
   

   

 

 

 

 



 

2 

 

 

  



 

3 

 

Title page 

The Technical Faculty of IT & Design  

Surveying, Planning and Land management 

Strandvejen 12-14  

9000 Aalborg  

https://www.en.tech.aau.dk 

 

Title:  Factorial experimentation with Convolutional Neural Networks in the 

context of Land Use/Land Cover classification 

Project:   Master's thesis  

Project period:  January 2025 – May 2025 

Project group:   Group 12 

Members:   Emil Falk Knudsen (20204841)  

Supervisor:   Associate Professor Maike Schumacher 

Physical page count:  72 

Standard page count:  65,5 

Symbol count:  157.196 

Word count:   26.285 

 

  

https://www.en.tech.aau.dk/


 

4 

 

Abstract 

This master's thesis serves as a follow-up to my 9th semester report, Land Use & Land Cover 

Classification of Aalborg Municipality. The 9th semester report explored the possibilities of 

generating a Land Use/Land Cover map for Denmark through Machine Learning (ML). The 

accuracies achieved in said report were lower than desired with an Overall Accuray (Po of 74% 

and a Cohen’s kappa of 0.63. This was hypothesised to primarily be due to two reasons related 

to the development being executed in Google Earth Engine (GEE). The first reason is that 

GEEs stratified sampling function limited the amount of training and validation data that could 

be used. The second reason is that GEE was limited to non-Neural network models. 

This thesis explores whether better results can be achieved using Neural Networks (NN) as 

opposed to GEEs Random Forest (RF) architecture. This is first explored through a literature 

study to determine the difference between RF and other decision tree ensemble methods 

compared to NN, which type of NN is most suited for Computer Vision tasks that require spatial 

awareness, and which factors are relevant to the accuracy and computational performance. 

Based on the literature study, which was consulted, this master’s thesis is focused on the 

construction and implementation of Convolutional Neural Networks (CNN). 

As a result of the literature study, a partial factorial experiment was set up and executed with 

inspiration from Design for Six Sigma’s Design of Experiment methodology. The experiment 

included seven experimental factors, of which the first two were attempts to mitigate the impact 

of the relatively large background class, while the remaining factors regarded the CNN model’s 

architecture, the type of data augmentation applied, the class weights applied in the loss 

functions, the Learning Rate and the number of epochs that the model is trained on. The 

implementation of these factors, the justification for the chosen data, and the general structure 

of the GEE and Python scripts written for the NN factorial experiment are described as well. 

Upon having optimised the script for each factor, the accuracy measures of the CNN model are 

compared to the RF model from the previous report. In the comparison, it is found that the 

CNN model outperformed the RF model relatively by 15% for Po and 24% for kappa. 
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Preface 

This master’s thesis was developed throughout the spring semester of 2025 for the Surveying, 

Planning and Land Management master’s programme. It serves as a direct follow-up to my 9th 

semester report. However, it takes a very different direction than the one outlined in the 9th 

semester report. This thesis takes a mostly technical, experimental approach to the development 

of Neural Network based Land Use/Land Cover maps with a goal of outperforming the RF 

model developed in the previous report. The experiment takes inspiration from Design for Six 

Sigma. 

First and foremost, I would like to extend my thanks and gratitude to Associate Professor Maike 

Schumacher for her guidance as the supervisor of this master’s thesis. Additionally, I would 

also like to thank Assistant Professor Shaoxing Mo and Professor Ehsan Forootan for showing 

interest in and contributing with ML scripts and articles that served as inspiration for this thesis 

and its ML scripts. 

All figures included in the report are generated by the author of this master’s thesis. The tools 

used for making these figures are PowerPoint, Excel, Google Earth Engine, and Python. When 

figures are inspired by a particular source, it is stated in the figure text along with the source of 

the figure which provided inspiration. 

Reading guide 

Referencing to sources 

The chosen method of citing sources for this project is the Harvard method. This means that 

sources will be referred to in the following manner: [Name, Year, Pages]. An example hereof 

could be [Howard and Gugger, 2020, p. 298, 322-324]. Sources can occur in one of three ways. 

If placed in the middle of a sentence, it refers to that particular sentence. If it occurs at the end 

of a sentence before punctuation, it refers to the of the entire sentence. If it occurs at the end of 

a paragraph, it refers to all or the majority of the content in that paragraph. Further detail of the 

sources can be found in the bibliography.  

Appendices will be attached separately in a folder along with the hand-in of this master’s thesis. 

Appendices will be referred to as Appendix X, where X denotes the letter assigned to the given 

appendix. For appendices with multiple files, the specific file will be referred to by the name 

of the script iteration that it is based on. The naming convention for these files is thus FxLy, 

where F is short for factor, x denotes the factor that is experimented on, L is short for level, and 

y denotes the level which is tested. thus, an example could be Appendix C, F1L1. 

Structure of thesis 

The thesis can be summarised with the following structure: 

- Context 

- Pre-analysis 

- Main analysis 

- Summary conclusion & reflections 

- Bibliography and abbreviations 
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The context of the report is provided by Chapters 1 and 2. Chapter 1 specifically regards the 

political context as well as a brief summary of previous research pertaining to the topic of this 

thesis. This includes both my 9th semester report and reports from University of Copenhagen, 

Aarhus University, Roskilde University, and the Technical University of Denmark, which the 

9th semester report is based on. Chapter 2 describes the general methodological approach of 

this thesis.  

The pre-analysis consists of Chapters 3 and 4. Chapter 3 presents the initial wonder, which is 

explored further in Chapter 4. Chapter 4 explores the differences between Decision Tree 

Ensemble and Neural Network (NN) models, what distinguishes CNNs from other types of NN, 

and a selection of NN parameters which could be experimented with in this thesis. 

The main analysis consists of Chapters 5-9. Chapter 5 presents the problem formulation and 

its sub-questions. Chapter 6 justifies the choice of data used for images, labels, and Region of 

Interest in the experiment of this master’s thesis. Chapter 7 describes which parameters are 

chosen as experimental factors, which response variables will be used to measure the impact 

of said factors, and which parameters are treated as constants throughout the experiment. 

Chapter 8 describes the structure of the scripts developed for this thesis. Chapter 9 justifies the 

choice of optimal level for each factor in the experiment, reflects on the reliability of the 

experiment and compares the CNN model to the RF model. 

The summary conclusion and reflection consist of Chapters 10 and 11. The findings of both the 

pre- and main analyses are summarised in Chapter 10. Here the initial wonder as well as the 

problem formulation and its sub-questions are answered to the extent that this thesis allows. 

Chapter 11 follows up with a reflection upon how the experiment could have been improved if 

the scope had been expanded. 

The bibliography can be found in Chapter 12, where additional information regarding each 

source used in this thesis can be found. Additionally, chapter 13 has a definition of each 

abbreviation used in this thesis. 

 

 

Emil Falk Knudsen 
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1 Introduction: Context of master’s thesis 
Climate change impacts the world to an ever increasing extend, and does so in multiple 

different ways. This includes but not limited to an increase in the amount and intensity of 

natural disasters, loss of biodiversity, and a steadily rising sea level. The latter particularly 

impacts coast-near communities. With a large stretch of coastlines and relatively flat terrain, 

Denmark is a country that risks being severely affected by such changes. [United Nations] 

[Navigating 360, 2024, p. 4] 

As pointed out in the article “Prioritering af Danmarks areal i fremtiden” (Prioritisation of the 

area of Denmark in the future), Denmark struggles with not having enough land area to 

accommodate all of its adopted spatial plans and goals, with the article stating that appr. 30-

40% more land area being needed to accommodate these plans and goals [Arler et al., 2017, p. 

3]. This issue seems to only be growing due to increasing political ambitions, such as “Den 

Grønne Trepart” (the Green Trinity) [Ministry of Food, Agriculture and Fisheries of Denmark, 

2025] and the European Biodiversity Strategy [European Commission, 2025] , as well as due 

to the above mentioned effects of climate change, with increasing sea levels causing the surface 

area of Denmark to shrink over time [Danmarks Meteorologiske Institut, N/A]. 

1.1 Previous research: Analysis regarding political context 

Concurrently with this political shift toward more focus on the environment, several Danish 

universities have dedicated their research to how spatial planners and policy makers might 

accommodate the incongruence between Danish spatial plans and available land area. These 

universities include University of Copenhagen (UCph), Aarhus University (AU), Roskilde 

University (RUC) and the Technical University of Denmark (DTU). As a result, UCph and AU 

have put forth recommendations on where to establish protected nature areas with basis in 

preservation of Danish biodiversity. RUC have presented a mixed qualitative and quantitative 

approach to improve quantitative data analysis. Additionally, DTU, in collaboration with the 

think tank Navigating 360, have presented their findings on expected future impacts of storm 

surges in Denmark. This research was the basis for the pre-analysis of my 9th semester report, 

titled “Land Use & Land Cover Classification of Aalborg Municipality” [Knudsen, 2025]. 

[Petersen et al., 2024] [Ejrnæs et al., 2022] [Christensen and Eetvelde, 2024] [Navigating 360, 

2024] 

While variations can be found in the process through which UCph and AU developed their 

recommendations, they achieved remarkably similar results. As can be seen in their maps, a 

significant amount of the western Jutlandish coastline has been appointed as recommended for 

nature protected areas [Petersen et al., 2024, p. 8] [Ejrnæs et al., 2022, p. 17]. In DTUs research, 

it can be seen that coastal areas will be particularly impacted by storm surges, of which some 

are affected more than others [Navigating 360, 2024, p. 23]. [Knudsen, p. 7-9]  

UCph, AU, DTU and RUC have all contributed with thorough and relevant research. However, 

there were still new and unique topics to explore [Knudsen, 2025, p. 10]. Thus, with inspiration 

from the above-mentioned research, a small series of semester reports was initiated at Aalborg 

university. The goal of this series was originally to determine if it was possible to develop a 

Spatial Decision Support System (SDSS) model for calculating the resistance toward 

implementing UCph’s or AUs nature protection recommendations on a local scale based on 
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resistance factors such as land ownership, expected future hydrological changes and future 

Land Use/Land Cover (LULC) conditions across Denmark. 

1.2 Previous research: Analysis regarding development of Random 

Forest model 

As a result of the pre-analysis, the 9th semester report’s main analysis was focused on the 

development of a collection of historical LULC maps for use in future LULC prediction. This 

collection of maps was supposed to be produced within the time range for which LandSat (LS) 

8 images are available, that being from 2013 to present. These maps were developed using the 

Machine Learning (ML) capabilities within Google Earth Engines (GEE) Application 

Programming Interface (API). This enabled the option to keep the majority of the data pre- and 

post- processing, ML training, validation and utilisation in one environment. This environment 

also provided high level coding options and access to online processing power provided by 

Google. The access to online processing power ensured that the local machine used for 

programming did not become a bottle neck because of underpowered hardware for the 

application. [Knudsen, 2025] 

1.2.1 Choice of input data 

The final Random Forest (RF) model required three input datasets. These were the Region of 

Interest (ROI), images for training and validation, and labels for the same region.  

The ROI data was requested to cover Aalborg Municipality. This data was derived from 

Denmarks Administrative geographic subdivision (DAGI) and was downloaded from 

Dataforsyningen. As the official administrative border registry for Denmark, this gave the 

clearest definition of the spatial location and extend of Aalborg Municipality. [Dataforsyningen, 

a] 

Regarding input images, it was specifically chosen to use LS8 satellite images. This choice 

was in part made because of the fact that its images contain bands in both the visible range as 

well as the infra-red spectrum, including Near Infra-Red (NIR) and Thermal Infra-Red (TIR). 

Additionally, LS8 is still active, which means that new LULC classifications would be possible 

to produce at an annual basis in the future. Since LS9 measures within the same bands, it can 

function as a backup in case LS8s nominal mission should end [USGS, c].  

For input labels, it was chosen to use GeoDenmark (GDK) data as a basis. GDK was chosen 

for two reasons. The first one is that this is the dataset which is basis for the INSPIRE LULC 

map for Denmark [Klimadatastyrelsen, N/A]. The second reason is the fact that it is human-

made. This makes it a more authoritative source of comparison than other algorithm generated 

LULC maps of the ROI, such as the sentinel-based ESA WorldCover maps [ESA, 2025]. This 

statement is based on the assumption that human made maps are more accurate than ML made 

maps which are trained on human-made labels. 

The following list of GDK themes were chosen: 

- Bassin  

- Bykerne (City center) 

- Erhverv (Industry) 

- Hede (Moorland) 

- HøjBebyggelse (Tall urban areas) 
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- LavBebyggelse (Low urban areas) 

- Råstof (Raw Materials areas) 

- RekreativtOmråde (Recreative areas) 

- SandKlit (Sand/Dune) 

- Skov (Forest) 

- Sø (Lake) 

- TekniskAnlægFlade (Technical Facility plane) 

- TekniskAreal (Technical Areas) 

- VådOmråde (Wetlands) 

From these, the following classes were derived through experimentation: 

- C0: Bassin  

- C1: Hede  

- C2: HøjBebyg & LavBebyg & Erhverv & Bykerne 

- C3: Råstof  

- C4: Rekreativt  

- C5: SandKlit  

- C6: Skov  

- C7: Sø  

- C8: Vådområde 

Notable for the input data of the RF model is that there is no clear spatial distinction between 

training and validation regions. This is due to the lack of spatial awareness in the RF model 

and the relatively small amount of data used for the model, since the model was limited to 

Aalborg Municipality. 

One class that is noticeably missing in the GDK dataset is agricultural fields. It was considered 

to include agricultural fields as a class in the RF model. However, because agricultural data is 

registered on an annual basis in Denmark, it was deemed unnecessary to dedicate effort to 

generate annual classifications of the agricultural areas of Denmark. Therefore, the RF model 

was specifically not trained to recognise agricultural fields. This meant that the model would 

incorrectly classify all agricultural land in Denmark. However, due to the annual availability 

of agricultural data, the LULC output from the RF was simply overwritten with agricultural 

data for the relevant year. This replaced all the incorrectly classified agricultural pixels and 

increased the accuracy of the model. 

1.2.2 Model structure  

The RF model along with most of the pre- and post-processing of data was performed in GEE. 

While multiple iterations of the RF model script existed and were included in the report, they 

were all structured similarly, with the script being split into multiple distinct parts, which each 

served a unique purpose for the script. These parts can be categorised as follows: 

- Parts 1, 2 & 2.1: Import, define & preprocess RF input data 

- Parts 3, 4, 5 & 5.1: Pixel counts & stratification 

- Part 6: Classification & visualisation 

- Part 7: Accuracy assessment & export of Confusion Matrix (CM) 

- Parts 8-9: Agricultural data processing & overwrite 

- Parts 10 & 10.1: Legends 
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Section 1.2.2 is primarily based on Chapter 7 of the 9th semester report. [Knudsen, 2025, p. 23-

31] 

1.2.2.1 Parts 1 & 2: Import, define & preprocess RF input data 

Parts 1 and 2 imported data to allow the rest of the script parts to process the data. Part 1 

imported the 14 originally chosen GDK themes along with the Aalborg Municipality polygon 

from DAGI. Important to note is that all of the themes had clipped been to the ROI and 

dissolved to a single polygon pr. class before being uploaded as a GEE asset.  

Part 1 is where the first factor in the factorial experiment, the class list, was tested. The class 

list is the different categories which the images will be categorised according to when 

generating the LULC map. This factor was aimed at determining a class list which reached a 

Choen’s kappa (kappa) of 0,61 or higher while maintaining as many distinct classes as possible. 

This was done by combining and removing various GDK polygon themes. kappa is a measure 

which describes how accurate a model is when correcting for chance agreement, see Section 

7.2. 0,61 was chosen as this is the lower limit for achieving a kappa which indicates a 

substantial agreement between what a model predicts and reality, as stated by Landis and Koch 

[Landis and Koch, 1977, p. 165]. 

Parts 2 and 2.1 dealt with the import and pre-processing of LS8 images and the calculation of 

various normalised difference indices derived from the LS8 data for future experimentation. 

1.2.2.2 Parts 3, 4, 5 & 5.1: Pixel counts & stratification 

Parts 3-5 and 5.1 dealt with the additional pre-processing of input data. This process was done 

using stratified sampling. These parts relate to the second factor in the experiment, which 

sought to find the optimal distribution of training points between classes. This factor was 

important as the relative distribution of points that represented each class in training was found 

to affect the accuracy of the model. The effect on accuracy appeared to particularly affect the 

classes which had the smallest surface area.  

Because of an upper limit of 5000 points when running stratified sampling, this method resulted 

in the smallest classes based on surface area being severely underrepresented. Because these 

5000 points had to be shared between training and validation data, the smallest class only 

received a single training point with no validation points. As such, other approaches were also 

tested. These approaches included an equal distribution of points and a compromise between 

the equal and area-based distributions. The compromise had points distributed between classes 

based on relative surface area, with classes below a certain threshold receiving additional points 

until the threshold was reached. The compromise with a threshold value of 100 points was 

found to give the best results [Knudsen, 2025, p. 37-38]. 

Part 3 merged the polygons from the chosen classes into a mask layer consisting of all labels. 

Part 4 calculated pixel counts, from which it derived the relative class surface area distributions. 

Part 5 did the stratifying sample, where the actual experimentation for the point distribution 

class took place. Part 5.1 finished the pre-processing of data by splitting the nigh 5000 points 

between training and validation data. The split was made pr. Class to ensure that the distribution 

of points between classes in both the training and validation sets fit with the intended 

distribution for each approach and level of the factor. 
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1.2.2.3 Parts 6 & 7: Classification & visualisation, accuracy assessment & export of CM 

With the training and validation data fully prepared, part 6 trained the RF classification model 

on the data from 2021. In early iterations of the script, the model would only classify the ROI 

for 2021. Later iterations, including the final one, would classify LS8 images from 2013 

through 2024 based on the 2021 training data. Regardless of the number of classifications, 

these would be displayed along with the LS8 image or images that were classified to allow for 

visual assessment of the RF model’s performance. 

Part 6 is also where the third factor in the factorial experiment was implemented. This factor 

had the goal of finding the approximate amount of decision trees required to no longer gain 

substantial increases in accuracy. This factor was included because it was requested by Mølbak 

that the RF model should be made publicly available and runnable on a website. The best 

performing number of trees was 175 in a range of 100-300 trees [Knudsen, 2025, p. 38-39]. 

Part 7 would assess the accuracy by generating a Confusion Matrix (CM) from the validation 

data. A CM is a matrix which describes how many pixels were correctly classified for each 

class and how many pixels were confused with each incorrect class, see Section 7.2. This 

confusion matrix was what all other accuracy assessment methods were derived and calculated 

from, see Section 7.2. In the assessment of the RF model’s performance, emphasis was placed 

on the overall accuracy (Po) and kappa value. As described in Section 7.2, the Po describes the 

percentage of correctly classified pixels out of the total number of pixels classified, while kappa 

is a measure which hypothetically adjusts the Po based on expected chance agreement. Together, 

these two values give an easily interpretable description of how well the model performed. 

However, if particularly egregious issues were found when visually assessing the performance 

of the RF model during experimentation, this would take priority over the quantitative accuracy 

assessment methods, as can be seen regarding the point distribution factor [Knudsen, 2025, p. 

36]. 

1.2.2.4 Parts 8, 8.1 & 9: Agricultural data processing & overwrite 

While not included in the final iteration of the RF model script, these parts were included in 

previous iterations mentioned throughout the report. Part 8 rasterised the agricultural data so 

that it had the same spatial sampling as the LS8 images. Part 8.1 calculated the area of the 

agricultural data in preparation for the following accuracy assessments. Part 9 then overwrote 

the Rf classification output so that it contained the correct classification for the agricultural 

areas of the ROI. 

1.2.2.5 Parts 10 & 10.1: Legends 

Parts 10 and 10.1 generated legends within GEE to ease interpretations of the resulting 

classifications. Part 10 generated the legend for the classes which were classified by the RF 

model while part 10.1 generated the legend for the agricultural data which the RF classification 

was overwritten with for improved accuracy. Similarly to parts 8-9, part 10.1 was not included 

in the final iteration of the script for RF based LULC classification. 

1.2.3 Results of RF model optimisation 

The result of the partial factorial experiment on the RF classification model was an overall 

accuracy of 74% and a kappa coefficient of 0,63 for the resulting 2021 LULC before the 

agricultural data overwrite. This increased to an overall accuracy of 90% and a kappa 

coefficient of 0,83 after overwriting the 2021 output with the agricultural data.  
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These results lie within the ranges of moderate and substantial strength of agreement 

respectively [Landis and Koch, 1977, p. 165]. Despite this, the resulting maps were deemed 

insufficient for use in future LULC prediction for the ROI. This was particularly due to the 

Producer’s Accuracy (PA), see Section 9.10. PA calculates the Po, but for each individual class 

independent of other classes. lower PA values were found for classes which were 

underrepresented, including the hydrological classes Bassins and Lakes.  

Furthermore, two untested factors were postulated to have held back the accuracy which could 

be achieved in the report. The first reason was the selection of deployable models in GEE, 

particularly that no Neural Network (NN) models were available. The other reason presented 

was the 5000-point restriction on the stratified sampling method. As such, this master’s thesis 

will focus on the development of an NN for LULC classification instead of the nature 

protection implementation resistance SDSS that was proposed the author’s 9th semester project 

report. [Knudsen, 2025, p. 44] 
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2 Methodology 
In this chapter, the overall methodological approach of and considerations related to this 

master’s thesis will be outlined. This is the foundation of both the report’s contents and the 

experiments upon which this report is based. This chapter will specifically discuss the research 

philosophy, research type, research strategy, data collection methods and data analysis tools in 

said order. Following this, it will clarify the use of generative AI to make the programming of 

the master thesis’ resulting script more efficient.  

2.1 Research design choices 

2.1.1 Research philosophy 

As stated by Dr. Robert Galliers, there are two major philosophies from which to draw 

inspiration from when working with information systems. Those are the scientific/empirical 

approach, also known as the positivistic approach, and the interpretivistic approach. The former 

is based on a premise which emphasises objectivity and reproducibility, whereas the latter is 

based on a premise which states that multiple subjective interpretations of the same 

phenomenon can be correct, aligning more with a post-positivistic mentality. While neither is 

more correct than the other, it can be said with certainty that they each can be more suitable 

depending on the goal of research. [Galliers, 1991, p. 331] 

With a goal of understanding and optimising Machine Learning (ML) in order to achieve the 

highest measurable accuracy, which can be described as a quantitative experimental approach, 

the research philosophy of this report lies well within the positivistic realm. 

2.1.2 Research type 

Another important choice to make regarding the approach taken to research is whether the 

research will be conducted inductively or deductively. Similarly to my 9th semester report, there 

are elements of both in this thesis. The overall goal of this report is to determine whether Neural 

Network (NN) models are more accurate than Random Forest (RF) models in the context of 

Land Use/Land Cover (LULC) classification. While this clearly demonstrates a deductive 

mindset, where it is sought to prove or disprove a theory, the approach taken in this report to 

reach such a conclusion takes on a more exploratory, data-driven character, in which no 

assumptions or hypotheses are made before the execution of experiments. As such, this report’s 

research can be described as primarily consisting of an inductive research type. 

2.1.3 Research strategy 

The primary focus of this report being to explore whether an NN ML model can achieve a 

greater accuracy than that of the previously developed RF model. Therefore, the research 

strategy can be viewed as a two-pronged approach, consisting of literature research and 

scientific experimentation. 

My previous semester report already has covered the political context and relevance of this 

kind of research, see Section 1.1. Therefore, the literature research of this project will 

primarily be aimed at developing a greater understanding of the technical and practical aspects 

of implementing AI. Focus will particularly be aimed at understanding AI in the context of 

geoinformatics (GeoAI), Computer Vision and Semantic Segmentation. Thus, the determining 

criteria for a source’s reliability has been narrowed down compared to the previous report of 
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this series. The political status was considered reasonable justification for use of sources in 

certain contexts previously. This has been narrowed down to primarily regard the academic and 

developer status of the authors of sources used in this thesis. This means that a source will be 

considered reliable if it either was written by researchers with a relevant background or by a 

person or company who contributed to developing the topic of research, be that python libraries, 

cloud services, hardware components, etc.  

To ensure the highest quality of sources, the technique snow balling has been used to find the 

original source of certain information in order to mitigate the risk of misunderstandings caused 

by repeated reformulation of the same information from source to source. 

As for the scientific experimentation in the main analysis, a significant amount of inspiration 

was taken from the book “Design for Six Sigma: A roadmap for product development” by Yang 

and El-Haik [Yang and El-Haik, 2003]. In chapter 12 of this book [Yang and El-Haik, 2003, p. 

367-406], Yang and El-Haik present the theory of Design of Experiment (DOE), which aims 

to describe the relation between the outcome of a given process and factors which are part of 

the process as the following function: 

 y = f(x1, x2, …, xn) + ε [1] 

Of which y is the outcome of the process, also known as the response variable, f(x1, x2, …, xn) 

describes the relation between the controllable variables and ε is the experimental error. ε is 

also known as the experimental variation, which is defined as the sum of the influence from 

uncontrollable factors, those being z1, z2, …, zn.  

 

Figure 1: An illustration of the relation between the input, out, and controllable as well as uncontrollable factors as 

proposed in DOE [Yang and El-Haik, 2003, p. 367] 

When basing an experiment on DOE, Yang and El-Haik propose a 7-step process for the 

planning and analysis of the experiment, which goes as follows. 

Step 1 is the project definition, in which the objective of the project is identified and defined 

along with the scope of said project. 

Step 2 is the choice of response variable. This is the output of the function and should provide 

meaningful, continuous and accurate insight into the effect of various factors.  

Step 3 regards the choice of not only the experimental factors, but ideally also the levels 

and ranges which will be tested for each factor. Levels refer to the particular values that will 
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be tested for a given factor while the range refers to the difference between the two levels that 

are the furthest apart in cases where the levels of a factor can be described in a quantitatively 

determined order. Note that due to the interplay between the contents of step 2 and 3, these two 

steps are often executed concurrently. 

Step 4 is the choice of experimental design. This step is dependent on the scope of the project, 

as this determines whether there will be the needed resources to perform a full factorial 

experiment. These resources can include time, money, and manpower. Depending on the 

resources available, there may not be enough for a full factorial experiment. If there are not 

enough resources for a full factorial experiment, the alternative is a partial factorial experiment. 

If a partial factorial experiment is chosen, certain factors will have to be left out of the 

experiment. 

With the planning in place, step 5 concerns the actual execution of the experiment. This step 

also involves considerations such as how to ensure reproducibility in the experiments, only 

changing one factor at a time while maintaining the remaining factors as constants and 

recording all results for future analyses and documentation. 

Step 6 regards the analysis of gathered data. Depending on the choice of experimental design 

and the objective of the project, the execution of this step can vary. Typically, the analysis will 

include statistical analyses of the data. Goals with the analysis can include: 

- Identification of significant vs. insignificant factor effects and interactions 

- Ranking of relative importance of factor effects and interactions 

- Empirical mathematical model of relationship between response variable and factors 

- Identification of optimal factor levels based on project objective 

With the planning, execution and analysis done, a conclusion can be reached and 

recommendations made. This is where step 7, conclusions and recommendations, comes in. 

Here it is either found that there is enough information in the analysis to make a decisive 

recommendation or that there is need for further experimentation. In order to determine the 

reliability and reproducibility of the experiment, it is also recommended to perform control 

runs of the experiment at this stage to ensure recommendations are well founded 

2.1.4 Data collection 

As part of ensuring the highest degree of validity and reliability from the factorial experiment, 

it is necessary to use appropriate quantitative data with the highest quality possible. To ensure 

this, data has only been downloaded from authoritative sources, those being Google Earth 

Engine (GEE) for satellite data, Datafordeler.dk and Dataforsyningen.dk (Denmark’s primary 

official geodata distribution sites) for GeoDenmark and Administrative Borders data and 

LandbrugsGIS (The Danish Agricultural Agency’s official geodata distribution site) for 

agricultural geodata.  

2.1.5 Data analysis tools 

As an extension to the positivistic research philosophy of this thesis, the analytical approach of 

this thesis is that of a quantitative approach. This is because collections of big data will be 

compared through interpretable quantitative measures such as the Overall Accuracy (Po), 

Cohen’s kappa and PA.  



Methodology 

18 

 

The factorial experiment and the evaluation hereof were facilitated by the use of the following 

software. GEE was utilised for the cleaning and extraction of image data for the model. QGIS 

was used to reduce the complexity of data that was the foundation of the labels. Python was 

used for the generation of label data, the preparation and augmentation of the image and label 

data for use in ML, as well as the execution and accuracy assessment of the experiment. The 

Python codes were primarily written in Google Colab and executed in Jupyter Lab. A Python 

library which is particularly important to mention would be PyTorch, as it is the basis of the 

ML parts of the scripts. 

2.2 Use of Generative AI 

In order to increase the amount of time available for literature studies and experimentation with 

ML, permission was granted to use Generative AI (Gen AI) to aid in the development of scripts. 

The way that Gen AI was used is comparable to asking a teacher or expert on python, GEE, or 

ML for help with writing the scripts. All of the implemented code from Gen AI has been 

proofread to ensure it functions as intended. The Gen AI models used to aid in the writing and 

troubleshooting of the ML scripts which contributed to the analysis of this master’s thesis were 

ChatGPT’s Code Pilot and ChatGPT 4o models.  

Gen AI has not been used to produce text or other content for the report than the above-

described scripting assistance.  
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Pre-analysis 

3 Initial wonder 
This report will take a technical, explorative approach to testing whether it is possible to 

achieve a higher accuracy with a Neural Network (NN) based model as opposed to decision 

tree-based models (e.g. Random Forest). In order to explore this hypothesis, it is necessary to 

develop an understand of state-of-the-art AI. Hence, the following initial wonder was 

formulated: 

 

“What is considered state of the art for Machine Learning (ML) and semantic segmentation 

and how can it be implemented in the context of Land Use/Land Cover (LULC) map 

generation?” 
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4 Literary study 
As stated by Guérin et.al., There are large collections of geospatial data which have been 

collected over time. These Big Data collections can be challenging to make sense of for humans. 

As a result, AI has been adopted in the realm of Geoinformatics with success. [Guo et.al., 2020, 

p. 358]  

The following chapter will explore how Machine Learning (ML) works as well as how it has 

been implemented in Geoinformatics through the field of GeoAI. This chapter will start with a 

broader focus on ML before narrowing in on Neural Network (NN) models and its subcategory, 

Convolutional Neural Networks (CNN). 

4.1 Machine Learning 

This project focuses on the implementation and comparison of ML models. Therefore, it is 

important to have a clear understanding of ML. While ML can be considered a type of program, 

it differs from the traditional understanding of what a program is. This is because the purpose 

of ML is to automate the optimisation of performance. [Howard and Gugger, 2020, p. 20-22] 

A program in the traditional sense will process an input and give a result, as can be seen on 

Figure 2. This program has been optimised in advance by a person. Where ML differs is that 

ML has a training phase in which it is capable of optimising itself. An ML model has not only 

an input in the form of input data, but also parameters. Parameters as a term is sometimes 

treated as interchangeable with the term model weights, though model parameters usually also 

cover other parameters than just weights. These parameters impact the results of the model, 

also known as the predictions. When predictions have been generated, they are then compared 

to the actual known value of the data which the model is trained on. The known values are 

commonly referred to as labels or ground truth data. The comparison between the model results 

and the ground truth data describes how well the model performed. This is also known as the 

loss. the weights can then be updated based on the loss. This iterative process is repeated until 

a result of satisfying quality has been achieved. What determines whether the quality is 

satisfying depends on the goals of the specific project. It should be noted that once training is 

complete, an ML model will function more like a typical program. [Howard and Gugger, 2020, 

p. 20-25] 

 

Figure 2 Simplified visualisation of the way that Programs vs ML models function. [Howard and Gugger, 2020, p. 20-25] 
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4.2 Neural Networks vs. Decision tree models: Why use CNN? 

The specifics of how the architecture section functions varies depending on the type of ML 

model that is deployed. While this report does not contain an exhaustive list, notable types of 

ML models would be decision tree based and NN based ML models. 

4.2.1 Decision tree-based models 

The decision tree category of ML models includes models such as Random Forest (RF) and 

Gradient Tree boost (GTB). These are both examples of ensemble decision tree models. 

Ensembling in the context of machine learning means using multiple models with the goal of 

achieving a higher accuracy than previously possible. GTB uses boosting, which is a type of 

ensembling where decision trees are trained sequentially. This means that the performance of 

one decision tree affects the following decision tree. Alternatively, RF executes ensembling 

through bagging. This means that a collection of decision trees is trained in parallel and 

independently, after which the average output of all the trees becomes the model’s final output. 

The main reason for choosing one over the other is that boosting can achieve more accurate 

results than bagging when model parameters are tweaked correctly, but boosting is more prone 

to overfitting than bagging. Since overfitting causes model to be worse at generalising [Smith, 

2018, p. 5], this is undesired. This is the reasoning for the choice to use RF during the 9th 

semester report [Knudsen, 2025, p. 27-28]. [Howard and Gugger, 2020, p. 298, 322-324] 

However, decision tree-based models are not spatially aware. This means that the model 

classifies each pixel of an image independent of the surrounding pixels. This was postulated to 

be a major contributor to the confusion that was found between the urban class (C2 for RF 

model) and several other classes. [Knudsen, 2025, p. 44] 

When the spatial context is taken away, it can be difficult to determine whether an area with 

lots of trees is part of a forest or a garden. Similarly, it can be difficult to tell whether a pixel 

with a reflectance corresponding to that of a building belongs to a dense urban area or an urban 

sprawl area when the model cannot see if there is a garden in the neighbouring pixel. This is 

reflected in the Confusion Matrix (CM) of the most accurate RF model, as shown in Figure 3. 

It can be interpreted from the colour coding of the entries that the largest degree of confusion 

for classes 0 and 3 through 8 occurs with class 2, the urban class. This means that when the 

pixels which belong to classes 0 and 3 through 8 are misclassified, they are most commonly 

misclassified as class 2. Furthermore, it can be seen that pixels belonging to class 0 are more 

likely to be misclassified as class 2 than to be correctly classified. 

 

Figure 3 The confusion matrix for the run of the RF model with the optimal level for each factor. The diagonal, which 

indicates correct estimations, has been highlighted in grey. Yellow, orange and red highlight varying degrees of confusion.  
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Due to their lack of spatial awareness, decision trees were postulated to not be the most suitable 

models for dealing with tasks where spatial context is important. Hence the goal of this master’s 

thesis to explore which types of models would be more suitable for tasks which require spatial 

awareness. 

4.2.2 Neural Networks 

NN is a subcategory of ML which was proposed by McCulloch and Pitts in 1943. NN has seen 

a significant increase in popularity in recent years. NN differ from other types of ML models 

because they attempt to imitate the neural structure found in human brains [Howard and Gugger, 

2020, p. 5 and 20]. 

A neural network consists of multiple layers of neurons. These layers can be categorised into 

the input layer, the hidden layer(s) and the output layer. Relating these terms back to Figure 2, 

the input layer corresponds to the input, the output layers correspond to the predictions, and 

the hidden layers are the architecture. The hidden layers are what distinguishes NN from other 

ML model categories, such as RF and GTB. The number of hidden layers is also what 

determines whether an NN is a Deep NN (DNN) or not, with any NN containing more than 

one hidden layer being considered a DNN. [Kufel et.al., 2023, p. 8-11] 

 

Figure 4 examples of an NN that cannot be considered deep (left) and an NN that is considered a deep NN 

In 2021, Minaee et.al. executed a survey where they compared the reported performances of 

100+ NN models based on training with commonly used image segmentation training datasets. 

These kinds of common datasets used for comparisons are also known as benchmark datasets. 

According to the definitions presented by Minaee et.al., there are three types of image 

segmentation, those being semantic, instance and panoptic segmentation. Semantic 

segmentation is the task of defining which class each pixel belongs to while instance 

segmentation is the task of defining which unique object each pixel belongs to. Panoptic 

segmentation is a combination of semantic and instance segmentation. [Minaee et.al., 2021, P. 

1-2] 

The task of Land Use/Land Cover (LULC) map generation through ML falls within the 

category of semantic segmentation. Multiple different types of NN architectures can be applied 

in this context. To compare different semantic segmentation models, Minaee et.al. Used the 

Jaccard Index, which is also known as the Mean Intersection over Unit Index (mIoU). This 
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describes the average performance of the model across all classes. Among the best performing 

models, the dilated CNN architecture family DeepLab can be found. [Minaee et.al., 2021, p. 7, 

12] 

The fact that the DeepLab architecture family generally performed well fits well with Howard 

and Gugger stating that CNN is the current state of the art for computer vision tasks [Howard 

and Gugger, 2020, p. 298, 322-324]. Therefore, from here on out, this master’s thesis will focus 

on CNNs. 

4.3 Convolutional Neural Networks 

What sets CNNs apart from other types of neural networks are, as the name suggests, 

convolutions. These make CNNs particularly suited for image recognition. This is because it 

has reduced computational costs due to the reduced number of parameters required to train and 

run CNNs compared to NNs. By reducing the computational costs of processing images, CNNs 

are capable of handling larger and more complex image related tasks than traditional NNs. 

Furthermore, the reduced number of parameters also results in a less complex model, which 

reduces the risk of overfitting. [O’Shea and Nash, 2015, p. 2-3] 

While variations of CNNs which incorporate other types of layers exist, many CNNs are based 

on the following types of layers [O’Shea and Nash, 2015, p. 4-5]: 

- Input layer 

- Convolutional layers 

- Pooling layers 

- Fully-connected layers 

- Output layer 

The input layer simply contains a number of neurons equivalent to the number of pixels in a 

single image from the training dataset. The number of pixels is defined by multiplying the 

height, width and number of channels in an image. Hence, it is necessary in most CNNs that 

all images have the exact same dimensions. E.g., if the training dataset is the MNIST 

benchmark data, which contains black/white (single channel) images with a resolution of 28 x 

28 pixels, the input layer will have 28 * 28 = 784 neurons. If the training dataset consists of 

equivalently sized images with RGB colours (3 channels), the input layer will have 28 * 28 * 

3 = 2352 neurons. Similarly, if the training dataset contains images with RGBD or RGBA (4 

channels), the number of input neurons would increase to 3136. Similarly, the dataset contains 

4 channelled images with a resolution of 64 x 64, the needed input neurons would be 16384. 

In a traditional fully-connected NN, each of the neurons in the following layer would have N 

weights, with N equating to the number of neurons in the input layer. However, the needed 

number of weights pr. neuron is greatly reduced by the following layer types. [O’Shea and 

Nash, 2015, p. 2-5] 

Convolutional layers are layers which apply one or multiple kernels, also known as filters, to 

each individual pixel of an image to generate a new output from the previous image. This is 

achieved by calculating the scalar product of the kernel and each individual pixel. The derived 

output will highlight particular features. This feature highlighting output is commonly called 

the activation map. An example where the kernel produces an activation map which highlights 

left and right sides of an object respectively can be seen below in Figure 5. As the model’s 
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accuracy improves due to training, these kernels will become better at detecting relevant 

features. [C O’Shea and Nash, 2015, p. 5-6] 

 

Figure 5 An example of the scalar product between a kernel and an image along with the derived activation map. Note that 

in order to calculate the value pixels along the edge, the image was padded with 0s. Padding is not visualised in the 

example. 

Parameters in convolutional layers are based on the kernel. While a kernel’s dimensions usually 

only cover a small portion of the width and height of the images at a time, it typically will cover 

all channels of an image at the same time. This means that, if a kernel has a height and width 

of 3 and the image contains 4 channels, the number of weights associated with this kernel’s 

dimensions would be 3 * 3* 4 = 36. The height, width and depth of the kernel is also known as 

the receptive field. The number of weights for a neuron in a convolutional layer is independent 

of the size of the input image. While a significant number of neurons will still be needed, the 

reduction of weights pr. Neuron compared to fully-connected NNs still saves significantly on 

processing power pr. neuron. [O’Shea and Nash, 2015, p. 6-7] 

 

Figure 6 An example of max pooling, where each group of 2 x 2 pixels has been reduced to a single pixel with a value 

corresponding to the max value for each 2 x 2 grouping. 

Pooling layers are typically placed right after one or multiple convolutional layers. The 

purpose of pooling is to reduce the size of the activation maps. This allows for more efficient 

computing and allows the model to more easily discover new patterns in the data. Multiple 

types of pooling exist, including max pooling, average pooling [Gholamalinezhad and 

Khosravi, 2020, p. 3] and overlapping pooling. A common pooling method is max pooling with 

the dimensions for the pooling kernel being 2 x 2, meaning that the activation map is split into 

groups of 2 x 2 pixels which are all reduced to the biggest value within that given 2 x 2 group, 

as illustrated in Figure 6. This allows the model to learn from an increasingly bigger area of 

the input image without increasing the kernels’ receptive fields [Minaee et.al., 2021, p. 2]. By 
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pooling groups of 2 x 2, the image is reduced to 25% of it’s original size. When pooling with 

dimensions 2 x 2, it is important ensure the height and width of the data images is divisible by 

2. [O’Shea and Nash, p. 8] 

The following layer types are used for classification based on the activation maps. For simple 

object recognition, where the goal is simply to know what the image contains, but not where 

the content is located on the image, it is common to use fully-connected layers, as described 

by O’Shea and Nash. Fully-connected layers resemble those of a standard NN, where the input 

initially is the final output of previous convolutional and pooling layers. [O’Shea and Nash, p. 

4-5] 

However, because the goal of this master’s thesis, as pointed out in Section 4.2.2, is semantic 

segmentation, other types of layers are more recommendable. To understand which other types 

of layers can be recommended for the classification based on the derived activation maps, it is 

necessary to understand the terms encoder and decoder. CNN model architectures can generally 

be split into two different sections, the encoder section and the decoder section. The encoder 

section is the part of the script that is responsible for converting the input data into activation 

maps. It does so by extracting features from the data which the model determines significant 

for the distinction of relevant classes. The decoder section is the part that is responsible for 

deriving a classification from the activation maps. While the Encoder of a CNN generally will 

consist of a combination of convolutional and pooling layers this is not necessarily the case for 

the decoder depending on the requirements posed by the task at hand. If the goal is simply to 

determine what is on an image, a decoder which resembles a standard fully-connected NN will 

be sufficient. [Minaee et.al., 2021, p. 2-3] 

However, for more complex tasks such as various types of image segmentation, it is beneficial 

to include layers similar to those seen in the encoder. Fully-convolutional architectures are 

model architectures which contain no fully-connected layers. Instead they use a combination 

of convolutional layers and skip connections in the decoder to upscale the activation maps 

generated by the encoder with the higher resolution information of activation maps from 

previous layers. Skip connections are a method sometimes implemented in more complex 

models to mitigate the complexity’s impact on the effectiveness of the given model’s training 

[Lundby et.al., 2023, p. 1]. Note that while the abbreviation FCN is both used for Fully-

Connected and Fully-Convolutional Networks in various articles based on context, FCN will 

refer specifically to Fully-Convolutional Networks throughout this master’s thesis. [Minaee 

et.al., 2021, p. 3] 

Since the development of CNNs, many attempts have been made to further improve image 

processing by modifying CNN architectures to create new architectures. Attempts include but 

are not limited to architectures such as Recurrent CNNs (R-CNN) and dilated CNN. of these, 

the DeepLab architecture family falls into the latter category. Dilated CNNs, also known as 

atrous CNNs, are similar to regular FCNs except that the convolutional layers hold an extra 

hyperparameter called the Dilation Rate (DR). The DR describes how close or far apart the 

entries of a kernel are. The number of pixels between the entries can be described by DR, as 

seen in Figure 7. The dilation rate allows the kernel to have a bigger receptive field while 

maintaining the number of weights it has. As an example, a 3 x 3 kernel with DR = 2 has the 

receptive field of a 5 x 5 kernel with DR = 1 and a 3 x 3 kernel with DR = 3 has the same 

receptive field of a 7 x 7 kernel with DR = 1. [Minaee et.al., 2021, p. 6-7] 
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Figure 7 Examples of dilated convolution kernels. The example from left to right demonstrate the impact of increasing the 

Dilation Rate (DL). 

The use of dilated convolutional layers has been implemented in architectures like DeepLabv2 

to mitigate the impact of downscaling data with pooling layers. Furthermore, DeepLabv2’s 

implementation of dilated convolutional layers is also reported to improve the ability to localise 

object boundaries. These features have since been further improved in the following 

DeepLabv3 and DeepLabv3+ architectures. [Minaee et.al., 2021, p. 7] 

4.4 Neural Network factors 

When developing an NN model of any kind, there are multiple considerations to be made 

regarding the construction of it. While certain factors, such as the model architecture or CNN 

specific ones like the kernel size and DR have already been mentioned, this section will 

function as a general overview of relevant factors. The purpose of this chapter is to support the 

execution of steps 3 and 4 in Design of Experiment (DOE) by covering relevant factors from 

which the experimental factors can be chosen. In this master’s thesis, factors will be split into 

four categories, those being: 

- Architecture 

- Training 

- Regularisation 

- Miscellaneous 

Note that the following list of factors is not exhaustive. Instead, this should be seen as the first 

step toward choosing the controllable factors which will be included in this master’s thesis’ 

factorial experiment. Some of these factors are typically referred to as hyperparameters but will 

be referred to as factors in this master’s thesis to adhere to the terminology of Design for Six 

Sigma. 

4.4.1 Architectural factors 

As stated in section 4.3, when applying CNNs in a semantic segmentation, it makes sense to 

view the architecture as an encoder section and a decoder section. The encoder converts the 
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input of the CNN to activation maps while the decoder develops an output based on the 

activation maps. Both the encoder and decoder can vary based on the number and type of layers 

they have.  

While DeepLabv3/DeepLabv3+ is sometimes discussed as an entire architecture in and of itself 

[Minaee et.al., 2021, p. 7], it often is built upon an encoder such as one of the ResNet CNN 

architectures [PyTorch, a] [Melinda et.al, 2024, p. 443-444]. The article which introduced the 

DeepLabv3 model even compares the DeepLab architectures performance based on whether it 

is coupled with ResNet-50 or ResNet-101 as it’s backbone [Chen et.al., 2017, p. 5-6]. 

In the comparison performed by Chen et.al., it was found that DeepLabv3 would perform better 

on the benchmark data when using the ResNet-101 backbone. This proved that the choice of 

backbone will impact the performance of the DeepLabv3 architecture. Furthermore, their 

comparison to other architectures, including an FCN and the DeepLabv2 architecture, showed 

that DeepLabv3 outperformed both. This shows that both the choice of encoder and decoder is 

of important to the performance of a semantic segmentation model. [Chen et.al., 2017, p. 5-7],  

4.4.2 Training factors 

No matter the chosen architecture, there are several factors relevant to the training of the NN 

model. The training relevant factors include, but are not limited to, the following: 

- Loss function 

o Class weights 

o Class exclusion 

- Optimiser 

- Learning rate 

- Epochs 

- Batch size 

The way that a model learns is in part defined by the loss function and in part by the optimiser. 

However, in order to find the most suitable loss function, it is necessary to understand what the 

intended use of the model is. 

ML models can serve different purposes depending on the nature of the task at hand. ML 

models are commonly defined as either a regression or classification model. Regression 

models are models that attempt to predict a numeric value such as temperature or coordinates. 

Regression models can also be described as making continuous predictions. Regression 

models are not to be confused with models based on linear regression. Classification models 

differ by assigning a class or category, such as dog or cat. Classification models can also be 

described as making discrete predictions. The goal of this master’s thesis is to assign discrete 

labels to pixels for which the coordinates are already known. Therefore, this thesis will be 

focusing on classification ML models. [Howard and Gugger, 2020, p. 28] 

The way that an ML model is updated depends somewhat on whether it is dealing with a 

regression or classification task as well as what type of classification task. However, the 

fundamentals of the process are the same for each. The process starts with calculating the 

difference between the predicted results of the models and the labels. This is also known as the 

loss [Howard and Gugger, 2020, p. 24]. For single label classification, Howard and Gugger 

recommend using the Cross Entropy Loss function. For multi-label classification, they 
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recommend Binary Cross Entropy with Logits Loss. The data used in relation to this master’s 

thesis only contains one label pr. pixel, such as either forest or wetland, not forest and wetland. 

Therefore, the type of classification utilised is single label classification, thus making Cross 

Entropy Loss the most suitable type of loss. The loss function is used to find the negative 

gradient vector, which is used by the optimizer to update the model’s weights [Howard and 

Gugger, 2020, p. 162-163]. [Howard and Gugger, 2020, p. 237] 

Loss functions can be further modified to contain weights for each of the label classes. For 

specifically Cross Entropy Loss in PyTorch, it is possible to assign a weight tensor in which 

the weight of each class is specified. Furthermore, by using the command ignore_index in 

PyTorch, it is possible to entirely ignore a class in the loss function so that the specified class 

is not optimised for. [PyTorch, b] 

As with loss functions, there exists different optimizer options. The simplest optimisers merely 

apply Stochastic Gradient Descent (SGD) to find the most optimal adjustment of weights for 

the model to move in the direction where the errors should lower the most efficiently. However, 

to improve the efficiency of optimisers, some optimisers employ a method called momentum. 

Momentum allows for previous training updates to impact the adjustment of weights. This 

helps the model to avoid getting stuck in smaller valleys found along the way toward a more 

significant local minimum. The degree of influence from momentum is adjustable. A larger 

influence on the optimiser from momentum can cause the model to ignore changes in the 

direction of the gradient. Therefore, it is important to use a reasonable compromise. Another 

way of improving an optimiser is by implementing RMSProp. RMSProp is an alternative to 

SGD where the Learning rate varies. In order to understand what this means, it is first necessary 

to understand what the learning rate is. [Howard and Gugger, 2020, p. 471-477] 

The Learning Rate (LR) describes the size of the step that is taken in the direction of the 

negative gradient vector. There are multiple methods for designing a model’s LR. One way of 

categorising LR functions is proposed by Wu et.al. and contains three categories. These 

categories are fixed, decaying and cyclic LR functions. Of these, fixed is considered to be the 

simplest to implement, but also the slowest and most inefficient of the three. When 

implementing a fixed LR, the LR is constant throughout training. This is the traditional 

approach to LR. The size of an LR can impact the way that an ML model learns, and thus how 

high of an accuracy can be achieved. A smaller value increases the chance of getting closer to 

a local minimum. However, small LR values can be disadvantageous because there is no 

guarantee that the found local minimum is the global or a significant minimum. Smaller LR 

values also have a harder time breaking away from a local minimum. Furthermore, a smaller 

LR also means that it generally requires more steps to approach a minimum. In contrast, larger 

LR values are more likely to break away from local minima to find either the global or a lower 

local minimum. Larger values also move toward minima in fewer epochs. However, they risk 

moving past a minimum, while still being stuck in the valley of that minimum. This can result 

in the loss oscillating as the LR is struggling to find the actual minimum value. As such, Wu 

et.al. recommend choosing a lower LR value when the loss function yield worse or oscillating 

results, whereas larger values are recommended when the loss functions yield consistently 

better results. The methods within the latter categories were developed to reach a compromise 

between the advantages and disadvantages of smaller and larger values. Decaying LR 

functions attempt to do so by initially using larger values to quickly approximate the position 

of a significant local minimum. The LR then gradually decreases in size to allow for a closer 
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approximation of that local minimum. Cyclical LR values do not only decrease the size of the 

LR value, but also periodically increases it in a cyclical pattern. [Wu et.al., p. 1-3] 

RMSProp further modifies the LR by raising the LR for weights that have had a corresponding 

entry that is close to 0 in the negative gradient vector over a given number of updates as this 

indicates that the LR is not big enough to improve the weight significantly. Conversely, 

RMSProp lowers the LR for weights with an entry in the negative gradient vector that has had 

more drastic changes over recent updates. [Howard and Gugger, 2020, p. 477-478] 

A common optimiser which combines SGD with RMSProp and momentum is Adam. These 

traits have made the Adam optimiser the standard optimiser for ML in the FastAI python library. 

[Howard and Gugger, 2020, p. 479] 

An epoch is defined by the model having trained on all training data and validated on all 

validation data once. The number of epochs chosen when training an NN will in practice 

depend on two parameters; How much time is available for training and when the model 

achieves the highest accuracy possible. To understand the second half of this statement better, 

it is necessary to understand the concept of under- and overfitting. [Howard and Gugger, 2020, 

p. 32]  

Under- and overfitting are two scenarios in which a model is not optimised properly, but for 

different reasons. When underfitting occurs, this is a result of the model not having been trained 

enough. Underfitting can be mitigated by increasing the number of epochs. Overfitting occurs 

when the model has gone through too many epochs, resulting in the NN model no longer 

generalising well. This is a result of the model learning too many features from the training 

data, including features unique to that dataset. Overfitting is more complex to mitigate. To 

know whether a model is underfit, overfit or optimally fit to the training data, it is necessary to 

look at the results of the loss functions. [Smith, 2018, p. 4-5] 

 

Figure 8 A visualisation of how to determine whether a model is under- or overfit based on the validation loss. Figure is 

inspired by Smith [Smith, 2018, p. 3]. 

When plotting the loss for validation data, underfitting can be detected by the loss continuing 

to decrease, showing that it has not found a local minimum. Overfitting can be detected by the 

validation loss increasing over multiple epochs. The optimal degree of fitting to the training 

data lies where the local minimum for the validation loss lies, as this is where the model has 

learned as much as it can from the training data without compromising the model’s ability to 
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generalise. Several solutions for overfitting exist. Some of the methods which can mitigate 

overfitting include batch size and learning rate (LR) [Smith, 2018, p. 3-5, 7].  

Batch size is a factor that in part results from computational limitations. The size of ML dataset 

is commonly beyond the size that regular computers can handle when training an NN. 

Therefore, it is often necessary to split the datasets into smaller batches, so that the computer 

does not run out of memory when attempting to train the model. This is done using batch size, 

which aids in determining how many batches the training and validation datasets will be split 

into. This is done by specifying how many images may, at most, be within a batch. Each of 

these batches will be used individually to optimise the weights of the model through the process 

of SGD. When choosing the batch size, it is a compromise. Larger batch sizes will result in 

shorter run times due to more efficient use of hardware. Findings made by Smith also suggest 

that larger batch sizes in combination with larger LRs tend to yield higher validation accuracies. 

Conversely, smaller batch sizes can function as a form of regularisation, which will improve 

the model’s ability to generalise. [Smith, 2018, p. 7-8] 

4.4.3 Regularisation factors 

While loss functions can help with detecting under- and overfitting, it does little to solve the 

issue. The act of mitigating overfitting is called regularization. Santos and Papa performed a 

study of regularization methods. In this study they discuss three general categories of 

regularization for CNN models, those being: [Santos and Papa, 2022, p. 3-4] 

- Data augmentation 

- Label regularization 

- Internal structure change 

Data augmentation is a collection of regularization methods which are specifically applied to 

the input image data. The advantage of data augmentation is that it improves the model’s ability 

to generalise without requiring the production of more labelled data. This is because data 

augmentation artificially creates more labelled data through the modification of existing 

labelled data [Howard and Gugger, 2020, p. 60]. This category includes methods such as Cutout, 

where random regions of data in an image are removed during training, RandomErasing, where 

the removed regions are replaced with other data, and Mixup, where separate images are 

blended together. These are all data augmentation methods. However, while some of these 

methods do not require a change in the label tile associated with the image tile, other methods 

do. In their mention of data augmentation, Howard and Gugger, mention methods such as 

rotation, flipping, warping, brightness change and contrast change [Howard and Gugger, 2020, 

p. 74]. [Santos and Papa, 2022, p. 8-10] 

Methods such as brightness and contrast change mostly do not require augmentation of the 

labels. However, Mixup, rotation and flipping do when working with image segmentation 

specifically, as these methods change either the content or location of pixels in the image. 

Therefore, while data augmentation specifically targets the input images, it does not always do 

so exclusively. Often times, data augmentation methods are accompanied by label 

regularisation. Label regularisation is the act of augmenting label data. One such method 

would be label smoothing. Label smoothing aims to mitigate not just overfitting, but also model 

overconfidence. Though label smoothing can be applied by itself, it can also be applied in 

relation to data augmentation methods such as Mixup. An example could be two images are 
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overlapped into one image, where each pixel’s value is determined as 60% of image 1 and 40% 

of image 2. Label smoothing would reflect this by averaging out the label confidence so that 

the label would say the pixels of the image are 60% likely to belong to the class of picture 1 

and 40% likely to belong to the class of picture 2. Label smoothing in its original sense is 

utilised throughout the entire training phase. However, at a certain point in training, the 

improvement caused by Label Smoothing is prone to wearing off. A variant which attempts to 

improve the effect of Label Smoothing is Two-Stage Label Smoothing (TSLA). TSLA 

implements label smoothing in early stages of training before disabling it in later stages. 

[Santos and Papa, 2022, p. 14-15] 

Internal structure changes is a collection of methods that impact the weights and kernels 

during training without augmenting input images or labels. This category is split into two sub-

categories, those being Dropout based methods vs. Other methods. The majority of the methods 

mentioned in this category fall within the Dropout category. Dropout is a regularization method 

which, in its most basic variant, removes random neurons from the NN during training. This 

keeps the model from becoming overly reliant on these neurons. However, removing neurons 

randomly does not ensure the most relevant neurons are removed. Thus, several variants of the 

original dropout method have been proposed to improve the effect of dropout. These variants 

include, but are not limited to, methods such as MaxDropout, where the neurons that are most 

likely to be triggered are removed, and DropBlock, which is a CNN specific method that 

essentially performs a cutout on the activation maps. [Santos and Papa, 2022, p. 12-13] 

4.4.4 Miscellaneous factors 

This category covers miscellaneous methods through which a model can be optimized in 

relation to different parameters. The factors covered in this section are: 

- Early stopping 

- Mixed precision learning 

- Seeds 

Loss functions aid in determining when overfitting occurs and regularisation aids in postponing 

overfitting. Early stopping saves time in the training phase by stopping the training phase 

when overfitting occurs. It does so by stopping the training phase when improvements have 

not been made over a given number of epochs and then saving the model from the epoch with 

the lowest validation loss as the optimal iteration of that given model [Scikit learn, N/A]. 

Because the lowest validation loss and highest validation accuracy rarely occur in the same 

epoch, with the highest accuracy usually occurring a few epochs after the lowest validation 

loss, Howard and Gugger recommend running a model twice, once where you have enough 

epochs for overfitting to occur and then once again with a specified number of epoch equating 

to when the previous run of the model began overfitting [Howard and Gugger 2020, p. 213]. 

However, early stopping is still worthy of consideration for this thesis, as early stopping 

effectively cuts the collective run time in half at bare minimum. 

Another method which can decrease the required run time and computational requirements is 

Automatic Mixed Precision (AMP). AMP is a tool which allows for the mixed use of different 

float data formats (Float32 vs. Float16) during the training of the model. This is relevant 

because certain processes are significantly faster when run with Float16 as opposed to the 

standard float32 format. However, it is worth noting that this is a Graphics Processing Unit 
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(GPU) specific method, that not all GPUs are capable of utilising this method, and the impact 

of the method varies for GPUs which are capable of using it depending on the specific GPU in 

question. AMP is particularly effective when the GPU in question contains tensor cores. 

[PyTorch, c] 

The GPU used for this is thesis is an Nvidia RTX 5080, which is built with the Blackwell GPU 

architecture [Nvidia, 2025, p. 6]. The Blackwell architecture is not specifically mentioned in 

the PyTorch documentation on AMP. However, Nvidia has stated in a report on the Blackwell 

architecture that not only does it contain tensor cores which support the Float16 and Float32 

data formats, but that the Blackwell Architecture also further builds upon the Turing and 

Ampere architectures, which are both mentioned in the PyTorch documentation on AMP 

[Nvidia, 2025, p. 7-8, 15]. [PyTorch, c] 

Seeds are also relevant, though not for optimisation, but rather for reproducibility. In order for 

the results of this thesis to be valid, some degree of reproducibility for the experiment is 

necessary. Perfect reproducibility is not guaranteed in PyTorch. However, some of the 

subprocesses in a PyTorch ML script can be reproducible when utilising the same version of 

PyTorch on the same device while utilising the same components, particularly the Central 

Processing Unit (CPU) and GPU. This is done using seeds, which is a given string of digits 

that will be used as the starting point of any otherwise pseudo-random process. When 

reproducibility is desired in PyTorch, it is recommended to implement a global seed at the 

beginning of the script. However, it should be noted that the implementation of reproducibility 

is likely to slow down the training of ML scripts. [PyTorch, d] 
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5 Problem formulation 
Based on the findings of chapter 4 regarding semantic segmentation with Neural Network (NN), 

it was determined that this master’s thesis will focus on the following problem formulation: 

 

“Is it possible to achieve a higher accuracy of Land Use/Land Cover (LULC) classification 

with Convolutional Neural Networks (CNN) than previously found with Random Forest 

(RF)?” 

 

To determine the sub-questions, it is worth considering the potential goals of a Design of 

Experiment (DOE) analysis. The goal of an analysis can be to determine or rank the 

significance of factors, determine the specific relation between factors and the response 

variable, or identify the optimal level of each factor, see Section 2.1.3. With the goal of 

achieving a higher accuracy, the direct goal of this thesis can also be described as attempting 

to find the optimal levels for each factor. Hence, the following sub-questions were formulated: 

- Which level for each of the experimental factors is optimal for achieving the highest 

accuracy possible? 

- What is the significance of the interaction between the model and its input data? 

- To what extent can the NN model outperform the RF model? 
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Main analysis 

6 Justification for choice of data 
This chapter expands on the choices which are stated in the data collection strategy, see Section 

2.1.3. The chapter will justify the choice of data for the Region of Interest (ROI), images and 

labels. 

6.1 Region of interest 

Before downloading any data, it is necessary to determine the ROI for the project. For this 

report, it was chosen to work with all of Denmark. The reason for using Denmark is that this 

was the eventual goal of the 9th semester report. While the initial goal was to develop a model 

for Aalborg Municipality and then upscale the model to a national scale, it has been chosen to 

go straight to the national scale when developing the Neural Network (NN) model. This is due 

to the following three reasons.  

The first reason is that it was found through the second experiment in the previous semester 

report that the distribution of class representation in the training data impacted the final 

classification. If this model should be applicable on a national scale, it seems more logical to 

train it on said scale. The second reason is that, as stated in chapter 4.3, Convolutional Neural 

Network (CNN) models do not take points as input data, but instead images. As such, it is 

necessary with a bigger area to achieve an equal sample size before implementation of data 

augmentation. The third reason is based on upscaling issues that were encountered last semester. 

This issue pertained to the temporal expansion of classification. While the use of Surface 

Reflectance (SR) Landsat (LS) 8 data provided no major issues for Aalborg when working with 

the year 2021, it was found to be significantly impacted by cloud cover and other noise for 

other years. A similar issue could be expected to be encountered for the spatial expansion from 

municipal to national scale. Thus, in order to ensure the model would work at a national scale, 

the training and validation data was derived from all of Denmark. 

In order to ensure that the data is reliable, the ROI has been downloaded from Datafordeler.dk, 

which is the authoritative geodata distribution site in Denmark. The ROI was more specifically 

downloaded as part of the DAGI dataset 

6.2 Input labels 

Since this thesis deals with the comparison of performance between Random Forest (RF) and 

NN image segmentation, it is important to compare the model’s performances on comparable 

data. Hence, this largely dictates the choice of label data for this thesis. Thus, the same 

GeoDanmark (GDK) themes will be combined into the same classes that were derived from 

the factorial experiment in the author’s 9th semester report [Knudsen, 2025, p. 32]. These 

themes and classes can also be found in Section 1.2.1, though the assigned number to each 

class is transposed for this thesis’ factorial experiment. This means that Bassins will be 1 class 

for this thesis’ experiment instead of class 0 and so on. 

The choice of GDK data is derived from the fact that the Danish INSPIRE Land Use/Land 

Cover (LULC) map is based on GDK and that the data is human made as opposed to Machine 

Learning (ML) made, see Section 1.2.1. However, because this thesis deals with NN instead of 
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RF models, certain changes must be made for this dataset to be used in the new context. 

Because RF models are not spatially aware, they do not need to see the context of the pixels 

they are trained on. Therefore, the training data consists of individual pixels as opposed to 

entire images. This meant that the shape of the polygons from which training data was derived 

was inconsequential.  

In contrast, what makes NNs more suitable for spatial image segmentation is the spatial 

awareness, which comes from the model seeing pixels in the context of entire images. 

Therefore, the shape of the GDK polygons now matters because they do not perfectly fit with 

the shape of the square training images which the NN will be trained upon. Therefore, it was 

initially believed to be necessary to include agricultural data. However, as discussed in depth 

in Section 7.1, it was found that entire classes could be ignored in the loss function, thus making 

the agricultural data irrelevant for the experiment. As such, only GDK data is used for label 

data. 

6.3 Input images 

While the exact same label datasets could be transferred from the RF experiment to the NN 

experiment of this thesis, the same cannot be said for the input images that are to be classified. 

Similarly to the RF experiment, LS8 satellite images will be utilised. 

However, two issues occurred as a result of upscaling to a national scale for the NN experiments 

of this thesis. Firstly, the images to be classified should preferably be collected from the same 

period as the labels. The monthly timing of collection of the orthophotos that are basis for GDK 

data is just before leaf spring [Knudsen, 2025, p. 24]. However, the collection years of GDK is 

less straight forward to determine.  

When GDK data is collected, it is done in one of two ways, those being total updates and 

designated updates. Total updates are where an entire municipality is classified into GDK 

classes, whereas designated updates are done for smaller areas pr. request from Municipalities. 

In addition, GDK data has not been saved historically. This means that it is not possible to 

access previous total updates or the latest total update before designated updates were made. 

While all municipalities are total updated for GDK at least once every 5 years, this is not done 

simultaneously for all municipalities. [Knudsen, 2025, p. 24] 

This means that, ideally, every municipality’s year of total update should be used to filter which 

year the satellite data should be derived from for each municipality, resulting in a spliced 

together satellite image for all of Denmark. Ignoring the issue of collection years not being 

publicly registered for municipalities, this method could result in significant amounts of noise 

in the training phase. Because of the images’ decreased temporal homogeny, the image data of 

each municipality could vary significantly more in luminosity, soil humidity, and cloud 

coverage and shadows, which would make it harder for the model to recognise particular 

features in the dataset.  

Furthermore, the issue of cloud cover and shadows persisted despite the recommended switch 

from SR images to Top of Atmosphere (TOA) images granting greater flexibility regarding 

cloud cover and shadow removal [Knudsen, 2025, p. 42] [GEE, a]. The choice to switch from 

SR to TOA was made so that greater control of the cloud removal could be achieved. However, 

by expanding the spatial scope, the chance of any particular part of the Region of Interest (ROI) 

being affected by significant cloud cover or shadows was increased. Upon visualising the LS8 
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TOA images for the ROI in 2021 within the months March through April (the months leading 

up to leaf spring) without cloud removal and with newer data prioritised, a significant area of 

the ROI was found to be severely affected by cloud coverage. Attempts to remove cloud 

coverage within this specified time frame did not achieve desirable results across all of the ROI, 

as seen in Figure 9. Further attempts to achieve a greater coverage was initially attempted by 

expanding the month range. Coverage was only found to be acceptable nation-wide when using 

the time span March through June. However, because June is well past leaf spring in Denmark, 

the temporal priority was flipped to prioritise older data. However, this meant that the highest 

prioritised data would be from start of March, which is significantly before leaf spring. In an 

attempt to mitigate this issue, the month range was reduced to April through June. However, 

this also resulted in undesirable coverage. 

         

Figure 9 Visualisations of LS8 image data for ROI. Images showcase the result of generating a mosaic from LS8 TOA data 

from 2021 in the months March through April with newer data being higher priority without cloud and shadow removal (left) 

and with cloud and shadow removal (middle) as well as from April through June with older data prioritised (right). 

Furthermore, these attempted solutions did not account for the variety of years in which 

different municipalities had been total updated. Thus, a choice was made based on the 

following assumption: Data noise and loss caused by weather occurrences, soil moisture, cloud 

cover and shadows, etc. would impact the quality of the NN experiment more than the changes 

in land use from year to year would. With basis in this hypothesis, it was decided to hold on to 

the initial month range of March through April with newer data being prioritised. Instead, the 

quality of different years around the time in which municipalities have last been total updated 

would be experimented with. This gives a collection of years that spans from 2021 through 

2025 with the option to use slightly earlier years if this initial range does not provide desirable 

result. Based on qualitative comparisons of years 2020-2025, 2020 was chosen as the dataset 

with the best coverage within the ideal month range. 

A major difference between SR and TOA is the spectral available. While SR only has 7 bands 

which range from ultra blue to short wave infra-red (SWIR), TOA has an additional four bands 

in the infra-red (IR) and thermal infra-red (TIR) range [GEE, b] [GEE, c]. During the RF 

experiment, SR bands 2-7 were used [Knudsen, 2025, p. 24]. Similarly, it was chosen to use 

the same bands for the NN experiment, though band 8 was included as well. 

Band 8 distinguishes itself from other bands because it is panchromatic. As such, band 8 covers 

the range of multiple other bands, including all of band 3 and 4 as well as part of band 2. This 

allows band 8 to provide a different and more detailed visual description of the measured area 

as band 8’s resolution is double that of the other bands included in the experiments. However, 

this added detail will be lost on the model due to the model needing all input to be of the same 

resolution. [KILDE USGS, b] 
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Therefore, band 8 is included as an additional layer of description of the ROI with the intention 

of giving the NN model a broader foundation of data to work with. It does not add any 

information with higher resolution, however. Had the scope of the project been bigger, this 

could have been yet another factor to experiment with. 

The exclusion of band 9 is based on what band 9 is used to detect. Band 9 is primarily used to 

detect cirrus clouds [KILDE USGS, b]. Because cloud removal has been implemented, this 

was deemed as unnecessary and potential confusion for the model. Bands 10 and 11 were 

excluded as well. The primary reason is that bands 10 and 11 have a significantly lower 

resolution at 100m x 100m pr. pixel as opposed to the 30m x 30m or 15m x 15m pr. pixel spatial 

sampling of other bands. This means that, in order to utilise these bands, the other bands would 

have to be upscaled to 100m x 100m pr. Pixel. Not only would this reduce the quality of the 

NN generated LULC output, but it would also not be possible to cleanly upscale the other bands 

to 100m x 100m pr. Pixel. 
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7 Factors & response variables 
This chapter will discuss steps 1-4 from the Design of Experiment (DOE) model presented in 

Section 2.1.3. However, they will be presented out of order.  

Step 1 includes the identification and definition of the goal and scope of the project. The goal 

is defined in the problem formulation, see Chapter 5. The scope is yet to be defined and will 

thus be defined here. Because this is a master’s thesis written by a single student, there are 

limits as to how much can be achieved before the deadline for the project. Given that Machine 

Learning (ML) is an expansive field, there are more factors which could be experimented upon 

than this project has resources for. These factors include but are not limited to the ones 

described in Section 4.4. Hence, the choice of overall experimental design was apparent before 

work on steps 2 and 3 was initiated.  

For step 4, it was chosen to go with a partial factorial experiment. This means that not all 

controllable factors will be experimented upon. Furthermore, certain chosen factors have the 

capacity to contain many relevant levels during experimentation, such as factors 5 and 6. 

Therefore, it was chosen to not test all permutations of chosen factors and each of their levels, 

as this would have been too time requiring compared to the expected learning gained from 

attempting such an experiment. Hence each factor will be optimised one at a time. 

As for steps 2 and 3, these have been executed somewhat concurrently, as is commonly done, 

see Section 2.1.3. However, because this is a software focused project, there were no physical 

restraints on available options for response variables. As such, the chosen factors have been the 

primary cause for choice of response variables instead of the available resources for response 

variables being a limit on which factors can be experimented on. Therefore, step 3 will be 

presented in Section 7.1 before Step 2 in Section 7.2, as the choice of experiment factors will 

be utilised when justifying the choice of response variable. 

7.1 Experimental factors 

For the DOE of this project, the following controllable factors were chosen as experiment 

factors: 

1. Black out of background class 

2. Inclusion/exclusion of background class in loss functions 

3. Model architecture 

4. Data augmentation 

5. Weight adjustment of underrepresented classes in loss functions 

6. Size of learning rate value 

7. Number of epochs in training phase 

As mentioned at the beginning of Chapter 7, these factors will be optimised one at a time. 

However, the order in which they are optimised for is not arbitrary. This is because the factors 

likely are dependant. This means that level A for factor X might be optimal when factor Y has 

level B, but not when factor Y has level C. While the optimal approach to determining the 

optimal setting for each factor would have been to test all permutations of the factor levels for 

all the factors, this is too resource intensive for the project scope. Therefore, the next best 

solution was deemed to be to determine a pragmatic order of factor optimisation. The thought 

process behind the order is based on two criteria. The first criterion is whether a factor is 
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considered a technical fix as opposed to an actual variable in the experiment. Technical fixes 

will be tested first so that the actual variable factors can be tested under optimal conditions. 

The second criterion is how fundamental a factor is considered to be for the construction of an 

Neural Network (NN) model.  

Factors 1 and 2 fall within the realm of technical challenges which were to be worked around. 

Because NNs use rectangular images as input data, as opposed to single points like Random 

Forest (RF) models, a choice had to be made. This choice regarded whether the data should be 

reduced to only contain tiles which purely consist of desired classes or whether there was 

allowed to be background classes. These background classes would be registered agricultural 

fields and larger water bodies respectively. Larger water bodies include the surrounding sea 

and Fjords of Denmark. These water bodies were not included in the Google Earth Engine 

(GEE) export and thus consist of completely “blacked out” pixels, meaning that the value for 

each band of each pixel within this class consists purely of 0s. This resulted in completely black 

pixels for the larger background water bodies when visualised. 

Sand Dunes is an underrepresented class, see Table 11, Section 9.10, which shares a significant 

amount of border with background water bodies connected to the seas around Denmark. 

Therefore, it was chosen to include background classes so as to not offset the class 

representation in a manner which negatively impacted an underrepresented class. Hence, it was 

chosen to only remove tiles which purely would consist of background classes. However, when 

developing the label data, it was found that Python ignored the Agricultural data due to a 

supposed error in the geometry of the agricultural data. Because of the method with which the 

labels were developed, see Section 8.1.2.1, this created a single background class which 

consisted of two very distinct types of image data, that being the agricultural fields and the 

larger water bodies. The agricultural areas consisted of the actual measured values from 

LandSat (LS) 8, and the larger water bodies consisted of blacked out pixels. Furthermore, 

because these two classes were combined into one big class as a result of the non-functional 

geometry, it now made for one even bigger background class as its area now is the combined 

areas of the larger water bodies and the agricultural fields. The stark variation of the class 

contents and the increased size raised the risk of the background causing confusion in relation 

to the other classes in classification outputs.  

The first attempt to mitigate this risk was factor 1, the blacking out of all background data. 

This factor was developed and chosen based on the hypothesis that the more homogeneous the 

content of the background class was and the less similar it was to any other classes, the lower 

was the risk of confusion between the background class and other classes. As such, it was 

chosen to make the background appear less like classes which could easily be confused with 

agricultural areas, such as moorland, wetlands and forest. This was done by blacking out all 

image pixels within class 0. 

However, factor 1 only addressed the visual similarities of the background class, not the 

accumulative size of background water bodies and agricultural fields combined, which still 

would cause the NN model to underrepresent other classes. Therefore, factor 2 addresses this 

issue by removing the background class entirely from the loss functions, thus ensuring the 

model does not focus on learning to classify the background. This can be done because the 

background consists of agricultural fields, which can be overwritten with the agricultural 

dataset post classification in GIS and because the blacked-out waterbodies can be removed 
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again by clipping the output of the model to the Region of Interest (ROI) polygon. This factor 

also makes the inability to process the agricultural data in Python irrelevant. It should be noted 

that because factor 2 removes the background class, it practically nullifies factor 1. The reason 

that factor 1 is implemented as well is that it is considered less intrusive. Therefore, Factor 1 

was considered worthy of exploring the impact of before implementing Factor 2. 

The remaining factors focus on actual ML parameters as opposed to technical challenges. As 

such, the order of factors from factor 3 and onward will be determined by how fundamental 

each factor is considered to be for the ML model. The two most fundamental of the remaining 

factors would be the model architecture and the data augmentation. With basis in Figure 2, the 

architecture can be described as the foundation of the model while data augmentation is an 

expansion and manipulation of the input to artificially boost and diversify the input. While both 

orders of these two factors are justifiable, it was chosen to experiment with model architecture 

first to mitigate the impact of data manipulation on the choice of model architecture. Therefore, 

model architecture is factor 3.  

Factor 3 regards the architecture of the model. To streamline the experimentation process for 

this factor, it was chosen to use the torchvision.models library. From this library, four models 

were chosen. These models include: 

- fcn_resnet50 

- fcn_resnet101 

- deeplabv3_resnet50 

- deeplabv3_resnet101  

This allows for comparing the impact of both the type of encoder and the size of decoder on 

the accuracy. The DeepLab architectures have been chosen based on the arguments presented 

in Section 4.3, while the Fully-Convolutional Network (FCN) architectures were chosen to 

compare the DeepLabv3 architectures to a simpler segmentation Convolutional Neural 

Network (CNN), see Appendix E. 

Data augmentation is factor 4. There are several of the regularization methods described in 

Section 4.4.3 which could be relevant to implement in this factor. However, the scope of this 

thesis does require a narrowing of this factor. As such this factor will focus on data 

augmentation and only include three augmentation methods. The included methods are overlap, 

mirroring and rotation. In this project, overlap and offset will be used interchangeably. The 

reason for including these methods specifically is that these methods augment the spatial 

location of the pixels in the input data while not affecting the reflectance or proportions of the 

input data like stretching warping, brightness, and contrast changes do. 

It is important to note that the regular, non-augmented dataset always should be included, and 

no version of the dataset may appear twice. Therefore, there are up to 8 distinct levels which 

can be implemented in this experiment. However, these levels have been reduced to 5, with 

those being: 

- The regular dataset by itself 

- The regular dataset combined with the offset dataset 

- The regular dataset combined with the mirrored dataset 

- The regular dataset combined with the rotated dataset 

- The regular dataset combined with all three augmented datasets 
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Through the first four combinations, the impact of each individual method is measured while 

only executing the bare minimum of runs. This allows for assessing whether any of the methods 

negatively impacted the accuracy, so that the given method could be excluded from the final 

combination if need be. 

Because the class representation is important and sought preserved to the extent that it is 

possible, the impact of augmentation on class representation has been mitigated by developing 

a separate script which augments the entire collection of training data tiles in the exact same 

way, ensuring that class balance is impacted minimally when generating the offset dataset and 

preserved entirely when mirroring and rotating, see Section 8.1.2. 

Factor 5 regards the weights of individual classes in the loss function weights. After having 

removed class 0 with factor 2, there was still a significant imbalance between the remaining 

classes. As this was one of the major shortcomings of my 9th semester project’s RF model, this 

factor was implemented to raise the accuracy of underrepresented classes. An initial minimum 

goal of 70% in producer’s accuracy for all classes was put in place, which was adjusted as the 

experiment progressed. Because this experiment has 9 unique, continuous variables that can be 

adjusted, this factor could support an entire full factorial experiment of its own. To 

accommodate the scope of this master’s thesis, initial weights were set at 1 for all 9 relevant 

classes, after which individual weights were adjusted for underrepresented classes. This 

resulted in 8 distinct levels for the experiment. 

Factor 6 is the Learning Rate (LR). As mentioned in Section 4.4.2, there are multiple different 

methods for approaching the choice of LR, which can be placed into the categories fixed, 

decaying and cyclic learning rates. For each of these methods, there are different sub-factors to 

experiment with. To not exceed the scope of this project, the simplest method to implement has 

been chosen, which is the fixed LR. As such, this factor will focus on the particular LR value 

rather than the methods available. 

Factor 7 regards the number of epochs. With all other experimental factors optimised, the final 

iteration of the model can be run at a significantly higher epoch count and without early 

stopping to see when the model truly overfits. This will help to determine the approximate 

number of epochs that the model should be trained at. Since early stop is technically 

implemented but practically disengaged, the best iteration will still be saved [PyTorch, e]. Note 

that, due to the way that the script is written, epochs will be named from 0 and up. However, 

the number of specified epochs will match the max number of epochs that can be run. This can 

be seen for iteration F7L1, where early stop is disabled and 100 epochs are run, which are 

named Epochs 0-99, see Appendix D, F7L1. 

7.2 Choice of response variables 

In order to quantitatively determine whether various levels for each factor improve the accuracy 

of the NN model or not, it is necessary to have an appropriate response variable. This response 

variable is also what allows for determining how well the NN model does in comparison to the 

RF model. Combined with the description in Section 2.1.3, that gives the following criteria for 

response variables: 

- Must be relevant to the factors experimented upon 

- Must be a continuous scale 

- Must allow for comparisons to 9th semester RF factorial experiment 
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A collection of relevant response variables has been described by Stehman. According to 

Stehman, there are three distinct categories of accuracy assessment measures for thematic 

classification models, such as a semantic segmentation model. Each of these categories have 

their own level of detail. These categories can be described as matrix, vector and single value 

summaries of the accuracy of an ML model, presented in order of decreasing level of detail. 

[Stehman, 1997, p. 77-78] 

In the matrix summary category, Stehman mentions a single method. That method is the 

confusion matrix (CM), also known as the error matrix. This is the most detailed method of 

accuracy assessment. Because of how detailed it is, Stehman recommends to always include 

the CM when discussing the accuracy of a model. Therefore, all CMs for this master’s thesis’ 

experiments are included in human-readable format through the script printouts in Appendix 

D. CMs are constructed by plotting the number of times that the model correctly classified 

pixels and the number of times that the model incorrectly predicted pixels to belong to each of 

the incorrect classes. This is demonstrated in Figure 10, where correct classifications are 

denoted by T for True Prediction and can be found along the diagonal entries of the CM while 

the incorrect classifications are denoted by F for False Prediction and consist of all the non-

diagonal entries in the matrix. [Stehman, 1997, p. 77-78] 

 

Figure 10 A visualisation of how CMs are constructed. 

However, the high degree of detail in CMs can make them more complex to interpret. Thus, it 

is customary to use summaries with a lower degree of detail for ease of interpretability. 

However, there are multiple accuracy measures to choose from depending both on the desired 

level of detail and the intended use of the summary. The use of summarising accuracy measures 

can have one of two purposes. These can be to either report the final accuracy of a fully 

developed map or to compare accuracies of different maps to determine which is more accurate. 

The factorial experiment of this report places the intended use of accuracy measures in this 

report within the second use case. [Stehman, 1997, p. 77-78] 

Had the intended use been to represent the final accuracy of a map, it would have been 

sufficient to report the Overall Accuracy (Po) by itself. This accuracy measure is calculated for 

the validation data by dividing the amount of correctly classified pixels by all of the classified 

pixels. This can also be described as the sum of the CMs diagonal entries divided by the sum 

of all entries in the CM. However, because the goal is to determine the most accurate 

classification out of multiple classifications, Stehman recommends choosing multiple accuracy 

assessment methods. Of these, at least one should compensate for chance agreement. 

Compensating for chance agreement means that the accuracy assessment must account for how 

likely it is that the model is to correctly classify pixels by chance instead of due to proper 

training of the model. Among the chance compensated accuracy measures presented by 
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Stehman, it has been chosen for this thesis to use Cohen’s kappa coefficient to compliment the 

Po. [Stehman, 1997, p. 77-80] 

The way that kappa compensates for chance agreement is by normalising Po with a 

hypothetical estimation of how likely the model is to correctly classify a pixel by chance, Pe, 

as seen in Function 2. 

 kappa = (Po − Pe)/(1 − Pe) [2] 

Where Pe is calculated as seen in Function 3. 

 Pe = (1/N2) ∗ Σ ni+ ∗ n+i [3] 

The choice of kappa is based on multiple reasons. The fact that it compensates for chance 

means that it contains relevant information about the impact that adjusting factor levels has 

upon the accuracy of the model beyond the information provided by the Po. Furthermore, it 

compensates for chance in a manner which is not based on assumptions of a model’s accuracy. 

This makes for a more objective comparison method compared to E.g. tau, which is calculated 

similarly to kappa, by normalising Po, but is biased. tau is biased because it is chance adjusted 

by pre-determined assumptions of the model’s accuracy, called a-priori. This bias prevents tau 

from functioning as a direct comparison. Finally, kappa and Po are also the accuracy measures 

used to evaluate the RF model from the author’s 9th semester project report along with Po 

[Knudsen, 2025, p. 19]. [Stehman, 1997, p. 80-81] 

kappa and Po are suitable for factors 1 through 4, 6, and 7, as these all aim to improve the 

general accuracy of the model with no class specific goal. One challenge with using kappa and 

Po is that they are single value measures and thus encompass all classes. This means that it also 

includes the background class. Because the model is not optimised for the background class, it 

will drag down the accuracy measures. To accommodate the removal of the background class, 

Po and kappa will be calculated twice for every experiment, once with the background class 

included and once with the background class excluded. Because the background class is 

considered insignificant to this project, the deciding values for determining the optimal level 

for relevant factors will be the kappa and Po which ignore the background class.  

However, while single value summaries are the least complex to interpret between the three 

accuracy measure categories and allows for comparison to the RF model, it does not contain 

information on the performance of individual classes. Therefore, it is not a suitable response 

variable for all factors. In order to meet the relevance criterion for response variables regarding 

factor 5, the class weight factor, it is necessary to use a vector summary as the response variable. 

Vector summary measures provide a degree of detail and complexity of interpretation that lies 

between those of single value and matrix summary measures. Among the ones presented by 

Stehman are User’s Accuracy (UA) and PA. These are calculated similarly to the Po, but for 

the individual classes. UA describes how likely a prediction is to be correct by dividing the 

sum of correct predictions by the sum of predictions made for the given class. This can also be 

described as dividing the diagonal entry for a given class by the column sum for the 

corresponding class. The PA describes how well the model can recognise a given class by 

dividing the sum of correct predictions by the sum of ground truth samples for the given class. 

This can also be described as dividing the diagonal entry for a given class by the row sum for 

the corresponding class. As the goal for factor 5 is to improve how well the model recognises 
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relevant classes, PA has been chosen as the response variable for this factor. [Stehman, 1997, 

p. 79] 

One last measure to be added is the loss curves. As mentioned in this section 4.4.2, this measure 

discloses if the model is under- or overfitting. In the literary research of this project, no 

scientific papers were found which commented on the absolute values of the loss functions. 

Therefore, assessment of the loss values will be based on the improvement from epoch to epoch. 

When evaluating the loss functions’ outputs, the primary focus will lie on the validation loss 

graph. While some oscillation is to be expected, the validation loss should mainly be declining. 

[Smith, 2018, p. 2-5] 

7.3 Constant factors’ levels 

The remaining factors described in Section 4.4 did not become experimental factors and thus 

will be treated as constant factors throughout the entirety of the factorial experiment. Therefore, 

their values and arguments for the chosen values will be disclosed in this section. 

While the weights of the model’s loss functions is a factor, the specific choice of loss function 

is not a factor in the experiment. This is because, as stated in Section 4.4.2, Howard and Gugger 

recommend using the Cross Entropy loss function for single label classification [Howard and 

Gugger, 2020, p. 237], which is the category of ML that this thesis’ CNN experimentation falls 

under. As for the optimiser, the choice is also based on recommendations from Howard and 

Gugger. They recommend using the Adam optimiser [Howard and Gugger, 2020, p. 479]. 

To improve the reproducibility of the experiments, it was chosen to use a global seed for all 

pseudo-random functions in the code which affected the accuracy performance of the model. 

Note that the seed thus was not used for visualisation of data. The pseudo-randomness in these 

cases was desirable as it allowed for trouble shooting. The seed was set to 42. 

The choice of batch size was more nuanced. As stated in Section 4.4.2, Smith has presented 

pros and cons to both smaller and larger batch sizes. Larger batch sizes were stated to be 

conducive to higher accuracies and faster runtime while smaller batch sizes improve the 

generalisation of models [Smith, 2018, p. 8]. The data augmentation factor already focused on 

improving generalisation and the attempt to improve reproducibility through the 

implementation of seeds slows down the training process. Therefore, it was chosen to 

implement a larger batch size within the range of what could be run by the utilised hardware. 

Upon testing the max batch size of the pc, it was found that the Graphics Processing Unit (GPU) 

could handle a batch size of 64 images but would run out of Video Random Access Memory 

(VRAM) at a batch size of 128. Thus, the batch size was set to 64. 

As for regularisation methods, no label augmentation was implemented. Internal structure 

change was implemented in all four architectures presented in factor 3. Each architecture has 

a dropout rate in the decoder. The FCN decoder has a dropout chance of 10% while the 

DeepLabv3 decoder has a dropout chance of 50%, see Appendix E, p. 9, 15, 26, and 35. 

Because the dropout is related to the decoder, the dropout rate is unaffected by the change of 

encoder. 

Due to time constraints, AMP was not implemented, though it would have beneficial to do so 

if the time frame of this thesis had been longer. 
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8 Script Description 
In this chapter, the structure and content of the scripts and data processing will be described 

and justified. It is important to note the distinction between images and masks/labels. Images 

specifically refer to the LandSat (LS) 8 data while masks and labels refer to the GeoDanmark 

(GDK) data.  

8.1 Data pre-processing 

A lesson learned in the previous report was that the quality of the Neural Networks (NN) input 

data is arguably as important as the model itself and often more labour intensive to develop. As 

such, before the NN can be run, it is necessary to develop input data of as high a quality as 

possible. Therefore, the above-mentioned data has been processed as described below.  

8.1.1 Google Earth Engine  

In order to ensure that the chosen LS8 images are of a satisfying quality and from a reliable 

source, they have been downloaded from Google Earth Engine (GEE). However, the Top of 

Atmosphere (TOA) data cannot simply be downloaded directly as stored in GEE. Beyond 

filtering according to the year and months specified in Section 6.3, it is also necessary to 

compensate for cloud cover and shadows. Furthermore, more bands requires more Video 

Random Access Memory (VRAM), which limited the amount of training data that could be 

used for training a model and increased training time. Because of this and the arguments 

presented in Section 6.3, the GEE script used for collecting the needed LS8 data was written 

to only download bands 2-8 For Denmark within the specified time range. This was achieved 

with the following structure, as can be seen in Appendix A:  

First step in the script is to define and visualise the Region of Interest (ROI). The table that 

defines ROI is an imported GEE asset and thus cannot be seen in the script. The imported asset 

consists of a shapefile from the DAGI dataset, see Section 6.1.  

Following this, the cloud mask function for the LS8 TOA images is defined, in which it uses 

the QA_PIXEL band to mask out low-quality measurements as a result of cloud cover, cloud 

shadow and snow cover. Next up, the LS8 data is loaded with a series of filters, including the 

ROI and the specified temporal range. The cloud mask is then applied before the images are 

sorted so that newer images with the least amount of cloud cover are prioritised for the 

following composite. Clipping the LS8 images to the ROI ensures that major bodies of water 

surrounding the ROI are removed. This ensures that the model will be trained on the 

classification of land cover specifically. 

This composite is then visualised to allow for a qualitative assessment of the cloud removal, 

after which bands 2-8 are singled out for extraction before exporting all the bands as part of a 

single geotiff image. Due to the size of the ROI, the LS8 data is exported as two separate files. 

8.1.2 Python/Jupyter Lab script 

After the input images have been pre-processed in and downloaded from GEE, it is time to 

generate the label data and convert both the images and labels into a format which is digestible 

to the NN model. The CNN architectures used in this experiment need consistently sized 

images. To achieve this, a collection of matching image and label tiles must be generated. In 

order to do this, a python script was developed. This script works by first generating a label tiff 
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from the GDK data, then preparing the image label data for tiling, and determining valid tiles 

before tiling the input image and mask identically and exporting the desired tiles. 

8.1.2.1 Structure of script 

The process for this thesis’ data pre-processing in python is structured as follows 

1. Imports 

2. Prepare input data  

3. Tiling of regular and offset images 

4. Training/validation split 

5. Augmentation of tiles  

6. Conversion of tiles from Tiff to Tensor format 

7. Cleaning and normalisation of tensor tiles 

8. Setting image values to 0 for Class 0 

To streamline the processing, several features which could have been performed with GIS were 

performed with Python. This also improved the runtime for data pre-processing significantly. 

A feature of Python which sets it apart from work with typical GIS is the use of libraries. Python 

libraries are collections of commands that allow for simpler coding, and without the installation 

and importing of appropriate libraries, python scripts will not work. Therefore, after having set 

up a virtual environment with the appropriate libraries, step 1 was to import the needed libraries 

into the script. Notable is that because of the use of geotiff files, it was found that imageio 

could not be used. Instead, the rasterio library was used to handle geotiff files. 

Step 2 was split into three separate cells, one for the initial merging of the image data, one for 

the development of mask/label data, and one for the calculation of class representation. The 

merging of image data is relevant because of the way that the image data was exported from 

GEE. As mentioned in Section 8.1.1, the LS8 images of the ROI were too big to be exported 

from GEE as a single file. Therefore, the two files had to be merged before further pre-

processing could take place. 

The label data was developed by generating a raster file with the same dimensions as the 

merged images but with a single channel consisting of entries with the value 0. This raster was 

then intended to be overlayed with the GDK themes and the agricultural theme. It should be 

noted that in order to reduce the runtime and computing costs, the GDK and agricultural data 

files were dissolved in GIS ahead of being included in the script.  

Because the method used was overlay, the order in which each theme was overlayed matter. 

This is because themes that were included later in the overlay process would overwrite themes 

that were included earlier in the overlay process. For most themes, this was not a significant 

issue as they have been designed to not overlap each other, such as the various urban classes 

and forests. However, certain themes were found to have been digitized within the boundaries 

of other themes. Bassins were particularly prone to be digitised within the boundaries of other 

themes. Therefore, hydrological classes were placed as the last themes to be included in the 

overlay process. 

Upon attempting to execute the overlay, it was found that the agricultural data could not be 

included in the overlay due to a fault in the file used. Attempts to fix the agricultural files and 

redevelop the dissolved agricultural theme did not solve this issue. This is the reason for the 

solution presented in factor 1 being implemented. Attempts were made to develop the label file 
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in QGIS but would repeatedly fail or crash after 20-40 hours of runtime. Therefore, the label 

data was developed without agricultural data. 

After the overlay, the representation of each class is calculated. The output of this cell is the 

total pixel count for each class as well as how much of the total label data consists of each class. 

This relative calculation is run with both the inclusion and exclusion of class 0. Due to the 

above-mentioned issue with the agricultural data, it is not included in these calculations. 

Step 3 consists of two separate cells. Each of these cells generate their own set of tiles from 

the prepared image and label files. The set of tiles from the first cell will from here on out be 

referred to as the regular or standard dataset, while the set from the second cell will be referred 

to as the offset dataset. The regular dataset is generated by first calculating the number of valid 

tiles that can be generated. This is done because the function used for tiling cannot tile images 

which have dimensions that are not exact divisible by the calculated number of whole tiles. 

when the number of valid tiles has been calculated, the excess of the image is cropped out. 

Because the function starts counting from the top left corner of the image, this means that the 

excess number of pixels will be cropped on the southern and eastern borders of the image and 

mask data, see Figure 11.  

With the dimensions of the image and mask data adjusted, it can be tiled. The regular tiles have 

the naming convention “i_j”, where i denotes the tile’s location along the North-South axis 

relative to the other tiles, while j denotes the tile’s location along the West-East axis relative to 

the other tiles. Both i and j start at 0 in the North-Western corner of the tiff data. After tiling, 

the script removes all unwanted tiles by checking all tiles’ mask tile entry values and removing 

all tiles that only consist of class 0 (No data). These are removed because class 0 is irrelevant 

for the NN experiment, see Section 7.1. By removing this class, it is less represented, making 

the model less likely to classify pixels as class 0.  

 

Figure 11: Example of tiling process illustrated on randomly generated 3D matrix. 

A similar process is executed for the offset dataset, except the tiling process is moved South 

and East by half of the tile width and height. This tile set has the naming convention “oi_j”, 

where o stands for offset while i and j denote the relative location of each tile. This results in a 

25% overlap between any given offset tile and the original tiles that they overlap with. This 

significant overlap is justified by the choice to train the model on a dataset with a distribution 

of classes based on the actual amount of surface area of each class within the ROI. By 

overlapping the regular and offset data like this, the model is trained on almost the entire ROI 

twice.  
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Figure 12 Conceptual visualisation of the overlap between regular and offset tiles 

Step 4 splits the data into training and validation data. This step is placed before further 

augmentation to avoid mirrored or rotated data getting included among the validation data. The 

dataset is split so that it comes as close as possible to an 80/20 split with 80% training data and 

20% validation data. 

Denmark is a relatively small ROI compared to other countries. This is especially true when 

excluding the agricultural Marker dataset, which took up a significant amount of surface area 

in Denmark for 2020. This is why step 5 executes data augmentation performed on the image 

and mask files throughout the following two cells. The first cell does so by mirroring all of the 

tiles, including the regular and offset tiles. Mirrored tiles receive the prefix “M”. The second 

cell does so by rotating all four tile set permutations by 90°, 180°, and 270° relative to the 

original orientation. Tiles receive the prefix “r1_” if rotated by 90°, “r2_” if rotated by 180°, 

and “r3_” if rotated by 270°. An example of a mirrored, offset tile rotated by 90° would thus 

be called “r1_Moi_j”. Augmenting the data through offsetting, mirroring and rotating the tiles 

increase the total number of training tiles from 2876 in the regular tile set to 46568, which is 

approximately larger by a factor of 16. All of these files are in geotiff format however, which 

is not storage or VRAM efficient. 

Upon attempting to train a simple CNN model on a laptop with only 4GB of VRAM, it was 

found that the model could not train on such a large number of images. As such, step 6 was 

added to convert the tile sets to a more VRAM efficient format. This saved VRAM by inputting 

data that was already in tensor format instead of forcing the script to spend VRAM during 

training to convert TIFF data to tensors during the training phase. 

Step 7 then cleans up the data. Initial attempts to train the model on the tensor files failed. The 

received error indicated that this was due to Not a Number (NaN) or negative values in the 

dataset. Furthermore, it is also recommendable to normalise data before training a model on 

the data [KILDE FASTAI, p. 241].  

Therefore, 3 cells were added. The first cell shows the global minimum and maximum values 

as well as the total NaN count and dimensions of both the image and label tile tensors. Since 

no NaN values were found but max values for the image tiles was above 1, all the data was 

normalised by the global max value. The third cell once again checks the global minimum and 

maximum values as well as the total NaN count and dimensions of both the image and label 
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tile tensors, but this time it used the normalised image data to ensure that the data cleaning and 

normalisation had been done correctly. 

Step 8 is a response to the issue of not being able to overwrite the label raster with agricultural 

data. To allow for experimentation with factor 1, a new set of folders were created in which all 

entries within class 0 in the image tiles were set to zero.  

8.2 Machine Learning 

Similarly to the data pre-processing script written in python, the Machine Learning (ML) script 

can be split into multiple steps consisting of one or more cells. The structure is outlined as 

follows: 

1. Imports 

2. Loading of data  

3. Define NN model 

4. Training/validation loop and visualisation  

5. Accuracy assessments 

Step 1 is the import of relevant libraries. One particularly notable library is Pytorch. 

Throughout this master’s thesis, two ML libraries were considered and tested. These two are 

TensorFlow (TF) [TensorFlow, N/A] and PyTorch [PyTorch, e]. Initial attempts at developing 

ML scripts for the NN experiment were made with TF. However, these attempts were mostly 

fruitless due to issues with TFs interoperability issues with CUDA. CUDA is a toolkit which 

allows for acceleration of ML using Graphics Processing Units (GPU) [Nvidia, N/A].  

Throughout multiple attempts to set up TF with CUDA, it was found that installing TF in an 

environment would result in CUDA missing a crucial file. This made it impossible to run ML 

scripts with GPU acceleration. Upon switching to PyTorch, it was found that CUDA was 

consistently installed correctly with no crucial files missing. Hence, the ML script and all of its 

iterations presented in this script are based on PyTorch. 

The imports cell is also where methods to improve the reproducibility of the NN experiment 

were implemented. This includes the global seed discussed in Section 7.3. 

Step 2 is the loading of data. This carries two meanings, as the data is both loaded into the 

script, but it is also in this step that the dataset class is defined. The first cell in this step is the 

loading of data into the script. First, the directory to the training and validation data are defined 

for both image and label tile tensors. It is through the definition of the image tile directories 

that factor 1 is implemented, as changing this directory allows for the switching between 

images where class 0 has been blacked out or not.  

To ensure that the data is usable by the model, a series of tests are executed at this stage. Firstly, 

the cell checks that all images have a matching label tile and vice versa. This is done both for 

the training and validation data. Following that, the global min and max entry values as well 

as the global NaN count for both the training and validation data are found. If the min value is 

0 or positive, the max value 1 or lower and the NaN count 0, then the data is suitable for ML 

training. 

The following cell has also been added for trouble shooting. This cell visualises 3 randomly 

chosen validation image tiles and their corresponding label tiles. This allows for a qualitative 
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assessment of whether the correct dataset is being used with respect to factor 1 and if it has 

been properly processed before training starts. The third cell in step two defines the dataset 

class, which helps the NN model to efficiently go through the training and validation data 

during the training process. 

Step 3 is the definition of the NN model. This is where factors 2, 3, 5, 6 and part of factor 7 

are implemented. The step consists of a single cell, which starts by specifying the model should 

be run on the computer’s GPU. Following that is an attempt to define the initial weight 

parameters of the model to further improve reproducibility. 

The next part of the cell defines a collection of important controlled and experimental factors 

in the experiment, including factor 7s number of epochs and factor 6s Learning Rate (LR), 

before using the dataset loader to define the training and validation data. The next factor to be 

implemented in the script is factor 3, the model architecture, as the model is defined. In 

extension, the initial weights are also implemented here along with the optimiser being defined. 

Factor 5 is implemented next as the class_weight tensor is defined before being utilised in the 

loss function, where factor 2 is also implemented through the in- or exclusion of 

ignore_index=0. 

While it is technically not part of the definition of the NN model, a set of functions are defined 

so they can save 3 images’ actual and predicted labels throughout the training to visualise the 

progression of the model’s training in step 4. While the three images are initially chosen at 

random, the script will continue to track the same three images throughout an entire training 

run. As the final part of step 3, two lines for visualisation are added. One can visualise the 

structure of manually defined models whereas the other can visualise the structure of 

torchvision.models models. However, both have been commented out during the execution of 

the NN ML scripts to avoid risking that the Jupyter Lab frontend crashing because it runs out 

of memory. To see the structures of the four models implemented in factor 3, see Appendix E. 
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9 Results 
In this chapter, the results of each factor and its levels will be discussed. This is followed by a 

section on the reflections related to the lack of complete reproducibility in PyTorch. Afterward, 

the highest accuracy achieved in the factorial Neural Network (NN) experiment is compared 

to the results of the Random Forest (RF) model developed in the factorial RF experiment. As 

stated in Chapter 7, each factor is optimised for one at a time. As such, it is important to note 

the baseline parameters: 

- Factor 1: Black out background class 

o No 

- Factor 2: Exclude background class in loss functions 

o No 

- Factor 3: Model architecture 

o Encoder: ResNet-50 

o Decoder: FCN (Fully-Convolutional Network) 

- Factor 4: Data augmentation 

o None 

- Factor 5: Class weights in loss function 

o C0: 1;   C1: 1;   C2: 1;   C3: 1;   C4: 1;   C5: 1;   C6: 1;   C7: 1;   C8: 1;   C9: 1 

- Factor 6: Learning Rate 

o 0.001 

- Factor 7: Number of epochs and early stop 

o Maximum number of epochs: 50 

o Early stopping 

▪ Patience: 5 

▪ Minimum expected improvement over span of patience: 0.001 

For each new factor in the experiment, the optimal setting from previously tested factors will 

be used to ensure that the optimal level for the new factor will be determined based on how 

well it fits with the chosen levels for previous factors 

9.1 Factor 1: Black out background class 

The first factor experiment contains two levels. those are whether or not the background class 

(class 0) has been blacked out to make class 0 more distinct compared to other classes. The 

iteration for which class 0 has not been blacked out was dubbed F1L0 while the iteration in 

which class 0 has been blacked out is dubbed F1L1 

As mentioned in Section 7.2, the Overall Accuracy (Po) and Cohen’s kappa are both calculated 

with class 0 in- and excluded. This is done for both F1L0 and F1L1. The typical way of 

calculating Po and kappa is to include all classes. However, the exclusion of class 0 allows for 

the gauging of the actual performance of the model on the classes that are relevant for this 

thesis’ experiment. 

By blacking out class 0, the Po and kappa was improved both when including and excluding 

class 0 in the calculation of the accuracy measures.  
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Accuracy 

measure 

Class 0 Included Class 0 Excluded 

Experiment F1L0 (No black 

out) 

F1L1 (Class 0 

blacked out) 

F1L0 (No black 

out) 

F1L1 (Class 0 

blacked out) 

Po 0.8458 0.8713 0.4857 0.5832 

kappa 0.5731 0.6680 0.3546 0.4270 

Table 1 The results of experimentation with factor 1. To demonstrate the impact that factor 1 has both for the relevant classes 

and in general, the accuracy measures are shown with both class 0 (background) included (left) and excluded (right). 

Notably, this factor’s optimal setting improves the measures in both cases. 

As stated in Section 7.1, the background class is not within the focus of this master’s thesis. 

Therefore, the choice of optimal level for the factors will be determined from the accuracy 

measures which exclude class 0. When ignoring class 0, the Po is raised by 9%-points and 

kappa is raised by 8%-points from F1L0 to F1L1. Therefore, F1L1 is considered the optimal 

iteration for Factor 1. However, looking at the relative CMs for each level, it is clear that while 

improvements have been made, the background class still causes significant confusion. Hence, 

it was deemed necessary to remove the background class altogether through the 

implementation of factor 2. 

 

Figure 13 The relative CMs for experiments F1L0 (left) and F1L1 (right). While the relative number of misclassifications 

where pixels are classified as class 0 (background class) has significantly decreased, Class 0 is still the biggest cause for 

misclassification among the classes, see Appendix D. 

9.2 Factor 2: Exclude Background class in loss functions 

The second factor also contains two iterations. The first is dubbed F2L0 and still includes class 

0 in the training and validation loss functions. The second, F2L1, ignores class 0 in the loss 

functions. Similarly to factor 1, the accuracy measures have been calculated with class 0 in- 

and excluded for both F2L0 and F2L1. 

Ignoring class 0 should allow the model to focus on the other classes and thus achieve a greater 

accuracy overall when ignoring class 0 at the expense of class 0’s accuracy. 
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Accuracy 

measure 

Class 0 Included Class 0 Excluded 

Experiment F2L0 (Class 0 

not ignored) 

F2L1 (Class 0 

ignored in loss) 

F2L0 (Class 0 

not ignored) 

F2L1 (Class 0 

ignored in loss) 

Po 0.8713 0.1924 0.5832 0.7654 

kappa 0.6680 0.1305 0.4270 0.6422 

Table 2 The results of experimentation with factor 2. To demonstrate the impact that factor 2 has both for the relevant classes 

and in general, the accuracy measures are shown with both class 0 (background) included (left) and excluded (right). 

Notably, the improvement of the relevant classes is at the expense of class 0. 

As can be seen from Table 2, ignoring the background class results in a Po %-point increase of 

19% and a 21%-point increase for kappa when excluding the background class in the accuracy 

measures. This accuracy is at the expense of class 0, as can be seen by how much the accuracy 

measures decrease when including class 0 in the measures. However, because Class 0 is 

irrelevant to this master’s thesis, see Section 7.1, F2L1 is deemed the optimal iteration for 

factor 2. 

At this stage, the accuracy of the Convolutional Neural Network (CNN) model has surpassed 

that of the RF model [Knudsen, 2025, p. 39]. The following factors will thus be aimed at 

exploring how high accuracy measures can be achieved with the CNN model. 

9.3 Factor 3: Model Architecture 

Factor 3 regards the model architecture. For this factor, the architecture has been broken down 

into two parts, that being the encoder/backbone and the decoder. For each of them, two different 

levels will be tested. This results in 4 unique levels for this factor. F3L0 tests the accuracy 

performance of the fcn_resnet50 architecture, F3L1 the deeplabv3_resnet50 architecture, F3L2 

the deeplabv3_resnet101 architecture, and F3L3 the fcn_resnet101 architecture. All models are 

derived from the torchvision.models python library. 

Experiment F3L0 

(fcn_resnet50) 

F3L1 

(deeplabv3_resn

et50) 

F3L2 

(deeplabv3_resn

et101) 

F3L3 

(fcn_resnet101) 

Po 0.7654 0.7708 0.7613 0.7817 

kappa 0.6422 0.6431 0.6248 0.6612 

Table 3 The results of experimentation with factor 3. Due to the irrelevance of class 0, it has been excluded in these accuracy 

measure calculations. 

Interestingly, the most complex architecture (F3L2) has the lowest accuracy measures, with the 

least complex model (F3L0) being narrowly ahead. While their Pos are close enough that the 

difference could be due to chance, there is a 2%-point gap in kappa. This indicates that F3L0 

is slightly better at least at this stage in the factorial experiment. F3L0 has lower Po and kappa 

than F3L1, though the difference for both values is so low that the difference could be due to 

chance for both accuracy measures. However, F3L3 is 1-1.5%-point and close to 2%-points 

ahead of both F3L0 and F3L1 in Po and kappa respectively. Therefore, F3L3 is chosen as the 

optimal iteration for factor 3. However, it should be noted that the differences are narrow for 

all four. Had the order in which factors are optimised for been different in this partial factorial 

experiment, the order in which each architectures performed might have been different. 
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9.4 Factor 4: Data augmentation 

For factor 4, there was a total of 8 possible levels to test. This was reduced to 5 levels by only 

testing one combination of augmentation methods, that being all methods combined. The five 

levels are F4L0 with no augmentation, F4L1 with offset tiles added to the regular dataset, F4L2 

with mirrored tiles added to the regular dataset, F4L3 with rotated tiles added to the regular 

dataset and F4L4 where all three augmentation methods were added to the regular dataset. 

Experi-

ment 

F4L0 (No 

augmentation) 

F4L1(Off-

set) 

F4L2 

(mirrored) 

F4L3 

(Rotated) 

F4L4 (All 

methods) 

Po 0.7817 0.8415 0.8036 0.8226 0.8484 

kappa 0.6612 0.7584 0.6930 0.7286 0.7623 

Table 4 The results of experimentation with factor 4. Due to the irrelevance of class 0, it has been excluded in these accuracy 

measure calculations. 

As can be seen from Table 4, all methods improved the accuracy of the model, with the highest 

accuracy being achieved when applying all methods. Therefore, F4L4 is chosen as the optimal 

iteration. 

9.5 Factor 5: Class weight adjustment in loss functions 

The initial goal for this factor was to achieve a minimum of 70% Producer’s Accuracy (PA) 

across all classes except class 0. To reduce the number of runs needed, multiple classes’ weights 

would be adjusted from one run to another. In doing so, the weight of classes which were 

adjusted based on their proximity to the goal of 70% accuracy, where classes well below would 

be raised the most. Conversely, classes which were closer to or approximately had met the goal 

were raised less. Initially, classes which were well above target were not adjusted. 

 

Figure 14 Relative CM for iteration F5L2, see Appendix D. 

However, significant amounts of confusion regarding classes 1 and 5 was caused by class 3. 

This continued through iteration F5L2, despite the weight of classes 1 and 5 having been raised 
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to 15 and 10 respectively. It was undesired to raise the weights of classes 1 and 5 too 

significantly compared to classes that did not cause significant confusuion for them. Therefore, 

the weight of classes 3 and, eventually, 7 were lowered throughout iteration F5L3-F5L6. This 

along with the continued raising of the wights of underrepresented classes had a growing 

negative impact on other classes.  

Experi-

ment 

F5L0 F5L1 F5L2 F5L3 F5L4 F5L5 F5L6 F5L7 

Weights C0: 0 

C1: 1 

C2: 1 

C3: 1 

C4: 1 

C5: 1 

C6: 1 

C7: 1 

C8: 1 

C9: 1 

C0: 0  

C1: 7 

C2: 4 

C3: 1 

C4: 4 

C5: 5 

C6: 1 

C7: 1 

C8: 2 

C9: 3 

C0: 0 

C1: 15 

C2: 4 

C3: 1 

C4: 4 

C5: 10 

C6: 1 

C7: 1 

C8: 3 

C9: 3 

C0: 0 

C1: 30 

C2: 4 

C3: 0.8 

C4: 4 

C5: 15 

C6: 2 

C7: 1 

C8: 4 

C9: 5 

C0: 0 

C1: 50 

C2: 4 

C3: 0.6 

C4: 5 

C5: 20 

C6: 2 

C7: 1 

C8: 5 

C9: 5 

C0: 0 

C1: 50 

C2: 4 

C3: 0.4 

C4: 5 

C5: 20 

C6: 2 

C7: 1 

C8: 4 

C9: 5 

C0: 0 

C1: 50 

C2: 4 

C3: 0.2 

C4: 5 

C5: 20 

C6: 2 

C7: 0.5 

C8: 4 

C9: 5 

C0: 0 

C1: 200 

C2: 4 

C3: 0.2 

C4: 5 

C5: 20 

C6: 2 

C7: 0.5 

C8: 4 

C9: 5 

Po 0.8484 0.8536 0.8446 0.8532 0.8042 0.8311 0.7981 0.7714 

kappa 0.7623 0.7795 0.7645 0.7806 0.7134 0.7445 0.7060 0.6640 

Table 5 The results of experimentation with factor 5. Due to the irrelevance of class 0, it has been excluded in these accuracy 

measure calculations. 

By iteration F5L6, class 5 had reached the 70% Producer’s Accuracy (PA) goal while the Po 

and kappa of the model had fallen by 5% and 6% respectively compared to iteration F5L0. 

With class 1 only having achieved a PA of 37%, a large raise in weight was made to see if it 

was realistically possible to raise the accuracy of class 1 to the 70% target. By setting the weight 

of class 1 to 200, a factor 1000 larger than the weight of class 3, a PA of 57% was reached for 

class 1 at the expense of other classes.  

As such, it was chosen to use kappa and Po as response variables instead of PA. Upon analysing 

the Po and kappa values achieved for factor 5, Iterations F5L1 and F5L3 were deemed the best, 

though close enough in performance that the difference was negligible. As such, the choice was 

made by looking at which of these two highest performing models had fewest classes with a 

PA below the initial 70% goal, excluding class 0. F5L1 has three classes below the target while 

F5L3 only has two below the target. Hence, iteration F5L3 is chosen as the optimal level for 

this factor among the tested levels. 

9.6 Factor 6: Learning rate 

For this factor, there is an endless possibility of levels. To set a reasonable range for finding a 

local optimal value for the factor, the model was initially run with the Learning Rate (LR) set 

to the baseline value multiplied and divided by a factor 10 respectively.  

Both F6L1 and F6L2 resulted in lower accuracies than the baseline F6L0. This indicates that a 

local optimal value has been found in the vicinity of F6L0. Thus, it was chosen to test an LR 

value between the baseline value of F6L0 and F6L1-2 respectively, resulting in F6L3-4. F6L3 

and F6L4 both performed better than the extremity levels but worse than the baseline.  
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Experi-

ment 

F6L0 

(LR = 

1e-3) 

F6L1 

(LR = 

1e-4) 

F6L2 

(LR = 

1e-2) 

F6L3 

(LR = 

5e-4) 

F6L4 

(LR = 

5e-3) 

F6L5 

(LR = 

2e-3) 

F6L6 

(LR = 

15e-4) 

Po 0.8532 0.7922 0.7693 0.8172 0.8390 0.8277 0.8287 

kappa 0.7806 0.6950 0.6694 0.7257 0.7611 0.7459 0,7471 

Table 6 The results of experimentation with factor 6. Due to the irrelevance of class 0, it has been excluded in these accuracy 

measure calculations. 

 

Figure 15 A plotting of the Overall Accuracy (blue) and kappa (green) for F6L0-4 in relation to the corresponding LR levels. 

Linear regressions have been made for groupings of points to aid in pin-pointing a potential optimal level.  

F6L4 was at this stage the closest to F6L0 in accuracy for both Po and kappa. Thus, it was 

hypothesised that the optimal level might lie in the range between the LR values of F6L0 and 

F6L4. To further pinpoint where a potential optimal value might be, the accuracies of F6L0-4 

were plotted in a graph. A relatively steep increase in accuracy can be seen for the three lower 

levels in the case of both accuracy measures. While the sample size is rather small, this appears 

to roughly fit with a linear regression. As such, in an attempt to approximate where this 

potential optimal point might be, linear regressions were made for both the grouping of three 

lowest levels and the grouping consisting of the remaining two levels. The crossing point for 

both Po and kappa lies approximately at LR = 15e-4.  

As a result, two more levels were tested. These levels were F6L5 with LR = 2e-3 and F6L6 

with LR = 15e-4. 2e-3 was chosen for two reasons. Because of the small sample rate, the 

crossing point method was inaccurate. Furthermore, the crossing point is significantly closer 

to F6L0 than F6L4. This could be in part be because there is more samples in the grouping 

which F6L0 belongs to. Thus, 2e-3 serves as a compromise between the crossing point and the 

median LR value of the two highest performing levels thus far. However, both F6L5 and F6L6 

were less accurate than F6L0 and F6L4. Thus, F6L0 was chosen as the optimal iteration for 

factor 6. 

9.7 Factor 7: Number of epochs 

With all other experiment factors optimised for, the goal of the last factor was to explore if a 

higher accuracy could be achieved by practically disabling early stopping and increasing the 

number of epochs. Therefore, the max number of epochs was raised from 50 to 100 and the 

patience set to 100. If the validation loss was found to oscillate significantly or have a 
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decreasing tendency within these 100 epochs, the model would be tested again with more 

epochs. 

As can be seen from Figure 16, the increased number of epochs did not result in an improved 

validation loss. The epoch with the lowest validation loss in both cases is epoch 14, which 

equates to the 15th epoch that was run in both iterations. 

      

Figure 16 Visualisation of the loss curves for F7L0 (left) and F7L1 (right). In both cases, the lowest validation loss occurred 

at epoch 14 (equating to the 15th epoch). 

Given the general increasing tendency of the validation loss curve for iteration F7L1, it was 

concluded that increasing the number of epochs would not result in a lower validation loss. 

Thus, no more levels were tested for factor 7. Despite the optimal epoch being the same for 

both iterations, the accuracy was not the same for each iteration. The Po and kappa for iteration 

F7L1 is approximately 2%-points and 3%-points lower than for iteration F7L0. This indicates 

that, despite the implementation of seeds, there is still a noticeable degree of pseudo-

randomness within the code. This fits with what was discussed in Section 4.4.4.  

Experiment F7L0 F7L1 

Epoch with lowest validation loss Epoch 14 (15th epoch) Epoch 14 (15th epoch) 

Po 0.8532 0.8341 

kappa 0.7806 0.7529 

Table 7 The results of experimentation with factor 7. Due to the irrelevance of class 0, it has been excluded in these accuracy 

measure calculations. 

As a result, Iteration F7L0 is deemed to be the optimal iteration of this factor, not due to the 

factor level, but due to chance. Thus, F7L0 is concluded to be the most accurate iteration 

achieved within the factorial experiment of this master’s thesis. 

9.8 Reliability of results 

As stated in Section 4.4.4, complete reproducibility is not guaranteed in PyTorch. Therefore, it 

is necessary to reflect on the significance this has on the reliability of the specific choice of 

optimal factor levels. 

The incongruence seen in Factor 7 seems to suggest there is a sampling error in the experiment. 

Because it is directly stated in PyTorch’s documentation on seeds that there is not a guarantee 

of reproducibility, see Section 4.4.4, it is assumed that this is the source of error which causes 

the script’s results to not be perfectly reproducible. The ideal solution to this would be to run 

each iteration of the script multiple times and either take the highest or average accuracy values. 

However, due to how time consuming it would be to repeat each iteration’s training process 

multiple times, it is outside of the scope of this project.  
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Therefore, the reliability of the factor experiments will be determined based on the observations 

of Factor 7. Factor 7 only compares two runs. Therefore, the sample size is too small for 

calculating a reasonable standard deviation. However, by comparing the best performing 

iteration from each factor to their second-best performing iteration, it is found that factors 3-6 

all have a lower difference in kappa than factor 7, see Table 8. This would suggest that all of 

these factors would benefit from having multiple reruns to mitigate the impact of PyTorch’s 

non-deterministic design.  

Notably, the technical fixes implemented in factors 1 and 2 have increased the accuracy 

significantly more than the difference found for factor 7. This would suggest that the chosen 

optimal level for these two factors is reliable. However, it is uncertain if their impact comes 

from them belonging to a different type of factor than the other factors or because they came 

first. However, the significant difference in improvement for factors 1 and 2 compared to the 

remaining factors and the fact that the entries of Table 8 are not steadily decreasing indicates 

that the order of factors is less significant than whether the factor was aimed at fixing technical 

issues with the input data or not. 

Accuracy 

measure 

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 

Difference 8 21 2 0.4 0.1 2 3 

Table 8 The %-point difference between the highest and second highest kappa achieved in each experiment. 

Despite the less reliable basis for comparison of optimal level choice, the choice of optimal 

factors will be retained based on the data that was collected. Furthermore, this challenge does 

not impact the comparison to the RF model, as the Accuracy achieved with the CNN model is 

still reliable as an absolute measure of accuracy based on the chosen factor levels. This is 

regardless of whether the chosen factor levels are the optimal ones or not. 

It is also important to note that Table 8 only shows that more data would be needed to 

definitively state whether some factors‘ two highest performing levels are the optimal settings. 

Table 9 shows that most factors had a significant impact on the accuracy of the model. By 

calculating the difference between the highest and lowest kappa values for each level, it shows 

that factor 7 had the lowest difference. All other factors except factor 3 have a relatively 

significantly bigger difference than that of factor 7. This shows that the majority of chosen 

experimental factors likely have an actual impact on the model, but that some factor levels are 

closer to each other in performance than other levels. This warrants more reruns for these 

factors to truly determine the optimal level for these factors. 

Accuracy 

measure 

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 

Difference 8 21 4 10 12 11 3 

Table 9 The %-point difference between the highest and lowest kappa achieved in each experiment. 

9.9 Factor levels after experimentation 

As a result of the partial factorial experiment, the final factor levels are as follows: 

- Factor 1: Black out background class 

o Yes 

- Factor 2: Exclude background class in loss functions 
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o Yes 

- Factor 3: Model architecture 

o Encoder: ResNet-101 

o Decoder: FCN (Fully-Convolutional Network) 

- Factor 4: Data augmentation 

o Offset 

o Mirroring 

o Rotation 

- Factor 5: Class weights in loss function 

o C0: 0;   C1: 30;   C2: 4;   C3: 0.8;   C4: 4;   C5: 15;   C6: 2;   C7: 1;   C8: 4;   C9: 

5 

- Factor 6: Learning Rate 

o 0.001 

- Factor 7: Number of epochs and early stop 

o Maximum number of epochs: 100 

o Early stopping 

▪ Patience: 5 

▪ Minimum expected improvement over span of patience: 0.001 

9.10 Comparing CNN output with RF output  

With the factorial experiment of this thesis completed, it was possible to compare the accuracies 

of the resulting CNN model to that of the RF model which was previously developed. Judging 

by the single value measures seen in Table 10, The CNN model is a significant improvement 

over the RF model. With a Po of 85%, the CNN model outperforms the RF model by an 

absolute amount of 11% points, equating to a relative improvement of 15%. The most 

significant single value measure improvement is kappa. This is not only because it compensates 

for chance agreement, which gives deeper insight in the performance model. It is also because 

the CNN model, with a kappa of 0.78, outperforms the RF model absolutely by 0.15. This 

equates to a 24% relative improvement. 

Accuracy measure 

(Excluding class 0) 

CNN model RF model Absolute 

improvement 

Relative 

improvement 

Po 85% 74% 11% 15% 

kappa 0.78 0.63 0.15 24% 

Table 10 The single value accuracy measures for the best iteration of both the CNN and RF model. Absolute and relative 

improvement show how much better the CNN model performed than the RF model. 

To get a better sense of how the CNN model outperforms the RF model, the PA was compared 

as well, see Table 11. Note that due to the inclusion of a background class, the class labels of 

the CNN model are offset compared to the original RF model’s classes. For the PA of each 

model, it was found that the CNN model outperforms the RF model to various degrees in all 

but 2 classes. Those two classes are Class 1 (Bassins), which achieved an accuracy of 

equivalent to that of the RF model at 25%, and class 8 (Lakes), which decreased in accuracy 

by 3%. This is an interesting coincidence. However, there is no significant reason to draw 

conclusions of correlation. As discussed in Section 9.5, it was possible to raise the accuracy of 

class 1 to 57%, but due to the relatively small representation of class 1, this was at the expense 

of other classes, hence why class 1 was not further prioritised. As for class 8, the accuracy 
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could have been raised higher as well if assigned a higher weight, but because of the initial 

goal for factor 5 being that all classes had a PA of at least 70, class 8 was not further prioritised. 

Therefore, it seems reasonable to suggest the hydrological classes have accuracies that are 

equal to or worse than those of the RF model because of the choices made in Factor 5, not 

because the hydrological classes are inherently harder to classify. However, all other classes’ 

PAs were improved to various extents compared to the performance of the RF model. 

The classes with the lowest positive PA improvements are classes 5 (recreative areas) and 7 

(Forest) with improvements of 7% and 1% respectively. The remaining classes all had two-

digit relative improvements, with class 3 (urban areas) and 6 (sand/dune) both improving by 

13%, classes 2 (moorland) and 9 (wetlands) improving by at least 60% and class 4 (raw 

materials) improving by 81%. Notable is that for classes with a relative representation of 

approximately 0.5% and above, the PA for the CNN model was above the initial 70% goal. 

This means that the CNN model had 7 out of 9 classes achieve the 70% goal, compared to only 

4 classes achieving a PA of 70% or higher in the case of the RF model. 

 Class 

(CNN) 

Relative 

representation 

(for CNN) 

CNN 

model PA 

RF model 

PA 

Absolute 

improvement 

Relative 

improvement 

0 N/A 0% N/A N/A N/A 

1 (0 for RF) 0.06% 25% 25% 0%-points 0% 

2 (1 for RF) 6.69% 80% 50% 30% -points 60% 

3 (2 for RF) 29.97% 89% 79% 10% -points 13% 

4 (3 for RF) 0.46% 76% 42% 34% -points 81% 

5 (4 for RF) 0.03% 61% 57% 4% -points 7% 

6 (5 for RF) 0.82% 81% 72% 9% -points 13% 

7 (6 for RF) 48.60% 86% 85% 1% -points 1% 

8 (7 for RF) 5.35% 74% 76% -2% -points -3% 

9 (8 for RF) 8.00% 82% 51% 31% -points 61% 

Table 11 The PA for the best iteration of both the CNN and RF model. Absolute and relative improvement show how much 

better the CNN model performed than the RF model. Note that the class names are based on those used for the CNN. Class 0 

(background) is excluded due to the RF model not having a background class 
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10 Conclusion 

10.1 Initial wonder 

This thesis came to be as a result of the underwhelming Random Forest (RF) model produced 

in my 9th semester project report. Through a desire to achieve better results than those managed 

with the RF model, an initial wonder was posed: 

“What is considered state of the art for Machine Learning (ML) and semantic segmentation 

and how can it be implemented in the context of Land Use/Land Cover (LULC) map 

generation?” 

In order to answer this question, various literature was consulted. This formed the foundation 

for the literature study presented in Chapter 4. Through this literature study, a general consensus 

was found which points to Neural Networks (NN) being more suitable for Computer vision 

than traditional methods such as Decision Tree Ensembles. Furthermore, literature from 2020 

and onward points to Convolutional Neural Networks (CNN) and variations thereof as being 

the most suitable NN models for achieving high accuracy measures when working with 

Computer Vision. This is because the convolutional and pooling layers are specifically 

designed to deal with image processing in a way that reduces the required processing power 

and complexity of NN models. This can both decrease the risk of overfitting and/or free up 

processing power for other processes during training. 

The literature study has also aided in the understanding and selection of factors to experiment 

with. The categories of factors explored throughout the report include factors that relate to the 

architecture, training phase, and regularisation of a CNN model as well as other miscellaneous 

factors. While the majority of these factors were related to improve the accuracy measures of 

a CNN model, the miscellaneous category in particular regarded factors which focused more 

significantly on the technical optimisation of NN models. 

10.2 Problem formulation 

Based on the knowledge that was gained from the pre-analysis, a problem formulation was 

developed: 

“Is it possible to achieve a higher accuracy of LULC classification with CNN than previously 

found with RF?” 

With the following sub questions: 

10.2.1 Which level for each of the experimental factors is optimal for achieving the highest 

accuracy possible? 

The non-deterministic nature of PyTorch does make the results less reliable than desired. From 

the results of these experiments, the following optimal settings were found, though reruns 

would be required to confirm the results. 

In the case of the technical fixes, it was found that the inclusion of both factors 1 and 2 had a 

positive impact. The significant differences between the accuracies of each level for each factor 

indicates the choice of optimal factor is more reliable. Thus, the optimal setting for factor 1 

was found to be when black-out of the background class was included. For factor 2 the optimal 

setting was the exclusion of the background class in loss functions. 
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The optimal choice for the remaining factors is less clear though as the two top-performing 

levels for these factors were relatively close in performance. However, it should be noted that 

the range in accuracy for most factors is significant enough to demonstrate that the choice of 

level for these factors is of importance. This is demonstrated through factors 4-6 all having an 

accuracy range of 10-12%-points for Choen’s kappa (kappa) from the lowest to highest 

performing setting in this experiment. Thus, the uncertainty does not lie in whether these factors 

are relevant or not to the experiment, but in the proximity of accuracy measures for the top-

performing level for Factors 3-7. 

Factor 3 regarded the choice of CNN architecture. The optimal architecture among the four 

tested was found to be the fcn_resnet101. It was found that both the most and least complex 

model were both outperformed. Whether this is due to the other model having an ideal of 

complexity to avoid overfitting, the order in which the factors are optimised for, the lack of 

reproducibility, or a combination hereof is unclear.  

Factor 4 regards data augmentation, for which it was found that the highest accuracies were 

achieved when implementing all of the included augmentation methods. 

Factor 5 regarded the weighting of each class in the loss functions. While a majority of classes 

could achieve a Producer’s Accuracy (PA) of 70%, two classes were unable to achieve this goal 

without negatively impacting other classes too significantly. These were class 1, Bassins, with 

a PA of 25% and class 5, Recreative Areas, with a PA of 61%. Notably, these classes had a 

relative representation in the dataset of 0.06% and 0.03% respectively. The least represented 

class to achieve a 70% PA is class 4, Raw Materials, with a relative representation of 0.46%. 

Factor 6 regards the choice of Learning Rate (LR). Despite being the factor with the second 

most levels tested, the optimal level turned out to be the initial level, that being an LR of 1e-3. 

Attempts were made to predict potentially higher performing levels after the runs with the first 

5 levels, yet the initial level remained the best performing. 

Factor 7 was an attempt to see if the model could eventually reach a lower validation loss if 

allowed to run for enough epochs. Not only did it prove to not be the case, but it also highlighted 

the non-deterministic nature of PyTorch. It did so because the lowest validation loss was 

achieved at the exact same epoch as when early stopping had been implemented yet reached a 

lower accuracy when early stopping was disengaged. Because the highest accuracy was 

achieved when Early stopping was engaged, this was the run which was chosen as the optimal 

iteration, but this conclusion is not based on the implementation of early stopping, as this did 

not impact the accuracy 

10.2.2 What is the significance of the interaction between the model and its input data?  

The scope of this thesis’ factorial experiment is too small to reach a clear and definitive answer. 

However, Factors 1 and 2 show that the quality of input data and the extent to which the data 

and model have been tailored for each other are of significant importance. 

Factor 1 showed the impact of increased data quality the cleaning the input images. This was 

done by blacking out all data within the background class. This improved the Po by 10%-points 

and the kappa by 8%-points.  
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The most significant impact came from Factor 2, which improved the accuracy of the CNN 

model with 18%-points for Po and 21%-points for kappa. It does so by adapting the loss 

functions to the unique properties of the input data. 

As such, the results of this factorial experiment showed that the optimisation of the interaction 

between the input data and CNN model equated to a nigh 30%-point improvement. This would 

suggest that the adaption of the model and the data for optimal interaction is significant. 

10.2.3 To what extent can the NN model outperform the RF model? 

As seen in Section 9.10, the absolute single value measure improvements of the CNN model 

over the RF model are 11%-points for Po and 0.15 for kappa. In relative terms, this translates 

to a 15% improvement in Po and 24% improvement. Furthermore, it was found that all but two 

classes had improved when comparing the CNN model based on the vector accuracy measure 

PA. For the PA, it was found that all classes had improved to some extend except the two 

hydrological classes. However, there was found no reason to believe that hydrological fields 

are particularly hard to recognise. Instead, the reason likely stems from these classes not being 

prioritised further during the experimentation with factor 5. Furthermore, all classes with a 

relative data representation higher than 0.5% reached a PA value of at least 70% in the case of 

the CNN. This equates to 7 out of 9 classes achieving a PA of 70% or higher compared to just 

4 classes for the RF model. 

10.2.4 Is it possible to achieve a higher accuracy of LULC classification with CNN than 

previously found with RF? 

With basis in the answers found for the three sub-questions, the answer to this problem 

formulation is not only yes, but also that the difference achieved is significant.  
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11 Reflection: Potential improvements 
While the goal of this master’s thesis was achieved, there is still room for improvement. This 

section will cover various improvements that could have been made if the scope of this project 

was bigger. 

11.1 Cross examination and full factorial experiment 

It is proven that the accuracy of the Convolutional Neural Network (CNN) model achieved 

through this thesis’ factorial CNN experiment is higher than that of the previous report’s 

Random Forest (RF) experiment. However, it is not proven that the choice of optimal levels 

for each factor is the actual optimal levels, as discussed in Section 9.8. Furthermore, the exact 

impact of each factor is not known either. This is due to a mix of PyTorch not having full 

reproducibility and each level only being tested for once. 

The ideal solution to this issue would have been to test all permutations of the factors and their 

levels. This method would have determined the actual optimal levels for each factor when the 

factors interact. However, this is well outside the scope of this project due to how time 

consuming such a process would be, especially considering that each permutation would have 

to be run multiple times to account for the lack of perfect reproducibility. 

A less time requiring approach could have been to repeat the optimisation process but reversing 

the order in which the factors were optimised for. This won’t determine the optimal level like 

testing all permutations would. However, it can improve the reliability of the findings of this 

thesis if it results in the same levels being chosen. Conversely, if other levels are found to be 

optimal when reversing the order, it proves that further experimentation would be needed. 

Either way, the reliability of this thesis would be determined while significantly reducing the 

required expansion of the scope. By testing the factors in a different order, it also helps 

determining whether the order of optimisation affects the impact that each factor has on the 

accuracy of the CNN model. 

11.2 Separate training and validation regions 

Initial planning of this project included a thorough approach to splitting training and validation 

data into appropriate regions. However, because of the long runtimes when processing data in 

GIS, the training/validation split was chosen to be a random split process. However, this means 

that there is no designated training vs. validation regions. This might make the model appear 

better at generalising than it actually is. It also means that each class’ relative representation 

for the entire dataset might not be reflected in the training and validation sets respectively. 

An approach to mitigate this could be to split the entire Region of Interest (ROI) into a group 

of sub-regions, for which the relative distributions of classes were calculated. The 20% of sub-

regions that come closest to matching the relative class distribution when added together would 

be made the validation region. This would then leave the other 80% as the training regions.  

For this method, it would be necessary to consider the ideal sub-region size. The larger the size 

of sub-regions, the more separated training regions will be. However, it would also make the 

resulting distribution less likely to have a class representation that is close to the total class 

distribution. Conversely, smaller sub-regions will give a greater number of permutations to test. 

This would increase the chances of there being a combination of sub-regions with a class 
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representation that better represents the total class distribution. However, this will also likely 

be at the cost of separation between training and validation regions. Additionally, the more 

regions there are, the more permutations there are to test, and thus the computational time or 

hardware requirements will be bigger.  

To decrease computational requirements, it could be sensible to take inspiration from early 

stopping. This could be done by setting a value for how close the class representation of a given 

combination of sub-regions must be to the total class distribution. This could potentially be 

expanded by assigning specific limits based on the degree to which each class is under- or 

overrepresented in the total class distribution. One approach to this could be that classes with 

less representation in the total data can deviate less than bigger classes to ensure a reasonable 

representation of smaller classes in both the training and validation data.  

11.3 Assembly of a Land Use/Land Cover (LULC) map 

The development of a complete map is not necessary for this thesis. However, if this model 

were to be used in practice, it would be necessary to generate entire maps of a larger size than 

any individual tile. This is the reason for why the naming convention is based on location 

instead of assigning a single number. The naming convention of i_j would theoretically allow 

for the merging of tiles into a coherent map. However, because of the conversion from geotiff 

to tensor, the tiles lose their coordinates. This means that the resulting map won’t be 

georeferenced and thus can’t be used in any GIS application. To accommodate this issue, the 

naming convention of the merged tiles can also be used to transfer the coordinates of the 

original geotiff tiles to the merged output tiles. This would result in a merged, georeferenced 

raster file ready for use in GIS applications. 
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13 Abbreviations 
AAU =  Aalborg University  

AI =  Artificial Intelligence 

AMP =  Automatic Mixed Precision 

API =   Application Programming Interface 

AU =   Aarhus Univbersity 

C[x] =  Class [x] 

CM =  Confusion Matrix 

CNN =  Convolutional Neural Network 

CPU =  Central processing Unit 

DAGI =  Denmarks Administrative geographic subdivision 

DNN =  Deep Neural Network 

DOE =  Design of Experiment 

DR =  Dilation Rate 

DTU =  The Technical University of Denmark 

FCN =  Fully Convolutional Network (Not Fully-Connected Network) 

GDK =  GeoDanmark 

GEE =  Google Earth Engine 

Gen AI = Generative Artificial Intelligence 

GPU =  Graphics Processing Unit 

GTB =  Gradient Tree Boost 

IR =   Infra-Red 

Kappa = Cohen’s kappa coefficient 

LR =  Learning Rate 

LS =  LandSat 

LULC = Land Use/Land Cover 

mIoU = Mean Intersection Over Unit Index 

ML =   Machine Learning 

NaN =  Not a Number 

NIR =   Near Infra-Red 
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NN =   Neural Network 

PA =  Producer’s Accuracy 

Po =   overall Accuray 

RAM =  Random Access Memory 

R-CNN = Recurrent Convolutional neural Network 

RF =   Random Forest 

RGBA = Red-Green-Blue-Alpha 

RGBD = Red-Green-Blue-Depth 

ROI =  Region of Interest 

RUC =  Roskilde University 

SDSS = Spatial Decision Support System 

SGD =  Stochastic Gradient descent 

SR =  Surface Reflectance 

SWIR = Short-Wave Infra-Red 

TF =   TensorFlow 

TIR =   Thermal Infra-Red 

TOA =  Top of Atmosphere 

TSLA = Two-Stage Label Smoothing 

UA =  User’s Accuracy 

UCph =  University of Copenhagen 

VRAM =  Video Random Access Memory 
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