑧𝜓−2

𝑛 d𝑧 + 2𝐶 (1)
𝑝

∫
𝜓−2
𝑛 d𝑧 + 2𝐶 (2)

𝑝 , (3.1.31)

where𝐶 (2)
𝑝 is the second constant of integration. We now want to determine the two constants of integration.

By recalling 𝜓𝑛 ∼ exp(−𝑧/𝑛), it is clear that 𝜓−2
𝑛 is not square-integrable on R≥0. We cannot then ensure

that 𝜓̃𝑛,𝑝 is normalizable unless 𝐶 (1)
𝑝 = 0. Using 𝜓̃𝑛,𝑝 = 𝑓𝑝𝜓𝑛, we may for the moment express the 𝑝′th

order eigenstate correction as

𝜓̃𝑛,𝑝 = 2
∬ 𝐻̂1 𝑓𝑝−1 −

𝑝∑︁
𝑗=1

𝐸̃𝑛, 𝑗 𝑓𝑝− 𝑗

 𝜓2
𝑛d𝑧𝜓−2

𝑛 d𝑧𝜓𝑛 + 2𝐶 (2)
𝑝 𝜓𝑛. (3.1.32)

The remaining integration constant 𝐶 (2)
𝑝 is determined by requiring that 𝜓̃𝑛,𝑝 satisfies the normalization

condition (3.1.11). Substituting in the eigenstate as given in equation (3.1.32), we then get

2Re
∫ ∞

0


∬ 𝐻̂1 𝑓𝑝−1 −

𝑝∑︁
𝑗=1

𝐸̃𝑛, 𝑗 𝑓𝑝− 𝑗

 𝜓2
𝑛d𝑧𝜓−2

𝑛 d𝑧 + 𝐶 (2)
𝑝

 𝜓2
𝑛d𝑧 = −1

2

𝑝−1∑︁
𝑗=1

𝑠
𝑗 , 𝑝− 𝑗
𝑛,𝑛 . (3.1.33)

Because unperturbed eigenstates 𝜓𝑛 are normalized, it means that the second term on the left-hand side
simply evaluates to 2𝐶 (2)

𝑝 . This allows us to solve for the second coefficient and hence

𝐶
(2)
𝑝 = Re

∫ ∞

0

∬ 
𝑝∑︁
𝑗=1

𝐸̃𝑛, 𝑗 𝑓𝑝− 𝑗 − 𝐻̂1 𝑓𝑝−1

 𝜓2
𝑛d𝑧𝜓−2

𝑛 d𝑧𝜓2
𝑛d𝑧 − 1

4

𝑝−1∑︁
𝑗=1

𝑠
𝑗 , 𝑝− 𝑗
𝑛,𝑛 . (3.1.34)
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Assuming the integrals given in equations (3.1.32) and (3.1.34) can be evaluated analytically, we are now
able express the eigenstate corrections in closed form. We note that the second sum in equation (3.1.34)
vanishes for the 𝑝 = 1 case. The remaining corrections can now be found by following an algorithm similar
to the one presented in the basis expansion method:

𝐸̃𝑛,1 ⇒ 𝐶
(2)
1 ⇒ 𝑓1 ⇒ 𝜓̃𝑛,1 ⇒ 𝐸̃𝑛,2 ⇒ 𝐶

(2)
2 ⇒ 𝑓2 ⇒ . . . . (3.1.35)

As with the previous method, we now showcase the procedure for the 𝛿 = 0 ground state up to the second-
order energy correction. Here, we have 𝜓1 = 2𝑧e−𝑧 and 𝐸̃1,1 = 3E0/2. The integration constant 𝐶1,1 is then
found with (3.1.34), which gives

𝐶
(2)
1 = Re

∫ ∞

0

∬ [
3
2
E0 − E0𝑧

]
𝜓2

1d𝑧𝜓−2
1 d𝑧𝜓2

1d𝑧

=
1

16
E0

∫ ∞

0

∬
[3 − 𝑧′] 𝑧′2e−𝑧

′
d𝑧′𝑧′−2e𝑧

′
d𝑧′𝑧′2e−𝑧

′
d𝑧′

=
1

16
E0

∫ ∞

0

∫
𝑧′3e−𝑧

′ × 𝑧′−2e𝑧
′
d𝑧′𝑧′2e−𝑧

′
d𝑧′

=
1

16
E0

∫ ∞

0

∫
𝑧′d𝑧′𝑧′2e−𝑧

′
d𝑧′

=
1

32
E0

∫ ∞

0
𝑧′4e−𝑧

′
d𝑧′

=
3
4
E0, (3.1.36)

where the substitution 𝑧′ = 2𝑧 has been introduced. We can now substitute this integration constant into
equation (3.1.32), which allows us to compute the corresponding eigenstate correction as

𝜓̃1,1 = 2
∬ [

E0𝑧 −
3
2
E0

]
𝜓2

1d𝑧𝜓−2
1 d𝑧𝜓1 + 2 · 3

4
E0𝜓1

=
1
4
E0

{∬
[𝑧′ − 3] 𝜓2

1d𝑧′𝜓−2
1 d𝑧′ + 6

}
𝜓1

=
1
2

(
3 − 𝑧2

)
E0𝜓1. (3.1.37)

The field factor is also easily found in the form given in equation (3.1.37). We have now acquired the first-
order corrections and can use them to calculate the second-order correction to the energy using equation
(3.1.8), which yields

𝐸̃1,2 = H̃0,1
1,1 − 𝐸̃1,1𝑠

0,1
1,1

=
1
8
E2

0

∫ ∞

0

{
6 − 1

2
𝑧′2

}
𝑧′𝜓2

1d𝑧′ − 3
8
E2

0

∫ ∞

0

{
6 − 1

2
𝑧′2

}
𝜓2

1d𝑧′

=
1

16
E2

0

∫ ∞

0

(
6 − 1

2
𝑧′2

)
(𝑧′ − 3)𝑧′2e−𝑧

′
d𝑧′

= −3
2
E2

0. (3.1.38)

The procedure is readily repeated to higher-order corrections for the Coulomb potential. In comparison
with the basis expansion method, this is one of the clear advantages of the Dalgarno-Lewis approach.
We acquire closed-form corrections even to high perturbative order, but we also avoid dealing with the
unbound-unbound matrix elements. In particular, the next four energy corrections of the Coulomb ground
state become

𝐸̃1,3 =
27
4
E3

0, 𝐸̃1,4 = −795
16

E4
0,

𝐸̃1,5 =
3843

8
E5

0, 𝐸̃1,6 = −5583E6
0,

(3.1.39)
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and similarly, the next two eigenstate corrections become

𝜓̃1,3 =

(
− 1

48
𝑧6 − 1

12
𝑧5 − 3

16
𝑧4 − 1

2
𝑧3

1 + 𝑧
2 + 585

16

)
E3

0𝜓1,

𝜓̃1,4 =

(
1

384
𝑧8 + 1

48
𝑧7 + 31

288
𝑧6 + 11

24
𝑧5 + 39

32
𝑧4 + 57

16
𝑧3 − 243

32
𝑧2 − 23415

64

)
E4

0𝜓1.

(3.1.40)

The process of calculating these corrections is automated using the Python script attached in the appendix.
For the Kratzer-like potential, the indefinite integration required is more difficult, in particular for symbolic
integration packages within Python and Mathmatica. The eigenstate corrections are clearly closely related
to the Laguerre polynomials and hence an attempt was made to evaluate the indefinite integrals above using
the methods introduced in [Conway, 2021, Conway, 2015]. This was ultimately unsuccessful because a
fitting integral identity could not be recovered. We therefore opted for a slightly different, albeit less elegant,
approach, which involves simply constructing the corrections from equation (3.1.6) directly. We can do
this because the general form of the corrections 𝜓̃𝑛,𝑝 can be deduced from the Dalgarno-Lewis approach.
By computing a number of corrections and studying how the Dalgarno-Lewis corrections are constructed,
we find that 𝜓̃𝑛,𝑝 ∝ 𝑧1−𝛿e−𝑧/𝓃P𝑛,𝑝 (𝑧), where P𝑛,𝑝 (𝑧) is a polynomial of degree 2𝑝 + 𝑛 − 1 [Pedersen,
2024]. The Coulomb potential and Kratzer-like potential share the same general form. Once this is known,
we can substitute a general polynomial of degree 2𝑝 + 𝑛 − 1 with coefficients 𝒶𝑘 into equation (3.1.6)
and group terms in equal power of 𝑧. Equating every grouping to zero and solving for each 𝑎𝑘 gives the
solution. Although this approach in principle works for any perturbative order, we shall focus on the first-
and second-order corrections in this section. We start with the 𝑝 = 1 case of equation (3.1.6), which reads

𝐻̂0𝜓̃𝑛,1 + 𝐻̂1𝜓𝑛 − 𝐸𝑛𝜓̃𝑛,1 − 𝐸̃𝑛,1𝜓𝑛 = 0. (3.1.41)

We can now substitute the unperturbed Hamiltonian of the Kratzer-like potential as given in equation
(2.2.5), the perturbation 𝐻̂1 = E0𝑧, the unperturbed energy 𝐸𝑛 = −1/2𝓃2 and the first-order energy
correction 𝐸̃𝑛,1 = E0𝑍𝑛𝑛 into equation (3.1.41) so that(

−1
2

d2

d𝑧2 − 1
𝑧
− 𝛿(1 − 𝛿)

2𝑧2 + 1
2𝓃2

)
𝜓̃𝑛,1 + (𝑧 − 𝑍𝑛𝑛) E0𝜓𝑛 = 0. (3.1.42)

In terms of the associated Laguerre polynomials, the unperturbed eigenstates read

𝜓𝓃 = M𝑛𝑧
1−𝛿e−𝑧/𝓃𝐿 (1−2𝛿 )

𝑛−1

(
2𝑧
𝓃

)
(3.1.43)

= M𝑛𝑧
1−𝛿e−𝑧/𝓃

𝑛−1∑︁
𝑘=0

(
𝑛 − 2𝛿
𝑛 − 1 − 𝑘

)
(−1)𝑘
𝑘!

(
2𝑧
𝓃

) 𝑘
,

where M𝑛 = 21−𝛿
𝓃

𝛿−2 (𝑛)−1/2
1−2𝛿 . Because we are working with the first-order equation, we have 𝑝 = 1 and

hence P𝑛,1 (𝑧) is a polynomial of degree 𝑛 + 1. To ensure that both the normalization factor M𝑛 and field
strength E0 cancel, we choose to write

𝜓̃𝑛,1 = M𝑛E0𝑧
1−𝛿e−𝑧/𝓃P𝑛,1

(
2𝑧
𝓃

)
(3.1.44)

= M𝑛E0𝑧
1−𝛿e−𝑧/𝓃

𝑛+1∑︁
𝑘=0

𝒶𝑘

(
2𝑧
𝓃

) 𝑘
where we for convenience also have matched the argument 2𝑧/𝓃 of the Laguerre polynomial in equation
(3.1.43). Substituting both eigenstates into equation (3.1.42) then yields(

−1
2

d2

d𝑧2 − 1
𝑧
− 𝛿(1 − 𝛿)

2𝑧2 + 1
2𝓃2

)
𝑧1−𝛿e−𝑧/𝓃P𝑛,1 + (𝑧 − 𝑍𝑛𝑛) 𝑧1−𝛿e−𝑧/𝓃𝐿 (1−2𝛿 )

𝑛−1

(
2𝑧
𝓃

)
= 0. (3.1.45)
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Applying the differential operator and reducing then eventually shows that

−1
2
𝓃𝑧

d2P𝑛,1

d𝑧2 + 𝑧
dP𝑛,1

d𝑧
− (1 − 𝛿)𝓃

dP𝑛,1

d𝑧
− (𝑛 − 1)P𝑛,1 + (𝑧 − 𝑍𝑛𝑛)𝓃𝑧𝐿 (1−2𝛿 )

𝑛−1

(
2𝑧
𝓃

)
= 0. (3.1.46)

We now substitute the sum forms of P𝑛,1 and 𝐿 (1−2𝛿 )
𝑛−1 (2𝑧/𝓃) as given in equations (3.1.43) and (3.1.44)

and group terms in equal power of 𝑧. For some grouping of terms of order 𝑧𝑘 , where 𝑘 < 𝑛 + 1, we find the
recurrence relation

𝒶𝑘+1 =
𝑘 + 1 − 𝑛

(𝑘 + 1) (𝑘 + 2 − 2𝛿)𝒶𝑘 +
(−1)𝑘𝑘𝓃2

2(𝑘 + 1) (𝑘 + 2 − 2𝛿)𝑘!

(
𝓃(𝑘 − 1) (𝑘 − 2𝛿)

2(𝑛 + 1 − 𝑘) + 𝑍𝑛𝑛
) (
𝑛 − 2𝛿
𝑛 − 𝑘

)
. (3.1.47)

A general grouping of terms of order 𝑧𝑘 contains the coefficients 𝒶𝑘 , 𝒶𝑘+1, but importantly the final
grouping corresponding to 𝑘 = 𝑛 + 1 only contains 𝒶𝑛+1, which allows it to be determined immediately.
It turns out this gives 𝒶𝑛+1 = (−1)𝑛𝓃3/8Γ(𝑛). This allows every coefficient 𝒶𝑘 to be determined save
𝒶0, which is found from the first-order normalization condition 𝑠0,1

𝑛,𝑛 = 0. By substituting the 𝑘 = 0 case
into the 𝑘 = 1 case, the 𝑘 = 1 case into the 𝑘 = 2 case and so on, the coefficients become of the form
𝒶𝑘 = 𝒶0𝒶

(1)
𝑘

−𝒶
(2)
𝑘

, which in turn allows us to write the first-order normalization condition as∫ ∞

0

𝑛+1∑︁
𝑘=0

(
𝒶0𝒶

(1)
𝑘

−𝒶
(2)
𝑘

) (
2𝑧
𝓃

) 𝑘
𝑧2−2𝛿e−2𝑧/𝓃

1𝐹1

(
1 − 𝑛, 2 − 2𝛿,

2𝑧
𝓃

)
d𝑧 = 0. (3.1.48)

We now split the sum in two and interchange sums and integrals. Substituting the change of variable
𝑧′ = 2𝑧/𝓃 and applying equation (A.0.16) then allows us to express the first coefficient as

𝒶0 =

∑𝑛+1
𝑘=0 𝒶

(2)
𝑘

Γ(𝑘 + 3 − 2𝛿)2𝐹1 (1 − 𝑛, 𝑘 + 3 − 2𝛿, 2 − 2𝛿, 1)∑𝑛+1
𝑘=0 𝒶

(1)
𝑘

Γ(𝑘 + 3 − 2𝛿)2𝐹1 (1 − 𝑛, 𝑘 + 3 − 2𝛿, 2 − 2𝛿, 1)
. (3.1.49)

The 2𝐹1 functions can be removed using the identity 2𝐹1 (1 − 𝑛, 𝑏, 𝑐, 1) = (𝑐 − 𝑏)𝑛−1/(𝑐)𝑛−1. This gives
every coefficient and allows perturbative eigenstate corrections to be determined. Using this method, we
find the first-order eigenstate correction and second-order energy correction

𝜓̃1,1 =
1
4
(1 − 𝛿)

(
(1 − 𝛿)2 (2 − 𝛿) (3 − 2𝛿) − 2𝑧2

)
𝜓𝑛E0,

𝐸̃1,2 = −1
4
(1 − 𝛿)4 (2 − 𝛿) (3 − 2𝛿)E2

0,

(3.1.50)

which correctly reduce to the Coulomb cases when 𝛿 = 0. This generalizes to higher order, but requires
the previous corrections. Finding the P𝑛,2 polynomial, which is a polynomial of degree 𝑛 + 3, for instance
requires substituting both 𝜓𝑛, 𝜓̃𝑛,1 into the 𝑝 = 2 case of equation (3.1.6) and following a similar procedure.
We have now computed the energy and eigenstate corrections for both methods. Before we apply these
results, we first generalize the energy correction results and relate them to electrostatic polarizability.

3.2 Electrostatic Energy Corrections & Polarizability

We have at this point determined the corrections to the energy and eigenstate using both the Basis Expansion
Method and the Dalgarno-Lewis approach. We now aim to generalize the energy correction results provided
by the Dalgarno-Lewis approach and relate them to the electrostatic polarizabilities, which will prove useful
later. We begin by examining the energy corrections, focusing on terms up to fourth order. It turns out
that expressions for each energy correction can be found for a general 𝑛. This is a consequence of the
general form of the eigenstate corrections found from the Dalgarno-Lewis approach and how the higher-
order energy corrections are calculated using equation (3.1.8). We know that the eigenstate corrections take
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the form 𝜓̃𝑛,𝑝 ∝ 𝑧1−𝛿e−𝑧/𝓃P𝑛,𝑝 (𝑧) and that the energy corrections are found by integrating products of
these corrections over the positive real axis. Using the substitution 𝑧′ = 2𝑧/𝓃, it becomes clear that 𝐸̃𝑛,𝑝

becomes a polynomial in 𝑛. This is a feature that we can exploit. Before doing so, we, for the sake of
reducing calculations, simplify the energy correction formulas generated by equation (3.1.8). By employing
the normalization conditions provided by equation (3.1.10) and generalizing equation (3.1.7), it turns out
that we can express higher-order energy corrections exclusively in terms of lower-order eigenstates. In
particular, instead of multiplying equation (3.1.6) through by the unperturbed eigenstate 𝜓𝑛 and integrating
over R≥0, we multiply through by 𝜓̃𝑛,𝑞 for some 𝑞 ∈ Z≥0 and integrate. The resulting equation then reads

H𝑞,𝑝
𝑛,𝑛 + H̃𝑞,𝑝−1

𝑛,𝑛 −
𝑝∑︁
𝑗=0

𝐸̃𝑛, 𝑗 𝑠
𝑞,𝑝− 𝑗
𝑛,𝑛 = 0. (3.2.1)

By combining equation (3.2.1) for various parameters 𝑞, 𝑝 and applying conjugation, we can construct a
number of useful identities. We already have the zeroth- and first-order energy corrections for general 𝑛.
Starting with the second-order energy correction then, the 𝑝 = 1 case of equation (3.1.10) provides the
normalization condition 𝑠0,1

𝑛,𝑛 = 0. In turn, the 𝑝 = 2 case of equation (3.1.8) yields

𝐸̃𝑛,2 = H̃0,1
𝑛,𝑛 − 𝐸̃𝑛,1𝑠

0,1
𝑛,𝑛

= ⟨𝜓𝑛 |𝑧 | 𝜓̃𝑛,1⟩E0. (3.2.2)

We now move onto the third-order energy. We now employ the 𝑝 = 2 case of equation (3.1.10), which reads
2Re𝑠0,2

𝑛,𝑛 + 𝑠1,1
𝑛,𝑛 = 0. The 𝑝 = 3 case of equation (3.1.8) then yields

𝐸̃𝑛,3 = H̃0,2
𝑛,𝑛 − 𝐸̃𝑛,1𝑠

0,2
𝑛,𝑛 − 𝐸̃𝑛,2𝑠

0,1
𝑛,𝑛

= ⟨𝜓𝑛 |𝑧 | 𝜓̃𝑛,2⟩E0 +
1
2
𝑍𝑛𝑛⟨𝜓̃𝑛,1 |𝜓̃𝑛,1⟩E0, (3.2.3)

where we again have applied the normalization condition 𝑠0,1
𝑛,𝑛 = 0 and substituted the first-order energy

correction 𝐸̃𝑛,1 = 𝑍𝑛𝑛E0. To reduce further, we consider the (𝑞, 𝑝) = (2, 1) case and conjugate of the
(𝑞, 𝑝) = (1, 2) case of equation (3.2.1), which read

H2,1
𝑛,𝑛 + H̃2,0

𝑛,𝑛 − 𝐸𝑛𝑠
2,1
𝑛,𝑛 − 𝐸̃𝑛,1𝑠

2,0
𝑛,𝑛 = 0, (3.2.4)

H2,1
𝑛,𝑛 + H̃1,1

𝑛,𝑛 − 𝐸𝑛𝑠
2,1
𝑛,𝑛 − 𝐸̃𝑛,1𝑠

1,1
𝑛,𝑛 − 𝐸̃𝑛,2𝑠

0,1
𝑛,𝑛 = 0. (3.2.5)

Subtracting equation (3.2.5) from equation (3.2.4) and reducing then yields

H̃2,0
𝑛,𝑛 − H̃1,1

𝑛,𝑛 + 𝐸̃𝑛,1𝑠
1,1
𝑛,𝑛 − 𝐸̃𝑛,1𝑠

2,0
𝑛,𝑛 = 0, (3.2.6)

where we again have applied 𝑠
0,1
𝑛,𝑛 = 0. By substituting the second-order normalization condition into

equation (3.2.6) along with the first-order energy correction 𝐸̃𝑛,1 = 𝑍𝑛𝑛E0, one eventually finds that

⟨𝜓𝑛 |𝑧 | 𝜓̃𝑛,2⟩ =
1
2
⟨𝜓̃𝑛,1 |2𝑧 − 3𝑍𝑛𝑛 | 𝜓̃𝑛,1⟩. (3.2.7)

Substituting this relation back into equation (3.2.3) then yields

𝐸̃𝑛,3 = ⟨𝜓̃𝑛,1 |𝑧 − 𝑍𝑛𝑛 | 𝜓̃𝑛,1⟩E0, (3.2.8)

which only requires first-order information to compute. Finally, we turn to the fourth-order energy correction.
Here, we require the (𝑞, 𝑝) = (0, 4), (𝑞, 𝑝) = (1, 3) and (𝑞, 𝑝) = (3, 1) cases of equation (3.2.1), which take
the forms

H0,4
𝑛,𝑛 + H̃0,3

𝑛,𝑛 − 𝐸𝑛𝑠
0,4
𝑛,𝑛 − 𝐸̃𝑛,1𝑠

0,3
𝑛,𝑛 − 𝐸̃𝑛,2𝑠

0,2
𝑛,𝑛 − 𝐸̃𝑛,3𝑠

0,1
𝑛,𝑛 − 𝐸̃𝑛,4𝑠

0,0
𝑛,𝑛 = 0, (3.2.9)

H1,3
𝑛,𝑛 + H̃1,2

𝑛,𝑛 − 𝐸𝑛𝑠
1,3
𝑛,𝑛 − 𝐸̃𝑛,1𝑠

1,2
𝑛,𝑛 − 𝐸̃𝑛,2𝑠

1,1
𝑛,𝑛 − 𝐸̃𝑛,3𝑠

1,0
𝑛,𝑛 = 0, (3.2.10)

H3,1
𝑛,𝑛 + H̃3,0

𝑛,𝑛 − 𝐸𝑛𝑠
3,1
𝑛,𝑛 − 𝐸̃𝑛,1𝑠

3,0
𝑛,𝑛 = 0. (3.2.11)
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We now subtract the conjugate of equation (3.2.11) from equation (3.2.10), which in turn yields

H̃1,2
𝑛,𝑛 − H̃0,3

𝑛,𝑛 + 𝐸̃𝑛,1𝑠
0,3
𝑛,𝑛 − 𝐸̃𝑛,1𝑠

1,2
𝑛,𝑛 − 𝐸̃𝑛,2𝑠

1,1
𝑛,𝑛 = 0, (3.2.12)

where we have used 𝑠0,1
𝑛,𝑛 = 0 once more. We now recall that H0, 𝑝

𝑛,𝑛 = 𝐸𝑛𝑠
0, 𝑝
𝑛,𝑛 because 𝐻̂0 is Hermitian.

Therefore, adding equations (3.2.9) and (3.2.12) reduces to

H̃1,2
𝑛,𝑛 − 𝐸̃𝑛,1𝑠

1,2
𝑛,𝑛 − 𝐸̃𝑛,2𝑠

1,1
𝑛,𝑛 − 𝐸̃𝑛,2𝑠

0,2
𝑛,𝑛 − 𝐸̃𝑛,4 = 0, (3.2.13)

where we have used 𝑠0,0
𝑛,𝑛 = 1 and 𝑠0,1

𝑛,𝑛 = 0. Finally, applying the normalization condition 2Re𝑠0,2
𝑛,𝑛 + 𝑠1,1

𝑛,𝑛 = 0,
the first-order energy correction 𝐸̃𝑛,1 = 𝑍𝑛𝑛E0 and solving for the fourth-order energy correction, we find

𝐸̃𝑛,4 = ⟨𝜓̃𝑛,1 |𝑧 − 𝑍𝑛𝑛 | 𝜓̃𝑛,2⟩E0 −
1
2
𝐸̃𝑛,2⟨𝜓̃𝑛,1 |𝜓̃𝑛,1⟩, (3.2.14)

which only requires second-order information. We may now proceed and compute the energy corrections
using equations (3.2.2), (3.2.8) and (3.2.14) for the Kratzer-like potential by applying the methods described
in the previous section. The second-order energy correction for the first six states becomes

𝐸̃1,2 = −1
4
(1 − 𝛿)2 (2𝛿4 − 11𝛿3 + 22𝛿2 − 19𝛿 + 6)E2

0

𝐸̃2,2 = −1
4
(2 − 𝛿)2 (2𝛿4 − 25𝛿3 + 85𝛿2 − 122𝛿 + 66)E2

0,

𝐸̃3,2 = −1
4
(3 − 𝛿)2 (2𝛿4 − 39𝛿3 + 190𝛿2 − 393𝛿 + 306)E2

0,

𝐸̃4,2 = −1
4
(4 − 𝛿)2 (2𝛿4 − 53𝛿3 + 337𝛿2 − 916𝛿 + 936)E2

0,

𝐸̃5,2 = −1
4
(5 − 𝛿)2 (2𝛿4 − 67𝛿3 + 526𝛿2 − 1775𝛿 + 2250)E2

0,

𝐸̃6,2 = −1
4
(6 − 𝛿)2 (2𝛿4 − 81𝛿3 + 757𝛿2 − 3054𝛿 + 4626)E2

0.

(3.2.15)

We may now exploit the fact that the energy corrections are polynomials in the principle quantum number.
It is clear from the expressions in equation (3.2.15) that the second-order energy for a general 𝑛 takes the
form

𝐸̃𝑛,2 = −1
4
𝓃

2
(
𝑎
(4)
𝑛 𝛿4 − 𝑎 (3)𝑛 𝛿3 + 𝑎 (2)𝑛 𝛿2 − 𝑎 (1)𝑛 𝛿 + 𝑎 (0)𝑛

)
E2

0, (3.2.16)

where {𝑎 (𝑘 )𝑛 } are some coefficients. Because 𝐸̃𝑛,2 is a polynomial in 𝑛, then the sequences {𝑎 (𝑘 )𝑛 }𝑛≥1 for
0 ≤ 𝑘 ≤ 4 are polynomial sequences. This means that a general expression for each sequence can be
determined using Newton-Gregory forward interpolation, see [Burden et al., 2015], which allows us to
construct the unique polynomial generating the sequences {𝑎 (𝑘 )𝑛 }. To this end, we define the 𝑘 ′th forward-
difference Δ

(𝑘 )
𝑛 of a sequence 𝑆 is defined Δ

(𝑘 )
𝑛 ≡ Δ

(𝑘−1)
𝑛+1 − Δ

(𝑘−1)
𝑛 for 𝑘 ≥ 1 with Δ

(0)
𝑛 = 𝑠𝑛. For some

polynomial sequence 𝑆 = {𝑠𝑛}𝑛≥1 of degree 𝑑, the Newton-Gregory forward interpolation asserts that

𝑠𝑛 =

𝑑∑︁
𝑘=0

Δ
(𝑘 )
1

(
𝑛 − 1
𝑘

)
. (3.2.17)

The degree of the polynomials sequence is not known beforehand, so in this case we simply sum to the
smallest 𝑑 for which Δ

(𝑑)
1 = 0. As an example, we apply the algorithm to the 𝑎 (3)𝑛 coefficient for the

second-order energy. Here, we identify Δ
(0)
1 = 11, Δ(1)

1 = 14 and Δ
(2)
1 = 0. This gives

𝑎
(3)
𝑛 =

1∑︁
𝑘=0

Δ
(𝑘 )
1

(
𝑛 − 1
𝑘

)
= 14𝑛 − 3, (3.2.18)
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which correctly reproduces the listed coefficients. Repeating the procedure for the other coefficients gives
𝑎
(2)
𝑛 = 21𝑛2 + 1, 𝑎 (1)𝑛 = 14𝑛3 + 5𝑛 and 𝑎 (0)𝑛 = 7𝑛4/2 + 5𝑛2/2. Clearly, 𝑎 (4)𝑛 = 2. Substituting the coefficients

back into equation (3.2.16) and reducing then yields

𝐸̃𝑛,2 = −1
4
𝓃

2
(
2𝛿4 − (14𝑛 − 3)𝛿3 + (21𝑛2 + 1)𝛿2 − (14𝑛3 + 5𝑛)𝛿 + 7

2
𝑛4 + 5

2
𝑛2

)
E2

0

= −1
8
𝓃

2
(
7𝓃4 + 5𝓃2 − 3𝛿2 (1 − 𝛿)2

)
E2

0, (3.2.19)

which gives the general formula for the second-order energy. It reduces to 𝐸̃𝑛,2 = −(7𝑛6 + 5𝑛4)E2
0/8 in the

𝛿 = 0 case. We now repeat the procedure for the third-order and fourth-order energy corrections. We start
by computing the first few corrections. The third-order and fourth-order corrections of the ground state are

𝐸̃𝑛,3 =
1

16
(1 − 𝛿)4 (16𝛿6 − 140𝛿5 + 498𝛿4 − 922𝛿3 + 938𝛿2 − 498𝛿 + 108

)
E3

0, (3.2.20)

𝐸̃𝑛,4 =
1

64
(1 − 𝛿)6 (192𝛿8 − 2340𝛿7 + 12226𝛿6 − 35754𝛿5 + 64016𝛿4 − 71896𝛿3 (3.2.21)

+ 49506𝛿2 − 19130𝛿 + 3180
)
E4

0.

By computing higher-order terms, we find the general pattern

𝐸̃𝑛,3 =
1

16
𝓃

4
(
𝑎
(6)
𝑛 𝛿6 − 𝑎 (5)𝑛 𝛿5 + 𝑎 (4)𝑛 𝛿4 − 𝑎 (3)𝑛 𝛿3 + 𝑎 (2)𝑛 𝛿2 − 𝑎 (1)𝑛 𝛿 + 𝑎 (0)𝑛

)
E3

0 (3.2.22)

𝐸̃𝑛,4 = − 1
64

𝓃
6
(
𝑎
(8)
𝑛 𝛿8 − 𝑎 (7)𝑛 𝛿7 + 𝑎 (6)𝑛 𝛿6 − 𝑎 (5)𝑛 𝛿5 + 𝑎 (4)𝑛 𝛿4 − 𝑎 (3)𝑛 𝛿3 + 𝑎 (2)𝑛 𝛿2 − 𝑎 (1)𝑛 𝛿 + 𝑎 (0)𝑛

)
E4

0 (3.2.23)

Applying equation (3.2.17) to each set of coefficients and substituting them back into equations (3.2.22) and
(3.2.23), we eventually find

𝐸̃𝑛,3 =
1

16
𝓃

4
(
33𝓃6 + 75𝓃4 − 7𝓃2𝛿2 (1 − 𝛿)2 + 10𝛿3 (1 − 𝛿)3

)
E3

0, (3.2.24)

𝐸̃𝑛,4 = − 1
64

𝓃
6
(
465𝓃8 + 2275𝓃6 + 440𝓃4 − 99𝓃4𝛿2 (1 − 𝛿)2 − 90𝓃2𝛿2 (1 − 𝛿)2 (3.2.25)

× (𝛿2 − 𝛿 + 2) − 84𝛿4 (1 − 𝛿)4
)
E4

0,

which reduces to 𝐸̃𝑛,3 = (33𝑛10 + 75𝑛8)E3
0/16 and 𝐸̃𝑛,4 = −(465𝑛14 + 2275𝑛12 + 440𝑛10)E4

0/64 in the
case of the Coulomb potential. The 𝛿 = 0 case of these corrections agree with the findings of [Pedersen,
2024]. The procedure can be continued for higher-order corrections, although the presented method quickly
becomes computationally expensive. Higher-order terms will not be needed for our analysis later on, so we
move forward from here. We now aim to calculate the polarizability of the qubit electron system. When
the qubit electron is perturbed by an external electric field, the wave function is distorted accordingly and
a dipole moment p is induced. The strength of this response is quantified by the electric polarizability 𝛼,
which is a measure for how strongly an atom or molecule reacts to an externally applied electric field. In
general, the system’s response to an external electric field can exhibit complex behaviour. For weaker field
strengths, the response remains predominantly linear; however, as the field strength increases sufficiently,
non-linear effects inevitably show and become important. By decomposing the system’s full response into
zeroth-, first-, second-order terms, and so on - similar to our approach with the perturbed eigenstates - we
can associate a polarizability with each order. This enables us to characterize each component of the full
response, such as the linear or quadratic terms, which may be of particular interest. To derive an expression
for the polarizability, we start with the dipole moment p = −𝑒𝑧ẑ. When treating the dipole moment quantum
mechanically, we instead use the expectation value of the coordinate 𝑧, which corresponds to the diagonal
matrix elements 𝑍𝑛𝑛. In atomic units therefore, the dipole moment of the perturbed electron qubit system
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in state 𝑛 reads

p̃𝑛 = −⟨𝜓̃𝑛 |𝑧 | 𝜓̃𝑛⟩ẑ. (3.2.26)

As a means to extract the polarizability associated with each order of the perturbation, we now apply
the same approach used in the start of this chapter to derive the corrections to the eigenstates due to the
perturbation. In particular, we substitute the perturbative expansion of the eigenstates given in equation
(3.1.3) into the dipole moment expression above, which in turn gives

p̃𝑛 = −⟨𝜓̃𝑛,0 + 𝜓̃𝑛,1 + 𝜓̃𝑛,2 + . . . |𝑧 | 𝜓̃𝑛,0 + 𝜓̃𝑛,1 + 𝜓̃𝑛,2 + . . . ⟩ẑ

= −⟨𝜓̃𝑛,0 |𝑧 | 𝜓̃𝑛,0⟩ẑ −
(
⟨𝜓̃𝑛,0 |𝑧 | 𝜓̃𝑛,1⟩ + ⟨𝜓̃𝑛,1 |𝑧 | 𝜓̃𝑛,0⟩

)
ẑ − . . .

= −p̃𝑛,0 − p̃𝑛,1 − p̃𝑛,2 − . . . , (3.2.27)

where we have gathered terms of equal order and defined the 𝑝′th correction to the dipole moment as

p̃𝑛,𝑝 = −
𝑝∑︁
𝑗=0

⟨𝜓̃𝑛, 𝑗 |𝑧 | 𝜓̃𝑛,𝑝− 𝑗⟩ẑ. (3.2.28)

To extract the polarizability from the dipole moment, we must first consider the polarization P̃𝑛 = 𝒩p̃𝑛,
where 𝒩 is the number density. The polarization is traditionally expressed as a power series expansion in
the applied electric field E, which in this case and for regular units reads

P̃𝑛 =

∞∑︁
𝑗=0
𝜀0 𝜒̃𝑛, 𝑗E

𝑗

0 ẑ, (3.2.29)

where 𝜀0 is the vacuum permitivity and 𝜒̃𝑛,𝑝 is the 𝑝′th order electric susceptibility. We now substitute
the polarization P̃𝑛 = 𝒩p̃𝑛 along with the dipole moment expansion given in equation (3.2.27) into the
left-hand side of equation (3.2.29). Dividing the resulting expression through by the number density 𝒩

then yields

∞∑︁
𝑗=0

p̃𝑛, 𝑗 =

∞∑︁
𝑗=0
𝜀0𝒩

−1 𝜒̃𝑛, 𝑗E
𝑗

0 ẑ

=

∞∑︁
𝑗=0
𝛼̃𝑛,0E

𝑗

0 ẑ, (3.2.30)

where we have defined the 𝑝′th order polarizability 𝛼̃𝑛,𝑝 = 𝜀0𝒩
−1 𝜒̃𝑛,𝑝 , which is associated with state 𝑛.

By realizing that |p̃𝑛,𝑝 | ∝ E
𝑝

0 , we may group terms of equal powers in the electric field and hence extract
the polarizability for every order. Returning to atomic units, we find

𝛼̃𝑛,𝑝E
𝑝

0 = −
𝑝∑︁
𝑗=0

⟨𝜓̃𝑛, 𝑗 |𝑧 | 𝜓̃𝑛,𝑝− 𝑗⟩. (3.2.31)

The zeroth-order response 𝛼̃𝑛,0 is called the permanent dipole moment and is relatively easily calculated
using the matrix elements of the unperturbed eigenstates, 𝑍𝑛𝑛. For the quantum defect atom, the diagonal
matrix elements are given by equation (2.2.21) and hence the permanent dipole moments becomes

𝛼̃𝑛,0 = −⟨𝜓̃𝑛,0 |𝑧 | 𝜓̃𝑛,0⟩

= −𝑍𝑛𝑛

= −1
2

(
3𝓃2 + 𝛿 − 𝛿2

)
, (3.2.32)
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which reduces to 𝛼̃𝑛,0 = −3𝑛2/2 for the Coulomb potential. We note that 𝛼̃𝑛,0E0 = −𝐸̃𝑛,1. In the ground
state and first excited state of the Coulomb potential therefore, we have 𝛼̃1,0 = −3/2 and 𝛼̃2,0 = −6. The
next order term 𝛼̃𝑛,1 is the so-called electric polarizability and corresponds to the linear response due to
the applied field. In atomic units, the polarizability is measured in Ha/E2

0, which in the case of Helium and
Neon yields 43.97 meV𝜇m/V2 and 0.186 meV𝜇m/V2. Using equation (3.2.31) for the 𝑝 = 1 case, we find

𝛼̃𝑛,1E0 = −⟨𝜓̃𝑛,0 |𝑧 | 𝜓̃𝑛,1⟩ − ⟨𝜓̃𝑛,1 |𝑧 | 𝜓̃𝑛,0⟩

= −2Re⟨𝜓̃𝑛,0 |𝑧 | 𝜓̃𝑛,1⟩. (3.2.33)

Comparing with equation (3.2.2), we find 𝛼̃𝑛,1E2
0 = −2𝐸̃𝑛,2. It is then clear that, for a general 𝑛, we have

𝛼̃𝑛,1 =
1
4
𝓃

2
(
7𝓃4 + 5𝓃2 − 3𝛿2 (1 − 𝛿)2

)
. (3.2.34)

This reduces to 𝛼̃𝑛,1 =
(
7𝑛6 + 5𝑛4) /4 in the Coulomb case. In addition, by employing the basis ex-

pansion method and substituting equation (3.1.24), we see that 𝛼̃𝑛,1 = G𝑛,−2. For the ground state
and first excited state of the Coulomb potential, this evaluates to G1,−2 = 2.99999990620281 and
G2,−2 = 131.999994502542, which clearly agrees with equation (3.2.34). The final two corrections,
which we will consider in this section, are the first and second hyperpolarizabilities 𝛼̃𝑛,2 and 𝛼̃𝑛,3. Starting
with the first hyperpolarizability provided by the 𝑝 = 2 case of equation (3.2.31), we may use the identity
given in equation (3.2.7) to write

𝛼̃𝑛,2E
2
0 = −⟨𝜓𝑛 |𝑧 | 𝜓̃𝑛,2⟩ − ⟨𝜓̃𝑛,1 |𝑧 | 𝜓̃𝑛,1⟩ − ⟨𝜓̃𝑛,2 |𝑧 | 𝜓𝑛⟩

= −2Re⟨𝜓𝑛 |𝑧 | 𝜓̃𝑛,2⟩ − ⟨𝜓̃𝑛,1 |𝑧 | 𝜓̃𝑛,1⟩

= −3⟨𝜓̃𝑛,1 |𝑧 − 𝑍𝑛𝑛 | 𝜓̃𝑛,1⟩, (3.2.35)

from which we can compare with equation (3.2.8) and deduce that 𝛼̃𝑛,2E3
0 = −3𝐸̃𝑛,3. By using the 𝑝 = 3

case of equation (3.2.31), the 𝑝 = 4 case of equation (3.1.8) along with the normalization conditions, a
similar calculation shows that 𝛼̃𝑛,3E4

0 = −4𝐸̃𝑛,4. It is then clear that

𝛼̃𝑛,2 = − 3
16

𝓃
4
(
33𝓃6 + 75𝓃4 − 7𝓃2𝛿2 (1 − 𝛿)2 + 10𝛿3 (1 − 𝛿)3

)
, (3.2.36)

𝛼̃𝑛,3 =
1
16

𝓃
6
(
465𝓃8 + 2275𝓃6 + 440𝓃4 − 99𝓃4𝛿2 (1 − 𝛿)2 − 90𝓃2𝛿2 (1 − 𝛿)2 (3.2.37)

× (𝛿2 − 𝛿 + 2) − 84𝛿4 (1 − 𝛿)4
)
,

which reduces to 𝛼̃𝑛,2 = −(99𝑛10 + 225𝑛8)/16 and 𝛼̃𝑛,3 = (465𝑛14 + 2275𝑛12 + 440𝑛10)/16 in the case
of the Coulomb potential. For the ground state and first excited state of the Coulomb potential, we find
𝛼̃1,2 = −81/4, 𝛼̃2,2 = 9936, 𝛼̃1,3 = 795/4 and 𝛼̃2,3 = 1086720. Again, this may be repeated to higher order
if desired. We have now generalized the energy corrections and related them to the polarizabilities, and so
we can move forward and apply the results.

3.3 Hypergeometric Approximants

We have at this point determined the corrections to the energy and eigenstate using both the Basis Expansion
Method and the Dalgarno-Lewis approach. In addition, we have generalized the energy correction results.
We now aim to apply them by modelling how the energies of the system are Stark-shifted in response to the
external field. We do this using a numerical approach, that will be presented in the next, and an approximate
and analytical approach, that will be presented now. In section 3.1.2, we used the Dalgarno-Lewis approach
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to compute exact energy corrections, which we later generalized in section 3.2. In particular, we computed
the first few energy corrections of the Coulomb ground state explicitly, as shown in equations (3.1.38) and
(3.1.39). Substituting these corrections into the original perturbative expansion yields

𝐸̃1 = −1
2
+ 3

2
E0 −

3
2
E2

0 +
27
4
E3

0 −
795
16

E4
0 +

3843
8

E5
0 − 5583E6

0 + . . . . (3.3.1)

The expression for the perturbed energy 𝐸̃𝑛 found in equation (3.3.1) is a power series in E0. Unfortunately,
it is clear that the perturbative expansion has radius of convergence zero around its expansion point E0 = 0.
As such, the expansion given in equation (3.3.1) cannot be used as a means of calculating the Stark shift.
Despite this, we are still able to construct a sound model based on the calculated corrections. One way of
doing this is to regularize the sum by means of a hypergeometric approximant, an approach that has been
applied to a several other problems, see for instance [Pedersen, 2023], [Mera et al., 2015] and [Pedersen,
2024]. The idea is to assume that the perturbed energy can be approximated by a hypergeometric function

𝑝𝐹𝑞 . Although the procedure can be generalized to hypergeometric functions with a larger number of
parameters or even Meijer G-functions, see [Mera et al., 2018], we restrict ourselves to the hypergeometric

2𝐹1 approximant. If we write the perturbed energy as a function of the field strength, 𝐸̃𝑛 (E0), then the most
general approximant, which is linear in argument and thus matches the original perturbation, is

𝐸̃𝑛 ≈ 𝒸12𝐹1 (𝒸2,𝒸3,𝒸4,𝒸5E0) , (3.3.2)

where 𝒸1, 𝒸2, 𝒸3, 𝒸4 and 𝒸5 are a set of coefficients. A crucial benefit of the hypergeometric approximant
given in equation (3.3.2) is that it acquires a non-zero imaginary part, which in turn allows the full complex
energy eigenvalues 𝐸̃𝑛−𝑖Γ𝑛/2, see [Landau and Lifshitz, 1965], to be determined, where Γ𝑛 is the ionization
rate associated with state 𝑛. The is a consequence of the branch point of 2𝐹1 (𝒸2,𝒸3,𝒸4,𝒸5E0) lying at
E0 = 𝒸

−1
5 , which when crossed from below along the real-axis assigns the perturbed energy an imaginary

part corresponding to −𝑖Γ𝑛/2. With the hypergeometric function given in equation (3.3.2) as a starting
point, the remaining task is then to determine these coefficients as to accurately model the perturbed energy.
One way of doing this is to choose the coefficients so that the Taylor series of the approximant matches the
original perturbative expansion given in equation (3.1.3). To this end, we recall that 𝐸̃𝑛,𝑝 ∝ E

𝑝

0 . We have five
coefficients and hence we can at most match up to fourth order so that 𝐸̃𝑛 = 𝒸12𝐹1 (𝒸2,𝒸3,𝒸4,𝒸5E0)+O(E5

0).
If we expand the perturbed energy given in equation (3.3.2) in a Taylor series around the point E0 = 0 and
use the differentiation rule for the hypergeometric function given in equation (A.0.7), we find that

𝐸̃𝑛 ≈
∞∑︁
𝑘=0

d𝑘 𝐸̃𝑛

dE𝑘
0

E𝑘
0
𝑘!

= 𝒸1 + 𝒸1
𝒸2𝒸3
𝒸4

𝒸5E0 + 𝒸1
𝒸2 (𝒸2 + 1)𝒸3 (𝒸3 + 1)

2𝒸4 (𝒸4 + 1) 𝒸
2
5E

2
0 + . . . . (3.3.3)

We clearly want the approximant to return the unperturbed energy once the strength goes to zero. Looking
at equation (3.3.3), this is only possible if 𝒸1 = −1/2𝓃2 is the unperturbed energy. We now match the next
four terms by comparing with the original perturbative expansion. This gives

𝐸̃𝑛,1 = − 𝒸2𝒸3

2𝓃2𝒸4
𝒸5E0,

𝐸̃𝑛,2 = −𝒸2 (𝒸2 + 1)𝒸3 (𝒸3 + 1)
4𝓃2𝒸4 (𝒸4 + 1)

𝒸
2
5E

2
0,

𝐸̃𝑛,3 = −𝒸2 (𝒸2 + 1) (𝒸2 + 2)𝒸3 (𝒸3 + 1) (𝒸3 + 2)
12𝓃2𝒸4 (𝒸4 + 1) (𝒸4 + 2)

𝒸
3
5E

3
0,

𝐸̃𝑛,4 = −𝒸2 (𝒸2 + 1) (𝒸2 + 2) (𝒸2 + 3)𝒸3 (𝒸3 + 1) (𝒸3 + 2) (𝒸3 + 3)
48𝓃2𝒸4 (𝒸4 + 1) (𝒸4 + 2) (𝒸4 + 3)

𝒸
4
5E

4
0.

(3.3.4)
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The conditions can be simplified by substituting one into another. In particular, by substituting the first
equation into the second, second into the third and so on, we find

𝐸̃𝑛,1

𝐸𝑛

=
𝒸2𝒸3
𝒸4

𝒸5E0,

𝐸̃𝑛,2

𝐸̃𝑛,1
=

(𝒸2 + 1) (𝒸3 + 1)
2(𝒸4 + 1) 𝒸5E0,

𝐸̃𝑛,3

𝐸̃𝑛,2
=

(𝒸2 + 2) (𝒸3 + 2)
3(𝒸4 + 2) 𝒸5E0,

𝐸̃𝑛,4

𝐸̃𝑛,3
=

(𝒸2 + 3) (𝒸3 + 3)
4(𝒸4 + 3) 𝒸5E0.

(3.3.5)

All there is to do now is to substitute the energy corrections from the previous section and solve the system
of equations for each coefficient, which is easily done in Python or Mathmatica. Taking the ground state
of the Coulomb potential as an example, we see from equation (3.3.1) that 𝐸̃1,1 = 3E0/2, 𝐸̃1,2 = −3E2

0/2,
𝐸̃1,3 = 27E3

0/4 and 𝐸̃1,4 = −795E4
0/16. Substituting these corrections into equation (3.3.5) then yields

−3E0 =
𝒸2𝒸3
𝒸4

𝒸5E0,

−E0 =
(𝒸2 + 1) (𝒸3 + 1)

2(𝒸4 + 1) 𝒸5E0,

−9
2
E0 =

(𝒸2 + 2) (𝒸3 + 2)
3(𝒸4 + 2) 𝒸5E0,

−265
36

E0 =
(𝒸2 + 3) (𝒸3 + 3)

4(𝒸4 + 3) 𝒸5E0.

(3.3.6)

Solving the system of equations for each coefficient and using the ground state energy 𝐸1 = −1/2 then
shows that the corresponding hypergeometric approximant becomes

𝐸̃1 ≈ −1
2 2𝐹1

(
−1247 + 5

√
3817

2534
,−1247 − 5

√
3817

2534
,

48
29
,−1267

58
E0

)
. (3.3.7)

Testing shows that the approximant indeed does acquire an imaginary part once the critical field strength
E0 = −58/1267 is passed. This is despite the fact that the coefficients are determined exclusively from
the first five terms in the perturbative expansion, which are all real-valued. That said, this does highlight
a minor issue with the chosen approximant in that it does not accurately reproduce the imaginary part for
small field strengths. From a physical point of view, we expect tunnelling to occur whenever the electric
field points in towards the substrate, meaning E0 < 0, but this is not reproduced by the chosen approximant.
A slightly modified approximant can be chosen that alleviates this issue, see [Pedersen et al., 2016]. For the
problem at hand however, this is not strictly necessary because the critical field strength is relatively small
and decreases further with increasing 𝑛, although the issue is made worse with more strongly bound Kratzer
potentials. We can repeat the procedure for the excited states, the approximants for the first four of which
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become

𝐸̃2 ≈ −1
8 2𝐹1

(
−501539 − 5𝑖

√
76756895

946058
,
−501539 + 5𝑖

√
76756895

946058
,

11163
8009

,−1892116
8009

E0

)
, (3.3.8)

𝐸̃3 ≈ − 1
18 2𝐹1

(
−24240121 + 5𝑖

√
291559959335

45863962
,−24240121 − 5𝑖

√
291559959335

45863962
,

40032
36101

,−68795943
72202

E0

)
,

(3.3.9)

𝐸̃4 ≈ − 1
32 2𝐹1

(
−503957 + 5

√
209041297

971454
,−503957 − 5

√
209041297

971454
,

32007
35561

,−93259584
35561

E0

)
, (3.3.10)

𝐸̃5 ≈ − 1
50 2𝐹1

(
−51689 +

√
143953681

101274
,−51689 −

√
143953681

101274
,

1248
1609

,−18988875
3218

E0

)
, (3.3.11)

where we notice the rapidly increasing 𝒸5 and hence vanishing critical fields strength. This procedure of
finding hypergeometric approximants is identical for the Kratzer-like potential, although the expressions
quickly become very complicated, see for instance section E. The ground state is manageable however and
will be presented here. Using the energy correction formulas from the previous section for the ground state
of the Kratzer-like potential, we can show that perturbative expansion becomes

𝐸̃1 = − 1
2(1 − 𝛿)2 + 1

2
(1 − 𝛿) (3 − 2𝛿)E0 −

1
4
(1 − 𝛿)4 (2 − 𝛿) (3 − 2𝛿)E2

0 (3.3.12)

+ 1
8
(1 − 𝛿)7 (2 − 𝛿) (3 − 2𝛿) (9 − 4𝛿)E3

0 −
1

32
(1 − 𝛿)10 (2 − 𝛿) (3 − 2𝛿) (48𝛿2 − 225𝛿 + 265)E4

0 + . . .

We now proceed in identical fashion to the previous example. If we define

𝒸0 =
√︁

53248𝛿6 − 592384𝛿5 + 2716560𝛿4 − 6615248𝛿3 + 9148284𝛿2 − 6985900𝛿 + 2385625, (3.3.13)

it is then possible to show that the remaining coefficients can be written as

𝒸2 =
−512𝛿3 + 3604𝛿2 − 8306𝛿 + 6235 − 𝒸0

2(544𝛿3 − 3716𝛿2 + 8428𝛿 − 6335)
,

𝒸3 =
−512𝛿3 + 3604𝛿2 − 8306𝛿 + 6235 + 𝒸0

2(544𝛿3 − 3716𝛿2 + 8428𝛿 − 6335)
,

𝒸4 =
12(2𝛿2 − 13𝛿 + 20)
40𝛿2 − 156𝛿 + 145

,

𝒸5 =
(1 − 𝛿)3 (544𝛿3 − 3716𝛿2 + 8428𝛿 − 6335)

2(40𝛿2 − 156𝛿 + 145)
.

(3.3.14)

We note that the coefficients reduce to those given in equation (3.3.7) once 𝛿 = 0. With 𝛿 = 0.1 for instance,
we find that 𝒸−1

5 ≈ −0.064, which is a roughly 29% increase from the Coulomb case. This concludes the
presented analytical approach and we now move onto the numerical approach in the section.

3.4 Sturmian Basis Expansion

As a means of testing the accuracy of the hypergeomatric approximants, we compare them with a numerical
approach. The numerical method we choose to solve the problem at hand is a complex-scaling basis
expansion approach. The complex scaling method was originally extended to Stark-like problems by Herbst
and Simon, see [Herbst and Simon, 1978], and, like the hypergeometric approximants, allows us to determine
the full complex energy eigenvalues 𝐸̃𝑛 − 𝑖Γ𝑛/2. The main idea behind the complex scaling method is that
we analytically continue the perturbed problem into the complex plane. To show how this is accomplished
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in practice, we turn to the perturbed problem we are trying to solve, which for the Kratzer-like potential
reads (

−1
2

d2

d𝑧2 − 1
𝑧
− 𝛿(1 − 𝛿)

2𝑧2 + E0𝑧

)
𝜓̃𝑛 = 𝐸̃𝑛𝜓̃𝑛. (3.4.1)

The analytical continuation of this problem now involves applying the coordinate transformation 𝑧 → 𝑧e𝑖 𝜃 ,
which rotates the problem into the complex plane by an angle 𝜃, which we call the complex scaling
angle. In full generality, the coordinates may also be scaled by some real factor. Applying the coordinate
transformation to the perturbed problem then yields(

−1
2

e−2𝑖 𝜃 d2

d𝑧2 − e−𝑖 𝜃
1
𝑧
− e−2𝑖 𝜃 𝛿(1 − 𝛿)

2𝑧2 + e𝑖 𝜃E0𝑧

)
𝜓̃𝑛 = 𝐸̃𝑛𝜓̃𝑛. (3.4.2)

The full Hamiltonian of the perturbed problem is no longer Hermitian and hence the energy eigenvalues
become complex. The key result of the complex scaling method is that the newly acquired imaginary part
exactly corresponds to the ionization rate term −𝑖Γ𝑛/2. In this way, solving equation (3.4.2) numerically
then provides both the energy and ionization rate. We choose a truncated basis expansion as the numerical
approach. This involves expanding the perturbed eigenstates in terms of some appropriate basis, which we
then truncate at some finite 𝑁 . This in turn allows a generalized eigenvalue problem to be constructed and
solved. The only remaining task is then to choose a fitting basis for this task. The basis formed by the
unperturbed eigenstates are ill-suited for this purpose because part of their spectrum is continuous. This
is exemplified by the oscillator strength calculations given in section 2.1.1, which showed that the discrete
spectrum of the Coulomb potential only contributes roughly 33% to the TRK sum rule. Even the 𝛿 = −0.8
case of the quantum defect atom only has a roughly 60% contribution from the discrete spectrum. We
therefore opt for a different basis, which ideally is complete and discrete. A basis of this kind can be
constructed by returning to the unperturbed problem, whose discrete spectrum is associated with the set of
negative energy eigenvalues. The idea is to fix the energy to 𝐸 = −𝜅2/2, where the Sturmian parameter 𝜅 is
a constant, and instead scale the Coulomb part of the potential by a new eigenvalue 𝜆𝑛 such that(

−1
2

d2

d𝑧2 − 𝜆𝑛

𝑧
− 𝛿(1 − 𝛿)

2𝑧2

)
𝜑𝑛 = − 𝜅

2

2
𝜑𝑛, (3.4.3)

where 𝜑𝑛 is the 𝑛′th eigenfunction of this modified Hamiltonian operator. The problem in equation (3.4.3)
remains very reminiscent of a regular Schrödinger-type problem, save the eigenvalue-weighted potential.
The purposes of this is to tune the potential in exactly such a way that keeps the energy constant for every
eigenvalue. By choosing the energy negative, we ensure that every eigenfunction corresponds to a bound
state, which in turn keeps the complete set entirely discrete. Eigenfunctions of this kind are called Sturmian
basis functions and have been used in a variety of problems, see for instance [Susskind and Jensen, 1988].
The fact that they form a discrete and complete set makes them ideal for the proposed numerical approach.
An additional benefit is that we can solve equation (3.4.3) relatively easily given that the unperturbed
eigenstates are already known. To show this, we divide equation (3.4.3) through by 𝜆2

𝑛 and make the change
of variable 𝑧′ = 𝜆𝑛𝑧 so that (

−1
2

d2

d𝑧′2
− 1
𝑧′

− 𝛿(1 − 𝛿)
2𝑧′2

)
𝜑𝑛 = − 𝜅2

2𝜆2
𝑛

𝜑𝑛. (3.4.4)

Equation (3.4.4) exactly matches the eigenvalue problem of the quantum defect atom with energy eigenvalue
−𝜅2/2𝜆2

𝑛. We may now determine the eigenvalues 𝜆𝑛 by matching the energy eigenvalues with those of the
quantum defect problem, 𝐸𝑛 = −1/2𝓃2. This gives

− 1
2𝓃2 = − 𝜅2

2𝜆2
𝑛

⇒ 𝜆𝑛 = 𝜅𝓃. (3.4.5)
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It is then clear that the Sturmian basis functions may be expressed as 𝜑𝑛 = N ′
𝑛𝜓𝑛 (𝑧′), where 𝜓𝑛 are the

eigenstates of the quantum defect problem and N ′
𝑛 is a new normalization factor. Using the eigenstates

found in equation (2.2.13), we therefore conclude that

𝜑𝑛 =
21−𝛿 (𝑛)1/2

1−2𝛿
𝓃2−𝛿Γ(2 − 2𝛿)

N ′
𝑛𝑧

′1−𝛿e−𝑧
′/𝓃

1𝐹1

(
1 − 𝑛, 2 − 2𝛿,

2𝑧′

𝓃

)
=

21−𝛿 (𝑛)1/2
1−2𝛿

𝓃Γ(2 − 2𝛿) N
′
𝑛 (𝜅𝑧)1−𝛿e−𝜅𝑧1𝐹1 (1 − 𝑛, 2 − 2𝛿, 2𝜅𝑧) . (3.4.6)

Before we determine N ′
𝑛, we turn to deriving a particular weighted orthogonality relation, which it turns out

that the set of Sturmian basis functions satisfies. To do so, we take two copies of the Sturmian eigenvalue
problem, where the first is in state 𝑛 and the second is in state 𝑚. Next, the first is multiplied through by 𝜑★𝑚,
whilst the second is conjugated and multiplied through by 𝜑𝑛 so that

−1
2

d2𝜑𝑛

d𝑧2 𝜑★𝑚 − 𝜆𝑛

𝑧
𝜑𝑛𝜑

★
𝑚 − 𝛿(1 − 𝛿)

2𝑧2 𝜑𝑛𝜑
★
𝑚 = − 𝜅

2

2
𝜑𝑛𝜑

★
𝑚,

−1
2

d2𝜑★𝑚
d𝑧2 𝜑𝑛 −

𝜆𝑚

𝑧
𝜑★𝑚𝜑𝑛 −

𝛿(1 − 𝛿)
2𝑧2 𝜑★𝑚𝜑𝑛 = − 𝜅

2

2
𝜑★𝑚𝜑𝑛. (3.4.7)

Subtracting the latter from the former and integrating over R≥0 then yields

(𝜆𝑚 − 𝜆𝑛)
∫ ∞

0
𝜑𝑛

1
𝑧
𝜑★𝑚d𝑧 =

1
2

∫ ∞

0

d2𝜑𝑛

d𝑧2 𝜑★𝑚d𝑧 − 1
2

∫ ∞

0

d2𝜑★𝑚
d𝑧2 𝜑𝑛d𝑧. (3.4.8)

We now apply integration by parts to the two integrals on the right-hand side as a means of lowering the
order of differentiation by one. This gives

(𝜆𝑚 − 𝜆𝑛)
∫ ∞

0
𝜑𝑛

1
𝑧
𝜑★𝑚d𝑧 =

1
2

( [
d𝜑𝑛
d𝑧

𝜑★𝑚

]∞
0
−

∫ ∞

0

d𝜑𝑛
d𝑧

d𝜑★𝑚
d𝑧

d𝑧
)
− 1

2

( [
d𝜑★𝑚
d𝑧

𝜑𝑛

]∞
0
−

∫ ∞

0

d𝜑★𝑚
d𝑧

d𝜑𝑛
d𝑧

d𝑧
)

=

[
d𝜑𝑛
d𝑧

𝜑★𝑚 − d𝜑★𝑚
d𝑧

𝜑𝑛

]∞
0
−

∫ ∞

0

(
d𝜑★𝑚
d𝑧

d𝜑𝑛
d𝑧

− d𝜑𝑛
d𝑧

d𝜑★𝑚
d𝑧

)
d𝑧

=

[
d𝜑𝑛
d𝑧

𝜑★𝑚 − d𝜑★𝑚
d𝑧

𝜑𝑛

]∞
0
. (3.4.9)

Like the quantum defect atom eigenstates, the Sturmian basis satisfies Dirichlet boundary conditions and
is square-integrable on R≥0, which in turn ensures that both the lower and upper bound of the term on the
right-hand side of equation (3.4.9) vanishes. This leaves the orthogonality relation

(𝜆𝑚 − 𝜆𝑛)
∫ ∞

0
𝜑★𝑚

1
𝑧
𝜑𝑛d𝑧 = 0, (3.4.10)

which in turn means that the Sturmian basis functions are orthogonal with weight 1/𝑧. It proves convenient
to choose the normalization constant N ′

𝑛 so that equation (3.4.10) becomes an orthonormality condition,
meaning

〈
𝜑𝑚

��𝑧−1
�� 𝜑𝑛〉 = 𝛿𝑚𝑛. The 𝑚 = 𝑛 case of this condition becomes

(2𝜅)2−2𝛿 (𝑛)1−2𝛿

𝓃2Γ2 (2 − 2𝛿)
N ′2

𝑛

∫ ∞

0
𝑧1−2𝛿e−2𝜅𝑧 [1𝐹1 (1 − 𝑛, 2 − 2𝛿, 2𝜅𝑧) d𝑧]2 = 1. (3.4.11)

This integral is another example of the W. Gordon integral given in equation (A.0.15). Substituting the
resulting expression and solving for the normalization constant then yields

N ′
𝑛 =

{
(2𝜅)2−2𝛿 (𝑛)1−2𝛿

𝓃2Γ2 (2 − 2𝛿)
Γ(2 − 2𝛿) (𝑛 − 1)!

(2𝜅)2−2𝛿 (2 − 2𝛿)𝑛−1
3𝐹2 (1 − 𝑛, 0, 1, 2 − 2𝛿, 1, 1)

}−1/2

=

{
(2𝜅)2−2𝛿 (𝑛)1−2𝛿

𝓃2Γ2 (2 − 2𝛿)
Γ2 (2 − 2𝛿)

(2𝜅)2−2𝛿 (𝑛)1−2𝛿

}−1/2

= 𝓃. (3.4.12)
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Finally, using the normalization constant given in equation (3.4.12), the full Sturmian basis functions may
be written as

𝜑𝑛 =
21−𝛿 (𝑛)1/2

1−2𝛿
𝓃Γ(2 − 2𝛿) 𝓃(𝜅𝑧)1−𝛿e−𝜅𝑧1𝐹1 (1 − 𝑛, 2 − 2𝛿, 2𝜅𝑧)

=
21−𝛿 (𝑛)1/2

1−2𝛿
Γ(2 − 2𝛿) (𝜅𝑧)1−𝛿e−𝜅𝑧 × Γ(𝑛)

(2 − 2𝛿)𝑛−1
𝐿
(1−2𝛿 )
𝑛−1 (2𝜅𝑧)

= (𝑛)−1/2
1−2𝛿 (2𝜅𝑧)

1−𝛿e−𝜅𝑧𝐿 (1−2𝛿 )
𝑛−1 (2𝜅𝑧), (3.4.13)

where we for later convenience have used equation (A.0.6) to convert the hypergeometric function into an
associated Laguerre polynomial. Now that we have determined the Sturmian basis functions, we turn to
developing the chosen numerical method further by returning to equation (3.4.2). We proceed by writing
the perturbed eigenstate in terms of an expansion of the Sturmian basis, meaning 𝜓̃𝑛 =

∑∞
𝑘=1 𝑐𝑛,𝑘𝜑𝑘 , where

𝑐𝑛,𝑘 are some expansion coefficients. Substituting in the expansion then yields(
−1

2
e−2𝑖 𝜃 d2

d𝑧2 − e−𝑖 𝜃
1
𝑧
− e−2𝑖 𝜃 𝛿(1 − 𝛿)

2𝑧2 + e𝑖 𝜃E0𝑧

) ∞∑︁
𝑘=1

𝑐𝑛,𝑘𝜑𝑘 = 𝐸̃𝑛

∞∑︁
𝑘=1

𝑐𝑛,𝑘𝜑𝑘 . (3.4.14)

Before proceeding, we return to the Sturmian eigenvalue problem given in equation (3.4.3), which can be
rearranged as

−1
2

d2𝜑𝑛

d𝑧2 =
𝜆𝑛

𝑧
𝜑𝑛 +

𝛿(1 − 𝛿)
2𝑧2 𝜑𝑛 −

𝜅2

2
𝜑𝑛. (3.4.15)

We can now use equation (3.4.15) to eliminate the kinetic energy operator from the rotated problem in
equation (3.4.14), which simply leaves potential and energy terms. This property of the Sturmian basis
functions is crucial because it often allows the perturbed energy to be determined accurately with very small
basis sets [Antonsen, 1999]. Substituting into the above expression with 𝜆𝑛 = 𝜅𝓃 and reducing the resulting
expression then leaves

∞∑︁
𝑘=1

{
𝜅(𝑘 − 𝛿)e−2𝑖 𝜃 1

𝑧
+ e𝑖 𝜃E0𝑧 −

1
2
𝜅2e−2𝑖 𝜃 − e−𝑖 𝜃

1
𝑧

}
𝑐𝑛,𝑘𝜑𝑘 = 𝐸̃𝑛

∞∑︁
𝑘=1

𝑐𝑛,𝑘𝜑𝑘 . (3.4.16)

We ultimately want to use equation (3.4.16) to construct a matrix equation. We accomplish this by first
multiplying the equation through by 𝜑★𝑚, integrating over R≥0 and truncating the summation to some finite
𝑁 . Using the orthonormality condition given in equation (3.4.10), we find

𝑁∑︁
𝑘=1

𝐻𝑘,𝑚𝑐𝑛,𝑘 ≈ 𝐸̃𝑛

𝑁∑︁
𝑘=1

𝐾𝑘,𝑚𝑐𝑛,𝑘 , (3.4.17)

where we have defined 𝐾𝑘,𝑚 = ⟨𝜑𝑚 |𝜑𝑘⟩ and

𝐻𝑘,𝑚 = 𝜅(𝑘 − 𝛿)e−2𝑖 𝜃𝛿𝑘𝑚 + e𝑖 𝜃E0 ⟨𝜑𝑚 |𝑧 | 𝜑𝑘⟩ −
1
2
𝜅2e−2𝑖 𝜃 ⟨𝜑𝑚 |𝜑𝑘⟩ − e−𝑖 𝜃𝛿𝑘𝑚. (3.4.18)

Before finalizing, we need only determine the two integrals ⟨𝜑𝑚 |𝜑𝑘⟩ and ⟨𝜑𝑚 |𝑧 | 𝜑𝑘⟩. Starting with ⟨𝜑𝑚 |𝜑𝑘⟩,
the initial calculation gives

⟨𝜑𝑚 |𝜑𝑘⟩ =
1

(𝑚)1/2
1−2𝛿 (𝑘)

1/2
1−2𝛿

∫ ∞

0
(2𝜅𝑧)2−2𝛿e−2𝜅𝑧𝐿

(1−2𝛿 )
𝑚−1 (2𝜅𝑧)𝐿 (1−2𝛿 )

𝑘−1 (2𝜅𝑧)d𝑧

=
1

2𝜅(𝑚)1/2
1−2𝛿 (𝑘)

1/2
1−2𝛿

∫ ∞

0
𝑧′2−2𝛿e−𝑧

′
𝐿
(1−2𝛿 )
𝑚−1 (𝑧′)𝐿 (1−2𝛿 )

𝑘−1 (𝑧′)d𝑧′, (3.4.19)
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where we have applied the change of variable 𝑧′ = 2𝜅𝑧. We can evaluate the integral in equation (3.4.19) by
first applying the functional identity given in equation (A.0.5), which for the 𝐿 (1−2𝛿 )

𝑚−1 polynomial becomes

𝑧′𝐿 (1−2𝛿 )
𝑚−1 (𝑧′) = 2𝓂𝐿

(1−2𝛿 )
𝑚−1 (𝑧′) − 𝑚𝐿 (1−2𝛿 )

𝑚 (𝑧′) − (𝑚 − 2𝛿)𝐿 (1−2𝛿 )
𝑚−2 (𝑧′). (3.4.20)

Substituting this into the above integral then yields

⟨𝜑𝑚 |𝜑𝑘⟩ =
1

2𝜅(𝑚)1/2
1−2𝛿 (𝑘)

1/2
1−2𝛿

{
2𝓂

∫ ∞

0
𝑧′1−2𝛿e−𝑧

′
𝐿
(1−2𝛿 )
𝑚−1 (𝑧′)𝐿 (1−2𝛿 )

𝑘−1 (𝑧′)d𝑧′ (3.4.21)

− 𝑚
∫ ∞

0
𝑧′1−2𝛿e−𝑧

′
𝐿
(1−2𝛿 )
𝑚 (𝑧′)𝐿 (1−2𝛿 )

𝑘−1 (𝑧′)d𝑧′ − (𝑚 − 2𝛿)
∫ ∞

0
𝑧′1−2𝛿e−𝑧

′
𝐿
(1−2𝛿 )
𝑚−2 (𝑧′)𝐿 (1−2𝛿 )

𝑘−1 (𝑧′)d𝑧′.

One may now apply the orthogonality relation of the Laguerre polynomials given in equation (A.0.4). This
reduces equation (3.4.21) to

⟨𝜑𝑚 |𝜑𝑘⟩ =
1

2𝜅(𝑚)1/2
1−2𝛿 (𝑘)

1/2
1−2𝛿

{
2𝓂(𝑘)1−2𝛿𝛿𝑘,𝑚 − 𝑚(𝑘)1−2𝛿𝛿𝑘−1,𝑚 − (𝑚 − 2𝛿) (𝑘)1−2𝛿𝛿𝑘,𝑚−1

}
=

(𝑘)1/2
1−2𝛿

2𝜅(𝑚)1/2
1−2𝛿

{
2𝓂𝛿𝑘,𝑚 − 𝑚𝛿𝑘−1,𝑚 − (𝑚 − 2𝛿)𝛿𝑘,𝑚−1

}
, (3.4.22)

which gives the first integral. A similar approach can be used to compute the second integral ⟨𝜑𝑚 |𝑧 | 𝜑𝑘⟩,
which initially becomes

⟨𝜑𝑚 |𝑧 | 𝜑𝑘⟩ =
(2𝜅)2−2𝛿

(𝑚)1/2
1−2𝛿 (𝑘)

1/2
1−2𝛿

∫ ∞

0
𝑧3−2𝛿e−2𝜅𝑧𝐿

(1−2𝛿 )
𝑚−1 (2𝜅𝑧)𝐿 (1−2𝛿 )

𝑘−1 (2𝜅𝑧)d𝑧

=
1

4𝜅2 (𝑚)1/2
1−2𝛿 (𝑘)

1/2
1−2𝛿

∫ ∞

0
𝑧′3−2𝛿e−𝑧

′
𝐿
(1−2𝛿 )
𝑚−1 (𝑧′)𝐿 (1−2𝛿 )

𝑘−1 (𝑧′)d𝑧′, (3.4.23)

where we again have applied the change of coordinates 𝑧′ = 2𝜅𝑧. Substituting the functional identity in
equation (3.4.20) into the above then yields

⟨𝜑𝑚 |𝑧 | 𝜑𝑘⟩ =
1

4𝜅2 (𝑚)1/2
1−2𝛿 (𝑘)

1/2
1−2𝛿

{
2𝓂

∫ ∞

0
𝑧′2−2𝛿e−𝑧

′
𝐿
(1−2𝛿 )
𝑚−1 (𝑧′)𝐿 (1−2𝛿 )

𝑘−1 (𝑧′)d𝑧′ (3.4.24)

− 𝑚
∫ ∞

0
𝑧′2−2𝛿e−𝑧

′
𝐿
(1−2𝛿 )
𝑚 (𝑧′)𝐿 (1−2𝛿 )

𝑘−1 (𝑧′)d𝑧′ − (𝑚 − 2𝛿)
∫ ∞

0
𝑧′2−2𝛿e−𝑧

′
𝐿
(1−2𝛿 )
𝑚−2 (𝑧′)𝐿 (1−2𝛿 )

𝑘−1 (𝑧′)d𝑧′.

The three integrals in equation (3.4.24) are special cases of the first integral ⟨𝜑𝑚 |𝜑𝑘⟩. Substituting in
equation (3.4.19) then allows us to reduce equation (3.4.24) to

⟨𝜑𝑚 |𝑧 | 𝜑𝑘⟩ =
1

4𝜅2 (𝑚)1/2
1−2𝛿 (𝑘)

1/2
1−2𝛿

{
4𝜅𝓂(𝑚)1/2

1−2𝛿 (𝑘)
1/2
1−2𝛿 ⟨𝜑𝑚 |𝜑𝑘⟩

− 2𝜅𝑚(𝑚 + 1)1/2
1−2𝛿 (𝑘)

1/2
1−2𝛿 ⟨𝜑𝑚+1 |𝜑𝑘⟩ − 2𝜅(𝑚 − 2𝛿) (𝑚 − 1)1/2

1−2𝛿 (𝑘)
1/2
1−2𝛿 ⟨𝜑𝑚−1 |𝜑𝑘⟩

}
=

1
2𝜅(𝑚)1/2

1−2𝛿

{
2𝓂(𝑚)1/2

1−2𝛿 ⟨𝜑𝑚 |𝜑𝑘⟩ − 𝑚(𝑚 + 1)1/2
1−2𝛿 ⟨𝜑𝑚+1 |𝜑𝑘⟩ − (𝑚 − 2𝛿) (𝑚 − 1)1/2

1−2𝛿 ⟨𝜑𝑚−1 |𝜑𝑘⟩
}

=
2𝓂⟨𝜑𝑚 |𝜑𝑘⟩ −

√︁
𝑚(𝑚 + 1 − 2𝛿)⟨𝜑𝑚+1 |𝜑𝑘⟩ −

√︁
(𝑚 − 2𝛿) (𝑚 − 1)⟨𝜑𝑚−1 |𝜑𝑘⟩

2𝜅
, (3.4.25)

which provides the second integral in terms of the first integral ⟨𝜑𝑚 |𝜑𝑘⟩ given in equation (3.4.22). This
allows us to evaluate 𝐻𝑘,𝑚 given in equation (3.4.18) for each 𝑘 , 𝑚. We note that although 𝜑0 is not defined,
equation (3.4.25) is still valid in the 𝑚 = 1 case because the third term vanishes. We may now finalize
the numerical approach by taking 𝑁 copies of equation (3.4.17), where we let 𝑚 run through every integer
between one and 𝑁 . The resulting 𝑁 equations can then be expressed as the matrix equation

Hc𝑛 ≈ 𝐸̃𝑛Kc𝑛, (3.4.26)
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where c𝑛 is a 𝑁 × 1 column vector containing the basis expansion coefficients and H,K are 𝑁 × 𝑁 matrices
whose entries are given by the previously defined quantities 𝐻𝑘,𝑚 and 𝐾𝑘,𝑚. Equation (3.4.26) represents
a generalized eigenvalue problem, which we can solve in for instance Python or Mathmatica. An important
point to address is the choice of Sturmian parameter 𝜅 and complex scaling angle 𝜃. Although the energy
eigenvalues should, in principle, be independent of both, they are only approximately so because the basis
expansion is truncated. The sign of the Sturmian parameter 𝜅 has no effect on the basis functions, so
we can restrict 𝜅 ∈ R≥0. Testing in Python shows that the solutions of equation (3.4.26) are effectively
independent of 𝜅 as long as it is not too close to zero, where the eigenvalue solver becomes unstable. A
natural choice is 𝜅 = 1, for which the energy associated with Sturmian basis functions is the ground state
energy of the Coulomb potential. The solutions of equation (3.4.26) show a stronger dependence on the
complex scaling angle. To showcase this, we have plotted the energy eigenvalues provided by the outlined
numerical approach for various complex scaling angles. This is shown in figure Figure 3.2 below, where we
consider the ground state and first excited state for both the Coulomb potential and Kratzer-like potential.
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Figure 3.2: The perturbed energy 𝐸̃𝑛 is plotted as a function of the complex scaling angle 𝜃 in the interval
[−𝜋/2, 𝜋/2] radians. The Sturmian basis expansion is truncated at 𝑁 = 150 and the parameter 𝜅 = 1 is
chosen. The ground state and first excited state of the Coulomb potential and the 𝛿 = ±1/4 cases of the
Kratzer potential ground state are shown. The solid line shows the field strength E0 = 1/4, whereas the
dashed line shows the corresponding state with field strength E0 = −1/4. For positive field strength, the
energy eigenvalues become unstable for too large 𝜃. For negative field strength, the energy eigenvalues
become unstable for 𝜃 near zero.

Figure Figure 3.2 shows the dependence of the perturbed energy 𝐸̃𝑛 on the complex scaling angle 𝜃
for the ground state and first excited state of both the Coulomb potential and the Kratzer-like potential. For
applied fields pointing away from the substrate, we find that the energy eigenvalues remain stable within an
interval centred around 𝜃 = 0. Outside this window, the eigenvalues begin to deviate significantly. The width
of this interval generally decreases with quantum number 𝑛 and increases with basis length 𝑁 . For negative
field strengths, that induce tunnelling, we instead see that the energy eigenvalues become unstable for 𝜃 too
close to zero, but otherwise remain stable up until 𝜃 = 𝜋/2, where the model breaks down completely for all
applied fields. Similarly to the positive field case, we also find that a smaller selection of complex scaling
angles lead to convergence if the basis length is not chosen large enough. With the numerical approach now
presented, we can move forward and discuss the results of the two provided methods.
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3.5 Stark Shift & Ionization Rate

We have now presented both the analytical hypergeometric approximant approach and the numerical scheme
provided by the complex-scaled Sturmian basis expansion method. We may then finally begin to apply these
approaches and model the full complex energy eigenvalues 𝐸̃𝑛 − 𝑖Γ𝑛/2. We start by making a very direct
comparison between the two approaches as a means testing the validity of the hypergeometric approximant.
This is shown in Figure 3.3 below, in which the perturbed energy 𝐸̃𝑛 is plotted as a function of the applied
field strength for the first five states of the Coulomb potential, as well as two examples of the ground state
for the Kratzer-like potential.
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Figure 3.3: The perturbed energy is plotted as a function of the strength of the applied field E0 in the
unit interval. The ground state and first four excited states of the Coulomb potential and the 𝛿 = ±1/4
cases of the Kratzer potential ground state are shown with a complex scaling angle of 𝜃 = 0.2. The curves
showcase the corresponding hypergeometric approximant whilst the scatter points showcase the numerical
results provided by the Sturmian basis expansion, which is truncated at 𝑁 = 200. The parameter 𝜅 = 1
is chosen. The accuracy of the approximant generally decreases with larger perturbations and principle
quantum number. The ground state approximants are highly accurate even at unit field strength, whereas
the 𝑛 = 5 state loses accuracy already at E0 = 0.2.

Figure 3.3 shows the dependence of the perturbed energy 𝐸̃𝑛 on the strength of the applied field
E0. The solid lines and scatter points showcase the hypergeometric approximants and the numerical
approach, respectively. The hypergeometric functions provide a solid approximation of the perturbed
energy, the ground state and first excited state in particular. In general, the approximants lose accuracy
with increasing field strength E0 and principle quantum number 𝑛. The approximant for the fourth excited
state begins deviating from the numerical solution already at E0 ≈ 0.2, whereas the ground state remains
accurate even at unit field strength. This is a consequence of the approximants only containing fourth-
order information. We can validate the hypergeometric approximant approach further by comparison with
experimental observations, such as those provided in [Grimes et al., 1976] or [Lambert and Richards, 1981].
Here, a microwave absorption cell is used to measure the transition frequencies 𝑓𝑛→𝑚 of electrons lying on
a liquid Helium substrate as a function of the potential difference Δ𝑉 across the cell. One of the cells used
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is a right-circular cylinder of radius 𝑟𝑐 = 1.1 cm and height ℎ𝑐 = 0.32 cm. The electric field runs parallel
with the cell and hence we may relate the potential difference across the cell with the electric field using
Δ𝑉 = E0ℎ𝑐. The transition frequency 𝑓𝑛→𝑚 refers to the frequency of the radiation required to excite an
electron from state 𝑛 to state 𝑚, meaning ℎ 𝑓𝑛→𝑚 = 𝐸̃𝑚 − 𝐸̃𝑛, where ℎ is Plancks constant. By calculating
the transition frequencies using the hypergeometric approximants and plotting the results in terms of the
potential difference, we may compare directly with the findings of [Grimes et al., 1976]. This is shown in
Figure 3.4 below, where the 1 → 2 and 1 → 3 transitions are shown.
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Figure 3.4: The transition frequencies 𝑓𝑛→𝑚 are plotted as a function of the potential difference across the
right-circular cell. The scatter points show the measured transition frequencies of the 1 → 2 and 1 → 3
transitions provided in [Grimes et al., 1976]. The experimental data is compared with the corresponding
hypergeometric approximants for both the Coulomb potential and the Kratzer-like potential. The quantum
defect parameter is re-estimated using a simple residual sum-of-squares technique. Two data points per-
taining to the 1 → 2 transition lying at Δ𝑉 ≈ 60 V are not included in the plot, but are considered in the
re-estimation of the quantum defect parameter.

Figure 3.4 shows the transition frequency 𝑓𝑛→𝑚 as a function of the potential difference applied across
the right-circular cell. The solid and dashed lines show the transition frequencies calculated from the
hypergeometric approximants of the Kratzer-like potential and Coulomb potential, respectively, and the
scatter points show the experimental observations provided in [Grimes et al., 1976]. The quantum defect
parameter is re-estimated with a simple residual sum of squares technique, which yields 𝛿 = 0.0173. This
differs by approximately 36% from the initial 𝛿 = 0.0237 estimate stemming from fitting the unperturbed
1 → 2 and 1 → 3 transitions. It clear that the bare Coulomb potential is an inadequate model in comparison
with the Kratzer-like potential, which is required to reproduce the observations accurately. The Coulomb
approximants are consistently off set by roughly 25-26 GHz and 28-30 GHz for the 1 → 2 transitions
and the 1 → 3 transitions, respectively. With the re-estimated quantum defect parameter, we see that the
hypergeometric approximant captures the experimental data well. A search for similar experimental data for
the equivalent Neon substrate was made, but no such data could be found. The dependence of the perturbed
energy on the quantum defect parameter can also be examined more closely using the hypergeometric
approximants. This is shown in Figure 3.5 below, in which the perturbed energy is plotted as a function of
quantum defect parameters for a variety of applied field strengths.
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Figure 3.5: The perturbed energy is plotted as a function of the quantum defect parameter 𝛿 in the interval
[−0.8, 0.7]. The ground state of the Kratzer-like potential is shown for various applied field strengths with
a complex scaling angle of 𝜃 = 0.2. The solid lines showcase the hypergeometric approximant whilst the
scatter points showcase the numerical results provided by the Sturmian basis expansion, which is truncated
at 𝑁 = 200. The parameter 𝜅 = 1 is chosen.

Figure 3.5 shows the dependence of the perturbed energy 𝐸̃𝑛 on the quantum defect parameter 𝛿. The
solid lines show the hypergeometric approximants and the scatter points show the numerical results provided
by the Sturmian basis expansion. As the quantum defect parameter increases, the electron is more strongly
bound to the surface of the substrate and the energy decreases. Likewise, the rate at which the energy
changes also increases with 𝛿, which leads to more dramatic energy shifts for more positive quantum defect
parameters. For sufficiently negative 𝛿, we instead find that the perturbed energy eventually settles unless a
sufficiently strong outward-facing field is present. Finally, we now, with particular focus on the ground state
and first excited state, move forward and extend our analysis to include ionizing fields. This corresponds to
E0 < 0 in this case because the electron is negatively charged and therefore moves in the direction opposite
to the applied field. The inclusion of negative field strengths is showcased in Figure 3.6, where we consider
the ground state and first excited of the Coulomb potential, as well as two instances of the ground state of
the Kratzer-like potential.
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Ẽ
n

n = 1, δ = 1/4

n = 1, δ = −1/4

n = 1

n = 2

Figure 3.6: The perturbed energy is plotted as a function of the strength of the applied field E0 in the
interval [−1, 1]. The ground state and first excited state of the Coulomb potential and the 𝛿 = ±1/4 cases
of the Kratzer potential ground state are shown with a complex scaling angle of 𝜃 = 0.2. The solid lines
showcase the corresponding hypergeometric approximant whilst the scatter points showcase the numerical
results provided by the Sturmian basis expansion, which is truncated at 𝑁 = 200. The parameter 𝜅 = 1
is chosen. The dashed lines show the original perturbative expansions derived from the Dalgarno-Lewis
approach, which have also been included but are truncated at fourth-order similarly to the hypergeometric
approximants.

Figure 3.6 shows the dependence of the perturbed energy 𝐸̃𝑛 on the strength of the applied field E0 in
both directions. The solid lines show the hypergeometric approximants, the dashed lines show the truncated
perturbative expansion and the scatter points showcase the numerical approach provided by the Sturmian
basis expansion. The approximants retain good accuracy across the entire field strength spectrum. This
is in stark contrast to the perturbative expansions, which diverge from the numerical solutions outside a
relatively small interval centred at E0 = 0. The first excited state is a clear example in that its perturbative
expansion diverges almost immediately. The tunnelling induced by negative field strengths is reflected in
the energy eigenvalues acquiring a non-zero imaginary part. This is shown in Figure 3.7 below, where we
repeat the previous example.
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Figure 3.7: The ionization rate is plotted as a function of the strength of the applied field E0 in the interval
[−1, 0]. The ground state and first excited state of the Coulomb potential and the 𝛿 = ±1/4 cases of the
Kratzer potential ground state are shown with a complex scaling angle of 𝜃 = 0.2. The curves showcase
the corresponding hypergeometric approximant whilst the scatter points showcase the numerical results
provided by the Sturmian basis expansion, which is truncated at 𝑁 = 200. The parameter 𝜅 = 1 is chosen.

Figure 3.7 shows the dependence of the ionization rate Γ𝑛 on the strength of the applied field E0. The
solid lines show the hypergeometric approximants and the scatter points showcase the numerical approach
provided by the Sturmian basis expansion. Again, we find that the hypergeometric approximants accurately
replicate the ionization rates provided by the numerical approach, which as expected goes to zero as the
sign of the field begins to flip. Despite the fact that the critical field, at which the approximants develop
an imaginary part, of the 𝛿 = 1/4 case is an order of magnitude larger than the first excited Coulomb state,
one finds that the approximants of the more extreme cases of the Kratzer-like potential still agree with the
numerical approach. Although the critical field of the 𝛿 = 1/4 case is an order of magnitude larger than
that of the first excited Coulomb state, the approximants for the more extreme cases of the Kratzer-like
potential still show good agreement with the numerical results at smaller field strengths. It is also important
to note that the ionization rate of the excited state is significantly larger than the ground state, in particular
at lower field strengths where they differ by almost one order of magnitude. This is a testament to the
weak binding induced by the image potential effect. This is also made clear by the fact that Γ2 is almost
immediately comparable in magnitude with the corresponding unperturbed energy 𝐸2 = −1/8. All in all, the
hypergeometric approximants stands as a very solid approach to modeling the energy once the electrostatic
perturbation is applied. This concludes the present chapter and we now move onto the next, in which we
describe the electrodynamic perturbation.
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Chapter 4

Electrodynamic Perturbation of Qubit

In this chapter, we further develop the results of chapters one and two by perturbing the electron system with
a full harmonic field. By expanding the eigenstates in a perturbative series, we determine the eigenstate
corrections using two methods. The eigenstate corrections are subsequently used to determine the dynamic
response of the system due to the external field. Using these corrections, we determine the dynamic linear
polarizability. The electro-optic response induced by simultaneous static and dynamic perturbation is then
found as well.

4.1 Electrodynamic Perturbation of Qubit

We now aim to further develop the results of chapter one by introducing a time-dependent perturbation to
the electron qubit system. In particular, we perturb the system with a harmonic electrodynamic field of the
form E = E0 cos𝜔𝑡ẑ, where 𝜔 is the frequency of the external field pointing in the positive ẑ direction, as
shown in Figure 4.1 below. The introduction of a dynamic electric field within the electron-qubit system
provides a different but equally important kind of electric qubit control in comparison with the electrostatic
perturbation.

Figure 4.1: Electron-on-Helium qubit system perturbed by the electrodynamic field E = E0 cos𝜔𝑡ẑ, which
is chosen so that it points away from the substrate. The figure is based on [Pedrotti et al., 2018].

The procedure for dealing with electrodynamic perturbations follows a method similar to the one
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presented in the previous chapter. As opposed to the electrostatic perturbation however, we are now dealing
with a time-dependent perturbation. Our starting point for the dynamic perturbation is therefore the time-
dependent Schrödinger equation. The contribution to the Hamiltonian due to the electric field is once again
given by the induced dipole moment p and the energy associated with it 𝑈. Hence, the perturbation of the
Hamiltonian in modified atomic units is E0 cos(𝜔𝑡)𝑧 and the full perturbed problem therefore reads{

𝐻̂0 +
1
2
𝐻̂1e𝑖𝜔𝑡 + 1

2
𝐻̂1e−𝑖𝜔𝑡

}
Ψ̃ = 𝑖𝜕𝑡 Ψ̃, (4.1.1)

where we for later convenience have expressed the cosine function in terms of its complex frequency
modes. We now proceed in a similar manner to the electrostatic perturbation and expand the eigenstate in a
perturbative expansion of the form

Ψ̃𝑛 =

∞∑︁
𝑖=0

Ψ̃𝑛,𝑖 , (4.1.2)

where Ψ̃𝑛,𝑖 = Ψ̃𝑛,𝑖 (𝑧, 𝑡) is the 𝑖′th correction of the eigenstate that solves the time-dependent Schrödinger
equation. The eigenstates Ψ̃𝑛,0 = Ψ𝑛 are the solutions of the corresponding unperturbed problem
𝐻̂0Ψ𝑛 = 𝑖𝜕𝑡Ψ𝑛, which is solved by assuming that Ψ𝑛 (𝑧, 𝑡) = 𝑓 (𝑡)𝜓𝑛 (𝑧) for some unknown 𝑓 (𝑡). Us-
ing the corresponding time-independent Schrödinger equation 𝐻̂0𝜓𝑛 = 𝐸𝑛𝜓𝑛 to eliminate the Hamiltonian
under this assumption, we then find that Ψ𝑛 = 𝜓𝑛e−𝑖𝐸𝑛𝑡 . We now move forward by substituting the pertur-
bative expansion above into the dynamic problem given in equation (4.1.2), which after rearranging terms
yields (

𝐻̂0 +
1
2
𝐻̂1e𝑖𝜔𝑡 + 1

2
𝐻̂1e−𝑖𝜔𝑡 − 𝑖𝜕𝑡

) (
Ψ̃𝑛,0 + Ψ̃𝑛,1 + Ψ̃𝑛,2 + Ψ̃𝑛,3 + . . .

)
= 0. (4.1.3)

Terms of equal perturbative order are now grouped individually as in the electrostatic problem. The zeroth-
order grouping returns the unperturbed problem, which is solved just above. For every other perturbative
order, we instead find groupings of the form(

𝑖𝜕𝑡 − 𝐻̂0
)
Ψ̃𝑛,𝑝 =

1
2
𝐻̂1Ψ̃𝑛,𝑝−1

(
e𝑖𝜔𝑡 + e−𝑖𝜔𝑡

)
, 𝑝 > 0. (4.1.4)

Equation (4.1.4) is a considerably more complicated problem to solve than the electrostatic problem given
in equation (3.1.6). The main reason for this is of course the added time dependence, which consequently
invalidates certain methods that do apply in the static case, such as the Dalgarno-Lewis approach. An
approach to solving equation (4.1.4) above is to decompose it into each of its frequency modes. This
reduces the dynamic problem at hand to a number of static problems. Specifically, in a manner very similar
to grouping terms in powers of the electric field strength, we group terms with equal frequency modes, i.e.
e−𝑖𝜔𝑡 , and require them to vanish. To accomplish this, we choose Ψ̃𝑛,𝑝 so that its frequency modes match
those given on the right-hand side of equation (4.1.4). We illustrate this with the 𝑝 = 1 case, for which
substituting Ψ̃𝑛,0 = 𝜓𝑛e−𝑖𝐸𝑛𝑡 and 𝐻̂1 = E0𝑧 yields(

𝑖𝜕𝑡 − 𝐻̂0
)
Ψ̃𝑛,1 =

1
2
E0𝑧𝜓𝑛

(
e−𝑖 (𝐸𝑛−𝜔)𝑡 + e−𝑖 (𝐸𝑛+𝜔)𝑡

)
. (4.1.5)

Now that the two frequency modes e−𝑖 (𝐸𝑛±𝜔)𝑡 are clearly identified, we can solve equation (4.1.5) by writing

Ψ̃𝑛,1 =
1
2
E0𝜓

(1)
𝑛,1e−𝑖 (𝐸𝑛+𝜔)𝑡 + 1

2
E0𝜓

(−1)
𝑛,1 e−𝑖 (𝐸𝑛−𝜔)𝑡 , (4.1.6)

where we to each frequency mode have attached a corresponding eigenstate component 𝜓 (±1)
𝑛,1 whose

superscript denotes the given 𝜔-dependence. Substituting Ψ̃𝑛,1 back into equation (4.1.5), applying the
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temporal operator 𝜕𝑡 and grouping terms of equal frequency mode then gives(
𝐸𝑛 ± 𝜔 − 𝐻̂0

)
𝜓
(±1)
𝑛,1 = 𝑧𝜓𝑛. (4.1.7)

We have now reduced the first-order dynamic problem into two static problems. Solving equation (4.1.7)
in both cases then provides the first-order correction in accordance with equation (4.1.6). The second-order
correction is now readily found by substituting Ψ̃𝑛,1 into the 𝑝 = 2 case of equation (4.1.4) and proceeding
in a similar fashion. The resulting correction will have a DC contribution and ±2𝜔 contributions. For
the scope of this project, we will not need to address the question of normalization as we did for the
electrostatic perturbation. The remaining task is now to solve the eigenstate component equations so that the
full correction may be found. As with the static problem, we now move forward and consider two different
approaches.

4.1.1 Basis Expansion Method

We now turn to the first method for determining the electrodynamic eigenstate corrections, which once
again is the basis expansion method. Like in the electrostatic example, we expand the unknown eigenstate
corrections in a basis expansion as given in equation (3.1.12). In the electrodynamic case, we instead expand
the eigenstate components 𝜓̃ (𝑚)

𝑛,𝑝 from which the full corrections are composed. As with the static case, we
start by writing

𝜓̃
(𝑚)
𝑛,𝑝 =

∞∑︁
𝑚′=1

𝑐
(𝑚)
𝑚′ , 𝑝𝜓𝑚′ +

∫ ∞

0
𝑐
(𝑚)
𝑘, 𝑝
𝜓𝑘d𝑘

≡
⨋

𝑗∈𝐼
𝑐
(𝑚)
𝑗 , 𝑝
𝜓 𝑗 . (4.1.8)

Again, we now need to determine the coefficients 𝑐 (𝑚)
𝑗 , 𝑝

by exploiting the orthonormality between the
unperturbed eigenstates. Again, we restrict ourselves to the first order correction for this method. The
first order equal index coefficient 𝑐 (𝑚)

𝑛,1 must, as in the electrostatic case, vanish. So for the 𝑝 = 1 case for
instance, we have 𝑐 (±1)

𝑛,1 = 0. For the remaining set, we substitute the expansion into equation (4.1.7) so that⨋
𝑗∈𝐼

𝑐
(±1)
𝑗 , 𝑝

(
𝐸𝑛 ± 𝜔 − 𝐻̂0

)
𝜓 𝑗 = 𝑧𝜓𝑛. (4.1.9)

We now let the Hamiltonian act on the unperturbed eigenstate and employ 𝐻̂0𝜓 𝑗 = 𝐸 𝑗𝜓 𝑗 . Multiplying the
resulting equation through by 𝜓 𝑗′ for some 𝑗 ′ ∈ 𝐼\𝑛 and integrating over R≥0 then yields⨋

𝑗∈𝐼
𝑐
(±1)
𝑗 , 𝑝

(
𝐸𝑛 𝑗 ± 𝜔

)
𝑠

0,0
𝑗′ , 𝑗 = 𝑍 𝑗′𝑛, (4.1.10)

where we have interchanged sums and integrals. We know that 𝑠0,0
𝑗′ , 𝑗 = 𝛿 𝑗′ 𝑗 , and hence the sum-integral

vanishes for every 𝑗 ≠ 𝑗 ′. This just leaves the coefficient 𝑐 (±1)
𝑗′ , 𝑝 , which we can then express as

𝑐
(±1)
𝑗 , 𝑝

=
𝑍 𝑗𝑛

𝐸𝑛 𝑗 ± 𝜔
. (4.1.11)

The first-order eigenstate corrections are then

𝜓̃
(±1)
𝑛,1 =

⨋
𝑗∈𝐼
𝑗≠𝑛

𝑍 𝑗𝑛

𝐸𝑛 𝑗 ± 𝜔
𝜓 𝑗 , (4.1.12)

which are very similar to those provided in the static case. Again, we may proceed in a similar manner and
compute higher-order corrections, although this still requires the unbound-unbound matrix elements. We
note that the static result is recovered in the𝜔 = 0 case. We now move onto the second for used to determine
the dynamic corrections to the eigenstates.
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4.1.2 Sturmian Basis Expansion

We now move to the second method of determining the electrodynamic eigenstate corrections, which we
again accomplish by finding the eigenstate components 𝜓̃ (𝑚)

𝑛,𝑝 . Their governing differential equations, such
as the first-order equations given in equation (4.1.7), are very similar to those given in the static case.
The addition of the 𝜔 terms, however, make the equations much more difficult to solve and unfortunately
invalidates the Dalgarno-Lewis approach as presented in the static case. To see why this is, we consider
equation (3.1.28). The new 𝜔 terms will introduce a non-differentiated field factor term, which in turn
no longer allows the left-hand side to be factored using an integrating factor. Constructing the eigenstates
directly as a polynomial sum breaks down as well because the sums no longer truncate. Instead, we will for
our purposes take inspiration from [Pedersen, 2024] and expand the eigenstate components in a Sturmian
basis expansion. While this does not provide closed-form corrections, it does have a number of advantages
in comparison with the basis expansion method, as we will see. To showcase the procedure, we again
consider the first-order correction equation, which for the +𝜔 solution reads(

𝐸𝑛 + 𝜔 − 𝐻̂0
)
𝜓
(1)
𝑛,1 = 𝑧𝜓𝑛. (4.1.13)

We start by exploiting the fact that the Sturmian basis functions make a complete, discrete set. We may then
expand the eigenstate component in an expansion of the form

𝜓
(1)
𝑛,1 =

∞∑︁
𝑚=1

𝐶
(1)
𝑛𝑚𝜑𝑚. (4.1.14)

Substituting the expansion along with the unperturbed Hamiltonian into equation (4.1.13) then yields

∞∑︁
𝑚=1

𝐶
(1)
𝑛𝑚

(
𝐸𝑛 + 𝜔 + 1

2
d2

d𝑧2 + 1
𝑧
+ 𝛿(1 − 𝛿)

2𝑧2

)
𝜑𝑚 = 𝑧𝜓𝑛. (4.1.15)

We now exploit the governing differential equation for the Sturmian basis functions as given in equation
(3.4.15) for 𝜆𝑚 = 𝓂𝜅, which allows us to eliminate the kinetic energy operator and the non-Coulombic
potential. This in turn gives

∞∑︁
𝑚=1

𝐶
(1)
𝑛𝑚

(
𝐸𝑛 + 𝜔 + 1

2
𝜅2 + 1

𝑧
− 𝓂𝜅

𝑧

)
𝜑𝑚 = 𝑧𝜓𝑛. (4.1.16)

We now choose the Sturmian parameter such that −𝜅2/2 = 𝐸𝑛 +𝜔, which in turn reduces the above equation
to

∞∑︁
𝑚=1

𝐶
(1)
𝑛𝑚 (1 −𝓂𝜅) 1

𝑧
𝜑𝑚 = 𝑧𝜓𝑛. (4.1.17)

We can now determine the coefficients 𝐶 (1)
𝑛𝑚 by exploiting the orthogonality relation given in equation

(3.4.10). Multiplying equation (4.1.17) through by 𝜑𝑘 for some 𝑘 ∈ Z>0 and integrating over R≥0 then
yields

∞∑︁
𝑚=1

𝐶
(1)
𝑛𝑚 (1 −𝓂𝜅) 𝛿𝑘𝑚 = ⟨𝜑𝑘 |𝑧 | 𝜓𝑛⟩ . (4.1.18)

The terms in the above sum now vanish for every 𝑚 ≠ 𝑘 . This leaves only one coefficient, which we in turn
may express as

𝐶
(1)
𝑛𝑚 =

⟨𝜑𝑚 |𝑧 | 𝜓𝑛⟩
1 −𝓂𝜅

. (4.1.19)
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The first-order correction is then

𝜓
(1)
𝑛,1 =

∞∑︁
𝑚=1

⟨𝜑𝑚 |𝑧 | 𝜓𝑛⟩
1 −𝓂𝜅

𝜑𝑚. (4.1.20)

The other eigenstate component is then found by letting 𝜔 → −𝜔. Because the Sturmian functions have the
same structure as the unperturbed eigenstates, we may calculate the matrix elements ⟨𝜑𝑚 |𝑧 | 𝜓𝑛⟩ in terms
of J2,0

2−2𝛿 W. Gordon integrals. In particular, we find

⟨𝜑𝑚 |𝑧 | 𝜓𝑛⟩ =
∫ ∞

0
N𝑛M𝑚𝑧

3−2𝛿e−(𝓃−1+𝜅 )𝑧
1𝐹1

(
1 − 𝑛, 2 − 2𝛿, 2𝓃−1𝑧

)
1𝐹1 (1 − 𝑚, 2 − 2𝛿, 2𝜅𝑧) d𝑧

= N𝑛M𝑚J2,0
2−2𝛿

(
1 − 𝑛, 1 − 𝑚, 2𝓃−1, 2𝜅

)
, (4.1.21)

where M𝑚 = (2𝜅)1−𝛿 (𝑚)1/2
1−2𝛿/Γ(2 − 2𝛿) as given in equation (3.4.13). Using the procedure described in

sections 2.1.1 and 2.2.1 to compute the J2,0
2−2𝛿 integral, we eventually find that

⟨𝜑𝑚 |𝑧 | 𝜓𝑛⟩ =
2(−1)𝑛𝓃4−2𝛿N𝑛M𝑚Γ(2 − 2𝛿)

(1 − 𝜅𝓃)4−2𝛿

(
1 − 𝜅𝓃
1 + 𝜅𝓃

)𝓂+𝓃 {
(𝑚 − 1) (4.1.22)

× 2𝐹1

(
1 − 𝑛, 2 − 𝑚, 2 − 2𝛿,

−4𝜅𝓃
(1 − 𝜅𝓃)2

)
− 𝓂 + 2𝓃2 + (2𝓂 + 1)𝓂𝓃

2𝜅2 − 2(2𝓂 + 1)𝓃2𝜅

(1 + 𝜅𝓃)2

× 2𝐹1

(
1 − 𝑛, 1 − 𝑚, 2 − 2𝛿,

−4𝜅𝓃
(1 − 𝜅𝓃)2

)
.

For a general 𝑛, the matrix elements are quite complicated. In the case of the ground state and first few
excited states however, these reduce significantly. The first order correction comes appropriately normalized
in the presented form. This concludes the second approach and allows us to now move forward and apply
the presented results.

4.2 Dynamic Linear Polarizability

In this section, we aim to apply the results of the previous sections and calculate the more general dynamic
linear polarizability, for which the static polarizabilities found in section 3.2 are special cases. The starting
point is once again the dipole moment p̃𝑛, which we now write as

p̃𝑛 = −⟨Ψ̃𝑛 |𝑧 | Ψ̃𝑛⟩ẑ. (4.2.1)

We now expand Ψ̃𝑛 in a perturbative series and extract the dynamic polarizabilities in a similar fashion to
the static case. The first-order contributions are then

p̃𝑛,1 = −⟨Ψ̃𝑛,0 |𝑧 | Ψ̃𝑛,1⟩ẑ − ⟨Ψ̃𝑛,1 |𝑧 | Ψ̃𝑛,0⟩ẑ

= −2Re⟨Ψ̃𝑛,0 |𝑧 | Ψ̃𝑛,1⟩ẑ

= −2Re⟨𝜓𝑛e−𝑖𝐸𝑛𝑡 |𝑧 | 1
2
E0𝜓

(1)
𝑛,1e−𝑖 (𝐸𝑛+𝜔)𝑡 + 1

2
E0𝜓

(−1)
𝑛,1 e−𝑖 (𝐸𝑛−𝜔)𝑡 ⟩ẑ

= −⟨𝜓𝑛 |𝑧 | 𝜓 (1)
𝑛,1 + 𝜓

(−1)
𝑛,1 ⟩E0 cos𝜔𝑡ẑ. (4.2.2)

The linear dynamic polarizability is then conveniently expressed as

𝛼̃𝑛,1 (𝜔) = −⟨𝜓𝑛 |𝑧 | 𝜓 (1)
𝑛,1⟩ + (𝜔 → −𝜔) . (4.2.3)
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We may now evaluate equation (4.2.3) using either of the two expansions given in equations (4.1.12) and
(4.1.20). Starting with the basis expansion eigenstate, we find

𝛼̃𝑛,1 (𝜔) = −⟨𝜓𝑛 |𝑧 |
⨋

𝑗∈𝐼
𝑗≠𝑛

𝑍 𝑗𝑛

𝐸𝑛 𝑗 + 𝜔
𝜓 𝑗⟩ + (𝜔 → −𝜔)

= −
⨋

𝑗∈𝐼
𝑗≠𝑛

𝑍 𝑗𝑛𝑍𝑛 𝑗

𝐸𝑛 𝑗 + 𝜔
+ (𝜔 → −𝜔)

= −
⨋

𝑗∈𝐼
𝑗≠𝑛

𝑔 𝑗𝑛

2𝐸𝑛 𝑗

(
𝐸𝑛 𝑗 + 𝜔

) + (𝜔 → −𝜔)

= −
⨋

𝑗∈𝐼
𝑗≠𝑛

𝑔 𝑗𝑛

𝐸2
𝑛 𝑗

− 𝜔2
. (4.2.4)

As required, we see that equation (4.2.4) reduces to 𝛼̃𝑛,1 (0) = G𝑛,−2 in the static limit. As with the static
case, the sum-integral in equation (4.2.4) is impractical to evaluate in closed form even in the ground state.
Fortunately, we can, for small 𝑛, evaluate the linear dynamic polarizability in closed form by instead using
the Sturmian basis expansion, which when substituted into equation (4.2.3) yields

𝛼̃𝑛,1 (𝜔) = −⟨𝜓𝑛 |𝑧 |
∞∑︁

𝑚=1

⟨𝜑𝑚 |𝑧 | 𝜓𝑛⟩
1 −𝓂𝜅

𝜑𝑚⟩ + (𝜔 → −𝜔)

=

∞∑︁
𝑚=1

|⟨𝜑𝑚 |𝑧 | 𝜓𝑛⟩|2

𝓂𝜅 − 1
+ (𝜔 → −𝜔) . (4.2.5)

We may now use equation (4.1.22) to compute the matrix elements ⟨𝜑𝑚 |𝑧 | 𝜓𝑛⟩ for a given 𝑛. Starting with
the Coulomb ground state, we eventually find

|⟨𝜑𝑚 |𝑧 | 𝜓1⟩|2

𝑚𝜅 − 1
=

64𝑚𝜅2 [
(1 + 2𝑚2)𝜅2 − 6𝑚𝜅 + 3

]2

(1 − 𝜅2)6 (1 − 𝑚𝜅)

(
1 − 𝜅
1 + 𝜅

)2𝑚
(4.2.6)

At this point, we need only sum the contributions of equation (4.2.6) over all 𝑚 to acquire the polarizability.
This may be accomplished by using series identities of the form

∞∑︁
𝑚=1

𝑚

1 − 𝑚𝜅

(
1 − 𝜅
1 + 𝜅

)2𝑚
=

1 − 𝜅
(1 + 𝜅)2 2𝐹1

(
2,
𝜅 − 1
𝜅

,
2𝜅 − 1
𝜅

,

(
1 − 𝜅
1 + 𝜅

)2
)
. (4.2.7)

Increasing the power of 𝑚 in the numerator on the left-hand side of equation (4.2.7) by one simply places
an additional factor (2)𝑘/(1)𝑘 in the hypergeometric function on the right-hand side. The ground state
contributions given in equation (4.2.6) will then amount to several of these series when summing over 𝑚.
The resulting expression in full may then be reduced significantly in for instance Mathmatica. Carrying out
the resulting calculations for the ground state then shows that

𝛼̃1,1 (𝜔) =
∞∑︁

𝑚=1

64𝑚𝜅2 [
(1 + 2𝑚2)𝜅2 − 6𝑚𝜅 + 3

]2

(1 − 𝜅2)6 (1 − 𝑚𝜅)

(
1 − 𝜅
1 + 𝜅

)2𝑚
+ (𝜔 → −𝜔)

=
16 − 2𝜅(1 − 𝜅)2 (3𝜅2 + 9𝜅 + 8)

(1 − 𝜅)3 (1 + 𝜅)4 − 64𝜅
(1 − 𝜅)3 (1 + 𝜅)6

× 2𝐹1

(
1,
𝜅 − 1
𝜅

,
2𝜅 − 1
𝜅

,

(
1 − 𝜅
1 + 𝜅

)2
)
+ (𝜔 → −𝜔) , (4.2.8)

where we for the ground state have 𝜅2 = 1 − 2𝜔 and find that 𝛼̃1,1 (0) = 3 indeed is satisfied. This approach
may in principle be extended to the excited states, although the resulting expressions quickly become
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complicated. This is exemplified by the 𝑛 = 2 case, for which one finds that

|⟨𝜑𝑚 |𝑧 | 𝜓2⟩|2

𝑚𝜅 − 1
=

[
16(2𝑚2 + 1)𝜅4 − 16(2𝑚2 + 7)𝑚𝜅3 + 8(11𝑚2 + 7)𝜅2 − 60𝑚𝜅 + 9

]2 (4.2.9)

× 2048𝑚𝜅2

(1 − 4𝜅2)8 (𝑚𝜅 − 1)

(
1 − 2𝜅
1 + 2𝜅

)2𝑚
.

Summing the contributions over all 𝑚 then eventually yields

𝛼̃2,1 (𝜔) =
7∑︁
𝑗=1

6144𝜅2𝑎 𝑗

( 𝑗 𝜅 − 1) (1 − 4𝜅2)8

(
1 − 2𝜅
1 + 2𝜅

)2𝑚
(4.2.10)

2𝐹1

(
1 + 𝑗 , 𝑗 𝜅 − 1

𝜅
,
(1 + 𝑗)𝜅 − 1

𝜅
,

(
1 − 2𝜅
1 + 2𝜅

)2
)
+ (𝜔 → −𝜔) ,

where the coefficients 𝑎 𝑗 are given by

𝑎1 = 3(3 − 2𝜅)2 (1 − 2𝜅)6,

𝑎2 = 48𝜅(2𝜅 − 5) (1 − 2𝜅)4 (8𝜅2 − 18𝜅 + 3),

𝑎3 = 128𝜅2 (1 − 2𝜅)2 (104𝜅4 − 808𝜅3 + 1694𝜅2 − 720𝜅 + 81),

𝑎4 = 1024𝜅3 (80𝜅5 − 1104𝜅4 + 3800𝜅3 − 3072𝜅2 + 905𝜅 − 87),

𝑎5 = 2560𝜅4 (16𝜅4 − 480𝜅3 + 2440𝜅2 − 1320𝜅 + 181),

𝑎6 = 122880𝜅5 (42𝜅 − 4𝜅2 − 11),

𝑎7 = 1720320𝜅6,

(4.2.11)

for which 𝜅2 = 1/4 − 2𝜔. Again, this correctly reproduces the static limit 𝛼̃2,1 (0) = 132. To showcase
how the polarizability depends on the frequency of the externally applied field, we plot the polarizability
of the Coulomb potential for the ground state and first excited state. To account for absorption, we add
a phenomenological line broadening by introducing a complex frequency 𝜔 → 𝜔 + 𝑖Γ, which in turn
regularizes the dynamic polarizability at resonance. This adds an imaginary part to the polarizability, which
characterizes the absorption. The ground state is shown in Figure 4.2 below.
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Figure 4.2: The dynamic linear polarizability for the ground state of the Coulomb potential is plotted
as a function of the frequency of the applied field. The real part is plotted in red, whilst the imaginary
part is plotted in green. The solid line shows the analytical expression provided by Sturmian expansion,
whilst the circles show the numerical expression given by the expansion of the unperturbed states. The
phenomenological line broadening Γ = 0.01 is chosen. The two are in good agreement. The red horizontal
dotted line showcases the static limit 𝛼̃1,1 (0) = 3. The resonance frequencies Δ𝐸12 = 3/8, Δ𝐸13 = 4/9 and
Δ𝐸14 = 15/32 are marked with vertical dotted lines, at which the absorption peaks accordingly.

Figure 4.2 above shows the dynamic linear polarizability of the Coulomb ground state plotted as a
function of the frequency of the applied field as calculated both using the analytical solution given in
equation (4.2.8) and the numerical solution provided by equation (4.2.4). The two are in good agreement
and the static limit is accurately reproduced. The resonance frequencies corresponding to Δ𝐸12 = 3/8,
Δ𝐸13 = 4/9 and Δ𝐸14 = 15/32 can be seen as peaks in the imaginary part. The remaining resonances are
not visible with the chosen line broadening Γ = 0.01. The remaining bound-bound transitions are smeared
out up until 𝜔 = 1/2, from where the bound-unbound transitions are situated. An important technical point
to note is that 𝜅 acquires an imaginary part once the frequency of the external field becomes larger than
the binding energy. If not for the introduction of the line broadening, we would find a purely imaginary 𝜅
and immediate divergence of all the transition contributions beyond 𝜔 = 1/2 due to the e−2𝜅𝑧 term in the
integrand. The real part of 𝜅, although positive, still decreases with increasing 𝜔 and hence the continuum
contributions are unbounded as𝜔 → ∞. This issue is only handled once the closed-form expression in terms
of hypergeometric functions is acquired, meaning that simply truncating the sum in equation (4.2.5) at some
large, finite 𝑁 will not work. We can do the same for the first excited state, whose dynamic polarizability is
plotted in Figure 4.3 below.
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Figure 4.3: The dynamic linear polarizability for the first excited state of the Coulomb potential is plotted
as a function of the frequency of the applied field. The real part is plotted in red, whilst the imaginary
part is plotted in green. The solid line shows the analytical expression provided by Sturmian expansion,
whilst the circles show the numerical expression given by the expansion of the unperturbed states. The
phenomenological line broadening Γ = 0.001 is chosen. The two are in good agreement. The red horizontal
dotted line showcases the static limit 𝛼̃2,1 (0) = 132. The resonance frequencies atΔ𝐸21 = 3/8,Δ𝐸23 = 5/72,
Δ𝐸24 = 3/32, Δ𝐸25 = 21/200 and Δ𝐸26 = 1/9 are marked with vertical dotted lines, at which the absorption
peaks accordingly.

Figure 4.3 above again shows the dynamic linear polarizability but now for the first excited state.
It is calculated analytically and numerically, both of which are in agreement. The smaller chosen line
broadening Γ = 0.001 illuminates a larger number of resonance frequencies as peaks in the imaginary part.
The contribution stemming from the resonance at 𝜔 = Δ𝐸21 reappears with opposing sign. The shown
procedure of finding closed form expressions for the linear dynamic polarizability may also be generalized
to the Kratzer potential. Starting with the ground state and using equation (4.1.22), one finds that

|⟨𝜑𝑚 |𝑧 | 𝜓1⟩|2

𝓂𝜅 − 1
=

26−4𝛿 (1 − 𝛿)6−2𝛿𝜅2−2𝛿

(1 − (1 − 𝛿)𝜅)6 (1 + (1 − 𝛿)𝜅)6−4𝛿 Γ(2 − 2𝛿)
(4.2.12)

×
[
(1 − 𝛿) (2𝓂2 + 1 − 𝛿)𝜅2 + (3 − 2𝛿) (1 − 2𝓂𝜅)

]2 (𝑚)1−2𝛿

1 −𝓂𝜅

(
1 − (1 − 𝛿)𝜅
1 + (1 − 𝛿)𝜅

)2𝑚
,

which in the 𝛿 = 0 case returns equation (4.2.6). Then, by summing in accordance with equation (4.2.5),
one finds that

𝛼̃1,1 (𝜔) =
2∑︁
𝑗=1

24−4𝛿 (1 − 𝛿)6−2𝛿𝜅2−2𝛿𝑎 𝑗

(1 − (1 − 𝛿)𝜅)4 (1 + (1 − 𝛿)𝜅)7−4𝛿 (4.2.13)

× 2𝐹1

(
𝑗 + 1 − 2𝛿,

(1 − 𝛿)𝜅 − 1
𝜅

,
(2 − 𝛿)𝜅 − 1

𝜅
,

(
1 − (1 − 𝛿)𝜅
1 + (1 − 𝛿)𝜅

)2
)
+ (𝜔 → −𝜔) ,

where the coefficients 𝑎 𝑗 are

𝑎1 = (1 + (1 − 𝛿)𝜅)3 (2(1 − 𝛿) (2 − 𝛿) (3 − 2𝛿)𝜅 − (1 − 𝛿)2 (2 − 𝛿) (3 − 2𝛿)𝜅2 + 7𝛿 − 4 − 2𝛿2),

𝑎2 = 2(1 − 𝛿) ((1 − 𝛿) (2 − 𝛿)2𝜅2 + 𝛿) ((1 − 𝛿)2 (3 − 2𝛿)𝜅2 + 2𝛿 − 7)𝜅.
(4.2.14)

The dynamic polarizability given in equation (4.2.13) correctly reproduces those given in equation (3.2.34)
in the static limit. This can also be done for the first excited state, which yields a formula similar to equation
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(4.2.10). It is shown in section F. The dependence of the dynamic linear polarizability on the quantum
defect parameter 𝛿 is shown in Figure 4.4 below.
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Figure 4.4: The dynamic linear polarizability for the ground state of the Kratzer potential is plotted as a
function of the frequency of the applied field for several quantum defect parameters 𝛿. The real part is plotted
in red, whilst the imaginary part is plotted in green. The solid line shows the analytical expression provided
by Sturmian expansion, whilst the circles show the numerical expression given by the expansion of the
unperturbed states. The phenomenological line broadening Γ = 0.01 is chosen. The static polarizabilities
are accurately reproduced in accordance with equation (3.2.34).

Figure 4.4 above shows the dynamic linear polarizability of the Kratzer ground state plotted as a
function of the frequency of the applied field for a variety of quantum defect parameters 𝛿. The analytical
and numerical approach remain in agreement and the resonance frequencies are shifted appropriately in
accordance with the quantum defect energies. The polarizabilities given by equation (3.2.34) are also
reproduced in the static limit as required. As the quantum defect parameter 𝛿 increases, we find that the
magnitude of the response decreases. This also extends to the first excited state, which is shown in Figure 4.5
below.
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Figure 4.5: The dynamic linear polarizability for the first excited state of the Kratzer potential is plotted as a
function of the frequency of the applied field for several quantum defect parameters 𝛿. The real part is plotted
in red, whilst the imaginary part is plotted in green. The solid line shows the analytical expression provided
by Sturmian expansion, whilst the circles show the numerical expression given by the expansion of the
unperturbed states. The phenomenological line broadening Γ = 0.001 is chosen. The static polarizabilities
are accurately reproduced in accordance with equation (3.2.34).

Figure 4.5 above shows the dynamic linear polarizability of the first Kratzer excited state plotted as
a function of the frequency of the applied field for a variety of quantum defect parameters 𝛿. As with
the ground state, the static polarizabilities are reproduced correctly and both the analytical and numerical
approaches are in agreement. In addition, the resonance frequencies may be shifted by altering the quantum
defect parameter, although in comparison with the ground state, one finds that the window in which these
shifts occur is significantly smaller. This concludes this section on the dynamic linear polarizability and
allows us to move forward and investigate other responses induced by the external field.

4.3 Electro-Optic Response

We now aim to expand the degree to which the electron qubits may be controlled by perturbing the platform
with both an electrostatic and electrodynamic field. This is known as the electro-optic response of the
system in the presence of two perturbations. The first order response induced by this is called the Pockels
effect [Boyd, 2008]. Describing it requires us to expand the framework introduced in section 4.1. To do
this, we start by introducing the static field EDCẑ and the dynamic field EAC cos(𝜔𝑡)ẑ as shown in Figure 4.6
below.
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Figure 4.6: Electron-on-Helium qubit system perturbed by the electrostatic field E = E0ẑ, which is chosen
so that it points away from the substrate. The figure is based on [Pedrotti et al., 2018].

We now proceed in a similar manner to the electrodynamic perturbation. In the dipole approximation,
the corresponding contributions to the Hamiltonian are EDC𝑧 and the dynamic field EAC cos(𝜔𝑡)𝑧. In the
presence of both the static and dynamic field therefore, we may write the full perturbed problem as{

𝐻̂0 +
1
2
EAC𝑧e𝑖𝜔𝑡 + 1

2
EAC𝑧e−𝑖𝜔𝑡 + EDC𝑧

}
Ψ̃𝑛 = 𝑖𝜕𝑡 Ψ̃𝑛. (4.3.1)

We now write the eigenstate in terms of a perturbative expansion once more. The expansion will in this
case not only include corrections in the static and dynamic fields individually, but also mixed corrections in
both. To account for this, we expand the eigenstate as

Ψ̃𝑛 =

∞∑︁
𝑖=0

∞∑︁
𝑗=0

Ψ̃𝑛,𝑖 𝑗

= Ψ̃𝑛,00 + Ψ̃𝑛,10 + Ψ̃𝑛,01 + Ψ̃𝑛,11 + . . . , (4.3.2)

where 𝑖 denotes the perturbative order in the electrostatic field and 𝑗 denotes the perturbative order in the
electrodynamic field. The corrections Ψ̃𝑛,10, Ψ̃𝑛,01 and Ψ̃𝑛,11 then account for the linear response of the
static field, the linear response of the dynamic field and the linear response of both fields, respectively.
Substituting the expansion into equation (4.3.1) and rearranging then yields{

𝐻̂0 − 𝑖𝜕𝑡 +
1
2
EAC𝑧e𝑖𝜔𝑡 + 1

2
EAC𝑧e−𝑖𝜔𝑡 + EDC𝑧

} {
Ψ̃𝑛,00 + Ψ̃𝑛,10 + Ψ̃𝑛,01 + Ψ̃𝑛,11 + . . .

}
= 0. (4.3.3)

We now group terms of equal order and use the strategy described in section 4.1 to deduce the form of
each solution. The zeroth order terms once again return the unperturbed problem, which is solved by
Ψ̃𝑛,00 = 𝜓𝑛e−𝑖𝐸𝑛𝑡 . Next, by grouping terms linear in the dynamic perturbation we find that(

𝐻̂0 − 𝑖𝜕𝑡
)
Ψ̃𝑛,01 +

1
2
EAC𝑧Ψ̃𝑛,00e𝑖𝜔𝑡 + 1

2
EAC𝑧Ψ̃𝑛,00e−𝑖𝜔𝑡 = 0, (4.3.4)
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which upon substitution of Ψ̃𝑛,00 = 𝜓𝑛e−𝑖𝐸𝑛𝑡 is identical to the first order dynamic problem given in equation
(4.1.5). Using equation (4.1.6), it is then clear a solution of the above takes the form

Ψ̃𝑛,01 =
1
2
EAC𝜓

(1)
𝑛,01e−𝑖 (𝐸𝑛+𝜔)𝑡 + 1

2
EAC𝜓

(−1)
𝑛,01 e−𝑖 (𝐸𝑛−𝜔)𝑡 , (4.3.5)

where the corrections 𝜓 (1)
𝑛,01, 𝜓 (−1)

𝑛,01 again satisfy(
𝐸𝑛 ± 𝜔 − 𝐻̂0

)
𝜓
(±1)
𝑛,01 = 𝑧𝜓𝑛. (4.3.6)

The corrections solving equation (4.3.6) are then found using the same techniques described in sections
4.1.1 and 4.1.2. We now move on to grouping the terms linear only in the static field, which yields(

𝐻̂0 − 𝑖𝜕𝑡
)
Ψ̃𝑛,10 + EDC𝑧Ψ̃𝑛,00 = 0. (4.3.7)

By substituting the unperturbed eigenstates Ψ̃𝑛,00 = 𝜓𝑛e−𝑖𝐸𝑛𝑡 into equation (4.3.7), we then quickly find
that the solution has the form

Ψ̃𝑛,10 = EDC𝜓̃
(0)
𝑛,10e−𝑖𝐸𝑛𝑡 , (4.3.8)

from which the correction 𝜓̃ (0)
𝑛,10 can be shown to satisfy(

𝐸𝑛 − 𝐻̂0
)
𝜓̃
(0)
𝑛,10 = 𝑧𝜓𝑛. (4.3.9)

Equation (4.3.9) is clearly the static limit of the first order dynamic problem given in equation (4.3.6). As
such, we know that 𝜓̃ (0)

𝑛,10 is the 𝜔 = 0 case of the first order dynamic correction 𝜓 (1)
𝑛,01. Alternatively, it may

be found in closed form using the Dalgarno-Lewis approach. In fact, it is in effect the first-order correction
of the purely static problem in the 𝐸̃𝑛,1 = 0 case. The final correction we will need is acquired by grouping
terms linear in both fields, which gives(

𝐻̂0 − 𝑖𝜕𝑡
)
Ψ̃𝑛,11 + EDC𝑧Ψ̃𝑛,01 +

1
2
EAC𝑧Ψ̃𝑛,10e𝑖𝜔𝑡 + 1

2
EAC𝑧Ψ̃𝑛,10e−𝑖𝜔𝑡 = 0. (4.3.10)

We now substitute the corrections given in equations (4.3.5) and (4.3.8) into the problem above. Reducing
the resulting expression then shows that a solution must be

Ψ̃𝑛,11 =
1
2
EDCEAC𝜓

(1)
𝑛,11e−𝑖 (𝐸𝑛+𝜔)𝑡 + 1

2
EDCEAC𝜓

(−1)
𝑛,11 e−𝑖 (𝐸𝑛−𝜔)𝑡 , (4.3.11)

where the corrections 𝜓 (1)
𝑛,11, 𝜓 (−1)

𝑛,11 satisfy(
𝐸𝑛 ± 𝜔 − 𝐻̂0

)
𝜓
(±1)
𝑛,11 = 𝑧𝜓̃

(0)
𝑛,10 + 𝑧𝜓

(±1)
𝑛,01 . (4.3.12)

The solutions of equation (4.3.12) could in principle be found using the techniques described in sections
4.1.1 and 4.1.2, but will not be needed for the purposes of the project. With the first order corrections
now acquired, we may move on to calculating the resulting response due to the presence of both fields
by expanding the dipole moment. The inclusion of a static field introduces additional contributions to the
polarizability. Substituting the original expansion in equation (4.3.2) into the dipole moment then yields

p̃𝑛 = −⟨Ψ̃𝑛,00 + Ψ̃𝑛,10 + Ψ̃𝑛,01 + Ψ̃𝑛,11 + . . . |𝑧 | Ψ̃𝑛,00 + Ψ̃𝑛,10 + Ψ̃𝑛,01 + Ψ̃𝑛,11 + . . . ⟩ẑ. (4.3.13)

As before, we now group terms of equal perturbative order. The correction to the dipole moment of particular
interest in this section is p̃𝑛,11, meaning the correction linear in both perturbations. This grouping becomes

p̃𝑛,11 = −
[
⟨Ψ̃𝑛,00 |𝑧 | Ψ̃𝑛,11⟩ + ⟨Ψ̃𝑛,11 |𝑧 | Ψ̃𝑛,00⟩ + ⟨Ψ̃𝑛,01 |𝑧 | Ψ̃𝑛,10⟩ + ⟨Ψ̃𝑛,10 |𝑧 | Ψ̃𝑛,01⟩

]
ẑ

= −2Re
[
⟨Ψ̃𝑛,00 |𝑧 | Ψ̃𝑛,11⟩ + ⟨Ψ̃𝑛,10 |𝑧 | Ψ̃𝑛,01⟩

]
ẑ

= −
[
⟨𝜓𝑛 |𝑧 | 𝜓̃ (1)

𝑛,11⟩ + ⟨𝜓̃ (0)
𝑛,10 |𝑧 | 𝜓̃

(1)
𝑛,01⟩

]
EDCEAC cos(𝜔𝑡)ẑ + (𝜔 → −𝜔) , (4.3.14)
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where we in the last step have substituted the unperturbed eigenstate and corrections given in equations
(4.3.5), (4.3.8) and (4.3.11) and reduced. The corresponding polarizability induced with this response is
then conveniently expressed as

𝛼̃𝑛,11 (𝜔) = ⟨𝜓𝑛 |𝑧 | 𝜓̃ (1)
𝑛,11⟩ + ⟨𝜓̃ (0)

𝑛,10 |𝑧 | 𝜓̃
(1)
𝑛,01⟩ + (𝜔 → −𝜔) . (4.3.15)

This polarizability is called the first order electro-optic or Pockels polarizability and is effectively the first
order correction of the dynamic polarizability 𝛼̃𝑛,1 in response to the static field [Pedersen, 2024]. The
electro-optic effect is fundamentally a second order phenomenon [Boyd, 2008], so the static limit must be
the first hyperpolarizability given in equation (3.2.36). The expression given in equation (4.3.15) can be
brought to a more convenient form by employing a technique similar to the one used to write the third order
static energy correction in terms of first order information. We start by multiplying equation (4.3.6) through
by 𝜓̃ (1)

𝑛,11, equation (4.3.12) through by 𝜓 (1)
𝑛,01 and integrating both over R≥0 so that

⟨𝜓̃ (1)
𝑛,11 |𝐸𝑛 + 𝜔 − 𝐻̂0 |𝜓 (1)

𝑛,01⟩ = ⟨𝜓̃ (1)
𝑛,11 |𝑧 | 𝜓𝑛⟩, (4.3.16)

⟨𝜓 (1)
𝑛,01 |𝐸𝑛 + 𝜔 − 𝐻̂0 |𝜓̃ (1)

𝑛,11⟩ = ⟨𝜓 (1)
𝑛,01 |𝑧 | 𝜓̃

(0)
𝑛,10⟩ + ⟨𝜓 (1)

𝑛,01 |𝑧 | 𝜓
(1)
𝑛,01⟩. (4.3.17)

By conjugating equation (4.3.16), we may equate it to (4.3.17). This in turn shows that

⟨𝜓̃ (1)
𝑛,11 |𝑧 | 𝜓𝑛⟩ = ⟨𝜓 (1)

𝑛,01 |𝑧 | 𝜓̃
(0)
𝑛,10⟩ + ⟨𝜓 (1)

𝑛,01 |𝑧 | 𝜓
(1)
𝑛,01⟩. (4.3.18)

We may then substitute equation (4.3.18) into the electro-optic polarizability given in equation (4.3.15),
which then yields

𝛼̃𝑛,11 (𝜔) = 2Re⟨𝜓̃ (0)
𝑛,10 |𝑧 | 𝜓̃

(1)
𝑛,01⟩ + ⟨𝜓 (1)

𝑛,01 |𝑧 | 𝜓
(1)
𝑛,01⟩ + (𝜔 → −𝜔) . (4.3.19)

By relating 𝜓̃ (0)
𝑛,10 to the purely static first order correction 𝜓̃𝑛,1 then finally allows us to write

𝛼̃𝑛,11 (𝜔) = 2Re⟨𝜓̃𝑛,1 |𝑧 − 𝑍𝑛𝑛 | 𝜓̃ (1)
𝑛,1⟩ + ⟨𝜓 (1)

𝑛,1 |𝑧 − 𝑍𝑛𝑛 | 𝜓
(1)
𝑛,1⟩ + (𝜔 → −𝜔) , (4.3.20)

where we have substituted the purely dynamic correction 𝜓 (1)
𝑛,1 given in section 4.1. Equation (4.3.20)

provides a form very closely reminiscent of the first static hyperpolarizability as given in equation (3.2.35).
Even though the above expression only requires first order information, it is still a second order process and
hence is unusable for the basis expansion method because it requires the unbound-unbound matrix elements.
Interestingly, it is usable using the Sturmian expansion method and can in principle even be brought to closed
form [Pedersen, 2024]. To explain how, we consider the first integral given on the right-hand side of equation
(4.3.20). For the ground state, the first order purely static eigenstate correction is given in equation (3.1.50)
and upon substitution yields

⟨𝜓̃1,1 |𝑧 − 𝑍11 | 𝜓̃ (1)
1,1 ⟩ =

1
4
(1 − 𝛿)3 (2 − 𝛿) (3 − 2𝛿)2

(
⟨𝜓1 |𝑧 | 𝜓̃ (1)

1,1 ⟩ − 𝑍11⟨𝜓1 |𝜓̃ (1)
1,1 ⟩

)
(4.3.21)

1
2
(1 − 𝛿)

(
𝑍11⟨𝜓1

��𝑧2�� 𝜓̃ (1)
1,1 ⟩ − ⟨𝜓1

��𝑧3�� 𝜓̃ (1)
1,1 ⟩

)
.

The integrals given on the right-hand side of equation (4.3.21) can be calculated in the same manner as
those required for the linear polarizability in section 4.2 despite requiring higher order multipole moment
components, meaning J3,0

2−2𝛿 and J4,0
2−2𝛿 integrals. This is accomplished by repeated use of the recurrence

relations generated by equation (A.0.12) for the W. Gordon integrals. By reducing the J3,0
2−2𝛿 and J4,0

2−2𝛿
integrals down to J2,0

2−2𝛿 , J1,0
2−2𝛿 and J0,0

2−2𝛿 integrals then allows us to use the formulas derived in earlier
sections to compute the terms in equation (4.3.21). Next, we consider the second integral given in equation
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(4.3.20). Taking the Sturmian expansion representation of the purely dynamic first order correction given
in equation (4.1.20) and substituting it directly into the second integral yields

⟨𝜓 (1)
1,1 |𝑧 − 𝑍11 | 𝜓 (1)

1,1 ⟩ =
∞∑︁
𝑛=1

∞∑︁
𝑚=1

⟨𝜑𝑛 |𝑧 | 𝜓1⟩ ⟨𝜑𝑛 |𝑧 − 𝑍11 | 𝜑𝑚⟩ ⟨𝜑𝑚 |𝑧 | 𝜓1⟩
(1 −𝓃𝜅) (1 −𝓂𝜅) . (4.3.22)

The double series given in equation (4.3.22) reduces to a single series upon application of the integrals
derived in section 3.4, namely equation (3.4.22) and (3.4.25). The orthonormality between the Laguerre
polynomials ensure that the inner𝑚-sum can at most contain five non-zero terms. This ultimately allows the
expression to be reduced to a single, albeit complicated, series. Several attempts of finding a closed form
expression for 𝛼̃𝑛,11 (𝜔) was attempted but could not be found because the computational tasks involved
in reducing the expressions produced by equations (4.3.21) and (4.3.22) were too expensive. This was
even the case in the simplest 𝛿 = 0 case and hence the result reported in [Pedersen, 2024] could not
be reproduced. This is unfortunate in part because the closed-form expression involving hypergeometric
functions is required to capture proper continuum contributions, so an accurate polarizability spectrum
cannot be found simply by truncating the series’ given in equations (4.3.21) and (4.3.22). For the sake
completion, we include the expression provided in [Pedersen, 2024] here, which is given by

𝛼̃1,11 (𝜔) =
9
(
31 + 2𝜅2 − 𝜅4)
4(1 − 𝜅2)4 +

36
(
𝜅4 − 8𝜅2 − 1

)
(1 − 𝜅)5 (1 + 𝜅)6 (4.3.23)

×
[

2𝐹1

(
1, 1,

2𝜅 − 1
𝜅

,− (1 − 𝜅)2

4𝜅

)
− 2

]
+ (𝜔 → −𝜔) ,

where we again have 𝜅2 = 1 − 2𝜔. The expression very closely resembles the linear counterpart 𝛼̃1,1 (𝜔)
as given in equation (4.2.8). In order to plot the response, we again introduce the phenomenological line
broadening Γ through the complex frequency 𝜔 → 𝜔 + 𝑖Γ. The resulting plot is shown in Figure 4.7 below,
where we have also include the dynamic linear polarizability −𝛼̃1,1 (𝜔) for comparison.
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Figure 4.7: The dynamic electro-optic or Pockels polarizability 𝛼̃1,11 (𝜔) for the ground state of the Coulomb
potential is plotted as a function of the frequency of the applied field. The negative dynamic polarizability
−𝛼̃1,1 (𝜔) is plotted alongside for comparison. The real part is plotted in red, whilst the imaginary part
is plotted in green. The solid lines show the analytical expression obtained using the Sturmian expansion
and the horizontal dotted lines show the exact static limits provided by equations (3.2.34) and (3.2.36).
The phenomenological line broadening Γ = 0.01 is chosen. The magnitude of the electro-optic response
𝛼̃1,11 (𝜔) is roughly 10 times greater than the linear response −𝛼̃1,1 (𝜔). However, the 1 → 3 and 1 → 4
resonances are comparatively weaker for the electro-optic response.

As seen on Figure 4.7, we find that the static limit 𝛼̃1,11 (0) = 𝛼̃1,2 = −81/4 is accurately reproduced
in accordance with equation (3.2.36). The magnitude of the electro-optic response is roughly ten times
larger than the linear response 𝛼̃1,1 (𝜔). In comparison with the linear response, we find that the 1 → 3 and
1 → 4 resonances of the electro-optic response are visible but are comparatively weaker in magnitude with
respect to the main 1 → 2 resonance. The fundamental resonance structure remains the same. Similarly
with the linear polarizability, if the strength of the electrostatic perturbation is sufficiently strong, we will
find that higher-order corrections are required to accurately describe the response. The reason for this is
that the stronger electrostatic field may shift the resonances and hence dramatically increase the magnitude
of the response. This property will also be important for more advanced qubit control because the static
field can tune the frequencies at which transitions induced by the dynamic field can occur. This is relatively
easily accomplished on the electron-on-Helium qubit platform because the Stark shifts are significant even
for lower field strengths. This concludes the present chapter on the electrodynamic perturbation of the
electron-on-Helium qubit system.
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Chapter 5

Conclusion

We have throughout this thesis investigated the out-of-plane electrostatic and electrodynamic properties of
electrons bound to cryogenic substrates by image-charge induced potentials using a number of quantum
mechanical perturbation methods. The initial analysis of chapter two involved establishing the system of
interest and deriving an expression for the image-charge induced force F and subsequent Coulomb potential
𝑉 binding the electron to the cryogenic substrate using the method of images. Next, we moved to the
quantum mechanical picture and determined the energy eigenvalues 𝐸𝑛 and corresponding eigenstates 𝜓 by
constructing and then solving the time-independent Schrödinger equation with the derived image potential
for both the bound states 𝜓𝑛 and the unbound states 𝜓𝑘 . Using the Coulomb eigenstates, we then com-
puted the diagonal bound-bound 𝑍𝑛𝑛, off-diagonal bound-bound 𝑍𝑛𝑚 and bound-unbound dipole matrix
elements 𝑍𝑛𝑘 along with the corresponding oscillator strengths 𝑔𝑛𝑚, 𝑔𝑛𝑘 and oscillator strength moments
G𝑛,𝑝 . The calculations were subsequently verified by confirming that the Thomas-Reiche-Kuhn sum rule⨋
𝑗∈𝐼 𝑔𝑛 𝑗 = 1 holds. Moving forward, we then phenomenologically introduced the Kratzer potential 𝑉𝛿 as

a generalization of the Coulomb potential 𝑉 by means of the quantum defect parameter 𝛿, which in turn
allowed the energy eigenvalues 𝐸𝓃 to be fitted to experimental data. The correspondingly modified eigen-
states 𝜓 of the Kratzer potential 𝑉𝛿 were then determined, from which the various dipole matrix elements
𝑍𝓃𝓃, 𝑍𝓃𝓂 and 𝑍𝓃𝑘 were also generalized and the Thomas-Reiche-Kuhn sum rule

⨋
𝑗∈𝐼 𝑔𝑛 𝑗 = 1 reconfirmed.

With the mechanics of the electron system established, we then moved forward to chapter three, wherein
the electrostatic perturbation for the system 𝐻̂0 was presented and examined. We started by writing the
perturbed eigenstates 𝜓̃𝑛 and energy eigenvalues 𝐸̃𝑛 in terms of perturbative expansions in the electric
field strength E0, from which the framework of time-independent perturbation theory could then be in-
troduced. This included expressions for each energy correction 𝐸̃𝑛,𝑝 , the governing differential equations
for each eigenstate correction 𝜓̃𝑛,𝑝 and their respective normalization criteria. We subsequently described
two different procedures for determining these corrections, namely the basis expansion method and the
Dalgarno-Lewis approach, the latter of which provided exact, closed-form results. With the corrections
readily calculable to high perturbative order for both the Coulomb potential 𝑉 and Kratzer potential 𝑉𝛿 , we
applied the presented techniques and derived a number of lower-order energy correction expressions 𝐸̃𝑛,1,
𝐸̃𝑛,2, 𝐸̃𝑛,3, 𝐸̃𝑛,4 for arbitrary principle quantum number 𝑛. This in turn also allowed the first few static
polarizabilities 𝛼̃𝑛,1 and hyperpolarizabilities 𝛼̃𝑛,2, 𝛼̃𝑛,3 to be determined. With the energy corrections 𝐸̃𝑛,𝑝

calculated, it became clear that the perturbative expansion of the energy diverged. As a means of regular-
izing it, we introduced the hypergeometric approximant 𝒸12𝐹1 (𝒸2,𝒸3,𝒸4,𝒸5E0) that would also allow us
to extract the ionization rates Γ𝑛. The accuracy of the chosen approximant was then compared with a nu-
merical approach involving a complex-scaled Sturmian basis function expansion

∑
𝑚 𝑐𝑚𝜑𝑚. The resulting

calculations then showed good agreement between both approaches for the Stark-shifted energy 𝐸̃𝑛 and the
ionization rates Γ𝑛. A re-estimate of the quantum defect parameter 𝛿 was also made by fitting experimen-
tal data and the dependence of the Stark-shifted energy 𝐸̃𝑛 on the quantum defect parameter 𝛿was also tested.
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In the fourth and final chapter, we instead introduced an electrodynamic perturbation in the form of a
harmonic electric field E0 cos𝜔𝑡. The time-varying perturbation in turn required a new perturbative frame-
work based on the time-dependent Schrödinger equation, which was subsequently introduced by writing
the full eigenstates Ψ̃𝑛 in a perturbative expansion. Like with the electrostatic perturbation, we introduced
two methods for determining the eigenstate corrections Ψ̃𝑛,𝑝 , which in the electrodynamic case was the
basis expansion method and the Sturmian expansion approach. We then employed these two methods to
evaluate several electrodynamic response properties of the system under an external field. The first of these
was the linear dynamic polarizability 𝛼̃𝑛,1 (𝜔), which we determined in closed form for the ground state
and first excited for both the Coulomb potential 𝑉 and Kratzer potential 𝑉𝛿 using the Sturmian expansion
approach. The analytical results were then checked against the numerical approach provided by the basis
expansion method, which showed good agreement and accurately reproduced the polarizability 𝛼̃𝑛,1 from
the previous chapter in the static limit. Finally, we also introduced a static electric field in addition to the
dynamic perturbation, which in turn yielded electro-optic responses. The lowest order polarizability of
these responses, the Pockels polarizability 𝛽𝑛,1 (𝜔), was subsequently also shown in closed form for the
Coulomb ground state and produced the correct static limit.

The analysis of the electrostatic and electrodynamic properties of the proposed qubit platform reveal several
promising characteristics. The weakly bound electron states induced by the image-charge effect exhibit
great sensitivity to electric field perturbations, which in turn facilitates a high degree of external control; a
property that would be important for real-world applications. In the case of electrostatic perturbations, the
sensitivity of the electron states is exemplified by the fact that the ionization rates and binding energies are
comparable at remarkably low field strengths, and in addition, that the ionization rates increase significantly
with rising principle quantum number. The ease at which ionization is induced then allows it to be
exploited for practical applications such as state-selective qubit read-out schemes. The application of
dynamic perturbations enables for additional qubit manipulation such as induced state transitions, which are
characterized by the dynamic, frequency-dependent polarizabilities. Introducing both static and dynamic
perturbations simultaneously provides more advanced qubit manipulation because the static field can shift the
frequencies at which transitions are induced by the dynamic field. Tuning the static fields is relatively easily
accomplished because the qubits’ sensitivity to Stark shifts. This speaks to the degree in which the electrons
can be electrically controlled and their viability as a potential qubit platform. The presented analysis
may be extended by investigating the dynamic non-linear response in more detail. These contributions
will inevitably become more important once the strength of the electric field is sufficiently strong. This
includes the not only higher order corrections to the purely dynamic perturbation, where higher harmonic
generation comes into play, but also higher order corrections to the electro-optic effect. The next correction
in that case would be the Kerr electro-optic effect. In the present framework, this would require dealing
with the problems involving the unbound-unbound matrix elements. The analysis may also be generalized
further to concern problems outside out-of-plane bound states, such as qubit-qubit interaction and the in-
plane dynamics caused by the embedded electrodes, which would shine further light on capabilities of the
electron-on-Helium platform.

75



Bibliography

[Abramowitz and Stegun, 1964] Abramowitz, M. and Stegun, I. A. (1964). Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York, ninth dover printing,
tenth gpo printing edition.

[Antonsen, 1999] Antonsen, F. (1999). Sturmian basis functions for the harmonic oscillator. Physical
Review A, 60(2):812–826.

[Benioff, 1980] Benioff, P. (1980). The computer as a physical system: A microscopic quantum mechanical
hamiltonian model of computers as represented by turing machines. Journal of Statistical Physics,
22:563–591.

[Bernardini et al., 2023] Bernardini, F., Chakraborty, A., and Ordóñez, C. (2023). Quantum computing
with trapped ions: a beginner’s guide.

[Bethe and Salpeter, 1957] Bethe, H. A. and Salpeter, E. E. (1957). Quantum Mechanics of One- and
Two-Electron Atoms. Springer-Verlag Berlin Heidelberg.

[Boyd, 2008] Boyd, R. W. (2008). Nonlinear Optics, Third Edition. Academic Press, Inc., USA, 3rd edition.

[Bruschi et al., 1966] Bruschi, L., Maraviglia, B., and Moss, F. E. (1966). Measurement of a barrier for the
extraction of excess electrons from liquid helium. Phys. Rev. Lett., 17:682–684.

[Burden et al., 2015] Burden, R., Faires, J., and Burden, A. (2015). Numerical Analysis. Cengage Learning.

[Chen et al., 2022] Chen, Q., Martin, I., Jiang, L., and Jin, D. (2022). Electron spin coherence on a solid
neon surface.

[Chuang et al., 1998] Chuang, I. L., Gershenfeld, N., and Kubinec, M. (1998). Experimental implementa-
tion of fast quantum searching. Phys. Rev. Lett., 80:3408–3411.

[Cole and Cohen, 1969] Cole, M. W. and Cohen, M. H. (1969). Image-potential-induced surface bands in
insulators. Phys. Rev. Lett., 23:1238–1241.

[Conway, 2015] Conway, J. T. (2015). A lagrangian method for deriving new indefinite integrals of special
functions.

[Conway, 2021] Conway, J. T. (2021). Indefinite integrals for some orthogonal polynomials obtained using
integrating factors. Integral Transforms and Special Functions, 32(1):1–13.

[Dalgarno and Lewis, 1955] Dalgarno, A. and Lewis, J. T. (1955). The Exact Calculation of Long-Range
Forces between Atoms by Perturbation Theory. Proceedings of the Royal Society of London Series A,
233(1192):70–74.

[Davies, 2002] Davies, B. (2002). Integral Transforms and Their Applications. Texts in Applied Mathe-
matics. Springer New York.

76



Bibliography Aalborg University

[de Wolf, 2023] de Wolf, R. (2023). Quantum computing: Lecture notes.

[Deutsch, 1985] Deutsch, D. (1985). Quantum theory, the Church-Turing principle and the universal
quantum computer. Proceedings of the Royal Society of London Series A, 400(1818):97–117.

[Deutsch and Jozsa, 1992] Deutsch, D. and Jozsa, R. (1992). Rapid Solution of Problems by Quantum
Computation. Proceedings of the Royal Society of London Series A, 439(1907):553–558.

[Dykman and Platzman, 2000] Dykman, M. and Platzman, P. (2000). Quantum computing using electrons
floating on liquid helium. Fortschritte der Physik, 48(9–11):1095–1108.

[Dykman et al., 2003] Dykman, M. I., Platzman, P. M., and Seddighrad, P. (2003). Qubits with electrons
on liquid helium. Physical Review B, 67(15).

[Feynman, 1982] Feynman, R. P. (1982). Simulating physics with computers. 21(6):467–488.

[Flügge, 1999] Flügge, S. (1999). Practical Quantum Mechanics. Springer.

[Gill et al., 2025] Gill, S. S., Cetinkaya, O., Marrone, S., Claudino, D., Haunschild, D., Schlote, L., Wu,
H., Ottaviani, C., Liu, X., Machupalli, S. P., Kaur, K., Arora, P., Liu, J., Farouk, A., Song, H. H., Uhlig,
S., and Ramamohanarao, K. (2025). Quantum computing: Vision and challenges.

[Gordon, 1929] Gordon, W. (1929). Zur berechnung der matrizen beim wasserstoffatom. Annalen der
Physik, 394:1031 – 1056.

[Grimes et al., 1976] Grimes, C. C., Brown, T. R., Burns, M. L., and Zipfel, C. L. (1976). Spectroscopy of
electrons in image-potential-induced surface states outside liquid helium. Phys. Rev. B, 13:140–147.

[Grotch, 1981] Grotch, H. (1981). Comment on radiative corrections to the energy levels of "murium": An
electron bound by its image charge to a wall. Phys. Rev. A, 24:1120–1122.

[Harvey, 2022] Harvey, S. P. (2022). Quantum dots/spin qubits.

[Herbst and Simon, 1978] Herbst, I. W. and Simon, B. (1978). Stark effect revisited. Phys. Rev. Lett.,
41:67–69.

[Huang et al., 2020] Huang, H.-L., Wu, D., Fan, D., and Zhu, X. (2020). Superconducting quantum
computing: a review. Science China Information Sciences, 63(8).

[IBM Quantum, 2023] IBM Quantum (2023). Ibm quantum roadmap: 2025 and beyond. https://www.
ibm.com/quantum/blog/ibm-quantum-roadmap-2025. Accessed: 2025-05-18.

[Jennings et al., 2024] Jennings, A., Zhou, X., Grytsenko, I., and Kawakami, E. (2024). Quantum comput-
ing using floating electrons on cryogenic substrates: Potential and challenges. Applied Physics Letters,
124(12):120501.

[Ji et al., 2024] Ji, J.-B., Ueda, K., Han, M., and Wörner, H. J. (2024). Analytical expression for continuum-
continuum transition amplitude of hydrogen-like atoms with angular-momentum dependence.

[Kawakami et al., 2023] Kawakami, E., Chen, J., Benito, M., and Konstantinov, D. (2023). Blueprint for
quantum computing using electrons on helium. Physical Review Applied, 20(5).

[Kibble and Berkshire, 2004] Kibble, T. and Berkshire, F. (2004). Classical Mechanics (5th Edition).
World Scientific Publishing Company.

77

https://www.ibm.com/quantum/blog/ibm-quantum-roadmap-2025
https://www.ibm.com/quantum/blog/ibm-quantum-roadmap-2025


Group 5.323C Bibliography

[Lambert and Richards, 1981] Lambert, D. K. and Richards, P. L. (1981). Far-infrared and capacitance
measurements of electrons on liquid helium. Phys. Rev. B, 23:3282–3290.

[Landau and Lifshitz, 1965] Landau, L. D. and Lifshitz, E. M. (1965). Quantum Mechanics: Non-
relativistic Theory. Pergamon Press.

[Landau and Lifshitz, 1984] Landau, L. D. and Lifshitz, E. M. (1984). Electrodynamics of Continuous
Media. Pergamon, New York.

[Lide, 2005] Lide, D. R., editor (2005). CRC Handbook of Chemistry and Physics, Internet Version 2005.
CRC Press, Boca Raton, FL. http://www.hbcpnetbase.com.

[Lloyd, 1996] Lloyd, S. (1996). Universal quantum simulators. Science, 273(5278):1073–1078.

[Lyon, 2006] Lyon, S. A. (2006). Spin-based quantum computing using electrons on liquid helium.

[Mera et al., 2015] Mera, H., Pedersen, T. G., and Nikolić, B. K. (2015). Nonperturbative quantum physics
from low-order perturbation theory. Phys. Rev. Lett., 115:143001.

[Mera et al., 2018] Mera, H., Pedersen, T. G., and Nikolić, B. K. (2018). Fast summation of divergent series
and resurgent transseries from meijer- <mml:math xmlns:mml="http://www.w3.org/1998/math/mathml"
display="inline"><mml:mi>g</mml:mi></mml:math> approximants. Physical Review D, 97(10).

[Nieto, 2000] Nieto, M. M. (2000). Electrons above a helium surface and the one-dimensional rydberg
atom. Phys. Rev. A, 61:034901.

[Pedersen, 2022] Pedersen, T. G. (2022). Electrical, optical and magnetic properties of nanostructures.
N/A.

[Pedersen, 2023] Pedersen, T. G. (2023). Coulomb-zeeman-stark problem in two dimensions. Phys. Rev.
A, 107:022804.

[Pedersen, 2024] Pedersen, T. G. (2024). Unpublished. N/A.

[Pedersen et al., 2016] Pedersen, T. G., Mera, H., and Nikolić, B. K. (2016). Stark effect in low-dimensional
hydrogen. Phys. Rev. A, 93:013409.

[Pedrotti et al., 2018] Pedrotti, F. L., Pedrotti, L. M., and Pedrotti, L. S. (2018). Introduction to optics.
Cambridge University Press, Cambridge, third edition. / frank l. pedrotti, leno m. pedrotti, leno s. pedrotti.
edition.

[Romero and Milburn, 2024] Romero, J. and Milburn, G. (2024). Photonic quantum computing.

[Saad, 2014] Saad, N. (2014). On w. gordon’s integral (1929) and related identities.

[Sakurai and Napolitano, 2017] Sakurai, J. and Napolitano, J. (2017). Modern Quantum Mechanics. Cam-
bridge University Press.

[Seaton, 1958] Seaton, M. J. (1958). The quantum defect method. Monthly Notices of the Royal Astronom-
ical Society, 118(5):504–518.

[Shakeshaft and Spruch, 1980] Shakeshaft, R. and Spruch, L. (1980). Radiative corrections to the energy
levels of "murium," an electron bound by its image charge to a wall. Phys. Rev. A, 22:811–817.

78

http://www.hbcpnetbase.com


Bibliography Aalborg University

[Shankar, 1994] Shankar, R. (1994). Principles of Quantum Mechanics. Springer, 2nd edition.

[Shor, 1997] Shor, P. W. (1997). Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509.

[Simon, 1997] Simon, D. (1997). On the power of quantum computation. Proceedings of the 35th Annual
IEEE Symposium on Foundations of Computer Science, 26.

[Susskind and Jensen, 1988] Susskind, S. M. and Jensen, R. V. (1988). Numerical calculations of the
ionization of one-dimensional hydrogen atoms using hydrogenic and sturmian basis functions. Phys.
Rev. A, 38:711–728.

[Vandersypen et al., 2001] Vandersypen, L. M. K., Steffen, M., Breyta, G., Yannoni, C. S., Sherwood,
M. H., and Chuang, I. L. (2001). Experimental realization of shor’s quantum factoring algorithm using
nuclear magnetic resonance. Nature, 414(6866):883–887.

[Zhahir et al., 2023] Zhahir, A., Mohd, S., M Shuhud, M. I., Idrus, B., Zainuddin, H., Mohamad Jan, N.,
and Wahiddin, M. R. (2023). Quantum computing and its application. International Journal of Advanced
Research in Technology and Innovation.

[Zhou et al., 2022] Zhou, X., Koolstra, G., Zhang, X., Yang, G., Han, X., Dizdar, B., Li, X., Divan, R.,
Guo, W., Murch, K. W., Schuster, D. I., and Jin, D. (2022). Single electrons on solid neon as a solid-state
qubit platform. Nature, 605(7908):46–50.

79



Appendix A

Hypergeometric Functions & Identities

An important class of functions that see numerous applications in quantum mechanics are the hypergeometric
functions. The general case of the hypergeometric function, which we denote 𝑝𝐹𝑞 , is defined in terms of an
analytical continuation of the power series

𝑝𝐹𝑞 (𝑎1, 𝑎2, . . . , 𝑎𝑝 , 𝑏1, 𝑏2, . . . , 𝑏𝑞 , 𝑥) =
∞∑︁
𝑘=0

∏𝑝

𝑗=1 (𝑎 𝑗 )𝑘∏𝑞

𝑙=1 (𝑏𝑙)𝑘
𝑥𝑘

𝑘!

=

∞∑︁
𝑘=0

(𝑎1)𝑘 (𝑎2)𝑘 . . . (𝑎𝑝)𝑘
(𝑏1)𝑘 (𝑏2)𝑘 . . . (𝑏𝑞)𝑘

𝑥𝑘

𝑘!
, (A.0.1)

where 𝑝, 𝑞 ∈ Z>0 and (𝑥)𝑛 = Γ(𝑥 + 𝑛)/Γ(𝑥) is the Pochhammer symbol defined in terms of the gamma
function Γ(𝑥). Two particularly important cases for the purposes of this project are the Kummer confluent
hypergeometric function 1𝐹1 (𝑎, 𝑏, 𝑥) and the Gauss hypergeometric function 2𝐹1 (𝑎, 𝑏, 𝑐, 𝑥). An important
property of the Pochhammer symbol (−𝑚)𝑛 is that it terminates for 0 < 𝑚 < 𝑛 and 𝑚 ∈ Z>0. This
truncates the hypergeometric functions into polynomials of finite order. An important class of polynomials
that the hypergeometric functions can generate, are the associated Laguerre polynomials 𝐿 (𝑎)

𝑏
(𝑥), which are

solutions to the differential equation given by

𝑥
d2𝑦

d𝑥2 + (𝑎 + 1 − 𝑥) d𝑦
d𝑥

+ 𝑏𝑦 = 0, (A.0.2)

where 𝑎, 𝑏 ∈ C are two constants. The function 𝑦 = 𝐿
(𝑎)
𝑏

(𝑥) that solves equation (A.0.2) above may be
expressed as

𝐿
(𝑎)
𝑏

(𝑥) =
𝑏∑︁

𝑘=0

(
𝑎 + 𝑏
𝑏 − 𝑘

)
(−𝑥)𝑘
𝑘!

, (A.0.3)

where
(𝑎
𝑏

)
= Γ(𝑎 + 1)/Γ(𝑎 − 𝑏 + 1)Γ(𝑏 + 1) is the generalized binomial coefficient expressed in terms of

gamma functions. The associated Laguerre polynomials form an orthogonal set using the weight 𝑥𝑎e−𝑥 ,
meaning ∫ ∞

0
𝑥𝑎e−𝑥𝐿 (𝑎)

𝑚 (𝑥)𝐿 (𝑎)
𝑛 (𝑥)d𝑥 = (𝑛 + 1)𝑎𝛿𝑚𝑛, (A.0.4)

where 𝛿𝑚𝑛 is the Kronecker delta. The Laguerre polynomials satisfy a number of functional identities that
allow us to shift the parameters 𝑎, 𝑏. One such identity reads

𝑥𝐿
(𝑎)
𝑛 (𝑥) = (2𝑛 + 𝑎 + 1)𝐿 (𝑎)

𝑛 (𝑥) − (𝑛 + 1)𝐿 (𝑎)
𝑛+1 (𝑥) − (𝑛 + 𝑎)𝐿 (𝑎)

𝑛−1 (𝑥). (A.0.5)

The Laguerre polynomials can up to a constant be represented as a special case of the Kummer confluent
hypergeometric function 1𝐹1 (−𝑏, 1 + 𝑎, 𝑥). In particular, we find that

𝐿
(𝑎)
𝑏

(𝑥) = (1 + 𝑎)𝑏
Γ(1 + 𝑏) 1𝐹1 (−𝑏; 1 + 𝑎, 𝑥). (A.0.6)
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The associated Laguerre polynomials and/or the Kummer confluent hypergeometric functions frequently
appear in calculations involving the radial part of the eigenstates within quantum mechanics. Examples
include calculating dipole matrix elements and normalization constants for eigenstates, which will be
done numerous times during this project. For convenience therefore, the remaining part of this section
will described various differentiation and integral identities involving these functions. The first of these
identities is the derivative of the hypergeometric function, which can be shown to be

d
d𝑥 𝑝𝐹𝑞 (𝑎1, . . . , 𝑎𝑝 , 𝑏1, . . . , 𝑏𝑞 , 𝑥) =

𝑎1 . . . 𝑎𝑝

𝑏1 . . . 𝑏𝑞
𝑝𝐹𝑞 (𝑎1 + 1, . . . , 𝑎𝑝 + 1, 𝑏1 + 1, . . . , 𝑏𝑞 + 1, 𝑥). (A.0.7)

A similar formula for integration can be found from the above equation. We now move onto a number of
integral identities, which will be used extensively. All the integrals of this type relevant to this project fall
under the so-called W. Gordon integral, which we may express as

J𝜎,𝑝
𝜚 (𝛼1, 𝛼2; 𝛾, 𝛽1, 𝛽2) =

∫ ∞

0
𝑥 𝜚+𝜎−1e−𝛾𝑥1𝐹1 (𝛼1; 𝜚; 𝛽1𝑥)1𝐹1 (𝛼2; 𝜚 − 𝑝; 𝛽2𝑥)d𝑥. (A.0.8)

This integral was originally studied for similar applications in 1929 by W. Gordon, see [Gordon, 1929]. A
summary of the results needed for this thesis are described in the appendix of [Landau and Lifshitz, 1965],
which we include here. For the purposes of thesis, we only consider a few cases of the general integral. The
first of these is

J𝜎,𝑝
𝜚

(
𝛼1, 𝛼2;

𝛽1 + 𝛽2
2

, 𝛽1, 𝛽2

)
=

∫ ∞

0
𝑥 𝜚+𝜎−1e−

𝛽1+𝛽2
2 𝑥

1𝐹1 (𝛼1; 𝜚; 𝛽1𝑥)1𝐹1 (𝛼2; 𝜚 − 𝑝; 𝛽2𝑥)d𝑥

≡ J𝜎,𝑝
𝜚 (𝛼1, 𝛼2, 𝛽1, 𝛽2) . (A.0.9)

A general closed-form expression for the integral given in equation (A.0.9) above does exist, but is typically
too complex to be used conveniently. Instead, we use a set of recursive relations that reduce the general
integral into a number of simpler integrals of the 𝜎 = 𝑝 = 0 case, which may be evaluated using

J0,0
𝜚 (𝛼1, 𝛼2, 𝛽1, 𝛽2) =

∫ ∞

0
𝑥 𝜚−1e−

𝛽1+𝛽2
2 𝑥

1𝐹1 (𝛼1; 𝜚; 𝛽1𝑥)1𝐹1 (𝛼2; 𝜚; 𝛽2𝑥)d𝑥

=
2𝜚Γ(𝜚) (𝛽1 + 𝛽2)𝛼1+𝛼2− 𝜚

(𝛽2 − 𝛽1)𝛼1 (𝛽1 − 𝛽2)𝛼2 2𝐹1

(
𝛼1, 𝛼2, 𝜚,

−4𝛽1𝛽2

(𝛽2 − 𝛽1)2

)
. (A.0.10)

The above identity can be derived by substituting the contour integral representation of the second 1𝐹1

series, interchanging order of integration and applying an appropriate substitution. To reduce the general
integral given in equation (A.0.8), we first lower the 𝑝-index using

J𝜎,𝑝
𝜚 (𝛼1, 𝛼2, 𝛽1, 𝛽2) =

𝜚 − 1
𝛽1

(
J𝜎,𝑝−1
𝜚−1 (𝛼1, 𝛼2, 𝛽1, 𝛽2) − J𝜎,𝑝−1

𝜚−1 (𝛼1 − 1, 𝛼2, 𝛽1, 𝛽2)
)
. (A.0.11)

Once 𝑝 = 0, we can then reduce the 𝜎-index using

J𝜎+1,0
𝜚 (𝛼1, 𝛼2, 𝛽1, 𝛽2) =

4
𝛽2

1 − 𝛽
2
2

{ (
1
2
𝜚(𝛽1 − 𝛽2) − 𝛽1𝛼1 + 𝛽2 (𝛼2 − 𝜎)

)
J𝜎,0
𝜚 (𝛼1, 𝛼2, 𝛽1, 𝛽2) (A.0.12)

+ 𝜎 (𝜚 − 1 + 𝜎 − 2𝛼2) J𝜎−1,0
𝜚 (𝛼1, 𝛼2, 𝛽1, 𝛽2) + 2𝛼2𝜎J𝜎−1,0

𝜚 (𝛼1, 𝛼2 + 1, 𝛽1, 𝛽2)
}
.

These recurrence relations can be derived by considering the governing differential equation of the radial
eigenfunctions of the Hydrogen atom and manipulating it using various functional relations of the 1𝐹1

function. Two particularly important cases of equation (A.0.12) are the 𝜎 = 0 case given by

J1,0
𝜚 (𝛼1, 𝛼2, 𝛽1, 𝛽2) =

4A
𝛽2

1 − 𝛽
2
2

J0,0
𝜚 (𝛼1, 𝛼2, 𝛽1, 𝛽2) (A.0.13)
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and the 𝜎 = 1 case given by

J2,0
𝜚 (𝛼1, 𝛼2, 𝛽1, 𝛽2) =

4
𝛽2

1 − 𝛽
2
2

{
(A − 𝛽2) J1,0

𝜚 (𝛼1, 𝛼2, 𝛽1, 𝛽2) + (𝜚 − 2𝛼2) J0,0
𝜚 (𝛼1, 𝛼2, 𝛽1, 𝛽2) (A.0.14)

+ 2𝛼2J0,0
𝜚 (𝛼1, 𝛼2 + 1, 𝛽1, 𝛽2)

}
,

where we for convenience have defined the parameter A = 1
2 𝜚(𝛽1 − 𝛽2) − 𝛽1𝛼1 + 𝛽2𝛼2. There exists a

number of useful special cases of the general integral given in equation (A.0.8). One particular example
that will be used in this thesis is reported in [Saad, 2014], where 𝑝 = 0, 𝛼1 = 𝛼2 = −𝑛 for 𝑛 ∈ Z>0 and
𝛽1 = 𝛽2 = 𝛾 such that

J𝜎,0
𝜚 (−𝑛,−𝑛; 𝛽, 𝛽, 𝛽) =

∫ ∞

0
𝑥 𝜚+𝜎−1e−𝛽𝑥 [1𝐹1 (−𝑛; 𝜚; 𝛽𝑥)]2 d𝑥

=
Γ(𝜚 + 𝜎)𝑛!
𝛽𝜚+𝜎 (𝜚)𝑛 3𝐹2 (−𝑛,−𝜎, 1 + 𝜎, 𝜚, 1, 1). (A.0.15)

Despite being a 3𝐹2 series, we can evaluate it in closed form because it truncates like the 2𝐹1 series above.
In addition, because it has unit argument, it typically simplifies greatly. Another special case, which is
provided in [Landau and Lifshitz, 1965], is the 𝛼2 = 0 case and reads

J𝜎,𝑝
𝜚 (𝛼1, 0; 𝛾, 𝛽1, 𝛽2) =

∫ ∞

0
𝑥 𝜚+𝜎−1e−𝛾𝑥1𝐹1 (𝛼1; 𝜚; 𝛽1𝑥)d𝑥

=
Γ(𝜚 + 𝜎)
𝛾 𝜚+𝜎 2𝐹1

(
𝛼1, 𝜚 + 𝜎, 𝜚,

𝛽1
𝛾

)
. (A.0.16)

Typical applications of equation (A.0.16) used in this project will allow substitutions that reduce the 2𝐹1

function significantly similarly to the 3𝐹2 function in equation (A.0.15).
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Coulomb Wave Functions & Identities

The Coulomb wave functions are a pair of functions that arise when studying the unbound or continuum
eigenstates of a particle subject to a Coulomb-like potential. Under the appropriate substitutions, the
corresponding Schrödinger equation can be written as

d2𝑦

d𝑥2 +
{
1 − 2𝜂

𝑥
− ℓ (ℓ + 1)

𝑥2

}
𝑦 = 0, (B.0.1)

where ℓ, 𝜂 ∈ R are real parameters. The parameter ℓ corresponds to the angular moment quantum number
and 𝜂 = 1/𝑎0𝑘 , where 𝑎0 and 𝑘 are the Bohr radius and wavenumber, respectively. In this context, the
independent variable is 𝑥 = 𝑘𝑟 , where 𝑟 is the radial coordinate. The Schrödinger equation written above
is a second-order linear differential equation to which there exists two linearly independent solutions. The
first of these solutions is denoted 𝑦 = 𝐹ℓ,𝜂 and is regular at the origin. Specifically, it goes as 𝐹ℓ,𝜂 ∼ 𝑥ℓ+1

for 𝑥 near zero. The second solution is denoted 𝑦 = 𝐺ℓ,𝜂 and is irregular at the origin, meaning 𝐺ℓ,𝜂 ∼ 𝑥−ℓ

for 𝑥 near zero. For the purposes of this thesis, we are only interested in the regular solution 𝐹ℓ,𝜂 , which
may be expressed as

𝐹ℓ,𝜂 = 𝑁ℓ,𝜂𝑥
ℓ+1e±𝑖𝑥1𝐹1 (1 + ℓ ± 𝑖𝜂, 2 + 2ℓ,∓2𝑖𝑥) , (B.0.2)

where 𝑁ℓ,𝜂 is a normalization parameter. Bound eigenstates are square-integrable functions on R+ and
hence can be normalized according to the condition ⟨𝜓𝑛 |𝜓𝑚⟩ = 𝛿𝑛𝑚, where 𝛿𝑛𝑚 is the Kronecker delta. It
is clear from equation (B.0.2) that 𝑁ℓ,𝜂 cannot be chosen such that 𝐹ℓ,𝜂 satisfies this condition. Instead, the
unbound eigenstates are normalized on the "𝑘-scale" or 𝛿-normalized according to ⟨𝜓𝑘′ |𝜓𝑘⟩ = 𝛿(𝑘 ′ − 𝑘),
where 𝛿(𝑘 ′ − 𝑘) is the Dirac delta function. In this section, we outline a procedure presented in [Susskind
and Jensen, 1988] that allows the determination of the normalization parameter for the regular Coulomb
potential given in equation (2.1.27), where unbound states satisfy(

−1
2

d2

d𝑧2 − 1
𝑧

)
𝜓𝑘 =

1
2
𝑘2𝜓𝑘 , for 𝜓𝑘 = N𝑘𝑧e−𝑖𝑘𝑧1𝐹1

(
1 + 𝑖

𝑘
, 2, 2𝑖𝑘𝑧

)
, (B.0.3)

which corresponds to ℓ = 0 and 𝜂 = −1/𝑘 . In practice, the normalization condition may be enforced by
scaling the asymptotic behaviour of the eigenstates appropriately for large 𝑥. To do so, we start by taking
two copies of the differential equation given in equation (B.0.3). The first copy is for wavenumber 𝑘 and the
second is for wavenumber 𝑘 ′. We now multiply the first copy through by 𝜓★

𝑘′ . In addition, we conjugate the
second copy and multiply through by 𝜓𝑘 so that

−1
2

d2𝜓𝑘

d𝑧2 𝜓
★
𝑘′ −

1
𝑧
𝜓𝑘𝜓

★
𝑘′ =

1
2
𝑘2𝜓𝑘𝜓

★
𝑘′ , (B.0.4)

−1
2
𝜓𝑘

d2𝜓★
𝑘′

d𝑧2 − 1
𝑧
𝜓𝑘𝜓

★
𝑘′ =

1
2
𝑘 ′2𝜓𝑘𝜓

★
𝑘′ . (B.0.5)

We now subtract equation (B.0.5) from equation (B.0.4). The resulting expression is then integrated over
[0, 𝐿] for some real 𝐿 > 0, which yields

(𝑘 ′2 − 𝑘2)
∫ 𝐿

0
𝜓𝑘𝜓

★
𝑘′d𝑧 =

∫ 𝐿

0
𝜓𝑘

d2𝜓★
𝑘′

d𝑧2 d𝑧 −
∫ 𝐿

0

d2𝜓𝑘

d𝑧2 𝜓
★
𝑘′d𝑧. (B.0.6)
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We now apply integration by parts to both integrals on the right-hand side in such a way that the second
order derivatives are reduced to first order. Reducing then shows

(𝑘 ′2 − 𝑘2)
∫ 𝐿

0
𝜓𝑘𝜓

★
𝑘′d𝑧 =

[
𝜓𝑘

d𝜓★
𝑘′

d𝑧
− 𝜓★

𝑘′
d𝜓𝑘

d𝑧

]𝐿
0
+

∫ 𝐿

0

(d𝜓★
𝑘′

d𝑧
d𝜓𝑘

d𝑧
− d𝜓𝑘

d𝑧
d𝜓★

𝑘′

d𝑧

)
d𝑧

=

[
𝜓𝑘

d𝜓★
𝑘′

d𝑧
− 𝜓★

𝑘′
d𝜓𝑘

d𝑧

]
𝑧=𝐿

, (B.0.7)

where the lower bound on the first term on the right-hand side goes to zero because of the Dirichlet boundary
conditions. We eventually want to let 𝐿 → ∞ so that the integral on the left-hand side becomes the inner
product ⟨𝜓𝑘′ |𝜓𝑘⟩. The right-hand side will then only depend on the behaviour of 𝜓𝑘 for large 𝑧. The trick
now is to substitute the asymptotic representation of 𝜓𝑘 for large 𝑧 into the right-hand side and then let
𝐿 → ∞. The asymptotic representation of the Coulomb wave functions are reported in the literature, see
for instance [Abramowitz and Stegun, 1964]. For this particular eigenstate, we find

𝜓𝑘 ∼ −
√

2𝜋N𝑘e−𝜋/2𝑘

𝑘
��Γ(1 − 𝑖𝑘−1)

�� sin 𝜃𝑘 , for 𝜃𝑘 = 𝑘𝑧 + 𝑘−1 ln(2𝑘𝑧) + arg Γ(1 − 𝑖𝑘−1). (B.0.8)

We now briefly provide an outline of how this representation is derived, which follows an approach given
in an appendix in [Susskind and Jensen, 1988]. We start by returning to equation (B.0.3) and solving the
problem again in the momentum-space representation. Accordingly, the eigenstates 𝜓𝑘 (𝑝) simply are the
Fourier transform of the position space eigenstates 𝜓𝑘 (𝑥), meaning 𝜓𝑘 (𝑝) = F {𝜓𝑘 (𝑥)} (𝑝). They can be
shown to be

𝜓𝑘 (𝑝) =
1

√
2𝜋

∫ ∞

−∞
𝜓𝑘 (𝑧)e−𝑖 𝑝𝑧d𝑧

=
N𝑘

𝑝2 − 𝑘2

(
𝑝 + 𝑘
𝑝 − 𝑘

) 𝑖/𝑘
. (B.0.9)

The trick now is to apply Watson’s lemma, see [Davies, 2002], which allows us to extract an asymptotic
representation of 𝜓𝑘 (𝑥) from its Laplace transform 𝜓𝑘 (𝑠) = L {𝜓𝑘 (𝑥)} (𝑠). The Laplace transform is
obtained directly from Fourier transform by using the relation L {𝜓𝑘 (𝑥)} (𝑠) =

√
2𝜋F {𝜓𝑘 (𝑥)} (−𝑖𝑠),

which applies in this case because of the Dirichlet boundary conditions. Hence

𝜓𝑘 (𝑠) =
√

2𝜋F {𝜓𝑘 (𝑥)} (−𝑖𝑠)

=
−
√

2𝜋N𝑘

𝑠2 + 𝑘2

(
𝑠 + 𝑖𝑘
𝑠 − 𝑖𝑘

) 𝑖/𝑘
. (B.0.10)

We now expand 𝜓𝑘 (𝑠) near its branch points 𝑠 = ±𝑖𝑘 and apply Watson’s Lemma, which can be shown
to eventually yield equation (B.0.8). We now substitute the asymptotic representation back into equation
(B.0.7) and taking 𝐿 → ∞, which yields∫ ∞

0
𝜓𝑘𝜓

★
𝑘′d𝑧 =

(𝑘 ′2 − 𝑘2)−1N★
𝑘′N𝑘e−

𝜋 (𝑘+𝑘′ )
2𝑘𝑘′

𝑘𝑘 ′
��Γ(1 − 𝑖𝑘−1)

�� ��Γ(1 − 𝑖𝑘 ′−1)
�� lim
𝑧→∞

[
𝜃′★𝑘′ sin 𝜃𝑘 cos 𝜃★𝑘′ − 𝜃

′
𝑘 sin 𝜃★𝑘′ cos 𝜃𝑘

]
. (B.0.11)

We now reduce the argument of the limit on the right-hand side. This eventually brings it to a form that
allows us to apply the identity

lim
𝑥→∞

sin ( 𝑓 (𝑥)Δ𝑘)
Δ𝑘

= 𝜋𝛿(Δ𝑘), (B.0.12)

where Δ𝑘 = 𝑘 ′ − 𝑘 and 𝑓 is an arbitrary function that satisfies lim𝑥→∞ 𝑓 (𝑥) = ∞. Doing so then yields∫ ∞

0
𝜓𝑘𝜓

★
𝑘′d𝑧 =

𝜋N★
𝑘′N𝑘e−𝜋/2𝑘′e−𝜋/2𝑘

2𝑘𝑘 ′
��Γ(1 − 𝑖𝑘−1)

�� ��Γ(1 − 𝑖𝑘 ′−1)
��𝛿(𝑘 ′ − 𝑘). (B.0.13)
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It is then clear that ⟨𝜓𝑘′ |𝜓𝑘⟩ = 𝛿(𝑘 ′ − 𝑘) is satisfied if we choose N𝑘 so that the fraction on the right-hand
side of equation (B.0.13) equals unity. This in turn shows that

N𝑘 =

√︂
2
𝜋
𝑘e𝜋/2𝑘 ��Γ(1 − 𝑖𝑘−1)

�� . (B.0.14)

We can simplify the expression by exploiting |𝑧 | =
√
𝑧𝑧★ and Γ(1 + 𝑧) = 𝑧Γ(𝑧), which in turn yields

N𝑘 =

√︂
2
𝜋
𝑘e𝜋/2𝑘 ��Γ(1 − 𝑖𝑘−1)

��
=

√︂
2
𝜋
𝑘e𝜋/2𝑘

√︁
Γ(1 − 𝑖𝑘−1)Γ(1 + 𝑖𝑘−1)

=

√︂
2
𝜋
𝑘e𝜋/2𝑘

√︁
Γ(1 − 𝑖𝑘−1)𝑖𝑘−1Γ(𝑖𝑘−1)

=

√︂
2
𝜋
𝑘e𝜋/2𝑘

√︂
𝑖𝜋

𝑘 sin(𝑖𝜋/𝑘) , (B.0.15)

where we in the last line have used Euler’s reflection formula Γ(𝑧)Γ(1 − 𝑧) = 𝜋/sin(𝜋𝑧). We may reduce
further by noting that sin(𝑖𝑧) = 𝑖 sinh 𝑧 so that

N𝑘 =

√︂
2
𝜋
𝑘e𝜋/2𝑘

√︂
𝜋

𝑘 sinh(𝜋/𝑘)

=
2𝑘1/2

√
1 − e−2𝜋/𝑘

, (B.0.16)

which gives the final normalization constant. A similar calculation for the Kratzer potential given in equation
(2.2.14) shows that

N𝑘 =
(2𝑘)1−𝛿

��Γ(1 − 𝛿 − 𝑖𝑘−1)
��

√
2𝜋e−𝜋/2𝑘Γ(2 − 2𝛿)

, (B.0.17)

which reduces to equation (B.0.16) in the 𝛿 = 0 case as it should.
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Electrostatic Correction Code

The following code generates the electrostatic eigenstate corrections under the electrostatic perturbation
using the Dalgarno-Lewis approach. It is valid for the Coulomb corrections. The code is written for Python.

Listing C.1: Perturbed Eigenfunctions Calculator 1
1 import numpy as np

2 import matplotlib.pyplot as plt

3 import sympy as smp

4 import mpmath as mp

5 from sympy.abc import z

6

7 ’LaTeX’

8 plt.rcParams[’text.usetex’] = True # Enable LaTeX rendering

9 plt.rcParams[’font.family’] = ’serif’ # Use a serif font

10 plt.rcParams[’font.serif’] = [’Computer Modern’] # LaTeX’s default serif font

11 plt.rcParams[’text.latex.preamble’] = r’\usepackage{amsmath}’ # Optional: for more LaTeX symbols

12

13 ’Parameters’

14 p = 6 #Perturbation Order

15 n = 1 #Quantum Number

16 delta = 0 #Quantum Defect Parameter

17 scriptn = n - delta #Effective Quantum Number

18

19 ’Symbols’

20 z = smp.symbols(’z’)

21 E = smp.symbols(’E_0’, real=True)

22

23 ’Functions’

24 def Gamma(z):

25 return mp.gamma(z)

26 def Poch(a, b):

27 return Gamma(a+b)/Gamma(a)

28 def LaguerreL(n, alpha, z):

29 return smp.assoc_laguerre(n, alpha, z)

30 def Hyp1F1(a, b, z):

31 return smp.hyper([a], [b], z)

32 def Hyp2F1(a, b, c, z):

33 return smp.hyper([a, b], [b], z)

34 def SInf(H, f):

35 z = smp.symbols(’z’)

36 integrand = smp.nsimplify(H * f)

37 S = smp.integrate(integrand, (z, 0, smp.oo), conds=’none’)

38 return smp.refine(S)

39 def SInd(H, f):

40 z = smp.symbols(’z’)

41 integrand = smp.nsimplify(H * f)

42 S = smp.integrate(integrand, z, conds=’none’)

43 return smp.refine(S)

44

45 ’Unperturbed Eigenstates’

46 def psi(n, delta, z):

47 scriptn = n - delta

48 Factor1 = 2**(1-delta) / (np.sqrt(Poch(n, 1-2*delta)) * scriptn**(2-delta))

49 psi = Factor1 * z**(1-delta) * smp.exp(-z/scriptn) * LaguerreL(n-1, 1 - 2*delta, 2*z/scriptn)
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50 return psi

51

52 ’Storage’

53 EnergyStorage = [None]*(p+1)

54 FieldFactorStorage = [None]*(p+1)

55 C2Storage = [None]*(p+1)

56 EigenstateStorage = [None]*(p+1)

57

58 ’Perturbative Operator’

59 def H(p):

60 H = E*z * FieldFactorStorage[p-1] - sum(EnergyStorage[j]*FieldFactorStorage[p-j] for j in range(1, p+1))

61 return H

62

63 ’Zeroth-Order Calculation’

64 #Zeroth-Order Energy

65 E0 = -1/(2*(n-delta)**2)

66 EnergyStorage[0] = E0

67 #Zeroth-Order Integration Constant

68 C0 = 0

69 C2Storage[0] = C0

70 #Zeroth-Order Field Factor

71 f0 = 1

72 FieldFactorStorage[0] = f0

73 #Zeroth-Order Eigenstate Correction

74 psi0 = psi(n, delta, z)

75 EigenstateStorage[0] = psi0

76

77 ’First-Order Calculation’

78 #First-Order Energy

79 E1 = smp.nsimplify(SInf(E*z, psi0**2))

80 EnergyStorage[1] = E1

81 #First-Order Integration Constant

82 C1 = smp.nsimplify(SInd(-H(1), psi0**2))

83 C1 = smp.nsimplify(SInd(C1, psi0**(-2)))

84 C1 = smp.nsimplify(SInf(C1, psi0**(2)))

85 C2Storage[1] = C1

86 #First-Order Field Factor

87 f1 = smp.nsimplify(SInd(H(1), psi0**2))

88 f1 = smp.nsimplify(SInd(f1, psi0**(-2)))

89 f1 = smp.nsimplify(2*f1 + 2*C1)

90 FieldFactorStorage[1] = f1

91 #First-Order Eigenstate Correction

92 EigenstateStorage[1] = FieldFactorStorage[1]*psi0

93

94 ’Higher-Order Calculations’

95 if p>1:

96 for i in range(2, p+1):

97 ’Energy Correction’

98 Ei = smp.nsimplify(SInf(psi0*E*z, EigenstateStorage[i-1]))

99 Ei = Ei - sum(EnergyStorage[j]*SInf(psi0, EigenstateStorage[i-j]) for j in range(1, i))

100 EnergyStorage[i] = smp.nsimplify(Ei)

101 ’Integration Constant’

102 Ci = smp.nsimplify(SInd(-H(i), psi0**2))

103 Ci = smp.nsimplify(SInd(Ci, psi0**(-2)))

104 Ci = smp.nsimplify(SInf(Ci, psi0**(2)))

105 Ci = Ci - 1/4 * sum(SInf(EigenstateStorage[j], EigenstateStorage[i-j]) for j in range(1, i))

106 C2Storage[i] = smp.nsimplify(Ci)

107 ’Field Factor’

108 fi = smp.nsimplify(SInd(H(i), psi0**(2)))

109 fi = smp.nsimplify(SInd(fi, psi0**(-2)))

110 FieldFactorStorage[i] = smp.nsimplify(2*fi + 2*C2Storage[i])

111 ’Eigenstate Correction’

112 EigenstateStorage[i] = smp.nsimplify(FieldFactorStorage[i] * psi0)

The following code generates the electrostatic eigenstate corrections under the electrostatic perturbation
by directly constructing them. It provides the first and second order eigenstate corrections for arbitrary 𝑛
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and can also calculate up to the fourth order energy correction. The code is written for Mathmatica.

Listing C.2: Perturbed Eigenfunctions Calculator 2
1 ClearAll["Global‘*"];

2 BinomialCoeff[a_, b_] := If[b < 0, 0, Binomial[a, b]];

3

4 $Assumptions = E0 > 0;

5 n = 2;

6 (*delta = 0;*)

7

8 Mn[n_, \[Delta]_] := 2^(1 - \[Delta])*(n - \[Delta])^(\[Delta] - 2) / Sqrt[Pochhammer[n, 1 - 2*\[Delta]]];

9 Znn[n_, \[Delta]_] := 3/2*n^(2) - \[Delta]*(3*n - 1/2 - \[Delta]);

10 psin [n_, \[Delta]_] := Mn[n, \[Delta]]*z^(1 - \[Delta])*Exp[-z/(n - \[Delta])]*LaguerreL[n - 1, 1 - 2*\[Delta],

2*z/(n - \[Delta])];

11

12 coeff1[m_, n_, \[Delta]_] := (m - n + 1)/((m + 2 - 2*\[Delta])*(m + 1));

13 coeff2[m_, n_, \[Delta]_] := (-1)^(m)*(n - \[Delta])^(2)*m/(4*(m + 2 - 2*\[Delta])*(m + 1)*Factorial[m]);

14 coeff3[m_, n_, \[Delta]_] := ((n - \[Delta])*(m - 1)*(m - 2*\[Delta])/(n - m + 1) + 2*Znn[n,

\[Delta]])*BinomialCoeff[n - 2*\[Delta], n - m];

15 coeff[m_, n_, \[Delta]_] := coeff1[m, n, \[Delta]]*a[m] + coeff2[m, n, \[Delta]]*coeff3[m, n, \[Delta]];

16 coeffn[n_, \[Delta]_] := (-1)^(n)*(n - \[Delta])^(3)/(8*Gamma[n]);

17

18 CoeffTable = Table[coeff[i, n, \[Delta]], {i, 0, n - 1}];

19 CoeffTable = Prepend[CoeffTable, a[0]];

20 CoeffTable = Append[CoeffTable, coeffn[n, \[Delta]]];

21 For[i = 2, i <= n + 1, i++, CoeffTable[[i]] = CoeffTable[[i]] /. a[i - 2] -> CoeffTable[[i - 1]]];

22

23 Pn1 = Sum[CoeffTable[[k + 1]]*(2*z/(n - \[Delta]))^(k), {k, 0, n + 1}];

24 Psin1 = Mn[n, \[Delta]]*E0*z^(1 - \[Delta])*Exp[-z/(n - \[Delta])]*Pn1;

25

26 NormalizationCrit = Integrate[psin [n, \[Delta]]*Psin1, {z, 0, Infinity}, Assumptions -> \[Delta] < 0] == 0;

27 a0 = Solve[NormalizationCrit, a[0]][[1]][[1, 2]];

28 For[i = 1, i <= n + 1, i++, CoeffTable[[i]] = CoeffTable[[i]] /. a[0] -> a0];

29

30 Pn1 = Sum[CoeffTable[[k + 1]]*(2*z/(n - \[Delta]))^(k), {k, 0, n + 1}];

31 Psin1 = Collect[Mn[n, \[Delta]]*E0*z^(1 - \[Delta])*Exp[-z/(n - \[Delta])]*Pn1, z];

32

33 CoeffTable = Prepend[CoeffTable, 0];

34

35 Ynn = Integrate[psin [n, \[Delta]]*Mn[n, \[Delta]]*z^(2 - \[Delta])*Exp[-z/(n - \[Delta])]*Pn1, {z, 0, Infinity},

Assumptions -> \[Delta] < 0];

36 coeffb1[m_, n_, \[Delta]_] := (m + 1 - n)/((m + 1)*(m + 2 - 2*\[Delta]));

37 coeffb2[m_, n_, \[Delta]_] := (n - \[Delta])^(2)*((n - \[Delta])*CoeffTable[[m - 2 + 3]] - 2*Znn[n,

\[Delta]]*CoeffTable[[m - 1 + 3]])/(4*(m + 1)*(m + 2 - 2*\[Delta]));

38 coeffb3[m_, n_, \[Delta]_] := (-1)^(m)*(n - \[Delta])^(2)*m*Ynn/(2*(m + 1)*(m + 2 -

2*\[Delta])*Factorial[m])*BinomialCoeff[n - 2*\[Delta], n - m];

39 coeffb[m_, n_, \[Delta]_] := coeffb1[m, n, \[Delta]]*b[m] + coeffb2[m, n, \[Delta]] + coeffb3[m, n, \[Delta]];

40 coeffbn[n_, \[Delta]_] := -1/16*(n - \[Delta])^(3)*coeffn[n, \[Delta]];

41

42 CoeffbTable = Table[coeffb[i, n, \[Delta]], {i, 0, n + 1}];

43 CoeffbTable = Prepend[CoeffbTable, b[0]];

44 CoeffbTable = Append[CoeffbTable, coeffbn[n, \[Delta]]];

45 For[i = 2, i <= n + 3, i++, CoeffbTable[[i]] = CoeffbTable[[i]] /. b[i - 2] -> CoeffbTable[[i - 1]]];

46

47 Pn2 = Sum[CoeffbTable[[k + 1]]*(2*z/(n - \[Delta]))^(k), {k, 0, n + 3}];

48 Psin2 = FullSimplify[Mn[n, \[Delta]]*E0^(2)*z^(1 - \[Delta])*Exp[-z/(n - \[Delta])]*Pn2];

49

50 NormalizationCrit21 = 2*Integrate[psin[n, \[Delta]]*Psin2, {z, 0, Infinity}, Assumptions -> \[Delta] < 0];

51 NormalizationCrit22 = Integrate[Psin1*Psin1, {z, 0, Infinity}, Assumptions -> \[Delta] < 0];

52 NormalizationCrit2 = NormalizationCrit21 + NormalizationCrit22 == 0;

53 b0 = Solve[NormalizationCrit2, b[0]][[1]][[1, 2]];

54 For[i = 1, i <= n + 3, i++, CoeffbTable[[i]] = CoeffbTable[[i]] /. b[0] -> b0];

55

56 Pn2 = Sum[CoeffbTable[[k + 1]]*(2*z/(n - \[Delta]))^(k), {k, 0, n + 3}];

57 Psin2 = FullSimplify[Mn[n, \[Delta]]*E0^(2)*z^(1 - \[Delta])*Exp[-z/(n - \[Delta])]*Pn2];

58
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59 En1 = E0*Integrate[psin[n, \[Delta]]*z*psin[n, \[Delta]], {z, 0, Infinity}, Assumptions -> \[Delta] <= 0];

60 En2 = E0*Integrate[psin[n, \[Delta]]*z*Psin1, {z, 0, Infinity}, Assumptions -> \[Delta] <= 0];

61 En3 = E0*Integrate[Psin1*(z - Znn[n, \[Delta]])*Psin1, {z, 0, Infinity}, Assumptions -> \[Delta] <= 0];

62 En4 = Integrate[E0*Psin1*(z - Znn[n, \[Delta]])*Psin2 + En2*psin[n, \[Delta]]*Psin2, {z, 0, Infinity}, Assumptions

-> \[Delta] <= 0];
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Appendix D

Eigenstate & Matrix Element Plotter Code

The following code generates plots of the unperturbed eigenstates in both the bound and unbound case. It
is used to make figures Figure 2.2, Figure 2.3, Figure 2.6 and Figure 2.7. In addition, the code is used to
plot the matrix elements 𝑍𝑛𝑚 and 𝑍𝑘𝑚. It is used to make figures Figure 2.4 and Figure 2.5. The code is
written for Python.

Listing D.1: Plotter Code
1 import numpy as np

2 import mpmath as mp

3 import matplotlib.pyplot as plt

4

5 ’Latex Font’

6 plt.rcParams[’text.usetex’] = True # Enable LaTeX rendering

7 plt.rcParams[’font.family’] = ’serif’ # Use a serif font

8 plt.rcParams[’font.serif’] = [’Computer Modern’] # LaTeX’s default serif font

9 plt.rcParams[’text.latex.preamble’] = r’\usepackage{amsmath}’ # Optional: for more LaTeX symbols

10

11 ’Functions’

12 def Poch(a, b):

13 return mp.gamma(a+b)/mp.gamma(a)

14 def hypergeom_1F1(a, b, z):

15 return mp.hyp1f1(a, b, z)

16 def hypergeom_2F1(a, b, c, z):

17 return mp.hyp2f1(a, b, c, z)

18

19 ’Constants’

20 a_He = 7.609 #Nanometer

21 a_Ne = 1.939 #Nanometer

22 E_He = 1.316 #meV

23 E_Ne = 20.26 #meV

24 delta = 0.0237 #Quantum Defect Parameter

25 n = 3 #Principle Quantum Number

26

27 ’Electron Energies’

28 def en(n):

29 en = - 1 / (2*n**(2))

30 return en

31 def ek(k):

32 ek = k**(2) / 2

33 return ek

34

35 ’Quantum Defect Energies’

36 def En(n, delta):

37 scriptn = n - delta

38 en = - 1 / (2*scriptn**(2))

39 return en

40 def Ek(k):

41 Ek = k**(2) / 2

42 return Ek

43

44 ’Electron Eigenstates’

45 def psin(n, x):

46 psi = 2 * n**(-3/2) * x * mp.exp(-x/n) * hypergeom_1F1(1-n,2,2*x/n)

90



Aalborg University

47 return psi

48 def psik(k, x):

49 Factor1 = 2*mp.sqrt(k) / mp.sqrt(1 - mp.exp(-2*mp.pi/k))

50 psi = Factor1 * x * mp.exp(-1j*k*x) * hypergeom_1F1(1+1j/k, 2, 2j*k*x)

51 return psi

52

53 ’Quantum Defect Eigenstates’

54 def Psin(n, delta, x):

55 scriptn = n - delta

56 Factor = 2**(1-delta) * mp.sqrt(Poch(n, 1-2*delta)) / (scriptn**(2-delta) * mp.gamma(2-2*delta))

57 psi = Factor * x**(1-delta) * mp.exp(-x/scriptn) * hypergeom_1F1(1-n, 2-2*delta, 2*x/scriptn)

58 return psi

59 def Psik(k, delta, x):

60 Factor = (2*k)**(1-delta) * mp.fabs(mp.gamma(1-delta-1j/k)) / (mp.sqrt(2*mp.pi) * mp.exp(-mp.pi/(2*k)) *

mp.gamma(2-2*delta))

61 psi = Factor * x**(1-delta) * mp.exp(-1j*k*x) * hypergeom_1F1(1-delta+1j/k, 2-2*delta, 2j*k*x)

62 return psi

63

64 ’Electron Matrix Elements’

65 def znm(n, m):

66 if n == m:

67 znm = 3 * n**(2) / 2

68 else:

69 Factor1 = 8 * (-1)**(n) * (n*m)**(5/2) / (m-n)**(4) * ((m-n)/(m+n))**(m+n)

70 Factor2 = m * (n-m) / (m+n) * mp.hyp2f1(1-n, 1-m, 2, -4*m*n/(m-n)**(2))

71 Factor3 = (m-1) * mp.hyp2f1(1-n, 2-m, 2, -4*m*n/(m-n)**(2))

72 znm = Factor1 * (Factor2 + Factor3)

73 return znm

74 def zkm(k, m):

75 Factor1 = 8 * (-1)**(m) * m**(5/2) * k**(1/2) / ((1 + 1j*k*m)**(4) * mp.sqrt(1 - mp.exp(-2*mp.pi/k)))

76 Factor2 = ((1-1j*k*m)/(1+1j*k*m))**(-1j/k-m)

77 Factor3 = m * (1+1j*k*m) / (1 - 1j*k*m) * mp.hyp2f1(1-1j/k, 1-m, 2, 4j*k*m/(1+1j*k*m)**(2))

78 Factor4 = (m-1) * mp.hyp2f1(1-1j/k, 2-m, 2, 4j*k*m/(1+1j*k*m)**(2))

79 zkm = Factor1 * Factor2 * (Factor3 + Factor4)

80 return zkm

81

82 ’Quantum Defect Matrix Elements’

83 def Znm(n, m, delta):

84 if n == m:

85 Znm = 3 * n**(2) / 2 - delta * (3 * n - 1/2 - delta)

86 else:

87 scriptn = n - delta

88 scriptm = m - delta

89 Factor1 = (-1)**(n) * 2**(3-2*delta) * (scriptn*scriptm)**(2-delta) * mp.sqrt(Poch(n, 1-2*delta) * Poch(m,

1-2*delta))

90 Factor2 = (scriptm + scriptn)**(-2*delta) * (scriptm - scriptn)**(4) * mp.gamma(2-2*delta)

91 Factor3 = ((scriptm - scriptn)/(scriptm + scriptn))**(n + m)

92 Factor4 = scriptm * (scriptn - scriptm) / (scriptn + scriptm) * hypergeom_2F1(1-n, 1-m, 2-2*delta,

-4*scriptn*scriptm / (scriptn - scriptm)**(2))

93 Factor5 = (m-1) * hypergeom_2F1(1-n, 2-m, 2-2*delta, -4*scriptn*scriptm / (scriptn - scriptm)**(2))

94 Znm = Factor1 / Factor2 * Factor3 * (Factor4 + Factor5)

95 return Znm

96 def Zkm(k, m, delta):

97 scriptm = m - delta

98 N = (2*k)**(1-delta) * mp.fabs(mp.gamma(1-delta-1j/k)) / (mp.sqrt(2*mp.pi) * mp.exp(-mp.pi/(2*k)) *

mp.gamma(2-2*delta))

99 Factor1 = (-1)**(m) * (2*scriptm)**(2-delta) * N * mp.sqrt(Poch(m, 1-2*delta))

100 Factor2 = (1 + 1j*k*scriptm)**(4-2*delta)

101 Factor3 = ((1-1j*k*scriptm) / (1 + 1j*k*scriptm))**(-1j/k - scriptm)

102 Factor4 = scriptm * (1 + 1j*k*scriptm) / (1 - 1j*k*scriptm) * hypergeom_2F1(1 - delta - 1j/k, 1 - m, 2 -

2*delta, 4j*k*scriptm / (1 + 1j*k*scriptm)**(2))

103 Factor5 = (m-1) * hypergeom_2F1(1 - delta - 1j/k, 2 - m, 2 - 2*delta, 4j*k*scriptm / (1 + 1j*k*scriptm)**(2))

104 Zkm = Factor1 / Factor2 * Factor3 * (Factor4 + Factor5)

105 return Zkm

106

107 ’Oscillator Strengths’
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108 def gmn(m, n, delta):

109 gmn = 2 * (En(n, delta) - En(m, delta)) * mp.fabs(Znm(n, m, delta))**(2)

110 return gmn

111 def gmk(m, k, delta):

112 gmk = 2 * (Ek(k) - En(m, delta)) * mp.fabs(Zkm(k, m, delta))**(2)

113 return gmk

114

115 ’Oscillator Moments’

116 def G(m, p, delta):

117 Gbound = sum(gmn(m, n, delta)*(En(n, delta) - En(m, delta))**(p) for n in range(1, 5000) if n != m)

118 Gunbound = mp.quad(lambda k: gmk(m, k, delta)*(Ek(k) - En(m, delta))**(p), [1e-6, mp.inf])

119 G = Gbound + Gunbound

120 return G

121

122 ’Eigenstate Plotting Parameters’

123 Resolution = 1000

124 z1max = 95 #95

125 z2max = 60 #60

126 z3max = 30 #30

127 z4max = 75 #50

128

129 ’Initial Calculations, Bound Electron Density’

130 z1 = np.linspace(0 + 1e-6, z1max, Resolution)

131 PsiBoundElectronDensityn3 = np.zeros(len(z1))

132 PsiBoundElectronDensityn4 = np.zeros(len(z1))

133 PsiBoundElectronDensityn5 = np.zeros(len(z1))

134 PsiBoundElectronDensityn6 = np.zeros(len(z1))

135 for i in range(len(z1)):

136 PsiBoundElectronDensityn3[i] = (psin(1, z1[i]))

137 PsiBoundElectronDensityn4[i] = (psin(2, z1[i]))

138 PsiBoundElectronDensityn5[i] = (psin(3, z1[i]))

139 PsiBoundElectronDensityn6[i] = (psin(4, z1[i]))

140

141 ’Plotting, Bound Electron Density’

142 fig, ax1 = plt.subplots(figsize=(7.5,5))

143 ax1.set_xlabel(r"$\mathrm{Distance} \ \mathrm{From} \ \mathrm{Substrate}, \ z$", fontsize=16)

144 ax1.set_ylabel(r"$\mathrm{Wave} \ \mathrm{Function}, \ \psi_n$", fontsize=16)

145 ax1.set_xlim([0, 20])

146 ax1.set_ylim([0, 0.105])

147 ax1.tick_params(axis=’x’, labelsize=12)

148 ax1.tick_params(axis=’y’, labelsize=12)

149 ax1.grid(’true’)

150 ax1.plot(z1, PsiBoundElectronDensityn3, label=r"$n = 1$")

151 ax1.plot(z1, PsiBoundElectronDensityn4, label=r"$n = 2$")

152 ax1.plot(z1, PsiBoundElectronDensityn5, label=r"$n = 3$")

153 ax1.plot(z1, PsiBoundElectronDensityn6, label=r"$n = 4$")

154 ax1.legend(fontsize=16, ncol=2)

155 plt.savefig("BoundElectronDensityPlot190225.pdf", dpi=300)

156

157 ’Initial Calculations, Unbound Electron Density’

158 z2 = np.linspace(0 + 1e-6, z2max, Resolution)

159 PsiUnboundElectronDensityk14 = np.zeros(len(z2))

160 PsiUnboundElectronDensityk18 = np.zeros(len(z2))

161 PsiUnboundElectronDensitynk112 = np.zeros(len(z2))

162 PsiUnboundElectronDensitynk116 = np.zeros(len(z2))

163 for i in range(len(z2)):

164 PsiUnboundElectronDensityk14[i] = np.real(psik(1/4, z2[i]))

165 PsiUnboundElectronDensityk18[i] = np.real(psik(1/8, z2[i]))

166 PsiUnboundElectronDensitynk112[i] = np.real(psik(1/12, z2[i]))

167 PsiUnboundElectronDensitynk116[i] = np.real(psik(1/16, z2[i]))

168

169 ’Plotting, Unbound Electron Density’

170 fig, ax2 = plt.subplots(figsize=(7.5,5))

171 ax2.set_xlabel(r"$\mathrm{Distance} \ \mathrm{From} \ \mathrm{Substrate}, \ z$", fontsize=16)

172 ax2.set_ylabel(r"$\mathrm{Wave} \ \mathrm{Function}, \ \psi_k$", fontsize=16)

173 ax2.set_xlim([0, 20])
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174 ax2.set_ylim([-0.65,0.78])

175 ax2.tick_params(axis=’x’, labelsize=12)

176 ax2.tick_params(axis=’y’, labelsize=12)

177 ax2.grid(’true’)

178 ax2.plot(z2, PsiUnboundElectronDensityk14, label=r"$k = 1/4$")

179 ax2.plot(z2, PsiUnboundElectronDensityk18, label=r"$k = 1/8$")

180 ax2.plot(z2, PsiUnboundElectronDensitynk112, label=r"$k = 1/12$")

181 ax2.plot(z2, PsiUnboundElectronDensitynk116, label=r"$k = 1/16$")

182 ax2.legend(fontsize=16, ncol=3, loc="upper left")

183 plt.savefig("UnboundElectronDensityPlot190225.pdf", dpi=300)

184

185 ’Initial Calculations, Bound Defect Density’

186 z3 = np.linspace(0 + 1e-6, z3max, Resolution)

187 PsiBoundDefectDensityn0 = np.zeros(len(z3))

188 PsiBoundDefectDensityn02 = np.zeros(len(z3))

189 PsiBoundDefectDensityn01 = np.zeros(len(z3))

190 PsiBoundDefectDensityn05 = np.zeros(len(z3))

191 PsiBoundDefectDensityn09 = np.zeros(len(z3))

192 PsiBoundDefectDensityn1 = np.zeros(len(z3))

193 for i in range(len(z3)):

194 PsiBoundDefectDensityn0[i] = np.real(Psin(2, 0, z3[i]))

195 PsiBoundDefectDensityn02[i] = np.real(Psin(2, 0.2, z3[i]))

196 PsiBoundDefectDensityn01[i] = np.real(Psin(2, 0.1, z3[i]))

197 PsiBoundDefectDensityn05[i] = np.real(Psin(2, 0.5, z3[i]))

198 PsiBoundDefectDensityn09[i] = np.real(Psin(2, 0.9, z3[i]))

199 PsiBoundDefectDensityn1[i] = np.real(Psin(1, 0, z3[i]))

200

201 ’Plotting, Bound Defect Density’

202 fig, ax3 = plt.subplots(figsize=(7.5,5))

203 ax3.set_xlabel(r"$\mathrm{Distance} \ \mathrm{From} \ \mathrm{Substrate}, \ z$", fontsize=16)

204 ax3.set_ylabel(r"$\mathrm{Wave} \ \mathrm{Function}, \ \psi_{n - \delta}$", fontsize=16)

205 ax3.set_xlim([0, 20])

206 ax3.set_ylim([-0.75,0.8])

207 ax3.tick_params(axis=’x’, labelsize=12)

208 ax3.tick_params(axis=’y’, labelsize=12)

209 ax3.grid(’true’)

210 ax3.plot(z3, PsiBoundDefectDensityn0, label=r"$n = 2, \ \delta = 0$")

211 ax3.plot(z3, PsiBoundDefectDensityn02, label=r"$n = 2, \ \delta = 0.2$")

212 ax3.plot(z3, PsiBoundDefectDensityn01, label=r"$n = 2, \ \delta = 0.1$")

213 ax3.plot(z3, PsiBoundDefectDensityn05, label=r"$n = 2, \ \delta = 0.5$")

214 ax3.plot(z3, PsiBoundDefectDensityn09, label=r"$n = 2, \ \delta = 0.9$")

215 ax3.plot(z3, PsiBoundDefectDensityn1, label=r"$n = 1, \ \delta = 0$")

216 ax3.legend(fontsize=16,ncol=2)

217 plt.savefig("BoundDefectDensityPlot190225.pdf", dpi=300)

218

219 ’Initial Calculations, Unound Defect Density’

220 z4 = np.linspace(0 + 1e-6, z4max, Resolution)

221 PsiUnboundDefectDensityk0 = np.zeros(len(z4))

222 PsiUnboundDefectDensityk01 = np.zeros(len(z4))

223 PsiUnboundDefectDensityk02 = np.zeros(len(z4))

224 PsiUnboundDefectDensityk05 = np.zeros(len(z4))

225 PsiUnboundDefectDensityk09 = np.zeros(len(z4))

226 for i in range(len(z4)):

227 PsiUnboundDefectDensityk0[i] = np.real(Psik(1/16, 0, z4[i]))

228 PsiUnboundDefectDensityk01[i] = np.real(Psik(1/16, 0.1, z4[i]))

229 PsiUnboundDefectDensityk02[i] = np.real(Psik(1/16, 0.2, z4[i]))

230 PsiUnboundDefectDensityk05[i] = np.real(Psik(1/16, 0.5, z4[i]))

231 PsiUnboundDefectDensityk09[i] = np.real(Psik(1/16, 0.9, z4[i]))

232

233 ’Plotting, Unbound Defect Density’

234 fig, ax4 = plt.subplots(figsize=(7.5,5))

235 ax4.set_xlabel(r"$\mathrm{Distance} \ \mathrm{From} \ \mathrm{Substrate}, \ z$", fontsize=16)

236 ax4.set_ylabel(r"$\mathrm{Wave} \ \mathrm{Function}, \ \psi_{1/16}$", fontsize=16)

237 ax4.set_xlim([0, 20])

238 ax4.set_ylim([-0.4, 0.55])

239 ax4.tick_params(axis=’x’, labelsize=12)
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240 ax4.tick_params(axis=’y’, labelsize=12)

241 ax4.grid(’true’)

242 ax4.plot(z4, PsiUnboundDefectDensityk0, label=r"$\delta = 0$")

243 ax4.plot(z4, PsiUnboundDefectDensityk01, label=r"$\delta = 0.1$")

244 ax4.plot(z4, PsiUnboundDefectDensityk02, label=r"$\delta = 0.2$")

245 ax4.plot(z4, PsiUnboundDefectDensityk05, label=r"$\delta = 0.5$")

246 ax4.plot(z4, PsiUnboundDefectDensityk09, label=r"$\delta = 0.9$")

247 ax4.legend(fontsize=16, ncol=3, loc="upper left")

248 plt.savefig("UnboundDefectDensityPlot190225.pdf", dpi=300)

249

250 ’Initial Calculations, Bound Matrix Element’

251 StateCount = 40

252 StateList = np.zeros(StateCount)

253 for i in range(len(StateList)):

254 StateList[i] = i + 1

255 NStates = np.array([5, 10, 15, 20, 25, 30, 35])

256 ZnmMatrix = np.zeros((len(NStates)+1, StateCount))

257 for i in range(len(NStates)):

258 for j in range(StateCount):

259 ZnmMatrix[i,j] = Znm(NStates[i], j+1, 0)

260 for i in range(StateCount):

261 ZnmMatrix[-1, i] = Znm(i+1, i+1, 0)

262

263 ’Bound Matrix Element Plotting’

264 fig, ax5 = plt.subplots(figsize=(7.5,5))

265 ax5.set_xlabel(r"$\mathrm{Principle} \ \mathrm{Quantum} \ \mathrm{Number}, \ m$", fontsize=16)

266 ax5.set_ylabel(r"$\mathrm{Matrix} \ \mathrm{Elements}, \ Z_{nm}$", fontsize=16)

267 ax5.set_xlim([2, 40])

268 ax5.set_ylim([-430, 1870])

269 ax5.tick_params(axis=’x’, labelsize=12)

270 ax5.tick_params(axis=’y’, labelsize=12)

271 ax5.grid(’true’)

272

273 ax5.scatter(StateList, ZnmMatrix[7, :], label=r"$n = m$", color=’grey’)

274 ax5.scatter(StateList, ZnmMatrix[0, :], label=r"$n = 5$", marker=’x’, color=’green’)

275 ax5.scatter(StateList, ZnmMatrix[1, :], label=r"$n = 10$", marker=’x’, color=’blue’)

276 ax5.scatter(StateList, ZnmMatrix[2, :], label=r"$n = 15$", marker=’x’, color=’red’)

277 ax5.scatter(StateList, ZnmMatrix[3, :], label=r"$n = 20$", marker=’x’, color=’orange’)

278 ax5.scatter(StateList, ZnmMatrix[4, :], label=r"$n = 25$", marker=’x’, color=’cyan’)

279 ax5.scatter(StateList, ZnmMatrix[5, :], label=r"$n = 30$", marker=’x’, color=’magenta’)

280 ax5.scatter(StateList, ZnmMatrix[6, :], label=r"$n = 35$", marker=’x’, color=’lime’)

281

282 ax5.plot(StateList, ZnmMatrix[0, :], linestyle=’dotted’, color=’green’)

283 ax5.plot(StateList, ZnmMatrix[1, :], linestyle=’dotted’, color=’blue’)

284 ax5.plot(StateList, ZnmMatrix[2, :], linestyle=’dotted’, color=’red’)

285 ax5.plot(StateList, ZnmMatrix[3, :], linestyle=’dotted’, color=’orange’)

286 ax5.plot(StateList, ZnmMatrix[4, :], linestyle=’dotted’, color=’cyan’)

287 ax5.plot(StateList, ZnmMatrix[5, :], linestyle=’dotted’, color=’magenta’)

288 ax5.plot(StateList, ZnmMatrix[6, :], linestyle=’dotted’, color=’lime’)

289 ax5.plot(StateList, ZnmMatrix[7, :], linestyle=’dotted’, color=’grey’)

290 ax5.legend(fontsize=16, ncol=2)

291 plt.savefig("BoundBoundMatrixElementsPlot190225.pdf", dpi=300)

292

293 ’Initial Calculations, Unbound Matrix Element’

294 StateList = np.linspace(1e-6, 1.25, 2500)

295 StateCount = len(StateList)

296 NStates = np.array([1, 2, 3, 4, 5, 6, 7])

297 ZnkMatrix = np.zeros((len(NStates), StateCount))

298 for i in range(len(NStates)):

299 for j in range(StateCount):

300 ZnkMatrix[i, j] = mp.re(Zkm(StateList[j], NStates[i], 0))

301

302 ’Unbound Matrix Element Plotting’

303 fig, ax6 = plt.subplots(figsize=(7.5,5))

304 ax6.set_xlabel(r"$\mathrm{Wavenumber}, \ k$", fontsize=16)

305 ax6.set_ylabel(r"$\mathrm{Matrix} \ \mathrm{Elements}, \ Z_{km}$", fontsize=16)
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306 ax6.set_xlim([0.00, 0.8])

307 ax6.set_ylim([-8.5, 0.2])

308 ax6.tick_params(axis=’x’, labelsize=12)

309 ax6.tick_params(axis=’y’, labelsize=12)

310 ax6.grid(’true’)

311 ax6.plot(StateList, ZnkMatrix[0, :], label=r"$m = 1$")

312 ax6.plot(StateList, ZnkMatrix[1, :], label=r"$m = 2$")

313 ax6.plot(StateList, ZnkMatrix[2, :], label=r"$m = 3$")

314 ax6.plot(StateList, ZnkMatrix[3, :], label=r"$m = 4$")

315 ax6.plot(StateList, ZnkMatrix[4, :], label=r"$m = 5$")

316 ax6.plot(StateList, ZnkMatrix[5, :], label=r"$m = 6$")

317 ax6.plot(StateList, ZnkMatrix[6, :], label=r"$m = 7$")

318 ax6.legend(fontsize=16, ncol=2)

319 plt.savefig("BoundUnboundMatrixElementsPlot190225.pdf", dpi=300)
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Appendix E

Perturbed Energy Plotter Code

The following code generates plots of the perturbed energy shown in section 3.5. It is used to make figures
Figure 3.2, Figure 3.3, Figure 3.6, Figure 3.7, Figure 3.5 and Figure 3.4. The code is written for Python.

Listing E.1: Perturbed Energy Plotter Code
1 import numpy as np

2 import pandas as pd

3 import matplotlib.pyplot as plt

4 import mpmath as mp

5 from scipy.linalg import eig

6

7 ’LaTeX’

8 plt.rcParams[’text.usetex’] = True # Enable LaTeX rendering

9 plt.rcParams[’font.family’] = ’serif’ # Use a serif font

10 plt.rcParams[’font.serif’] = [’Computer Modern’] # LaTeX’s default serif font

11 plt.rcParams[’text.latex.preamble’] = r’\usepackage{amsmath}’ # Optional: for more LaTeX symbols

12

13 ’Functions’

14 def Poch(a, b):

15 Poch = mp.gamma(a+b)/mp.gamma(a)

16 return Poch

17 def kdelta(n,m):

18 if n == m:

19 kdelta = 1

20 else:

21 kdelta = 0

22 return kdelta

23

24 ’Hypergeometric Approximant Coefficients & 2F1 Function’

25 #n=1, Coulomb

26 def HypApproxN1C(E0):

27 C1n1 = -1/2

28 C2n1 = -(1247 + 5*mp.sqrt(3817))/2534

29 C3n1 = -(1247 - 5*mp.sqrt(3817))/2534

30 C4n1 = 48/29

31 C5n1 = -1267/58

32 return C1n1 * mp.hyp2f1(C2n1, C3n1, C4n1, C5n1*E0)

33

34 #n=2, Coulomb

35 def HypApproxN2C(E0):

36 C1n2 = -1/8

37 C2n2 = (-501539-5j*mp.sqrt(76756895))/946058

38 C3n2 = (-501539+5j*mp.sqrt(76756895))/946058

39 C4n2 = 11163/8009

40 C5n2 = -1892116/8009

41 return C1n2 * mp.hyp2f1(C2n2, C3n2, C4n2, C5n2*E0)

42

43 #n=3, Coulomb

44 def HypApproxN3C(E0):

45 C1n3 = - 1/18

46 C2n3 = - (24240121+5j*mp.sqrt(291559959335))/45863962

47 C3n3 = - (24240121-5j*mp.sqrt(291559959335))/45863962

48 C4n3 = 40032/36101

49 C5n3 = - 68795943/72202
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50 return C1n3 * mp.hyp2f1(C2n3, C3n3, C4n3, C5n3*E0)

51

52 #n=4, Coulomb

53 def HypApproxN4C(E0):

54 C1n4 = - 1/32

55 C2n4 = - (503957+5*mp.sqrt(209041297)) / 971454

56 C3n4 = - (503957-5*mp.sqrt(209041297)) / 971454

57 C4n4 = 32007/35561

58 C5n4 = -93259584/35561

59 return C1n4 * mp.hyp2f1(C2n4, C3n4, C4n4, C5n4*E0)

60

61 #n=5, Coulomb

62 def HypApproxN5C(E0):

63 C1n5 = -1/50

64 C2n5 = -(51689+mp.sqrt(143953681))/101274

65 C3n5 = -(51689-mp.sqrt(143953681))/101274

66 C4n5 = 1248/1609

67 C5n5 = -18988875/3218

68 return C1n5 * mp.hyp2f1(C2n5, C3n5, C4n5, C5n5*E0)

69

70 #n=1, Kratzer

71 def HypApproxN1K(delta, E0):

72 C1n1 = -1/(2*(1-delta)**(2))

73 c2n11 =

53248*delta**(6)-592384*delta**(5)+2716560*delta**(4)-6615248*delta**(3)+9148284*delta**(2)-6985900*delta+2385625

74 C2n1 = (-512*delta**(3)+3604*delta**(2)-8306*delta - mp.sqrt(c2n11) + 6235) /

(2*(544*delta**(3)-3716*delta**(2)+8428*delta-6335))

75 C3n1 = (-512*delta**(3)+3604*delta**(2)-8306*delta + mp.sqrt(c2n11) + 6235) /

(2*(544*delta**(3)-3716*delta**(2)+8428*delta-6335))

76 C4n1 = (12*(2*delta**(2)-13*delta+20))/(40*delta**(2)-156*delta+145)

77 C5n1 = - (delta-1)**(3)*(544*delta**(3)-3716*delta**(2)+8428*delta-6335)/(2*(40*delta**(2)-156*delta+145))

78 return C1n1 * mp.hyp2f1(C2n1, C3n1, C4n1, C5n1*E0)

79

80 #n=2, Kratzer

81 def HypApproxN2K(delta, E0):

82 C1n2 = -1 / (2 * (2 - delta) ** 2)

83 C2n2 = -((512 *delta**13-25660 *delta**12+493530 *delta**11-5224103 *delta**10+

84 35839082 *delta**9-173241681 *delta**8+615689786 *delta**7-1637600502 *delta**6+

85 3262154856 *delta**5-4801824208 *delta**4+5071626928 *delta**3-3639312576 *delta**2+

86 1591735616 *delta+mp.sqrt(53248 *delta**26-4865536 *delta**25+220906000 *delta**24-

87 6323611952 *delta**23+123196658796 *delta**22-1712391092860 *delta**21+17667961442385 *delta**20-

88 139757465232048 *delta**19+868765095012202 *delta**18-4320071879129112 *delta**17+

89 17384202828444125 *delta**16-56922213390268508 *delta**15+151450951712282512 *delta**14-

90 323757335479499240 *delta**13+539389841579808164 *delta**12-644041860148118400 *delta**11+

91 379943440501002944 *delta**10+430667072118589504 *delta**9-1620805131652820736 *delta**8+

92 2634019941598720256 *delta**7-2895911963677591808 *delta**6+2312754659419547648 *delta**5-

93 1343135933310478336 *delta**4+546510927294107648 *delta**3-143103025678954496 *delta**2+

94 19917436305817600 *delta-785990604800000)-320984960)/(2*(544 *delta**13-26924 *delta**12+

95 528708 *delta**11-5673505 *delta**10+38953468 *delta**9-186154419 *delta**8+648017830 *delta**7-

96 1679774226 *delta**6+3259266696 *delta**5-4687666112 *delta**4+4864216496 *delta**3-

97 3451153344 *delta**2+1501519168 *delta-302738560)))

98 C3n2 = (-512 *delta**13+25660 *delta**12-493530 *delta**11+5224103 *delta**10-

99 35839082 *delta**9+173241681 *delta**8-615689786 *delta**7+1637600502 *delta**6-

100 3262154856 *delta**5+4801824208 *delta**4-5071626928 *delta**3+3639312576 *delta**2-

101 1591735616 *delta+mp.sqrt(53248 *delta**26-4865536 *delta**25+220906000 *delta**24-

102 6323611952 *delta**23+123196658796 *delta**22-1712391092860 *delta**21+

103 17667961442385 *delta**20-139757465232048 *delta**19+868765095012202 *delta**18-

104 4320071879129112 *delta**17+17384202828444125 *delta**16-56922213390268508 *delta**15+

105 151450951712282512 *delta**14-323757335479499240 *delta**13+539389841579808164 *delta**12-

106 644041860148118400 *delta**11+379943440501002944 *delta**10+430667072118589504 *delta**9-

107 1620805131652820736 *delta**8+2634019941598720256 *delta**7-2895911963677591808 *delta**6+

108 2312754659419547648 *delta**5-1343135933310478336 *delta**4+546510927294107648 *delta**3-

109 143103025678954496 *delta**2+19917436305817600 *delta-785990604800000)+320984960)/ (2*

110 (544 *delta**13-26924 *delta**12+528708 *delta**11-5673505 *delta**10+

111 38953468 *delta**9-186154419 *delta**8+648017830 *delta**7-1679774226 *delta**6

112 +3259266696 *delta**5-4687666112 *delta**4+4864216496 *delta**3-
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113 3451153344 *delta**2+1501519168 *delta-302738560))

114 C4n2 = (12*(2 *delta**11-95 *delta**10+1303 *delta**9-10609 *delta**8+

115 61997 *delta**7-266266 *delta**6+817660 *delta**5-1742602 *delta**4+

116 2500166 *delta**3-2303828 *delta**2+1237792 *delta-297680))/(40 *delta**11-

117 1588 *delta**10+27085 *delta**9-242174 *delta**8+1314085 *delta**7-

118 4710492 *delta**6+11682432 *delta**5-20458944 *delta**4+25205304 *delta**3-

119 21048752 *delta**2+10780224 *delta-2562880)

120 C5n2 = -(((delta-2)**2*(544 *delta**13-26924 *delta**12+528708 *delta**11-

121 5673505 *delta**10+38953468 *delta**9-186154419 *delta**8+648017830 *delta**7-

122 1679774226 *delta**6+3259266696 *delta**5-4687666112 *delta**4+4864216496 *delta**3-

123 3451153344 *delta**2+1501519168 *delta-302738560))/(80 *delta**11-3176 *delta**10+

124 54170 *delta**9-484348 *delta**8+2628170 *delta**7-9420984 *delta**6+23364864 *delta**5-

125 40917888 *delta**4+50410608 *delta**3-42097504 *delta**2+21560448 *delta-5125760))

126 return C1n2 * mp.hyp2f1(C2n2, C3n2, C4n2, C5n2 * E0)

127

128 #n=3, Kratzer

129 def HypApproxN3K(delta, E0):

130 C1n3 = -1 / (2 * (3 - delta) ** 2)

131 C2n3 = -((4096 *delta**14-334624 *delta**13+10283040 *delta**12-

132 171708824 *delta**11+1847321716 *delta**10-13985810376 *delta**9+

133 78099431893 *delta**8-329265121734 *delta**7+1056393436968 *delta**6-

134 2569607110818 *delta**5+4667935890798 *delta**4-6146327425986 *delta**3+

135 5551703608644 *delta**2-3083163040278 *delta+mp.sqrt(3407872 *delta**28-

136 506494976 *delta**27+37655593984 *delta**26-1764006062080 *delta**25+

137 55887406938624 *delta**24-1255343278942976 *delta**23+20869291184109888 *delta**22-

138 266243717492491008 *delta**21+2682151279399339216 *delta**20-21806404639741428784 *delta**19+

139 145429022081615953640 *delta**18-805057854574555196256 *delta**17+3729648996698748423097 *delta**16-

140 14533005658292439404652 *delta**15+47729685373841611780452 *delta**14-131989933474720825454820 *delta**13+

141 305934794686410708774276 *delta**12-588766667365929343398588 *delta**11+924527653358476482248652 *delta**10-

142 1145736525297690283509108 *delta**9+1038841962876324945336726 *delta**8-527327437883898313420164 *delta**7-

143 182028566402349335303076 *delta**6+703218794214445758006804 *delta**5-792046836512609467996332 *delta**4+

144 543935867742267127455708 *delta**3-241037818940377813342644 *delta**2+64070998601879537460900 *delta-

145 7844187640165681584375)+795197169405)/(2*(4352 *delta**14-351008 *delta**13+11060976 *delta**12-

146 187965376 *delta**11+2032222544 *delta**10-15283843494 *delta**9+84039262817 *delta**8-

147 347023211202 *delta**7+1088416038384 *delta**6-2590360855650 *delta**5+4616027849502 *delta**4-

148 5982337092366 *delta**3+5336748834480 *delta**2-2936191649544 *delta+752283636705)))

149 C3n3 = (-4096 *delta**14+334624 *delta**13-10283040 *delta**12+

150 171708824 *delta**11-1847321716 *delta**10+13985810376 *delta**9-

151 78099431893 *delta**8+329265121734 *delta**7-1056393436968 *delta**6+

152 2569607110818 *delta**5-4667935890798 *delta**4+6146327425986 *delta**3-

153 5551703608644 *delta**2+3083163040278 *delta+mp.sqrt(3407872 *delta**28-

154 506494976 *delta**27+37655593984 *delta**26-1764006062080 *delta**25+

155 55887406938624 *delta**24-1255343278942976 *delta**23+20869291184109888 *delta**22-

156 266243717492491008 *delta**21+2682151279399339216 *delta**20-21806404639741428784 *delta**19+

157 145429022081615953640 *delta**18-805057854574555196256 *delta**17+3729648996698748423097 *delta**16-

158 14533005658292439404652 *delta**15+47729685373841611780452 *delta**14-131989933474720825454820 *delta**13+

159 305934794686410708774276 *delta**12-588766667365929343398588 *delta**11+924527653358476482248652 *delta**10-

160 1145736525297690283509108 *delta**9+1038841962876324945336726 *delta**8-527327437883898313420164 *delta**7-

161 182028566402349335303076 *delta**6+703218794214445758006804 *delta**5-792046836512609467996332 *delta**4+

162 543935867742267127455708 *delta**3-241037818940377813342644 *delta**2+64070998601879537460900 *delta-

163 7844187640165681584375)-795197169405) / (2*(4352 *delta**14-351008 *delta**13+11060976 *delta**12-

164 187965376 *delta**11+2032222544 *delta**10-15283843494 *delta**9+ 84039262817 *delta**8-

165 347023211202 *delta**7+1088416038384 *delta**6-2590360855650 *delta**5+4616027849502 *delta**4-

166 5982337092366 *delta**3+5336748834480 *delta**2-2936191649544 *delta+752283636705))

167 C4n3 = (12*(16 *delta**12-1248 *delta**11+26640 *delta**10-334828 *delta**9+

168 3003207 *delta**8-19872651 *delta**7+95851221 *delta**6-332120277 *delta**5+

169 815342463 *delta**4-1387270395 *delta**3+1564519293 *delta**2-1059418521 *delta+

170 328312440))/(320 *delta**12-20800 *delta**11+581032 *delta**10-8429804 *delta**9+

171 74433694 *delta**8-438902833 *delta**7+1819835787 *delta**6-5441785677 *delta**5+

172 11786301603 *delta**4-18165997899 *delta**3+18984472929 *delta**2-12094170507 *delta+3552879915)

173 C5n3 = -(((delta-3)**2*(4352 *delta**14-351008 *delta**13+11060976 *delta**12-

174 187965376 *delta**11+2032222544 *delta**10-15283843494 *delta**9+

175 84039262817 *delta**8-347023211202 *delta**7+1088416038384 *delta**6-

176 2590360855650 *delta**5+4616027849502 *delta**4-5982337092366 *delta**3+

177 5336748834480 *delta**2-2936191649544 *delta+752283636705))/(2*(320 *delta**12-

178 20800 *delta**11+581032 *delta**10-8429804 *delta**9+74433694 *delta**8-
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179 438902833 *delta**7+1819835787 *delta**6-5441785677 *delta**5+11786301603 *delta**4-

180 18165997899 *delta**3+18984472929 *delta**2-12094170507 *delta+3552879915)))

181 return C1n3 * mp.hyp2f1(C2n3, C3n3, C4n3, C5n3 * E0)

182

183 ’Perturbative Expansions’

184 #n=1, Coulomb

185 def EExpansionN1C(E0):

186 ExpansionN1C = -1/2 + 3/2*E0 - 3/2*E0**(2) + 27/4*E0**(3) - 795/16*E0**(4)

187 return ExpansionN1C

188

189 #n=2, Coulomb

190 def EExpansionN2C(E0):

191 ExpansionN2C = -1/8 + 6*E0 - 66*E0**(2) + 3312*E0**(3) - 271680*E0**(4)

192 return ExpansionN2C

193

194 #n=3, Coulomb

195 def EExpansionN3C(E0):

196 ExpansionN3C = -1/18 + 27/2*E0 - 1377/2*E0**(2) + 610173/4**E0**(3) - 864772605/16*E0**(4)

197 return ExpansionN3C

198

199 #n=4, Coulomb

200 def EExpansionN4C(E0):

201 ExpansionN4C = -1/32 + 24*E0 - 3744*E0**(2) + 2469888*E0**(3) - 2553937920*E0**(4)

202 return ExpansionN4C

203

204 #n=5, Coulomb

205 def EExpansionN5C(E0):

206 ExpansionN5C = -1/50 + 75/2*E0 - 28125/2*E0**(2) + 87890625/4*E0**(3) - 849462890625/16*E0**(4)

207 return ExpansionN5C

208

209 #n=1, Kratzer

210 def EExpansionN1K(delta, E0):

211 E = - 1/(2*(1-delta)**(2))

212 E1 = 1/2*(1-delta)*(3-2*delta)*E0

213 E2 = -1/4*(1-delta)**(4)*(2-delta)*(3-2*delta)*E0**(2)

214 E3 = 1/8*(1-delta)**(7)*(2-delta)*(3-2*delta)*(9-4*delta)*E0**(3)

215 E4 = -1/32*(1-delta)**(10)*(2-delta)*(3-2*delta)*(48*delta**(2)-225*delta+265)*E0**(4)

216 ExpansionN1K = E + E1 + E2 + E3 + E4

217 return ExpansionN1K

218

219 ’Known Energies’

220 EMinusQuarterN1C = -0.91414317937917-0.12477412204721904j

221 EPlusQuarterN1C = -0.1764014280188822-2.80325481146966e-14j

222 EMinusQuarterN2C = -0.9381725148398229-0.7117689604692352j

223 EPlusQuarterN2C = 0.765530635337687+1.0554996366393326e-13j

224 EMinusQuarterN3C = 0

225 EPlusQuarterN3C = 1.335924172843064-3.1807835307557864e-13j

226 EMinusQuarterN4C = 0

227 EPlusQuarterN4C = 1.7979280729012332-3.3006381141237694e-13j

228 EMinusQuarterN5C = 0

229 EPlusQuarterN5C = 2.2032494848092825+6.139979727080982e-13j

230

231 ’Sturmian Basis’

232 def phi(n, delta, kappa, z):

233 F1 = (2*kappa)**(1-delta) / mp.sqrt(Poch(n, 1-2*delta))

234 phi = F1 * z**(1-delta) * mp.exp(-kappa*z) * mp.laguerre(n-1, 1-2*delta, 2*kappa*z)

235 return phi

236

237 ’Sturmian Inner Products’

238 def phiphi(m, n, delta, kappa):

239 F1 = mp.sqrt(Poch(n, 1-2*delta)) / (2*kappa*mp.sqrt(Poch(m, 1-2*delta)))

240 F2 = 2*(m-delta)*kdelta(m,n) - m*kdelta(m,n-1) - (m-2*delta)*kdelta(m-1,n)

241 return F1*F2

242

243 def phizphi(m, n, delta, kappa):

244 if m==1:
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245 F1 = 2*(m-delta)*phiphi(m, n, delta, kappa) - mp.sqrt(m*(m+1-2*delta))*phiphi(m+1, n, delta, kappa)

246 phizphi = F1 / (2*kappa)

247 return phizphi

248 else:

249 F1 = 2*(m-delta)*phiphi(m, n, delta, kappa) - mp.sqrt(m*(m+1-2*delta))*phiphi(m+1, n, delta, kappa)

250 F2 = mp.sqrt((m-2*delta)*(m-1))*phiphi(m-1, n, delta, kappa)

251 phizphi = (F1 - F2) / (2*kappa)

252 return phizphi

253

254 ’Sturmian Matrix Elements’

255 def Hnm(n, m, delta, kappa, theta, E0):

256 F1 = kappa*(m-delta)*mp.exp(-2j*theta)*kdelta(m, n)

257 F2 = 1/2*kappa**(2)*mp.exp(-2j*theta)*phiphi(m, n, delta, kappa)

258 F3 = mp.exp(-1j*theta)*kdelta(m,n)

259 F4 = mp.exp(1j*theta)*E0*phizphi(m, n, delta, kappa)

260 Hnm = F1 - F2 - F3 + F4

261 return Hnm

262 def Knm(n, m, delta, kappa):

263 Knm = phiphi(m, n, delta, kappa)

264 return Knm

265

266 ’-------------------- Theta Dependence --------------------’

267

268 ’Parameters, Theta Dependence’

269 ThetaT = np.linspace(-np.pi/2, np.pi/2, 251) #Complex Scaling Angle

270 KappaT = 1 #Sturmian Basis Parameter

271 DeltaT = np.array([0, 0, -1/4, 1/4]) #Quantum Defect Parameter

272 E0T = np.linspace(-1/4, 1/4, 2) #Field Strength

273 NT = 150 #Sturmian Basis Length

274

275 ’Initial Energies, Theta Dependence’

276 EInitialApprox = np.zeros((len(E0T), len(DeltaT)), dtype=complex)

277 for i in range(len(E0T)):

278 EInitialApprox[i, 0] = HypApproxN1C(E0T[i])

279 EInitialApprox[i, 1] = HypApproxN2C(E0T[i])

280 EInitialApprox[i, 2] = HypApproxN1K(DeltaT[2], E0T[i])

281 EInitialApprox[i, 3] = HypApproxN1K(DeltaT[3], E0T[i])

282

283 NInitialEnergyT = 200

284 ThetaInitialEnergyT = 0

285 InitialEnergyT = np.zeros((len(E0T), len(DeltaT)), dtype=complex)

286 InitialHT = np.zeros((NInitialEnergyT, NInitialEnergyT), dtype=complex)

287 InitialKT = np.zeros((NInitialEnergyT, NInitialEnergyT), dtype=complex)

288 for i in range(len(E0T)):

289 print(i*100/len(E0T))

290 for j in range(len(DeltaT)):

291 for k in range(NInitialEnergyT):

292 for l in range(NInitialEnergyT):

293 InitialHT[k, l] = complex(Hnm(k+1, l+1, DeltaT[j], KappaT, ThetaInitialEnergyT, E0T[i]))

294 InitialKT[k, l] = complex(Knm(k+1, l+1, DeltaT[j], KappaT))

295 E, C = eig(InitialHT[:, :], InitialKT[:, :])

296 InitialMinIndex = np.argmin(np.abs(np.real(EInitialApprox[i, j] - E)))

297 InitialEnergyT[i, j] = E[InitialMinIndex]

298

299 ’Storage & Eigensolving, Theta Dependence’

300 HT = np.zeros((NT, NT, len(ThetaT), len(DeltaT), len(E0T)), dtype=complex)

301 KT = np.zeros((NT, NT, len(ThetaT), len(DeltaT), len(E0T)), dtype=complex)

302 EStorageT = np.zeros((NT, len(ThetaT), len(DeltaT), len(E0T)), dtype=complex)

303

304 for k in range(len(ThetaT)):

305 print(k*100/len(ThetaT))

306 for l in range(len(DeltaT)):

307 for i in range(NT):

308 for j in range(NT):

309 HT[i, j, k, l, 0] = complex(Hnm(i+1, j+1, DeltaT[l], KappaT, ThetaT[k], E0T[0]))

310 KT[i, j, k, l, 0] = complex(Knm(i+1, j+1, DeltaT[l], KappaT))
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311 HT[i, j, k, l, 1] = complex(Hnm(i+1, j+1, DeltaT[l], KappaT, ThetaT[k], E0T[1]))

312 KT[i, j, k, l, 1] = complex(Knm(i+1, j+1, DeltaT[l], KappaT))

313 E, C = eig(HT[:, :, k, l, 0], KT[:, :, k, l, 0])

314 EStorageT[:, k, l, 0] = E

315 E, C = eig(HT[:, :, k, l, 1], KT[:, :, k, l, 1])

316 EStorageT[:, k, l, 1] = E

317

318 ENumericalT = np.zeros((len(ThetaT), len(DeltaT), len(E0T)), dtype=complex)

319 for i in range(len(DeltaT)):

320 for j in range(len(E0T)):

321 ENumericalT[int(len(ThetaT)/2), i, j] = InitialEnergyT[j, i]

322

323 for i in range(len(DeltaT)):

324 for j in range(len(E0T)):

325 for k in range(int(len(ThetaT)/2)-1):

326 MinIndex1 = np.argmin(np.abs(np.real(EStorageT[:, int(len(ThetaT)/2) + k + 1, i, j] -

ENumericalT[int(len(ThetaT)/2) + k, i, j])))

327 ENumericalT[int(len(ThetaT)/2) + k + 1, i, j] = EStorageT[MinIndex1, int(len(ThetaT)/2) + k + 1, i, j]

328 MinIndex2 = np.argmin(np.abs(np.real(EStorageT[:, int(len(ThetaT)/2) - k - 1, i, j] -

ENumericalT[int(len(ThetaT)/2) - k, i, j])))

329 ENumericalT[int(len(ThetaT)/2) - k - 1, i, j] = EStorageT[MinIndex2, int(len(ThetaT)/2) - k - 1, i, j]

330

331 ’Plotting, Theta Dependence’

332 fig, ax1 = plt.subplots(figsize=(7.5,5))

333 ax1.set_xlabel(r"$\mathrm{Complex} \ \mathrm{Scaling} \ \mathrm{Angle}, \ \theta$", fontsize=16)

334 ax1.set_ylabel(r"$\mathrm{Perturbed} \ \mathrm{Energy}, \ \tilde{E}_n$", fontsize=16)

335 ax1.set_xlim([ThetaT[0], ThetaT[-1]])

336 #ax3.set_ylim([-5, 5])

337 ax1.tick_params(axis=’x’, labelsize=12)

338 ax1.tick_params(axis=’y’, labelsize=12)

339 ax1.grid(’true’)

340 ax1.plot(ThetaT, np.real(ENumericalT[:, 0, 0]), linestyle=’dashed’, color=’red’)

341 ax1.plot(ThetaT, np.real(ENumericalT[:, 0, 1]), label=r"$n=1$", color=’red’)

342 ax1.plot(ThetaT, np.real(ENumericalT[:, 1, 0]), linestyle=’dashed’, color=’green’)

343 ax1.plot(ThetaT, np.real(ENumericalT[:, 1, 1]), label=r"$n=2$", color=’green’)

344 ax1.plot(ThetaT, np.real(ENumericalT[:, 2, 0]), linestyle=’dashed’, color=’blue’)

345 ax1.plot(ThetaT, np.real(ENumericalT[:, 2, 1]), label=r"$n=1, \ \delta = -1/4$", color=’blue’)

346 ax1.plot(ThetaT, np.real(ENumericalT[:, 3, 0]), linestyle=’dashed’, color=’orange’)

347 ax1.plot(ThetaT, np.real(ENumericalT[:, 3, 1]), label=r"$n=1, \ \delta = 1/4$", color=’orange’)

348 ax1.legend(fontsize=13, ncol=1)

349 #plt.savefig("PerturbedEnergyThetaDependence.pdf", dpi=300)

350

351 ’-------------------- Delta Dependence --------------------’

352

353 ’Parameters, Delta Dependence’

354 ThetaD = 0.2 #Complex Scaling Angle

355 KappaD = 1 #Sturmian Basis Parameter

356 DeltaD = np.linspace(-0.8, 0.7, 200) #Quantum Defect Parameter

357 E0D = np.array([-0.75, -0.25, 0, 0.25, 0.75]) #Field Strength

358 ND = 200 #Sturmian Basis Length

359

360 ’2F1 Approximants, Delta Dependence’

361 EApproxD = np.zeros((len(DeltaD), len(E0D)), dtype=complex)

362 for k in range(len(DeltaD)):

363 for l in range(len(E0D)):

364 EApproxD[k, l] = HypApproxN1K(DeltaD[k], E0D[l])

365

366 ’Storage & Eigensolving, Field Strength Dependence’

367 HD = np.zeros((ND, ND, len(DeltaD), len(E0D)), dtype=complex)

368 KD = np.zeros((ND, ND, len(DeltaD), len(E0D)), dtype=complex)

369 EStorageD = np.zeros((ND, len(DeltaD), len(E0D)), dtype=complex)

370

371 for k in range(len(DeltaD)):

372 print(k*100/len(DeltaD))

373 for l in range(len(E0D)):

374 for i in range(ND):
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375 for j in range(ND):

376 HD[i, j, k, l] = complex(Hnm(i+1, j+1, DeltaD[k], KappaD, ThetaD, E0D[l]))

377 KD[i, j, k, l] = complex(Knm(i+1, j+1, DeltaD[k], KappaD))

378 E, C = eig(HD[:, :, k, l], KD[:, :, k, l])

379 EStorageD[:, k, l] = np.sort(E)

380

381 ENumericalD = np.zeros((len(DeltaD), len(E0D)), dtype=complex)

382 for k in range(len(DeltaD)):

383 for l in range(len(E0D)):

384 MinIndex = np.argmin(np.abs(np.real(EApproxD[k, l] - EStorageD[:, k, l])))

385 ENumericalD[k, l] = EStorageD[MinIndex, k, l]

386

387 ’Plotting Energy, Delta Dependence’

388 fig, ax2 = plt.subplots(figsize=(7.5,5))

389 ax2.set_xlabel(r"$\mathrm{Quantum} \ \mathrm{Defect} \ \mathrm{Parameter}, \ \delta$", fontsize=16)

390 ax2.set_ylabel(r"$\mathrm{Perturbed} \ \mathrm{Energy}, \ \tilde{E}_n$", fontsize=16)

391 ax2.set_xlim([DeltaD[0], DeltaD[-1]])

392 ax2.set_ylim([-2, 1.5])

393 ax2.tick_params(axis=’x’, labelsize=12)

394 ax2.tick_params(axis=’y’, labelsize=12)

395 ax2.grid(’true’)

396 ax2.plot(DeltaD, np.real(EApproxD[:, 0]), label=r"$n=1, \ \mathcal{E}_0 = -3/4$", color=’red’)

397 ax2.scatter(DeltaD[::5], np.real(ENumericalD[::5, 0]), edgecolors=’red’, facecolors=’none’)

398 ax2.plot(DeltaD, np.real(EApproxD[:, 1]), label=r"$n=1, \ \mathcal{E}_0 = -1/4$", color=’green’)

399 ax2.scatter(DeltaD[::5], np.real(ENumericalD[::5, 1]), edgecolors=’green’, facecolors=’none’)

400 ax2.plot(DeltaD, np.real(EApproxD[:, 2]), label=r"$n=1, \ \mathcal{E}_0 = 0$", color=’blue’)

401 ax2.scatter(DeltaD[::5], np.real(ENumericalD[::5, 2]), edgecolors=’blue’, facecolors=’none’)

402 ax2.plot(DeltaD, np.real(EApproxD[:, 3]), label=r"$n=1, \ \mathcal{E}_0 = 1/4$", color=’orange’)

403 ax2.scatter(DeltaD[::5], np.real(ENumericalD[::5, 3]), edgecolors=’orange’, facecolors=’none’)

404 ax2.plot(DeltaD, np.real(EApproxD[:, 4]), label=r"$n=1, \ \mathcal{E}_0 = 3/4$", color=’grey’)

405 ax2.scatter(DeltaD[::5], np.real(ENumericalD[::5, 4]), edgecolors=’grey’, facecolors=’none’)

406 ax2.legend(fontsize=13, ncol=1)

407 #plt.savefig("PerturbedEnergyPositiveFieldDependence.pdf", dpi=300)

408

409 ’-------------------- Positive Field Strength Dependence --------------------’

410

411 ’Parameters, Positive Field Strength Dependence’

412 ThetaEPlus = 0.2 #Complex Scaling Angle

413 KappaEPlus = 1 #Sturmian Basis Parameter

414 DeltaEPlus = np.array([0, 0, 0, 0, 0, -0.25, 0.25]) #Quantum Defect Parameter

415 E0EPlus = np.linspace(0, 1, 100) #Field Strength

416 NEPlus = 200 #Sturmian Basis Length

417

418 ’2F1 Approximants, Positive Field Strength Dependence’

419 EApproxEPlus = np.zeros((len(E0EPlus), len(DeltaEPlus)), dtype=complex)

420 for k in range(len(E0EPlus)):

421 EApproxEPlus[k, 0] = HypApproxN1C(E0EPlus[k])

422 EApproxEPlus[k, 1] = HypApproxN2C(E0EPlus[k])

423 EApproxEPlus[k, 2] = HypApproxN3C(E0EPlus[k])

424 EApproxEPlus[k, 3] = HypApproxN4C(E0EPlus[k])

425 EApproxEPlus[k, 4] = HypApproxN5C(E0EPlus[k])

426 EApproxEPlus[k, 5] = HypApproxN1K(DeltaEPlus[-2], E0EPlus[k])

427 EApproxEPlus[k, 6] = HypApproxN1K(DeltaEPlus[-1], E0EPlus[k])

428

429 ’Storage & Eigensolving, Positive Field Strength Dependence’

430 HEPlus = np.zeros((NEPlus, NEPlus, len(E0EPlus), len(set(DeltaEPlus))), dtype=complex)

431 KEPlus = np.zeros((NEPlus, NEPlus, len(E0EPlus), len(set(DeltaEPlus))), dtype=complex)

432 EStorageEPlus = np.zeros((NEPlus, len(E0EPlus), len(set(DeltaEPlus))), dtype=complex)

433

434 for k in range(len(E0EPlus)):

435 print(k*100/len(E0EPlus))

436 for i in range(NEPlus):

437 for j in range(NEPlus):

438 HEPlus[i, j, k, 0] = complex(Hnm(i+1, j+1, DeltaEPlus[0], KappaEPlus, ThetaEPlus, E0EPlus[k]))

439 KEPlus[i, j, k, 0] = complex(Knm(i+1, j+1, DeltaEPlus[0], KappaEPlus))

440 HEPlus[i, j, k, 1] = complex(Hnm(i+1, j+1, DeltaEPlus[-2], KappaEPlus, ThetaEPlus, E0EPlus[k]))
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441 KEPlus[i, j, k, 1] = complex(Knm(i+1, j+1, DeltaEPlus[-2], KappaEPlus))

442 HEPlus[i, j, k, 2] = complex(Hnm(i+1, j+1, DeltaEPlus[-1], KappaEPlus, ThetaEPlus, E0EPlus[k]))

443 KEPlus[i, j, k, 2] = complex(Knm(i+1, j+1, DeltaEPlus[-1], KappaEPlus))

444 E, C = eig(HEPlus[:, :, k, 0], KEPlus[:, :, k, 0])

445 EStorageEPlus[:, k, 0] = np.sort(E)

446 E, C = eig(HEPlus[:, :, k, 1], KEPlus[:, :, k, 1])

447 EStorageEPlus[:, k, 1] = np.sort(E)

448 E, C = eig(HEPlus[:, :, k, 2], KEPlus[:, :, k, 2])

449 EStorageEPlus[:, k, 2] = np.sort(E)

450

451 ENumericalEPlus = np.zeros((len(E0EPlus), len(DeltaEPlus)), dtype=complex)

452 for k in range(len(E0EPlus)):

453 MinIndex1 = np.argmin(np.abs(np.real(EApproxEPlus[k, 0] - EStorageEPlus[:, k, 0])))

454 ENumericalEPlus[k, 0] = EStorageEPlus[MinIndex1, k, 0]

455 MinIndex2 = np.argmin(np.abs(np.real(EApproxEPlus[k, 1] - EStorageEPlus[:, k, 0])))

456 ENumericalEPlus[k, 1] = EStorageEPlus[MinIndex2, k, 0]

457 MinIndex3 = np.argmin(np.abs(np.real(EApproxEPlus[k, 2] - EStorageEPlus[:, k, 0])))

458 ENumericalEPlus[k, 2] = EStorageEPlus[MinIndex3, k, 0]

459 MinIndex4 = np.argmin(np.abs(np.real(EApproxEPlus[k, 3] - EStorageEPlus[:, k, 0])))

460 ENumericalEPlus[k, 3] = EStorageEPlus[MinIndex4, k, 0]

461 MinIndex5 = np.argmin(np.abs(np.real(EApproxEPlus[k, 4] - EStorageEPlus[:, k, 0])))

462 ENumericalEPlus[k, 4] = EStorageEPlus[MinIndex5, k, 0]

463 MinIndex6 = np.argmin(np.abs(np.real(EApproxEPlus[k, 5] - EStorageEPlus[:, k, 1])))

464 ENumericalEPlus[k, 5] = EStorageEPlus[MinIndex6, k, 1]

465 MinIndex7 = np.argmin(np.abs(np.real(EApproxEPlus[k, 6] - EStorageEPlus[:, k, 2])))

466 ENumericalEPlus[k, 6] = EStorageEPlus[MinIndex6, k, 2]

467

468 ’Plotting, Positive Field Strength Dependence’

469 fig, ax3 = plt.subplots(figsize=(7.5,5))

470 ax3.set_xlabel(r"$\mathrm{Field} \ \mathrm{Strength}, \ \mathcal{E}_0$", fontsize=16)

471 ax3.set_ylabel(r"$\mathrm{Perturbed} \ \mathrm{Energy}, \ \tilde{E}_n$", fontsize=16)

472 ax3.set_xlim([E0EPlus[0], E0EPlus[-1]])

473 #ax3.set_ylim([-5, 5])

474 ax3.tick_params(axis=’x’, labelsize=12)

475 ax3.tick_params(axis=’y’, labelsize=12)

476 ax3.grid(’true’)

477 ax3.plot(E0EPlus, np.real(EApproxEPlus[:, 0]), label=r"$n = 1$", color=’red’)

478 ax3.scatter(E0EPlus[::6], np.real(ENumericalEPlus[::6, 0]), edgecolors=’red’, facecolors=’none’)

479 ax3.plot(E0EPlus, np.real(EApproxEPlus[:, 1]), label=r"$n = 2$", color=’green’)

480 ax3.scatter(E0EPlus[::6], np.real(ENumericalEPlus[::6, 1]), edgecolors=’green’, facecolors=’none’)

481 ax3.plot(E0EPlus, np.real(EApproxEPlus[:, 2]), label=r"$n = 3$", color=’blue’)

482 ax3.scatter(E0EPlus[::6], np.real(ENumericalEPlus[::6, 2]), edgecolors=’blue’, facecolors=’none’)

483 ax3.plot(E0EPlus, np.real(EApproxEPlus[:, 3]), label=r"$n = 4$", color=’orange’)

484 ax3.scatter(E0EPlus[::6], np.real(ENumericalEPlus[::6, 3]), edgecolors=’orange’, facecolors=’none’)

485 ax3.plot(E0EPlus, np.real(EApproxEPlus[:, 4]), label=r"$n = 5$", color=’grey’)

486 ax3.scatter(E0EPlus[::6], np.real(ENumericalEPlus[::6, 4]), edgecolors=’grey’, facecolors=’none’)

487 ax3.plot(E0EPlus, np.real(EApproxEPlus[:, 5]), label=r"$n=1, \ \delta = -1/4$", color=’pink’)

488 ax3.scatter(E0EPlus[::6], np.real(ENumericalEPlus[::6, 5]), edgecolors=’pink’, facecolors=’none’)

489 ax3.plot(E0EPlus, np.real(EApproxEPlus[:, 6]), label=r"$n=1, \ \delta = 1/4$", color=’black’)

490 ax3.scatter(E0EPlus[::6], np.real(ENumericalEPlus[::6, 6]), edgecolors=’black’, facecolors=’none’)

491 ax3.legend(fontsize=13, ncol=2)

492 #plt.savefig("PerturbedEnergyPositiveFieldDependence.pdf", dpi=300)

493

494 ’-------------------- Field Strength Dependence --------------------’

495

496 ’Parameters, Field Strength Dependence’

497 ThetaE = 0.2 #Complex Scaling Angle

498 KappaE = 1 #Sturmian Basis Parameter

499 DeltaE = np.array([0, 0, -0.25, 0.25]) #Quantum Defect Parameter

500 E0E = np.linspace(-1, 1, 200) #Field Strength

501 NE = 150 #Sturmian Basis Length

502

503 ’2F1 Approximants, Field Strength Dependence’

504 EApproxE = np.zeros((len(E0E), len(DeltaE)), dtype=complex)

505 for k in range(len(E0E)):

506 EApproxE[k, 0] = HypApproxN1C(E0E[k])
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507 EApproxE[k, 1] = HypApproxN2C(E0E[k])

508 EApproxE[k, 2] = HypApproxN1K(DeltaE[-2], E0E[k])

509 EApproxE[k, 3] = HypApproxN1K(DeltaE[-1], E0E[k])

510

511 ’Perturbative Expansions, Field Strength Dependence’

512 EExpansionE = np.zeros((len(E0E), len(DeltaE)), dtype=complex)

513 for k in range(len(E0E)):

514 EExpansionE[k, 0] = EExpansionN1C(E0E[k])

515 EExpansionE[k, 1] = EExpansionN2C(E0E[k])

516 EExpansionE[k, 2] = EExpansionN1K(DeltaE[-2], E0E[k])

517 EExpansionE[k, 3] = EExpansionN1K(DeltaE[-1], E0E[k])

518

519 ’Storage & Eigensolving, Field Strength Dependence’

520 HE = np.zeros((NE, NE, len(E0E), len(set(DeltaE))), dtype=complex)

521 KE = np.zeros((NE, NE, len(E0E), len(set(DeltaE))), dtype=complex)

522 EStorageE = np.zeros((NE, len(E0E), len(set(DeltaE))), dtype=complex)

523

524 for k in range(len(E0E)):

525 print(k*100/len(E0E))

526 for i in range(NE):

527 for j in range(NE):

528 HE[i, j, k, 0] = complex(Hnm(i+1, j+1, DeltaE[0], KappaE, ThetaE, E0E[k]))

529 KE[i, j, k, 0] = complex(Knm(i+1, j+1, DeltaE[0], KappaE))

530 HE[i, j, k, 1] = complex(Hnm(i+1, j+1, DeltaE[-2], KappaE, ThetaE, E0E[k]))

531 KE[i, j, k, 1] = complex(Knm(i+1, j+1, DeltaE[-2], KappaE))

532 HE[i, j, k, 2] = complex(Hnm(i+1, j+1, DeltaE[-1], KappaE, ThetaE, E0E[k]))

533 KE[i, j, k, 2] = complex(Knm(i+1, j+1, DeltaE[-1], KappaE))

534 E, C = eig(HE[:, :, k, 0], KE[:, :, k, 0])

535 EStorageE[:, k, 0] = np.sort(E)

536 E, C = eig(HE[:, :, k, 1], KE[:, :, k, 1])

537 EStorageE[:, k, 1] = np.sort(E)

538 E, C = eig(HE[:, :, k, 2], KE[:, :, k, 2])

539 EStorageE[:, k, 2] = np.sort(E)

540

541 ENumericalE = np.zeros((len(E0E), len(DeltaE)), dtype=complex)

542 for k in range(len(E0E)):

543 MinIndex1 = np.argmin(np.abs(np.real(EApproxE[k, 0] - EStorageE[:, k, 0])))

544 ENumericalE[k, 0] = EStorageE[MinIndex1, k, 0]

545 MinIndex2 = np.argmin(np.abs(np.real(EApproxE[k, 1] - EStorageE[:, k, 0])))

546 ENumericalE[k, 1] = EStorageE[MinIndex2, k, 0]

547 MinIndex3 = np.argmin(np.abs(np.real(EApproxE[k, 2] - EStorageE[:, k, 1])))

548 ENumericalE[k, 2] = EStorageE[MinIndex3, k, 1]

549 MinIndex4 = np.argmin(np.abs(np.real(EApproxE[k, 3] - EStorageE[:, k, 2])))

550 ENumericalE[k, 3] = EStorageE[MinIndex4, k, 2]

551 ENumericalE[80, 1] = EStorageE[111, 80, 0]

552

553 ’Plotting Energy, Field Strength Dependence’

554 fig, ax4 = plt.subplots(figsize=(7.5,5))

555 ax4.set_xlabel(r"$\mathrm{Field} \ \mathrm{Strength}, \ \mathcal{E}_0$", fontsize=16)

556 ax4.set_ylabel(r"$\mathrm{Perturbed} \ \mathrm{Energy}, \ \tilde{E}_n$", fontsize=16)

557 ax4.set_xlim([E0E[0], E0E[-1]])

558 ax4.set_ylim([-2, 1])

559 ax4.tick_params(axis=’x’, labelsize=12)

560 ax4.tick_params(axis=’y’, labelsize=12)

561 ax4.grid(’true’)

562 ax4.plot(E0E, np.real(EApproxE[:, 3]), label=r"$n=1, \ \delta = 1/4$", color=’orange’)

563 ax4.plot(E0E, np.real(EExpansionE[:, 3]), color=’orange’, linestyle=’dashed’)

564 ax4.scatter(E0E[::5], np.real(ENumericalE[::5, 3]), edgecolors=’orange’, facecolors=’none’)

565 ax4.plot(E0E, np.real(EApproxE[:, 2]), label=r"$n=1, \ \delta = -1/4$", color=’blue’)

566 ax4.plot(E0E, np.real(EExpansionE[:, 2]), color=’blue’, linestyle=’dashed’)

567 ax4.scatter(E0E[::5], np.real(ENumericalE[::5, 2]), edgecolors=’blue’, facecolors=’none’)

568 ax4.plot(E0E, np.real(EApproxE[:, 0]), label=r"$n = 1$", color=’red’)

569 ax4.plot(E0E, np.real(EExpansionE[:, 0]), color=’red’, linestyle=’dashed’)

570 ax4.scatter(E0E[::5], np.real(ENumericalE[::5, 0]), edgecolors=’red’, facecolors=’none’)

571 ax4.plot(E0E, np.real(EApproxE[:, 1]), label=r"$n = 2$", color=’green’)

572 ax4.plot(E0E, np.real(EExpansionE[:, 1]), color=’green’, linestyle=’dashed’)
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573 ax4.scatter(E0E[::5], np.real(ENumericalE[::5, 1]), edgecolors=’green’, facecolors=’none’)

574 ax4.legend(fontsize=13, ncol=1)

575 #plt.savefig("PerturbedEnergyPositiveFieldDependence.pdf", dpi=300)

576

577 ’Plotting Ionization Rate, Field Strength Dependence’

578 fig, ax5 = plt.subplots(figsize=(7.5,5))

579 ax5.set_yscale("log")

580 ax5.set_xlabel(r"$\mathrm{Field} \ \mathrm{Strength}, \ \mathcal{E}_0$", fontsize=16)

581 ax5.set_ylabel(r"$\mathrm{Ionization} \ \mathrm{Rate}, \ \Gamma_n$", fontsize=16)

582 ax5.set_xlim([E0E[0], 0.1])

583 ax5.set_ylim([1e-3, 1e1])

584 ax5.tick_params(axis=’x’, labelsize=12)

585 ax5.tick_params(axis=’y’, labelsize=12)

586 ax5.grid(’true’)

587 ax5.plot(E0E, 2*np.imag(EApproxE[:, 2]), label=r"$n=1, \ \delta = -1/4$", color=’blue’)

588 ax5.scatter(E0E[::5], -2*np.imag(ENumericalE[::5, 2]), edgecolors=’blue’, facecolors=’none’)

589 ax5.plot(E0E, 2*np.imag(EApproxE[:, 3]), label=r"$n=1, \ \delta = 1/4$", color=’orange’)

590 ax5.scatter(E0E[::5], -2*np.imag(ENumericalE[::5, 3]), edgecolors=’orange’, facecolors=’none’)

591 ax5.plot(E0E, 2*np.imag(EApproxE[:, 0]), label=r"$n = 1$", color=’red’)

592 ax5.scatter(E0E[::5], -2*np.imag(ENumericalE[::5, 0]), edgecolors=’red’, facecolors=’none’)

593 ax5.plot(E0E, 2*np.imag(EApproxE[:, 1]), label=r"$n = 2$", color=’green’)

594 ax5.scatter(E0E[::5], -2*np.imag(ENumericalE[::5, 1]), edgecolors=’green’, facecolors=’none’)

595 ax5.legend(fontsize=13, ncol=1)

596 plt.savefig("PerturbedEnergyPositiveFieldDependence.pdf", dpi=300)

597

598 ’-------------------- Frequency vs Voltage --------------------’

599

600 ’Parameters, Frequency vs Voltage’

601 EngToFreq = 318.2 #Energy Frequency Conversion

602 FieldUnit = 0.16 #Electric Field Unit, Volts/micrometers

603 VMax = 60 #Max Voltage Difference, Volts

604 rc = 3200 #Cell Height, Micrometers

605 EMax = (VMax / rc) #Max Field Strength, Atomic Units

606 DeltaF = 0.01730692276910764

607

608 ’Data Import, Frequency vs Voltage’

609 file_path = r’C:\Users\jonat\Desktop\Universitet\Kandidat\Speciale r\Speciale\Figures &

Code\FrequencyVsVolts.xlsx’ # Replace with your file path

610 data = pd.read_excel(file_path)

611 VoltData12 = np.array(data["Volts12"].tolist())

612 VoltData13 = np.array(data["Volts13"].tolist())[:10]

613 FreqData12 = np.array(data["GHz12"].tolist())

614 FreqData13 = np.array(data["GHz13"].tolist())[:10]

615

616 ’Delta Optimization, Frequency vs Voltage’

617 def f12(delta, E):

618 T1 = np.real(HypApproxN2K(delta, E / (3200 * FieldUnit)) - HypApproxN1K(delta, E / (3200 *

FieldUnit)))*EngToFreq

619 return T1

620 def f13(delta, E):

621 T1 = np.real(HypApproxN3K(delta, E / (3200 * FieldUnit)) - HypApproxN1K(delta, E / (3200 *

FieldUnit)))*EngToFreq

622 return T1

623

624 DeltaLin = np.linspace(-0.05, 0.05, 2500)

625 Error = np.zeros(len(DeltaLin))

626 for i in range(len(DeltaLin)):

627 print(i)

628 X12 = np.zeros(len(FreqData12))

629 for j in range(len(FreqData12)):

630 X12[j] = (f12(DeltaLin[i], VoltData12[j]) - FreqData12[j])**2

631 X13 = np.zeros(len(FreqData13))

632 for j in range(len(FreqData13)):

633 X13[j] = (f13(DeltaLin[i], VoltData13[j]) - FreqData13[j])**2

634 Error[i] = np.sum(X12) + np.sum(X13)

635 DeltaF = DeltaLin[np.argmin(Error)]
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636

637 ’2F1 Approximants, Frequency vs Voltage’

638 E0V = np.linspace(0, EMax, 1000)

639 f0V = np.zeros((6, len(E0V)))

640 for j in range(len(E0V)):

641 f0V[0, j] = np.real(HypApproxN2K(0, E0V[j]/FieldUnit) - HypApproxN1K(0, E0V[j]/FieldUnit))*EngToFreq

642 f0V[1, j] = np.real(HypApproxN2K(DeltaF, E0V[j]/FieldUnit) - HypApproxN1K(DeltaF, E0V[j]/FieldUnit))*EngToFreq

643 f0V[2, j] = np.real(HypApproxN3K(0, E0V[j]/FieldUnit) - HypApproxN1K(0, E0V[j]/FieldUnit))*EngToFreq

644 f0V[3, j] = np.real(HypApproxN3K(DeltaF, E0V[j]/FieldUnit) - HypApproxN1K(DeltaF, E0V[j]/FieldUnit))*EngToFreq

645 f0V[4, j] = np.real(HypApproxN2K(0.0237, E0V[j]/FieldUnit) - HypApproxN1K(0.0237, E0V[j]/FieldUnit))*EngToFreq

646 f0V[5, j] = np.real(HypApproxN3K(0.0237, E0V[j]/FieldUnit) - HypApproxN1K(0.0237, E0V[j]/FieldUnit))*EngToFreq

647

648 ’Plotting, Frequency vs Voltage’

649 fig, ax6 = plt.subplots(figsize=(7.5,5))

650 ax6.set_xlabel(r"$\mathrm{Potential} \ \mathrm{Difference}, \ \Delta V \ \mathrm{[V]}$", fontsize=16)

651 ax6.set_ylabel(r"$\mathrm{Transition} \ \mathrm{Frequency}, \ f_{n \rightarrow m} \ \mathrm{[GHz]}$", fontsize=16)

652 ax6.tick_params(axis=’x’, labelsize=12)

653 ax6.tick_params(axis=’y’, labelsize=12)

654 ax6.grid(’true’)

655 ax6.scatter(VoltData12, FreqData12, edgecolors=’red’, facecolors=’none’, label=r"$f_{1 \rightarrow 2} \

\mathrm{Exp.} \ \mathrm{Data}$")

656 ax6.scatter(VoltData13, FreqData13, edgecolors=’green’, facecolors=’none’, label=r"$f_{1 \rightarrow 3} \

\mathrm{Exp.} \ \mathrm{Data}$")

657 ax6.plot(E0V*rc, f0V[0, :], color=’red’, linestyle=’dashed’, label=r"$\mathrm{Coulomb} \ {}_2 F_1, \ \delta = 0$")

658 ax6.plot(E0V*rc, f0V[1, :], color=’red’, label=r"$\mathrm{Kratzer} \ {}_2 F_1, \ \delta = 0.0173$")

659 ax6.plot(E0V*rc, f0V[2, :], color=’green’, linestyle=’dashed’, label=r"$\mathrm{Coulomb} \ {}_2 F_1, \ \delta =

0$")

660 ax6.plot(E0V*rc, f0V[3, :], color=’green’, label=r"$\mathrm{Kratzer} \ {}_2 F_1, \ \delta = 0.0173$")

661 ax6.set_xlim([0, 40])

662 ax6.set_ylim([119, 225])

663 ax6.legend(fontsize=13, ncol=1)

664 plt.savefig("TransFreqVsVoltage.pdf", dpi=300)
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Appendix F

Linear Dynamic Polarizability Code

The following code is used to compute and plot the linear dynamic polarizability for the ground state
and first excited state for both the Coulomb and Kratzer potential. It also calculates the dynamic Pockels
polarizability for the Coulomb ground state. The code is written for Python.

Listing F.1: Linear Dynamic Polarizability Calculator
1 import numpy as np

2 import sympy as sp

3 import mpmath as mp

4 import matplotlib.pyplot as plt

5 from matplotlib.lines import Line2D

6

7 ’Latex Font’

8 plt.rcParams[’text.usetex’] = True # Enable LaTeX rendering

9 plt.rcParams[’font.family’] = ’serif’ # Use a serif font

10 plt.rcParams[’font.serif’] = [’Computer Modern’] # LaTeX’s default serif font

11 plt.rcParams[’text.latex.preamble’] = r’\usepackage{amsmath}’ # Optional: for more LaTeX symbols

12

13 ’Functions’

14 def Poch(a, b):

15 return mp.gamma(a+b)/mp.gamma(a)

16

17 ’Analytical Alpha’

18 def AlphaK1(delta, omega):

19 def AlphaK1Plus(delta, omega):

20 E1 = - 1 / (2*(1-delta)**2)

21 kappa = mp.sqrt(-2 * (E1 + omega))

22 Z = ((delta - 1)*kappa + 1)**2 / ((delta - 1)*kappa - 1)**2

23 term1 = (1/(((delta - 1)*kappa + 1)**5*(-(delta*kappa) + kappa + 1)**8))*2**(4 - 4*delta)*(1 -

delta)**(2*(delta + 3))*kappa**(1 - 2*delta)*(1/(1 - delta) + kappa)**(4*delta)*((delta - 1)*kappa -

1)**3*(((delta - 1)*kappa + 1)**2/(-(delta*kappa) + kappa + 1)**2)**(delta + 1/kappa)

24 term2 = ((delta - 1)*kappa - 1)**3*(2*delta**2 + (delta - 2)*(delta - 1)**2*(2*delta - 3)*kappa**2 +

2*(delta - 2)*(delta - 1)*(2*delta - 3)*kappa - 7*delta + 4)*sp.betainc(-delta - 1/kappa + 1, 2*delta

- 1, 0, Z)

25 term3 = - 2*(delta - 1)*kappa*((delta - 2)*(delta - 1)**2*kappa**2 - delta)*((delta - 1)**2*(2*delta -

3)*kappa**2 - 2*delta + 7)*sp.betainc(-delta - 1/kappa + 1, 2*delta - 2, 0, Z)

26 return sp.N(term1 * (term2 + term3))

27 return AlphaK1Plus(delta, omega)+AlphaK1Plus(delta, -omega)

28 def AlphaK2(delta, omega):

29 def AlphaK2Plus(delta, omega):

30 E2 = - 1 / (2*(2-delta)**2)

31 kappa = mp.sqrt(-2 * (E2 + omega))

32 Z = ((delta - 2)*kappa + 1)**2 / ((delta - 2)*kappa - 1)**2

33 term1 = (- (2**(7 - 4*delta)*(2 - delta)**(2*(delta + 2))*(delta - 1)*(2*delta - 3)**2 *(kappa + 1/(2 -

delta))**(4*delta)*((delta - 2)*kappa + 1)**6 *(Z)**(delta + 1/kappa)*(delta + (delta - 2)*(delta -

1)*kappa - 3)**2 *sp.betainc(-delta - 1/kappa + 1, 2*delta - 1, 0, Z) * kappa**(1 - 2*delta)) /((delta

- 2)**2*kappa**2 - 1)**8)

34 term2 = ((2**(10 - 4*delta)*(2 - delta)**(2*(delta + 2))*(delta - 2)*(2*delta - 3)**2 *(kappa + 1/(2 -

delta))**(4*delta)*((delta - 2)*kappa + 1)**4 *(Z)**(delta + 1/kappa)*(2*delta + (delta - 2)*(delta -

1)*kappa - 5) *((delta - 1)*kappa**2*(delta - 2)**3 + (2*(delta - 4)*delta + 9)*kappa*(delta - 2) +

delta**2 - 4*delta + 3) *sp.betainc(-delta - 1/kappa + 2, 2*(delta - 1), 0, Z) * kappa**(2 - 2*delta))

/((delta - 2)**2*kappa**2 - 1)**8)

35 term3 = ((2**(10 - 4*delta)*(2 - delta)**(2*(delta + 2))*(delta - 2)**2*(2*delta - 3) *(kappa + 1/(2 -

delta))**(4*delta)*((delta - 2)*kappa + 1)**2 *(Z)**(delta + 1/kappa) *((delta - 1)**2*(6*delta -
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13)*kappa**4*(delta - 2)**5 +2*(delta - 1)*(4*delta*(5*delta - 22) + 101)*kappa**3*(delta - 2)**4

+(delta*(delta*(88*delta**2 - 718*delta + 2233) - 3144) + 1694)*kappa**2*(delta - 2)**2 +2*(2*delta -

5)*(2*delta - 3)*(delta*(10*delta - 43) + 48)*kappa*(delta - 2) +26*delta**4 - 205*delta**3 +

587*delta**2 - 723*delta + 324) *sp.betainc(-delta - 1/kappa + 3, 2*delta - 3, 0, Z) * kappa**(3 -

2*delta)) /((delta - 2)**2*kappa**2 - 1)**8)

36 term4 = ((2**(12 - 4*delta)*(2 - delta)**(2*(delta + 2))*(delta - 2)**5*(2*delta - 3) *(kappa + 1/(2 -

delta))**(4*delta)*(Z)**(delta + 1/kappa) *((delta - 2)**4*(delta - 1)**2*(2*delta - 5)*kappa**5

+(delta - 2)**3*(delta - 1)*(delta*(22*delta - 109) + 138)*kappa**4 +2*(delta - 2)**2*(2*delta -

5)*(delta*(19*delta - 82) + 95)*kappa**3 +2*(delta - 2)*(delta*(delta*(58*delta - 407) + 964) -

768)*kappa**2 +(2*delta - 5)*(delta*(41*delta - 174) + 181)*kappa +22*delta**2 - 91*delta + 87)

*sp.betainc(-delta - 1/kappa + 4, 2*(delta - 2), 0, Z) * kappa**(4 - 2*delta)) /((delta -

2)**2*kappa**2 - 1)**8)

37 term5 = ((2**(11 - 4*delta)*(2 - delta)**(2*(delta + 2))*(delta - 2)**5*(2*delta - 5)*(2*delta - 3) *(kappa

+ 1/(2 - delta))**(4*delta)*(Z)**(delta + 1/kappa) *((delta - 2)**4*(delta - 1)**2*kappa**4 +20*(delta

- 3)*(delta - 2)**3*(delta - 1)*kappa**3 +2*(delta - 2)**2*(delta*(39*delta - 212) + 305)*kappa**2

+20*(delta - 3)*(delta - 2)*(5*delta - 11)*kappa +41*delta**2 - 174*delta + 181) *sp.betainc(-delta -

1/kappa + 5, 2*delta - 5, 0, Z) * kappa**(5 - 2*delta)) /((delta - 2)**2*kappa**2 - 1)**8)

38 term6 = ((2**(14 - 4*delta)*(2 - delta)**(2*(delta + 2))*(delta - 3)*(delta - 2)**6*(2*delta - 5)*(2*delta -

3) *(kappa + 1/(2 - delta))**(4*delta)*(Z)**(delta + 1/kappa) *((delta - 2)**2*(delta - 1)*kappa**2 +

3*(delta - 2)*(2*delta - 7)*kappa + 5*delta - 11) *sp.betainc(-delta - 1/kappa + 6, 2*(delta - 3), 0,

Z) * kappa**(6 - 2*delta)) /((delta - 2)**2*kappa**2 - 1)**8)

39 term7 = ((2**(14 - 4*delta)*(2 - delta)**(2*(delta + 2))*(delta - 3)*(delta - 2)**7*(2*delta - 7)*(2*delta -

5)*(2*delta - 3) *(kappa + 1/(2 - delta))**(4*delta)*(Z)**(delta + 1/kappa) *sp.betainc(-delta -

1/kappa + 7, 2*delta - 7, 0, Z) * kappa**(7 - 2*delta)) /((delta - 2)**2*kappa**2 - 1)**8)

40 return sp.N(term1 - term2 - term3 - term4 - term5 - term6 - term7)

41 return AlphaK2Plus(delta, omega)+AlphaK2Plus(delta, -omega)

42 def AlphaC11(omega):

43 def alphaC11Plus(omega):

44 kappa = mp.sqrt(1 - 2*omega)

45 term1 = 9*(31 + 2*kappa**2 - kappa**4) / (4 * (1-kappa**2)**4)

46 term2 = 36*(kappa**4 - 8*kappa**2 - 1) / ((1-kappa)**5*(1+kappa)**6)

47 term3 = mp.hyp2f1(1, 1, (2*kappa-1)/kappa, -(1-kappa)**2 / (4*kappa)) - 2

48 return term1 + term2*term3

49 return -alphaC11Plus(omega)-alphaC11Plus(-omega)

50 def AlphaNul(n, delta):

51 scriptn = n - delta

52 alpha = 1/4*scriptn**2*(7*scriptn**4 + 5*scriptn**2 - 3*delta**2*(1-delta)**2)

53 return alpha

54 def alphan2Stat(n, delta):

55 scriptn = n - delta

56 F1 = -3/16 * scriptn**4

57 F2 = (33*scriptn**6 + 75*scriptn**4 - 7*scriptn**2*delta**2*(1-delta)**2 + 10*delta**3*(1-delta)**3)

58 return F1*F2

59

60 ’Quantum Defect Energies’

61 def En(n, delta):

62 scriptn = n - delta

63 en = - 1 / (2*scriptn**(2))

64 return en

65 def Ek(k):

66 Ek = k**(2) / 2

67 return Ek

68

69 ’Quantum Defect Matrix Elements’

70 def Znm(n, m, delta):

71 if n == m:

72 Znm = 3 * n**(2) / 2 - delta * (3 * n - 1/2 - delta)

73 else:

74 scriptn = n - delta

75 scriptm = m - delta

76 Factor1 = (-1)**(n) * 2**(3-2*delta) * (scriptn*scriptm)**(2-delta) * mp.sqrt(Poch(n, 1-2*delta) * Poch(m,

1-2*delta))

77 Factor2 = (scriptm + scriptn)**(-2*delta) * (scriptm - scriptn)**(4) * mp.gamma(2-2*delta)

78 Factor3 = ((scriptm - scriptn)/(scriptm + scriptn))**(n + m)

79 Factor4 = scriptm * (scriptn - scriptm) / (scriptn + scriptm) * mp.hyp2f1(1-n, 1-m, 2-2*delta,

-4*scriptn*scriptm / (scriptn - scriptm)**(2))
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80 Factor5 = (m-1) * mp.hyp2f1(1-n, 2-m, 2-2*delta, -4*scriptn*scriptm / (scriptn - scriptm)**(2))

81 Znm = Factor1 / Factor2 * Factor3 * (Factor4 + Factor5)

82 return Znm

83 def Zkm(k, m, delta):

84 scriptm = m - delta

85 N = (2*k)**(1-delta) * mp.fabs(mp.gamma(1-delta-1j/k)) / (mp.sqrt(2*mp.pi) * mp.exp(-mp.pi/(2*k)) *

mp.gamma(2-2*delta))

86 Factor1 = (-1)**(m) * (2*scriptm)**(2-delta) * N * mp.sqrt(Poch(m, 1-2*delta))

87 Factor2 = (1 + 1j*k*scriptm)**(4-2*delta)

88 Factor3 = ((1-1j*k*scriptm) / (1 + 1j*k*scriptm))**(-1j/k - scriptm)

89 Factor4 = scriptm * (1 + 1j*k*scriptm) / (1 - 1j*k*scriptm) * mp.hyp2f1(1 - delta - 1j/k, 1 - m, 2 - 2*delta,

4j*k*scriptm / (1 + 1j*k*scriptm)**(2))

90 Factor5 = (m-1) * mp.hyp2f1(1 - delta - 1j/k, 2 - m, 2 - 2*delta, 4j*k*scriptm / (1 + 1j*k*scriptm)**(2))

91 Zkm = Factor1 / Factor2 * Factor3 * (Factor4 + Factor5)

92 return Zkm

93

94 ’Oscillator Strengths’

95 def gmn(m, n, delta):

96 gmn = 2 * (En(n, delta) - En(m, delta)) * mp.fabs(Znm(n, m, delta))**(2)

97 return gmn

98 def gmk(m, k, delta):

99 gmk = 2 * (Ek(k) - En(m, delta)) * mp.fabs(Zkm(k, m, delta))**(2)

100 return gmk

101

102 ’Numerical Alpha’

103 def AlphaNUM(m, delta, omega):

104 AlphaBound = sum(gmn(m, n, delta)/((En(n, delta) - En(m, delta))**2 - omega**2) for n in range(1, 5000) if n !=

m)

105 AlphaFree = mp.quad(lambda k: gmk(m, k, delta)/((Ek(k) - En(m, delta))**2 - omega**2), [1e-6, mp.inf])

106 return AlphaBound + AlphaFree

107

108 ’Initial Calculations, Ground State’

109 N = 1000 #Resolution

110 M = 20 #Numerical Spacing

111 gamma = 0.01 #Line Broadening

112 Alpha1ReAna = np.zeros(N, dtype=’complex’)

113 Alpha1ImAna = np.zeros(N, dtype=’complex’)

114 Alpha1ReNum = np.zeros(N, dtype=’complex’)

115 Alpha1ImNum = np.zeros(N, dtype=’complex’)

116 Omega = np.linspace(0.001, 0.8, N)

117 for i in range(N):

118 Alpha1ReAna[i] = mp.re(AlphaK1(0, Omega[i] + gamma*1j))

119 Alpha1ImAna[i] = mp.im(AlphaK1(0, Omega[i] + gamma*1j))

120 for i in range(int(N/M)):

121 Alpha1ReNum[M*i] = mp.re(AlphaNUM(1, 0, Omega[M*i] + gamma*1j))

122 Alpha1ImNum[M*i] = mp.im(AlphaNUM(1, 0, Omega[M*i] + gamma*1j))

123 ResIndex12 = np.argmin(np.abs(Omega-(En(2,0)-En(1,0))))

124 ResIndex13 = np.argmin(np.abs(Omega-(En(3,0)-En(1,0))))

125 ResIndex14 = np.argmin(np.abs(Omega-(En(4,0)-En(1,0))))

126

127 ’Plotting, Ground State’

128 fig, ax1 = plt.subplots(figsize=(7.5,5))

129 ax1.set_xlabel(r"$\mathrm{Field} \ \mathrm{Frequency}, \ \omega$", fontsize=16)

130 ax1.set_ylabel(r"$\mathrm{Linear} \ \mathrm{Polarizability}, \ \tilde{\alpha}_{1,1}$", fontsize=16)

131 ax1.plot(Omega, Alpha1ReAna, label=r"$\mathrm{Re}(\tilde{\alpha}_{1,1})(\omega)$", color=’red’)

132 ax1.plot(Omega, Alpha1ImAna, label=r"$\mathrm{Im}(\tilde{\alpha}_{1,1})(\omega)$", color=’green’)

133 ax1.scatter(Omega[::M], Alpha1ReNum[::M], edgecolors=’red’, facecolors=’none’)

134 ax1.scatter(Omega[::M], Alpha1ImNum[::M], edgecolors=’green’, facecolors=’none’)

135 ax1.plot([En(2,0)-En(1,0), En(2,0)-En(1,0)], [Alpha1ImAna[ResIndex12], 35], color=’green’, linestyle=’:’,

label=r"$\omega = \Delta E_{12}$")

136 ax1.plot([En(3,0)-En(1,0), En(3,0)-En(1,0)], [Alpha1ImAna[ResIndex13], 35], color=’green’, linestyle=’:’,

label=r"$\omega = \Delta E_{13}$")

137 ax1.plot([En(4,0)-En(1,0), En(4,0)-En(1,0)], [Alpha1ImAna[ResIndex14], 35], color=’green’, linestyle=’:’,

label=r"$\omega = \Delta E_{14}$")

138 ax1.plot([0, 0.3], [3, 3], color=’red’, linestyle=’:’, label=r"$\tilde{\alpha}_{1,1}(0) = 3$")

139 ax1.set_xlim([0, 0.8])
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140 ax1.set_ylim([-15, 35])

141 ax1.tick_params(axis=’x’, labelsize=12)

142 ax1.tick_params(axis=’y’, labelsize=12)

143 ax1.grid(’true’)

144 ax1.legend(fontsize=16, ncol=1)

145 ax1.tick_params(axis=’x’, which=’both’, direction=’inout’, top=True, labeltop=True)

146 #plt.savefig("LinPolCoulombn1.pdf", dpi=300)

147

148 ’Initial Calculations, First Excited State’

149 N = 1000 #Resolution

150 M = 20 #Numerical Spacing

151 gamma = 0.001 #Line Broadening

152 Alpha2ReAna = np.zeros(N, dtype=’complex’)

153 Alpha2ImAna = np.zeros(N, dtype=’complex’)

154 Alpha2ReNum = np.zeros(N, dtype=’complex’)

155 Alpha2ImNum = np.zeros(N, dtype=’complex’)

156 Omega = np.linspace(0.001, 0.45, N)

157 for i in range(N):

158 Alpha2ReAna[i] = mp.re(AlphaK2(0, Omega[i] + gamma*1j))

159 Alpha2ImAna[i] = mp.im(AlphaK2(0, Omega[i] + gamma*1j))

160 for i in range(int(N/M)):

161 Alpha2ReNum[M*i] = mp.re(AlphaNUM(2, 0, Omega[M*i] + gamma*1j))

162 Alpha2ImNum[M*i] = mp.im(AlphaNUM(2, 0, Omega[M*i] + gamma*1j))

163 ResIndex21 = np.argmin(np.abs(Omega-(En(2,0)-En(1,0))))

164 ResIndex23 = np.argmin(np.abs(Omega-(En(3,0)-En(2,0))))

165 ResIndex24 = np.argmin(np.abs(Omega-(En(4,0)-En(2,0))))

166 ResIndex25 = np.argmin(np.abs(Omega-(En(5,0)-En(2,0))))

167 ResIndex26 = np.argmin(np.abs(Omega-(En(6,0)-En(2,0))))

168

169 ’Plotting, First Excited State’

170 fig, ax2 = plt.subplots(figsize=(7.5,5))

171 ax2.set_xlabel(r"$\mathrm{Field} \ \mathrm{Frequency}, \ \omega$", fontsize=16)

172 ax2.set_ylabel(r"$\mathrm{Linear} \ \mathrm{Polarizability}, \ \tilde{\alpha}_{2,1}$", fontsize=16)

173 ax2.plot(Omega, Alpha2ReAna, label=r"$\mathrm{Re}(\tilde{\alpha}_{2,1})(\omega)$", color=’red’)

174 ax2.plot(Omega, Alpha2ImAna, label=r"$\mathrm{Im}(\tilde{\alpha}_{2,1})(\omega)$", color=’green’)

175 ax2.scatter(Omega[::M], Alpha2ReNum[::M], edgecolors=’red’, facecolors=’none’)

176 ax2.scatter(Omega[::M], Alpha2ImNum[::M], edgecolors=’green’, facecolors=’none’)

177 ax2.plot([En(2,0)-En(1,0), En(2,0)-En(1,0)], [-1675, Alpha2ImAna[ResIndex21]], color=’green’, linestyle=’:’,

label=r"$\omega = \Delta E_{21} = 0.375$")

178 ax2.plot([En(3,0)-En(2,0), En(3,0)-En(2,0)], [Alpha2ImAna[ResIndex23], 3500], color=’green’, linestyle=’:’,

label=r"$\omega = \Delta E_{23} = 0.069$")

179 ax2.plot([En(4,0)-En(2,0), En(4,0)-En(2,0)], [Alpha2ImAna[ResIndex24], 3500], color=’green’, linestyle=’:’,

label=r"$\omega = \Delta E_{24} = 0.094$")

180 ax2.plot([En(5,0)-En(2,0), En(5,0)-En(2,0)], [Alpha2ImAna[ResIndex25], 3500], color=’green’, linestyle=’:’,

label=r"$\omega = \Delta E_{25} = 0.105$")

181 ax2.plot([En(6,0)-En(2,0), En(6,0)-En(2,0)], [Alpha2ImAna[ResIndex26], 3500], color=’green’, linestyle=’:’,

label=r"$\omega = \Delta E_{26} = 0.111$")

182 ax2.plot([0, 0.06], [132, 132], color=’red’, linestyle=’:’, label=r"$\tilde{\alpha}_{2,1}(0) = 132$")

183 ax2.set_xlim([0, 0.4])

184 ax2.set_ylim([-1675, 3500])

185 ax2.tick_params(axis=’x’, labelsize=12)

186 ax2.tick_params(axis=’y’, labelsize=12)

187 ax2.grid(’true’)

188 ax2.legend(fontsize=16, ncol=2)

189 ax2.tick_params(axis=’x’, which=’both’, direction=’inout’, top=True, labeltop=True)

190 plt.savefig("LinPolCoulombn2.pdf", dpi=300)

191

192 ’Initial Calculations, Kratzer Ground States’

193 N = 1000 #Resolution

194 M = 50 #Numerical Spacing

195 Delta = np.array((-0.25, -0.1, 0.1, 0.25), dtype=’complex’)

196 gamma = 0.01 #Line Broadening

197 Alpha1ReAna = np.zeros((4, N), dtype=’complex’)

198 Alpha1ImAna = np.zeros((4, N), dtype=’complex’)

199 Alpha1ReNum = np.zeros((4, N), dtype=’complex’)

200 Alpha1ImNum = np.zeros((4, N), dtype=’complex’)
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201 Omega = np.linspace(0.001, 1, N)

202

203 for i in range(len(Delta)):

204 for j in range(N):

205 Alpha1ReAna[i,j] = mp.re(AlphaK1(Delta[i], Omega[j] + gamma*1j))

206 Alpha1ImAna[i,j] = mp.im(AlphaK1(Delta[i], Omega[j] + gamma*1j))

207 for j in range(int(N/M)):

208 Alpha1ReNum[i, M*j] = mp.re(AlphaNUM(1, Delta[i], Omega[M*j] + gamma*1j))

209 Alpha1ImNum[i, M*j] = mp.im(AlphaNUM(1, Delta[i], Omega[M*j] + gamma*1j))

210

211 ’Plotting, Kratzer Ground States’

212 fig, ax3 = plt.subplots(2, 2, figsize=(10, 8), sharex=True, sharey=True)

213 ax3 = ax3.flatten()

214 ax31, ax32, ax33, ax34 = ax3[0], ax3[1], ax3[2], ax3[3]

215

216 ax31.plot(Omega, Alpha1ReAna[0,:], label=r"$\mathrm{Re}(\tilde{\alpha}_{1,1})(\omega)$", color=’red’)

217 ax31.plot(Omega, Alpha1ImAna[0,:], label=r"$\mathrm{Im}(\tilde{\alpha}_{1,1})(\omega)$", color=’green’)

218 ax31.scatter(Omega[::M], Alpha1ReNum[0,::M], edgecolors=’red’, facecolors=’none’)

219 ax31.scatter(Omega[::M], Alpha1ImNum[0,::M], edgecolors=’green’, facecolors=’none’)

220 ax31.plot([0, 0.15], [AlphaNul(1, Delta[0]), AlphaNul(1, Delta[0])], color=’red’, linestyle=’:’,

label=r"$\tilde{\alpha}_{1,1}(0) = 9.61$")

221 ax31.tick_params(axis=’x’, labelsize=12)

222 ax31.tick_params(axis=’y’, labelsize=12)

223 ax31.set_ylabel(r"$\mathrm{Linear} \ \mathrm{Polarizability}, \ \tilde{\alpha}_{1,1}$", fontsize=16)

224 ax31.set_xlim([0, 1])

225 ax31.set_ylim([-28, 70])

226 ax31.grid(’true’)

227 DeltaEntry1 = Line2D([0], [0], color=’none’, label=r"$\delta = -0.25$")

228 ax31.legend(handles=[DeltaEntry1, *ax31.get_legend_handles_labels()[0]], fontsize=16, ncol=1)

229

230 ax32.plot(Omega, Alpha1ReAna[1,:], color=’red’)

231 ax32.plot(Omega, Alpha1ImAna[1,:], color=’green’)

232 ax32.scatter(Omega[::M], Alpha1ReNum[1,::M], edgecolors=’red’, facecolors=’none’)

233 ax32.scatter(Omega[::M], Alpha1ImNum[1,::M], edgecolors=’green’, facecolors=’none’)

234 ax32.plot([0, 0.25], [AlphaNul(1, Delta[1]), AlphaNul(1, Delta[1])], color=’red’, linestyle=’:’,

label=r"$\tilde{\alpha}_{1,1}(0) = 4.92$")

235 ax32.tick_params(axis=’x’, labelsize=12)

236 ax32.tick_params(axis=’y’, labelsize=12)

237 ax32.set_xlim([0, 1])

238 ax32.grid(’true’)

239 DeltaEntry2 = Line2D([0], [0], color=’none’, label=r"$\delta = -0.1$")

240 ax32.legend(handles=[DeltaEntry2, *ax32.get_legend_handles_labels()[0]], fontsize=16, ncol=1)

241

242 ax33.plot(Omega, Alpha1ReAna[2,:], color=’red’)

243 ax33.plot(Omega, Alpha1ImAna[2,:], color=’green’)

244 ax33.scatter(Omega[::M], Alpha1ReNum[2,::M], edgecolors=’red’, facecolors=’none’)

245 ax33.scatter(Omega[::M], Alpha1ImNum[2,::M], edgecolors=’green’, facecolors=’none’)

246 ax33.plot([0, 0.425], [AlphaNul(1, Delta[2]), AlphaNul(1, Delta[2])], color=’red’, linestyle=’:’,

label=r"$\tilde{\alpha}_{1,1}(0) = 1.75$")

247 ax33.tick_params(axis=’x’, labelsize=12)

248 ax33.tick_params(axis=’y’, labelsize=12)

249 ax33.set_xlabel(r"$\mathrm{Field} \ \mathrm{Frequency}, \ \omega$", fontsize=16)

250 ax33.set_ylabel(r"$\mathrm{Linear} \ \mathrm{Polarizability}, \ \tilde{\alpha}_{1,1}$", fontsize=16)

251 ax33.set_xlim([0, 1])

252 ax33.grid(’true’)

253 DeltaEntry3 = Line2D([0], [0], color=’none’, label=r"$\delta = 0.1$")

254 ax33.legend(handles=[DeltaEntry3, *ax33.get_legend_handles_labels()[0]], fontsize=16, ncol=1)

255

256 ax34.plot(Omega, Alpha1ReAna[3,:], color=’red’)

257 ax34.plot(Omega, Alpha1ImAna[3,:], color=’green’)

258 ax34.scatter(Omega[::M], Alpha1ReNum[3,::M], edgecolors=’red’, facecolors=’none’)

259 ax34.scatter(Omega[::M], Alpha1ImNum[3,::M], edgecolors=’green’, facecolors=’none’)

260 ax34.set_xlabel(r"$\mathrm{Field} \ \mathrm{Frequency}, \ \omega$", fontsize=16)

261 ax34.plot([0, 0.7], [AlphaNul(1, Delta[3]), AlphaNul(1, Delta[3])], color=’red’, linestyle=’:’,

label=r"$\tilde{\alpha}_{1,1}(0) = 0.69$")

262 ax34.tick_params(axis=’x’, labelsize=12)

111



Group 5.323C F. Linear Dynamic Polarizability Code

263 ax34.tick_params(axis=’y’, labelsize=12)

264 ax34.set_xlim([0, 1])

265 ax34.grid(’true’)

266 DeltaEntry4 = Line2D([0], [0], color=’none’, label=r"$\delta = 0.25$")

267 ax34.legend(handles=[DeltaEntry4, *ax34.get_legend_handles_labels()[0]], fontsize=16, ncol=1)

268 plt.savefig("LinPolKratzern1.pdf", dpi=300)

269

270 ’Initial Calculations, Kratzer Excited States’

271 N = 1000 #Resolution

272 M = 50 #Numerical Spacing

273 Delta = np.array((-0.25, -0.1, 0.1, 0.25), dtype=’complex’)

274 gamma = 0.001 #Line Broadening

275 Alpha2ReAna = np.zeros((4, N), dtype=’complex’)

276 Alpha2ImAna = np.zeros((4, N), dtype=’complex’)

277 Alpha2ReNum = np.zeros((4, N), dtype=’complex’)

278 Alpha2ImNum = np.zeros((4, N), dtype=’complex’)

279 Omega = np.linspace(0.001, 0.5, N)

280

281 for i in range(len(Delta)):

282 for j in range(N):

283 Alpha2ReAna[i,j] = mp.re(AlphaK2(Delta[i], Omega[j] + gamma*1j))

284 Alpha2ImAna[i,j] = mp.im(AlphaK2(Delta[i], Omega[j] + gamma*1j))

285 for j in range(int(N/M)):

286 Alpha2ReNum[i, M*j] = mp.re(AlphaNUM(2, Delta[i], Omega[M*j] + gamma*1j))

287 Alpha2ImNum[i, M*j] = mp.im(AlphaNUM(2, Delta[i], Omega[M*j] + gamma*1j))

288

289 ’Plotting, Kratzer Excited States’

290 fig, ax4 = plt.subplots(2, 2, figsize=(10, 8), sharex=True, sharey=True)

291 ax4 = ax4.flatten()

292 ax41, ax42, ax43, ax44 = ax4[0], ax4[1], ax4[2], ax4[3]

293

294 ax41.plot(Omega, Alpha2ReAna[0,:], label=r"$\mathrm{Re}(\tilde{\alpha}_{2,1})(\omega)$", color=’red’)

295 ax41.plot(Omega, Alpha2ImAna[0,:], label=r"$\mathrm{Im}(\tilde{\alpha}_{2,1})(\omega)$", color=’green’)

296 ax41.scatter(Omega[::M], Alpha2ReNum[0,::M], edgecolors=’red’, facecolors=’none’)

297 ax41.scatter(Omega[::M], Alpha2ImNum[0,::M], edgecolors=’green’, facecolors=’none’)

298 ax41.plot([0, 0.045], [AlphaNul(2, Delta[0]), AlphaNul(2, Delta[0])], color=’red’, linestyle=’:’,

label=r"$\tilde{\alpha}_{2,1}(0) = 258.72$")

299 ax41.tick_params(axis=’x’, labelsize=12)

300 ax41.tick_params(axis=’y’, labelsize=12)

301 ax41.set_ylabel(r"$\mathrm{Linear} \ \mathrm{Polarizability}, \ \tilde{\alpha}_{2,1}$", fontsize=16)

302 #ax41.set_xlim([0, 1])

303 #ax41.set_ylim([-28, 70])

304 ax41.grid(’true’)

305 DeltaEntry1 = Line2D([0], [0], color=’none’, label=r"$\delta = -0.25$")

306 ax41.legend(handles=[DeltaEntry1, *ax41.get_legend_handles_labels()[0]], fontsize=16, ncol=1)

307

308 ax42.plot(Omega, Alpha2ReAna[1,:], color=’red’)

309 ax42.plot(Omega, Alpha2ImAna[1,:], color=’green’)

310 ax42.scatter(Omega[::M], Alpha2ReNum[1,::M], edgecolors=’red’, facecolors=’none’)

311 ax42.scatter(Omega[::M], Alpha2ImNum[1,::M], edgecolors=’green’, facecolors=’none’)

312 ax42.plot([0, 0.0525], [AlphaNul(2, Delta[1]), AlphaNul(2, Delta[1])], color=’red’, linestyle=’:’,

label=r"$\tilde{\alpha}_{2,1}(0) = 174.36$")

313 ax42.tick_params(axis=’x’, labelsize=12)

314 ax42.tick_params(axis=’y’, labelsize=12)

315 ax42.set_xlim([0, 1])

316 ax42.grid(’true’)

317 DeltaEntry2 = Line2D([0], [0], color=’none’, label=r"$\delta = -0.1$")

318 ax42.legend(handles=[DeltaEntry2, *ax42.get_legend_handles_labels()[0]], fontsize=16, ncol=1)

319

320 ax43.plot(Omega, Alpha2ReAna[2,:], color=’red’)

321 ax43.plot(Omega, Alpha2ImAna[2,:], color=’green’)

322 ax43.scatter(Omega[::M], Alpha2ReNum[2,::M], edgecolors=’red’, facecolors=’none’)

323 ax43.scatter(Omega[::M], Alpha2ImNum[2,::M], edgecolors=’green’, facecolors=’none’)

324 ax43.plot([0, 0.07], [AlphaNul(2, Delta[2]), AlphaNul(2, Delta[2])], color=’red’, linestyle=’:’,

label=r"$\tilde{\alpha}_{1,1}(0) = 98.59$")

325 ax43.tick_params(axis=’x’, labelsize=12)
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326 ax43.tick_params(axis=’y’, labelsize=12)

327 ax43.set_xlabel(r"$\mathrm{Field} \ \mathrm{Frequency}, \ \omega$", fontsize=16)

328 ax43.set_ylabel(r"$\mathrm{Linear} \ \mathrm{Polarizability}, \ \tilde{\alpha}_{2,1}$", fontsize=16)

329 ax43.set_xlim([0, 1])

330 ax43.grid(’true’)

331 DeltaEntry3 = Line2D([0], [0], color=’none’, label=r"$\delta = 0.1$")

332 ax43.legend(handles=[DeltaEntry3, *ax43.get_legend_handles_labels()[0]], fontsize=16, ncol=1)

333

334 ax44.plot(Omega, Alpha2ReAna[3,:], color=’red’)

335 ax44.plot(Omega, Alpha2ImAna[3,:], color=’green’)

336 ax44.scatter(Omega[::M], Alpha2ReNum[3,::M], edgecolors=’red’, facecolors=’none’)

337 ax44.scatter(Omega[::M], Alpha2ImNum[3,::M], edgecolors=’green’, facecolors=’none’)

338 ax44.set_xlabel(r"$\mathrm{Field} \ \mathrm{Frequency}, \ \omega$", fontsize=16)

339 ax44.plot([0, 0.085], [AlphaNul(2, Delta[3]), AlphaNul(2, Delta[3])], color=’red’, linestyle=’:’,

label=r"$\tilde{\alpha}_{2,1}(0) = 61.91$")

340 ax44.tick_params(axis=’x’, labelsize=12)

341 ax44.tick_params(axis=’y’, labelsize=12)

342 ax44.set_xlim([0, 1])

343 ax44.grid(’true’)

344 DeltaEntry4 = Line2D([0], [0], color=’none’, label=r"$\delta = 0.25$")

345 ax44.legend(handles=[DeltaEntry4, *ax44.get_legend_handles_labels()[0]], fontsize=16, ncol=1)

346 plt.savefig("LinPolKratzern2.pdf", dpi=300)

347

348 ’Initial Calculations, Coulomb Pockels’

349 N = 1000 #Resolution

350 M = 50 #Numerical Spacing

351 gamma = 0.01 #Line Broadening

352 Alpha1RePock = np.zeros(N, dtype=’complex’)

353 Alpha1ImPock = np.zeros(N, dtype=’complex’)

354 Alpha1ReLim = np.zeros(N, dtype=’complex’)

355 Alpha1ImLim = np.zeros(N, dtype=’complex’)

356 Omega = np.linspace(0.001, 0.8, N)

357 for i in range(len(Omega)):

358 Alpha1RePock[i] = mp.re(AlphaC11(Omega[i] + gamma*1j))

359 Alpha1ImPock[i] = mp.im(AlphaC11(Omega[i] + gamma*1j))

360 Alpha1ReLim[i] = -mp.re(AlphaK1(0, Omega[i] + gamma*1j))

361 Alpha1ImLim[i] = -mp.im(AlphaK1(0, Omega[i] + gamma*1j))

362

363 ’Plotting, Coulomb Pockels’

364 fig, ax5 = plt.subplots(1, 2, figsize=(10, 8), gridspec_kw={’wspace’: 0.25})

365 ax5 = ax5.flatten()

366 ax51, ax52 = ax5[0], ax5[1]

367 ax51.plot(Omega, Alpha1RePock, label=r"$\mathrm{Re}(\tilde{\alpha}_{1,11})(\omega)$", color=’red’)

368 ax51.plot(Omega, Alpha1ImPock, label=r"$\mathrm{Im}(\tilde{\alpha}_{1,11})(\omega)$", color=’green’)

369 ax52.plot(Omega, Alpha1ReLim, label=r"$\mathrm{Re}(\tilde{\alpha}_{1,1})(\omega)$", color=’red’)

370 ax52.plot(Omega, Alpha1ImLim, label=r"$\mathrm{Im}(\tilde{\alpha}_{1,1})(\omega)$", color=’green’)

371 ax51.plot([0, 0.3], [alphan2Stat(1,0), alphan2Stat(1,0)], color=’red’, linestyle=’:’,

label=r"$\tilde{\alpha}_{2,1}(0) = -\frac{81}{4}$")

372 ax52.plot([0, 0.3], [-AlphaNul(1, 0), -AlphaNul(1, 0)], color=’red’, linestyle=’:’,

label=r"$-\tilde{\alpha}_{2,1}(0) = -3$")

373 ax51.set_xlim([0, 0.55])

374 ax52.set_xlim([0, 0.55])

375 ax51.set_ylim([-373, 178])

376 ax52.set_ylim([-32, 13])

377 ax51.set_xlabel(r"$\mathrm{Field} \ \mathrm{Frequency}, \ \omega$", fontsize=16)

378 ax51.set_ylabel(r"$\mathrm{Pockels} \ \mathrm{Polarizability}, \ \tilde{\alpha}_{1,11}(\omega)$", fontsize=16)

379 ax52.set_xlabel(r"$\mathrm{Field} \ \mathrm{Frequency}, \ \omega$", fontsize=16)

380 ax52.set_ylabel(r"$\mathrm{Linear} \ \mathrm{Polarizability}, \ -\tilde{\alpha}_{1,1}(\omega)$", fontsize=16)

381 ax51.tick_params(axis=’x’, labelsize=12)

382 ax51.tick_params(axis=’y’, labelsize=12)

383 ax52.tick_params(axis=’x’, labelsize=12)

384 ax52.tick_params(axis=’y’, labelsize=12)

385 ax51.grid(True)

386 ax52.grid(True)

387 ax51.legend(fontsize=16, ncol=1)

388 ax52.legend(fontsize=16, ncol=1)
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389 plt.savefig("PockelsPolCoulombn1.pdf", dpi=300)
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