LSTM-Based Forecasting of Danish
Electricity Imbalance Price

A Comparative Study of Classical and Machine Learning Models

Christian Taulbjerg

P10-Project, Matematik-@konomi

Department of Mathematical Sciences
Skjernvej 4A

DK-9220 Aalborg @

http://math.aau.dk

AALBORG UNIVERSITET
STUDENTERRAPPORT

Title
LSTM-Based Forecasting of Danish Electricity
Imbalance Price

Project period
10. semester 2025

Project group
P10

Authors
Christian Taulbjerg

Supervisors
J. Eduardo Vera-Valdés

Page number

B8]

Due date
May 27, 2025

Abstract

Forecasting imbalance prices in electricity
markets has become increasingly relevant due
to volatility in part from renewable integration
and regulatory reforms. This thesis explores
the feasibility of modelling the Danish DK1
balancing market using LSTM, with the goal
of enabling flexible assets to act after the clo-
sure of the ID market. A stateful LSTM model
was trained under cuDNN constraints utilized
GPU acceleration, mixed precision training,
and memory optimization to support a hyper-
parameter tuning process that would other-
wise have been computationally prohibitive.
The tuning itself was performed using a combi-
nation of Hyperband and Bayesian Optimiza-
tion. The LSTM model was benchmarked
against ARIMA, naive baselines, and methods
such as Random Forest and XGBoost. Results
showed consistent improvements in predictive
accuracy after transforming the target variable
through co-integration (assuming unit root)
with the day ahead spot price, capturing the
structural anchoring relationship and improv-
ing the signal to noise ratio. Despite the com-
plexity of LSTMs, simple AR models performed
surprisingly well after transformation, under-
lining the short term dynamics that dominate
the imbalance market. Ultimately, the opti-
mized LSTM model demonstrated strong per-
formance in capturing extreme price spikes
and directional shifts, opening for post ID op-
erations. The thesis highlight the importance
of aligning model design with market struc-
ture and how simple models, under the right
conditions can serve as an alternative.

Rapportens indhold er frit tilgeengeligt, men offentliggorelse (med kildeangivelse) ma kun ske efter aftale med forfatterne.

http://math.aau.dk

Preface

This report is a 10th semester project in Mathematics-Economics at Aalborg University written
in cooperation with Jysk Energi. The project title is LSTM-Based Forecasting of Danish Electricity
Imbalance Prices. All programming was performed using Python or R, with environment manage-
ment and GPU configuration handled through PowerShell and WSL2 (Windows Subsystem for
Linux).

Generative Al tools have been used during the preparation of this project report as follows:

* Coding Assistance: Generative Al was utilized to accelerate coding tasks, particularly for
routine and straightforward implementations, and to assist in debugging.

¢ Language Improvement: Generative Al was employed to correct grammatical errors, refine
phrasing, and highlight areas where clarity was insufficient, improving the overall readability
and precision of the report.

The use of generative Al was restricted to supporting tasks and did not replace critical analysis,
decision-making, or the formulation of original ideas central to the project. All results, interpreta-
tions, and conclusions remain the product of my own work.

Christian Taulbjerg
Aalborg University, Maj 2025

iii

Table of Contents

(1 Introduction and Problem statement 1
|2 Deep Learning: Long Short-Term Memory Networks| 3
[2.1 Recurrent Neural Networks (RNNS)[. 3
[2.2 Long Short-Term Memory Networks (LSTM)| 7
23 RandomForest] e 9
2.4 XGBOOSH e e e e 10
[2.5 SHAP: SHapley Additive exPlanations| 11
[2.6 Feature Selection Techniques| 12
2.6.1 Recursive Feature Elimination (RFE)| 12

2.6.2 TASSOl 13

2.6.3 MutualInformation] 13

[2.6.4 Tree-Based Importance| 13

[2.6.5 Permutation Importance] o . 14

2.7 Data Transformations and Normalizationl. 14
2.71 MinMaxScaler] e e 14

272 StandardScalen 15

[2.7.3 Power Transformer (Yeo-Johnson)| 15

274 RobustScaler] 15

|2.8 Regularization and Double Descent| 15
ias- - -Curve] 16

[2.8.2 Regularization Techniques| 16

[2.8.3 The Double Descent Phenomenonl. 17

|3 Hyperparameter Tuning 18
3.1 Hyperband|. e 18
[3.2 Bayesian Optimization|. ittt e 19

21
|4.1 Data processing, feature selection, and scaling. 23
|4.1.1 Feature selection and engineering| 23

|4.2 Hyperparametersearch| e 25
|4.3 Forecast procedure and Comparison Models|. 26
[4.3.1 Co-Integration|. e e e e e 26

|4.4 ForecastingResults| 28
5__Conclusion| 30
Appendix 32
A Computational configuration and optimization| 34
|Appendix A: Implementation and Computational Details| 34
|IA.1 Computational Setup and cuDNN Optimization|. 34
|IA.2 Hyperparameter Constraints in cuDNN Stateful LSTMs| 34
IA.3 Memory Optimization and Management| v, 34

iv

TABLE OF CONTENTS

Group

(B Supplementary Application|

36

Figures

[2.1 Unfolded architecture of a Recurrent Neural Network over three time steps. Each cell |
shares weights and passes its hidden state forward, capturing temporal structure in |

theinputsequence.. e 3
[2.2 Internal structure of an LSTM cell showing the flow of information regulated by forget, |
input, and output gates, as presented in|Shavlik [2015]. 7

[2.3 Stacked LSTM layers (Deep LSTM): each layer processes the sequence output from |
the layer below, enhancing model capacity for hierarchical temporal feature extrac- |

tion, as presented in|Shavlik([2015].| 8
[2.4 The double descent risk curve, illustrating traditional and modern regimes of model |
complexity, as shown in|/Schaeffer et al.[[2023].|. 17

[4.1 Nordic Balancing Model (NBM), roadmap of previous and upcoming market changes.| 21
|4.2 Imbalance price, with test, train, validation split, and marked known policy changes| 22
[4.3 Periodogram over 200 hours for the DA Spot Price, the Imbalance Price, and the |

co-integratedresiduals.| L 27
[4.4 Predicted against actual, in the co-integrated LSTM|. 29

[B.1 DA Spot, Imbalance price, and co-integrated residuals confirming by visual inspec- |
tion first order stationarity|. e e e e 36

n Introduction and Problem statement

The Danish and more broadly Nordic electricity balancing markets operate under a marginal
pricing mechanism that has shown heightened volatility in recent years. This volatility reflects the
growing introduction of renewable energy sources, physical limitations in grid infrastructure, and
frequent regulatory adjustments. Collectively, these factors complicate forecasting efforts and pose
challenges for maintaining system stability.

This thesis focuses on the analysis of hourly imbalance prices in the Danish electricity market,
which are characterized by sharp spikes and heavy-tailed distributions. Such price behaviour is
caused by a combination of structural and operational constraints: electricity demand remains
largely inelastic in the short term, while the availability of flexible resources, such as gas turbines, is
often limited during peak hours due to prior commitments or insufficient real-time responsiveness.
Additionally, during periods of renewable overgeneration, reduction mechanisms are typically
constrained, leaving the system with limited flexibility to manage real-time imbalances. These
conditions frequently result in extreme and difficult-to-predict price movements.

Further complexity arises from structural shifts in the market, including the deployment of new
cross-border interconnectors, frequent changes in reserve policy, and Denmark’s participation
in European platforms such as NBM, ENTSO-E, and PICASSO. These developments introduce
nonlinear and often opaque changes to market behaviour, probably diminishing the effectiveness
of traditional forecasting approaches, especially the ones assuming constant underlying process.
Models based on parametric assumptions is suspected to underperform, either failing to capture
longer-term dependencies or overfitting the noise present in high-frequency price data.

To address these limitations, this thesis investigates the use of Long Short-Term Memory (LSTM)
neural networks, which are well-suited for modelling time series with complex temporal structures.
The LSTM model is evaluated against a range of alternative approaches with varying levels of
complexity and domain specificity, to benchmark its predictive performance and explore its
interpretability in the context of electricity market forecasting.

Motivation and Practical Applications

To understand the relevance of imbalance price forecasting, one must consider the structure and
incentives of European electricity markets. Most energy retailers and producers participate in the
Day-Ahead (DA) market, where electricity is traded based on forecasts of supply and demand. This
mechanism enables grid operators and market participants to adjust production and consumption
in advance, contributing to overall system stability.

However, real-world deviations from these forecasts are inevitable. Weather conditions may shift,
transmission infrastructure can fail, and human or algorithmic errors occur. To address such
discrepancies, the Intraday (ID) market allows participants to rebalance their positions closer to
real time up to one hour before delivery. Yet, even with these adjustments, residual mismatches
often persist.

The Balancing Market serves as the last line of defence, where the national Transmission System
Operator (TSO) (Energinet in Denmark) activates reserves to maintain grid balance. These reserves
are dispatched based on a merit order determined by marginal cost bids submitted in a separate
auction. The resulting marginal cost dictates the imbalance price: the rate at which market
participants are penalized or compensated for over- or under-delivery relative to their DA or ID
commitments.

Group CHAPTER 1. INTRODUCTION AND PROBLEM STATEMENT

This imbalance price is notoriously volatile. It exhibits extreme price swings and fat-tailed distri-
butions due in part to limited market liquidity, and by construction it is a response to unforeseen
events. A significant number of potentially flexible assets remain excluded from participation due
to stringent technical requirements and complex certification procedures. Consequently, while
the need for fast-reacting reserves has grown, the pool of available participants has not expanded
proportionally.

Recent regulatory changes to the imbalance price have further increased imbalance price standard
deviation by an estimated 300% compared to last year, thereby raising the economic incentive
for flexible assets to participate. In this context, the ability to forecast imbalance prices, particu-
larly near or after the closure of the ID market, could allow flexible producers or consumers, in
cooperation with their Balance Responsible Parties (BRPs), to adjust operations in response to live
market conditions. This responsiveness could improve market efficiency, support grid reliability,
and increase the value of previously underutilized flexibility.

This thesis investigates whether accurate imbalance price forecasting is feasible under current
market conditions, and evaluates which modelling approaches are most effective in capturing the
unique dynamics of this complex market segment.

Deep Learning: Long Short-Term Mem-
ory Networks

2.1 Recurrent Neural Networks (RNNs)

Architecture

This section is based on Hochreiter and Schmidhuber| [1997], and |Shavlik [2015]. Recurrent
Neural Networks (RNNs) is a large class of neural architectures specifically designed for modelling
sequential data. Unlike traditional feedforward networks, RNNs maintain a hidden state that is
propagated across time, enabling them to explicitly capture temporal dependencies. This recursive
structure allows the network to retain information about previous inputs, thereby providing a form
of internal memory. Formally, we can define a RNN as a function of the form:

f9 : (xl‘! ht) — (J’t» ht+l)

where x; is the input vector at time step ¢, h; is the hidden state vector at time step ¢, y; is the
output vector at time step ¢, and 6 represents the learnable parameters of the neural network. As a
simple example we can look at the following classical RNN:

¢ =0 (wr-c"V+wy-xP)

B = O'(WC~ C(t))

Where, x¥ € R” is input vector at time step t, ¢! € R is the cell (intermediate hidden) state,
hY € R™ is the output, wy, wy, w, is learnable weight matrices that in union represent 6, and the
o (-) non-linear activation function, e.g., sigmoid or tanh. This structure is visualized in Figure[2.1}
where the RNN is "unfolded" across time. Each unrolled unit corresponds to the same RNN cell
applied at different time steps, sharing parameters wy, w;, and w,.

E A :] = A A A
Figure 2.1: Unfolded architecture of a Recurrent Neural Network over three time steps. Each cell

shares weights and passes its hidden state forward, capturing temporal structure in the input
sequence.

&

v
> —»

v
v

The recursive nature of RNNs enables them to process variable-length sequences and is particularly
used for tasks like language modelling, speech recognition, and time series forecasting. However,
the same temporal feedback that makes RNNs so applicable also has some inherent problems
that arises when learning long-range dependencies, such topics will be discussed in the following
subsections.

Group CHAPTER 2. DEEP LEARNING: LONG SHORT-TERM MEMORY NETWORKS

Estimation and Training

The training of Recurrent Neural Networks (RNNs) is performed using a specialized version of
backpropagation called Backpropagation Through Time (BPTT). This method accounts for the
temporal dependencies in sequential data by unfolding the RNN across all time steps in the
sequence. Each time step is treated as a layer in a deep feedforward network, with parameter
sharing across all steps. For a more formal analysis let the output unit k’s target at time ¢ be
denoted by dj(¢), then by using mean squared error as the loss function, k’s error signal is given by:

k(1) = f (et () (dx (1) - yi(1),

where
vi(t) = fi(net; (1))

is the activation of a noninput unit i with differentiable activation function f;,

net; (1) = Z wijyj(t—1)
J

is unit i’s current net input, and w;; is the weight on the connection from unit j to i.
Some nonoutput unit j’s backpropagated error signal is

(1) = fj(net; (D)) wijdi(t+1).

Several optimization strategies can be employed to compute the weight updates for w;;, where [is
any unit connected to j, the most used are introduced here, based on Kingma and Ba [2017], Liu
et al.| [2020], and |Hinton| [2012]:

¢ Gradient Descent. In this project, i refer to the mini-batch variant, where gradients are
accumulated over small batches of size B. The weight update is:
1 B
w0 =wp(t-N-a- <3 0)y} (1=1)
n=1

Its foundational but its performance can be sensitive to batch size, therefore stochastic
Gradient Descent is often preferred.

* Stochastic Gradient Descent with Momentum. Let v;;(¢) be the velocity term associated
with weight w;:
vji(t) =pvj(t—1)—adj@®)y(t—1)

wj(t)=wj(t—1)+v; (1)
where « is the learning rate and p € [0, 1) is the momentum coefficient.

* RMSProp. Let s;;(¢) be the running average of squared gradients:

sj1(0) = psjy(t— 1)+ (1—p) (D () yy (1 — 1))

wji(t)=wj(t—1)— 90y (t-1)

a
\/Sjl(l‘)-f—e

where p € [0,1) is the decay rate and € > 0.

2.1. RECURRENT NEURAL NETWORKS (RNNS) Group

* Adam (Adaptive Moment Estimation). Define first and second moment estimates 7; ()
and vji(t) as:
m;ji(0) =Pimj(t—1)+ 1= P9y (t-1)

vji(0) = Bovji(t—1)+ 1= B2) (@ () yi(t - 1))

Bias-corrected versions are computed as:

mj(t) vji(1)

M) = —1——, 0y =—1—
]l() 1_’[3{]l(1—ﬁ£

The weight update is then:

w]'l(l')=w]'l(t—l)— ﬁ’ljl(t)

a
\/D hi 1) +e€
where 31, B2 € [0, 1) are decay rates for the moment estimates.

Each optimization algorithm presents trade-offs in terms of speed, stability, and generalization.
Traditional batch gradient descent provides a reliable gradient direction but is computationally
prohibitive for large-scale or real-time scenarios. Stochastic Gradient Descent (SGD) with momen-
tum addresses these issues by updating parameters more frequently and helping escape shallow
minima, but it still requires careful tuning and can struggle with noisy or sparse gradients. RM-
Sprop introduces adaptive learning rates, improving performance in non-stationary environments.
Adam combines both momentum and RMSprop, achieving fast convergence.. However, empirical
results Keskar and Socher|[2017] often show that while Adam converges faster, SGD (with proper
regularization and tuning) may yield better generalization in some deep learning tasks. The choice
of optimizer thus depends on the specific characteristics of the dataset, model architecture, and
training regime.

Inherent Problems

While classical Recurrent Neural Networks offer a theoretically advantage for modelling temporal
dependencies, they suffer from two major optimization challenges: the vanishing gradient problem
and the exploding gradient problem. To see this we would look at how the error gets scaled though
backpropagation. We start by looking at the local error flow as the global case immediately follows,
for simplicity also assume that we use the traditional gradient decent. Suppose we have a fully
connected net whose non input unit indices range from 1 to n. The error occurring at an arbitrary
unit u at time step ¢ is propagated back into time for g time steps, to an arbitrary unit v. This will
scale the error by the following factor:

09,(t—q) f,ﬁ(nety(t—l))wnuy g=1 .
D | et § P, 0> |

With I, = v and Iy = u, we obtain:

00,(t—q) & n

q
/ —
00,(1) _112:1 2 11 f;, wet, t=m)wi,y, , (3.2)

qul =1m=1
(proof by induction). The sum of the n9 L terms anzl fl’ (net;, (t—-m))w,, , determines the total

error backflow. If the product ’ fl’ (met;, (t—m)wy, 1, , ’ > 1 across steps, then the backpropagated
error grows exponentially with the number of time steps g, resulting in unstable learning, oscillating
weights, or divergence. Likewise if this product is less than 1 at each step, the error shrinks

Group CHAPTER 2. DEEP LEARNING: LONG SHORT-TERM MEMORY NETWORKS

exponentially, resulting in the vanishing gradient problem. In this case, long-term dependencies
cannot be learned effectively, as the signal fades before reaching relevant timesteps. Adjusting the
learning rate does not improve performance since the ratio between long and short range errors
remains the same, and would therefore only serve to make it more sensitive to recent observations.
In the case with activation functions with derivatives in the range (0, 1) such as sigmoid or tanh
this problem is amplified. The same problem persist if it is extend to the global case as can be seen
by computing

00,(t—¢q)

00,(1)

)3

u output unit

To prevent vanishing error signals the recurrence must preserve magnitude. This leads to the
requirement:
fimet; () - wj; =1.0.

Integrating the differential equation yields the condition

net; (1)
fi(net; (1) = ——,

7]

for arbitrary net;(z). This implies that f; must be linear, and the activation of unit j must remain
constant:

yi(t+1) = fjmet;(t+ 1) = fj(w;;y;(0) = y;(0).

By letting f;(x) = x for all x, and setting the self-connection weight w;; = 1.0. This setup is called
Constant Error Carousel (CEC). In practical settings, unit j is not isolated but receives inputs from,
and sends outputs to, other units, this introduces two problems:

1. Input Weight Conflict: Consider an additional input connection to unit j from unit i,
associated with weight w ;. Suppose that minimizing the total error requires activating unit
j inresponse to an input from unit i and preserving this activation over an extended period.
Given the linear nature of f; and the fixed input weight wj;, the system faces competing
objectives:

* On one hand, the gradient may encourage an increase in wj; to facilitate the storage of
important inputs by activating j.

* On the other hand, the same weight must concurrently support the suppression of
irrelevant or distracting inputs to prevent the premature deactivation of j.

These opposing forces often result in conflicting gradient signals, and as consequence bad
convergence.

2. Output Weight Conflict: Now assume unit j maintains a stored representation of a past
input. Consider a downstream connection to unit k, governed by weight wy ;. This single
weight must simultaneously serve two conflicting purposes:

¢ Permit the retrieval and transmission of stored information from j to k at appropriate
times.

¢ Prevent j from interfering with k when the stored information is not relevant to the
current context.

During early training, short-term error gradients often dominate and shape wy; accordingly.
However, as training progresses and the network attempts to learn longer-term dependencies,
the same connection may begin to introduce noise or disruption to units that had previously
stabilized.

2.2. LONG SHORT-TERM MEMORY NETWORKS (LSTM) Group

This problem is not exclusive to long time lags, even though they are significantly amplified in
tasks requiring long-term memory retention. The longer the temporal gap, the more vulnerable
stored information becomes to disruptions. In the next section a long short-term memory model
is introduced that was developed to solve the gradient problem of the RNN.

2.2 Long Short-Term Memory Networks (LSTM)

This section is based onHochreiter and Schmidhuber|[1997], and|Shavlik| [2015]. Long Short-Term
Memory (LSTM) networks are a specialized variant of Recurrent Neural Networks (RNNs) designed
to address the challenges of learning long-term dependencies in sequential data. LSTMs reduces
the gradient problems inherent in traditional RNNs by using a more advanced method to enforce
constant error flow. The fundamental improvement in LSTMs is the introduction of a cell state
C;, which acts as a long-term memory buffer that flows through the network with minimal linear
interaction. This memory is regulated by a set of gates, namely the forget gate, input gate, and
output gate which control the flow of information into, out of, and through the cell. Figure[2.2]
illustrates the internal architecture of an LSTM cell.

Figure 2.2: Internal structure of an LSTM cell showing the flow of information regulated by forget,
input, and output gates, as presented in|Shavlik [2015].

At each time step t, the LSTM cell receives the current input x;, the previous hidden state /-1, and
the previous cell state C;_;, and performs the following computations:

oV = U(wmpxm 4 whd)h(t—l)) (Forget gate)

iD= g(wex® + wp; KEY) (Input gate)

0" = o (wyox'” + wpoh'™Y) (Output gate)

&® = tanh(wyex® + wphY) (Candidate cell state)
¢ =g®. =D 4§ 50 (Updated cell state)
B9 = o . tanh(c®) (Updated hidden state)

Group CHAPTER 2. DEEP LEARNING: LONG SHORT-TERM MEMORY NETWORKS

The forget gate ¢'? determines which parts of the previous cell state ¢~ should be discarded,
while the input gate i) decides which new information is allowed into memory, thereby reducing
the input weight conflict. Likewise the candidate state ¢ represents the potential new content to
be integrated, and the output gate 0o'” governs which parts of the cell state are exposed to the next
layer or time step via the hidden state 1, reducing the output weight conflict.

Training Long Short-Term Memory (LSTM) networks follows the same foundational approach as
standard Recurrent Neural Networks, using Backpropagation Through Time (BPTT). However, due
to the implementation of the gated cell state, propagation of the gradient flow is in principle more
stable.

While a single-layer LSTM can capture temporal dependencies over long sequences, its representa-
tional power is still limited by the depth of the architecture. Deep LSTM networks solves this by
stacking multiple LSTM layers vertically. The output hidden state h¥ from each layer at a given
time step serves as input x” to the next layer, as shown in Figure[2.3|

o

T \’ Pt T i
b1 o dlelll |676% el 576 4| ot
6 s ifs] o s tfe i L o Tl el 1ie Ll g

/
/

b | = I |
09 @ 2"? KK 2"? KX 1"’?
le 1] 16 11é I} 16 11e I] ‘

©

Figure 2.3: Stacked LSTM layers (Deep LSTM): each layer processes the sequence output from the
layer below, enhancing model capacity for hierarchical temporal feature extraction, as presented
in|Shavlikj [2015].

In formal terms, for a deep LSTM with L layers, the computations are defined recursively:

h? =LSTM; (x'”, h{~V, {7 1)
hy) =LSTM,(h{”, by ™", ! ~Y)

() _ (1) (t-1) (=1
hY =LSTM (R |, h{'Y, 1)

Each layer LSTM, has its own set of parameters (weights and biases), and passes both the cell state
cy) and hidden state h(;) through time. The added expressiveness does come at the cost of large
increase in parameters. As a result, LSTMs typically require large training datasets to achieve good

8

2.3. RANDOM FOREST Group

generalization, and their complex architecture makes them highly sensitive to hyperparameter
settings.

Due to these limitations, the next section introduces several alternative models that can poten-
tially compete with LSTMs in terms of interpretability, computational efficiency, or predictive
performance.

2.3 Random Forest

Architecture

This section is based on |Breiman| [2001].

Random Forest (RF) is a often used ensemble learning algorithm that operates by constructing a
multitude of decision trees during training and aggregating their outputs. The method uses the
principle of bagging (Bootstrap Aggregating), where each individual tree is trained on a different
random subset of the training data sampled with replacement.

Each decision tree in the forest is built by recursively partitioning the feature space. However, to
increase model generalization and reduce the correlation among trees, only a random subset of
the input features is considered at each split.

For regression tasks, such as predicting electricity imbalance prices, the final output at a given time
t 79 of the Random Forest is the average of the individual tree predictions:

0_ 1S o
y :Nn;lyn (x)

where j/,(f) (x) denotes the prediction from the n-th tree, and N is the total number of trees in
the forest. A defining characteristic of RF training is that the trees are typically grown without
pruning. That is, they are allowed to grow to their maximum depth (or until a stopping criterion
such as a minimum number of samples per leaf is met). This overfitting at the individual tree
level is counteracted by averaging over many diverse trees, which results in strong generalization
performance at the ensemble level. Its architecture is also inherently parallelizable, which facilitates
fast training on modern multi-core systems. Furthermore RF compared to other models, has a
relatively low number of hyperparameters significantly reducing the complexity in application.
The key hyperparameters governing the training of a RF include:

¢ The total number of trees in the forest,

¢ The maximum depth of each tree,

¢ The number of features considered for splitting at each node,

¢ The minimum number of samples required to split a node or form a leaf.

This parallel, low-bias, high-variance architecture, combined with bootstrapped resampling
and feature randomness, makes RF particularly resilient to overfitting and well-suited for high-
dimensional data with mixed signal-to-noise ratios. RF is well-suited for a wide range of prediction
tasks, particularly when the input data is high-dimensional or noisy. By aggregating the outputs of
many different decision trees, the model reduces variance and becomes less prone to overfitting
than single-tree approaches. This ensemble structure makes RF robust to outliers and noise in the
data.

One of the key practical benefits of RF is their ability to provide interpretable measures of feature
importance. This combined with its fast training makes RF useful for both prediction but also for
exploratory data analysis and feature selection.

Group CHAPTER 2. DEEP LEARNING: LONG SHORT-TERM MEMORY NETWORKS

Despite these advantages, RFs have inherent limitations, particularly when applied to time series
data. Since each tree treats samples as i.i.d , RF do not inherently capture temporal dependencies
or autoregressive structures. To apply them to sequential data, features such as time lags, rolling
averages, or calendar effects must be engineered manually. Another limitation is that RF are not
capable of extrapolation. That is, predictions for inputs outside the range of the training data are
typically constrained to fall within the bounds observed during training. In regression tasks, this
can result in outputs biased toward the global mean, particularly when inputs diverge from familiar
patterns, as is often the case in the imbalance market.

In the scope of this project, Random Forests serve as a competitive baseline model. They are
capable of capturing non-linear interactions between engineered features (e.g., weather, calendar
variables, lagged prices), but lack the inherent temporal modelling capacity and ability to extrapo-
late that architectures such as LSTMs or ARIMA is able to. Nonetheless, their robustness, speed,
and interpretability make them well suited for a comparison model.

2.4 XGBoost

This section is based on|Chen and Guestrin| [2016]. XGBoost (eXtreme Gradient Boosting) is a high-
performance machine learning algorithm with architecture based on decision trees. Introduced
by|Chen and Guestrin| [2016], XGBoost extends traditional boosting methods by incorporating
advanced optimization techniques and regularization mechanisms, resulting in it being able to
outperform many other ensemble models in both accuracy and training speed. The core idea of
boosting is to build an additive model in a forward stage-wise fashion. At each boosting iteration
m, anew tree T, is added to improve the prediction at time step ¢. The updated model at time ¢
after m boosting rounds is given by:

50 _ 50 t
Yomp = Vim-nt Tim (x())

Unlike traditional boosting methods, XGBoost uses a second-order Taylor expansion of the loss
function, leveraging both gradient and curvature information to accelerate convergence. The
objective function at iteration m becomes:

1
Limy = GO Ty (x1) + EH([) L (x17) + Q(T(py)

(D) 30 2 (1 30
where G = 20) o the gradient of the loss at time t, H¥) = Sy 5T
a0 3G

derivative (Hessian), and Q(T},,) is a regularization term defined as:

is the second-order

J
Q(Tm) =yJ + %A]Z_l w?

Here J is the number of leaves in tree Tj,,, w; is the weight assigned to leaf j, y penalizes model
complexity via the number of leaves, and A controls the ¢,-regularization on the leaf weights.

XGBoost also incorporates a lot of practical improvements such as shrinkage (learning rate), col-
umn subsampling (feature bagging), early stopping, and support for parallelized tree construction,
all of which increases robustness, scalability, and applicability to a large variety of tasks. As a
consequence of the large complexity and combination of methods implemented, extensive hy-
perparameter tuning is often needed, creating a use case for RE Similar to RF XGBoost can also
provides accurate feature importance metrics based on information gain, split frequency, or per-
mutation importance. As is also the case with RE XGBoost does not inherently model sequential or
temporal dependencies, which introduces the need to manually engineer it as features. To ease
said feature selection, and hyperparameter search, in all models, SHAP values are now introduced.

10

2.5. SHAP: SHAPLEY ADDITIVE EXPLANATIONS Group

2.5 SHAP: SHapley Additive exPlanations

This section is based on [Lundberg and Lee| [2017], and Wikipedia contributors| [2024]. SHAP
(SHapley Additive exPlanations) is founded on Shapley values from cooperative game theory. In
this context, each feature is considered a "player" contributing to the model’s prediction. SHAP
decomposes a model’s output for a specific instance x into additive feature contributions:

M
f@=do+) i
iz

Here, ¢ represents the expected model prediction over the training data (the model’s bias), and
each ¢; denotes the contribution of feature i to the prediction for instance x. This is particu-
lar useful in linear models, especially when features exhibit multicollinearity, where traditional
coefficient-based interpretations can be misleading. Shapley regression values address this by
retraining the model on all possible subsets of features S < F, where F is the set of all features.
For each subset S, the model is trained both with and without feature i, and the difference in
predictions is computed:

fsutiy(xsugiy) — fs(xs)

The Shapley value ¢; for feature i is then calculated as a weighted average of these differences
across all subsets S € F\ {i}:

SI'|F|—|S|—1)!
bi= SR |,| [fsuiy (esuiiy) — fs(xs)]
SCR\(i} |F]!

The Shapley value is uniquely defined by a set of properties that ensure a fair allocation of a
total gain among cooperative agents. These properties make it highly suitable for attributing
contributions in machine learning models. The first one being Efficiency ensuring that the total
gain from the coalition is fully distributed among the players:

Y ¢i(v) = v(N)

ieN

In the feature context this means that that all of the model output is accounted for in the feature
attributions. The second one being symmetry that ensure that if two players i and j contribute
equally to all coalitions, they receive the same Shapley value:

v(SUliD = v SU{jh) =) =¢;)

The third property is linearity that ensures any two games with value functions v and w, the
Shapley value of the combined game is the sum of the individual values:

¢i(v+w) =¢;i(v)+¢;(w)

Also, for a scalar a € R:
¢ila-v)=a-¢p;(v)

This property ensures consistency under scaling and combination of games or models. The last
property is the null player ensuring that only contributing features receive attribution:

v(Su{i) =v(S) forallScN\{i} = ¢i(v)=0

The Shaply values has a wide range om applications, reflected in how Lloyd Shapley won a Nobel
Memorial Prize in Economic Sciences, for it in 2012. In the context of this thesis it considered in
the application of the following aspects:

11

Group CHAPTER 2. DEEP LEARNING: LONG SHORT-TERM MEMORY NETWORKS

¢ Global feature importance: Ranking features by their average absolute SHAP values can
capture feature importance.

* Local interpretability: For individual predictions, SHAP allows for decomposition of the
model output into positive or negative contributions from each feature, setting a basis for
explainability.

* Model evaluation: By analyzing how SHAP values shift across different data regimes, chang-
ing market conditions can be identified.

e Hyperparameter tuning: SHAP can also be usedd to evaluate the sensitivity of model
performance to various hyperparameters, possibly reducing the dimensionality of the tuning
space.

In its general form, computing exact SHAP values requires evaluating all possible subsets. The
naturally rapidly increasing the cost of computing making it unfeasible to check every subset for
large dimensional problems. In practice this can be solved by sampling a representative subset
of the whole dataset to then apply SHAP. This problem and the curiosity for other approaches,
motivates the next section that represent other methods that is used in feature selection.

2.6 Feature Selection Techniques

In high-dimensional learning problems, feature selection is a essential part of improving gener-
alization performance, reducing overfitting, and decreasing the computational load, often as a
consequence of better signal to noise ratio. This section outlines several methods used in this
thesis to select and evaluate features for imbalance price forecasting.

2.6.1 Recursive Feature Elimination (RFE)

This subsection is based on/Hossain and Rahman| [2023]. Recursive Feature Elimination (RFE) is a
feature selection method that identify the most relevant subset of input variables by recursively
training a model and pruning the least important features. The procedure operates as follows:

1. Abase model (e.g., linear regression, decision tree, or random forest) is trained on the full
feature set.

2. Feature importance scores—such as coefficients in a linear model or impurity reduction in a
tree model—are computed.

3. The least important feature(s) are removed.

4. The model is retrained on the reduced feature set, and the process repeats until a desired
number of features remain.

RFE is especially effective when used with tree-based models, which provide intrinsic measures of
feature importance. It can be configured to stop at a fixed number of features or to evaluate model
performance at each iteration using a validation metric such as cross-validated accuracy or mean
squared error.

This approch has the advantage of explicitly optimizing model performance during the selec-
tion process. Which makes it well-suited for forecasting tasks where feature interactions and
nonlinearity are important, as is often the case in energy market data.

12

2.6. FEATURE SELECTION TECHNIQUES Group

2.6.2 LASSO

The Least Absolute Shrinkage and Selection Operator (LASSO), introduced by Tibshirani [1996], is
aregularization technique that performs both coefficient shrinkage and variable selection within a
single modeling framework. It modifies the ordinary least squares (OLS) loss function by adding an
Z1-norm penalty on the model coefficients:

n p 2 p

LP)=) (yz' —Bo—), ﬁjxij) +1) 1Bl

i=1 j=1 j=1

Here, §; denotes the coefficient of the j-th feature, A = 0 is a regularization parameter controlling
the strength of the penalty, and n and p are the number of observations and features, respectively.
The ¢;-penalty has the effect of shrinking many coefficients exactly to zero, particularly when A is
large. This creates a sparse model that retains only a subset of the original features. Unlike ridge
regression, which imposes an ¢»-penalty and shrinks coefficients continuously, LASSO introduces
a piecewise linear constraint that encourages sparsity.
LASSO is particularly useful in settings where the number of predictors is large relative to the
number of observations, or when many features are expected to be irrelevant. As an embedded
method, it integrates variable selection into the model training process, unlike wrapper methods
that treat selection as a separate step.
In this thesis, LASSO is used primarily for linear benchmarking and feature pre-selection. While it
is less effective at capturing non-linear interactions compared to tree-based methods, it provides a
computationally efficient and interpretable baseline for identifying dominant linear relationships
in the data.

2.6.3 Mutual Information

This subsection is based on|Vergara and Estévez|[2014]. Mutual Information (MI) is a measure from
information theory that quantifies the amount of information one random variable contains about
another. In the context of feature selection, it captures the statistical dependence between an
input feature and the target variable, making it a valuable tool for identifying predictive relevance
without assuming a specific model structure.

Formally, the mutual information I(X; Y) between two random variables X and Y is defined as:

px,y))
I(X;Y dxd
(X;Y)= ffn(x »l g(p(Dp) xdy

where p(x, y) is the joint probability density function of X and Y, and p(x) and p(y) are their
marginal densities. Intuitively, MI measures the reduction in uncertainty about Y given knowledge
of X, and it equals zero if and only if X and Y are statistically independent.

Unlike correlation-based methods, which only detect linear relationships, mutual information is
capable of capturing both linear and non-linear dependencies.

In practice, Ml is typically estimated using discretized bins or kernel-based approaches, especially
when applied to continuous variables.

2.6.4 Tree-Based Importance

Tree-based models, such as Random Forest and XGBoost, inherently provide feature importance
measures as part of their structure. These importance scores are derived from the internal decision-
making process of the model and quantify the contribution of each feature to the model’s overall
predictive performance. Each time a feature is used to split a node, the improvement in the model’s
objective function is recorded. The cumulative contribution of each feature across all trees and
splits yields its importance score.

13

Group CHAPTER 2. DEEP LEARNING: LONG SHORT-TERM MEMORY NETWORKS

Tree-based importance measures are efficient to compute and highly scalable, making them a
practical tool for model interpretation and feature selection. However, they are also model-specific
and may be biased toward features with many unique values or higher cardinality as shown in
Zhou and Hooker| [2020]. As such, they are best complemented with model-agnostic methods like
permutation importance or SHAP for a more comprehensive understanding.

2.6.5 Permutation Importance

Permutation importance is a method for evaluating the relevance of input features by measuring
the decrease in model performance when a feature’s values are randomly shuffled. Unlike embed-
ded methods, which rely on internal model parameters, permutation importance evaluates feature
utility based on the actual impact of each feature on the model’s predictions.

The key idea is to break the relationship between a feature and the target by permuting its values
across the dataset while leaving all other features unchanged. The model’s predictive performance
is then re-evaluated on the perturbed dataset. If the model relies heavily on the permuted feature,
performance will decline significantly; conversely, if the feature is unimportant, the impact will be
minimal.

Formally, let Lig be the loss on the validation set. For each feature x;, a new validation set is

constructed by randomly permuting the values of x;, resulting in a perturbed loss ngrm. The
importance of feature j is then quantified as:

_r\
Ij = Lperm - Lorig

This metric reflects the contribution of feature j to the predictive accuracy of the model. A larger
increase in loss corresponds to higher feature importance.

Permutation importance has several advantages: it is applicable to any predictive model regardless
of structure, captures complex interactions, and directly reflects real-world impact on model
performance. However, it can be computationally intensive, especially for large datasets or complex
models, as it requires repeated inference passes.

2.7 Data Transformations and Normalization

Raw time series data from electricity markets often exhibit statistical properties, such as extreme
skewness, and fat-tailed distributions, that can have a large influence on convergence. This
is particular the case for algorithms that are sensitive to input magnitude, feature variance, or
distributional assumptions. To address these issues, a variety of preprocessing techniques can be
employed to transform and normalize the data prior to model training. We start by presenting
some transformations, that are either common or / and is used directly in the application.

2.7.1 MinMax Scaler

The MinMax scaler transforms features by linearly rescaling them to a fixed range, typically [0, 1].
Given a feature x with minimum value xpyj, and maximum value xnax, the scaled value x’ is
computed as:
X = X — Xmin
Xmax — Xmin

This transformation preserves the relative ordering and distances between values while aligning
feature scales for models that are sensitive to magnitude, such as neural networks or distance-
based algorithms. However, it is sensitive to outliers, which can compress the range of more typical
values. Furthermore since it is should only be scaled based on the training set unseen data such as

14

2.8. REGULARIZATION AND DOUBLE DESCENT Group

negative values not present during training can result in the scaled output to fall below 0, causing
inference issues.

2.7.2 Standard Scaler

The Standard scaler standardizes features by removing the mean and scaling them to unit variance.
This transformation assumes the data are approximately normally distributed and is defined as:

where p and o are the mean and standard deviation of the feature, respectively. This present a
simple and interpretable scaling, but it is susceptible to outliers dominating the scaling.

2.7.3 Power Transformer (Yeo-Johnson)

To address skewed or heavy-tailed distributions—common in electricity price data, a non-linear
power transformation can be applied to the target variable to enforce normality conditions. The
Yeo-Johnson transformation is a generalization of the traditional Box-Cox transform that handles
both positive and negative inputs. It stabilizes variance and promotes Gaussian-like behaviour,
which is beneficial for models that assume or perform better with symmetrically distributed
residuals.

This transformation is defined by a piecewise function that adapts to the sign of the input and a
tunable parameter A learned during fitting. It is especially effective in reducing the influence of
extreme values in imbalance prices. As a consequence this transform are applied to the classical
ARIMA type models used in this thesis, ensuring the normality assumption.

2.7.4 Robust Scaler

The Robust scaler is designed for data with significant outliers. It centers the data using the median
and scales it according to the interquartile range (IQR):

, X— median(x)

IQR(x)

This transformation is resilient to extreme values and is well-suited for volatile features, such as
wind generation, imbalance volumes, or price spikes. It improves the robustness of models that
are otherwise sensitive to distributional distortions. This transformation is used for RE XGboost,
and LSTM, due to the large number of outliers.

2.8 Regularization and Double Descent

Modern machine learning models, particularly those with high capacity, such as deep neural
networks and ensemble methods, have the expressive power to fit highly complex functions. While
this flexibility enables them to capture patterns in data, it also increases the risk of overfitting,
especially in the presence of noise or limited data. To address this, regularization techniques are
employed to constrain models ability to fit noise, thereby improving generalization. In addition
to practical strategies, relatively recent observations such as the double descent curve provide a
interesting view on implicit regularization especially for overparameterized models.

15

Group CHAPTER 2. DEEP LEARNING: LONG SHORT-TERM MEMORY NETWORKS

2.8.1 Bias-Variance Trade-Off and Classical U-Curve

Traditionally, the generalization error of a model is understood through the lens of the bias-variance
decomposition. For a given input x, let (x) denote the true underlying function and y(x) the learned
prediction. The expected squared error can be decomposed as:

El(7(x) - y(x))z] = Bias® + Variance + Irreducible Noise

The bias measures the error introduced by approximating a complex function with to low capacity
model, which leads to underfitting. The variance quantifies the sensitivity of the model to fluctua-
tions in the training data, and as a consequence leading to overfitting. The irreducible noise arises
from inherent randomness in the data generating process and cannot be eliminated by any model.
This trade-off is often visualized as a U-shaped curve, where model complexity is plotted against
generalization error. The classical view posits that increasing model complexity initially reduces
bias and improves fit, but beyond a certain point, the variance dominates, and test error increases.
Regularization techniques aim to control this trade-off by penalizing excessive flexibility in the
model. In the next subsection some techniques is presented.

2.8.2 Regularization Techniques

The techniques used for regularization modify the learning objective by penalizing certain model
behaviours, such as large weights, excessive depth, or neuron dependency encouraging more
generalizable solutions.

L1 and L2 Penalties. Regularization is commonly applied through norm-based penalties on the
parameter vector 6. The two most widely used formulations are:

¢ L1 Regularization (LASSO): Adds a penalty proportional to the absolute value of the coeffi-
cients:

L(0) = Ldata+AZ|0]’|
J

L1 regularization promotes sparsity by shrinking many coefficients to exactly zero, making it
especially useful for feature selection in high-dimensional settings.

¢ L2 Regularization (Ridge): Adds a penalty proportional to the squared magnitude of the
coefficients:

L£0) = Ldata"'AZH?
J

L2 regularization distributes weight shrinkage uniformly across all features, discouraging
large parameter values and improving the stability of gradient-based optimization.

This form of regulation, reduce extreme weights and thereby reduces its ability learn noise in the
training data. In the case for neuron dependency dropout is commonly used.

Dropout. In deep learning architectures, particularly in LSTM and feedforward neural networks,
dropout is a stochastic regularization technique that randomly deactivates a fraction of hidden
units during each training iteration. This prevents the network from relying too heavily on any
particular activation pathway and forces the model to develop more robust internal representa-
tions. This technique has been shown to significantly improve generalization, particularly in deep
recurrent architectures.

16

2.8. REGULARIZATION AND DOUBLE DESCENT Group

2.8.3 The Double Descent Phenomenon

This section is based on|Schaeffer et al.| [2023]. During the early stages of experimentation in this
project, it was observed that the best-performing models consistently possessed a number of
parameters far exceeding the number of training observations. Surprisingly, these overparameter-
ized models performed better than the alternatives, even in the absence of explicit regularization
techniques such as weight decay or dropout. This unexpected result motivated the inclusion of
the double descent phenomenon in this thesis, as it offers interesting conclusions into the role of
regularization and its interaction with model complexity.

Relatively recent results in statistical learning theory have shown that the classical U-shaped bias-
variance trade-off does not fully explain the generalization behaviour of high-capacity models.
Specifically, the double descent phenomenon contradicts the traditional assumption that test error
must increase once a model becomes expressive enough to perfectly fit the training data, a point
known as the interpolation threshold. As shown in Figure test error initially decreases with
increasing model complexity, consistent with the classical understanding that higher capacity
reduces bias. However, at the interpolation threshold, test error often spikes due to increased
variance and sensitivity to noise.

L5 T
B Training Error (Eain) i ‘.|
® Test Error (Eest) ;‘ : “.
I
II : 1
1.0 ." : "‘
1> *eeeq, A
Traa, Tt e pod
"li_‘ *ececes’ ! b8 Interpolation
0.5F =, ! Y Threshold
: N,
1
1
1
0.0 L L

|
107!

Figure 2.4: The double descent risk curve, illustrating traditional and modern regimes of model
complexity, as shown in|Schaeffer et al. [2023).

Counter-intuitively, further increasing model capacity beyond this point can lead to a second
decline in test error. This surprising improvement in generalization performance is commonly
attributed to implicit regularization, which arises from the optimization dynamics of algorithms
such as stochastic gradient descent and from architectural or initialization-related inductive biases.
This observation influenced the modelling approach by explicit modelling of model complexity
measured in parameters, and changes to hyperparameters such as maximum allowed epochs and
patience in early stopping.

17

Hyperparameter Tuning

Hyperparameter tuning is particularly important when models are high-capacity, sensitive to
initialization, or expensive to train. Unlike model parameters, which are learned from data during
optimization, hyperparameters must be selected prior to training and govern aspects such as
learning rate, regularization strength, model depth, and sequence length. Selecting appropriate
hyperparameters can significantly impact a model’s convergence behaviour and generalization
performance. Poorly tuned hyperparameters may lead to underfitting, overfitting, or unstable
training. Given the large and often non-convex nature of the hyperparameter search space, sys-
tematic search strategies are essential. This chapter presents two key tuning frameworks employed
in this thesis: Hyperband, which is based on adaptive resource allocation via successive halving,
and Bayesian Optimization, which uses a probabilistic surrogate model to guide exploration of the
hyperparameter space.

3.1 Hyperband

Hyperband is a hyperparameter optimization strategy that allocates computational resources
across a large number of candidate configurations. It extends the principle of successive halving,
where weak configurations are rapidly discarded, allowing greater resources to be focused on
promising candidates. This approach addresses the inefficiencies of grid and random search,
particularly in high-dimensional or expensive-to-evaluate settings. Rather than treating all con-
figurations equally, Hyperband dynamically adjusts the allocation of resources (e.g., number of
training epochs or data samples) across configurations, prioritizing those that demonstrate early
promise. This is done by using the concept of multiple brackets, each representing a trade-off
between breadth (number of configurations) and depth (budget per configuration). Given a total
resource budget B, a minimum allocation per configuration r, and a halving factor n > 1, the
algorithm iteratively explores configurations using the following procedure:

efone 2]

For each bracket s, Hyperband determines:
B S
n= {_ L

, Fi=Tr- _i, i=0,1,...,s
r s+1-‘ ! 1

Where:

¢ n: number of configurations sampled in bracket s,
¢ r;: resource budget allocated to surviving configurations at stage i,
¢ 71: halving rate, typically chosen as n = 3.

At each iteration, only the top 1/n fraction of configurations are retained for the next round.
This recursive filtering allows the algorithm to focus computational effort on the most promising
candidates without requiring exhaustive evaluation of all possibilities. This results in Hyperband
often being more sample-efficient than random or grid search, especially in high-dimensional
hyperparameter spaces. Furthermore the successive halving structure makes it ideal to parallelize
the computation decreasing the time significantly. As a consequence strong configurations that
perform poorly in early stages may be prematurely discarded, particularly when early training
dynamics are noisy or unstable.

18

3.2. BAYESIAN OPTIMIZATION Group

3.2 Bayesian Optimization

This section is based on|Frazier|[2018]. Bayesian Optimization (BO) is a sample-efficient method-
ology for the global optimization of expensive and potentially noisy black-box functions. It is
often used in scenarios where evaluating the objective function is computationally intensive, such
as tuning hyperparameters of machine learning models, and where gradient information is un-
available, rendering derivative-based optimization techniques unsuitable. BO assumes that the
objective function f: A — R, defined over a compact domain A R4, is expensive to evaluate and
lacks known analytical structure. Instead of evaluating f exhaustively, BO maintains a surrogate
probabilistic model of f, most commonly a Gaussian Process (GP), to capture both predictions
and uncertainty. The GP prior over f is specified as:

F) ~GP(m(A), kA, 1Y)

where m(A) is the prior mean function, often set to zero, k(A, 1) is the covariance kernel, such as
the squared exponential or Matérn kernel, which enables assumptions about smoothness and
similarity. Then given a set of past evaluations D; = {(1;, f(1 i))};:l' the GP posterior at a new point
A yields:

FA Dy ~Nu L), 0%(A)

where u;(1) and o(A1) are the posterior mean and standard deviation. This posterior is then
used to guide the selection of future query points. This is done by using an acquisition function
a (A | Dy) that quantifies the expected utility of evaluating a candidate configuration A based on the
current GP posterior. It allows BO to balance exploration (sampling where uncertainty is high) with
exploitation (sampling near known optima). One of the most widely used acquisition functions
is Expected Improvement (EI). It is defined by the expected value of the improvement over the
current best observation:

EI(A) = E [max(0, foest — f(1)]

Assuming the GP posterior is N(u,(1), 0'% (1)) and fpest = min;<; f(A;), the EI can be computed in
closed form as:

AL AL)

+0:(A) (

at(x)) W\

where A(A) = fpest — H:(A), and with the standard normal PDF ¢(-) and @(-) CDE This formulation
reveals the trade-off, where configurations with low predicted loss (high A) or high uncertainty

(high o) yield high expected improvement. In summary with the posterior and the acquisition
function defined the process Bayesian Optimization proceeds iteratively by the following algorithm:

EI(A) = (A(/l))fb(

Algoritme 3.1 Pseudo-code for Bayesian optimization shown in|Frazier| [2018]

Place a Gaussian process prior on f
Observe f at ng points according to an initial space-filling experimental design. Set n = ny.
while n < N do

Update the posterior probability distribution on f using all available data

Let x;, be a maximizer of the acquisition function over x, computed using the current posterior
distribution

Observe y;, = f(x,)

Increment n
Return: either the point evaluated with the largest f(x), or the point with the largest posterior
mean

19

Group CHAPTER 3. HYPERPARAMETER TUNING

Several alternative acquisition functions have been proposed to address more complex Bayesian
optimization scenarios. One notable example is the Knowledge Gradient (KG), which incorporates
an estimates the expected improvement in the surrogate model’s maximum after acquiring a
new observation. KG is particularly well-suited for settings involving noisy evaluations. Another
approach is Entropy Search (ES), which aims to reduce the uncertainty about the location of the
global optimum by minimizing the entropy of its distribution. Additionally, multi-step acquisition
functions have been introduced to account for the long-term effect of future evaluations, although
they are typically computationally intensive. The choice of acquisition function should be based
presence of noise, evaluation constraints, or opportunities for parallel function evaluations.

20

Application

NBM roadmap

15 min ISP,

Completed 15 min oC 206"

Automated

mPRR EAM 2026 < |

2021-2024 2025 g

p—

aFRRCMin DK1 | Flow-based DA™

Trilateral
mFRR CM

National mFRR CM 124, June
Sweden National aFRR
EAM Finland

Nordic aFRR 4, Februar mFRR CM
capacity market National mFRR CM 2024, Octobe Finland
Europe

N ean .
orway aFRREAM "Joint Nordic accession to PICASSO

(PICASSO) “*Projects related to NBM
Denmark

Figure 4.1: Nordic Balancing Model (NBM), roadmap of previous and upcoming market changes.

This section outlines the structured pipeline used to collect, clean, engineer, and transform the
dataset used for training and evaluation for a forecast of the imbalance price in the DK1 BZ. The
problems encountered and what decisions was made to solve them is also discussed. We start
by looking at the large number of policy changes that happened over this period, that changed
the underlying process significantly, In[4.1]the systematic policy changes to the balancing market
for the period from November 2021 to march 2025. Notably the 15 minutes ISB, mFRR CM, and
mFRR EAM, is from a economic argument among the more influential policy changes, as these
directly influence liquidity and volatility in the market. The changes is not exclusive to these,
large non policy changes such as the war in Ukraine, renewable energy implementation and the
intentional destruction of cables is not included among other things that also characterized this
period. The decision about how far back to use data and how to split the test, train, and validation
set, was based on several factors. Firstly the amount of important features that could be reasonably
included, depends on the data size, and it was therefore suspected that the LSTM need several
seasons (daily, weekly, and yearly) of data to correctly learn how to manage what information
to store and discount in the state, this is the same reason for a 70-15-15 split. The imbalance
price was before November 2021, not a single price but two prices depending on the direction of
the imbalance, this sets a lower boundary date for the data to use, likewise the imbalance price
design, was changed to also include aFRR in March 26, which for now sets and upper bound. Until
January the 8th 2022 there where a high frequency of NA values in the relevant features, and this
was therefore chosen as the start point. This is all summarized in[4.2] that show the imbalance
price, the train test, validation split, and some of the significant structural changes.

As can be seen the period is highly non stationary a lot of shifts in the mean, variance, and just
in general the distribution as can be seen on the frequency of the spikes, this is especially clear
around January 2024. For this reasons some statistics on the distribution was calculated and can
be seen in The S&P 500 was included as stock returns is generally known for outliers, skew, and
kurtosis, and would serve as a comparison, it should be noted that it is based on the close price but

21

Group CHAPTER 4. APPLICATION

Imbalance Price with Train/Val/Test Splits, NBM Events & Ukraine War Marker

Single Price
i
ity market

30000

157min 15P/60 min

E
H
I}
=
ts]
o

National mFRR CM Sweden
‘Automated Nordic mFRR EAM

Nordic aFRR capat
]

National

20000

aFRR EAM (PICASSO) Denmark
al

10000

Imbalance Price (DKK)

o
E European

—10000 pretrain

—— test

—— train
val

2022-01 2022-05 2022-09 2023-01 2023-05 2023-09 2024-01 2024-05 2024-09 2025-01 2025-05
Time

Figure 4.2: Imbalance price, with test, train, validation split, and marked known policy changes

taken over the same period as the others. In this context the a data point is considered an outlier if
it is less than the first quartile (Q1) minus 1.5 times the IQR, or greater than the third quartile (Q3)
plus 1.5 times the IQR.

Split Mean StdDev Skew Kurtosis IQR Outliers N Outlier %
All 925.6 10176 4.61 108.53 814.7 2360 29099 8.11
Pretrain 1169.3 7352 1.22 1.87 837.6 70 1464 4.78
Train 1066.7 1137.3 4.56 103.58 928.6 1575 18905 8.33
Val 474.5 561.1 2.38 2443 481.0 228 4364 5.22
Test 683.6 661.8 3.75 27.77 6476 156 4366 3.57
S&P 500 4678.1 697.3 0.59 -0.85 1094.3 0 838 0.00

Table 4.1: Descriptive Statistics of Imbalance Price by Time Split and S&P 500

The descriptive statistics in[d.1]offer some insight to the imbalance prices across different segments
of the dataset. Overall, the full dataset exhibits a mean imbalance price of 925 DKK, with a standard
deviation exceeding 1000 DKK and an extreme kurtosis of 108.5. The high skewness (4.61) further
highlights the presence of a long right tail with large upward price jumps. In the pretrain period,
covering the earliest phase of the data from the implementation of the Single Price model, the
mean price rises to 1169 DKK, yet the standard deviation and higher-order moments are markedly
lower. Skewness and kurtosis reduce to 1.22 and 1.87 respectively, suggesting a relatively stable
period with fewer extreme events. This contrasts sharply with the training period, which exhibits
the most severe market dynamics. With a standard deviation of 1137 DKK, skewness of 4.56, and
kurtosis of 103.6, the training window reflects strong volatility and tail risk. Over 8% of observations
in this period are considered outliers under the IQR rule.

The validation period reflects a transition to a more stable regime. The mean price declines sharply
to 474 DKK, and both skewness and kurtosis fall significantly to 2.38 and 24.4, respectively. Finally,
the test period continues this trend with a moderately higher mean of 684 DKK, but maintains
relatively low variance and the lowest outlier ratio across all splits at just 3.57%. Despite this
improvement, skewness (3.75) and kurtosis (27.77) remain well above Gaussian levels and normal
stock returns. When benchmarked against S&P 500—typically the imbalance price demonstrates
dramatically more extreme statistical properties. This comparison make the large requirements for
the modelling approaches clear.

22

4.1. DATA PROCESSING, FEATURE SELECTION, AND SCALING Group

4.1 Data processing, feature selection, and scaling

Target and features was collected from Energi Data Service (EDS) using HTTP requests to public
APIs. The first dataset called Regulating Balance Power data, contains the hourly imbalance
quantities and prices. The second dataset is spot prices, thirdly a dataset with hard coded calender
events such as holidays, special events, weekends, and a indicator that any of these was present to
increase the frequency, so that events, like Christmas, that only happed 3 times could in some way
be modelled. Lastly the dataset Forecast Wind and Solar Power which include the forecasted wind
and solar production at different time points before the delivery. The time points include DA, ID, 5
hour, 1 hour, and currently marking the realized production. Some of this data included missing
data, and some even included missing data for up to two weeks. The missing data in the target,
could by inspection of the mFRR price be concluded to be and error in the distinction between 0
and NA on EDSs part. The missing data in the mFRR prices and volumes is a product of there not
being any activation nor bids, this was fixed by setting the price equal to the spot, by argument
from opportunity and marginal cost. The volume activated in that event was set to 0, as EDS
normally do but was inconsistent. For the weather NA, a decision was made, that gaps of length
less than 2 was interpolated by taking the last value. There where some gaps in some of the weather
data columns that was around 2 weeks long, to fix this, the data from the other columns was used,
in its place. After the data cleaning no further NA values where present and i could proceed with
the data scaling. The data scaling was initially done my a min max scaler, this resulted in strange
and bad results. Several factors influenced this, firstly since the train data was scaled between 0
and 1 the outliers in the training set dominated the scaling, resulting in bad convergence, secondly
there was the risk that the minimum of the train data, was not the minimum over the whole data
resulting in the model being unable to predict scaled negative prices, as these was never observed
in the training. This was fixed by trying different scalers, firstly the standard scaler, but here again
the outliers, dominated the scaling resulting in bad convergence, secondly was the robust scaler
used that scale based on the IQR. This resulted in increased performance better convergence, and
importantly better generalization.

4.1.1 Feature selection and engineering

Several engineered features was included in the selection, they can be distinguished in two cate-
gories, first where the ones that helps the model convergence, this was features with longer look
back period than the LSTM, example of this is standard deviation over the last week, a 168 price
lag to help it capture seasonality ect. The second kind of engineered features was done from a
economic argument for example by the nature of the imbalance price, the difference between
the actual weather and what was predicted should have higher impact than the actual weather.
A regime id was also created based on the policy changes, there where 3 options considered on
how to implement it firstly a traditional implementation using dummy variables, this increase the
dimension significantly and was therefore discarded, secondly which was what was implemented
was a single column with the consequence that the regimes would be difficult to capture correctly.
Lastly embedding using a matrix to compare how alike the regimes is was considered, but was
deemed out of the scope for this project. All features importance was tested, fairly fast it was
observed that the difference in weather forecast showed better predictive power than raw weather
data, and the later was therefore removed both with regards to dimensionality but also colinearity.
The results for a feature important run are shown in 4.2

The weights used to calculate the overall score was 0.1 for RFE, MI, and LASSO, it was 0.2 for
tree-based, and permutation, and lastly 0.3 for SHAP. Firstly this was based on initial intuition, but
later it was considered that a more appropriate weight distribution should be implemented. This is
due to several reasons, firstly is that SHAP was implemented using RF so in principle SHAP should
give better results than just using RE which makes the later redundant. With respect to LASSO

23

Group CHAPTER 4. APPLICATION

Feature RFE MI Lasso RF PM SHAP Score
ImbalancePricelagl 68 8 13 14 8 11 6 9.1
solarforecastdelta 16 23 25 5 5 8 10.8
mFRRDownActBallagl 11 21 22 6 8 9 10.9
rollingstd168h 10 4 20 14 12 10 11.6
hour 1 27 7 16 15 7 11.8
ImbalancePricelag48 2 10 15 13 13 13 11.8
rollingstdprevday 13 12 17 10 10 12 11.8
ImbalanceMWhlag1 5 16 8 12 17 11 12.0
rollingstd48h 17 8 23 9 7 14 12.2
mFRRUpActBallagl 15 25 24 15 9 4 124
ImbalancePricelag72 3 14 12 11 14 18 13.3
timesincespike 1 22 13 17 16 17 15.3
imbalancestdprevday 1 15 6 20 23 23 17.7
ImbalanceMWhlag168 9 19 16 23 20 16 17.8
meanimbalancelastweek 1 7 11 22 25 22 17.9
ImbalanceMWhlag48 12 18 19 18 18 20 18.1
ImbalanceMWhlag72 7 17 16 21 19 21 18.3
imbalancestd168h 1 9 6 25 21 25 18.3
dayofweek 14 20 9 19 24 19 18.6
imbalancestd48h 4 11 18 24 22 24 19.7
regimeid 6 6 10 26 26 26 20.4
mFRRDownActSpeclagl 18 26 26 27 27 27 25.9
mFRRUpActSpeclagl 19 28 21 28 28 28 26.4

Table 4.2: Example of Feature Importance Rankings by Method and Combined Total Rank.

and RFE they could potentially yield similar results, and is not guaranteed to contribute positively
to the result. The results of the feature importance was used to select the 12 features used in the
model can be seen in[4.3} along with some descriptive statistics, where it generally becomes clear
that correct feature scaling is of large importance as the distribution and size for these variables
are vastly different, especially for the weather features.

Feature Mean StdDev Skew Kurtosis Min Max IQR Outlier %
BalancingPriceDownlagl 828.61 812.17 1.32 19.95 -16392 6982 706 7.33
BalancingPriceUplagl 1036.62 1006.72 5.02 105.20 -968 35000 767 8.96
SpotPrice 941.27 83220 2.05 5.63 -3277 6982 682 8.49
mFRRUpActBallagl 15.71 51.93 5.40 43.82 0 1072 0 19.56
Windforecastdelta -85.84 303.36 -0.72 1.57 -1645 1314 335 4.26
Hour 11.50 6.92 0.00 -1.20 0 23 12 0.00
Solarforecastdelta -6.23 82.89 -1.27 21.11 -1849 701 2 41.85
ImbalancePricelagl68 925.92 1017.96 4.60 108.38 -16392 35000 817 8.10
Rollingstd168h 651.83 411.32 2.84 12.03 120 3312 313 8.58
Rollingstdprevday 484.80 471.68 7.09 93.19 14 8341 390 4.21
mFRRDownActBallagl 22.99 63.90 5.20 42.61 0 1258 7 21.70
ImbalanceMWhlagl -58.21 122.09 -2.48 28.82 -1857 1248 114 5.53

Table 4.3: Descriptive Statistics for Top Features in the Full Dataset

24

4.2. HYPERPARAMETER SEARCH Group

4.2 Hyperparameter search

In the hyperparameter search both the Hyperband and the Bayesian approach is implemented.
This is done by first implementing Hyperband to test a large range of parameters space, and then
using RF in combination with sharp to determine the most influential parameters that is then fine
tuned with the much smaller search space that favours the Bayesian approach. The decision for
this approach was based on several factors primarily involving the computational setup, which is
discussed in detail in appendix[A]and the exploration of the different approaches. The first part of
the search results can be seen in[4.4} which was performed using Hyperband, it should be noted

that due to nvidia GPU utilization some parameters such as batch size and recurrent dropout rate
was fixed.

Hyperparameter Range Best Value SHAP (%) Corr
Irrmsprop [1.061e-05, 0.0009807] 0.0008713 39.56 -0.384
Iradam [1.134e-05, 0.0009897] 0.0006551 19.94 -0.169
Optimizer [adam, rmsprop, sgd] rmsprop 7.85 -0.109
Unitslstm2 (48, 192] 128 5.86 -0.112
Irsgd [1.016e-05, 0.0009694] 4.91e-05 5.65 0.034
Numlstmlayers [1, 2] 1 4.81 0.002
Unitslstm1 (48, 192] 64 3.13 0.118
Dropoutrate (0.3, 0.5] 0.3 2.17 0.042

Table 4.4: Hyperparameter Summary with Normalized absolute SHAP Importance (%)

It was tested if any of the optimizers was structurally worse, which in the case of categorical
variables could have made it non productive to optimize further and would only increase the
search space. The SHAP value shows that the primary hyperparameters in this setup was the
learning rates and the optimizer, which was used is then selected as the hyperparameters in the
Bayesian setup, the results can be seen in[4.5]

Results Hyperband Bayesian Opt.
optimizer rmsprop adam

Ir 0.0008713 0.0004770
Number of Trials 754 60

Max Epochs 180 100
Validation MAE 0.29470 0.27299

Table 4.5: Comparison of Hyperband vs Bayesian Optimization Tuning Results

It should be noted here that when it was observed that occasionally it hit the maximum limit of
the number of epochs in the Hyperband approach. Based on this the maximum epochs for the
Hyperband was increased, as training time was acceptable. The maximum limit on epochs for
the Bayesian approach, was kept. It could be argued that there should be same max epoch limit
for both to compare across, but due worse GPU utilization, and slower training speed for each
trial in the BO approach this was decided against. Again see[A|for a detailed discussion on the
computational setup, training time, and convergence. Despite less trials and less max epochs the
Bayesian approach to fine tune a subset of hyperparameters seemed to reduce the validation MAE.
It should also be noted that using such a large number of trials could potential introduce data
leakage as such a number of trials increase the probability that the configuration just randomly fits
the validation set, if this is the case for the Hyperband results the Bayesian approach "improving"

25

Group CHAPTER 4. APPLICATION

on a almost already selected configuration, would only make this worse. To reduce the probability
of this happening, i tried the obtained configuration with a different train and validation split, but
with similar performance with different splits, no further investigations where made.

During the initial implementation of the LSTM model, the model was not configured to be stateful,
meaning it did not retain its internal state across batches. While this made certain aspects of the
training process simpler, such as allowing randomized batch ordering and handling breaks in the
data caused by missing values, it also introduced a significant limitation. Specifically, resetting
the LSTMs state at the end of each batch prevented the model from learning dependencies that
spanned across batches.

Attempting to mitigate this by increasing the batch size led to further complications. Larger
batches altered the convergence behaviour and significantly increased memory consumption.
As aresult, the stateless LSTM performed unreasonable poorly. To address this, a stateful LSTM
was implemented, in which the internal state is preserved across batches within an epoch but
reset between epochs. This change enabled the model to capture longer-term dependencies more
effectively, resulting in better performance.

4.3 Forecast procedure and Comparison Models

To benchmark the LSTM model, it was tested against classical and tree-based methods. All models
was trained under the same test train and validation split. Forecasts was compared using a one
hour ahead rolling window with periodic retraining on the whole dataset every 168 hours.

The classical models used a generalized version of the Box-Cox, namely the Yeo-Johnson trans-
formation to handle negative data and to make the data more normal for the OLS assumptions.
Rest of the models used robust scaler to reduce the influence of outliers. Two families of time
series models are applied firstly some naive Univariate autoregressive models (AR(1), AR(24), and
AR(168)) the second family of models was ARIMA (ARIMA(3,0,5), and ARIMA(2,0,1)) selected by
AIC and BIC using the python package AUTOARIMA.

The tree-based methods used in this study were Random Forest (RF) and XGBoost, both im-
plemented in Python. Due to time constraints, no extensive hyperparameter optimization was
performed; however, a set of reasonable defaults was selected for both models, after some attempts.
The Random Forest model was configured with 300 estimators and a maximum depth of 8. The
XGBoost model also used 300 estimators, with a maximum depth of 6, a learning rate of 0.05, and
both row-wise and column-wise subsampling set to 0.8. These settings were found to provide
stable performance without unreasonable overfitting (monitored by training vs validation loss),
while maintaining manageable computational cost.

4.3.1 Co-integration

After observing no consistent ability to capture directional accuracy in any models except the
ensemble methods (Random Forest and XGBoost), classical models were tested with and without
differencing. However, differencing did not improve their directional explanatory power. It was
suspected that this limitation could be due to strong non-stationarity, due to both deterministic,
and stochastic seasonality as can clearly be seen in[B.1} In an attempt to test for simple unit roots
there was at first performed two traditional tests namely the KPSS and ADE but with both rejecting
the Null leaving it inconclusive. The same "non" conclusion also characterize the literature
as explained in Wang and Tomelk] [2004]. However to check the possibility for seasonal unit
root an attempt was based on the recommendation in/Ronderos|[2019]. The method is to use a
periodogram, to first identify the type of seasonality. The result can be seen as the middle plot
in[4.3] Based on the comments in[Ronderos [2019] both the Spot price and the imbalance price
exhibits what looks like stochastic seasonality, to test if this is the source of a non-stationarity

26

4.3. FORECAST PROCEDURE AND COMPARISON MODELS Group

SpotPriceDKK ImbalancePriceDKK Cointegration Residuals

000
o0

1000

0000
0

50000

4000
0

i
0000

00
L

200
20000
L

10000

/”N\Amj\m/_wm

«««««««« frequency
= 0.551 bandwidth = 0.656

Figure 4.3: Periodogram over 200 hours for the DA Spot Price, the Imbalance Price, and the
co-integrated residuals.

unit root, the HEGY test was recommended but deemed out of the scope for this project. The
conclusion for the unit root will therefore be based on economic argument around the persistent
effects that characterize unit roots. The simplest of such arguments can be done from a policy
perspective, where the Danish TSO (Energinet) implements regular adjustments (approximately at
a frequency of once a week) to the policy of the balancing market, such as volumes bought in the
capacity market, deadband policy (how much imbalance is tolerated) connected bidding areas
changes to policy ect. that should all in principle result in non mean reverting shocks. Based on this
it is seemingly reasonable to assume that a form of unit root is present, and will therefore for the
rest of this thesis be assumed so. To fix this potential issue co-integration between relevant series
was considered, and the spot price was deemed a potential candidate. From an Efficient Market
Hypothesis (EMH) standpoint, changes in the imbalance price relative to the spot price should
primarily be based on new information arriving in the intermediate period and the associated risk
premium. In other words, the difference between the imbalance price and the spot price should,
by economic reasoning, co-integrate (assuming unit root is present). This hypothesis was tested
using the Engle-Granger co-integration test, and the results are shown in Table[4.6]

Test / Metric Value Remarks

Engle-Granger Co-integration Test

Test Statistic -9.9347 Highly significant
P-value 3.63 x 10716 Reject null hypothesis
Critical Value (1%) -3.96

Critical Value (5%) -3.41

Critical Value (10%) -3.12

OLS Regression: ImbalancePriceDKK on SpotPriceDKK

Intercept (a) 18.3969 Statistically significant
Slope () 0.9660 Strong positive relationship
R-squared 0.616 Moderate explanatory power
Observations 27,635 Full dataset

Testof =1 T=-7.3972,P <0.0001 Reject null (significant deviation)

Table 4.6: Cointegration Analysis Between SpotPriceDKK and ImbalancePriceDKK

27

Group CHAPTER 4. APPLICATION

The Engle-Granger test strongly rejects the null hypothesis of no co-integration, with a test statistic
of -9.93 and a highly significant p-value. This confirms that the day-ahead spot price and the
imbalance price are cointegrated, and that the spread between them is mean-reverting. From
an economic perspective, this is consistent with EMH, as the spot price reflects the market’s
risk-adjusted expectations based on available information, while the imbalance price adjusts for
deviations near real-time. Likewise this is also visually confirmed in[B.IJand by the[4.3] Especially
the periodogram shows significant change in process dynamics. Interestingly the estimated co-
integration relationship shows that the imbalance price responds to changes in the spot price with
a slope coefficient (f) of 0.9660, implying a nearly one-to-one long-run adjustment. However, a
formal hypothesis test reveals that this coefficient is statistically different from unity (T = -7.3972,
p < 0.0001), suggesting a persistent spread, likely representing a structural risk premium. In
summary, the co-integration analysis validates the use of the spot price as a stable long-run anchor
for modelling the imbalance price, which is utilized across all implemented models.

4.4 Forecasting Results

Model Setting ‘ MAE RMSE SMAPE R2 MBE DA Out-MAE Non-MAE Out-MBE Non-MBE
LSTM Without | 229.44 498.23 41.10 0.437 -80.64 0.521 1986.61 178.22 -1955.35 -26.00
With 203.07 489.20 37.06 0.456 -39.68 0.637 1720.93 158.83 -1639.97 6.96
RF Without | 221.18 478.52 40.39 0.481 -11.37 0.585 1687.38 177.86 -1601.58 35.63
With 207.71 480.81 37.68 0.476 -8.10 0.615 1555.57 167.88 -1418.35 33.57
XGBoost Without | 222.86 472.92 40.27 0.493 -5.14 0.568 1665.06 180.24 -1581.21 41.43
With 21791 477.49 39.21 0.483 0.37 0.592 1647.89 175.65 -1510.69 45.02
ARIMA(3,0,5) Without | 286.23 501.87 50.21 0.429 37.22 0.499 1711.77 244.11 -1590.44 85.32
With 217.01 459.87 41.87 0.520 -43.86 0.607 1530.37 178.20 -1379.11 -4.40
ARIMA(2,0,1) Without | 286.15 519.32 51.08 0.388 -25.83 0.497 1779.06 242.03 -1656.94 22.37
With 212.41 461.22 39.98 0.517 -31.24 0.620 1516.47 173.88 -1360.96 8.06
AR(168) Without | 266.15 487.39 47.92 0.461 -2.72 0.509 1723.03 223.10 -1620.76 45.10
With 219.95 461.51 42.20 0.517 -32.15 0.581 1530.51 181.22 -1368.09 7.33
AR(24) Without | 269.07 493.02 47.67 0.449 5.11 0.512 1718.05 226.25 -1594.49 52.38
With 214.88 460.84 40.85 0.518 -36.61 0.611 1535.21 175.87 -1373.61 2.90
AR(1) Without | 278.48 511.03 49.58 0.408 43.40 0.507 1672.46 237.29 -1428.50 86.89
With 215.28 462.23 41.14 0.515 -41.66 0.628 1536.48 176.24 -1377.59 -2.18

Table 4.7: Model Performance With and Without Co-integration (All Metrics)

The table in compares the results of the different set of models implemented, with and without
a co-integration based transformation of the target variable where spot prices are subtracted. One
of the most notable outcomes from the performance table is the consistent improvement observed
in all models after co-integration is applied, particularly in terms of MAE, SMAPE, and Directional
Accuracy. The only exception being the tree models RMSE and R?, that surprisingly got worse. The
likely cause of the relatively less improvement for the tree models can be found in the nature of
the models as the other models uses the time series directly, the tree models only do it implicit, by
lagged features. It should be noted that different levels of differencing was tested on the AR based
models without improved performance, and the AUTOARIMA suggested no differencing with the
order (2,0,1), after co-integration the AUTOARIMA suggested (3,0,5).

In the non-cointegrated setting, the ARIMA models surprisingly performed worse than the simpler
AR models across most metrics. This result may reflect in a sense "unnecessary" added complexity
that is still unable to capture the true underlying process, and therefore over fitted short-term fluc-
tuations, caused by other reasons. In contrast, the AR models, particularly AR(1) and AR(24), were
better suited to capturing short-term autocorrelation patterns without introducing unnecessary
parameters, due to their naive approach.

After introducing co-integration, the performance landscape shifted. ARIMA models improved
significantly, as did the AR models, but the relative gains were not uniform. Notably, AR(168), which
incorporates a week of hourly lags, underperformed compared to AR(1) and AR(24). This suggests

28

4.4. FORECASTING RESULTS Group

that once the long-run relationship between spot and imbalance prices is accounted for through
co-integration, deeper lags may introduce more redundancy than value. The poor performance of
AR(168) can likely be attributed to model overcomplexity, high multicollinearity among lags, and a
diluted signal-to-noise ratio, again fitting to noise caused by other things.

In this context, the AR(1) model still performed surprisingly well after co-integration was intro-
duced. This outcome may be tied to the short-memory behaviour of the system, or in other words,
“stickiness” where market reactions and balancing decisions unfold over very short time periods.
Co-integration likely acts as a filter, removing much of the noise embedded in the spot price and
isolating the structural deviations. This filtered signal appears particularly advantageous for simple
models like AR(1), which are highly sensitive to dominant directional trends and benefit more
when irrelevant variance is reduced. Compared to the tree models, co-integration seems to benefit
models that are more sensitive to raw noise, non stationarity or overfitting, like LSTM and the
classical models.

Regarding LSTM, although the spot price was already included as a feature in the non-cointegrated
version, the relationship between the spot price and imbalance price is complicated, involving
a direct anchoring effect on the price, but also how it changes the marginal price of additional
production close to delivery. The co-integration transformation helped the model capture the
anchoring role of the spot price, and by keeping it as a feature isolating the effect on the marginal
price change. In[4.4]the predicted vs actual for the LSTM with co-integration can be seen, showing
reasonable ability to predict spikes and changing pattens.

ImbalancePrice Forecast (Reconstructed from WDIF Prediction)

—— Actual ImbalancePrice
Predicted ImbalancePrice (via WDIF)

8000 1

6000 7

& 4000
[a]

2000 1

Figure 4.4: Predicted against actual, in the co-integrated LSTM

XGBoost already had low MBE in the non-co-integrated setting, indicating low bias, but it struggled
with distinguishing between outlier and non-outlier MBE. This may relate to learning past structure
"too well," which is less helpful in a market prone to structural and policy-driven shifts. Which
does not seems to be as detrimental to models like RF or AR. This could be the general case and
the reason surprisingly strong performance of simpler models. As discussed previously indicators
for these changes could be a solution but with sufficiently many shifts the signal to noise ratio
was deemed unfavourable. Embedding would be a strong solution especially considering the
ability to model similarity across regimes which will be highly applicable in known future changes,
nevertheless it was deemed out of the scope for this project.

29

E Conclusion

The Danish balancing market is becoming more volatile and less predictable due to structural
changes, increased renewable penetration, and regulatory reform. This thesis set out to test
whether forecasting imbalance prices under these new market conditions was even feasible and to
what extent modern machine learning methods like LSTM could offer an advantage. The results
of this process can be seen in the table The highlight several patterns worth mentioning,
especially in terms of how different models respond to the co-integration transformation.

One of the most consistent findings is that all models improve when trained on co-integration (as-
suming unit root) between the spot price and the imbalance price. This is most clearly seen in MAE,
SMAPE, and DA, and to a lesser extent in MBE. However, the improvement is not equally strong
across all models. The tree-based models (RF and XGBoost) surprisingly show a slightly worse
RMSE and R?. A likely explanation is that these models already model non-linear interactions well,
and introducing a pre-transformed target (spot-subtracted imbalance price) doesn’t necessarily
help and potentially even adds noise or removes signal they already picked up on through lagged
spot features.

In the non-cointegrated setting, ARIMA models actually perform worse than their AR counterparts.
This is surprising, but probably points to unnecessary complexity. ARIMA tries to model short-term
dynamics in the residual noise, but without differencing or strong trend structure, it doesn’t help
and might even overfit. The AR models, especially AR(1) and AR(24), do relatively well by just
capturing short-term autocorrelation. Their simplicity actually works in their favour here.

Once the co-integration transformation is applied, things shift. ARIMA models improve a lot—as
expected when the underlying series becomes more stable and predictable. But AR(168), which
should in theory benefit from a full weekly seasonality, now performs worse than AR(1) and AR(24).
This likely comes down to the fact that the co-integration already handles long-run structure, so
adding a long lag only adds noise and collinearity.

AR(1) is a bit of a standout. Even after co-integration, it performs surprisingly well. This suggests
that the system has short memory, or what could be called “stickiness.” Market reactions happen
quickly, and once you remove the long-term drift (via co-integration), what'’s left is mostly short-
range variation that suits AR(1).

For the LSTM, the benefit of co-integration is more complex. Although spot price is already used
as a feature in the non-transformed setup, it’s difficult for the model to learn both the anchoring
relationship and the marginal adjustment signal at the same time. Subtracting the spot price makes
the target focus more on the short-term deviations, while still keeping the spot price as a feature to
help model its influence on marginal activation price. This separation likely helps the signal to
noise ration and therefore improve, both accuracy and spike prediction, as seen in Figure[4.4]
The tree models are a bit more resistant to this transformation. XGBoost especially already had
low MBE, meaning low bias, but struggled with separating outlier and non-outlier bias. This is
likely due to insufficient hyperparameter optimization. Another possibly contributing reason is
that it learns structure “too well” which works in stable regimes, but not in a market that changes
structurally. RF seems less affected, likely because it’s less aggressive in fitting residual noise, and
the less sensitivity to hyperparameter tuning.

All of this points to models like LSTM, AR, and ARIMA that are sensitive to non-stationarity, raw
noise, or risk of overfitting, benefit the most from co-integration. Tree models already encode
non-linear structure and lag interactions, so the gain is still clearly present but more limited and
even slightly harmful in RMSE.

It’s also worth noting that the ARIMA orders change after transformation. Without co-integration,

30

Group

the best ARIMA was (2,0,1); with co-integration, it was (3,0,5). This again shows that stabilizing the
series changes the nature of the dynamics and what the model should focus on.

In general, this confirms that using co-integration as a pre-transformation is a valid and effective
way to improve forecastability. The spot price acts as along-run anchor, and subtracting it simplifies
the dynamics the models need to learn. Whether for neural nets or classical models, it improves
signal-to-noise and helps reduce the risk of overfitting to short-term regime-specific noise.

From a broader perspective, the results for LSTM showed that accurate forecasting is possible,
especially when structural relationships like the one between spot and imbalance prices are ex-
plicitly modelled. LSTM showed strong improvements under co-integration and outperformed
classical models in multiple dimensions, especially for directional accuracy and capturing extreme
price spikes. At the same time, the surprising strength of simpler models like AR(1) after transfor-
mation suggests that under the right pre-processing, even low-complexity models can perform
competitively.

This highlights that effective forecasting is less about model complexity in isolation, and more
about aligning model structure with the economic and statistical properties of the underlying data.
The co-integration transformation directly addresses this need and improves the signal quality
for all models. Given the challenges outlined in the introduction, non-stationarity, illiquidity, and
regime shifts, the approach taken here offers a reasonable path for improving forecast performance
with the goal of using flexible assets to act post-Intraday market closure.

31

Appendix

32

Computational configuration and op-
timization

A.1 Computational Setup and cuDNN Optimization

The project was developed using a three computational setup. First, a local laptop was used for fast
code testing. Second, a virtual machine (VM) running Windows Server was accessed remotely. This
machine was equipped with an AMD EPYC 9124 16-core 3.0 GHz processor and 64 GB of memory,
but no GPU. It was primarily used for high-speed CPU tasks such as feature engineering, classical
model evaluation, and early Hyperband optimization runs.

The third machine was a physical Windows workstation equipped with an 11th Gen Intel(R)
Core(TM) i7-11700 CPU at 2.5 GHz, 16 GB RAM, and a dedicated NVIDIA RTX A2000 (12 GB VRAM)
GPU. To enable GPU-accelerated training in TensorFlow, the Linux-based Python environment
was set up inside WSL (Windows Subsystem for Linux). The memory and swap allocation were
adjusted several times to reduce crashes and improve performance during training.

A.2 Hyperparameter Constraints in cuDNN Stateful LSTMs

To take full advantage of the GPU, the LSTM implementation was configured to force cuDNN com-
patibility. This meant using a restricted configuration with activation function fixed as tanh, and
recurrent activation fixed as sigmoid, and no recurrent dropout. Although it reduced flexibility, this
decision significantly boosted training speed and allowed for better hyperparameter exploration,
along with better scalability, generally leading to better results.

The combined Hyperband and Bayesian setup was motivated by the possibility in future setups to
split optimization tasks between the CPU-optimized VM and the GPU-accelerated workstation.
Hyperband could be run on the VM to search broadly, while Bayesian Optimization could be
applied on the GPU machine to fine-tune parameters. This division could allow for a more
efficient use of both compute environments, especially the strong CPU no GPU setup, which
would otherwise be underutilized. The implementation of this could be done in python using ray;,
allowing rescourse allocation and parallelzation across different machines.

To improve temporal learning performance, a stateful LSTM was implemented. This allowed the
model to carry hidden states between batches—essential for learning long-term dependencies.
However, this forced the fixed batch sizes, which was chosen to be 32 based on preliminary results.
As with the other limitations to it directly reduced the search space reducing the amount of trails
needed but at the cost of flexibility. While this setup introduced some rigidity in model design and
training, it was necessary to stabilize training and make full use of the GPU via cuDNN. The choice
to go with this approach was made after observing significantly worse performance in stateless
variants.

A.3 Memory Optimization and Management
Memory usage became a bottleneck during training, especially with long lookback windows and

larger models. To reduce this impact several methods was implemented namely mixed precision,
and downcasting.

34

A.3. MEMORY OPTIMIZATION AND MANAGEMENT Group

TensorFlow’s mixed precision policy was used allowing core operations to run in float16 while
retaining float32 for numerically sensitive calculations. This lowered GPU memory usage without
compromising model accuracy noticeably, and enabled the training of deeper models within the
same memory limit.

All numeric columns in the dataset were downcasted using a custom function. Floats were reduced
from ‘float64‘ to ‘float32, integers were cast to ‘int32‘ or smaller, and object columns with low car-
dinality were converted to categorical. This reduced memory for the dataset by 40-45%, decreasing
the overhead, without degrading performance.

To model performance in speed on the different LSTM setups. The approximate number of total
parameters for each trial was calculated, and referenced in percent against a known configuration.
This gave an indication of what time was expected for that configuration given it was on the
reference setup, ignoring overhead. The peformance gain from not using GPU no downcasting,
no mixed precision, cuDNN to utilizing all of these, resulted in a performance gain in speed from
around 56 seconds per epoch to around 3 seconds, signifying the importance of the computational
setup and correct data management. The next major future speed gains could most likely be found
in reducing the overhead.

35

E Supplementary Application

Imbalance Price (DKK)

—— ImbalancePriceDKK
30000
20000

¥ 10000
[a)

o

—10000

Spot Price (DKK)

—— SpotPriceDKK
6000

4000

¥ 2000
o

—2000

Residuals from Cointegration Regression

—— Residuals (Imbalance - Cointegrated Spot)
30000
20000

10000

Residual

—10000

2022-01 2022-05 2022-09 2023-01 2023-05 2023-09

2024-01 2024-05 2024-09 2025-01 2025-05
Time

Figure B.1: DA Spot, Imbalance price, and co-integrated residuals confirming by visual inspection
first order stationarity

36

References

Breiman, L. (2001). Random forests. Machine learning, 45(1):5-32.

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the
22nd ACM SIGKDD international conference on knowledge discovery and data mining, pages
785-794. ACM.

Frazier, P. 1. (2018). A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811.

Hinton, G. (2012). Lecture 6e: Rmsprop—divide the gradient by a running average of its recent
magnitude. https://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf. Lecture notes,
Neural Networks for Machine Learning, Coursera.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. https://deeplearning.cs.cmu
edu/F23/document/readings/LSTM.pdf. Lecture notes, Carnegie Mellon University.

Hossain, M. A. and Rahman, M. M. (2023). A systematic literature review: Recursive feature
elimination algorithms. Scite.

Keskar, N. S. and Socher, R. (2017). Improving generalization performance by switching from adam
to sgd. arXiv preprint arXiv:1712.07628.

Kingma, D. P. and Ba, J. (2017). Adam: A method for stochastic optimization.

Liu, Y, Gao, Y., and Yin, W. (2020). An improved analysis of stochastic gradient descent with
momentum. In Advances in Neural Information Processing Systems.

Lundberg, S. M. and Lee, S.-1. (2017). A unified approach to interpreting model predictions. In
Advances in Neural Information Processing Systems, volume 30, pages 4765-4774.

Ronderos, N. (2019). Seasonal unit root tests. https://blog.eviews.com/2019/04/
seasonal-unit-root-tests.html. Accessed: 2025-05-27.

Schaeffer, R., Khona, M., Robertson, Z., Boopathy, A., Pistunova, K., Rocks, J. W,, Fiete, I. R., and
Koyejo, O. (2023). Double descent demystified: Identifying, interpreting ablating the sources of
a deep learning puzzle.

Shavlik, J. (2015). Long short-term memory networks. https://pages.cs.wisc.edu/~shavlik/cs638/
lectureNotes/Long%20Short- Term%20Memory%20Networks.pdf. Lecture notes, University of
Wisconsin—-Madison.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological), 58(1):267-288.

Vergara, J. R. and Estévez, P. A. (2014). A review of feature selection methods based on mutual
information. Neural Computing and Applications, 24:175-186.

Wang, D. and Tomek, W. G. (2004). Commodity prices and unit root tests. In Proceedings of the NCR-
134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management,
St. Louis, Missouri.

37

https://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf
https://deeplearning.cs.cmu.edu/F23/document/readings/LSTM.pdf
https://deeplearning.cs.cmu.edu/F23/document/readings/LSTM.pdf
https://blog.eviews.com/2019/04/seasonal-unit-root-tests.html
https://blog.eviews.com/2019/04/seasonal-unit-root-tests.html
https://pages.cs.wisc.edu/~shavlik/cs638/lectureNotes/Long%20Short-Term%20Memory%20Networks.pdf
https://pages.cs.wisc.edu/~shavlik/cs638/lectureNotes/Long%20Short-Term%20Memory%20Networks.pdf

Group REFERENCES

Wikipedia contributors (2024). Shapley value — wikipedia, the free encyclopedia. https://en|
wikipedia.org/wiki/Shapley_value. Accessed: 2025-05-26.

Zhou, Z. and Hooker, G. (2020). Unbiased measurement of feature importance in tree-based
methods.

38

https://en.wikipedia.org/wiki/Shapley_value
https://en.wikipedia.org/wiki/Shapley_value

	Forside
	Titelblad
	Indhold
	Introduction and Problem statement
	Deep Learning: Long Short-Term Memory Networks
	Recurrent Neural Networks (RNNs)
	Long Short-Term Memory Networks (LSTM)
	Random Forest
	XGBoost
	SHAP: SHapley Additive exPlanations
	Feature Selection Techniques
	Recursive Feature Elimination (RFE)
	LASSO
	Mutual Information
	Tree-Based Importance
	Permutation Importance

	Data Transformations and Normalization
	MinMax Scaler
	Standard Scaler
	Power Transformer (Yeo-Johnson)
	Robust Scaler

	Regularization and Double Descent
	Bias-Variance Trade-Off and Classical U-Curve
	Regularization Techniques
	The Double Descent Phenomenon

	Hyperparameter Tuning
	Hyperband
	Bayesian Optimization

	Application
	Data processing, feature selection, and scaling
	Feature selection and engineering

	Hyperparameter search
	Forecast procedure and Comparison Models
	Co-integration

	Forecasting Results

	Conclusion
	Appendix
	Computational configuration and optimization
	Appendix A: Implementation and Computational Details
	Computational Setup and cuDNN Optimization
	Hyperparameter Constraints in cuDNN Stateful LSTMs
	Memory Optimization and Management

	Supplementary Application

