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Abstract:
The aim of this thesis is to simulate AM CVn bina-
ries, using the cataclysmic variable formation chan-
nel to provide insight into the expected gravitational
strain amplitudes of AM CVns and the detectability with
respect to THE Laser Interferometer Space Antenna
(LISA). Relevant physics including mass transfer, novae
eruptions, magnetic braking and gravitational wave ra-
diation is presented to give an overview of the differ-
ent effects, which play a role in the evolution of these
systems. The convection and rotation boosted (CARB)
magnetic braking prescription is used. Furthermore, the
strain amplitude of the gravitational wave signal and
the LISA sensitivity curves were included to evaluate
the gravitational signal received from these binaries.
Modules for Experiments in Stellar Astrophysics, MESA,
version 24.08.1 is used to simulate the evolution of these
systems, implementing the presented physics. To eval-
uate the simulations, we found observational data for
AM CVn systems to use as benchmarks, and evolved
CV systems. The latter were included such that we can
determine whether we also are able to reproduce these,
which is required following the assumed evolution.
We found that it is possible to reproduce known
AM CVn systems, assuming this CV evolutionary chan-
nel. Furthermore, our simulated systems shows strong
gravitational wave signals and most are detectable with
LISA, once operational. The CARB magnetic braking
model was found to have a strong impact on the evo-
lution of these AM CVn systems. The initial parameter
fine-tuning was resolved by using this stronger model.
However, this model also caused our simulated systems
to yield higher mass transfer rates than that of the ob-
servational data in the AM CVn phase. Turning of mag-
netic braking for the compact donors yielded better re-
sults, however during so caused too low mass transfer
rates. Thus another prescription is needed for compact
donors in order to reproduce more observed systems.
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Summary

The aim of this thesis is to simulate AM CVn binaries, using the cataclysmic variable formation channel to
provide insight into the expected gravitational strain amplitudes of AM CVns and the detectability with
respect to LISA.

We start with a chapter on the preliminary theory of the relevant physics, which play a prominent
role for these systems. This starts with an overview of the evolutionary channels these AM CVns can
form from. Afterwards a section about mass transfer is included. Here the Eddington accretion limit for
a white dwarf is also presented, which limits the amount of material it can accrete. Another effect that
determines this accumulation is novae eruptions, which is included in the section after mass transfer.
Finally the preliminary theory is rounded off by addressing magnetic braking and gravitational wave
radiation. Both of which play an important role in these binaries when it comes to the evolution of their
orbits. The latter section also includes the physics behind the gravitational wave radiation emitted from
these tight circular binaries, and the detectability of them with respect to Laser Interferometer Space
Antenna (LISA).

To asses our simulated systems, a chapter which present observational data is included. Here known
AM CVns and evolved cataclysmic variables, which we use to compare with our simulations, are pre-
sented. Our simulations are made using Modules for Experiments in Stellar Astrophysics, MESA, version
24.08.1. The simulation specific settings is also presented in this chapter.

The thesis is then rounded off by showing our simulated results and the comparison to the observa-
tional data is the final chapter. We found that it is possible to reproduce known AM CVns and evolved
cataclysmic variable systems, assuming this cataclysmic variables evolutionary channel. Furthermore,
our simulated systems shows strong gravitational wave signals and most of them become detectable with
LISA, once operational, with signals up to 300 times the sensitivity. The CARB magnetic braking model
was found to have a strong impact on the evolution of these AM CVn systems. The initial parameter
fine-tuning, which is a problem for weaker models, was resolved by using this stronger model, and we are
able to find many AM CVn systems using different initial parameters. However, most was found to have
an initial mass of around 1.25 M⊙ . This model was also found to have a strong impact in the AM CVn
phase. It caused our simulated systems to yield higher mass transfer rates than that of the observational
data in the AM CVn phase. Turning off magnetic braking for the compact donors yielded better results,
however during so caused too low mass transfer rates. Thus another prescription is needed for compact
donors in order to reproduce more observed systems.
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Chapter 1

Introduction

Gravitational wave is a trending topic and has provided us with very exciting insight into fundamental
physics. This has led to many initiatives, such as the Laser Interferometer Space Array (LISA) observatory,
scheduled for launch in 2035, ESA (2025). LISA works in the 10−4 Hz to 1 Hz band. This places it in a band
between ground based detectors, like the Laser Interferometer Gravitational-Wave Observatory (LIGO)
which work in the band 10 Hz to 1 kHz band (Martynov et al., 2016), and the Pulsar Timing Array (PTA)
working in the nHz band (Reardon et al., 2023). Thus, helping to bridge the gap in current gravitational
wave astronomy. Compact white dwarf (WD) binaries can have very short orbital periods of the order
of minuets to about an hour (Esposito et al., 2014; Ramsay et al., 2018). Thus, the gravitational wave
frequencies emitted from these systems are in the range 𝑓𝑔𝑤 ∈ [5.5, 55] × 10−4 Hz, and LISA is therefore
capable of detecting these systems, given that the strain amplitude of the wave exceeds the sensitivity of
the detector.

A compact sub species of Cataclysmic variables (CVs) called AM CVns, named after the system AM
Canum Venaticorum star, (Warner, 1995), are characterized by their short orbital periods (𝑃 < 1 hr) and
hydrogen-deficient spectra. One evolutionary channel that these systems can be born from, is though
the CV channel. Here a WD accretes material from a low mass donor star, that later during it evolution
becomes a WD and potentially a compact binary which initiate mass transfer again. After the donor losses
its hydrogen envelope, these compact binaries will then consist of a helium-rich and hydrogen-deficient
donor and are classified as AM CVns.

Different accretion physics are relevant when considering CVs as they can have a huge influence on
the response on the binary, and on how much mass the WD accumulates. Among these are the Roche-
lobe radius, which is crucial for determining when mass transfer occurs. Another is the response of mass
transfer, both for the binary and the donor; the former determines if the binary expands or tightens, and
the latter determines if stable mass transfer can occur. Nova eruptions also become relevant because
specific mass transfer rates are required for the WD accretor to grow. However, these are, of course,
not the only effects that are very relevant when investigating the evolution of these systems. Without
magnetic braking, many CV systems would not reach the small periods that they do (Hellier, 2001).

Magnetic braking is one of the main mechanism for loss of orbital angular momentum for binaries,
which includes a low mass star. This therefore serves to tighten the initial orbital period and bring the
system into a semi-detached phase from which the initial mass transfer is initiated. These systems need
to be somewhat evolved before the initial mass transfer phase, in order to have enough helium in its core
such that they have the potential of becoming AM CVns. Therefore, the strength of the magnetic braking
prescription plays a crucial role.

There are several great advantages arising from studying AM CVns within the field gravitational
wave astronomy. Known AM CVns can help calibrate future space-based gravitational wave missions,
such as providing insight into the early universe (Amaro-Seoane et al., 2017), by serving as intergalactic
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astrophysical beacons with known gravitational wave frequencies and strain amplitudes. Another advan-
tage through this multi-messenger perspective is being able to further constrain system parameters, as
the gravitational wave amplitude, received from these tight binaries, depends on orbital period, inclina-
tion angle, distance and the masses of the system. By combining gravitational wave measurements with
electromagnetic observations, such as x-ray or optical, tighter constraints can be placed upon the systems
physical properties, and ultimately lead to a more complete understanding of these binaries’ structure and
evolutionary state.

In this thesis Modules for Experiments in Stellar Astrophysics (MESA) are utilized, in order to evolve
post-common envelope (CE) low mass binaries consisting of a zero age main sequence star (ZAMS) and
a WD accretor. The initial parameter space of different masses and orbital periods is then constrained to
identify systems which evolve into AM CVns, which can be compared with observational data.

The goals of this thesis is:

1. To confirm the viability of the CV evolutionary channel for AM CVn systems

2. Provide a detailed insight into the CV evolutionary channel for AM CVn system

3. Provide insight into the expected gravitational strain amplitudes of AM CVns and the detectability
with respect to LISA

4. Investigate the influence of magnetic braking in the AM CVn phase

10



Chapter 2

Preliminary Theory

2.1 Cataclysmic Variables

To motivate the origin of these AM CVn systems, the evolution scenarios and properties of CVs are briefly
elaborated, before moving on to the different formation channels of AM CVns.

CVs form from binaries with a low- or intermediate-mass, zero age main sequence (ZAMS) star
𝑀 < 10 M⊙ and a lower mass star 𝑀 ∼ 1 M⊙ (Tauris and van den Heuvel, 2023; Hellier, 2001). The
initially bigger star evolves on a shorter timescale, turning into a red giant before the low mass star. If
the two stars are close enough it will fill its Roche lobe, transferring mass to the low mass star, which
then accretes it. However, as this star is much bigger, the response of the mass transfer is for the orbital
separation to decrease in order to preserve angular momentum, as the low mass star gains mass (see
Section 2.2.2). This leads to unstable mass transfer, and eventually the low mass star is captured in the
envelope of the donor star, leading to the common envelope (CE) phase. In this phase, the orbital period
is substantially shortened and the envelope of the donor is expelled, leaving behind a WD.

2.1.1 Common Envelope

From a binary evolutionary perspective, if the white dwarf of a CV system is formed, interdependently
from its companion, as the core of a supergiant, then the system must have had a fairly long orbital period.
This is in order not to initiate mass transfer from the supergiant to its less evolved companion. Thus, a
mechanism is needed which brings down the orbital period to the observed periods of around a couple of
hours (Paczynski, 1976). CE evolution is a plausible explanation of how these low period CV systems are
formed.

Investigating the CE phase is beyond the scope of this thesis, and is still an unsolved problem within
astrophysics. However, since it is the current accepted model for CVs, see Ivanova et al. (2013), a brief
explanation of the evolution will be presented here.

The term CE refers to a phase in which the stellar surface of a contact binary moves beyond the
outer Lagrangian point (Paczynski, 1976), creating a binary which orbits inside a single shared envelope.
Ivanova et al. (2013) breaks down the CE evolution into 5 distinct phases. The first phase, named loss of

corotation, happens when the rotation of the expanding star goes from being most likely synchronized
with the orbit, to it losing this coronation due to the binary starting to spiral inwards. The start of the
inward spiral can happen due to runaway mass transfer, due to the accretors response to the mass transfer
or due Darwin instability where orbital angular momentum is drained into spinning up a asynchronous
donor (Ivanova et al., 2013). The second phase is the Plunge-in where orbital energy is transferred to the
envelope, which then drives the expansion of it and may result in a direct envelope ejection, or a merger
of both stars. The third is the self-regulating in-spiral which is followed by the subsequent termination of
this phase. In this phase, the expansion of the envelope may cause the in-spiral of the binary to slow down.
This can then form a self-regulating phase where frictional energy, released by the in-spiral, is transported
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to the surface of the envelope where it is radiated away. This phase is then terminated by either ejection
of the envelope or if either one of the cores fills its Roche lobe. It should be noted here that it is difficult to
define the boundary between the core and the envelope. Moreover, the point which separates the ejected
mass from the mass that stays behind is not clear in relation to this boundary (Ivanova et al., 2013), further
obscuring CE evolution. The final phase is the Post-CE phase in which the final orbital properties settle, as
these might be changed by the remaining circumbinary matter or winds from the remnant Ivanova et al.
(2013).

A final note on CE evolution, is the undergoing struggle to reproduce this phenomenon, in simula-
tions. This emphasizes the uncertainties still surrounding this theory. Simple models which only account
for hydrodynamics and gravity often fail to eject the envelope. Including other envelope ejection effects,
such as the thermalization of recombination energies, is dependent on the opacity in different regions,
which is difficult to represent numerically (Schneider et al., 2025). Additionally, the cores are usually
treated as a point mass. This further prevents realistic core-core interactions for the sake of computable
3D simulations (Schneider et al., 2025).

The resulting system of a WD and a low mass star will eventually start mass transfer as they get
close enough for the low mass star to fill its Roche lobe, resulting in a CV. This scenario is depicted in
Figure 2.2, as the first five steps. (Hellier, 2001)

2.1.2 Period Evolution in the CV Phase

The primary mechanism believed to pull the stars together is magnetic braking (MB) and gravitational
wave radiation (GWR), which influence the orbital angular momentum of the binary, causing the orbit
to shrink. There is also a contribution from the mass loss of the binary, if mass transfer is not conserva-
tive, along with spin-orbit coupling. Summarizing these four terms, the total change in orbital angular
momentum can be stated as (Tauris and van den Heuvel, 2023)

¤𝐽𝑜𝑟𝑏
𝐽𝑜𝑟𝑏

=
¤𝐽𝑔𝑤𝑟

𝐽𝑜𝑟𝑏
+

¤𝐽𝑚𝑏

𝐽𝑜𝑟𝑏
+

¤𝐽𝑙𝑠
𝐽𝑜𝑟𝑏

+
¤𝐽𝑚𝑙

𝐽𝑜𝑟𝑏
, (2.1.1)

where ¤𝐽𝑔𝑤𝑟 is the angular momentum loss from gravitational radiation, ¤𝐽𝑚𝑏 magnetic braking, ¤𝐽𝑙𝑠 spin-
orbit coupling and ¤𝐽𝑚𝑙 from mass loss. Spin-orbit coupling will not be considered in this thesis, as they
are initially synchronized as a consequence of the CE phase, when starting the simulations from the CV
phase. The prescription for the other terms will be elaborated in Sections 2.2,2.4 and 2.5.

In order to investigate the evolution of CVs, it is advantageous to inspect the distribution of the
measured orbital periods of the observed systems (see Figure 2.1).
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Figure 2.1: The distribution of measured orbital periods for observed cataclysmic binaries, data taken from
Ritter and Kolb (2003).

It is believed that in CVs with orbital periods above ∼3 hrs, MB is the dominant effect that decreases the
period of the binary, as the stars are still too far apart for GWR to have a large effect. However, once
the orbital period reaches this soft limit, the dynamo that caused MB seems to weaken and the binary
system widens, due to mass transfer, giving the donor time to settle and causing it to shrink to a normal
size, fitting of its mass (Knigge et al., 2011). This in turn causes mass transfer to stop, making the system
undetectable. That is, until GWR pulls the stars together and the donor again fills its Roche lobe at a period
of ∼2 hrs, making the system detectable again. This is the reason for the period gab seen in Figure 2.1,
between 3–2 hrs.

From this point the period will decrease in accordance with GWR until the period minimum is
reached, and the orbit widens again. The reason this happens is that when the donor becomes degen-
erate it’s response to mass loss is to expand. Therefore, as the orbit expands due to mass loss, so will the
donor and it can continue to fill it’s Roche lobe. Before, the orbit needed to shrink for the donor to keep
filling its Roche lobe, as the two stars would otherwise be too far apart. Thus, the period bounces at this
period minimum around 78 minutes.

However, looking at Figure 2.1, systems in the period gap and below this period minimum are still
seen. Systems containing a magnetic WD can occupy the period gap, as its field couples to the the sec-
ondary’s field, synchronizing the orbital period and spin period of the WD. CVs that first start mass
transfer at these periods can also occupy this area, as the donor has not been driven out of hydrostatic
equilibrium before reaching these periods. There are also systems which have periods below the period
minimum, some of these contain a helium-rich donor that is more compact, and hence is able to reach
lower periods. These systems are called AM CVns and will be investigated further throughout this thesis.
Therefore, a detailed description of the different evolutionary scenarios will be given.

2.1.3 AM CVns

As stated previously, AM CVns, named after the first of their kind, the AM CVn, are CVs with a helium-rich
donor.

Looking at Figure 2.2, we see the two evolutionary branches leading to AM CVns, following a CV
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phase. One, where there is unstable mass transfer and the other, where there is stable. Unstable mass
transfer leads to a CE phase where the envelope of the donor is expelled, and depending on whether the
core reached degeneracy, a WD or helium star can emerge, this is the branch to the left in Figure 2.2. If
the donor had a mass of 𝑀2 ≤ 2.3 M⊙ the core can become degenerate and a helium WD can be formed
after the second CE phase leading to a double WD system. This system will then become an AM CVn
once the period is sufficiently short and the donor comes into contact with the primary. However, if the
donor has a mass 2.3 M⊙≤ 𝑀2 ≤ 5 M⊙ it has enough mass to form a non-degenerate core, due to helium
fusion, and can therefore form a helium star once the envelope is lost in the CE phase. This system can
also end up as a double WD system, if the helium star becomes degenerate, although this is not depicted
in Figure 2.2. Again, once the period is sufficiently short and mass transfer starts, an AM CVn is born.

ZAMS

RLO

CE

WD + Main Sequence

CV

CE

Case B RLO

He Star

He WD

Double WD

Case B RLO

SN Ia WD + Planet

Case B RLO

He Star

Case B RLO

Figure 2.2: A schematic overview of the different formation channels of AM CVns (read the text for a
detailed review).

In the branch to the right in Figure 2.2, no second CE phase takes place, but the end result is still
an AM CVn. This happens for donors of ∼ 1 M⊙ , which are at the end of hydrogen core burning or
have finished hydrogen core burning, before the onset of mass transfer. These systems can experience
continuous mass transfer from the CV phase as the donor evolves, or there might be mass transfer followed
by a detached phase before it continues again. Once the donor has been stripped of all its hydrogen, a
helium star emerges, and if it becomes degenerate, a WD, creating an AM CVn. Solheim (2010)

The ultimate fates of these systems are either to end up in a type Ia supernova or for the donor to
get stripped down to a planet-like object with very low mass, equivalent to that of Jupiter.

It is the systems of the right branch (see Figure 2.2), which are the focus of this thesis, they will be
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simulated from just after the first CE phase and until a planet-like object is left or a Hubble time is reached.
Mass transfer will now be investigated in greater detail in order to give an overview of the relevant

criteria and mechanics.

2.2 Mass Transfer in CVs

As is evident from the previous section, mass transfer plays a crucial role in the evolution of CVs, de-
termining when they are visible and how the period evolves. Therefore, a brief overview of the relevant
physics and most important consequences will be given.

Roche-lobe mass transfer occurs when the gravitational pull acting on the material of a star is greater
from another star rather than the star itself. In this case, the material from the donor experiences a greater
pull from the WD, rather than the donor star. To examine this, the Roche-lobe approximation is used to
determine when mass transfer is possible. It is useful to use the equipotential equation, where the total
effective potential is set equal to a constant (Livio, 1994)

− 𝐺𝑀1

(𝑥2 + 𝑦2 + 𝑧2)1/2 − 𝐺𝑀2

((𝑥 − 𝑎)2 + 𝑦2 + 𝑧2)1/2 − 1
2Ω

2
𝐵

[(
𝑥 − 𝑀2

𝑀1 +𝑀2
𝑎

)2
+ 𝑦2

]
= const, (2.2.1)

where𝑀1,𝑀2 are the masses of the WD and star, respectively, and Ω𝐵 is the angular velocity of the binary,

Ω𝐵 =

(
𝐺 (𝑀1 +𝑀2)

𝑎3

)1/2
.

The reference frame used in this equation is a co-rotating one, meaning that the coordinate system rotates
with the binary. This is valid because the two stars are tidally locked, following the CE phase. Furthermore,
the origin is set to be at the WD, so that the two stars lie along the 𝑥-axis and the rotation axis is along
the 𝑧-axis. A depiction of different equipotentials can be seen in Figure 2.3 following different constant
values of (2.2.1), corresponding to the different Lagrange points.
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Figure 2.3: The different equipotentials corresponding to Lagrange points 1–5, for a binary with masses
𝑀1 = 0.8 M⊙ , 𝑀2 = 1.2 M⊙ and a orbital period of 𝑃 = 2 days corresponding to 𝑎 = 8.4 R⊙ .
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When considering mass transfer, Lagrange point one, 𝐿1, is often the first thing that comes to mind,
as it is the point where mass starts to fall from the donor to the primary. It can be seen in Figure 2.3 as
the point where the two "pear" shapes meet, which is the Roche-lobes of the two stars.

If this radius exceeds its Roche lobe, then the mass outside the Roche lobe is more drawn toward the
other star, and mass transfer is initiated. It is therefore of interest to be able to calculate when this volume
is filled. This is done by calculating the radius of a sphere of the same volume, which, using previously
tabulated data, Peter P. Eggleton made a convenient approximation for. This is given in Eggleton (1983)
as,

𝑅𝐿 = 𝑎
0.49𝑞2/3

0.6𝑞2/3 + ln (1 + 𝑞1/3) , (2.2.2)

where 𝑞 ≡ 𝑀donor/𝑀accretor and 𝑅𝐿 is the radius of the donor star’s Roche lobe given the orbital separation
𝑎.

The mass transferring from the donor onto the WD can be seen as going through a nozzle at 𝐿1,

| ¤𝑀2 | ≃ 𝜌𝑣𝑠𝑄, (2.2.3)

with 𝜌 being the density of the material, 𝑣𝑠 the local sounds speed and 𝑄 the effective cross section.
Following the Roche-lobe approximation, mass transfer starts once the star is filling its Roche-lobe,

𝑅2 > 𝑅𝐿 , so that it keeps a radius equal to its Roche-lobe. However, as stars do not have sharply defined
edges this ends up being a rough approximation as one would expect a more gradual increase in mass
transfer once the star starts to fill it’s Roche-lobe. This can be helped by taking the scale height of the
stellar atmosphere into consideration. The atmosphere of a star starts at the photosphere, where it be-
comes transparent, and is often the point at which the radius of the star is defined. In this atmosphere
there is still material, but the density decreases exponentially, such that

𝜌 (𝑅𝐿) = 𝜌𝑝ℎe−(𝑅𝐿−𝑅2 )/𝐻 , (2.2.4)

where 𝜌𝑝ℎ is the density of the photosphere and 𝐻 is the scale height. (Tauris and van den Heuvel, 2023)
Combining these two interpretations, the mass transfer scheme of Ritter (1988) can be defined. The

mass transfer rate is

| ¤𝑀2 | = 1√
e
𝜌𝑝ℎ𝑣𝑠𝑄e−Δ𝑅/𝐻𝑝 , (2.2.5)

where 𝑣𝑠 =
√︁
𝑘𝑇 /(𝜇𝑚𝐻 ) and Δ𝑅 ≡ 𝑅𝐿 − 𝑅2. The scale height of the stellar atmosphere is

𝐻𝑝 =
𝑘𝑇𝑅2

2
𝜇𝑚𝐻𝐺𝑀2

, (2.2.6)

where 𝑘 is the gas constant, 𝑇 the temperature, 𝜇 is the mean molecular weight of the photosphere and
𝑚𝐻 is the weight of a hydrogen atom. This scheme was developed considering low mass main sequence
stars where 𝐻𝑝 ≪ 𝑅2 and Δ𝑅/𝑅2 ≪ 1.

Now, the mass transfer rate scales with𝐻𝑝 and the difference between the stars radius and its Roche-
lobe, making the transition smoother.

It it also important to determine when stable mass transfer occurs, this depends heavily on the donors
stars response to mass loss, and has great influence on the evolution of the CV.

2.2.1 Stability Criteria

When the donor star loses mass it is perturbed out of hydrostatic equilibrium. It then settles into a new
one following two time scales, the dynamical 𝜏𝑑𝑦𝑛 and the thermal 𝜏𝑡ℎ , also called the Kevin-Helmholtz

16



2.2. Mass Transfer in CVs Aalborg University

timescale. It does this by expanding or contracting. However, as the star losses mass the Roche-lobe radius
also changes, if the star keeps filling its Roche-lobe, mass transfer is stable and continues following the
thermal timescale. Otherwise, it is said to be unstable and follows the dynamical timescale. (Tauris and
van den Heuvel, 2023)

A stability criteria can be defined using the power law

𝑅 ∼ 𝑀𝜁 , (2.2.7)

which estimates the radius of a star given its mass. For a normal main sequence star 𝜁 = 0.8. Thus for the
radius of the donor star and its Roche-lobe the exponents become,

𝜁𝑑𝑜𝑛𝑜𝑟 ≡
𝜕 ln𝑅2
𝜕 ln𝑀2

, 𝜁𝐿 ≡ 𝜕 ln𝑅𝐿
𝜕 ln𝑀2

. (2.2.8)

To start mass transfer 𝑅2 = 𝑅𝐿 within the binary, and thus the criteria

𝜁𝐿 ≤ 𝜁𝑑𝑜𝑛𝑜𝑟 (2.2.9)

is reached. This states the same as above, as long as the star keeps filling its Roche-lobe following mass
loss, mass transfer has the potential to be stable. However, this statement must be evaluated in terms of
the response of the binary and the donor. If the radius of the donor or orbit expands or shrinks to fast,
respectively, dynamically unstable mass transfer can ensue.

2.2.2 System Response to Mass Loss

To investigate the binaries’ response to mass loss, the isotropic re-emission model is considered. In this
model matter flows from the donor onto the accretor before a fraction of it is ejected, this fraction is
denoted 𝛽 , so that

¤𝑀1 = −(1 − 𝛽) ¤𝑀2. (2.2.10)

For simplicity and for the sake of investigating the effects of mass loss the angular momentum losses
¤𝐽𝑚𝑏 = ¤𝐽𝑔𝑤𝑟 = ¤𝐽𝑙𝑠 = 0 and

¤𝐽𝑚𝑙

𝐽𝑜𝑟𝑏
=
𝛽𝑞2

1 + 𝑞 ×
¤𝑀2
𝑀2

. (2.2.11)

The material is ejected with the specific angular momentum of the accretor, such that

d𝐽𝑜𝑟𝑏 =
𝐽1
𝑀1

𝛽d𝑀2, (2.2.12)

with 𝐽1 = (𝑀2/𝑀) 𝐽𝑜𝑟𝑏 (Tauris and van den Heuvel, 2023). Following these assumptions the following
relation can be obtained from the general equation for orbital changes due to mass transfer and mass loss
in a binary (Tauris and van den Heuvel, 2023),

𝑎

𝑎0
=

(
𝑞0 (1 − 𝛽) + 1
𝑞(1 − 𝛽) + 1

) 3𝛽−5
1−𝛽

(
𝑞0 + 1
𝑞 + 1

) (
𝑞0
𝑞

)2
. (2.2.13)

Now an analytical expression, which includes the orbits response, can be derived for 𝜁𝐿 by expanding
(2.2.8)

𝜁𝐿 =
𝜕 ln𝑅𝐿
𝜕 ln𝑀2

=

(
𝜕 ln𝑎
𝜕 ln𝑞 + 𝜕 ln(𝑅𝐿/𝑎)

𝜕 ln𝑞

)
𝜕 ln𝑞
𝜕 ln𝑀2

. (2.2.14)

17



Group 5.323A 2. Preliminary Theory

Using (2.2.2), (2.2.10) and (2.2.13) can give a final expression.
It is useful to investigate the first term of (2.2.14) to get an idea of how the orbital separation responds

to mass loss, in terms of the mass ratio of the two stars in the binary,

− 𝜕 ln𝑎
𝜕 ln𝑞 = 2 + 𝑞 𝑞

𝑞 + 1 + 𝑞 3𝛽 − 5
𝑞(1 − 𝛽) + 1 . (2.2.15)

Plotting this equation for different values of 𝛽 yields the tracks in Figure 2.4.
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Figure 2.4: The binary separations response to mass loss in terms of the mass ratio, 𝑞. Tracks correspond-
ing to different values of 𝛽 have been plotted.

Here it seen that if the accretor is more massive than the donor, 𝑞 ≤ 1, then the orbit widens as a
response to mass loss. It becomes more difficult for the opposite case where 𝑞 > 1. For 1 < 𝑞 < 1.28
it depends on 𝛽 , whereas for 𝑞 > 1.28 it always shrinks. Thus, different limits for the response of mass
loss exists for the binary separation and, as can be seen in (2.2.2), this influences the Roche-lobe radius
and in turn helps determine whether there is stable mass transfer. How the donor responds becomes
very relevant considering the stability criteria, as the star must keep filling its Roche-lobe. This response
depends on the structure of the donor. If the donor has a radiative envelope, its radius tends to shrink,
whereas if it has a convective envelope it expands. (Tauris and van den Heuvel, 2023)

For a donor star with radiative envelope, dynamically stable mass transfer is often possible, as long
as 𝑞 is not too large, as its radius will shrink or stay roughly the same. However, for stars with deep
convective envelopes, the response of mass loss is for the star to rapidly expand, thus the mass ratio must
be small for stable mass transfer to occur. If the orbit does not widen according to this expansion, this can
lead to the formation of a CE.Tauris and van den Heuvel (2023)

Of course, other effects also play a crucial role in the evolution of these systems, and only considering
the effect of mass loss is a simplified example. These effects include MB, GWR and stellar winds from the
donor star. However, in terms of the mass loss response, this helps to give insight into the consequences
of mass loss during mass transfer.

In terms of mass transfer rates, these are proportional to how much the donor overfills its Roche-lobe
as seen in (2.2.5). However, an upper limit at the Eddington luminosity can be reached, which is essential
when considering high mass transfer rates. Therefore, this will be briefly elaborated.
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2.2.3 Eddington Accretion Limit

The Eddington accretion limit is a fundamental property when considering binary stellar evolution for
compact objects. It determines how much material a compact object can accumulate during mass transfer,
as once a critical luminosity called the Eddington luminosity, 𝐿𝐸𝑑𝑑 , is reached, further accretion is hindered
due to the outward radiation pressure. In this section, the aim is to derive an expression for which the
Eddington accretion limit can be calculated for a WD, depending on its mass and the material which is
accreted. This limit is given by equating the outward radiation pressure force on the plasma near the
stellar surface of the WD to the gravitational force (Tauris and van den Heuvel, 2023), such that��� ®𝐹𝑟𝑎𝑑 ��� = ��� ®𝐹𝑔𝑟𝑎𝑣 ��� (2.2.16)

𝐿𝑒𝑑𝑑𝜎𝑇
4𝜋𝑟 2𝑐

=
𝐺𝑀1𝑚𝑝𝜇𝑒

𝑟 2 , (2.2.17)

where 𝜇𝑒 ≃ 2/(1+𝑋 ) is the mean molecular weight per electron and 𝜎𝑇 is the Thompson scattering cross
section, given by

𝜎𝑇 =
8𝜋
3

(
𝑒2

𝑚𝑒𝑐2

)2
cm2. (2.2.18)

Introducing the mean opacity and using the previous equation, gives

𝜅 =
𝜎𝑇
𝑚𝑝𝜇𝑒

≃ 0.2(1 + 𝑋 )cm2g−1. (2.2.19)

Now returning to (2.2.17) and using the mean opacity, one obtains an expression for the Eddington lumi-
nosity

𝐿𝐸𝑑𝑑 =
4𝜋𝐺𝑀1𝑐

𝜅
≃ 4𝜋𝐺𝑀1𝑐

0.2(1 + 𝑋 ) . (2.2.20)

Furthermore, the accretion luminosity can be started to be

𝐿 = 𝜖 ¤𝑀1, 𝜖 = 𝜖𝑛𝑢𝑐 + 𝜖𝑔𝑟𝑎𝑣, (2.2.21)

where 𝜖 is the energy production per unit mass, which is the result from the energy released by fusion of
the accreted material, 𝜖𝑛𝑢𝑐 , and gravitational energy, 𝜖𝑔𝑟𝑎𝑣 . Thus, the Eddington accretion limit is found
to be

¤𝑀𝑒𝑑𝑑 =
4𝜋𝐺𝑀1𝑐

𝜅𝜖
≃ 4𝜋𝐺𝑀1𝑐

0.2(1 + 𝑋 )𝜖 . (2.2.22)

For WDs, the main contribution to the accretion luminosity comes from 𝜖𝑛𝑢𝑐 , which has the following
value for hydrogen 𝜖𝑛𝑢𝑐 ∼ 6.4 × 1018 erg g−1 and for helium 𝜖𝑛𝑢𝑐 ∼ 7.5 × 1017 erg g−1 (Tauris and van den
Heuvel, 2023). However, a small contribution also stems from the release of gravitational energy, which
is given by (Tauris and van den Heuvel, 2023)

𝜖𝑔𝑟𝑎𝑣 =
𝐺𝑀1
𝑅1

. (2.2.23)

This leads to some issues, as the radius of the WD is not considered in the simulations because it is
assumed to be a point mass. Therefore, an estimate is used from Nauenberg (1972), which takes in the
mean molecular weight of the WD, 𝜇, and the mass of the WD

𝑅1 =
0.0225
𝜇

([
1.4 M⊙
𝑀1

]2/3
−

[
𝑀1

1.4 M⊙

]2/3
)1/2

R⊙ . (2.2.24)
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Here 𝜇 = 2, which is the mean molecular weight per electron, assuming that the atomic number and the
atomic mass number are 𝑍/𝐴 ≈ 0.5 and𝑚𝑢 =𝑚𝐵 = 1.66 × 10−24 g. (Shapiro and Teukolsky, 1983).

Thus an expression for the Eddington accretion limit has been found which depends only on the
mass of the WD and the composition of the accreted material. One just need to use the appropriate 𝜖𝑛𝑢𝑐 ,
once the material becomes sufficiently helium-rich.

Nova eruption may also occur throughout the evolution of these systems, and different criteria apply
when the WD accretes hydrogen-rich or helium-rich material. Therefore, to model the evolution of these
systems, this must be investigated to determine when the WD accumulates material.

2.3 Novae Eruptions

CVs are known for their sudden brightness changes, which are caused by novae eruptions. There exist
different subcategories, which are classical novae, recurrent novae, and dwarf novae.

The classical novae occur when the WD primary accretes material at a rate where stable fusion is
not feasible, which leads to a build-up until a runaway fusion process happens as the envelope of accreted
material becomes hot enough. As a result, some or all of the envelope is expelled in a shell flash, depending
on the strength, which is mainly linked to the accretion rate. Classical novae only erupt once, whereas
recurrent novae do this periodically, usually every few decades, as the WD builds up material.

Dwarf novae, on the other hand, are the result of pile-up in the accretion disc, which happens due to a
high mass transfer rate. The disk then flares up, expelling excess material, where some of it falls upon the
WD, briefly increasing the accretion rate, causing an increase in luminosity. This increase in luminosity
occurs over a couple of days, where-after the CV stays bright for roughly a week before declining. These
outbursts often repeat after a few months. (Hellier, 2001)

The recurrent novae eruptions will be relevant in this thesis as they will determine whether the WD
accretor is able to accumulate material or whether it will be lost. Therefore, the different accretion rate
limits are investigated in order to determine when material is accumulated. Depending on the material
that is being accreted, these limits can vary substantially, and this is important when AM CVns evolve. The
goal in this thesis is to exhaust the donor of its hydrogen through accretion such that it becomes helium-
rich, creating an AM CVn. However, this means that, throughout the evolution of these binaries, both
hydrogen and helium can be accreted at different times, changing the limits for stable burning of material
and how much material is accumulated on the WD primary. Thus, a prescription following Tauris et al.
(2013) is adopted, where accretion of both hydrogen-rich and helium-rich material is accounted for.

2.3.1 Hydrogen Accumulation Efficiency

The objective is to define two accumulation efficiencies, one for hydrogen and one for helium 𝜂𝐻 , 𝜂𝐻𝑒 ,
which determines how much material is accumulated, in a continuous manner throughout the simulations.
To determine what these efficiencies are, different ranges of mass transfer rates have to be considered
depending on the hydrogen mass fraction of the accreted material and the WD mass. For hydrogen, the
following limits are used to specify 𝜂𝐻 :

• ¤𝑀𝑐𝑟 , the upper limit of stable hydrogen burning,

• ¤𝑀𝑒𝑑𝑑 , Eddington accretion limit,
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• ¤𝑀𝑠𝑡 , lower limit for stable hydrogen burning,

• ¤𝑀𝑎𝑐𝑐𝑢 , the lower limit at which the WD can still accumulate material.

Only above ¤𝑀𝑎𝑐𝑐𝑢 does the WD accumulate material, and unless the mass transfer rate is higher than
¤𝑀𝑒𝑑𝑑 or ¤𝑀𝑐𝑟 , conservative mass transfer occurs. However, if the mass transfer rate is higher than these

limits, the accumulation rate is limited to that of ¤𝑀𝑒𝑑𝑑 or ¤𝑀𝑐𝑟 , depending on which is lower. The rest
of the mass, which the WD receives, is lost due to winds (Hachisu and Kato, 2001). How the Eddington
accretion limit is calculated has already been presented in Section 2.2.3. The other limits are calculated
following (Hachisu and Kato, 2001; Hachisu et al., 1999) where

¤𝑀𝑐𝑟 = 5.3 × 10−7 1.7 − 𝑋
𝑋

(
𝑀1
M⊙

− 0.4
)

M⊙yr−1, (2.3.1)

where 𝑋 is the hydrogen abundance of the accreted material. From this the mass transfer rate at which
stable hydrogen fusion occurs can be estimated to be ¤𝑀𝑠𝑡 ≈ 1/2 ¤𝑀𝑐𝑟 . Below this limit weak novae flashes
start to occur, where some material might be lost. However, following Hachisu et al. (1999) the WD is
assumed to retain all material until it reaches

¤𝑀𝑎𝑐𝑐𝑢 =
1
8
¤𝑀𝑐𝑟 . (2.3.2)

This might overestimate how much material the WD accumulates, but there is still a great deal of uncer-
tainty surrounding the accumulation efficiency during these weak flashes. Therefore, the accumulation
efficiency is set to 𝜂𝐻 = 1 is for mass transfer rates between ¤𝑀𝑐𝑟 and ¤𝑀𝑎𝑐𝑐𝑢 . Above ¤𝑀𝑐𝑟 it is set to be
𝜂𝐻 = ¤𝑀𝑐𝑟/| ¤𝑀2 |, with ¤𝑀2 being the mass transfer rate. Below ¤𝑀𝑎𝑐𝑐𝑢 the accumulation efficiency is set to
𝜂𝐻 = 0, as all the material is lost in nova eruptions.
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Figure 2.5: Mass transfer ranges where 𝜂𝐻 = 1, for different WD masses and hydrogen abundances, 𝑋 , of
the accreted material. The Eddington accretion limits for the two abundances is also shown.

In Figure 2.5 areas for which 𝜂𝐻 = 1 for 𝑋 = 0.70, 0.10 is shown along with the Eddington accretion
limits. A general tendency arises for lower values of 𝑋 , where higher mass transfer rates are required for
the WD to accumulate material through hydrogen fusion. However, the Eddington accretion limit does
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not increase as fast for lower values of 𝑋 . This does not mean that material is not accumulated for higher
WD masses, but that wind mass loss is more significant.

These limits are not applicable for very low 𝑋 ∼ 10−4, when the accretion material is almost purely
helium, hence different limits must be defined to determine 𝜂𝐻𝑒 .

2.3.2 Helium Accumulation Efficiency

For helium accretion the limits has been defined by Kato and Hachisu (1999, 2004). It is a more
step-wise procedure as they have calculated the accretion efficiency for the specific WD masses:
[0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.35] M⊙ . Thus, the value of the accumulation efficiencies in between some
of these masses are stepwise interpolated, such that different ranges could be defined in order to calculate
𝜂𝐻𝑒 . The mass transfer ranges for the different WD masses and values for the accumulation efficiency can
be seen in Table 2.1 below.

Mass Ranges [𝑀⊙] Mass Accumulation Efficiency, 𝜂𝐻𝑒 Accretion Rates [log𝑀⊙yr−1]
𝑀1 < 0.8 1 –

0.8 ≤ 𝑀1 < 0.9 1 −6.34 ≤ log ¤𝑀2
−0.35(log ¤𝑀2 + 6.1)2 + 1.02 −6.5 < log ¤𝑀2 < −6.34

0.9 ≤ 𝑀1 < 1.0 1 −6.05 ≤ log ¤𝑀2
−0.35(log ¤𝑀2 + 5.6)2 + 1.07 −6.88 < log ¤𝑀2 < −6.05

1.0 ≤ 𝑀1 < 1.2 1 −5.93 ≤ log ¤𝑀2
−0.35(log ¤𝑀2 + 5.6)2 + 1.01 −6.92 < log ¤𝑀2 < −5.93

1.2 ≤ 𝑀1 < 1.3
1 −5.76 ≤ log ¤𝑀2

−0.54(log ¤𝑀2 + 5.6)2 + 1.01 −5.95 ≤ log ¤𝑀2 < −5.76
0.54 log ¤𝑀2 + 4.16 −7.06 < log ¤𝑀2 < −5.95

1.3 ≤ 𝑀1 < 1.35 1 −5.83 ≤ log ¤𝑀2
−0.175(log ¤𝑀2 + 5.35)2 + 1.03 −7.35 < log ¤𝑀2 < −5.83

1.35 ≤ 𝑀1
1 −6.05 ≤ log ¤𝑀2

−0.115(log ¤𝑀2 + 5.7)2 + 1.01 −7.4 < log ¤𝑀2 < −6.05

Table 2.1: Mass accumulation efficiencies for given WD masses and accretion rates. Taken from Kato and
Hachisu (2004).

For WD masses 𝑀1 < 0.8 M⊙ all material is accumulated, only limited by the Eddington accretion
limit, as no winds blow from the WD. However, once the WD has mass greater than this, winds start
to blow and a lower limit for the mass transfer rate must be reached. This lover limit where 𝜂𝐻𝑒 > 0
decreases as the mass becomes larger. This is because as the WD becomes larger, the nuclear burning
rates become higher as a result of gravity, so it can accumulate mass at lower mass transfer rates. The
limit where 𝜂𝐻𝑒 = 1 first increases and then peaks for masses 1.2 ≤ 𝑀1 < 1.3 M⊙ before dropping again.
This is because the winds also become stronger as the WD mass is increased, and for WD masses which
are substantially high, the nuclear burning rates are stronger than those of the wind mass loss.

These limits have also been plotted in Figure 2.6, where the piecewise definitions for the WD mass
ranges are apparent. The Eddington accretion limits are higher owing to the decrease in energy obtained
from fusing helium instead of hydrogen (see Section 2.2.3).
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Figure 2.6: Mass transfer ranges where 𝜂𝐻𝑒 > 0 and 𝜂𝐻𝑒 = 1, for different WD masses. The Eddington
accretion limits for helium-rich material is also shown.

It should be mentioned that the accumulation efficiency is highly sensitive to the composition and
radius of the WD. As the WD fuse helium in the envelope, carbon and oxygen is mixed throughout it via
convection. If the𝐶 +𝑂 abundance in the envelope, for a 1.2 M⊙ CO WD, is increased from 0.3 to 0.4, the
accumulation efficiency, 𝜂𝐻𝑒 , increases by 0.04–0.05. Furthermore, if smaller WD radii are assumed, 𝜂𝐻𝑒

drops because the winds become stronger (Kato and Hachisu, 2004). However, these considerations are
well beyond the scope of this thesis, but should be kept in mind when using these limits and accumulation
efficiencies.

Now an expression for the long terms mass accumulation onto the WD can be defined as

¤𝑀1 = 𝜂𝐻𝜂𝐻𝑒 | ¤𝑀2 |. (2.3.3)

Depending on which type of accretion occurs, either𝜂𝐻 or𝜂𝐻𝑒 is set to equal one, such that the appropriate
accumulation efficiency is used. Helium accretion is assumed if 𝑋 < 10−4, where 𝜂𝐻 = 1, if 𝑋 > 10−4

hydrogen accretion is assumed and 𝜂𝐻𝑒 = 1.

Now that a framework of relevant theory for mass transfer and the binaries response to it has been
presented, other effects which also affect the orbit will be elaborated. The following two sections will
investigate the orbital angular momentum loss due to MB and GWR.

2.4 Magnetic Braking

Low mass main sequence stars, of mass ≤ 1.3 M⊙ , burn hydrogen in a central radiative region in the ZAMS
phases. The outer regions are convective due to the presence of partially ionized hydrogen and helium
making these regions opaque (Salaris and Cassisi, 2005). In higher mass stars the interior temperature
increases allowing the CNO cycle to operate as the favorable burning reaction, becoming the dominant
mechanism for energy production. This results in high energy concentration towards the center, causing
the star to become convective (Salaris and Cassisi, 2005). This difference between lower mass and higher
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mass stars is important when it comes to magnetic field generation in stars, which ultimately can lead to
magnetic braking.

Within the outer convective zones of stars turbulent and helical down-flow of ionized material,
shaped by the Coriolis force, regenerate and amplify the persistent large scale poloidal magnetic field.
In stars with a radiative inner region another amplification mechanism exists. The radiative zone rotates
uniformly compared to the convective zone, which experiences differential rotation. The shear between
the uniformly rotating radiative zone and the differentially rotating convective zone twists and converts
the field into a strong toroidal field at this shear line, at the equator (Miesch, 2005). As this toroidal field
becomes stronger it eventually become unstable and can rise towards the surface as flux tubes. If the
field become strong enough, these may rise to the surface and couple to the large scale poloidal field and
amplify it (Miesch, 2005). This mechanism effectively converts rotational shear into magnetic energy.
Thus the presence of this interface between a radiative and a convective zone, also called the tachocline,
is important when it comes to strong, large scale and long term magnetic field generation in stars.

Material coupled to this magnetic field, which is lost from the binary in a wind, creates a torque called
magnetic braking. The star losses spin angular momentum due to this torque, which is then restored
though tidal friction at the cost of orbital angular momentum. This finally causes the orbital separation to
decrease, further tightening the binary. It is therefore an important mechanism to consider in the creation
of these compact binaries. In this thesis the convection and rotation boosted (CARB) magnetic braking
model is used, however some comparisons to the Skumanich model will be made as its simplicity make it
a widely used model in the literature.

2.4.1 CARB Magnetic Braking Model

In Van and Ivanova (2019a), which is the article behind the CARB magnetic braking model, the angular
momentum loss due to mass loss at the Alfvén radius is given by,

¤𝐽𝑚𝑏 = −2
3
¤𝑀𝑤Ω𝑟

2
𝑎, (2.4.1)

as derived by Weber and Davis (1967) for the Sun, under the assumption of spherical symmetry and
isotropic wind mass loss. Here ¤𝑀𝑤 is the wind mass loss, Ω is the rotation rate and 𝑟𝑎 is the Alfvén radius.
The radial Alfvénic Mach number, 𝑀𝐴, as defined by Weber and Davis (1967), is given by,

𝑀2
𝐴 =

4𝜋𝜌𝑢2

𝐵2
𝑟

(2.4.2)

where 𝜌 and 𝑢 is the density and radial velocity component of the wind respectively. This per definition
equates to one at the Alfvén radius. 𝐵𝑟 is the radial component of the magnetic field strength, however
assuming a simple radial magnetic field relation as done by Van and Ivanova (2019a) the magnetic field
can be rewritten to 𝐵𝑟 = 𝐵𝑠𝑅

2/𝑟 2, where 𝐵𝑠 is the surface field strength and 𝑅 is the radius of the star.
Evaluating (2.4.2) at the Alfvén radius, and inserting the radial field strength, it rewrites to,(𝑟𝑎

𝑅

)2
=

𝐵2
𝑠𝑅

2

4𝜋𝑟 2
𝑎𝜌𝑎𝑢

2
𝑎

. (2.4.3)

Here 𝜌𝑎 and 𝑢𝑎 is the density and radial velocity of the wind at the Alfvén surface. Assuming spherical
symmetry the Alfvén surface area can be written as 4𝜋𝑟 2

𝑎 , and thus the total wind mass loss though the
Alfvén surface is ¤𝑀𝑤 = 4𝜋𝑟 2

𝑎𝜌𝑎𝑢𝑎 , reducing (2.4.3) to(𝑟𝑎
𝑅

)2
=
𝐵2
𝑠𝑅

2

¤𝑀𝑤𝑢𝑎
. (2.4.4)
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The alfvén velocity can be written in terms of the surface escape velocity, 𝑣𝑒𝑠𝑐 ≡
√︁

2𝐺𝑀/𝑅, by considering
energy conservation for a particle which escape the gravitational well,

1
2𝑢

2
𝑎 −

𝐺𝑀

𝑟𝑎
= 0 ⇒ 𝑢𝑎 = 𝑣𝑒𝑠𝑐

(
𝑅

𝑟𝑎

)1/2
. (2.4.5)

In Van and Ivanova (2019a) it is then argued that rotation can have a non-negligible effect on the stellar
wind, and thus needs to be included, based on the work of Matt et al. (2012). Based on the same work
Réville et al. (2015) introduced a modified velocity which when relapsed with 𝑣𝑒𝑠𝑐 include this effect, and
is thus used in the CARB model. Here this modified velocity, as presented in the appendix of Réville et al.
(2015), is

𝑣2
𝑚𝑜𝑑

= 𝑣2
𝑒𝑠𝑐 +

2Ω2𝑅2

𝐾2
2

, (2.4.6)

where 𝐾2 = 0.07 is a constant found by Réville et al. (2015). Inserting (2.4.6) instead of 𝑣𝑒𝑠𝑐 into (2.4.4),
squaring both sides and then replacing 𝑣𝑒𝑠𝑐 with 𝑣𝑚𝑜𝑑 yields,(𝑟𝑎

𝑅

)3
=

𝐵4
𝑠𝑅

4

¤𝑀2
𝑤𝑣

2
𝑒𝑠𝑐

⇒
(𝑟𝑎
𝑅

)3
=
𝐵4
𝑠𝑅

4

¤𝑀2
𝑤

1
𝑣2
𝑒𝑠𝑐 + 2Ω2𝑅2/𝐾2

2
. (2.4.7)

This effectively augments the Alfvén radius to be smaller for faster spinning stars and in turn for tighter
binaries which are tidally coupled, thus reducing the effect of magnetic braking. The final assumption
adopted in the CARB model is the approximation that 𝐵𝑠 ∝ Ω𝜏 , where 𝜏 is the convective turnover time.
This can then be used to create a scaling relation based on estimated solar parameters such that,

𝐵𝑠 = 𝐵𝑠,⊙
Ω

Ω⊙
𝜏

𝜏⊙
, (2.4.8)

Where 𝜏 is calculated using the following integral,

𝜏 =
∫ 𝑅

𝑟𝑏

1
𝑣𝑐𝑜𝑛𝑣

d𝑟 . (2.4.9)

Here 𝑟𝑏 is the bottom of the convective envelope and 𝑣𝑐𝑜𝑛𝑣 is the local convective velocity. Practically, this
integral is evaluated numerically by summing over the mesh zone in MESA that satisfy the Schwarzschild
criterion for convection on the form, ����d ln𝑇

d ln 𝑃

����
𝑎𝑑

<

����d ln𝑇
d ln 𝑃

����
𝑟𝑎𝑑

, (2.4.10)

and making sure that the zone is the envelope, by checking to see if the specific nuclear energy generation
rate is less than 0.01 erg g−1 s−1.

Inserting (2.4.8) into (2.4.7) then yields,(𝑟𝑎
𝑅

)3
=
𝑅4

¤𝑀2
𝑤

1
𝑣2
𝑒𝑠𝑐 + 2Ω2𝑅2/𝐾2

2
𝐵4
𝑠,⊙

(
Ω

Ω⊙

)4 (
𝜏

𝜏⊙

)4
⇒ (2.4.11)

𝑟 2
𝑎 =

𝑅14/3

¤𝑀4/3
𝑤

(
𝑣2
𝑒𝑠𝑐 + 2Ω2𝑅2/𝐾2

2
)−2/3

𝐵8/3
𝑠,⊙

(
Ω

Ω⊙

)8/3 (
𝜏

𝜏⊙

)8/3
. (2.4.12)

Applied to (2.4.1) then gives the final expression for the CARB magnetic braking model as presented in
Van and Ivanova (2019a),

¤𝐽𝑚𝑏,𝐶𝐴𝑅𝐵 = −2
3
𝑅14/3

¤𝑀1/3
𝑤

(
𝑣2
𝑒𝑠𝑐 + 2Ω2𝑅2/𝐾2

2
)−2/3

Ω⊙𝐵
8/3
𝑠,⊙

(
Ω

Ω⊙

)11/3 (
𝜏

𝜏⊙

)8/3
. (2.4.13)

The solar parameters used is listed in Van and Ivanova (2019a) to be, 𝐵𝑠,⊙ = 1 G, Ω⊙ ≈ 3 × 10−6 s−1 and
𝜏⊙ = 2.8×106 s. This is the model used in the simulations of thesis, however since this is an deviation from
the standard MB model (Skumanich). Therefore comparisons made to better visualize these differences
have been made.
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2.4.2 Comparison to Skumanich

The Skumanich magnetic braking model is given by Rappaport et al. (1983) as,

¤𝐽𝑀𝐵,𝑠𝑘𝑢 = −3.8 × 10−30𝑀𝑅4
⊙

(
𝑅

𝑅⊙

)𝛾
Ω3, (2.4.14)

where 𝛾 is a parametrization index which in Rappaport et al. (1983) is set to [0, 1, 2, 3, 4] for different mod-
els they tested. One clear difference between the two models is the strong dependency on the convective
turnover time in the CARB model, whereas the Skumanich model has none. This is also seen in Fig-
ure 2.7 which shows the orbital angular momentum loss as a function of time for a system with a donor
mass of 𝑀2 = 1.0 M⊙ , 𝑍 = 0.02, a white dwarf accretor of 𝑀1 = 0.8 M⊙ and an initial orbital period of
𝑃 = 3.0 days. Here 𝛾 has been chosen to be 4. This system has been evolved using the CARB magnetic
braking model and it is therefore this model which affects the dynamical process during each computa-
tional step. The Skumanich model have just been evaluated parallel at each timestep and plotted next to
the CARB model, and has thus no influence on the evolution. This is done in order to better compare the
strength of the orbital angular momentum loss of the two models, at different stages in the same evolu-
tionary path. Evolving a system interdependently under each magnetic braking law, with the same initial
parameters, could yield drastically different evolutionary tracks and thus complicating a direct compari-
son of the two models. In this case doing so the Skumanich model results in a divergent system during
the first mass transfer phase, with a final period of 11.2 days at the end of the simulation while the CARB
model results in an AM CVn system after an initial mass transfer phase. The detached period between
the initial mass transfer phase and the AM CVn phase, indicated by the dashed lines in Figure 2.7, last
for about 1.7 Gyr and is rather impactful on the CARB model. In this period the star degenerates and
becomes almost completely radiative, reducing the convective envelope to only some convection at the
very surface of the star. This then results in a significant smaller convective turnover time which then
scales the CARB model substantially. This scaling is not seen in the Skumanich model where the only
two dependent parameters that change during this phase is the period and the radius. Both the period
and the radius decreases during this phase, which result in an increase and decrease of the overall orbital
angular momentum loss, respectively. Thus the change is not as dramatic in the Skumanich model as it
is in the CARB model. However, the strength of the scaling with respect to radius can be adjusted using
the 𝛾-parameter. Choosing for example a larger 𝛾 would yield smaller values for the magnetic braking
as the radius continues to decrease. This would however lead to a weaker model in the beginning of the
evolution, as discussed later in this section with respect to Figure 2.8. Another observation worth noting
is the increase in magnetic braking with the CARB model as the degenerate donor initiates mass transfer
again in the AM CVn phase. This happens as the donor develops a significant convective envelope, as a
consequence of strong mass loss, and thus lengthening the convective turnover time. The CARB model
is thus able to factor in different degrees of bloated WD donors which becomes AM CVns, also discussed
in Belloni and Schreiber (2023).
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Figure 2.7: Plot showing the orbital angular momentum loss due to magnetic braking from the CARB and
the Skumanich model, green and red respectively. The loss due to gravitational wave radiation is shown
in green. The two dashed lines indicates the detached period between the inital mass transfer phase and
the AM CVn phase. Simulation was made using a 𝑀2 = 1.0 𝑀⊙ , 𝑍 = 0.02 donor, with a white dwarf
accretor of 𝑀1 = 0.8 𝑀⊙ and an initial orbital period of 𝑃 = 3.0 days. The system was evolved using the
CARB magnetic braking model and the Skumanich model has been plotted parallel.

Figure 2.8 shows different parallel tracks for the complete evolution using𝛾 values in the range [0, 15]
as a function of model number to better highlight areas with large changes in the system and thus forcing
a smaller timestep for each model in these areas. For reference the 8 Gyrs starting point in Figure 2.7
is at model number 132 in Figure 2.8. It can be seen from Figure 2.8 that without implementing other
scaling factors it becomes difficult to accommodate the assumption that the magnetic field scales with the
convective envelope, without sacrificing the strength of the magnetic braking in the beginning. This loss
of orbital angular momentum in the beginning is very important for the evolution of the system, given a
set of starting parameters, as it determines how fast the initial mass transfer sets in, and thus how evolved
the donor is, which in turn directs the response of the star due to the mass transfer. A 𝛾 = 1.75 leads to
the same initial magnetic braking values for both CARB and Skumanich, however CARB overtakes again
as the convective envelope grows. Furthermore, lowering 𝛾 in order to finetune the initial strength can
lead to torques which are several orders of magnitude larger during the AM CVn phase, as evident from
the orange line in Figure 2.8. The Skumanich model also leads to two points during the evolution where
the magnetic braking is the same for all 𝛾 , where the radius is 1 R⊙ . This is also evident in (2.4.14). In this
scenario, the radius of the donor becomes greater than 1 R⊙ before the initial mass transfer phase initiates,
and after losing some mass it becomes less that 1 R⊙ . This creates a small window where increasing 𝛾 will
lead to stronger magnetic braking. Where in the rest of the evolution this will lead to a weakening of the
magnetic braking.
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Figure 2.8: Plot showing the orbital angular momentum loss due to magnetic braking from the CARB
and the Skumanich model. Further, the loss due to gravitational wave radiation is shown in green. The
Skumanich model has been plotted 100 times using different values of 𝛾 between 0 and 8 as indicated by
the color bar. The red and orange lines shows the Skumanich model using 𝛾 = 4 and 𝛾 = 1.75 respectively.
Simulation was made using a 𝑀2 = 1.0 𝑀⊙ , 𝑍 = 0.02 donor, with a white dwarf accretor of 𝑀1 = 0.8 𝑀⊙
and an initial orbital period of 𝑃 = 3.0 days. Simulation was evolved using the CARB magnetic braking
model and the Skumanich models has been plotted parallel.

The CARB model is an overall stronger magnetic braking prescription in the beginning of the evo-
lution, where magnetic braking matters the most. This leads to a larger window of initial parameters
that results in a compact binary, as will be discussed in chapter 4. Its high dependency on the convective
turnover time also has its advantage as it better reflects the theory behind large-scale magnetic field gen-
eration in sun-like stars, which depends on the convective zone. Thus, this magnetic braking model has
been used in the simulations within this thesis.

Another source of angular momentum loss is through GWR, which has a significant effect in compact
binaries. Thus, this phenomenon is elaborated upon in the following section while also explaining the
detectability of GWR from compact binaries with respect to LISA.
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2.5 Gravitational Wave Radiation

The change in orbital energy due to gravitational radiation can be expressed as the negative value of the
gravitational wave luminosity. Peters and Mathews (1963) derive an expression for the average energy
radiated from a binary system, and thus the change in orbital energy to be,

¤𝐸 = −𝐿𝑔𝑤 = −32
5
𝐺4

𝑐5
𝑀2

1𝑀
2
2𝑀

𝑎5 𝑓 (𝑒) . (2.5.1)

Here 𝑓 (𝑒) is an enhancement factor for eccentric systems given by,

𝑓 (𝑒) = 1 + (73/24)𝑒2 + (37/96)𝑒4

(1 − 𝑒2)7/2 , (2.5.2)

which for circular systems is 𝑓 (0) = 1. Note (2.5.1) is only valid given the "quadrupole approximation",
which assumes that the dimensions of the system are much smaller than the wavelength of the gravita-
tional wave,

𝑎 ≪ 𝜆𝑔𝑤 . (2.5.3)

For circular orbits the frequency of the gravitational waves emitted is given by,

𝑓𝑔𝑤 = 2𝑓𝑜𝑟𝑏 =
2
𝑃
, (2.5.4)

as two waves are emitted per orbital period. Thus the wavelength of the gravitational wave is,

𝜆𝑔𝑤 =
𝑐

𝑓𝑔𝑤
=

𝑐

2𝑓𝑜𝑟𝑏
= 𝑐

𝑃

2 . (2.5.5)

Using Kepler’s third law in (2.5.3), this sharp inequality can then be rewritten as,

𝑐
𝑃

2 ≫
(
𝑃2𝐺

4𝜋 𝑀

)1/3
(2.5.6)

𝜋𝑐3

2𝐺 𝑃 ≫ 𝑀. (2.5.7)

The constant fraction in front of the orbital period in (2.5.6) is of order 1038 g s−1. Assuming the lowest
known orbital period for an AM CVn (HM Cnc, see A.1) of 𝑃 ≈ 321 s, to try an break the inequality,
constrains the systems to have a total mass 𝑀 ≪ 108 M⊙ . As these systems typically have a total mass of
around 1 M⊙ this approximation is very valid.

From the total orbital energy and the orbital angular momentum of a circular binary system given
by,

𝐸𝑜𝑟𝑏 = −𝐺𝑀1𝑀2
2𝑎 , 𝐽 2

𝑜𝑟𝑏
=
𝐺𝑚2

1𝑚
2
2

𝑀
𝑎, (2.5.8)

the change in orbital angular momentum due to gravitational wave radiation can be derived. This is done
by first inserting 𝐽 2 into the orbital energy equation and differentiating,

𝐸𝑜𝑟𝑏 = −𝐺
2𝑀3

1𝑀
3
2

2𝑀
1
𝐿2 ⇒ ¤𝐸 =
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. (2.5.9)

Combining (2.5.1) and (2.5.9) then gives the final expression,

¤𝐽𝑔𝑤
𝐽𝑜𝑟𝑏

= −32
5
𝐺3𝑀1𝑀2𝑀

𝑐5𝑎4 . (2.5.10)

This equation is also the standard prescription for orbital angular momentum loss used by MESA in this
thesis.
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To find an expression for the received gravitational strain amplitude, Press and Thorne (1972) pro-
vides an expression for the flux,

𝐹𝑔𝑤 =
𝑐3

16𝜋𝐺 ⟨ ¤ℎ2
+ + ¤ℎ2

×⟩, (2.5.11)

where ⟨ ¤ℎ2+ + ¤ℎ2
×⟩ is the time average of the derivatives squared for the "plus" and "cross" polarization am-

plitudes, respectively. Then adopting the same assumption as in Douglass and Braginsky (1979), for con-
tinuous gravitation radiation, stating isotropic radiation and that the flux falls of as the distance squared
yield,

𝐹𝑔𝑤 =
𝐿𝑔𝑤

4𝜋𝑑2 =
𝑐3

16𝜋𝐺 ⟨ ¤ℎ2
+ + ¤ℎ2

×⟩ ⇒ ⟨ ¤ℎ2
+ + ¤ℎ2

×⟩ =
4𝐿𝑔𝑤𝐺
𝑐3𝑑2 . (2.5.12)

In Douglass and Braginsky (1979) the distance𝑑 is presented as the distance from the source to the detector.
However, this distance may be modified in cosmologically red-shifted environments, thus often denoted
as the luminosity distance, 𝑑𝐿 ; the apparent distance to the source. For these AM CVns to be detectable,
as shown later in this section, they must be within our galaxy, thus cosmological red-shift has no effect.
The final effect stems from the line of sight velocity, which also has no effect as 𝑣𝑟/𝑐 never becomes
meaningful except in very extreme environments like near the center of the galaxy. However, detecting
these theoretical AM CVn systems becomes problematic due to both distance and galactic noise, as also
discussed later in this section. Thus it is assumed that 𝑑 ≈ 𝑑𝐿 .

The two polarizations amplitudes depends on the inclination angle of the observed binary, here the
two components can be written as,

ℎ+ (𝑡) = ℎ 1 + cos2 (𝑖)
2 cos (𝜔𝑔𝑤𝑡) (2.5.13)

ℎ× (𝑡) = ℎ cos (𝑖) sin (𝜔𝑔𝑤𝑡), (2.5.14)

adopting the monochromatic expression from Maggiore (2008). Here 𝑖 is the inclination angle, 𝜔𝑔𝑤 =

2𝜋 𝑓𝑔𝑤 is the angular frequency and ℎ is the amplitude parameter defined such the two polarizations are
of equal amplitude for face-on binaries. These expressions thus take into account that when the orbit is
edge-on the received gravitational signal is linearly polarized, and only ℎ+ contributes.When the binary is
face-on the signal is circular polarized, and both ℎ+ and ℎ× is received. These two types of polarizations
can be seen in Figure 2.9 B and A respectively.

BA
Figure 2.9: Graphical illustration of gravitational waves influence test particles placed in a circle. (A)
shows a circular polarized wave, expected from a face on circular binary, and (B) shows a linear polarized
wave expected from a edge-on binary. Both waves show two periods.

Differentiation and squaring of both components in (2.5.13) leads to,

¤ℎ2
+ =

[
ℎ

1 + cos2 (𝑖)
2

]2
𝜔2
𝑔𝑤 sin2 (𝜔𝑔𝑤𝑡), (2.5.15)

¤ℎ2
× = [ℎ cos(𝑖)]2𝜔2

𝑔𝑤 cos2 (𝜔𝑔𝑤𝑡). (2.5.16)
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The time average of both sin2 and cos2 yield 1/2, thus the sum reduces to,

⟨ ¤ℎ2
+ + ¤ℎ2

×⟩ = ℎ2𝜔2
𝑔𝑤

[
1 + cos4 (𝑖) + 6 cos2 (𝑖)

8

]
= ℎ2𝜔2

𝑔𝑤 (𝑔(𝑖))2, (2.5.17)

where 𝑔(𝑖) is a function modifying the amplitude based on the inclination angel yielding values in the
interval [1,√2/4], thus for face-on binaries the amplitude is ℎ and for edge-on binaries it is ≈ 0.35ℎ.
Assuming face-on binaries, as these yield the strongest signal and is thus more plausible to detect, and
inserting (2.5.17) into (2.5.12) then yields,
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Inserting the Luminosity from (2.5.1) yields,
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Using Kepler’s third law to replace the orbital separation and 𝑃 = 2/𝑓𝑔𝑤 yields,
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Collecting all mass variables into one variable, the chirp mass, M, then gives the final expression for the
strain,
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where,

M =
(𝑀1𝑀2)3/5

(𝑀1 +𝑀2)1/5 . (2.5.22)

The characteristic strain, which is the stain measured over many periods of the orbit to increase the
signal-to-noise, is given as (Tauris and van den Heuvel, 2023),

ℎ𝑐 =
√
𝑁ℎ, (2.5.23)

where𝑁 = 𝑓𝑔𝑤𝑇 with𝑇 being the observation time. For LISA the proposed nominal mission time is 4 years
(Amaro-Seoane et al., 2017). The characteristic strain can then be compared to the sensitivity curve for
LISA which is the curve determining the baseline signal noise amplitudes with respect to frequency. The
sources should therefore have higher characteristic strain amplitudes than those given by this sensitivity
curve, in order to be able to distinguish the signal from the noise. This makes it a useful tool for assessing if
a system is be detectable. These sensitivity curves shown in Figure 2.10 have been generated from Robson
et al. (2019) using the associated Python code downloaded from Cornish (2019). The curves presented are
using the sky-averaged signal-to-noise ratio. This can of course be misleading as the sensitivity may vary
across the sky. However, as the observation time increases this sensitivity increases overall, also in noisy
areas. As an example the contribution from the galactic confusion noise, depicted as the bumps where
the dotted, dashed and dash dotted lines are in Figure 2.10, is stronger when the antenna points in the
direction of the galactic center and weaker when pointed away from it, as discussed in detail in Robson
et al. (2019).
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Figure 2.10: The sensitivity curve for LISA for observation time𝑇 = [0.5, 1, 2, 4] years for the dotted, dash
dotted, dashed and the full red and purple lines respectively. The purple lines is shifted on the y axis by
0.45, further explanation in main text. The blue and green lines shows the evolutionary track for selected
systems which go past the sensitivity assuming a distance 𝑑 = 1 kpc and an observation time of 𝑇 = 4
years. The color indicates if the system becomes a white dwarf with respect to the surface gravity. The
black arrows indicate the direction of the evolution.

Figure 2.10 shows a selected handful of systems which ends up with ℎ𝑐 > LISA sensitivity curve.
The systems plotted all have donor masses of 𝑀2 = 1.25 M⊙ . The accretor mass varies in the range
𝑀1 = [0.85, 1] M⊙ and the post-CE period varies in the range 𝑃0 = [0.5, 1.5] days. The shifted purple
lines represent the sensitive curves for which the calculated strain amplitude, for edge-on binary, needs
to exceed in order to be detectable. In reality for edge-on binaries, the strain is shifted down on the log
scale by log10 (

√
2/4) ≈ −0.45, however for illustrative purposes the purple lines are shifted up instead.

The distance is assumed to be 𝑑 = 1 kpc. If the distance is greater, the track move down and becomes
less detectable. For a change in characteristic strain on the log scale of -1, the more luminous systems
becomes barely detectable, but this would also imply an increase in distance of 10 kpc, which is past
the center of the Milky Way, making detecting the systems otherwise difficult due to galactic noise. In
Figure 2.10 the observation time is chosen to be 𝑇 = 4 years for the evolutionary tracks. However, after
only 6 months some of the very luminous systems are expected to be resolvable from noise. In Figure 2.10
this corresponds to a shift on the log scale of log10 (

√︁
1/8) ≈ −0.45, thus still placing the peaks of the green

tracks above both the purple and red sensitivity curves.
This finalizes the physics behind gravitational wave radiation, its influence on the orbit of binaries,

and the detectability of the systems within the gravitational wave spectrum. However, this only applies
under the assumptions that the binary is circular, the gravitational wavelength is much smaller than the
orbital separation, the gravitational wave amplitude fall off as the distance squared, and that the wave is
monochromatic.

All relevant theory has now been investigated. In the next chapter, the observational data used
to compare with our simulations will be presented. Furthermore, a section about the MESA specifics is
included to explain the relevant simulation parameters.
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Chapter 3

Observational Data and Simulation Specifics

3.1 Observational Data

To evaluate the results of the simulations, observational data are necessary. Therefore, relevant systems
have been picked out, which have estimated parameters other than orbital period, such as: mass of donor,
mass of WD accretor, mass transfer rate and radius of the donor. Both AM CVn systems and evolved CVs
have been selected in order to give a more representative subset of systems which follow the evolution
considered in this thesis. A list of the considered AM CVn and CV systems can be seen in Table A.1 and
A.2 respectively.

3.1.1 AM CVns

Our main source for comparison systems is Ritter and Kolb (2003). It is a detailed cataloger with a wide
range of semi-detached and detached cataclysmic binaries and low mass X-ray binaries (LMXBs). They
define a cataclysmic binary as a system with a WD, or WD precursor primary, and a low mass star as the
secondary, the secondary may be evolved as for AM CVns. The subtype of a given system is also available
for those that have been classified, one is the AM CVn type. This allows us to distinguish the relevant
systems from the huge number of systems and extract relevant parameters from the database, which are
the period and masses. For the purpose of our thesis, the semi-detached cataclysmic dataset is used both
to get an initial set of AM CVn systems and CVs where mass transfer is ongoing.

As stated previously, we would like more parameters and have thus found other sources which es-
timate these. For AM CVns, the primary source for this information is Solheim (2010); and references
therein, where mass transfer rates and some masses have been extracted. Additionally, a system which is
not in the database of Ritter and Kolb (2003), named SDSS J092638.71+362402.4 (J0926+3624), was added.
This was also done using the mass transfer rates found by Ramsay et al. (2018); Fontaine et al. (2011),
where 4 new systems were added. In Belloni and Schreiber (2023) they used observational data for 8
AM CVns, which had estimated radii. These were taken from van Roestel et al. (2022), and has also been
added to our dataset.

The methods which have been used to determine the different parameters of the systems will not
be elaborated as it is beyond the scope of this thesis. However, the potential uncertainty of some of
these parameters should be mentioned. The orbital periods are well known and have been estimated
with high precision; this is also the reason why no uncertainties have been stated. However, some of the
mass transfer rates stated in Table A.1 have been specifically selected by us, since there was a multiple
of different estimations for this parameter. As a rule of thumb the lower values were selected, but some
of the other estimations were also poorly constrained, hence the other estimate was used. Four systems,
named J1908+3940, HP Lib, GP Com and V396 Hya had a multiple of different estimated mass transfer
rates, the alternative mass transfer rates are,

[(6.6 ± 3.1) × 10−7, (5.5 ± 1.9) × 10−9, < 4.3 × 10−12,∼ 10−11] M⊙ yr−1,
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respectively (Solheim, 2010; Ramsay et al., 2018). Most of the alterative, estimated mass transfer rates agree
somewhat, but for J1908+3940 they differ by a factor ∼ 100. In Ramsay et al. (2018) they do mention that
the mass transfer rates for some systems are higher than predicted by other models, which might be due to
the donors having larger radii than expected. However, they assume that the disc is in a steady state and
that the primary has a mass of 0.80±0.10 M⊙ . These assumptions might lead to substantial discrepancies,
as it could be in a high state meaning that most of the light, which is received, stems from the accretion
disc (Fontaine et al., 2011). Furthermore, Ramsay et al. (2018) used the spectral energy distribution (SED)
to infer a mass transfer rate, whereas Fontaine et al. (2011) used a non-local thermodynamic equilibrium
accretion disc fit. Thus, it seems reasonable to use the mass transfer rate of Fontaine et al. (2011) as they
are able to better account for the high state accretion disc.

For the masses and radii, the best estimates are given for eclipsing systems, where high-speed pho-
tometry is used (Green et al., 2018). However, not all of our chosen systems are eclipsing, but estimating
the masses is still possible in some cases. For example, the masses of HM Cnc are determined by using
the direct impact model to constrain them, in terms of the observed phase shape of the photometry mea-
surements (Barros et al., 2007). Some systems had a multiple of reported masses for either the donor or
the WD, but unlike for the mass transfer rates, there were not too large discrepancies and estimates with
uncertainties were prioritized. Only donor radii of eclipsing systems have been considered (van Roestel
et al., 2022).

3.1.2 Evolved CVs

For the CV population, two categories were chosen, evolved CVs and CVs with secondaries that are pro-
genitors of extremely low mass white dwarfs (ELM WDs). For the prior, systems which have estimated
masses and radii were chosen following Belloni and Schreiber (2023). This left us with 9 systems, that
have evolved donors. The ELMs are systems which are in a transition phase towards an AM CVn. In
El-Badry et al. (2021) 21 systems which currently have mass transfer or recently became detached are
investigated. Conveniently, they have estimated the masses and radii using the SEDs for all the systems,
which is convenient for our purpose. This gives us a good sample of systems to compare with in terms of
the potential detached phase that some of our systems go through when evolving towards an AM CVn.

In order to investigate potential biases in our chosen observational data, different plots have been
made for some of the parameters. The distribution of the orbital periods for the observational data can
be seen in Figure 3.1a, where it is clearly seen that we have an abundance of systems with orbital periods
of 𝑃 ≲ 1 hrs, these are the AM CVns. The evolved CVs have orbital periods which are more spread out,
but the main bulk between 3 hrs< 𝑃 < 5 hrs is dominated by the ELMs. A few systems also occupy the
period gap 2 hrs≲ 𝑃 ≲ 3 hrs, these are ELMs. We have 54 AM CVn systems compared to 30 evolved CVs
where 21 of these are ELMs.
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Figure 3.1: Plots showing the distribution of orbital period and donor mass for both AM CVns and evolved
CVs. Note that not all the AM CVns systems in the data has an estimated donor mass, hence not all can
be plottet in the bottom right.

To the right in Figure 3.1 the period is plotted in terms of the donor masses for both the evolved
CVs and the AM CVns. A general tendency for the evolved CVs is that as the donor gets less massive, so
does the orbital period. This is in agreement with the expected evolution of CVs, where the orbital period
shrinks as it experiences mass transfer. The opposite trend is seen for the AM CVns, as the masses of the
donors become more massive, the orbital periods decrease. However, since these donors are expected to
be degenerate objects, this is also in good agreement with the evolutionary scenarios because the radius
is inversely proportional to the mass for degenerate WDs. This allows the binary to reach lower orbital
periods.

Another interesting effect can be shown for the masses and radii of the donors. In Figure 3.2, these
two parameters have been plotted. It is seen that some of the donors are bloated, meaning they have a
radius which is larger than what is expected for a normal main sequence star. The approximate mass-
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radius relation for main sequence stars, 𝑅 ≈ (𝑀2/M⊙)0.8, is shown, thus systems where the donor has a
radius greater than that given by this relation are bloated.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
M2, [M�]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R 2
,[

R �
]

Evolved CVs
' ≈ "0.8

Figure 3.2: Radii of the donor stars in terms of their masses. The approximate mass-radius relationship
for main sequence stars has also been plotted to emphasize the bloated nature of the donors in some of
the evolved CVs.

This is an effect caused by mass transfer, if the donor loses mass faster than the time it takes for it
to settle back into thermal equilibrium, it stays somewhat expanded (Knigge et al., 2011). The systems
which follow this relation (some of the ELMs) might therefore be on the verge of ending mass transfer or
do not experience it. This is exactly the case for some of the ELMs (El-Badry et al., 2021).
Additional plots for the different parameters can be seen in Appendix A.

Now that the comparison data has been presented, the framework for the simulation setup will be
elaborated. Both the different effects, we implement in terms of the binary stellar evolution, but also that
of the donor star.

3.2 Simulation Specifics

The numerical simulation done in this thesis is made using the MESA code version 24.08.1 Paxton et al.
(2011, 2013, 2018, 2019, 2015); Jermyn et al. (2023). Some settings has been changes from the default values
in MESA to better accommodate our simulations. Some are already presented in the theoretical sections
such as magnetic braking and the Eddington accretion limit. If something is not specifically presented in
the following the default in MESA-24.08.1 is used.

3.2.1 Binary Parameters

As presented in section 2.3 the accretion onto the WD needs to be modified depending on the mass and
the available material from mass transfer. This is handled in the extras_binary_start_step by cal-
culating 𝜂𝐻 and 𝜂𝐻𝑒 , as describe in section 2.3 and then equating 𝛽 = 1 − 𝜂𝐻𝑒𝜂𝐻 . Thus, mass not ac-
cumulated is lost in a wind near the accretor. Furthermore, the Eddington accretion limit presented in
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Section 2.2.3 is handled using the use_other_mdot_edd routine and the described model is thus written
into the mdot_edd_routine in the run_binary_extras.f90, thereby modifying ¤𝑀𝑒𝑑𝑑 . In much the same
manner, the CARB magnetic braking model has been implemented using the use_other_jdot_mb rou-
tine where the code associated with Van and Ivanova (2019a) (available from Van and Ivanova (2019b)),
is implemented. However, this code has been slightly modified since it was made for an older version,
and newer version of MESA has controls implemented for when to apply magnetic braking based on the
present fractions of the convective envelope and convective core of the donor. From these settings only the
minimum allowed mass fraction of the convective envelope, jdot_mb_min_qconv_env, has been change
to 0 from the default values of 10−6. This is done due to the CARB model already taking the convective
envelope into account through the convective turnover time. Due to the assumption that the system is
tidally locked angular momentum loss due to spin-orbit coupling (tidal torques) has been switched off.
This sort of angular momentum loss is also already being taken care of implicitly by the magnetic braking.

Lastly with respect to the binary controls, some timestep parameters and tolerances have been
changed to relax the models a bit in periods of large mass, separation, and angular momentum changes.
This would otherwise lead to premature termination due to computational errors.

3.2.2 Donor Parameters

This section highlights the physical schemes and parameters which are changed, with respect to the donor
star, within our simulations compared to the default MESA-24.08.1 code. Some timestep parameters and
tolerances have also been change here, in order to relax or constrain the models, however as these do not
change the overall physical assumptions, they are not included in this section.

Metallicity and Opacity. The donor stars in the different models all have sun-like metallicities of 𝑍 =

0.02 using the type 2 opacity table. For low temperatures the Freedman11 table is used. This table is
based on Freedman et al. (2008) and was specifically made to incorporate ultra-cool dwarfs and extrasolar
planets, and goes as low as 75 K. Since AM CVn donors are expected to become very cold, helium-rich,
planet-like remnants, this table is used to better capture the opacities related to this late-stage phase.

Equations Of State. MESA uses a blend of included equations of state (EOS). All available equation
of state prescriptions has been included in the simulations, as these are valid in different ranges of tem-
perature, pressure and composition and thus better coverage is ensured. The EOSs included are the CMS
(Chabrier et al. (2019)), Skye (Jermyn et al. (2021)), PC (Potekhin and Chabrier (2010)), FreeEOS (Irwin
(2008)), OPAL/SCVH (Rogers and Nayfonov (2002); Saumon et al. (1995) and HELM (Timmes and Swesty
(2000)) equations of state. The blending occurs in areas with overlap between multiple EOSs, such that
moving from one equation of state to another happens smoothly. Since the donor is expected to become
increasingly degenerate during its evolution the default energy option has been change from dedt to
eps_grav as the latter leads to lower error in entropy and are thus less likely to create unphysical be-
havior at the cost of potentially larger errors in the total energy conservation, as explained in the MESA

documentation.

Mixing Length Theory and Atmosphere Boundary Conditions. The default mixing length theory
(MLT) in MESA, that being the TDC model from Kuhfuss (1986), assumes optically thick material and is not
valid in very low optical depth regions. In order to include convection in the optically thin regions, as
well, the Henyey model, from Henyey et al. (1965), is adopted. This model provides extensions to the MLT
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in order to work in optically thin regions, as well. This is appropriate for these systems which evolve
into degenerate donors where the convective envelope becomes very shallow, yet still has an effect on
the turnover time and thus on the angular momentum loss through the CARB magnetic braking model.
These differences between MLTs are reviewed more in depth in Joyce and Tayar (2023). The default mixing
length 𝛼 = 2 is used. For the atmospheric boundary conditions, the varying opacity option is used. This
is done in order to better capture the boundary conditions in the later degenerate stages, as this option
evaluates the local temperature and pressure, varying the opacity throughout the atmosphere. Contrary
to the default fixed option which uses a uniform opacity, thereby avoiding errors due to steep gradients.

Wind Mass Loss. Wind mass loss has been included using the standard Reimers scheme implemented
in MESA following Reimers (1975), to account for mass loss which can influence the orbital angular mo-
mentum loss through magnetic braking. The Reimers scaling factor has been set to the typical value of
0.5 as explained in the MESA documentation. This values is also consistent with the median reported by
McDonald and Zijlstra (2015) of 0.477+0.050

−0.062, based on a study of 56 Galactic globular clusters across a wide
range of metallicities. Although they found this value to be independent of metallicity.

Nuclear Network. To more accurately track the nuclear burning in the higher mass donors, where
the CNO-cycle dominates hydrogen burning, the nuclear network is changed to cno_extras.net, which
includes more isotopes than the basic network for better abundance tracking. This increased number of
isotopes also leads to changes within the diffusion representative settings, which tracks the redistribution
of these isotopes of similar atomic mass number over time. The default species that are tracked are H-1,
He-3, He-4, O-16 and Fe-56. If any other isotopes are present these will then be binned into the isotope
with the atomic mass number equal to or larger than said isotope, with the exception of isotopes heavier
than Fe-56, these are all binned into Fe-56 to create a cap. To account for the isotopes in the CNO-cycle
this list is expanded with C-12, C-13, N-14. Furthermore, Ne-20, Mg-24 is also included, for completion,
as these are part of the basic-network, however these are not expected to become relevant for the mass
range in this thesis, although some isotopes included in the cno_extras.net will be binned into these and
thus diffuse in the star as if they all have atomic number 20 and 24 respectively, all to ease calculations.

3.2.3 Accretor Parameters

The WD accretor is treated as a point mass in our simulations. This approximation is justified as the WD’s
radius remain significantly smaller than the orbital separation in the majority of the evolution, and the
response to accretion is handled separately. Using using (2.2.24) for the WDs radius, at minimum sepa-
rations the ratio between the orbital separation and the accretor radius was found to be 𝑅1/𝑎 ∼ 0.1, thus
at least approaching non-negligible regimes. Nevertheless, for computationally simplicity, and because
the donors evolution is the main focus, we adopt the point mass approximation rather than evolving both
stars.

Thus, the initial settings and parameters have been presented. The following sections contain the result
of our simulations, starting with a general presentation of our initial grid search. This is then followed by
a more in-depth analysis of the results and comparisons with observational data.
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Chapter 4

Simulation Results

4.1 Grid Search Results

An initial grid of 270 systems using different donor mass, accretor mass, and post-CE orbital period is
used. This grid is set up in the following way,

𝑀1,0 = [0.6, 1] M⊙ in steps of 0.05 M⊙, (4.1.1)

𝑀2,0 = [1, 1.5] M⊙ in steps of 0.125 M⊙, (4.1.2)

𝑃0 = [0.5, 3] days in steps of 0.5 days. (4.1.3)

Later on a finer grid is made to better highlight features for systems which becomes AM CVns. This is
discussed in section 4.3.

4.1.1 Helium Core Mass

The initial grid of post-CE parameters is as presented in (4.1.1), (4.1.2), (4.1.3). The simulations were
terminated if they reached a max age of 14 Gyr which is roughly a Hubble time. Furthermore, if the
donor mass reached a minimum of 0.02 M⊙ the simulation was terminated as well, because only subtle
changes happened between that point and a Hubble time. However, this is changed later to investigate
what happens in the later stages of evolution for the systems that reach the AM CVn phase. Figure 4.1
shows the evolution of the He-core mass for these track as a function of age. The red track are systems
which do not peak over the sensitivity curve for LISA, assuming 4 year of observation and face-on binaries
at a distance of 1 kpc. These tracks can be divided into 3 categories; systems that never develop a He-core,
systems that develop a He-core not big enough to become detectable in the compact binary phase, and
finally systems that develop a large He-core but never becomes a compact binary within a Hubble time.

The latter can be further divided into two sub-categories. Some of the tracks would, if the max age
was extended slightly, become AM CVns, while the systems with larger He-core masses require a larger
initial orbital separation for them to be able to develop. This will then lead to a larger orbital separation
after the initial mass transfer phase. Once the system becomes detached the star degenerates and becomes
a white dwarf. Here magnetic braking has little to no effect, thus gravitational wave radiation is the
only factor which can potentially tighten the orbit enough to initiate a secondary mass transfer phase.
However, if the orbital separation is too larger once these system become detached, i will take a very
long time before the second mass transfer phase is reached. This can be seen by rearranging (2.5.8) and
differentiating with respect to time yield,

¤𝑎 =
𝐺𝑀1𝑀2

2𝐸2
𝑜𝑟𝑏

¤𝐸𝑜𝑟𝑏 . (4.1.4)

Inserting (2.5.1), as the change in orbital period happens due to gravitational wave radiation, yield,

¤𝑎 = −64
5
𝐺3

𝑐5
𝑀1𝑀2𝑀

𝑎3 , (4.1.5)
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taking the definite integral of the inverse with respect to the orbital separation yield the time from de-
tachment to Roche lobe overflow again,

𝑡𝑅𝐿 =
∫ 𝑎𝑅𝐿

𝑎0

1
¤𝑎 d𝑎 =

5
256

𝑐5

𝐺3
1

𝑀1𝑀2𝑀

(
𝑎4

0 − 𝑎4
𝑅𝐿

)
, (4.1.6)

where 𝑎0 is the orbital separation at detachment and 𝑎𝑅𝐿 is the orbital separation when Roche lobe over-
flow initiates again. Thus the systems become highly dependable on the orbital separation at detach-
ment. As seen from Figure 4.1 these higher mass white dwarfs all lie in the mass range of approximately
[0.165, 0.21] M⊙ . Assuming accretor masses in the range𝑀2 = [0.6, 1] M⊙ and then combining (2.2.2) and
(2.2.24) yield orbital separations at the secondary mass transfer phase in the range 𝑎𝑅𝐿 ∼ [0.65, 0.88] R⊙ .
At detachment close to all of these higher mass He-core systems have 𝑎0 > 2.5 R⊙ , however even assuming
an equality here to minimize would yield 𝑡𝑅𝐿 ≥ 22.8 Gyrs. Thus the systems never evolve into AM CVns
within a Hubble time, even without counting the time it takes the core to develop. The red tracks which
have 𝑎0 < 2.5 R⊙ include these edge cases where they nearly become AM CVns within a Hubble time,
but remain undetectable. An example of this can be seen by looking at the 14 Gyrs gridline in Figure 4.1
where the track with the lowest He-core mass there is green. This indicates that the system has become
just tight enough to peak over the sensitivity curve for LISA, however the systems never reach the point
where the secondary mass transfer phase is initiated before termination due to it reaching the max age of
14 Gyrs.
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Figure 4.1: Simulated tracks for the He-core mass of the initial 270 systems as a function of age. The red
lines shows systems which do not become strong enough sources in the gravitational wave spectrum to
peak over the LISA sensitivity curve after 4 years of detection assuming a face-on binary at a distance of
1 kpc. The green lines show tracks for systems which both degenerates and becomes compact enough
to emit detectable gravitational waves. The blue lines shows tracks for systems which do not completely
degenerate, however still meet the above mentioned criteria for being detectable. The black dots show
where the donor becomes a white dwarf as the surface gravity reach 𝑔surf > 106 cm s−2.
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The red tracks which do develop a low mass He-core but do not become GW sources share the fact
that they do not degenerate completely with the blue tracks. These blue tracks just barley peaks over
the sensitivity curve and are thus probably not detectable in the GW spectrum. However, it does suggest
that a smooth transition exists between these semi-degenerate compact binaries and AM CVns. This is
also evident from some of the lower He-core mass green tracks which at some point in their evolution
gets 𝑔surf > 106 cm s−2. For some of these systems this happens right before the core starts losing mass
via mass transfer. This suggests that they have some residual hydrogen in the envelope which needs to
be stripped before the core is exposed, and by extension suggests that a smooth evolutionary transition
exists between ELMs and AM CVns. For systems that become AM CVns and degenerates during the
detached phase, there seems to be a sweet-spot in the He-core masses in the range [0.125, 0.16] M⊙ . If
including systems that become compact during the secondary mass transfer phase, the range becomes
about [0.075, 0.16] M⊙

Lastly, some splitting is visible in the tracks due to the initial parameters 𝑀1,0, 𝑀2,0 and the initial
orbital period 𝑃0. The results of these parameters are shown in Figure 4.2 which is a plot similar to
Figure 4.1 but color graded according to the initial parameters. The initial major splitting happens due to
the initial donor mass as seen in Figure 4.2A. These tracks are then further bifurcated by the initial orbital
period as seen in Figure 4.2B which then concludes with an even finer bifurcation with respect to the
accretor mass in Figure 4.2C. Change in the initial orbital period will of course have a direct consequence
on the initial orbital separation as 𝑎3 ∝ 𝑃2. Thus, it influences how evolved the donor can become before
magnetic braking has had time to tighten the orbit and the initial mass transfer phase is initiated. This is
important for the rest of the evolution as highlighted previously. The accretor has the same consequence,
although more subtle. Increasing the accretor mass will increase the orbital separation for a fixed period
as 𝑎3 ∝ (𝑀1+𝑀2). However, it will also decrease the Roche lobe radius through (2.2.2), and it will therefore
both delay and urge the time it takes for the initial mass transfer to initiate, resulting in finer splitting.
The major splitting due to the donor mass happens as the He-core evolution is strongly dependent on the
initial mass.
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A AB

C

Figure 4.2: Plots showing the evolution of the He-core mass for the initial grid search with respect to time.
In A the tracks are colored according to the initial donor mass, B is colored according to the initial orbital
period and C is colored according to the initial accretor mass.

4.1.2 Strain Evolution

Figure 4.3 shows a plot of the strain evolution for the 270 grid systems. The tracks are color graded
according to the maximum He-core mass each donor gets during its evolution. The brown systems on the
plot represent systems which do not develop a He-core and thus becomes brown dwarfs after the initial
mass transfer phase. These also never reach the secondary mass transfer phase and originate from the
lower end of the donor masses chosen (1 M⊙ and 1.125 M⊙) with shorter orbital periods. As a result, these
donors initiate mass transfer before developing a He-core and loose enough mass for hydrogen burning
to slow down significantly, preventing the formation of a helium core. The importance of a developed
He-core, when it comes to detectability in the GW spectrum, is further highlighted here. As can be seen in
Figure 4.3 the more massive the He-core becomes during its evolution the higher the characteristic strain,
with systems reaching ∼100 times stronger strain amplitudes than the shifted LISA sensitivity curve for
edge-on binaries. These are systems which have a very tight orbit with 𝑓𝑔𝑤 ∼ 6 × 10−3 Hz corresponding
to an orbital period of 𝑃 ≈ 5.5 min. However, as previously mentioned with respect to Figure 4.1, this
He-core mass "rule of thumb", only works up to a limit, where for the larger He-core masses the systems
detach and GW radiation is not strong enough to bring the orbit in. These systems are the darker blue
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tracks, ending their evolution at around 𝑓𝑔𝑤 ∼ 2 × 10−5 Hz with a period of 𝑃 ≈ 28 hrs. In the same
area some systems seems to curl around a gain a higher GW frequency. These stem from the previously
mentioned edge cases, where if given a bit more time, they would end up as compact binaries. The systems
which become detectable all lie in the range of max He-core masses of about [0.075, 0.16] M⊙ , although
the lower limit is only for very near face-on binaries, as these just barely peak over the sensitivity curve
for LISA at 1 kpc. The peak systems have a max He-core mass above 0.125 M⊙ .

Figure 4.3: Plot showing the characteristic strain amplitude evolution of the initial grid systems. Tracks
are color graded with respect to the maximum He-core mass the donor reach during the evolution. The
brown tracks represents donors which do not develop a helium core. The strain amplitude is calculated
assuming 4 years of observation time and face-on binaries. The sensitivity curves for LISA have been
made in accordance with those of Figure 2.10.

4.1.3 HR - Evolution

The evolution of the donors from the initial grid on an Hertzsprung–Russell (HR) diagram is shown in
Figure 4.4. Here the tracks are color graded according to the He-core mass during it’s evolution thus
highlighting similar features as in Figure 4.1 as to where the initial core development happens and later
where the core starts loosing mass due to the secondary mass transfer phase. The black plus signs on
the plot shows where the the surface gravity, 𝑔, becomes larger than 106 cm s−1, marking the point were
MESA considers the donor to have entered the white dwarf cooling track. Furthermore, ∼ 1000 white
dwarfs from the Montreal White Dwarf Database (MWDD), (Dufour et al., 2017), has been plotted in
gray for reference within the HR diagram. Only the reported values from the MWDD are shown, as
uncertainties are mostly not provided by the database. Out of these, only the ones with estimated masses,
and a luminosity lower than 0.1 L⊙ has been included in the plot as these was most comparable to our
evolutionary tracks. Although, in general they are still more massive than what our simulations yield,
with a mean of 0.610 M⊙ and a minimum and maximum mass of 0.096 M⊙ and 1.32 M⊙ , respectively. Thus
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they have smaller radii and therefore lies lower on the cooling track. In order to highlight the nature of
the cooling tracks, the dashed black lines have been plotted, which represent the black body cooling lines
given by,

𝐿 = 4𝜋𝑅2𝜎𝑇 4, (4.1.7)

where 𝜎 ≈ 5.670 × 10−5 erg cm−2 s−1 K−4 is the Stefan–Boltzmann constant. The dashed lines, from
lowest to highest in the HR diagram, have been made assuming radii of 𝑅 = [0.005, 0.01, 0.02, 0.04] R⊙ .
As previously mentioned only the systems which develops a He-core with a mass in the range of about
[0.125, 0.16] M⊙ becomes strongly detectable AM CVns in the GW spectrum, even for edge-on binaries.
In Figure 4.4 these systems are the tracks which becomes blue before curving down onto the cooling track
and later becomes green as the now exposed core has become a degenerate object which is losing mass
in the secondary mass transfer phase. The red tracks are the previously mentioned systems which never
develop a He-core and thus never become compact binaries. The purple track represent the higher mass
He-cores, and thus higher mass white dwarf, which never reach the secondary mass transfer phase.

Some of these systems also undergo hydrogen shell flashes after the initial mass transfer phase. As
the donor becomes more compact its surface temperature rises until it becomes hot enough to ignite the
hydrogen in its envelope. This ignition causes a spike in energy production which result in a expansion
of the star’s radius which consequently causes the star to become brighter. This cycle repeats a couple of
times over a short period of time causing this looping pattern on the HR diagram. This behavior can also
be seen in Figure 4.5, where an example of one of these systems is plotted. Here the power generated by
each fusion process is shown in a Kippenhahn diagram, all with respect to the model number to better
highlight the features associated with this phenomena, as it happens on a short timescale. For reference,
the two peaks in CNO are 40 Myrs apart. Here, the two peaks in energy production right before the radius
increase is clearly seen.
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Figure 4.4: HR diagram of the initial grid search color graded according the the He-core mass. The black
plus sign symbolizes where the surface gravity for the donor of the individual track becomes larger than
106 cm s−2. The dashed lines are the black body cooling lines for 𝑅 = [0.005, 0.01, 0.02, 0.04] R⊙ . The gray
dots are white dwarf taken form Dufour et al. (2017). Further explanation in main text.
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Figure 4.5: Power of fusion reactions plotted on top of a Kippenhahn diagram, with respect to model
number of a system which undergo hydrogen shell flashes. The starting parameters for this systems is;
𝑀2,0 = 1.5 M⊙ , 𝑀1,0 = 0.9 M⊙ and 𝑃0 = 1.0 day.

Figure 4.6 shows similar plots like Figure 4.4 using different color mappings. Here Figure 4.6A is color
graded according to the surface gravity, 𝑔, highlighting similar features as in Figure 4.4 where the more
massive and thus more compact WD donors are located deeper in the cooling track on the HR diagram due
to the inverse mass-radius relation. Figure 4.6B is colored according to the surface hydrogen fraction. The
red area here shows where the fraction becomes approximately zero and thus where the accreted material
is dominated by helium. Thus, within this red region we expect to find AM CVns, given accretion. This
area will be discussed in greater resolution later, when comparing our data to observations. Figure 4.6C
shows the mass transfer rate from the donor to the vicinity of the accretor. Here, detached periods are
shown in brown. This also highlights the systems which develop high He-core masses and have this
detached period, where the larger ones never initiate the secondary mass transfer phase. Some systems
never completely detach either, although the mass transfer rate becomes about 100 times lower than
during the main mass transfer phases. The location of these two main mass transfer phases is highlighted
in blue with mass transfer rates around 10−7 M⊙ yr−1. Here the AM CVn phase can be inferred to be
between the two highest black body cooling lines at around a 𝑇𝑒 𝑓 𝑓 between 103.6 K and 103 K. Here, the
donor has a high surface gravity, 𝑔 ≈ 106.5 cm s−2, as seen in Figure 4.6A and has little to no hydrogen
on the surface. Furthermore, the orbital period, as seen in Figure 4.6D, is lower than 1 hr in this area and
goes as low as around 6 min for the more compact donors. Figure 4.6D also draws attention to systems
which grow significantly in period during the initial mass transfer phase, most easily seen for the system
which does not develop a He-core. For the rest of the systems, the period shrinks gradually or has a rapid
decrease as can be seen for the more compact donors around𝑇𝑒 𝑓 𝑓 = 103.9 K and 𝐿 = 10−2 L⊙ . This period
evolution will be discussed in the next section.
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Figure 4.6: HR diagrams of the initial grid search color graded according surface gravity (A), surface
hydrogen fraction (B), mass transfer rate (C) and orbital period (D). The black plus sign symbolizes where
the surface gravity for the donor of the individual track becomes larger than 106 cm s−2. The dashed lines
are the black body cooling lines for 𝑅 = [0.005, 0.01, 0.02, 0.04] R⊙ . The gray dots are white dwarf taken
form Dufour et al. (2017). Further explanation in main text.

4.2 Diverging, Intermediate and Converging Systems

In terms of the period evolution, we have 3 different types of systems; diverging, intermediate and con-
verging. The first is systems which obtains a greater orbital period than they initially started off with.
Intermediate systems end up with roughly the same period as they started out with, and converging sys-
tems evolve towards shorter periods and eventually reach a period minimum, before it starts to increase
again. Examples of these evolutionary tracks can be seen in Figure 4.7, with the blue track being diverging,
the orange intermediate and the green converging.

46



4.2. Diverging, Intermediate and Converging Systems Aalborg University

0 2 4 6 8 10 12 14
Age, [Gyrs]

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

lo
g 1

0
P,

[h
rs

]

M1 = 1.0, M2 = 1.125, P = 0.5
M1 = 0.8, M2 = 1.5, P = 1.0
M1 = 0.9, M2 = 1.25, P = 1.5

Figure 4.7: The period evolution of 3 selected systems. One which is diverging (blue), another where the
period of the system stays roughly the same (orange), and lastly on which is converging (green).

In order to gain insight as to why these systems evolve as they do, we investigate the structure of the
donors and see how these evolve. A powerful tool for this is Kippenhahn diagrams. Three of which
can be seen in Figure 4.8. They give valuable information about the nuclear burning regions and energy
transfer zones such as convective regions. Note that in the areas which have not been marked by a hatched
region, the star has radiative energy transfer. This only applies within the boundary of the star, which is
given by the black line. Furthermore, it is helpful to plot the structure of the donor in terms of the model
number. This allows for better resolution, as more models and smaller timestep are used whenever large
changes happen in our simulations.

In Figure 4.8 it is immediately apparent that the diverging and intermediate systems do not experience
a secondary mass transfer phase and are detached following the initial mass transfer. These initial mass
transfer phases are related to the two sharp drops in the period in Figure 4.7. However, the converging
system experiences a secondary mass transfer phase, following a detached phase, where only the helium
core is left, thus we have an AM CVn.

Furthermore, it can be seen that the donor in the diverging system becomes fully convective towards
the end of mass transfer, but only has a convective envelope at the start of the evolution. The core is also
slightly convective in the beginning, but it quickly becomes radiative. In the intermediate and converging
systems, the donors core remains convective for longer. This is because they have a larger initial mass and
thus the CNO cycle becomes prominent. Only once shell burning starts, does the cores become radiative,
as is also evident from Figure 4.8. This takes approximately 2 Gyrs and 4 Gyrs for the intermediate and
converging system respectively (see Figure B.2). The size of the convective envelope of the intermediate
system is seen to increase during mass transfer. This has a dramatic effect on MB as the model scales with
the convective turnover time. To better highlight this effect, the orbital angular momentum losses, due to
the different mechanisms, are plotted in Figure 4.9.
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(b) Intermediate
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Figure 4.8: Kippenhahn diagrams showing the structure of the star in terms of mass fraction and model
number, for the diverging (top left), intermediate (top right) and converging system (bottom).The blue
areas are the burning regions of the star. A color scale is seen to the right corresponding to the logarithm
of the energy generation from fusion processes.

Figure 4.9 shows the evolution of these systems with respect to the orbital angular momentum loss
due to ¤𝐽𝑚𝑏 (blue), ¤𝐽𝑚𝑙 (green) and ¤𝐽𝑔𝑤𝑟 (orange). In all systems MB does not turn on at the start, which is
explained by the initial convective core, as previously discussed. For the divergent system, in Figure 4.9a,
orbital angular momentum loss due to MB is completely lost, at around model number 330, and it is
therefore not able to maintain its high mass transfer rate, as seen from the sudden drop in ¤𝐽𝑚𝑙 . At this
point the donor is very low mass, compared to the accretor, which results in the system evolving in
accordance with system with very low mass ratios in Figure 2.4, thus widening the orbit. This loss of MB
is due to the loss of a radiative core as shown in the Figure 4.8a. The Kippenhahn diagram also explains
the dramatic discontinuities in MB, due to the star becoming fully convective in a slightly unsystematic
way. The convergent system in Figure 4.8c has a clear detached phase as seen from the low stretch in
angular momentum loss due to MB and ML, while | ¤𝐽𝑔𝑤𝑟 | increases, indicating that the orbit is tightening.
The intermediate system in Figure 4.8b does not show the same pattern in angular momentum loss due
to GWR. However, a clear increases in both ¤𝐽𝑚𝑏 and ¤𝐽𝑚𝑙 can be seen around model number 690. This can
be explained by a sudden hydrogen shell flash when investigating the Kippenhahn diagram with respect
to the radius (see Figure 4.10).
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Figure 4.9: The angular momentum loss caused by MB, GWR and ML, for the diverging (top left), inter-
mediate (top right) and converging system (bottom).

Finally, we also present the Kippenhahn diagrams showing the radius evolution of the donors
throughout the evolution of these systems seen in Figure 4.10. For comparison sake we have also plotted
the Kippenhahn diagrams for these systems in terms of age, they can be seen in Figure B.3. For the con-
verging system in Figure 4.10c, a small convective envelope is still present when only the helium core is
left, which is also the reason why the MB is so weak during this phase. The reason why it increases again
is that the second mass transfer phase causes the donor to gain a larger convective envelope. This is seen
around model number 900–1000. For the diverging system in Figure 4.10a, it can be seen that its radius
shrinks as the core burning becomes weaker, and afterwards it increases until mass transfer comes to a
halt, causing the donor to shrink. Furthermore, the unsystematic convective zones are more clearly seen
here, causing the sudden discontinuities in MB. For the intermediate (Figure 4.10b) and converging sys-
tems, the radii shrinks more dramatically, than for the diverging system, as the donor loses mass. When
mass transfer stops, the stars contract as they stop hydrogen burning and only the helium core is left (see
Figure 4.8). The reason why mass transfer is possible even though the radii shrink is due to MB, as the
donor contract, the binary is also brought closer together. This is especially relevant for the converging
system, where the radius of the donor does not increase towards the end of mass transfer. The reason
why the radius of the donor in the intermediate system increases again, is related to the deep convective
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envelope it obtains around model number 350. An interesting feature is also seen for the intermediate
system where a flare up in the radius occurs due to a shell flash (see also Section 4.1.3). Here, a small
convective envelope is formed causing the peak in MB in Figure 4.9b. This also brings the system slightly
together and, along with the sudden expansion in radius, this causes an increase in mass transfer, as seen
from the peak in ¤𝐽𝑚𝑙 .
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(c) Converging

Figure 4.10: Kippenhahn diagrams showing the structure of the star in terms of radius fraction and model
number, for the diverging (top left), intermediate (top right) and converging system (bottom). The blue
areas are the burning regions of the star. A color scale is seen to the right corresponding to the logarithm
of the energy generation from fusion processes.

In summary, diverging systems diverge as they do not experience enough MB to counteract the
expansion of the orbit caused by mass loss (see Section 2.2.2). The reason why this system do not attain
substantial MB is because the donor does not develop a helium core before mass transfer starts, which leads
to it becoming fully convective. The intermediate system attains substantial MB, but the donor evolved
too quickly creating a larger He-core. Hence, when it had been stripped down to this He-core the larger
mass lead to a larger orbital separation, which in turn means that the system could not be brought close
enough together to initiate mass transfer again within 14 Gyrs. This is also seen when comparing ¤𝐽𝑔𝑤𝑟 in
Figure 4.9b to Figure 4.9c, where it is two orders of magnitude lower for the intermediate system compared
to the converging system, in the detached phases. The intermediate system becomes detached after the
hydrogen shell flash. The converging system here attains a radiative core and convective envelope for
a good amount of time before mass transfer, making MB possible for a longer duration (see Figure 4.8).
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Thus, MB is able to substantially shorten the period of the system which is clearly seen in Figure 4.7.
As is also evident from this analysis, the initial periods and masses have a huge influence on how

these systems evolve. They determine how the donor in our simulated systems evolves, and thus whether
they become diverging, intermediate, or converging. We are mostly interested in the converging systems,
as it is these which become AM CVns. Therefore, we want to know which initial condition favors this
outcome.

4.3 Fine Grid Results

In order to better visualize the consequences of the initial parameter choices, a finer grid search is made
within the ranges of the initial grid, which evolve into AM CVns. These simulations are also simulated
further down to a minimum mass of 0.005 M⊙ , to to gain more information about the AM CVn phase.
Here, three sets of simulations are made where either𝑀1,0, 𝑀2,0 or 𝑃0 is varied and the rest kept constant.
In Figure 4.11, 𝑀1,0 = 0.7 M⊙ and 𝑃0 = 1.0 days are kept constant while 𝑀2,0 ∈ [1.2, 1.4] M⊙ is the
variable. The plot is color graded according to the initial donor mass 𝑀2,0, and the black arrows indicate
the direction of the evolution, starting from the right with the higher periods in the initial mass transfer
phase. As previously inferred in Section 4.1, these higher mass donor stars have better prerequisites
for developing a higher mass He-core and thus a detached phase which then potentially leads to a tight
AM CVn, if the system initiates mass transfer again. This is also seen in Figure 4.11 where the red and
green tracks, 𝑀2,0 ∼ [1.2, 1.3] M⊙ , never becomes detached, as opposed to the pink and purple tracks,
𝑀2,0 ∼ [1.375, 1.4] M⊙ which are systems that never initiate the secondary mass transfer phase. Of the
systems, which becomes AM CVns, this conclusion, that a higher mass donor leads to a tighter AM CVn,
is also seen. These lead to the lowest orbital period in the secondary mass transfer phase stemming from
a donor mass of 𝑀2,0 = 1.35 M⊙ and the slowest having an initial donor mass of 𝑀2,0 = 1.2 M⊙ .

Figure 4.11: Evolutionary track showing mass transfer rate as a function of period for varying 𝑀2,0 in the
range [1.2, 1.4] M⊙ . 𝑀1,0 = 0.7 M⊙ and 𝑃0 = 1.0 days. Black arrows indicate the direction of the evolution
on the plot, starting from the longest periods. The lines are color graded according to the initial donor
mass.
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In Figure 4.12 similar tracks as to Figure 4.11 have been plotted with respect to a varied period in A
and a varied accretor mass in B. Both A and B have an initial donor mass 𝑀2,0 = 1.25 M⊙ . In A the period
is varied in the range 𝑃0 ∈ [0.5, 1.5] days and the accretor mass is kept at 𝑀1,0 = 1.0 M⊙ whereas in B the
initial period is kept at 𝑃0 = 1.0 days and the accretor mass is varied in the range 𝑀1,0 ∈ [0.85, 1.0] M⊙ .
Figure 4.12A shows that increasing the initial orbital period yield more compact AM CVns, where for
𝑃0 > 1.2 days the binary gains a detached phase. This again hints at systems which are allowed to develop
a larger He-core becoming more well defined and detectable AM CVns, as the larger period results in a
later initial mass transfer phase. The same argument can be used for Figure 4.12B where as the more
compact AM CVns stem from higher accretor masses. As the initial period and initial donor mass is kept
constant in these runs, a higher initial accretor mass results in a longer initial orbital separation and thus
giving the donor more time to evolve before the initial mass transfer phase starts, as previously seen in
Figure 4.2.

A B

Figure 4.12: Evolutionary track showing mass transfer rate as a function of period for varying 𝑃0 in the
range [0.5, 1.5] days for plot A and varying 𝑀1,0 in the range [0.85, 1.0] M⊙ for plot B. 𝑀2,0 = 1.25 M⊙ in
both A and B. 𝑀1,0 = 1.0 in A and 𝑃0 = 1.0 days in B. Black arrows indicate the direction of the evolution
on the plot, starting from the longest periods. The lines are color graded according to the initial period in
A and initial accretor mass in B.

This dependency on initial orbital separation can be seen in Figure 4.13 where by combining Figure 4.12A
and B, and color grading according to 𝑎0 it can be seen that the lager 𝑎0 the more compact the AM CVn
becomes. Here, the initial orbital separation is in the range 𝑎0 ∈ [3.475, 7.23] R⊙ , whereas the 4 sys-
tems from Figure 4.12B contributes with the longest separations form 7.06 R⊙ to 7.23 R⊙ . This example
also highlights the sweet spots in initial parameters which results in donors which evolve in a suitable
time frame. In this example, we find the sweet spot for donors of mass 𝑀2,0 = 1.25 M⊙ . As previously
mentioned, a donor mass which is too high leads to high He-core masses which never initiate the sec-
ondary mass transfer phase, as opposed to the donor masses that are too low which may take too long
to evolve. Thus, this window of initial orbital separations is highly dependent on the initial donor mass,
as the donor’s nuclear evolution must align with the timescale of the orbital decay via angular momen-
tum loss. For which the most important contributor before and during the initial mass transfer phase
is magnetic braking. In extension, this further highlights the importance of choice of magnetic braking
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models. For a weaker model the sweet spot for succesfully producing AM CVns becomes narrower, as the
initial post-CE binary needs to be closer together in order to align orbital decay with the donor’s nuclear
evolution. However, as magnetic braking scales strongly with the donors rotation rate, the acceleration
of the orbital decay in these narrower synchronized binaries is also greater, making the post-CE period
with approximately steady magnetic braking shorter. This in turn makes the initial parameter space for
systems which becomes AM CVns smaller as the nuclear evolution might take to long for smaller mass
donor stars for a weaker magnetic breaking model.

Figure 4.13: Evolutionary track showing mass transfer rate as a function of period for varying 𝑎0 in the
range [3.475, 7.23] R⊙ , by combining Figure 4.12A and B.𝑀2,0 = 1.25 M⊙ . Black arrows indicate the direc-
tion of the evolution on the plot, starting from the longest periods. The lines are color graded according
to the initial donor mass.
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4.4 Comparison With Observational Data

To validate our simulations we have gathered some observed systems to compare with (see Section 3).
However, not all of our simulated systems end up as potential AM CVn candidates, therefore we have
chosen a conservative limit for the minimum period of 𝑃 < 2 hrs, for the systems we like to compare
with the observed systems. This range has been chosen as AM CVns have periods ranging from 5 to 65
minutes (Solheim, 2010).

Some of the most important aspects of classifying AM CVns are the hydrogen abundance in their
spectra, as their spectra are dominated by helium and thus we expect low hydrogen abundances. Fur-
thermore, surface gravity is a valuable parameter as it gives us measure of how compact the donor is. In
Figure 4.14 we have plotted how the masses of the donors in our different systems evolve with orbital
period, and what the surface hydrogen fraction and surface gravity are along these tracks.

Figure 4.14: The donor mass in terms of the period of our simulations, which reach periods 𝑃 < 2 hrs.
Two color scales have been used, one for the surface hydrogen abundance (left) and one for the surface
gravity (right) of the donor. The observational data for the AM CVns and evolved CVs has been plotted
as red and blue dots respectively, along with known errors. The brown color indicate a surface hydrogen
fractions lower than 10−6.

All the tracks start in the upper right corner and initially evolve towards shorter periods, some dur-
ing mass transfer as we see that the mass decreases along with the period. The systems with lines that
become horizontal have a detached phase, where only the period decreases, as can be seen to the right
in Figure 4.14, this gives the donor time to contract and become more compact. The higher mass donors
which enters this phase becomes degenerate, as indicated by the surface gravity. Once these systems
reach their period minimum, they exhaust all of their hydrogen and become He WDs. A group of systems
to the right in these plots have increasing periods as the initial mass transfer takes place, but they later
become detached before reaching their period minimum. However, these systems do not have a substan-
tial fraction of their hydrogen stripped as seen to the left in Figure 4.14. Although these systems also
attain higher surface gravity during their detached phase, they do not exceed 𝑔 ≃ 106 cm s−2, where MESA
assumes the donor to be in the WD cooling sequence. In fact, these systems become brown dwarfs, which
are stripped down to planet-like objects.

Some of the systems that do not become fully detached, also get all their hydrogen stripped, but they
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also do not attain surface gravities exceeding 𝑔 ≃ 106 cm s−2. However, some attain values near this limit,
hence we see these systems as semi-degenerate He stars.

In terms of the observed systems we are able to reproduce all but one of the AM CVns, but another
also lies in a region for which the surface hydrogen fraction is above ∼ 0.1, these systems are HM Cnc
and the AM CVn respectively. The most like explanation as to we are not able to reproduce HM Cnc is
that it might be formed via another formation channel, mainly the double WD channel, as the mass of the
donor is quite large compared to our evolutionary tracks following the CV formation channel (Solheim,
2010). In terms of the AM CVn itself, this might also be the case as it is expected to have a He star donor
(Solheim, 2010), but yet again we are not able obtain He star masses suitable for the period of this system,
thus this system might be formed through the He star channel following a second CE.

We are also able to reproduce all the observed CV systems (see Figure B.4 in Appendix B), although
some of them do not intersect the systems, which obtains a minimum period below two hours. Thus, we
can say that these systems do not become AM CVns, following our evolutionary tracks. This is due to
too much mass transfer; they do not evolve a helium core of substantial size to be able to obtain periods
suitable for the AM CVn classification.
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Figure 4.15: The donor mass in terms of the period of our simulations, which reach periods 𝑃 < 2 hrs. The
color scale shows the magnetic braking throughout the systems evolution. The observational data for the
AM CVns and evolved CVs has been plotted as red and blue dots respectively, along with known errors.

An interesting feature in these systems is the MB throughout the evolution. Looking at Figure 4.15
we see that even though the donor becomes compact or He star, MB still has a significant effect. In the
detached systems where the donors become compact objects, it drastically decreases in this phase before
increasing again. Not much is known about the dynamo which produces magnetic fields in WDs, but
it has been proposed that it is produced as the WD cools (Schreiber et al., 2021). Therefore, we wish to
investigate the influence of turning off MB once the donors surface gravity exceeds 106 cm s2 and becomes
compact. We have made another set of simulations in which we do this, leading to 3 subsets of simulated
evolutionary tracks. Two in which the surface gravity exceeds 106 cm s2 and MB is turned off or kept on,
after this point. The last is systems in which the surface gravity of the donor never exceeds 106 cm s2.
The following data will be presented in a manner that reflects this.

We also have other data for the observed systems that can be used to compare with our simulation
data. Ideally, we would like to be able to reproduce the observed data with respect to all known parame-
ters, to conclude that we are for sure able to reproduce it with our simulations. Plotting the radii of the
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donors with respect to their masses, for the systems where the surface gravity of the donor never exceeds
106 cm s2, gives Figure 4.16. Interestingly, we can see that the donors in these systems also become degen-
erate as the radius starts to increase in response to mass loss. Furthermore, we clearly see that some of
these systems are also able to reproduce the observed systems, both with respect to radius and mass, but
also in terms of the expected surface hydrogen fraction. However, there is one AM CVn system which we
are not able to reproduce with these tracks, slightly under 𝑅2 ∼ 0.05 at 𝑀2 ∼ 0.02 and named J0407-0007,
thus we move on to the compact systems.

Figure 4.16: The donor radius in terms of its mass for our simulations, which reach periods 𝑃 < 2 hrs, and
the surface gravity of the donor never exceeds 106 cm s2. Two color scales have been used, one for the
surface hydrogen abundance (left) and one for the surface gravity (right) of the donor. The observational
data for the AM CVns and evolved CVs has been plotted as red and blue dots respectively, along with
known errors. The brown color indicate a surface hydrogen fractions lower than 10−6.

In Figure 4.17 and Figure 4.18 we have plotted these systems in terms of surface hydrogen fraction and
surface gravity, respectively. Now we can reproduce J0407-0007, but can no longer reproduce two other
AM CVns, named J0003+1404 and J1637+4917, which we where able to in Figure 4.16. However, this ends
up being a quite nice result as we can say that J0407-0007 most likely has a WD donor, whereas J0003+1404
and J1637+4917 most likely have helium star donors, considering the surface hydrogen fraction and the
surface gravity.

Looking at the previous discussed figures (Figure 4.16,Figure 4.17 and Figure 4.18) in is seen that we
are able to reproduce most of the evolved CVs. There are also some that we do not intersect at all, with
our simulations, for example a few with donor masses of just above 0.1 M⊙ . We also do not intersect these
later in Section 4.4.1.
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Figure 4.17: The donor radius in terms of its mass for our simulations, which reach periods 𝑃 < 2 hrs and
the donor exceeds a surface gravity of 106 cm s2. The color scale is the surface hydrogen abundance of the
donor. Note two sets of simulation is shown, one where MB is allowing during the compact phase (left),
and one where MB is turned off once the donor reaches this phase (right). The observational data for the
AM CVns and evolved CVs has been plotted as red and blue dots respectively, along with known errors.
The brown color indicate a surface hydrogen fractions lower than 10−6.

Figure 4.18: The donor radius in terms of its mass for, which reach periods 𝑃 < 2 hrs and the donor
exceeds a surface gravity of 106 cm s2. The color scale is the surface gravity of the donor throughout the
systems evolution. Note two sets of simulation is shown, one where MB is allowing during the compact
phase (left), and one where MB is turned off once the donor reaches this phase (right). The observational
data for the AM CVns and evolved CVs has been plotted as red and blue dots respectively, along with
known errors.

It does not seem that there is any difference in the evolution between the systems of Figure 4.17 and
Figure 4.18 up until the surface gravity exceeds 106 cm s2. In the systems where MB is not allowed once
this limit has been exceeded, all the compact donors seem to converge towards the same radii as their
mass decreases. In order to investigate this further we look at the mass transfer rates, following period
minimum in the next section.
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4.4.1 Mass Transfer Rates of Observed AM CVns

In Figure 4.19 we have plotted the mass transfer rates with respect to orbital period, to give a brief overview
of how all the systems behave during the final stages of mass transfer. The color scale defines the nor-
malized time since the system reached a period of 200 minutes. It is calculated as

𝑇𝑁 =
𝑡 − 𝑡𝑃<200

𝑡𝑚𝑎𝑥 − 𝑡𝑃<200
, (4.4.1)

where 𝑡𝑚𝑎𝑥 is the max age of the system before the simulation is terminated and 𝑡𝑃<200 is the age of the
system when it first reached a period of 200 minutes. This allows us to better determine the direction that
the tracks have in the plot, as for increasing values of the age, 𝑡 , the color changes. Furthermore, the mass
transfer simulation data have been smoothed using a median and Gaussian filter from SciPy, to improve
clarity and better distinguish the different tracks from each other (this is explained in greater detail in
Appendix C).

Figure 4.19: The mass transfer in terms of the orbital period of our simulated systems, which reach periods
𝑃 < 2 hrs, where the donor exceeds a surface gravity of 106 cm s2 (left) and those where it did not (right).
The color scale is the normalized time since the orbital period reached a value under 200 minutes (see text
for explanation). A median and gaussian filter has been used to smooth the data to remove simulation
noise. The observational data for the AM CVns has been plotted as red dots, along with known errors.

In the left plot in Figure 4.19 we have the systems in which the surface gravity of the donor exceeds
106 cm s2. Here we see that the system with the shortest periods is those that have been detached. Some
systems have not been through a detached phase and first reach a period under 200 min to the right in
the figure, as highlighted by the red color. These systems do not attain as low periods as those that have
been detached, but end up in the same area. In terms of the observed AM CVns, we are able to intersect
their mass transfer rates, however as is evident Figure 4.14 we should intersect them at a phase where
their orbital periods are increasing in terms of the donor mass. Having this in mind, we see that the only
able to reproduce a few systems in terms of their mass transfer rates as most of the systems which we
intersect with our tracks here are decreasing in period.

The right plot in Figure 4.19 shows the tracks of all the other systems, in which the surface gravity of
the donor never exceeds 106 cm s2. Curiously, a single system can be seen coming from the right, spike in
mass transfer, and become detached very briefly before mass transfer continues again (light green lines to
the right of the blue ones). This is most likely a numerical fluke, but it could also have been triggered by
a sudden increase in the radius leading to the mass-transfer spike, which would be dynamically unstable.
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Here we also have two different families of systems, some that have been detached and ones that have not.
However, unlike the detached systems which have a compact donor, these immediately evolve towards
longer periods as soon as they initiate their secondary mass transfer phase. To emphasize this we have
plotted Figure 4.20, for these low degeneracy donors, which has a color scale with respect to the relevant
mass transfer rates. One clearly sees that the binary becomes detached, and once the orbital period has
shrunk substantially, mass transfer starts again, but the mass transfer rate remains constant, as is also
evident in Figure 4.19.
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Figure 4.20: The donor mass in terms of the period of our simulations, which reach periods 𝑃 < 2 hrs, but
where the donor never exceeds a surface gravity of 106 cm s2. The color scale shows the mass transfer
rates throughout the systems evolution. The observational data for the AM CVns and evolved CVs has
been plotted as red and blue dots respectively, along with known errors. The brown color indicate a mass
transfer rates lower than 10−15 M⊙ yr−1.

The systems which have had continuous mass transfer reach lower orbital periods, but they do not
converge towards the same end point as the systems with compact donors. From Figure 4.21, showing
the mass transfer rates of the systems where surface gravity of the donor never exceeds 106 cm s2, we
see that the reason why the system with continuous mass transfer and non-compact donors reach lower
orbital periods is because they have been able to form helium cores, and in turn allowing the donor to
become more compact as the hydrogen is stripped from it. Comparing once again to the parameters of
the observed systems, we are only able to reproduce three of them, considering the orbital period should
be increasing. We are also able to reproduce these 3 systems with the tracks for compact donors.
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Figure 4.21: The mass transfer in terms of the orbital period of our simulated systems, which reach periods
𝑃 < 2 hrs, but where the donor never exceeds a surface gravity of 106 cm s2. Two color scales have been
used, one for the surface hydrogen abundance (left) and one for the surface gravity (right) of the donor. A
median and gaussian filter has been used to smooth the data to remove simulation noise. The observational
data for the AM CVns has been plotted as red dots, along with known errors. The brown color indicate a
surface hydrogen fractions lower than 10−6.

Now we investigate the systems in which the surface gravity of the donor exceeds 106 cm s2, and
compare the tracks where we have MB afterwards, to those in which we turn it off. Looking at Figure 4.22,
we can see the values of the angular momentum lost due to MB throughout the mass transfer and period
evolution. Note that MB is, in fact, turned off in the red part of the tracks in the right panel, but in order
to gain better resolution in terms of the color scale, a cutoff was made at log | ¤𝑗𝑀𝐵 | = 20. We clearly see
the effects of turning off MB once we have a WD, our tracks now continue down, and the mass transfer
rates continue to decrease as the period increase, whereas the mass transfer rate increases for the systems
that still have MB.
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Figure 4.22: The mass transfer in terms of the orbital period of our simulated systems, which reach periods
𝑃 < 2 hrs and the donor exceeds a surface gravity of 106 cm s2. The color scale shows the magnetic braking
throughout the systems evolution. Note two sets of simulation is shown, one where MB is allowing during
the compact phase (left), and one where MB is turned off once the donor reaches this phase (right). A
median and gaussian filter has been used to smooth the data to remove simulation noise. The observational
data for the AM CVns has been plotted as red dots, along with known errors. The brown color indicate
| ¤𝐽𝑚𝑏 | lower than 1020 g cm2 s−1.

From the left panel in Figure 4.23, we see that as the donor becomes less compact, the MB increases.
This might be caused by an increase in radius because as the degenerate donor loses mass, it expands.

In terms of the observed systems, we are only able to reproduce one more system near 𝑃 ∼ 30𝑚𝑖𝑛 and
¤𝑀 ∼ 5−11, named KL Dra, when turning off MB. This system has no uncertainties listed, which makes this

result weaker, as the parameters of this system might be poorly estimated. However, we get tracks which
get closer to the vicinity of points with lower mass transfer rates and periods around ∼ 50 min, while the
period is increasing as well. This seems to be more reasonable than the mass transfer rate caused by the
MB in the compact phase of the other systems. A solution which is some middle point between these two
cases seem to be preferably, as it would allow us to reproduce the system with lower mass transfer rates
and periods around ∼ 50 min.
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Figure 4.23: The mass transfer in terms of the orbital period of our simulated systems, which reach periods
𝑃 < 2 hrs and the donor exceeds a surface gravity of 106 cm s2. The color scale shows the surface gravity
of the donor. Note two sets of simulation is shown, one where MB is allowing during the the compact
phase (left), and one where MB is turned off once the donor reaches this phase (right). A median and
gaussian filter has been used to smooth the data to remove simulation noise. The observational data for
the AM CVns has been plotted as red dots, along with known errors.

Another relevant aspect we can use for comparison with our simulated systems is the expected gravi-
tational wave signal of the observed systems. We can find the characteristic strain for some of the observed
systems, where the distance and masses are known, as well as the period. This will be explored in the
next section.
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4.4.2 Strain Evolution
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Figure 4.24: Characteristic strain evolution with respect to gravitational wave frequency color graded
according to distance. 7 data points for AM CVns for which the distance is estimated is included. The
error bars represent the min and max error in characteristic strain using the uncertainties in masses and
distance, when given. The tracks which share a color with a data point are generated using that data
points distance. The systems plotted are: GP Com, HP Lib, CR Boo, V803 Cen, J0926+3624, AM CVn and
HM Cnc. The associated distances are 𝑑𝐿 = [75, 197, 337, 347, 465, 606, 2500] pc in the same order as the
names. The black line is the sensitivity curve for LISA after 4 yrs to 0.5 yrs for the solid to the dotted line
as done in Section 2.5. whereas the gray line is shifted to represent detectability for edge-on binaries in
the same manner.

Figure 4.24 shows the strain evolution for two of our simulated systems which results in relatively high and
low characteristic strain amplitudes in the compact binary phase. The initial accretor and donor masses
for the tracks are𝑀1,0 = 1.0 M⊙ and𝑀2,0 = 1.25 M⊙ respectively. The initial periods are 𝑃0 = 1.5 days and
𝑃0 = 0.5 days for the tracks with the highest and lowest peak, respectively. Each set of tracks have been
plotted assuming the distance gathered from the observational data points with the same color, thus the
highest purple tracks should be comparable to the purple data point, that being GP Com at a estimated
distance of 75 pc, under the assumption that it have formed though the CV channel. The AM CVns plotted
is GP Com, HP Lib, CR Boo, V803 Cen, J0926+3624, AM CVn and HM Cnc. The associated distances from
the data are 𝑑𝐿 = [75, 197, 337, 347, 465, 606, 2500] pc in the same order as the names. The consequence
of a greater distance is that the tracks are shifted downwards and has lower ℎ𝑐 , thus the order of the
tracks from highest to lowest ℎ𝑐 in Figure 4.24, is associated to the presented list of 𝑑𝐿 , which is sorted
from closest to farthest system. A clear outlier here is again the HM Cnc system (red data point) which
seam to have a slightly higher total mass at a lower orbital period than what our simulations can produce.
AM CVn (orange data point and tracks) seems to be place neatly between the two evolutionary tracks,
however as previously discussed, this system do not seem to fit our donor evolutions. Thus cation should
be made when comparing it to these tracks. As the rest of the data point seems to fit the assumed CV
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evolution (as seen in the previous two sections), the tracks shown in Figure 4.24 might be more reasonable
for these systems. As the strain amplitude is not at the highest of what our simulated track can produce,
the inclination angle plays a greater role as to their detectability. J0926+3624 (that being the sand colored
data point and tracks in Figure 4.24) is an eclipsing binary as discussed by Copperwheat et al. (2011), thus
the inclination angle is high (𝑖 = 82.6 ± 0.3 deg). Therefore, when determining the detectability of this
system the light gray sensitivity curves should be considered. Thus the gravitational wave signal from
this system is not expected to be resolvable from the galactic noise. Some of the other systems which have
estimates for the inclination angle is AM CVn, HP Lib, CR Boo, and V803 Cen, which is given by Roelofs
et al. (2007) to be 𝑖 = [43±2, 26−34, 30, 12−15] deg, in the same order. These are the orange, blue, light blue
and mint green data point, respectively. Here the most inclined system is AM CVn, however this system
also has a fairly strong theoretical strain amplitude with a ℎ𝑐 more than 10 times stronger than the shifted
sensitivity curve, after 4 years of observation. Thus it is most likely to be resolvable and show up as a
LISA source. The same arguments can be made for HP Lib (the blue data point) which lie next to AM CVn
in Figure 4.24 but with a smaller inclination angle and a higher theoretical strain amplitude. CR Boo
(light blue) and V803 Cen (mint green) lie closer to the sensitivity curves and are thus more prone to not
being detectable. As the sensitivity curve provided is a sky-averaged sensitivity, the location might play
a more significant role here as directional noise could be more prominent in some areas. However, with
respect to the sky-averaged curve these theoretical signals is at least 10 times stronger than the sensitivity
curve, even for CR Boo with the estimated inclination angle of 𝑖 = 30 deg, modifying the face-on strain
amplitude by ≈ 0.87ℎ, (see (2.5.17)), thus placing its shifted sensitivity curve slightly above the black face-
on sensitivity curve. The last data point to be discussed is GP Com (purple) which lies right between the
black and gray sensitivity curves, thus it is most likely not detectable. Moreover, no inclination angle for
this system has been found and was also omitted in Roelofs et al. (2007), further shrouding its detectability
from a theoretical perspective. Though, as discussed in Roelofs et al. (2007), it is expected to have had
a much shorter orbital period in the past, based on the fact that the current accretion rate is low when
compared to the accretors’ temperature, which is most likely set by accretion induced heating. Thus it is
expected to be in the late stages of the AM CVn phase which also matches its placement on Figure 4.24
with respect to our simulated purple tracks.
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Chapter 5

Conclusion

Throughout this thesis an analysis of AM CVn systems as potential LISA sources has been made. The
evolutionary scenarios resulting in AM CVn binaries was first elaborated. Relevant physics including
mass transfer, novae eruptions, magnetic braking and gravitational wave radiation was presented to grant
the reader an overview of all the different effects, which play a prominent role in the evolution of these
systems.

Emphasis was put on the CV evolutionary scenario, were AM CVns are formed from a binary system
of a white dwarf and a low mass main sequence star, which follows from the common envelope phase.
The consequences of mass transfer were investigated to determine the binaries response. For the novae
eruptions two accumulation efficiencies were defined, depending on whether the accreted material was
hydrogen-rich or helium-rich, to decide whether the white dwarf accretor accumulated material. The con-
vection and rotation boosted (CARB) magnetic braking prescription was elaborated along with a section
comparing it with the Skumanich magnetic braking prescription. Furthermore, the strain amplitude of
the gravitational wave signal and the LISA sensitivity curves were included to evaluate the gravitational
signal received from these binaries.

In order to simulate the full evolution from CV binary to AM CVn systems MESA was utilized. In this
thesis version 24.08.1 of MESA was used, and modified to include the CARB magnetic braking model, nova
eruption physics for the accretor and finally specific Eddington accretion limits for a white dwarf accretor.
As MESA is a general purpose stellar evolution code, these tight binaries proved difficult to simulate without
relaxing some parameters, which controls the tolerances for each timestep. Otherwise simulations would
terminate once the AM CVn phase was reached, due to computational errors. To evaluate our simulations,
we found observational data for AM CVn systems to use as benchmarks, and evolved CV systems. The
latter were included such that we could determine whether we also were able to reproduce these, which
is required following our assumed evolution.

The choice in magnetic braking prescription was very impactful in terms of the evolution of the
systems. Using the CARB prescription we were able to successfully evolve AM CVns without the issues
of fine-tuning which was the case when using the Skumanich prescription. Different sweet spots of pa-
rameters were found which produced AM CVns within 14 Gyrs. Mainly, donor masses around 1.25 M⊙
yielded AM CVns, but other configurations were also possible. The donor mass had the largest influence
because it determines the how fast a He-core could be formed. The He-core mass at the onset of mass
transfer was a crucial factor in the destiny of the simulated systems. If the He-core got too big it would
result in a orbital separation, at the end of this mass transfer phase, which was to large for the binary to
initiate secondary mass transfer within 14 Gyrs. If the He-core was to small or did not form at all, we
did not end up with an AM CVn, because of a high surface hydrogen fraction. Furthermore, the initial
orbital separation was found to be the deciding factor in controlling how large the He-core was allowed to
become, given a specific donor mass. Hence different configurations determined by the orbital period and
accretor mass, which influenced the orbital separation, were favorable. As an example the sweet spot in
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post common envelope orbital separations for a donor mass of 1.25 M⊙ was found to be [3.475, 7.23] R⊙ .
By comparing our simulations with observational data we were able to reproduce almost all AM CVns

and evolved CVs in terms of donor mass, period and radius. A notable system which we were not able to
reproduce was HM Cnc. Compared to our simulations the mass and orbital period of the donor seemed
to high and short, respectively. However, that could be due to it being formed through the double white
dwarf channel, for which higher mass donors are expected. Another notable system which proved difficult
to justify with our simulations was the original AM CVn. Although it fits nicely within our evolutionary
tracks with respect to mass and orbital period, our simulated systems had higher surface hydrogen frac-
tions, of above 0.1, in this area. Indicating that accretion here would yield hydrogen in the spectra and
thus not be true AM CVns. Thus this system might also have evolved through a different evolution chan-
nel as it is most definitely an AM CVn. Some of the evolved CVs also seem to be on the track to becoming
AM CVns, while others could be disregarded, following our simulated evolution. For the AM CVns the
mass transfer rates were a lot harder to reproduce. However, there are also more uncertainties surround-
ing this parameter.

It was discovered that magnetic braking was still prominent even tho the donor had become a com-
pact object, with a surface gravity exceeding 106 cm s2. This caused the mass transfer rate to increase
again after period minimum as the binary system was tightened. Because of the uncertainties surround-
ing the generation of magnetic fields in white dwarfs we made additional simulations where magnetic
braking was turned off as soon as the surface gravity of the donor exceeded 106 cm s2. By doing this
the mass transfer rates fell in accordance with an increasing period and we were able to reproduce one
more observed system, named KL Dra. However, the lack of uncertainties in the mass transfer rate for
this system weakened this result as it might have been poorly estimated. We were however not able to
reproduce a huge collection of systems with periods around 50 minutes and mass transfer rates of 10−11–
10−11 M⊙ yr−1, which were reproduced in terms of the donor mass and orbital period, even when turning
off magnetic braking. It does seem like a mechanism is needed to pull the binary slightly closer together
such that these systems can be intersected. The CARB magnetic braking is too strong such that we over-
shoot the mass transfer rates and in turning off magnetic braking, we undershoot the mass transfer rates.
Thus another prescription is needed for compact donors in order to reproduce these systems.

7 systems with estimates for both mass components and distance was found in the literature. That
being GP Com, HP Lib, CR Boo, V803 Cen, J0926+3624, AM CVn and HM Cnc. Of these 7 systems only
GP Com, J0926+3624 and HM Cnc did not have estimated inclination angles. Thus we where able to
plot the characteristic strain amplitude for these systems, with a better estimate for the 4 with reported
inclination angles. Out of these systems we expect all except GP Com and J0926+3624 to show up as
LISA sources as the strain amplitude found was at least 10 times greater than that of the sensitivity curve.
With HM Cnc having 100 times the strain amplitude, even assuming its a edge-on binary which produce
a weaker gravitational wave signal. Furthermore, these systems all line up well with our simulated tracks,
adjusted for distance, except HM Cnc which high mass and short orbital period shifts it towards a stronger
gravitational signal than our simulated systems. For CR Boo and V803 Cen the signal is slightly closer
to the sensitivity curve, so their detectability is a bit more obscured as their location might play a larger
role when it comes to galactic background noise. However, with respect to the sky-average sensitivity
curve, they are at least 10 times stronger in signal. A final note on detectability is that we expect that once
LISA is operational, many more AM CVns will show up. Many of our simulated system, which yielded
AM CVns, becomes strongly detectable during their evolution. Assuming a distance of 1 kpc the most
luminous simulated systems yield characteristic strain amplitudes up to 300 times that of the sensitivity
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curve, assuming face-on binaries.

5.1 Outlook

Using the MESA code and inlists from the simulations in this thesis, more aspect of magnetic braking
could have been inspected. Different magnetic field prescription could have been implemented for the
compact donors following the initial mass transfer phase. This would allow us to fine tune the resulting
magnetic braking in the later stages of the AM CVns evolution, potentially allowing us to reproduce the
huge collection of observed systems with periods around 50 minutes and mass transfer rates of 10−11–
10−11 M⊙ yr−1.

The viability of the CARB model as a universal model could also be tested, as it is a stronger model
compared to the standard Skumanich model. This could be done by trying to reproduce known wide-
orbit millisecond pulsars, which require both a mass transfer phase to spin-up the neutron star, and a
subsequent widening of the orbit. If the CARB model is to strong, these systems should be difficult to
reproduce, as it will keep them close.
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Appendix A

Observational Data

Name 𝑃 [hrs] 𝑀1 [M⊙] 𝑀2 [M⊙] 𝑅2 [R⊙] ¤𝑀 [M⊙yr−1] 𝑑 [pc] Ref.

HM Cnc 0.089304 0.75 ± 0.15 0.36 ± 0.09 – ∼ 10−7 2500 ± 1500 1, 2, 6
ES Cet 0.172272 – – – (2.5 ± 1.6) × 10−8 ∼ 350 1, 2, 3
J1351-0643 0.262000 – – – (2.6 ± 2.4) × 10−9 – 3
AM CVn 0.285768 0.71 ± 0.07 0.13 ± 0.01 – (7.1 ± 0.2) × 10−9 606+135

−93 1, 2
J1908+3940 0.301416 – – – (6.0 ± 2.5) × 10−9 – 1, 4
HP Lib 0.306312 0.65 ± 0.16 0.068 ± 0.020 – (1.5 ± 0.7) × 10−9 197+14

−12 1, 2
ASASSN-14cc 0.375000 – – – (2.30 ± 0.65) × 10−9 – 3
CR Boo 0.408696 0.89 ± 0.24 0.064 ± 0.020 – (8 ± 4) × 10−10 337+44

−35 1, 2
KL Dra 0.417168 0.76 0.057 – 5 × 10−10 – 1, 2
V803 Cen 0.443520 0.98 ± 0.20 0.074 ± 0.025 – (1.0 ± 0.5) × 10−9 347+32

−27 1, 2
YZ LMi 0.471864 0.85 ± 0.04 0.035 ± 0.003 0.047 ± 0.001 – – 1, 5
J0926+3624 0.472000 0.85 ± 0.04 0.035 ± 0.003 – 4 × 10−11 465 ± 5 2
J0407-0007 0.590000 0.79 ± 0.06 0.019 ± 0.003 0.044 ± 0.002 – – 5
J2252-0519 0.623000 0.76 ± 0.050 0.026 ± 0.008 0.049 ± 0.004 – – 5
ASASSN-14mv 0.683000 – – – (2.60 ± 0.79) × 10−9 – 3
ASASSN-14ei 0.717000 – – – (7.2 ± 1.9) × 10−11 – 3
J1525+3600 0.739200 – – – (7.1 ± 4.6) × 10−11 ∼ 450 1, 2, 3
J1411+4812 0.768000 – – – (3.6 ± 1.2) × 10−11 – 1, 3
GP Com 0.776136 0.57 ± 0.07 0.011 ± 0.002 – (2.3 ± 1.0) × 10−11 75 ± 2 1, 2, 3
Gaia14aae 0.828000 0.872 ± 0.007 0.0253 ± 0.0007 0.0603 ± 0.0003 (3.30 ± 0.43) × 10−11 – 1, 2, 5
J1611+6308 0.828456 0.78 ± 0.015 – – – – 5
J1208+3550 0.883200 – – – (7.1 ± 2.1) × 10−11 – 1, 3
J0220+2141 0.888000 0.83 ± 0.07 0.014 ± 0.006 0.054 ± 0.007 – – 5
J0003+1404 0.925000 0.79 ± 0.11 0.017 ± 0.011 0.057 ± 0.012 – – 5
J1137+4054 0.984000 – – – (8.1 ± 3.9) × 10−12 – 1, 3
J1637+4917 1.025000 0.90 ± 0.05 0.023 ± 0.008 0.068 ± 0.007 – – 5
V396 Hya 1.084560 – – – (1.40 ± 0.62) × 10−11 92+13

−10 1, 2, 3
J1319+5915 1.093000 – – – (1.1 ± 0.52) × 10−11 – 3

Table A.1: AM CVn systems with estimated parameters other than orbital period. References: (1) Ritter
and Kolb (2003); (2) Solheim (2010) and references therein; (3) Ramsay et al. (2018); (4) Fontaine et al.
(2011); (5) van Roestel et al. (2022); (6) Barros et al. (2007).
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Group 5.323A A. Observational Data

Name Type 𝑃 [hrs] 𝑀1 [𝑀⊙] 𝑀2 [𝑀⊙] 𝑅2 [𝑅⊙] Ref.

V1460 Her – 4.988 0.869±0.006 0.295±0.004 0.430±0.002 2
HS 0218+3229 – 7.133 0.545±0.105 0.335±0.105 0.63±0.05 3
V1309 Ori – 7.983 0.70±0.12 0.5±0.1 0.74 1, 4
KIC 5608384 – 8.739 0.458±0.019 0.406±0.028 0.754±0.040 5
J1832-1627 – 8.870 0.88±0.26 0.32±0.14 0.67±0.09 6
AE Aqr – 9.880 0.63±0.05 0.37±0.04 0.79 1, 7
J1755-2816 – 10.345 0.83±0.06 0.65±0.07 0.92±0.09 1, 8
J0826-5057 – 10.400 0.80+0.34

−0.17 0.40+0.21
−0.13 0.78 9

EY Cyg – 11.024 1.10±0.09 0.49±0.12 0.805±0.161 1, 10
P2_00a ELM 2.000 0.98+0.18

−0.21 0.13+0.03
−0.02 0.17±0.01 11

P2_74a ELM 2.740 0.62±0.06 0.13±0.01 0.23±0.01 11
P3_03a ELM 3.030 0.77+0.14

−0.11 0.17+0.07
−0.05 0.27±0.03 11

P3_06a ELM 3.060 0.51±0.06 0.18+0.05
−0.04 0.27+0.03

−0.02 11
P3_13a ELM 3.130 0.74+0.09

−0.08 0.18±0.02 0.28±0.01 11
P3_21a ELM 3.210 0.95+0.10

−0.09 0.24+0.06
−0.05 0.31±0.02 11

P3_43a ELM 3.430 0.57+0.05
−0.04 0.12±0.02 0.26±0.01 11

P3_48a ELM 3.480 0.53+0.09
−0.06 0.11+0.04

−0.03 0.26±0.02 11
P3_53a ELM 3.530 0.83+0.19

−0.16 0.20±0.02 0.32±0.01 11
P3_81a ELM 3.810 0.96+0.18

−0.13 0.24+0.16
−0.09 0.35+0.07

−0.05 11
P3_88a ELM 3.880 0.59+0.05

−0.04 0.12±0.02 0.28+0.02
−0.01 11

P3_90a ELM 3.900 1.17+0.10
−0.13 0.22±0.03 0.33±0.01 11

P3_98a ELM 3.980 0.84±0.19 0.32+0.08
−0.06 0.40±0.03 11

P4_06a ELM 4.060 0.81+0.12
−0.13 0.12±0.02 0.28±0.01 11

P4_10a ELM 4.100 0.81+0.15
−0.13 0.25+0.03

−0.02 0.37±0.01 11
P4_36a ELM 4.360 0.92+0.14

−0.09 0.26+0.05
−0.04 0.39±0.02 11

P4_41a ELM 4.410 0.82+0.07
−0.09 0.20+0.03

−0.02 0.35±0.01 11
P4_47a ELM 4.470 0.82+0.18

−0.14 0.20+0.14
−0.08 0.36+0.07

−0.05 11
P4_73a ELM 4.730 0.85+0.11

−0.13 0.23+0.05
−0.03 0.38±0.01 11

P5_17a ELM 5.170 0.44+0.11
−0.07 0.15+0.04

−0.03 0.37±0.03 11
P5_42a ELM 5.420 0.71±0.06 0.18±0.02 0.40±0.01 11

Table A.2: Evolved CV systems, with known masses and donor radius. References: (1) Ritter and Kolb
(2003); (2) Ashley et al. (2020); (3) Rodríguez-Gil et al. (2009); (4) Staude et al. (2001); (5) Yu et al. (2019); (6)
Beuermann et al. (2022); (7) Echevarría et al. (2008); (8) Gomez et al. (2021); (9) Sokolovsky et al. (2022);
(10) Echevarría et al. (2007); (11) El-Badry et al. (2021), see this reference for the Gaia eDR3 ID of these
systems.
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Figure A.1: The WD masses with respect to the orbital periods of the evolved CVs and AM CVns.
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Figure A.2: The donor radii with respect to their masses for the AM CVns. Note that there are not a lot of
the AM CVns in the data, which has estimated donor radii, hence only a few systems are shown.
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Group 5.323A A. Observational Data
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Figure A.3: The donor mass with respect to the mass transfer rates for the AM CVns.
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Figure A.4: The WD mass with respect to the mass transfer rates for the AM CVns.

76



Appendix B

Supplementary Simulation Plots
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Figure B.1: The mass transfer rates throughout the three systems evolutions.
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Group 5.323A B. Supplementary Simulation Plots
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(b) Intermediate
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Figure B.2: Kippenhahn diagrams showing the structure of the star in terms of mass fraction and age, for
the diverging (top left), intermediate (top right) and converging system (bottom). The blue areas are the
burning regions of the star. A color scale is seen to the right corresponding to the logarithm of the energy
generation from fusion processes.
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Figure B.3: Kippenhahn diagrams showing the structure of the star in terms of radius fraction and age,
for the diverging (top left), intermediate (top right) and converging system (bottom). The blue areas are
the burning regions of the star. A color scale is seen to the right corresponding to the logarithm of the
energy generation from fusion processes.
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Group 5.323A B. Supplementary Simulation Plots

Figure B.4: The donor mass with respect to the orbital period of all simulated systems in our initial grid.
The observational data for the AM CVns and evolved CVs has been plotted as red and blue dots respec-
tively, along with known errors.

Figure B.5: The mass transfer in terms of the donor mass of our simulated systems, which reach periods
𝑃 < 2 hrs, but where MESA did not initiate the WD cooling sequence. Two color scales have been used, one
for the surface hydrogen abundance (left) and one for the surface gravity (right) of the donor. A median
and gaussian filter has been used to smooth the data to remove simulation noise. The observational data
for the AM CVns has been plotted as red dots, along with known errors.
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Figure B.6: The mass transfer in terms of the donor mass of our simulated systems, which reach periods
𝑃 < 2 hrs and MESA starts the WD cooling sequence for the donor. The color scale shows the surface gravity
of the donor. Note two sets of simulation is shown, one where MB is allowing during the WD cooling
sequence (left), and one where MB is turned off once the donor reaches this phase (right). A median and
gaussian filter has been used to smooth the data to remove simulation noise. The observational data for
the AM CVns has been plotted as red dots, along with known errors.
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Appendix C

Smoothing of Mass Transfer Rates

A B

Figure C.1: Visual consequences of using median and gaussian smoothing on the mass transfer rates. Here
the mass loss of the donor is plotted with respect to the orbital period for a system with initial parameters:
𝑀1,0 = 0.7 M⊙ , 𝑀2,0 = 1.35 M⊙ and 𝑃0 = 1.0 days.

Figure C.1A shows the non-smoothed data for mass loss of the donor with respect to the orbital period.
Figure C.1B shows the smoothed plot. The data has been smoothed by first applying a median filter
which replaces the values with the median value within a neighborhood of 5 entries around the values.
This helps remove sudden and sharp spikes in the data set. Then a gaussian filter is applied to create
smooth transitions between data point.
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