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Preface

The present thesis with the title "Assessment and Improvement of Buckling Verifica-
tion Methods for Monopiles" was prepared by Attila Roth and Hidaya Haj Sassi as
completion of their Master’s degree in Structural and Civil Engineering at Aalborg
University. The project was proposed and initiated by Vattenfall, and the authors’
choice was motivated by their devotion to understanding the complex behaviour of
load-bearing structures.

As the title suggests, the topic is buckling in monopiles, and the focus is on
assessing the currently available analytical buckling verification methods based on
a series of advanced finite element analyses. After an introduction in chapter 1 and
a thorough background study in chapter 2, the scope of the project is presented in
chapter 3. Chapter 4 contains a detailed description of the finite element models,
as well as the input and output of the different types of finite element analysis. A
systematic assessment of one selected analytical method is included in chapter 5,
concluding with a brief comparison with other available methods. Lastly, the effect
of certain conditions in monopiles that differ from the assumptions in the analytical
methods is investigated in chapter 6. The thesis is completed with a discussion of the
findings and a conclusion in chapters 7 and 8, respectively.

This thesis is primarily intended for professionals and researchers within structural
engineering who work with or are interested in buckling of steel cylindrical shells,
more specifically monopiles or other similar structures. It is hoped that the following
discussions and findings will provide valuable insight into the application of common
European analytical shell buckling verification methods, including the challenges and
potential shortcomings associated with them.

Generative Al was employed in the preparation of the present thesis, primarily for
spell-check, grammar-check and paraphrasing for clarity. Furthermore, it was used
to assist with IT-related issues and challenges encountered in connection with the
numerical analyses.

We are deeply grateful to our supervisors, associate professors Jannie Senderkeer
Nielsen and Dario Parigi, for their guidance and support throughout the project. They
helped us find and stay on the right path and provided invaluable feedback on the
content and structure of our thesis. We would also like to thank Aalborg University
for granting us access to the high-performance computing platform UCloud, which is
managed by the eScience Center at the University of Southern Denmark. It would have
been impossible to perform such a considerable amount of numerical calculations in
this relatively short time without it. Finally, we want to thank Vattenfall for initiating
the project and providing us with the necessary information.

Attila Roth and Hidaya Haj Sassi
Aalborg, Denmark
4th June 2025
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List of Symbols

Symbols used throughout this thesis are listed below, together with the most appropri-
ate units. Other units might also occur. The sign ~ means that units vary depending
on the context the symbol is used in.

Latin letters

Ci end boundary parameter for cylinders in bending —

Cyx end boundary parameter for cylinders in compression -

E modulus of elasticity GPa
E; tangent modulus GPa
fy yield strength MPa
fa length function —

I moment of inertia (second moment of area) m*

L length (member length, span length, etc.) m

M bending moment MNm
M, classical elastic critical moment MNm
M, elastic critical moment MNm
My, plastic moment resistance MNm
My ;1 plastic moment resistance accounting for imperfections MNm
Mg bending moment resistance in general or from FEA MNm
Mgy characteristic buckling moment resistance MNm
MRy per | characteristic buckling moment resistance of perfect structure | MNm
Q fabrication tolerance quality parameter —

r radius of cylinder’s middle surface m

r/t radius-to-thickness ratio —

Ry elastic critical resistance ~

Ry characteristic buckling resistance ~

Ry plastic resistance ~

t cylinder wall thickness m

% shear force MN
144 section modulus m3

X,Y,Z | coordinates in Cartesian coordinate system —

R,0,Z | coordinates in cylindrical coordinate system -

Greek letters
b elastic buckling reduction factor —
aG elastic geometric reduction factor —
A elastic imperfection reduction factor -
B plastic range factor -

vii



0 List OF SYMBOLS

) geometric imperfection amplitude

1 interaction exponent for buckling

1o squash limit interaction exponent

Np plastic limit interaction exponent

K plastic imperfection reduction factor

A relative slenderness

Ao squash limit relative slenderness

Ap plastic limit relative slenderness

A linear meridional bending half-wavelength

v Poisson’s ratio in elastic range

O el classic elastic critical stress

Oxcr elastic critical stress

U Rk characteristic axial buckling stress

X buckling reduction factor

X hardening limit

P ratio between top and bottom moment

w first relative length parameter for a cylindrical shell

Q) second relative length parameter for a cylindrical shell
Subscripts

parameters for cylinders in bending
parameters for cylinders in axial compression

MPa
MPa
MPa

viii



1 Introduction

The offshore wind energy sector has undergone significant development over the past
decades, and the work still continues. However, there is a notion in the industry that
analytical buckling verification methods used nowadays might be overly conservative
for wind turbine supporting structures, such as monopiles.

Design codes usually contain detailed rules to follow in order to avoid buckling,
and they provide many formulas that can be applied routinely during the design.
However, those formulas are often based on certain assumptions and potential ap-
proximations and may include empirical and numerical coefficients. Therefore, their
range of validity is limited, and they cannot account for all possible design conditions,
e.g. specific boundary conditions, cross-sectional force distributions and geometric
imperfections, as some of these are implicitly included in the calculation methods.

Conservatism leads to underestimation of a structure’s capacity, resulting in
unnecessary resource consumption and more expensive solutions. Overly conservative
methods might be a result of an attempt to generalise and cover many different cases
with one method. On the other hand, conservatism is sometimes inevitable to obtain
the required level of safety. In general, less conservative results can be achieved using
finite element analysis. However, advanced nonlinear FEA, necessary to appropriately
model complex phenomena such as shell buckling, is usually time-consuming and
is therefore sometimes avoided. For this reason, the current analytical methods may
need to be reevaluated to reduce potential overdimensioning.

In view of the foregoing, the main purpose of the project is to assess and possibly
revise the current calculation methods in European standard EN 1993-1-6, which
can be applied to evaluate the buckling resistance of steel shells, in order to reduce
potential conservatism when used to design monopiles for offshore wind turbines.

Figure 1.1 shows a monopile for an offshore wind turbine before installation, and
an extracted monopile that underwent buckling is depicted in Figure 1.2.

[

Figure 1.1: Monopile before installation [1] Figure 1.2: Buckling in a monopile [2]




1 INTRODUCTION

The overall topic of the present project is buckling in monopiles, and similarly
to most research projects, it comprises two main parts: a background study and
the research. The background study is structured as illustrated in Figure 1.3, where
the topic is explored by first investigating the theoretical and historical background
of buckling in general as well as buckling in steel cylindrical shells, followed by a
comprehensive review of the treatment of shell buckling in European design codes.
EN 1993-1-6 provides detailed rules for evaluating the buckling resistance of steel
shells in terms of both analytical and numerical methods, and the review covers
two different analytical methods, including their comparison, along with a study of
various numerical analysis types. To be more precise, the analytical methods in EN
1993-1-6 are in fact semi-analytical or semi-empirical, since many of the expressions
are determined by fitting to data from a series of numerical analyses. However, for
simplicity, they are referred to as analytical methods throughout this thesis.

The background study is presented in the next chapter, and building on that, the
research work, including its scope and findings, is expanded in the remainder of the
report.

e N
Buckling in
monopiles
& J
s ™
N Buckling in steel Shell buckling
[ Buckling in general ] cylindrical shells [ in design codes ]
N J

Phenomenon Classification Under uniform Under uniform Analytical Numerical
of buckling of buckling axial compression || global bending method method

Stress-based Resistance-based Analysis tvpes
(Annex D) (Annex E) Yysis typ

Comparison
and assessment

Figure 1.3: Structure of background study in the project




2 Background

2.1 Offshore Wind Turbines

The most common type of foundation for offshore wind turbines (OWT) is monopiles.
They are applicable in water depths of up to 40 meters. However, it is claimed that
with modern technology, monopiles can be applied in water depths of up to 55 meters
[1]. In deeper waters, it is recommended to use other types of foundations, such as
jackets or floating foundations.

As shown in Figure 2.1, an offshore wind turbine supported by a monopile consists
of three main parts: the monopile, a transition piece and the wind turbine itself.
Additionally, a ring stiffener is located between the monopile and transition piece,
which is not shown in the figure. Its purpose is both to connect the transition piece
and monopile and to stiffen the top of the monopile to avoid unwanted deformation.
The parts above sea level are subjected to large horizontal wind loads, while the parts
below sea level are subjected to wave and current loads, as illustrated in Figure 2.2.

Wind load

Wind
turbine
] Transition Self-weight

_ piece | Overturning
Wt moment
load

Monopile Horizontal
force
Figure 2.1: Parts of OWT Figure 2.2: Loads on OWT

A monopile supporting an offshore wind turbine acts as a cantilever beam-column
subjected to normal forces, shear forces, overturning moments and torsional moments.
The normal force corresponds to the self-weight of the whole structure. The large
horizontal forces generate similarly large overturning moments and shear forces, and
if they act asymmetrically to the OWT, they also cause torsional moments. These
forces are transferred through the monopile to the seabed and further into the soil.




2 BACKGROUND

The stresses from the loads on top of the monopile are visualised in Figure 2.4.
They consist of normal stresses from the normal force and bending moment, and shear
stresses from the shear force and torsional moment. The stresses act in the wall of the

cylinder.
Pt
L |
Figure 2.3: Cylindrical shell Figure 2.4: Stresses from loads

The geometry of a monopile is quite simple, as shown in Figure 2.3. It is a
cylindrical shell defined by three dimensions, namely, the length, the wall thickness
and the radius or diameter. The length of the monopile depends on several factors,
e.g. the water depth, the soil conditions and the chosen type of connection to the
transition piece. The thickness can vary between 50 and 150 mm, and the radius can
vary between 2.5 and 6.5 m [3]. According to the information provided by Vattenfall,
the typical range of the radius-to-thickness ratio for monopiles is between 35 and 65.

2.2 Buckling In General

221 The Phenomenon of Buckling

It has long been known that load-bearing members subjected to compression have a
tendency to buckle and thus fail due to instability. A classical example is an axially
compressed column, which is particularly sensitive to buckling. However, buckling
is a collective word and includes numerous phenomena within structural mechanics
characterised by extensive flexural and sometimes torsional deformation arising due
to compressive stresses. It is an instability problem, that is, the structure or a part of it
becomes unstable under a certain load, and in most cases, it happens suddenly and
without warning. In general, the load that causes buckling is called the buckling load.
Although the process of various buckling phenomena can be essentially different, the
physics behind them is the same. When the buckling load is reached, the accumulated
strain energy from compressive stresses in the system transforms into bending energy,




2.2 Buckling In General

causing flexural deformation. Buckling is often associated with structural failure due
to the total loss of load-bearing capacity or because of excessive deformation. However,
certain structures can have remaining capacity after buckling called post-buckling
resistance.

In general, structures can fail as a result of fracture in the material or instability, i.e.
buckling. While material failure is controlled by the strength of the material, such as
the yield strength or ultimate strength, buckling is practically independent of strength.
In order to find out what buckling is governed by, one could refer to Salvadori and
Heller [4], who wrote the following:

“A slender column shortens when compressed by a weight applied to its top, and,
in so doing, lowers the weight’s position. The tendency of all weights to lower their
position is a basic law of nature. It is another basic law of nature that, whenever
there is a choice between different paths, a physical phenomenon will follow the
easiest path. Confronted with the choice of bending out or shortening, the column
finds it easier to shorten for relatively small loads and to bend out for relatively
large loads. In other words, when the load reaches its buckling value the column
finds it easier to lower the load by bending than by shortening.”

Even though the language of these remarks is somewhat subjective, and they
contain non-technical terms, they also capture the essence of the problem. In more
technical terms, it could be reformulated as follows: A basic law of nature is that systems
take the path of least resistance when they deform [5]. Since a system’s or structure’s ability
to resist deformation is its stiffness, it infers that buckling is governed by a structure’s
stiffness. As opposed to strength, stiffness is an extensive property of a structure,
which means that it depends not only on the structure’s material but its geometry and
boundary conditions as well. [5-7]

2.2.2 Classification of Buckling

Since buckling is a broad term, it can be classified based on different aspects, some of
which are illustrated with a mind map in Figure 2.5.

Frames
Trusses Flexural
Columns Torsional

- Torsional-flexural
Lateral-torsional

Beams

Plates
Shells
Neutral
Stable symmetric

Bifurcation (classical) Unstable symmetric

Asymmetric

. Finite disturbance
Plastic
Stable

Deflection amplification

Limit load / Limit point

Linear

Nonlinear

Elastic-plastic

ol
0

Unstable

Snap-through

Figure 2.5: Classification of buckling — Mind map




2 BACKGROUND

Extent of buckling

Based on its extent, buckling can be labelled as global, member or local. Examples
of each are shown in Figure 2.6. Global buckling, in some contexts called sway
buckling, can for instance be observed in unbraced frames, and it is characterised by

considerable relative displacement of member ends. [8]

L e >

\

A

¢) Local buckling

g%
g%
o

a) Global buckling b) Member buckling
(sway buckling of frame) (flexural column buckling)

Figure 2.6: Examples of classification based on extent

Member buckling is the classical buckling, where a slender member buckles under
axial compression (column) or bending (beam). Depending on the shape of their
cross-section, columns can exhibit flexural, torsional or torsional-flexural buckling,
as shown in Figure 2.7. Flexural buckling is characterised by deflection about the
minor axis of the member or about the major axis of laterally restrained members,
and it can occur in members with any cross-sectional shape. Torsional buckling is
associated with a twist of the cross-section, while torsional-flexural buckling involves
both deflection and twist. The latter two are possible in members with asymmetric,
single symmetric or cruciform cross-sections, e.g. L, T, U or X-shaped, as well as

doubly-symmetric cross-sections with lateral restraints. [8]

® Centroid

major minor X Shear center

axis axis
a) Flexural b) Torsional b) Torsional-
buckling buckling flexural buckling

Figure 2.7: Examples of column buckling [9, 10, ed.]




2.2 Buckling In General

Buckling in beams due to major axis bending is called lateral-torsional buckling.
As illustrated in Figure 2.8, it is characterised by deflection of the flange where
compressive stresses are present and a twist of the cross-section due to the stabilising
effect of the tension flange. It primarily affects beams with open cross-sections, e.g. I,
H and U-shaped, whereas beams with closed cross-sections, such as hollow sections
and welded box sections, are not susceptible to lateral-torsional buckling [8].

Transverse load (— bending) Lateral displacement

Twist of cross-section

Figure 2.8: Example of lateral-torsional buckling [10, ed.]

Buckling can also occur locally in a slender part of a member’s cross-section,
limiting its resistance and rotation capacity [8]. Depending on the shape of the
component that buckles, local buckling can be labelled as plate or shell buckling.
Plates are nominally flat [11], while shells have a curved shape [12]. It is important to
note that both plates and shells can experience buckling affecting them as a whole,
e.g. as a column, which phenomenon is identical to member buckling. Examples of
buckling in an axially compressed plate and shell are shown in Figures 2.9 and 2.10,
respectively, including a visualisation of the difference between local and member
buckling in these elements. In some contexts, the terms buckling of plates or shells
may be used to mean both member and local buckling. Furthermore, the terms global

and local buckling can in some literature or standards also be used differently than
described here.

z

e COLUMN \ o

BUCKL FORM.
ICKLED FO —7
Z ORIGINAL FLAT STRIP

\r

Column Shell

Figure 2.9: Buckling in plates [13] Figure 2.10: Buckling in shells [14]

Types of buckling

The phenomenon of buckling can be divided into different types or subphenomena.
However, there is no universal consensus about the division. Technical working group
8.4 of ECCS [15], for example, defined two types of buckling, namely bifurcation
and snap-through. Yoo and Lee [6] used the term deflection-amplification instead of

7
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snap-through, covering a wider range of phenomena. Jerath [5] called it limit load, and
extended the list with a so-called finite disturbance buckling. In this thesis, the authors
decided to consider two fundamental types of buckling, namely bifurcation and
deflection-amplification, together with different post-buckling behaviours, including
e.g. snap-through and finite disturbance, as shown in the mind map in Figure 2.5.
The following descriptions are based on the above-mentioned references [5, 6, 15]

Bifurcation-type buckling is the classical form of buckling characterised by a
bifurcation point, where the primary or pre-buckling equilibrium path of a structure is
intersected by a secondary or post-buckling path, as shown in Figure 2.11. The figure
depicts examples of load-deformation curves in terms of axial compression versus
lateral deformation, i.e. deflection. On the primary path, axial force normally leads
to axial displacement and no deflection. However, a small lateral perturbation can
cause the deformations to change to an alternate configuration referred to as buckling
mode, and thus the response follows the secondary path. The load at the bifurcation
point is usually called bifurcation load or critical load. The post-buckling response
after bifurcation can either be neutral with zero stiffness a), stable symmetric with
positive stiffness regardless of buckling mode b), unstable symmetric with negative
stiffness regardless of buckling mode c), asymmetric with either positive or negative
stiffness depending on the buckling mode d), or a combination of stable and unstable
called finite disturbance with the stiffness first negative then becoming positive e).
The letters for the different responses refer to the load-deformation curves shown in
Figure 2.11. When a structure’s stiffness is positive, it means that increasing loads lead
to increasing deformations. Following the same logic, zero stiffness means increasing
deformations with no change in loads, while negative stiffness means increasing
deformations with decreasing loads.

Axial load Axial load Axial load
) P
o ‘w{ L
7 >
/ \
Primary | Secogglary Primary Seconglary Primary Secondary
path p path pa path path
Deflection Deflection Deflection
a) Neutral b) Stable symmetric ¢) Unstable symmetric
Axial load Axial load
1 Py Primary
P bif ‘/’\ bif path — Stable
_’ 5 4 — = Unstable
- econdary
Primary \ Secondary
path path
Deflection Deflection

d) Asymmetric e) Finite disturbance

Figure 2.11: Load-deformation curves for bifurcation-type buckling [5, ed.]




2.2 Buckling In General

Member buckling and plate buckling are typically characterised by stable sym-
metric or, in some cases, neutral post-buckling response, whereas most shells exhibit
unstable symmetric bifurcation or finite disturbance buckling. Asymmetric bifurcation
can be encountered if the secondary path is affected by the direction of the alternate
deformation configuration, as in asymmetric structures, members or parts.

Bifurcation-type buckling can mostly only be observed in perfect or near-perfect
structures. If imperfections are present, bifurcation is suppressed and deflection-
amplification-type buckling occurs instead, as illustrated with load-deformation curves
in Figure 2.12, where ¢ denotes the imperfection amplitude. Furthermore, deflection-
amplification-type buckling also arises in structures with deflection prior to buckling
caused by eccentricity or lateral loading, e.g. in spherical caps and arches. In these
cases, the deformation configuration is predefined by the imperfections or the lateral
loading, and thus deflection-amplification-type buckling is characterised by one single
equilibrium path. As the name implies, the configuration of pre- and post-buckling
deformations is the same, it is only the magnitude that keeps increasing after buckling.
Similarly to bifurcation-type buckling, the post-buckling response can either be stable
with positive stiffness a) & b), unstable with negative stiffness a) & c), or a combination
of the two called snap-through with first negative then positive post-buckling stiffness
d), as shown in Figure 2.12. In case of unstable and snap-through response, the load
at buckling is referred to as limit load and is typically lower than the bifurcation load
in the corresponding perfect system. In case of stable response, there is usually no
apparent buckling load, although the bifurcation load of the corresponding perfect
system can be considered as a reasonable lower bound.

Axial load Axial load . Axial load
Pblf &= 0 'y Pblf y
Pyif
&E= O
> e>0 e>0 7 o
e<0 e<0
e>0
Deflection Deflection Deflection
a) Asymmetric b) Stable symmetric ¢) Unstable symmetric
Lateral load
Structure jumps across Stable
L — = Unstable

d) Snap-through Deflection

Figure 2.12: Load-deformation curves for deflection-amplification-type buckling [15, ed.]
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Response of structure

Considering the response of a structure to loading, i.e. change in its geometry,
buckling can be classified as either linear or nonlinear. In linear buckling, deflection
prior to buckling is negligibly small, whereas it is considerable in case of nonlinear
buckling. For example, a perfect centrally loaded elastic column responds linearly
to axial loading, whereas by introducing an eccentricity to the load, the response
changes to nonlinear as a result of the induced deflection. It should be noted that
most real structures exhibit nonlinear buckling as a result of inevitable geometric
imperfections and eccentricity of loading, and the assumption of linear buckling in
certain cases produces unconservative results and unsafe design. That is especially
true for structures experiencing unstable post-buckling behaviour. Furthermore, it
should be mentioned that bifurcation-type buckling can occur in both linear and
nonlinear cases, while deflection-amplification-type buckling is only possible in the
nonlinear case, as shown in Figure 2.13.

Axial load

Axial displacement

Figure 2.13: Example of linear and nonlinear buckling on axial load-displacement curve

Response of material

Considering the response of the material, buckling can be classified as elastic, plastic
or elastic-plastic. In general, buckling in the elastic region is called elastic, and in the
plastic region with hardening is called plastic. However, in a transitional region in
between, local yielding and plasticity can influence buckling, and it is in that case
classified as elastic-plastic. For instance, a short column or a semi-long column with
a compact cross-section can most likely be loaded beyond yielding into the plastic
region without buckling. In contrast, a long column or a semi-long column with a
slender cross-section would probably buckle before the material’s yield strength could
be reached, i.e. within the elastic region, as illustrated in Figure 2.14.

Stress, o
Ju |
fy Plastic buckling
Elastic buckling

Strain, &

Figure 2.14: Example of elastic and plastic buckling on stress-strain curve
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2.3 Buckling in Steel Cylindrical Shells

2.3 Buckling in Steel Cylindrical Shells

Steel cylindrical shells are widely used structural elements, e.g. as chimneys, piles,
wind turbine towers, silos and tanks, and depending on their application, they can
be subjected to different loading arrangements. Thereby, buckling in those structures
can be essentially different. The two probably most common and also extensively
studied simple load conditions in steel cylinders are uniform axial compression
and uniform global bending, which are discussed in the following. This section
focuses solely on elastic buckling in perfect steel cylindrical shells but considers both
linear and nonlinear phenomena. The complex influence of plasticity and geometric
imperfections is usually accounted for using semi-analytical methods from design
codes, as discussed in the next section.

2.3.1 Uniform axial compression

Cylindrical shells under uniform axial compression can exhibit flexural column buck-
ling, local shell buckling or local plate buckling depending on their relative length,
as illustrated in Figure 2.15 for a perfect shell with a radius-to-thickness ratio of 100,
assuming linear structural response. Since geometric nonlinearity and imperfections
are disregarded, the shell exhibits bifurcation-type buckling. Two dimensionless
length parameters are commonly used to describe the length relative to the radius and
thickness, as shown in (2.1). If the length is large compared to the radius, the shell is
long and will buckle as a column. If the length is small compared to the radius, the
shell will behave like an infinitely wide plate strip and buckle locally as a plate. In
the intermediate region where the length is neither large nor small compared to the
radius, local shell buckling occurs as depicted on the two cylinders in Figure 2.15.

w="y/-=-—"  and =4/ = w- (2.1)

1.2

1.0

0.8

0.6

1 (E*r) [

crit

c 04

wave numbers
0.2 | m: circumferential Eurocode
n : longitudinal approximation

0.0
0.001 0.01 0.1 1 10

Figure 2.15: Normalised elastic critical axial stress acc. to linear buckling theories [16]
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Historically, buckling of columns was studied extensively relatively early. In the
18th century, Euler studied elastic buckling in bars and columns, and he presented the
first accurate column analysis in 1744. From the analysis, an expression was derived
to estimate the critical load where flexural column buckling occurs [6]. Shell buckling
started to get more attention later. The normal stress at linear elastic bifurcation
in a perfect axially compressed cylinder of medium length under ideal boundary
conditions was independently found by Lorenz in 1908, Timoshenko in 1910 and
Southwell in 1914. It is known as the classical elastic critical stress and can be
calculated as shown in eq. (2.2). [17]

Oyl = __E ! A 0.605}5E (2.2)
' 3(1—v2)r r

More sophisticated shell buckling theories encompassing the effects of varying
length and boundary conditions were presented later in the previous century, e.g. by
Fliigge in 1932 and Donnell in 1933. According to the Fliigge theory, several buckling
modes with almost identical elastic critical stresses exist with varying circumferential
and longitudinal wave numbers m and 1, as shown in Figure 2.15. By looking at the
plot, it can also be seen that buckling modes with fewer circumferential waves occur at
lower critical stresses and that those stresses can be up to 40% lower than the classical
elastic critical stress. While the original Fliigge theory only applies to linear elastic
buckling phenomena, Donnell’s theory also considers geometric nonlinearity but has
other deficiencies, as discussed by Yamaki [18].

Yamaki presented a comprehensive summary of the nonlinear elastic stability
of circular cylindrical shells under torsion, pressure and compression in 1984 [18].
According to his work using a modified version of the Fliigge theory, the combined
effect of varying length, boundary conditions and geometric nonlinearity on the
classical elastic critical stress is as visualised in Figure 2.16. Eight different boundary
conditions are considered in the figure: four simply supported (51-54) and four
clamped (C1-C2). Two material-dependent relative length parameters are used as
variables, which are closely related to the previously presented w and (), as shown
in (2.3). Assuming v = 0.3, the relationships become as in (2.4). The plots show
curves with connected festoons similar to Figure 2.15, although in a seemingly more
irregular pattern. In the intermediate length range, the ratio between the nonlinear
elastic critical stress and the classical elastic critical stress becomes almost constant for
each boundary condition. Also note that the plots include curves for r/t = 100 and
r/t = 1000, but only a slight difference can be observed between them indicating that
the ratio oy ¢ N1/ 0y €Xpressed as a function of Z or A is independent of r/t.

2
7 = \/1—1/2%: V1-—12@?

(2.3)
t t
A= \/Z; = \4/1—1/2w; =V1-120
Z =+1-0.32 w? ~ 0.954 w? 24

A=+v1-0320=0977 Q
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Figure 2.16: Normalised nonlinear elastic critical axial stress acc. to Yamaki [18, ed.]

The different shell theories have served as basis for the rules and calculation
methods in design codes used nowadays. For example, in the current edition of EN
1993-1-6 [12], a simplified version of the original Fliigge theory is applied together
with the classical approximation (Timoshenko) at high number of waves m to calculate
the axial linear elastic critical stress, as illustrated in Figure 2.15. In the future edition
of EN 1993-1-6, currently available in draft version [19], the calculation method was
further simplified by using the classical approximation for low values of m as well. In
the standard, the elastic critical stress is defined as the product of its classical value
and the coefficient Cy, see (2.5). The effect of geometric nonlinearity is included using
the coefficient a,; set to a constant 0.83, most likely based on Yamaki’s work [18].

t
Oer = Cxlyer ~ 0.605C,E- (2.5)

Ox,cr, NL = &xGOx,cr = 0.830%cr (2.6)

It should be emphasised that the above-discussed buckling resistances are mainly
theoretical in case of elastic bifurcation-type buckling of perfect cylinders. In reality,
geometric imperfections and plasticity typically have a significant negative effect,
resulting in a reduced buckling resistance. This fact has long been known, and in the
previous century, the professional community tried to gain more knowledge about
the matter using experiments. Despite the fact stated in a recent research paper that
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axially compressed cylinders have historically been the most tested shell systems
producing the largest test dataset [20], these experimental data do not provide a
suitable basis for either deriving analytical calculation methods or reliably calibrating
partial safety factors. The reason for that is the large scatter observed in the results,
as seen in Figure 2.17, and the fact that important information about the specimens
was not recorded to explain it properly. Therefore, it has become more common in the
last decade to use results from numerical calculations rather than experiments for the
above-mentioned purposes.
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Figure 2.17: Test results for cylinders under axial compression [20, ed.]

2.3.2 Uniform global bending

When dealing with cylinders in uniform global bending, the critical load where
buckling occurs is commonly expressed as an internal force (bending moment) rather
than a stress. Even though the classical elastic critical stress o, in (2.2) was derived
for a cylinder in uniform axial compression, its product with the elastic section
modulus W,; is typically employed as a reference resistance. It is called the classical
elastic critical moment M, and can be calculated as shown in (2.7). Note that an
approximate value of the elastic section modulus is used in the equation, which
provides an adequate estimate for thin-walled cylinders.

E t T
M = 0y i Wei shen1 = — 7t = ————Ert> ~ 1.901Ert? (2.7)
T V31 —v2)r 3(1—v?)

As opposed to uniform axial compression, cylinders in uniform global bending
do not exhibit member buckling or local plate buckling, only local shell buckling,
which results in a slightly more straightforward relationship between the linear elastic
critical moment M., and its classical approximation M. Despite that, the difference
between the two moments was first studied only recently by Rotter et al. [21], who
defined a conservative approximation of the ratio as shown in (2.8) for cylinders with
clamped end supports. They claim that the relationship is effectively independent of
the r/t ratio when expressed in terms of w. However, a small scatter can be observed
when looking closely at Figure 2.18. Fajuyitan et al. have later investigated the effect
of boundary conditions and presented a curve with clear festoons when using simple
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end supports for v/t = 100 as shown in Figure 2.19, which suggests that the scatter in
Figure 2.18 is not random and that there may indeed be a dependency on r/¢.

=1+— (2.8)
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Figure 2.19: Ratio of M., to M, for different support conditions [22]
When accounting for geometric nonlinearity in cylinders under global bending,

the buckling behaviour becomes complex due to the coupling between cross-sectional
ovalisation and local bifurcation-type buckling as recently described by Rotter et al.
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[21]. Even though that research paper is from 2014, analytical treatments of this

phenomenon have a history of around a century. Only a brief discussion of the

problem’s theoretical background is included in the following, mainly based on the

findings of Rotter et al. [21]. For more details, the reader is referred to the cited paper.

Cylindrical shells under global bending exposed to nonlinear buckling can ex-

hibit snap-through buckling, local bifurcation-type buckling, instability due to cross-
sectional ovalisation or a combination of the latter two, depending on their relative
length. According to Rotter et al. [21], as well as based on earlier studies, four distinct
domains of this behaviour can be identified and described as follows:

* In short cylinders, the end boundaries effectively restrain both local bifurcation-

type buckling and cross-sectional ovalisation. According to Rotter et al. [21],
they experience snap-through buckling caused by significant geometric softening
due to the growth of a central meridional fold at moments considerably higher
than M., see Figure 2.20. Cylinders are classified as short up to w =~ 5, although
such geometries are rarely used in practice.
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Figure 2.20: Ratio of nonlinear and linear elastic buckling moments in short cylinders [21]

¢ In medium-length cylinders, the end boundaries still restrain cross-sectional

ovalisation, but allow local bifurcation buckling. Thus, buckling occurs at
moments close to M. As seen in Figure 2.21, the relationship between the
nonlinear and linear elastic buckling moments can be visualised as a curve of
connected festoons corresponding to distinct buckling modes. The fluctuation
decreases with increasing length and eventually settles on a plateau. Rotter et
al. [21] proposed the upper boundary of the medium-length domain to be at
w ~ 0.5 r/t, or more naturally expressed in terms of the second relative length
as a single value Q) =~ 0.5, as shown in Figure 2.22. This is, however, only valid
for v/t > 50, since in cylinders with ratios below that, the curve of festoons
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cannot reach a horizontal plateau before it enters the transitional domain and
ovalisation begins.
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Figure 2.21: Ratio of nonlinear and linear elastic buckling moments in medium-length cylinders
as a function of w [21]
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Figure 2.22: Ratio of nonlinear and linear elastic buckling moments in medium-length cylinders
as a function of Q) [21]

* In transitional-length cylinders, the restraining effect of end boundaries against
cross-sectional ovalisation diminishes gradually, leading to a decrease in lever
arm and section modulus, and thus to a lower buckling moment. Cylinders
in this domain follow more or less the same curve regardless r/t ratio when
expressed as a function of (), as depicted in Figure 2.23. It starts as a straight
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line before smoothly approaching a minimum value of approx. 0.49 at (2 ~ 3.5
and gently rising to a constant at the boundary at ) ~ 7.
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Figure 2.23: Ratio of nonlinear and linear elastic buckling moments in transitional-length
cylinders [21]

* Long cylinders undergo considerable ovalisation, whose effects become stable,
meaning that the length no longer affects the buckling resistance. Buckling
always occurs as bifurcation at a moment approximately equal to 0.5M,,. Several
theoretical solutions have been published for the asymptotic moment in infinitely
long cylinders over the years. Based on their numerical results, Rotter et al.
chose the value of 0.516 corresponding to the analytical solution of Tatting et al.
(1997) and Li and Kettle (2002).

Based on their study, including finite element analysis of clamped cylinders with
a wide range of dimensions, Rotter et al. [21] proposed the following algebraic
expressions for the ratio of nonlinear and linear elastic buckling moments a,c =
M./ M, valid for r/t > 50:

1.93 — 0.5(w — 3.8)2 — 0.44(w — 3.8)%>  forshort: 3 < w <48
0.85 +0.029(w — 7.1)? formed.: 48 <w < 8.6
ape = ¢ 092 for med.: 8.6 < w < 0.5(r/t)
1—0.22Q 4 0.06100>%
. 2 05<L .
1.07 1012029 for trans.: 0.5 <0 < 7.0
\0.516 forlong: O >7.0

(2.9)

The analytical method in the current edition of EN 1993-1-6 [23] adopted the
expressions above for a;; as well as for the ratio M./ M,;, which was assigned the
symbol C,,. Similarly to the case of uniform axial compression, the future edition of
EN 1993-1-6 [19] conservatively sets C,, = 1 and also simplifies the expression for ag.
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2.4 Treatment of Buckling in Design Codes

The different types of buckling presented earlier can be handled using the rules and
calculation methods described in design codes. In Europe, the commonly used design
codes are the Structural Eurocodes. The design of steel structures shall follow the
rules and methods given in EN 1993 Eurocode 3, some parts of which deal specifically
with buckling. EN 1993-1-1 [8] deals with global buckling and buckling of members
with standard cross-sections. As for buckling of plates, EN 1993-1-5 [11] can be
applied. Design of shells against buckling is handled in EN 1993-1-6 [12], where
three approaches are provided, namely an analytical, a numerical and a combined
one. There are also other approaches for dealing with the buckling strength of shells,
e.g. a semi-empirical approach presented in the recommended practice DNVGL-RP-
C202 [24], which generally applies to shell structures with stiffeners. In this project,
attention is directed towards the approaches defined in EN 1993-1-6.

At the time of writing (March 2025), the first edition of EN 1993-1-6, namely EN
1993-1-6:2007, is in effect together with corrigendum EN 1993-1-6:2007/AC:2009 and
amendment EN 1993-1-6:2007 / A1:2017. However, its second edition is in the last phase
of preparation and is expected to be published later in 2025. The authors of this report
have access to an official draft version of the second edition, prEN 1993-1-6:2023, and
use it as background for the project. Furthermore, a recent research paper by Sadowski
and Filippidis [25] is also employed, whose first author contributed significantly to
the second edition, and in that context, it is referred to as EN 1993-1-6:2025. Where no
specific year is stated, general reference is intended to EN 1993-1-6.

In the following, a summary of the different types of numerical analysis defined in
the standard is presented first. Thereafter, buckling-relevant geometric tolerances are
described together with the treatment of geometric imperfections in the calculation
methods. Lastly, a description is provided for the three approaches in EN 1993-1-6,
which include design by means of:

¢ a fully analytical calculation using buckling stresses or reference resistances

¢ a fully numerical geometrically and materially nonlinear analysis including
imperfections (GMNIA)

¢ a linear bifurcation analysis (LBA) and a materially nonlinear analysis (MNA)
combined with the analytical method

2.4.1 Types of Numerical Analysis

Numerical analyses involve calculations performed using the finite element method,
among others, to describe the behaviour of a loaded structure in terms of stresses,
deformations and stability. Several numerical approaches to examine steel shells are
defined in EN 1993-1-6 with different aims. A short description of each approach can
be found below based on ECCS No. 125 [15] and prEN 1993-1-14:2023 [26].
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Linear elastic shell analysis (LA)

LA predicts the behaviour of a perfect shell structure based on the small deflection
linear elastic shell bending theory. This implies that the assumed geometry remains
that of the undeformed structure. An LA fulfils static and kinematic equilibrium.
When stresses are in equilibrium, the static condition is fulfilled. As for the kinematic
condition, it is satisfied when there is compatibility of strains.

Linear elastic bifurcation analysis (LBA)

LBA resembles LA as the analysis is based on the small deflection linear elastic shell
bending theory, meaning that static and kinematic conditions are met, and the material
law is also linear elastic. This analysis differs as it evaluates the linear bifurcation
eigenvalue of the structure, which corresponds to the bifurcation load R.;,.

Geometrically nonlinear elastic analysis (GNA)

GNA meets both static equilibrium and kinematic compatibility, including when
changes appear in geometry caused by loading. The analysis is performed on a perfect
structure using the principles of shell bending theory and linear elastic material law,
as well as including nonlinear large deflection theory. This type of analysis can be
used to identify a bifurcation load reduced due to geometric nonlinearity or a possible
limit load.

Materially nonlinear analysis (MNA)

MNA is based on shell bending theory applied to the perfect structure with an elastic-
plastic material law and assumptions of small deflections. The result from this analysis
is the plastic reference resistance, R,;. Here, the effect of changes in the geometry is
not considered.

Geometrically and materially nonlinear analysis (GMNA)

GMNA is a combination of GNA and MNA. It is an analysis based on shell bending
theory applied to the perfect structure with an elastic-plastic material law and uses
nonlinear large deflection theory. The result from this analysis is the resistance of the
perfect structure.

Geometrically nonlinear elastic analysis with imperfections (GNIA)

Imperfections are explicitly included in GNIA. The analysis is based on shell bending
theory applied to the imperfect structure, with assumptions of nonlinear large deflec-
tion theory. The material is treated as linear elastic, meaning that this analysis is only
valid for shells that remain elastic. The analysis can be used to evaluate the internal
forces, stresses or stress resultants in the imperfect structure due to the geometric
nonlinearity.
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Geometrically and materially nonlinear analysis with imperfections (GMNIA)

GMNIA is a combination of GMNA and GNIA. In GMNIA, imperfections are explic-
itly included. The analysis is based on shell bending theory applied to the imperfect
structure, with assumptions of nonlinear large deflection theory with a nonlinear
elastic-plastic material law. This analysis is difficult and time-consuming, as many dif-
ferent imperfection forms must be assessed. The result from this analysis corresponds
to the characteristic buckling resistance Ry.

An overview of the different types of analysis is given in Table 2.1.

Table 2.1: Analysis types

Type of analysis | Deformations | Material law | Shell geometry | Buckling

LA linear linear perfect -
LBA linear linear perfect +
GNA nonlinear linear perfect +
MNA linear nonlinear perfect -
GMNA nonlinear nonlinear perfect +
GNIA nonlinear linear imperfect +
GMNIA nonlinear nonlinear imperfect +

An example of the expected results from the different numerical analyses is
visualised in Figure 2.24. It should be noted that the load shown on the y-axis can be
any load that causes deformation, such as axial compression due to an axial load or
rotation due to a bending moment. The equilibrium path of the analyses containing
buckling, shown in Figure 2.24, can be associated with the load-deflection curves
shown in Figures 2.11 and 2.12.
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Figure 2.24: Load-deformation curves of different analysis types [12, ed.]

Starting with the curve representing an LBA, it is split into two parts: the primary
and secondary path. The two parts are separated at the bifurcation point. The first
part corresponds to an LA, which continues infinitely. However, an LBA sets a limit
for this, which corresponds to the bifurcation point. In this example, the secondary
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path for LBA has a negative stiffness, indicating an unstable behaviour. This closely
resembles Figure 2.11 c) where the post-buckling response is unstable with negative
stiffness. In Figure 2.11 c), the primary path is vertical because the figure is based on
an axial load, and only deflection is shown on the horizontal axis.

The curve representing a GNA is nonlinear due to geometric nonlinearity. As
previously mentioned, this type of analysis can be used to identify both a reduced
bifurcation load or a possible limit load. If a bifurcation point is found, the secondary
path branches off from the primary equilibrium path at the bifurcation point, as
indicated by the arrow. In this example, the downward arrow indicates unstable
behaviour as the stiffness becomes negative. Referring to the bifurcation buckling
types in Figure 2.11, the post-buckling behaviour in this GNA can correspond to all
types that exhibit unstable behaviour, namely Figure 2.11 c), d) and e). As for the
deflection-amplification-type buckling, it can correspond to Figure 2.12 d).

The equilibrium path for GNIA is very similar to that of GNA. However, the
difference is that deflection-amplification occurs due to imperfections. There is only
one equilibrium path, as the configuration of the pre- and post-buckling deformations
is the same. Similarly as before, the stiffness becomes negative post-buckling due to
unstable behaviour corresponding to Figure 2.12 a), c) and d). In these examples, a
negative post-buckling stiffness is shown in the different buckling analysis types, as
shell buckling is often characterised as unstable.

Lastly, the MNA follows the LA at small deformations, but becomes nonlinear
at larger deformations. What characterises the MNA is that it reaches a plateau at a
value corresponding to the plastic reference resistance. It should be noted that neither
an MNA nor an LA is a buckling analysis.

2.4.2 Buckling-relevant Geometric Tolerances and Imperfections

As revealed in section 2.2.2, imperfections can have a significant impact on the buckling
resistance, especially in case of unstable post-buckling behaviour. According to EN
1993-1-6, imperfections should be included in the design of steel shells both in form of
geometric imperfections, i.e. deviations from the nominal geometry, and of material
imperfections, i.e. inhomogeneities, anisotropies and residual stresses. In this thesis,
only geometric imperfections are considered.

Geometric tolerances define the limits to deviations in the constructed shell from
the nominal geometry. These tolerances could theoretically easily be translated into
geometric imperfections used in design calculations. However, as ECCS No. 125 [15]
also points out, the fact that numerous forms of deviations can be encountered in
real structures and that they can occur in various combinations, makes the choice of
imperfections in design calculations very far from straightforward. Therefore, it was
chosen in EN 1993-1-6 from the first edition to standardise the allowable form and
magnitude of geometric tolerances, and based on them give guidance on the selection
of unfavourable equivalent geometric imperfections.

Tolerance requirements are defined in terms of fabrication tolerance quality classes.
Three standard classes are used in EN 1993-1-6 and in the corresponding execution
standard EN 1090-2, namely, Class A (excellent), Class B (high) and Class C (normal).
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Manufacturing tolerances

prEN 1993-1-6 [19] defines manufacturing tolerances of four types as described below
and illustrated in Figures 2.25 to 2.28. According to ECCS No. 125 [15], other types of
deviations can also affect the buckling strength of shells. However, the current state of
knowledge limits the extent to which other tolerances can be accounted for.

¢ Out-of-roundness: deviation from circularity, see Figure 2.25

¢ Unintended eccentricity: deviation from a continuous middle surface normal to
the shell at plate joints, see Figure 2.26

¢ Dimple and weld depression: local deviations from the nominal middle surface
normal to the shell, see Figures 2.27 and 2.28

¢ Interface flatness: deviations of the shell base from full contact with the support

The importance of each tolerance type depends on the stress state of the shell. In
case of axial compression, usually all four types are necessary to consider. Regarding
dimple and weld depression, it should be noted that they are essentially similar as
seen in Figures 2.27 and 2.28. However, in case of weld depression, an additional
tolerance requirement is defined in terms of a different gauge length as shown in
Figure 2.28 b).

dmax

a) Flattening / elliptical b) Indeterminate / unsymmetrical

Figure 2.25: Manufacturing tolerance — Out-of-roundness [19, ed.]
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Figure 2.26: Manufacturing tolerance — Unintended eccentricity [19, ed.]
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Figure 2.27: Manufacturing tolerance — Dimple [19, ed.]
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Figure 2.28: Manufacturing tolerance — Weld depression [19, ed.]

Imperfections in design

Based on the standardised manufacturing tolerances, EN 1993-1-6 implicitly defines
the form and magnitude of an equivalent geometric imperfection used in analytical
calculation methods, as well as gives guidance on how an unfavourable imperfection
can be selected to be used in a fully numerical design approach. Both analytical
calculation methods in the standard are based on a dimple-like imperfection covering
the whole circumference of the shell, typically referred to as a full-circumferential
weld depression. It is also the form of imperfection that is recommended in GMNIA
design unless other forms are susceptible to having a more unfavourable effect on the
buckling resistance. This is expressed through the following note taken directly from
prEN 1993-1-6 [15]:
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“Only dimple imperfections are considered in the above requirements. Since a
shell can have other imperfection forms in addition to the modelled dimples, this
procedure is potentially unsafe. However, these calculations are based on a full
circumference of an axisymmetric dimple (the worst case) which can rarely occur
in practice, the full tolerance amplitude is rarely attained, and the potential for
a practical load case to induce the resistance stress at the critical locations is
small. For these reasons, the omission of an additional margin to allow for other
imperfections is generally not serious.”

Traditionally, other forms of imperfections have been used in numerical calcula-
tions. The most frequent, probably still today, is an eigenmode-affine pattern, where
a selected eigenmode is scaled and used as the imperfect geometry. However, prEN
1993-1-6 cautions the user that this might be far from the most unfavourable pattern.

2.4.3 Analytical Approach

To ensure sufficient strength and stability of steel shells, EN 1993-1-6 can be followed,
which covers different limit states, such as plastic failure, cyclic plasticity, buckling
and fatigue. Since this project focuses on buckling, the other failure types are not
elaborated on further. The methods described in EN 1993-1-6 for determining the
buckling strength apply to different loading conditions and geometries. Regarding
loading conditions, the buckling strength can be determined for axial compression,
global bending, circumferential compression or shear. The methods can also be applied
to different geometries, such as cylinders or truncated cones. In this thesis, attention
is directed towards the methods that describe cylindrical shells subjected to axial
compression and global bending as presented in Annex D and Annex E, respectively.

The buckling strength of an axially compressed cylindrical shell can be determined
using a stress-based design method given in EN 1993-1-6:2007 Annex D [12]. In
EN 1993-1-6/A1:2017 [23], this method is refined and a resistance-based method for
cylinders in uniform global bending is added in Annex E. Both methods are further
refined in prEN 1993-1-6:2023 [19]. These approaches are described below, with further
details in appendix A of this report.

The analytical process depicted in Figure 2.29 applies to both methods, Annexes D
and E. The main purpose of this process is to determine key parameters that define the
capacity curve, shown in Figure 2.30. The process and key parameters are described
below, where terms that appear in Figure 2.29 are highlighted in bold within the text.

The process begins with the determination of the plastic reference resistance R
and the linear elastic critical resistance R.,, which are then used to determine the
relative slenderness A as given in (2.10).

R e (2.10)
N RC?’ ’

A reduction factor x is added to account for the influence of geometric imperfec-
tions on the plastic reference resistance Ry, which is mostly relevant for cylindrical

shells subjected to bending.
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Figure 2.29: Analytical calculation process of EN 1993-1-6 [27, ed.]

Depending on their relative slenderness, structures experience one of the three
types of buckling: elastic, elastic-plastic and plastic. The buckling reduction factor y is
calculated differently for each buckling type, as shown in (2.11)—(2.13). This reduction
factor helps establish the characteristic buckling resistance Ry.

o

X== for elastic region Xp <A (2.11)
A
-7\ -

x=1-8 SASNELS for elastic-plastic region Ag < A < A, (2.12)

Ap— Ao

) S

X=Xn— X—(Xh -1) for plastic region A < Ay (2.13)

0
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material strain hardening
/ Different possible

. elastic-plastic
\ . .
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Elastic imperfect
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<
0 Ao 12 A =\(xR,/ R.,)
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Figure 2.30: Capacity curve [25, ed.]
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2.4 Treatment of Buckling in Design Codes

Very thin shells buckle in the elastic region, where equation (2.11) is valid, which
is an inverse square function. This function determines the elastic imperfect buckling
resistance governed by the elastic buckling reduction factor «. This factor consists of
two contributions as shown in (2.14), x¢ accounting for geometric nonlinearities and
«g for geometric imperfections. ag and «j are determined differently depending on the
applied method. Common for both methods is that a; depends on the imperfection
amplitude Jy. The reader is referred to appendix A for the specific expressions.

N = AGNT (2.14)

The imperfection amplitude §y depends on the quality of fabrication, geometry
and load case. The fabrication quality parameter Q depends on the specified fabrica-
tion tolerance quality class. The expression for dy given in (2.15) is valid for cylindrical
shells subjected to uniform axial compression or uniform global bending.

(50 - 1 r
- = Q\[t (2.15)

Equation (2.13) applies to the plastic region where strain hardening occurs as
thicker shells experience increased strength, which allows local stresses to surpass the
yield strength before buckling occurs. The upper limit of the buckling reduction factor
in the plastic region, denoted by yxy, is called the hardening limit and is marked on
the capacity curve in Figure 2.30.

Equation (2.12) is a form of interpolation between the elastic and plastic regions.
Referring to Figure 2.29, the geometry, load case, imperfection amplitude and relative
slenderness dictate the form of the elastic-plastic interaction which can be established
by using certain physical capacity parameters: the elastic buckling reduction factor «,
the plastic range factor f, the squash limit relative slenderness Ay and the interaction
exponent 7.

As seen in Figure 2.30, the appearance of the curve in the elastic-plastic region is
strongly dependent on the value of #, which can be determined using equation (2.16).
The expression is a form of interpolation between the boundary values 79 and 77,.

X(ﬂp - 770) + X;7770 - X077;7
X — o

n= (2.16)

The plastic range factor p is determined differently based on the chosen method,
and reference is once again made to appendix A for further details. It should be noted
that in prEN 1993-1-6, the plastic range factor depends on the imperfection amplitude,
among others. The plastic limit relative slenderness A, controlled by B, see (2.17),
dictates the transition between the elastic-plastic and elastic region.

o
1-p

The transition between the plastic and elastic-plastic buckling region is set by the

Ay = 2.17)

squash limit relative slenderness Ao. In the current version of EN 1993-1-6, A is a
fixed value, while in prEN 1993-1-6 Annex E, an expression is introduced, which
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depends on the imperfection amplitude, among others. However, the value of Ay is
still within a certain range, as shown in Figure 2.31.

+ Range of physical
1o values for all 6/t

| _\ Full plastic resistance

of imperfect cylinder

Range of physical 4o
N\ values for all d/¢

[
»

Dimensionless resistance X

0 Relative slenderness 4

Figure 2.31: Capacity curve [28, ed.]

All of these described parameters are used to obtain the characteristic elastic-
plastic buckling resistance Ry, which can be expressed through the buckling reduction

factor x, as shown in (2.18).
Ry = xxRp (2.18)

Lastly, a partial safety factor can be applied to obtain the design buckling resis-
tance R;. [15]

Assumptions behind analytical methods

The analytical methods in Annex D and E are derived based on certain assumptions
that are more or less implicitly embedded in the expressions. These assumptions
primarily concern three aspects:

* Support conditions
* Geometric imperfections

e Cross-sectional force distributions

The methods are derived based on a static system consisting of either pinned
or fixed supports at each end. The geometric imperfection is a full-circumferential
weld depression as mentioned in section 2.4.2. This type of imperfection is the most
critical in terms of buckling resistance, yet it rarely occurs. When the execution
standard EN 1090 is followed, this type of imperfection must be avoided. Concerning
cross-sectional forces, Annex D applies to shells under uniform stress distributions,
e.g. axial compression, and the method in Annex E applies to shells under uniform
global bending.

It should be noted that the range of validity of the methods in EN 1993-1-6 is
limited to radius-to-thickness ratios between 50 and 2000. Furthermore, a note in the
standard states that Annex D is rather conservative for certain relatively thick-walled
cylinders, i.e. with low r/t ratios.
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2.4 Treatment of Buckling in Design Codes

Comparison and assessment of analytical methods

This section aims to compare and assess three analytical methods in EN 1993-1-6 using
the study of Sadowski and Filippidis [25]. The three methods are:

e Stress-based method in EN 1993-1-6:2007 Annex D
e Stress-based method in EN 1993-1-6:2025 Annex D
e Resistance-based method in EN 1993-1-6:2025 Annex E

The method in Annex E, which applies to shells under uniform global bending,
was introduced recently. Prior to that, Annex D was used, even though it was not
necessarily suitable for the actual stress distribution. The reason was that no other
shell system could be imagined to be more imperfection-sensitive than a cylinder
under uniform axial compression. Using the method in Annex D, it is possible to
consider both normal stresses from axial compression and normal stresses due to
bending. However, the method was derived based on a cylindrical shell subjected to
only uniform normal stresses. By using the method in Annex E, it is also possible to
include both influences, although it becomes rather conservative.

Annex D: 2007 vs 2025

First, a comparison of the capacity curves for the method in Annex D from the
current version of EN 1993-1-6:2007 and the soon-to-be-published EN 1993-1-6:2025 is
presented. As mentioned before, EN 1993-1-6 operates with three fabrication tolerance
quality classes (FTQCs), represented by the letters A, B and C. Since the capacity
curves depend on FTQC, three different curves are shown for each version of Annex D
in Figure 2.32. To ensure a common basis for the comparison, the capacity curve based
on the German standard DIN 18800-4 is also included, representing an approximate
lower bound to about 750 laboratory test results accumulated before 1990.

In EN 1993-1-6:2007, the capacity curve is established using a rather simple ap-
proach, where several of the capacity parameters are constant. This concerns the
plastic limit range f, the interaction exponent 17 and the squash limit relative slender-
ness Ag. The elastic buckling reduction factor « is the only capacity parameter with an
expression and has an explicit empirical dependency on the imperfection amplitude
0. According to Sadowski and Filippidis [25], it appears the capacity parameters in
EN 1993-1-6:2007 for FTQC B were calibrated against roughly the same empirical test
data as DIN 18800-4, which explains why the curves are closely aligned in Figure 2.32.

In EN 1993-1-6:2025, all parameters are refined compared to the version from 2007.
B and 7 are no longer constant and both depend on the imperfection amplitude g,
among others. The value of Ao, where x = 1, is reduced, which makes the plastic
region narrower, as seen by comparing the two graphs in Figure 2.32. Moreover,
the separation of the elastic buckling reduction factor &« = aga; and the benefit of
strain hardening in the plastic range are introduced. The expressions for the capacity
parameters are now determined solely based on computational parametric simulations.
This means that the results from the experimental dataset are no longer directly tied
to the parameters, since they are no longer considered representative, as explained in
section 2.3.
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Figure 2.32: Comparison of capacity curves based on Annex D from 2007 and 2025 [25, ed.]

The significant visual difference between the capacity curves from 2007 and 2025
is that a large part of the curves has shifted upward. While in the method from 2007,
the curve for FTQC B was calibrated against the previously mentioned test data, the
various capacity parameters from 2025 have been adjusted so that the test data now
aligns better with FTQC C. This makes the method from 2025 less conservative.

Annex D 2025 vs Annex E 2025

Annex E contains a newer design method based on reference resistances and deter-
mines the capacity curve for a cylindrical shell under uniform global bending, in
contrast to the stress-based design method in Annex D, which assumes uniform axial
compression in the shell wall. A large part of the framework in Annex E is the same in
Annex D, i.e. the same capacity parameters are present in both methods except for x,
accounting for the effect of imperfections on the plastic moment M. In the following,
the significant differences in determining the parameters for the two methods are
described. The capacity curves from the two methods are shown in Figure 2.33.

A significant difference between the two methods is that in Annex E, a length
function fq is introduced and included in the expressions for the plastic limit range
and the squash limit relative slenderness Ag. Psychically, it means that the length of
the cylinder gets a slightly larger contribution in determining the buckling resistance.
Furthermore, the geometric nonlinear buckling reduction factor ag is no longer
a constant value but an expression that captures the influence of cross-sectional
ovalisation, which can occur pre-buckling for a cylinder subjected to uniform bending.
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Figure 2.33: Comparison of capacity curves based on Annex D and E [25, ed.]

By considering the curves for the two methods in Figure 2.33, three primary
differences can be observed. In the elastic region, the capacity curve for uniform axial
compression is conservative compared to uniform bending. The plastic region is wider
for the method with uniform bending, as the squash limit relative slenderness tends
to be higher. Lastly, in the elastic-plastic region, the method in Annex E is generally
more conservative, and it is therefore recommended to be used for cylinders with
intermediate slenderness, Ag < A < Xp.

2.4.4 Partially and Fully Numerical Approach

Besides the analytical approach, EN 1993-1-6 provides two other approaches to deter-
mine the buckling resistance of shells, as mentioned at the beginning. One is a partially
numerical approach (LBA-MNA), where some part of the analytical calculations are
replaced by results from numerical analyses for more precise assessment.

By performing global linear analyses using the LBA-MNA procedure, some parts
of the analytical calculation are replaced by numerical results. A bifurcation analysis
(LBA) is conducted to determine the lowest eigenvalue, which represents the elastic
critical resistance R.,. The plastic reference resistance R, is determined using a plastic
collapse analysis (MNA). These resistances are used as input when determining the
relative slenderness in the subsequent analytical calculation.

It is also possible to perform a fully nonlinear global analysis, including geometric
imperfections (GMNIA). Here, the imperfections and material nonlinearity have to be
included explicitly in the model. The analysis has to take full account of geometry
changes due to the loads. The result from this analysis is the characteristic elastic-
plastic buckling resistance Ry. [15]
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3 Scope

3.1 Problem Statement

As stated in the introduction, the current analytical buckling verification methods in
EN 1993-1-6 are potentially conservative when used to design monopiles for offshore
wind turbines. A preliminary investigation of that conservatism and its possible
reasons can be conducted by examining the differences between the assumptions
behind the calculation methods and the corresponding conditions in monopiles. Based
on sections 2.1 and 2.4, the differences are summarised in Table 3.1.

Table 3.1: Differences causing potential conservatism

\ Assumptions in EN 1993-1-6 \ Conditions in monopiles

r/t ratio Range of validity: 50 — 2 000 35-65
Static system Supported at both ends Cantilever
Uniform moment Increasing moment
Internal forces OR AND
Axial compression Axial compression
Imperfections | Full-circumferential dimple Dimple of limited size

As seen in the table, the geometry of monopiles can fall outside the range where
the calculation methods are valid. It should be mentioned at this point that there
is a note in EN 1993-1-6 stating that the stress-based design method in Annex D
can be rather conservative for some relatively thick-walled shells. Furthermore, as
discussed in section 2.4.3, the resistance-based design rules in Annex E are more
conservative for most shells experiencing elastic-plastic buckling, i.e. relatively thick-
walled shells. That makes the method even more conservative than the one in Annex
D in those cases and might explain the conservatism suspected by the wind industry,
as monopiles are considered moderately thick-walled due to their low /¢ ratios. The
difference in static systems in terms of global boundary conditions probably only has
a minor effect on local shell buckling; nevertheless, it ought to be investigated. Internal
force distributions that differ from the ones assumed in the calculation methods are
currently not possible to consider analytically without introducing an additional layer
of conservatism. And lastly, the fact that the methods assume a full-circumferential
dimple as the form of imperfection, even though that is not permissible according to
the rules about geometric tolerances, can also give the impression of conservatism. In
light of the foregoing, the present project aims to address the issue by seeking answer
to the following question:

How well do the analytical methods in EN 1993-1-6 fit to a typical monopile,
and how can the expressions for the capacity curve parameters be optimised
with respect to geometry, boundary conditions and geometric imperfections
observed in monopiles?
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3.2 Research Strategy

The purpose of this section is to describe how the objective of the project is planned to
be achieved using specific methods and models. The objective is primarily pursued
using a series of finite element analyses. The ideal situation would be to compare the
analytical results with experimental ones. Unfortunately, the existing experiments
on steel cylindrical shells subjected to uniform axial compression are insufficient,
as a large scatter is observed in the test results and important information about
the specimens was not recorded to explain its reason properly [25]. However, with
carefully built advanced numerical models, it is possible to achieve results that closely
reflect reality.

3.2.1 Choice of Models

A series of numerical calculations is performed using three sets of different models,
as described below and summarised in Table 3.2. All three sets are based on the
same geometries and static system but differ in terms of internal force distributions
and geometric imperfections, following Table 3.1. Note that the investigation of
increasing bending moment distributions in the project is limited to analyses without

imperfections.
Table 3.2: Sets of numerical models in the project
Model set | Static system | Internal forces | Imperfection form
Set 1 Cantilever Uniform bending | Full-circumferential dimple
Set 2 Cantilever | Increasing bending None
Set 3 Cantilever Uniform bending Dimple of limited size
Geometries

Various geometries are used for the models in order to map a significant portion of the
capacity curve. Even though typical monopiles are mostly located in the upper part of
the elastic-plastic region, it is necessary to map parts of both the elastic and the plastic
regions, so that the borders and the curve itself can be established as accurately as
possible. Therefore, it is decided to investigate cylindrical shells with 39 different r/t
ratios: from 8 to 12 with an increment of 1, from 15 to 75 with an increment of 5, from
100 to 350 with an increment of 25 and from 355 to 400 with an increment of 5. Finer
increments are chosen around the borders and within the range typical for monopiles.

r/t={8,9,..,12,15,20,...,,75,100, ..., 350, 355, ..., 400 }

Assuming that the results are independent of the absolute value of radius and
thickness, the radius is chosen as a fixed value of 4.0 m, typical for monopiles. Note
that this is the radius of the cylinder’s middle surface, and whenever radius is
mentioned in the present thesis, it refers to the radius of the cylinder’s middle surface
unless explicitly stated otherwise.

r=4.0m
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The effect of length is investigated using models with different lengths that can
occur for monopiles. These are chosen based on section 2.1 as the interval from 10 m
to 60 m with an increment of 5 m.

L = {10,15,..,60} m

The chosen geometries result in first relative lengths w between 7 and 300, and
second relative lengths () between 0.12 and 5.30, corresponding to medium-length
and long (formally transitional-length) cylinders.

7 < w <300 and 0.12 <O <5.30

Static system

All three sets of numerical models are established with global boundary conditions
corresponding to a cantilever beam-column. Even though the support of a monopile at
the seabed has finite stiffness in reality, as a simplification, it is modelled as infinitely
stiff in the project. Local boundary conditions, i.e. rigid links, are applied as described
in the next chapter. Additionally, a few similar models with fixed ends are used for
model validation, which is also discussed in the next chapter.

Internal forces

The actual distribution of internal forces in monopiles is complex due to the various,
mainly environmental loads acting on them, as briefly described in section 2.1. Differ-
ent internal forces are present in monopiles, however, the one that presumably governs
their resistance is the bending moment. Besides the moment directly transferred from
the transition piece to the monopile, the shear force at the connection and the dis-
tributed load on the monopile itself also generate bending. As a simplification in the
project, only the effect of the shear force and bending moment on top of the monopile
is considered, leading to the internal force distributions illustrated in Figure 3.1.

/\'4'\ |

A\ 4

7777 © W
Figure 3.1: Simplified static system and internal forces in monopiles

In two of the three sets of models, a uniformly distributed bending moment is
applied to the cylinders, conforming to EN 1993-1-6. The effect of a more realistic
internal force distribution is investigated in set 2 with a linearly increasing bending
moment. Other internal forces are considered of secondary importance in terms of
buckling in typical monopiles and are therefore outside the scope of the project.
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Imperfections

A full-circumferential dimple in accordance with EN 1993-1-6 is included in the first set
of models, and the effect of a more frequently occurring and permissible imperfection
form, namely a dimple of limited size, is investigated using the third set. The limited
dimple is selected, since it is presumed to be the most deleterious to buckling amongst
the three forms of imperfections manufacturing tolerances are prescribed for in EN
1993-1-6, especially if placed at a critical position in relation to the structure’s buckling
mode. This presumption is supported by a recent master’s thesis [29] and a report
cited in the thesis.

The size of imperfections in the models is chosen based on the three standard
fabrication tolerance quality classes, A, B and C, corresponding to fabrication tolerance
quality parameters Q = {40,25,16}.

3.2.2 Choice of Methods

In the following, a specific analytical method from EN 1993-1-6 is selected. Three
methods were presented and compared in section 2.4.3. These are also illustrated in
the flow chart in Figure 3.2. The method provided in Annex D in EN 1993-1-6:2007 is
excluded, as it has already been optimised in prEN 1993-1-6:2023. The two methods
in prEN 1993-1-6:2023 are based on two different loading conditions, namely uniform
axial compression in Annex D and uniform global bending in Annex E. As discussed
previously, a monopile is subjected to both an axial load and a bending moment.
However, the bending moment is more significant compared to the axial load, and it is
therefore more accurate to perceive a monopile as a member in bending. Furthermore,
according to Sadowski and Filippidis [25], the capacity curve determined using Annex
E is more conservative compared to Annex D in the elastic-plastic region, which
corresponds to the conditions encountered in the typical monopiles. Based on the
above, the method in prEN 1993-1-6:2023 Annex E is selected for further assessment
and potential reformulation of expressions in the calculation process.

Shell buckling in
design codes

Analytical analysis

Numerical analysis
EN 1993-1-6 prEN 1993-1-6
{ 2007 ] { 2023 ] { LBA ]{ MNA ]{ MNIA ][ GNA ]{ GNIA ]{GMNA] {GMNIA]
I I I I ] I

I
Annex Annex Annex M M
. Rk Rk
{ D ] { D ] { E J {C’”M" ]‘ MV’ ] KMPI ] My alaGM”]{ Perfect ] Imperfect
Comparison and Reference Determining Determining Determining Comparison Calculation of y
assessment resistances K ag a; with GMNIA in elastic-plastic

region

~~

Assessment and
reformulation

Figure 3.2: Choice of methods — overview
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Various types of numerical analysis are used to achieve the project objective, each
of which provides an important output that can be used for subsequent assessment.
The output of each analysis is presented below, along with an explanation of the
optimisation approach for the selected method.

Numerical analysis of the types shown in Figure 3.2 is conducted with different
aims using the 3D FEA software Ansys Mechanical. LBA and MNA are used to
determine the reference resistances M., and M, respectively. The reduction factor
for M, can be estimated using MNIA, an analysis similar to MNA, but accounting
for imperfections within the model. GNA assists with determining the geometric
reduction factor ag. GNIA is performed with the aim of determining the elastic
buckling reduction factor a, which contains both the imperfection reduction factor
«; and the geometric reduction factor ag. GMNIA is conducted to determine the
characteristic buckling resistance Mgy, based on which the buckling reduction factor
X can be calculated. To evaluate the effect of imperfections on the buckling resistance,
GMNA are performed, as the result from this analysis is the characteristic buckling
resistance for a perfect structure. Each type of analysis contributes to mapping the
capacity curve visualised in Figure 3.3. It should be noted that hardening in the plastic
region is not considered in this project, which means that the maximum value of the
buckling reduction factor is x = 1.

X= MRk/(KMpz)

Analysis X Mgy,
---- LBA 1/2? My = CnMy
GNA ag/A? agMe,
— GNIA aga; /A2 agaMe,
== MNIA 1 KMy,
— GMNIA
Elastic aga /A2 aga M,
Plastic 1 KMy,

i 17 ]
k !O !P A= 1I(’dwzol)/l\’lcr

Plastic Elastic-plastic Elastic
region region region

Figure 3.3: Capacity curve defined by the different numerical analyses

The area of interest in the capacity curve regarding monopiles is the elastic-plastic
region. However, to assess and potentially optimise this region, it is necessary to
consider the whole capacity curve, i.e. the elastic and plastic regions as well.

Elastic region

The parameters that can be considered in the elastic region are ag, a1, and C,,, where
Cu is a factor that accounts for the end boundary conditions in a cylindrical shell,
as described in section 2.3. In (3.1), expressions are given for determining these
parameters through numerical analyses.
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M
LBA:  Mgrpa = Mer = CMy = Cp= %
cl
M
GNA:  Mgcona = acMRg,Lpa = acMcr = ac= % (3.1)
cr
_ Mrcnia

GNIA:  Mgrgnia = aiMroNa = &1acMer = ap =
aGMer

The elastic critical moment resistance M, is found in an LBA, as Mg 1pa = M.
Analytically, M., consists of two contributions: one is the classical elastic critical
moment M and the other is the factor C,,. The purpose of this analysis is to optimise
the factor C,,.

The geometric reduction factor a; is found as the ratio between the moment
resistance of the model Mg cn4 and the analytical elastic critical moment resistance
M,,. In general, previously obtained numerical results, such as M., from an LBA, are
avoided in other analyses to ensure a consistent basis for all expressions.

The imperfection reduction factor «; is determined using a GNIA as the ratio
between the moment resistance of the model Mg cn14 and the analytical expressions
for ag and M,,.

Plastic region

In regard to plasticity, the plastic moment resistance M, is determined using an MNA.
No optimisation of the analytical expression for M, is planned to be performed, as it
is already well established. Instead, a comparison is made between the analytical and
numerical results. As for the reduction factor «, it will be evaluated and potentially
optimised. It can be found as the ratio between the plastic moment resistance of the
imperfect structure Mg yn14 and My, as shown in (3.2).

MNA: MR,MNA = Mpl
(3.2)

M
MNIA: Mg pnia = KMy = & = %N“‘
pl

Elastic-plastic region and boundaries

The capacity curve in the elastic-plastic region is controlled by the interaction exponent

1, which defines the appearance of the curve and can be calculated as shown in (3.3).

L H=A AT

(R W S L W

This analytical expression is a form of interpolation between the values at the

boundaries 779 and 7,. These boundary values can be found in different ways. In this

project, the methodology in [25] is followed, where 779 and 7, are chosen such that the
capacity curve is a lower bound to all GMNIA results in the elastic-plastic region.

The parameters that govern the boundaries between the plastic, elastic-plastic

and elastic regions are the squash limit relative slenderness Ao, plastic limit relative

(3.3)

slenderness A, and the plastic range factor f. Determining the mentioned parameters
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is not straightforward, as there are no specific analysis types to identify them, in
contrast to the other parameters in the elastic and plastic regions. Therefore, GMNIAs
must be performed to define the capacity curve, as shown in Figure 3.3. Note that the
results from GMNIAs consist of a series of points to which a curve is fitted.

B corresponds to the x value where the curves for GNIA and GMNIA begin to
deviate from each other. In other words, it is necessary to look for the maximum y
where GNIA and GMNIA are equal.

As for Ay, it corresponds to the point where Mg pmn14 and Mg cmnra deviate from
each other, as shown in Figure 3.3. In other words, it is the maximum value of A
where the curves from MNIA and GMNIA are equal.

Ay can be calculated analytically, as shown in (3.4), using the optimised expressions
for « and B.

o

Y=\ T

(3.4)

3.2.3 Research Plan

A plan for achieving the project objective is provided below, where the individual sets
of models described in section 3.2.1 are connected to the types of numerical analysis
and their overall goal, as discussed in section 3.2.2.

The main goal of set 1 is to assess how suitable the analytical method is for a
cantilever beam and to reformulate the expressions for the different capacity curve
parameters to optimise the fit. Consequently, all seven analysis types are employed
with model set 1. The aim of set 2 is to propose a way to include the effect of
a linear bending moment distribution in a part of the analytical method through a
potential new factor. This investigation is initially limited in the project to analysis type
LBA. The influence of a different, frequently occurring and permissible imperfection
form is investigated using set 3, and thus only the four analysis types that include
imperfections incorporate models from that set. Sets 2 and 3 are defined so that
only one condition is changed in them compared to set 1; therefore, the moment
distribution in set 3 is kept as uniform.

Based on the chosen collection of r/t ratios, lengths L and fabrication tolerance
quality parameters Q, the number of simulations for each model set and analysis type
is selected as shown in Table 3.3, resulting in 7 200 simulations in total. Note that
since the plastic moment resistances are presumed to be independent of the length,
only three different lengths are investigated in MNAs and MNIAs. Furthermore, since
the existing expressions for My, and « are supposedly accurate, the number of r/t
ratios is also reduced for MNAs and MNIAs. The selected r/t ratios and lengths in
these analysis types are as shown below.

r/t=1{8,9,..,12,15,25,...,75,100, 200, 300,400 }

L = {10,30,50} m
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Table 3.3: Overview of research plan

Analysis

Number of

Total no. of

Set type r/t| L | Q | simulations Goal
LBA 39 |11 | - 429 Assess & rewrite Cy,
MNA 16 | 3 | - 48 Assess My,
MNIA 16 | 3 | 3 144 Assess & rewrite k
1 GNA 39 |11 | - 429 Assess & rewrite ag
GNIA 39 |11 | 3 1287 Assess & rewrite o
GMNA | 39 | 11 | - 429 Comparison with GMNIA
GMNIA | 39 |11 | 3 1287 Assess & rewrite 17, B and Ag
2 LBA 39 |11 | - 429 New factor for moment distribution
MNIA 16 | 3 | 3 144 Assess & rewrite k
3 GNIA 39 |11 | 3 1287 Assess & rewrite o
GMNIA | 39 |11 | 3 1287 Assess & rewrite 77, B and A
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4  Numerical Analysis

This chapter contains a detailed description of the numerical models used in the
project, the input and output of the different analysis types, and the validation and
verification, ensuring that the model and other input parameters are appropriate.

All numerical analyses in the project are performed using the finite element method
and the general 3D FE software Ansys Mechanical 2024 [30, 31]. Both modelling and
analysis are primarily executed in Mechanical APDL through scripting in Ansys
Parametric Design Language (APDL), as well as in Python, utilising the PYMAPDL
library [32]. A few analyses are also performed through the graphical user interface of
Ansys Mechanical, and the results are compared with those from MAPDL to ensure
the correctness of the scripts. The master script prepared as part of the project can be
found in appendix B. Based on that, batch scripts are constructed for each analysis type
and run in batch mode in UCloud [33], an interactive high-performance computing
platform provided for the project by Aalborg University in collaboration with the
University of Southern Denmark.

4.1 Finite Element Models

4.1.1 Geometry

The geometry of the FE models in the project consists of a simple cylindrical shell with
three parametric dimensions: the radius r, the wall thickness t and the length L, as
shown in Figure 4.1. The range of dimensions investigated in the project is described
in section 3.2.1. The cylinder is placed in a 3D Cartesian coordinate system with its
cross-section in the centre of the XY-plane and its length along the Z-axis between
Z=0and Z = L.

Due to the axisymmetric nature of the cylinder and the fact that loading and
boundary conditions in case of a cantilever in uniaxial bending are symmetrical across
a single axial plane, a half-cylinder model can be adopted to reduce computational
demands and increase efficiency. According to Teng and Song [34] and Rotter et al.
[21], finite element models of half and quarter cylinders are generally acceptable,
where loading and boundary conditions with either one or two symmetry planes
exist and no torsional deformations are present, assuming that the required results
are identical with those from a full-cylinder model. Thus, the majority of numerical
calculations in the project are performed using half-cylinder models as shown in
Figure 4.1, while initial analyses are carried out with full cylinders, ensuring that the
two models yield the same fundamental outcome.
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!
Ly

a) Full-cylinder model b) Half-cylinder model

Ar

Figure 4.1: Geometry of FE models

Imperfections

As discussed in section 3.2.1, two different imperfection forms are considered in the
analysis: a full-circumferential dimple and a dimple of limited size. A single instance
of either the one or the other is included in the models for the analysis types with
geometric imperfections. To produce the most deleterious effect, both imperfections
are placed at midspan, and the limited dimple is also placed in the middle of the
compressed circumference. The two imperfection forms in a full-cylinder model are
shown in Figure 4.2, where the size of the full-circumferential dimple corresponds to
FTQC C with Q = 16 and the limited dimple to Q = 4 for better visibility.

a) Cylinder with full b) Cylinder with
circumferential dimple limited dimple

Figure 4.2: Imperfections in FE models
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4.1 Finite Element Models

The Type A full-circumferential weld depression of Rotter and Teng [35] is adopted
as the shape of the full-circumferential dimple. According to Wang et al. [28], it has
been shown to be a realistic representation of a weld depression and has widely been
applied over the last 35 years. Furthermore, the current analytical buckling verification
methods in EN 1993-1-6 are also based on this imperfection shape [28]. A Type A weld
depression at midspan, i.e. axial coordinate Z = L/2, can be defined algebraically as
shown in (4.1) as per [28], where Jy is the algebraic imperfection amplitude and A is
the linear meridional bending half-wavelength. Both parameters depend on the radius
and the wall thickness, and Jy is also a function of the quality parameter Q. A is
explained in more detail in section 4.1.4. The expression is visualised in Figure 4.3 for
a cylinder with L =20 m, r = 4 m, t = 0.08 m and 0.04 m, manufactured in normal
fabrication tolerance quality class (FTQC C) with Q = 16.

i L s L 7T L
o7(Z :(Se_K‘Z_T‘ cos| —|Z—=||+sin|—|Z— = 4.1
z(Z) =& X 5 X 5 4.1)

0.04 -
,g, r=4mand Q=16 (FTQC C)
= — t=0.08m, 50=0.035 m, A=138m
N  0.03+
S __t=0.04m, 50 =0.025m, A=0.98 m
o
g
-§ 0.02 - 5
Ti 0
g 0.01 %
s Ul
2
g
”5 0
o A
E A

-0.01 I I I I I I I I I ]

0 2 4 6 8 10 12 14 16 18 20

Axial coordinate, Z [m]

Figure 4.3: Visualisation of expression for full-circumferential weld depression

Rotter and Teng [35] proposed algebraic expressions for two types of weld de-
pressions, Type A and Type B, which differ in the assumed rigidity of the weld and
thereby the extent of the imperfection as illustrated in Figure 4.4. Type A idealises
the weld as rotationally stiff, whereas Type B assumes it to be rotationally flexible.
Geometric tolerances for weld depressions in EN 1993-1-6 correspond to these two
fundamental types, as seen in Figure 4.5. Since both the imperfection depth and the
measuring gauge length in the standard are the same for a rotationally stiff weld
depression (first measurement) as for a dimple, the same algebraic expression can be
used to describe the shape of the limited dimple along the meridian. Furthermore,
since the length of the gauges used for meridional and circumferential measuring is
equal, expression (4.1) can be adjusted and used to describe the shape of the limited
dimple along the circumference. The adjusted expression is shown in (4.2), where 0 is
the angular coordinate in radians, and it is assumed that loading is defined so that
the middle of the compressed circumference has an angular coordinate § = 0. In a
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Cartesian coordinate system with the X-axis at 6 = 0, this requires a positive bending
moment around the Y-axis.

_n 7T . 7T
89(0) = dpe 1"l [COS (— |r9]) + sin (— ]r6|)] 4.2)
A A
8o [
:Axis == = :Axis — 1
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—— ——
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| | <
| ——(=— | —————
[ Type A [ TypeB
i i
! !
! !
. !
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a) Idealised as b) Idealised as
rotationally stiff rotationally flexible

Figure 4.4: Two types of weld depression [35, ed.]
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Figure 4.5: Manufacturing tolerances in EN 1993-1-6 [19, ed.]

Inspired by Yadav and Gerasimidis [36], the shape of the limited dimple complying
with EN 1993-1-6 can be fully described as shown in (4.3) by combining expressions
(4.1) and (4.2) defining the shape along the meridian and the circumference, respec-
tively. Using the combined expression, it is possible to determine the radial coordinate
of any point on the imperfect cylinder’s middle surface, given its perfect radius.

0(0,2) = OMM = dpe~ Al [Cos (% |r9|) + sin (% |r9])}

do o
e 8178 Teos (|7~ EY 4 sin (%] 7 L
e Al“721 |cos A Z > + sin A Z > (4.3)
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4.1 Finite Element Models

It is worth noting at this point that there is a distinction between the algebraic
amplitude J, and the measured depth J, of the dimple or weld depression, as
illustrated in Figure 4.6. However, according to prEN 1993-1-6 [19], the difference
is insignificant when using the expressions above and the tolerance requirements
defined in the standard.

64 = O
[ 9
r
|
| /
6 X
N
Om
a) Tolerance b) Imperfection
measurement amplitudes

Figure 4.6: Consistent choice of imperfection amplitude [19, ed.]

4.1.2 Boundary Conditions

This section describes the constraints and applied loads on the models. In line with
today’s common modelling practice as revealed by Sadowski et al. [37] and inspired
by recent research papers about similar topics, two reference points are created on the
cylinder axis at the top and bottom and connected via rigid body kinematic coupling
to the nodes along the top and bottom edges of the cylinder, respectively, as illustrated
in Figure 4.7. In that way, point loads and global constraints can be easily applied in
the reference points, and reaction forces can also be extracted with ease. Furthermore,
due to the rigid body coupling, the initial circular shape of the cross-sections at the
top and bottom edges is preserved, eliminating the need for physical modelling of a
ring stiffener on top.

Global constraints

Global constraints are defined directly in the reference points. As described in
section 3.2.1, the majority of the models are to act as cantilevers, while a few cylinders
with clamped edge nodes are used for model validation. In case of cantilever models,
all six degrees of freedom (DOF) are constrained in the bottom reference point, and
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4 NUMERICAL ANALYSIS

all six DOF are free in the top reference point. In case of fixed models, rotation
around the Y-axis is kept free, while other DOF are constrained in both reference
points, corresponding to the boundary conditions prescribed in EN 1993-1-6 Annex
E. In case of half-cylinder models, symmetry boundary conditions are applied to all
nodes on the circumferential symmetry plane, including the reference points. Since
the symmetry plane coincides with the XZ-plane, displacement along the Y-axis and
rotation around the X and Z-axes are constrained in those nodes. Global boundary
conditions are visualised in Figure 4.7.
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a) Cantilever model b) Clamped model

Figure 4.7: Boundary conditions in the models

Local constraints

Constraints locally within the model are established between the reference points
and the edge nodes at the top and bottom of the cylinder via rigid body kinematic
coupling. Coupling in general means forcing certain DOF in one node to be dependent
on the DOF in another node. The latter is usually called the primary or master node,
where DOF are retained, whereas in the other, called the secondary or slave node,
DOF are removed from the matrix equations and are determined in another way,
depending on the type of the chosen coupling. In case of simple coupling constraints,
DOF in the slave node are forced to have the same solution as the corresponding ones
in the master node. In case of rigid surface constraints, also referred to as rigid-body
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4.1 Finite Element Models

kinematic coupling, DOF solutions are calculated using constraint equations ensuring
that certain deformations in the slave node are controlled by the rigid-body motion of
the master node. [38]

There are several different methods in Ansys Mechanical to create coupling. How-
ever, only one of them is able to account for large rotations in the model. It is called
the internal multipoint constraint (MPC) approach, which builds MPC equations
internally based on the contact kinematics and can be used to model different types of
coupling, including the two mentioned above. [38]

The desired rigid body kinematic coupling in the project is modelled as rigid
surface-based constraints with the MPC formulation. All nodal DOF on the top and
bottom edges of the cylinder, in the software referred to as the contact surfaces, are
coupled to the rigid body motion of the corresponding reference point, in Ansys
called the pilot node or the target surface. The contact surfaces are generated using
CONTA177 elements placed on the edges of the shell elements between their nodes.
The target surfaces are created with TARGE170 elements consisting of a single pilot
node at the reference points. The nodes of the contact elements are then automatically
connected to the single node of the target element as shown in Figure 4.8, where the
lines represent rigid constraints. Since all six DOF are constrained, these connections
are equivalent to MPC184 rigid beam elements in Ansys. Due to these constraints,
the contact surfaces remain rigid, and thus the top and bottom edges of the cylinder
retain their original shape, i.e. remain circular.

Figure 4.8: MPC

Loading

As described in section 3.2.1, a set of models is subjected to uniform bending moment
around the Y-axis. The load can be applied either as a force or as a prescribed
deformation at the pilot node located at the top of the cylinder, as illustrated in
Figure 4.9 a). By prescribing a force or deformation at the pilot node, the program
automatically computes the corresponding values in all DOF at the edge nodes using
the MPC formulation, which ensures consistent deformation or load distribution.

Another set of models, experiencing a linearly increasing moment, is generated by
applying a shear force along the X-axis together with a bending moment around the
Y-axis at the pilot node, or a lateral deformation together with a rotation, depending
on whether force or displacement control is chosen.
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a) Bending moment or rotation b) Shear force or lateral displacement

Figure 4.9: Loads at pilot node

In this project, loads are applied in the form of forces. For each analysis, an
appropriately large bending moment is applied compared to the expected resistance
of the model. The magnitude of the applied moment is determined using the existing
analytical expressions and may be slightly increased to avoid underestimating the
load. If the load is underestimated, the model will not reach failure, thus, the actual
resistance of the model will not be captured, and the results will be unusable. Applying
a load close to the actual resistance improves the accuracy of the results, and since
it is quite difficult to determine the value of the deformation at which the model is
expected to fail in nonlinear analyses, force control is preferred to deformation control.
Since the applied load varies between the analyses, the procedure for determining it
is further elaborated in section 4.2. Note that in the case of the half-cylinder, half of
the load applied to a full cylinder is used.

4.1.3 Material Model

The material used in the FE models is non-alloy structural steel conforming to EN
1993-1-1 [8] and EN 10025-2 [39], which is considered an isotropic material. Some of
the analysis types in the project assume linear elastic material behaviour, while others
include plasticity. In the latter cases, a bilinear material model is used as illustrated in
Figure 4.10. The linear elastic behaviour of the material is described by the modulus of
elasticity E and the Poisson’s ratio v. The plastic region of the chosen material model
is defined by the yield strength f, and the tangent modulus E;. The value of all four
material properties selected for the FE models is specified in the following.

Stress, o
A

= .

Strain, &

Figure 4.10: Bilinear material model
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Modulus of elasticity

Given that most analysis types in the project focus on instability, the modulus of
elasticity for carbon steel is taken as E = 200 GPa in accordance with prEN 1993-1-6
[19] and prEN 1993-1-14 [26].

Poisson’s ratio

The Poisson’s ratio of the material in the elastic range is taken as v = 0.3 in accordance
with EN 1993-1-1 [8] and prEN 1993-1-6 [19].

Yield strength

The yield strength of carbon steel is selected based on a steel grade in accordance with
material standard EN 10025-2 [39]. Monopiles are usually made of structural steel S355
[40], where 355 in the grade designation indicates the nominal yield strength in MPa
for thickness 16 mm and below. The nominal yield strength for other thickness ranges
is shown in Table 4.1. Different thicknesses within the interval [10 mm, 500 mm] are
used in the project. However, since the relative slenderness in the analytical buckling
verification method is also dependent on f,, it would be impracticable to vary both
the yield strength and the thickness. Therefore, it is decided to set f, = 315 MPa in
all models corresponding to the nominal yield strength of the mean thickness in the

project.

Table 4.1: Nominal yield strength of S355 [39]
Thickness, <16 >16 | >40 | >63 | >80 | >100 | >150 | >200 | >250
t (nom) [mm)] - <40 | <63 | <80 | <100 | <150 | <200 | <250 | <400

Yield strength,

£, (nom) [MPa] 355 | 345 | 335 | 325 | 315 295 285 275 265

Tangent modulus

Since the project focuses on monopiles and they typically experience elastic-plastic
buckling, strain hardening is not considered, meaning that E; = 0. Thus, the material
model used in materially nonlinear analyses simplifies to linear elastic — perfectly
plastic as depicted in Figure 4.11.

Stress, o
A
fy =315 MPa
(Ee = 0)
E =200 GPa
1
Strain,‘s

Figure 4.11: Material model used in the project
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414 Mesh

As part of the FEA, the static model is discretised into an FE mesh. It is crucial that
the mesh is robust when conducting numerical analyses, particularly when evaluating
instability. A robust mesh implies the use of a proper element type, sufficient mesh
density, no irregularities in the mesh, etc. This can be achieved by conducting a
convergence analysis for mesh sensitivity, among others.

Since FEM is an approximation method, it is necessary to conduct a convergence
analysis of the FE mesh to assess the accuracy of the obtained results. Convergence
analysis is an iterative procedure where a given mesh is refined several times. After
each iteration, selected quantities, e.g. the capacity or a deformation, are extracted for
each model. After several iterations, the calculated results will not change significantly
compared to the previous ones, which means that they have converged to or reached
the exact value that can be obtained with the given mesh arrangement. It should
be noted that different mesh arrangements and meshes of different element types
converge at different paces, but theoretically, as the total number of degrees of freedom
in the system goes towards infinity, the exact solution of the static model should be
reached. [41]

In the following, candidate element types are presented, a parameter for defining
element sizes is introduced, and a mesh sensitivity analysis is conducted to determine
the appropriate element type and size.

Element types

There are different types of finite elements that can be utilised, including both solid
and shell elements. Shell elements are based on shell theory, which allows efficient
analysis of shell structures by reducing the 3D problem to a 2D one [42]. Shell
elements can be classified as either thin or thick. For thick structures, solid continuum
elements can also be used, resulting in a fully 3D analysis that is more computationally
demanding. According to Sadowski and Rotter [42], both thick and thin shell elements
provide reasonable results for cylindrical structures with radius-to-thickness ratios as
low as r/t = 10. This forms the basis for the use of shell elements in this project for
all radius-to-thickness ratios.

The commonly used element type for numerical calculations of cylindrical shells
is quadrilateral elements according to Sadowski et al. [37]. Two specific types of
quadrilateral shell elements are considered in this project and shown in Figure 4.12.
These elements have six DOF in each node; three for translations in the X-, Y- and
Z-directions and three for rotations about the X-, Y- and Z-axes.

In Ansys, the 4-noded quadrilateral shell element is called SHELL181, see Fig-
ure 4.12 a). This element has linear shape functions, which may lead to less accurate
results due to the limited flexibility. SHELL281, in Figure 4.12 b), is a quadrilateral
shell element with midside nodes, giving a total of 8 nodes, and has quadratic shape
functions. This makes the element more flexible, and it also fits the curved geometry
of the structure better. These elements are applicable for thin and moderately thick
shells [38].
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a) SHELL181 b) SHELL281

Figure 4.12: Shell elements in Ansys [38]

Comparing a mesh using SHELL181 and SHELL281, with the same number of
elements, the calculation with SHELL281 will have increased computation time due
to the higher number of DOF, see Table 4.2. However, convergence is often reached
earlier for SHELL281, which means that a lower number of elements is enough to
achieve appropriate accuracy.

Table 4.2: DOF for SHELL181 and SHELL281

Element type | Number of nodes | Number of DOF

SHELL181 4 24
SHELL281 8 48

Element size

For numerical analyses with cylindrical shells involving instability, the element sizes
can depend on a parameter called the linear meridional bending half-wavelength A.
Every buckle has a meridional and circumferential wavelength which depends on the
loading type, Poisson’s ratio and the geometry. The linear bending half-wavelength
determines how deep the boundary layer goes, which is the region where the shell
wall has to bend in order to match the conditions at the ends of the cylinder. In
the case of very short cylinders, this boundary layer covers the whole length of the
cylinder. Because of that, it's expected that buckling would be greatly limited. For
cylinders subjected to bending, the half-wavelength is given in (4.4). [21]

s

A= W\/ﬁ A 2.444\/rt (4.4)

There are various recommendations in the literature regarding the number of ele-

ments per A, which is used to determine the mesh refinement in areas of interest, such

as around an imperfection. Sadowski and Filippidis [25], describing the background

of the reference resistance design method in EN 1993-1-6 Annex E, state that at least

10 elements per A are used. However, in that study, the mesh consists of 4-noded

elements. In DNVGL-RP-C208 for nonlinear shell analysis [43], it is mentioned that

as few as 3 elements per A can be sufficient, depending on the chosen element type.

In the following convergence analysis, the number of elements per A is varied to
determine an appropriate value.
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It is decided to use a uniform mesh for the models, and the meridional and
circumferential element sizes are chosen in a way that the elements become squares.
However, the final side lengths are slightly adjusted due to rounding.

Mesh sensitivity

A convergence analysis of the mesh sensitivity is carried out to select an appropriate
element type and number of elements per A, thereby also the element size itself. Since
A depends on the radius and thickness, different r/t ratios result in different element
sizes. The analysis is conducted with the two presented element types and contains six
different element sizes for each type. The element sizes used in the analysis are shown
in Table 4.4. Additionally, convergence analysis is also performed for three different
radius-to-thickness ratios: 10, 50 and 400. The geometry used for the different models
is given in Table 4.3. Since the project focuses on cantilever cylinders in uniform global
bending, the sensitivity analysis is performed with those boundary conditions.

Table 4.3: Geometry of cylindrical shells used in convergence analysis

r/tF1 [ v m] [ £ [m] | L [m]

10 0.40
50 4.0 0.08 | 30.0
400 0.01

Table 4.4: Element sizes for SHELL181 and SHELL281 [m]

SHELL181 \ SHELL281
Elem~__ r/t| 10| 50 | 400 | Elem>~__ ¢/t | 10| 50 | 400
per A per A
5 0.62 | 0.28 | 0.10 3 1.03 | 046 | 0.16
6 0.52 | 0.23 | 0.08 4 0.77 | 035 | 0.12
7 0.44 | 0.20 | 0.07 5 0.62 | 0.28 | 0.10
8 0.39 | 0.17 | 0.06 6 0.52 | 0.23 | 0.08
10 0.31 | 0.14 | 0.05 7 0.44 | 0.20 | 0.07
15 0.21 | 0.09 | 0.03 10 0.31 | 0.14 | 0.05

Two examples of the mesh are shown in Figure 4.13, namely a coarse and a fine.

<

a) Element size 0.77 m b) Element size 0.20 m

Figure 4.13: Example of a coarse and a fine mesh
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4.2 Finite Element Analysis

As mentioned, stability analyses are particularly sensitive to the mesh arrangement.
Therefore, the sensitivity analysis is performed using LBA. In Figure 4.14, the elastic
critical moment M., for each model is plotted together with the corresponding number
of DOF.
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Figure 4.14: Convergence analysis

As seen in Figure 4.14, SHELL281 converges significantly faster than SHELL181
due to the quadratic shape functions. Even with 15 elements per A, SHELL181 does
not converge completely. It is favourable to continue with SHELL281, as it allows for
larger element sizes and requires fewer DOF, while still providing a converged result.

Convergence is achieved for the models using SHELL281 at element sizes equiva-
lent to around 5 elements per A, and this will serve as the basis for the subsequent
models in the project. However, in models with small 7/t ratios where instability is
no longer dominating, A can not be used as an appropriate measure for choosing
element sizes. Therefore, an upper limit of 0.25 m is selected as the maximum element
size.

4.2 Finite Element Analysis

The numerical analysis types presented in chapters 2 and 3 are described in the
following regarding input parameters, together with examples of results and how they
should be interpreted. The results are from single analyses of a cantilever cylinder in
uniform global bending with a geometry of r = 4.0 m, r/t = 50 and L = 30 m, unless
otherwise stated.
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4.2.1 Linear Elastic Analysis

Linear Analysis - LA

The purpose of an LA is to perform a basic sanity check to ensure the model’s
correctness. A load is applied, and the six reactions at the bottom of the cylinder are
examined, corresponding to three forces in the X-, Y-, and Z-directions, as well as
three moments around the X-, Y-, and Z-axes. The reactions are checked to ensure that
they match the expected values based on the applied load. Furthermore, it is checked
whether the deformations are realistic under the applied load. In the following, an
example is presented where a bending moment of 1.0 MNm acting around the Y-axis
is applied at the pilot node at the top of the cylinder.

At the bottom, where the fixed support is located, the three force reactions should
be zero. The moment reaction around the Y-axis should equal the negative value of
the applied moment, and around the other two axes, the moment reactions should
be zero. The base reactions from an LA are summarised in Table 4.5 and they are as
predicted.

Table 4.5: Reactions at bottom pilot node

Fx | r | 2 [Mx| My |My
~0[~0[~0[~0[-1.0MNm | ~0

As expected, the applied load causes displacement in the X-direction and rotation
around the Y-axis at the top pilot node, as shown in Table 4.6 and Figure 4.15.

Table 4.6: Deformations at top pilot node

Ux ‘My‘uz‘rx‘ Ty ‘T’Z
014mm [ ~0|~0]~0[93-10°rad | ~0

Figure 4.15: Deformation of cylinder
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The values in Table 4.6 can also be compared to results from linear elastic analytical
expressions, which can be determined based on the Bernoulli-Euler beam theory. The
rotation at the top of the cylinder is calculated using the expression in (4.5), where I
is the moment of inertia.

. _MyL_ 1MNm-30m
Y7 TEI ~ 200GPa-161m?

=9.3.10"°rad (4.5)

The horizontal displacement in the x-direction is calculated in (4.6).

 Myl?

Ux = W - 0.14 mm (4:.6)

The values from the numerical model and the analytical expressions are identical,
and it is therefore concluded that the model behaves as expected and follows the laws
of mathematics and physics.

Linear Bifurcation Analysis - LBA

An LBA is a matrix eigenvalue calculation that automatically stops once the desired
number of eigenvalues is extracted. LBA does not require further monitoring if a
robust meshing scheme is applied, which implies the use of a proper element type,
sufficient mesh density, etc. [44]

Ansys Mechanical offers two methods for buckling mode extraction: the Block
Lanczos method and the subspace iteration method. According to the Ansys Mechan-
ical APDL Product Help [38], the Block Lanczos solver performs well with models
consisting of shell elements, and it is therefore used for LBAs in the project.

With an LBA, eigenmodes are extracted along with the corresponding buckling
load multipliers required to reach that shape. In other words, a value is determined
for the load needed for a perfect structure to lose its stability. The shape of the
eigenmodes themselves indicates which areas become unstable first, i.e. where the
shell bulges out, as seen in Figure 4.16.

In Figure 4.16, the first four eigenmodes of a cylindrical shell under uniform
bending moment are shown. The bulges appear on the side of the cylinder where
compressive stresses are present. The shape of the eigenmode appears differently
depending on the applied load. This section only presents the eigenmodes for
cylinders under a uniform moment. For cylinders experiencing a linearly increasing
moment distribution, refer to section 6.1.1.

The linear elastic critical moment resistance M, is determined as the product
of the applied load and the buckling load multiplier, which is the output extracted
from the program. The first two eigenmodes are very similar, which explains why
the values of the critical loads are almost identical, as shown in Table 4.7. The same
applies to eigenmodes 3 and 4 — they look similar, and their critical loads are close in
value.
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Table 4.7: Critical load for first four eigenmodes

Eigenmode \ Mg [MNm]

1

2
3
4

8149.4
8149.5
8184.9
8185.3

The first eigenmode always corresponds to the lowest critical load that the structure
can experience and is also the most likely to occur. Therefore, only the results for
the first eigenmode are used throughout the project, even though infinitely many

eigenmodes exist.

c) Eigenmode 3

Figure 4.16: First four eigenmodes in cantilever cylinder under uniform global bending
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4.2.2 Nonlinear Analysis

Load step procedure

For nonlinear analyses, the equilibrium path can be determined by either using a force-
controlled procedure or by combining the arc-length method with a force-controlled
procedure, as illustrated in Figure 4.17. Although the arc-length method can also be
applied with a displacement-controlled procedure, this approach is not used in the
project.

In both procedures, the load is divided into increments and applied in several
steps. In the force-controlled procedure, the increment in each step is positive. The
disadvantage is that it is difficult to control, especially for highly nonlinear behaviour,
and it cannot detect potential post-buckling behaviour with negative stiffness. In
contrast, the arc-length method is a powerful tool to track the equilibrium path for
nonlinear behaviour. This method allows for the tracking of the load-displacement
path by enforcing a constraint which ensures that the solution remains on the equilib-
rium path, even when there are sudden changes in behaviour, such as buckling. The
disadvantage of this method is that it is more time-consuming and computationally
demanding. [45]

& —> U e} > U

a) Force-controlled procedure b) Arc-length method

Figure 4.17: Load step procedures [45, ed.]

Both of the aforementioned methods, make use of the Newton-Rapson procedure,
which is an iterative process of solving nonlinear equations, and is illustrated in
Figure 4.18. The method relies on the fundamental equation of the finite element
method, which is shown in (4.7), where [K] is the global stiffness matrix, {u} is the
displacement vector, and {F} is the load vector.

[K[{u} = {F} (4.7)

The iteration proces in Figure 4.18 a) starts with calculating the internal forces
{F} at a displacement {u;} by using a linearized stiffness matrix [K;|, which is also
evaluated at {u;}. Next, a residual load {R;} is calculated as the difference between
the applied load {F"} and the calculated internal loads. The residual is used to adjust
the initial guess of the displacement with {Au}. The new guess will be {u;1} and
the corresponding internal forces {F//, } are calculated using the updated stiffness
matrix [K;;1]. This process is repeated, and the residual is gradually reduced with
each iteration as shown in Figure 4.18 b). In theory, reaching a residual of exactly zero
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4 NUMERICAL ANALYSIS

would require an infinite number of iterations. In practice, a tolerance is defined to
determine how much the sum of the internal forces is allowed to deviate from the

applied load. Once this tolerance is met, the solution is considered to have converged.
[38]

FA FA
Fa / Fe //
K Fit
F F
AU —
U U
uj Uisq uj Ui Uis2
a) Iteration i b) Iteration i+1

Figure 4.18: Newton-Raphson method [38]

In the arc-length method, the load is not directly increased as in the Newton-
Raphson procedure. Instead, a scalar parameter A is introduced, which acts as a load
proportionality factor (LPF). The method prevents fluctuations in step size during the
iterations by keeping the solution within a fixed distance — a specified arc length, as
shown in Figure 4.19.

For problems involving sharp changes in the load-displacement curve or materials
with path-dependent behavior, it is important to control both the initial arc-length
radius and how much it is allowed to change during the solution. In the arc-length
method, the radius is automatically adjusted at each substep based on the degree of
nonlinearity present. To ensure stability and avoid excessively large or small steps,
this variation is constrained by predefined maximum and minimum multipliers. [38]

The initial arc-length radius is adjusted automatically but it is propotional to the
initial load factor. The initial load factor is given in (4.8), where Time is set to 1,
corresponding to the full application of the load.

Time

Intital load factor = Initial number of substeps 48

The initial number of substeps defines how the load is incrementally applied in the
initial stages of the analysis, affecting the convergence behaviour and the stability of
the solution. A higher number of substeps results in smaller load increments, which
can improve accuracy but at the cost of increased computational time. Conversely, a
lower number of substeps may reduce computational time but can potentially lead to
convergence issues, especially for highly nonlinear problems.
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spherical arc at
substep n

,—Aun—>|
| |

! | -

up(converged solution at substep n)

Figure 4.19: Arc-length approach with Newton-Raphson method [38, ed.]

An optimal choice of the initial number of substeps, maximum and minimum multipliers
is crucial for obtaining an accurate and not too computationally consuming solution.
The maximum and minimum multipliers remain the same throughout all analyses
with values of 1 and 1/1 000 respectivaly. The initial number of substeps is different
for each analysis, and an appropriate value is found using sensitivity analysis for each
analysis type below.

Termination

Modern FE solvers can track nonlinear equilibrium paths far into the post-buckling
domain. However, in this project, only the first critical point is of interest, as it
represents the resistance of the structure, and the load on the structure should not go
beyond that point. Therefore, it is chosen to terminate the analysis at the critical point.
There are several failure criteria for shells, and they differ depending on the
analysis type. The failure criterion in a materially nonlinear analysis is typically
based on the start of yielding, which occurs when the material stress state reaches
the yield surface defined by the chosen criterion, e.g. the von Mises criterion. As for
geometrically nonlinear analyses, EN 1993-1-6 defines four criteria that represent a
state of failure for a GMNIA, as visualised in Figure 4.20. These criteria can also be
applied to the other geometrically nonlinear analyses, i.e. GNA, GNIA and GMNA.
The most common manifestations of unstable post-buckling behaviour are rep-
resented by criteria C1 and C2, where buckling occurs either at a limit point or a
bifurcation point. C1 covers limit load buckling, whereas C2 covers bifurcation buck-
ling. Criteria C3 and C4 represent cases with complex behaviour, as the equilibrium
path continues to rise after buckling, although there may be a ‘’kink” where the curve
changes slope. Criteria C3 and C4 are conservatively set as a reliable way to manage
cases with stable post-buckling behaviour. C3 corresponds to termination of the
analysis when the largest tolerable deformation is reached, and C4 corresponds to the
point at which the highest equivalent stress in the system reaches the yield limit. [44]
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Criterion C1: Limit Criterion C2: Bifurcation LPF
/\ point or 'snap-through' LPF A either with or without
descending post-buckling path
a

(LPF) on design actions

Load proportionality factor

>
Deformation (i.e. [DOF)|) Deformation (i.e. [DOF|)

Criterion C3: Largest tolerable  Criterion C4: First yield for
A\ deformation as LPF, if no 4\ point with highest equivalent
prior limit point or bifurcation| stress as safe LPF estimate

P
A 'kink' i.e. abrubt i
change of slope on the
equilibrium path
Deformation (i.e. |DOF|) Deformation (i.e. [DOF|)

Load proportionality factor
(LPF) on design actions

Figure 4.20: Definition of buckling resistance from GMNIA according to the four failure
criteria [44]

In Ansys, a command is issued for the materially and geometrically nonlinear
analyses to terminate when the first limit point has been reached. The first limit
point is the point in the response history when the tangent stiffness matrix becomes
singular, i.e. the point at which the stiffness becomes nonpositive. In a materially
nonlinear analysis, this means the analysis is terminated at the point of material
failure, while in a geometrically nonlinear analysis, it is terminated at the occurrence
of buckling. [38] With the termination command used in Ansys, it is not possible to
automatically terminate the analysis if a 'kink” occurs. However, this is not an issue,
as these cases are most likely not relevant for cylindrical shells, where buckling is
usually characterised as unstable and the stiffness decreases rather than increases.

Materially Nonlinear Analysis - MNA & MNIA

The purpose of an MNA and MNIA is to determine the plastic resistance of the perfect
and imperfect structure, respectively, which is found as the point where the analysis
stops due to material failure, i.e. Mg vna = Mp and Mg vnia = KMp;. A materially
nonlinear analysis is based on the small deformation theory to determine the plastic
collapse mechanism, which manifests as a plateau on the equilibrium path as shown
in Figure 2.24. However, the results for MNA shown in Figure 4.21 do not display this
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4.2 Finite Element Analysis

plateau, as the analysis is terminated as soon as M, is reached.

As for the equilibrium path of MNIA, the resistance of the model is reached slowly,
which requires more load increments and thus increases the computational time to
obtain a final result. This behaviour can occur for shells dominated by local bending,
where a clear horizontal plateau may not appear [44]. For this particular cylinder,
such a case occurred due to the effect of the imperfection.

The load applied to the cylinder in both types of analyses corresponds to the
analytically calculated M. This serves as a good estimate, as the analytical values of
M, are found to be slightly higher than the numerical ones. This is further discussed
in section 5.5. While it is expected that M, ; is smaller than M, the difference is
small for certain geometries, and therefore the same load is applied for MNIA.
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Rotation of top pilot node [rad]
Figure 4.21: Equilibrium path for MNA and MNIA

A sensitivity analysis is performed based on MNA to determine a suitable initial
number of substeps. The convergence of the LPF is investigated for r/t = 50 using
the geometry provided in Table 4.3. The results are shown in Table 4.8, where it can
be seen that the solution has converged at an initial number of substeps of 30, which
is therefore adopted in subsequent MNAs and MNIAs.

Table 4.8: Sensitivity analysis of initial number of substeps for MNA

Initial number LPE
of substeps
20 0.976
30 0.979
40 0.979
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Geometrically Nonlinear Analysis - GNA & GNIA

With the GNA and GNIA, the elastic buckling reduction factors ag and a; can be

determined as shown in (4.9).

_ Mgona o a0 = MRg,GNiA
M, e

where Mg ona and Mg gn1a are the values at buckling.

The GNA and GNIA terminate when buckling occurs, i.e. a bifurcation or limit
point is reached. In Figure 4.22, an example of an equilibrium path for the chosen
geometry is shown. The equilibrium path for GNA is linear, indicating that a bifurca-
tion point is reached. As for GNIA, the equilibrium path is almost linear, making it

oG (4.9)

difficult to clearly identify a limit point. Therefore, it is most likely bifurcation-type
buckling as well.

For GNA, a load of Myppiies = 2Ert? is applied, corresponding to M, multiplied by
the largest possible C,, for the investigated geometries. This ensures that the applied
load is greater than Mg gn4 in all cases. For GNIA, the applied load must be lower
than that for GNA. It is therefore chosen that M, ,ica = MR GNA-

8000 -
7000 +
6000 +
5000 +

4000 +

1000 - e GNA
e GNIA
0 I I I I I I I 1

0 0.01 002 003 004 005 0.06 007 0.08

Rotation of top pilot node [rad]

Bending moment in top pilot node [MNm]

Figure 4.22: Equilibrium path for GNA and GNIA

Similarly to MNA, a sensitivity analysis is carried out for GNA for r/t = 50 and
r/t = 400 with the geometries specified in Table 4.3. According to Sadowski and
Filippidis [25], a higher value of the initial number of substeps is required for higher
r/t ratios, which is also demonstrated in Table 4.9. For r/t = 50, an initial number
of substeps of 50 is sufficient to obtain an accurate result. Unfortunately, the same
cannot be said for r/t = 400, where convergence is not achieved even with an initial
number of substeps of 200.

In the study presented by Sadowski and Filippidis [25], capacity curves were
computed using different load increments, such as 0.005 and 0.001, corresponding to
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initial numbers of substeps of 200 and 1000, respectively. In the elastic region, nearly
identical results were obtained for both 200 and 1000 substeps, which is why an initial
number of 200 substeps was adopted in the study [25]. Accordingly, the same value is
adopted in this project to avoid overly computationally demanding solutions.

Table 4.9: Sensitivity analysis of initial number of substeps for GNA

Initial number LPF
of substeps | r/t =50 | r/t =400
50 0.847 0.997
100 0.847 0.968
200 0.847 0.963

Geometrically and Materially Nonlinear Analysis - GMNA & GMNIA

GMNA and GMNIA analyses terminate at the limit point when either buckling or
material failure occurs. In Figure 4.23, it can be seen that a limit point has been
reached for both analyses. The GMNA provides the resistance of the perfect structure,
which is found by multiplying the LPF at termination by the applied load. The same
is done with the result of the GMNIA to determine the characteristic resistance of the
structure with imperfections.

The load applied on the models in GMNA is chosen as the smallest of M, or
M = 2Ert?. This ensures that the load is neither too large nor too small. In GMNIA,
an appropriate value of the applied load is the resistance determined in GMNA, i.e.

Mapplied = MR,GMNA-

1400
1200 |
1000 |
800 |
600 |

400 +

200 - e GMNA
e GMNIA

Bending moment in top pilot node [MNm

0 0.002 0.004 0.006 0.008 0.01 0.012  0.014
Rotation of top pilot node [rad]

Figure 4.23: Equilibrium path for GMNA and GMNIA

A sensitivity analysis is performed for GMNA with four different r/t ratios, with
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the results shown in Table 4.10. For r/t ratios up to 200, convergence is achieved
using 100 as the initial number of substeps, which is also chosen for the subsequent
analyses. For r/t ratios of 300 and 400, convergence is unfortunately not achieved.
Therefore, following the same reasoning as described in the sensitivity analysis for
GNA, an initial number of substeps of 200 is selected for /¢t ratios above 200

Table 4.10: Sensitivity analysis of initial number of substeps for GMNA

Initial number LPF
of substeps | r/t =50 | r/t =200 | r/t =300 | r/t =400
50 0.841 0.771 0.737 0.894
100 0911 0.770 0.723 0.882
200 0911 0.770 0.719 0.877

4.2.3 Comparison of analysis types

As expected, all analysis types with imperfections exhibit a lower resistance than
the corresponding ones without imperfections, as seen in Figure 4.24. Note that all
curves follow each other closely initially, indicating that the influence of nonlinearity
is minimal in that region.
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Figure 4.24: Equilibrium path for all analysis types

4.3 Model Validation

A numerical model has to be verified and validated to ensure that the results are
realistic and reliable. Verification includes checking the sensitivity of results to
discretisation, as done in section 4.1.4, and other input parameters such as the initial
number of substeps, as demonstrated in section 4.2, as well as examining the calculated
results in qualitative and quantitative ways using engineering judgement. Validation
is performed by comparison with known accurate analytical or experimental results
to prove that the numerical model adequately represents the real world. [26] Since
no reliable experimental data exist for cylindrical shells subjected to global bending,
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validation can only be performed using known analytical results. It is not possible to
validate a cantilever model corresponding to a monopile, as there is no corresponding
analytical method for comparison. Instead, the validation is based on a model that
is fixed in both ends and subjected to uniform bending moment, as described in
section 4.1.2, which aligns with the assumptions behind the method in EN 1993-1-6
Annex E. Two distinct geometries are examined, given in Table 4.11, one exhibiting
elastic-plastic behaviour and the other purely elastic behaviour.

Table 4.11: Dimensions of cylindrical shells for model validation

Behaviour \ r [m] \ t [m] \ r/t \ L [m]
4.0 0.08 | 50 | 15.0
4.0 0.01 | 400 | 15.0

Elastic-plastic
Elastic

Various types of numerical analysis are performed to determine certain capac-
ity curve parameters as well as different types of resistances. The results and the
corresponding deviations between the analytical and numerical values are given in
Table 4.12 and 4.13. It should be noted that for /¢ = 400, only analyses without
imperfections are conducted.

Table 4.12: Comparison of analytical and numerical results for r/t = 50 and FTQC C

Parameter | Analytical result | Numerical result | Analysis type | Deviation
M, [MNm] 9 790 9912 LBA 1.2%
M, [MNm] 1613 1590 MNA -1.4%
K [-] 0.97 0.95 MNIA -2.2%
ag [-] 0.89 0.96 GNA 8.2%
ar [-] 0.51 0.55 GNIA 7.0%
MRk, per [MNmM] 1555 1468 GMNA -5.6%
Mgy [MNm] 1342 1339 GMNIA -0.2%

Table 4.13: Comparison of analytical and numerical results for r/t = 400

Parameter | Analytical result | Numerical result | Analysis type | Deviation
M., [MNm] 152.2 152.9 LBA 0.4%
M, [MNm] 201.6 196.2 MNA -2.7%
ag [-] 0.90 0.96 GNA 6.8%
MR, per [MNmM] 136.2 140.2 GMNA 29 %

LBA

The elastic critical moment resistance M, is determined as the classical elastic critical
moment M, multiplied by a parameter C;,;, as shown in (4.10) and earlier described
in section 2.3.2.

Mcr — CmMCl (4.10)
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As seen in Table 4.12 and 4.13, the deviation between the analytical and numerical
values of M, is minor, with the numerical results being slightly higher than the
analytical ones.

MNA

In EN 1993-1-6, the plastic moment resistance is calculated simply by multiplying the
plastic section modulus W, by the characteristic yield strength f,;, as seen in (4.11).
The plastic section modulus W, for a shell is an approximate lower-bound expression,
as the term containing only the thickness is disregarded. It is common practice
to calculate the plastic resistance by considering full utilisation of a cross-section’s
capacity. However, somehow, the numerical results are still lower than the analytical
ones. This is addressed later in the next chapter.

1
My = Wy fye = (4r2t + /z({{> foe = 4r7tfy (4.11)

MNIA

The expression for x in prEN 1993-1-6:2023, given in (4.12), is a simplified form of the
expression that applies to thin cylinders with r/t > 100. The equation below is used
to determine the value of x = 0.97, which is given in Table 4.12.

0.8
140.23(d0/t)?
Wang et al. [28], who provided the background of the method in EN 1993-1-6 Annex
E, proposed the full expression and it is shown in (4.13). In addition, an expression is
also given for thick cylinders with r/t = 10. If the /¢ ratio lies between 10 and 100,
interpolation can be performed as shown below in (4.15).

Kec = 0.2 + 4.12)

0.8
2

1 0.014(80 /)92 + 023(30/1)?
Kihick = 1

thick ™ 11 0.093(00 /)13 + 0.222(80 /)19

r/t— 10\ 03500560/t
Kinterp = Kthick 1 (Kthin — Kthick) 90

Kihin = 0. for r/t > 100 (4.13)

forr/t =10 (4.14)

for 10 < r/t < 100 (4.15)

Calculating Kinterp for the geometry with r/t = 50, there is no deviation between
Kinterp and the numerical result: Kinterp = Knumericat = 0.95. This shows a strong
agreement between the numerical model and the expression for Kinterp- This is expected,
as the expression is based on numerical analyses, which confirms that the constructed
numerical model is reliable.

GNA

A higher value of «¢ is favourable, as the reduction of the buckling resistance becomes
smaller. Based on the results in Table 4.12, it can be seen that the value of a is higher
when determined numerically. As seen in equation (4.16), ag is either equal to 0.9
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when () < 0.5 or a lower value when ) > 0.5. For the geometry with r/t = 50,
) = 0.5 and for r/t = 400, 3 = 0.2. A limit of ag = 0.9 is imposed for (2 < 0.5,
which explains why the analytical and numerical results are not the same.

xg =09 for QO < 0.5

50 (4.16)
ag = 0.5+ (0.38sin (0.85Q2) + 0.48 cos (0.85Q2)) e " for (2 > 0.5

GNIA

The imperfection reduction factor «j, given in (4.17), depends on the imperfection
amplitude Jp and (2, which depends on the geometry. The expression is determined
based on a fit of numerical results. The deviation between the value obtained from the
expression and the result determined directly from the numerical model is likely due
to the fitted expression not accurately capturing all data points, or being intentionally
formulated to be slightly conservative.

1

1.05 6\
1+<0‘7+1+0.4202-8)(t)

ap = 4.17)

GMNA and GMNIA

The analytical and numerical results for both GMNA and GMNIA show only minor
deviations. This is observed for geometries in both the elastic-plastic region, r/t = 50,
and the elastic region, r/t = 400. However, it appears that the geometries with higher
r/t ratios may be slightly underestimated analytically. This will be investigated further
in chapter 5 for cantilever cylindrical shells.

The model validation may be concluded by stating that, overall, there is a good
correlation between the analytical and numerical results, particularly when comparing
the characteristic resistance. This confirms that the numerical model has been set up
correctly and behaves as intended.
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5 Assessment of Analytical Method

This chapter presents the assessment and potential reformulation of the expressions
for the capacity curve parameters from prEN 1993-1-6:2023 [19] Annex E, based on a
series of numerical analyses of seven different types. FE analyses are performed as
described in chapter 4 using models of set 1 as per section 3.2.1, i.e. cantilever cylinders
in uniform global bending with a full-circumferential dimple, where applicable. The
only difference between those models and the assumptions behind the method in EN
1993-1-6 is the static system. While EN 1993-1-6 uses cylinders supported at both ends,
the FE models in the project are constructed as cantilever cylinders. Furthermore, the
validity of the analytical method is formally limited to radius-to-thickness ratios of at
least 50, but the assessment includes cylinders with r/t ratios as low as 8.

5.1 Preliminary Assessment

Prior to a detailed evaluation of the current analytical method, a brief preliminary
assessment is conducted, comparing the main results, which forms the basis and
determines the extent of further assessments and reformulations. The main result of
the analytical method is the characteristic buckling moment resistance, calculated as
the product of the buckling reduction factor and the reduced reference plastic moment,
Mgy = xMp;,1- Numerically, this resistance can be obtained from a geometrically and
materially nonlinear analysis on the imperfect structure, GMNIA. The analytical and
numerical resistances are visualised in Figure 5.1 as a function of thickness and length
for the normal fabrication tolerance quality class, FTQC C.

-Analytical, M M

Rk~ X6 pir
Numerical, MRk =M

GMNIA

6000 -

4000 -

M,, [MNm]

2000 -

—

02 T =%
01 T—_— 9
Thickness, f [m] 0 10 Length, L [m]

Figure 5.1: Comparison of characteristic buckling moment resistances for FTQC C
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As seen in the figure, there is a good overall agreement between the results. The
analytical method provides a lower resistance at low thicknesses, i.e. high r/t ratios,
but becomes progressively unconservative with increasing thickness. The extent of the
conservative region increases in general with the length in an irregular pattern. Note
that light colours in the plot indicate minor differences between the values. The results
for FTQC A and B look similar to those for C, and they are therefore not shown here.

Since the project focuses on buckling in monopiles, and they are typically con-
structed of cylinders with an r/t ratio between 35 and 65, the error in the analytical
method relative to the numerical results is visualised in Figure 5.2 across those ra-
tios for all lengths investigated in the project and for all three standard fabrication
tolerance quality classes. The relative error here and later in this chapter is calculated
as shown in (5.1). The variation of the relative error is rather irregular. The lowest
value is -4.9% observed at L = 10 m and r/t = 65. The highest value is 6.6% at L = 15
m and 7/t = 50. For lengths between 20 and 35 m, the analytical method provides
unconservative results for monopiles regardless of r/t ratio and quality class.

analytical value — numerical value

Relative error = - (5.1)
numerical value
FTQC A
FTQC B
FIQCC
6 =
4.
S
2.
5
z
S
o)
Moo
-4/
60 \*;—»\\\ ///,.//;:///
55 T B0 %0
B g 30
. 35 10
7/t ratio [-] Length [m]

Figure 5.2: Relative error in analytical method for typical monopiles

Based on the presented comparison of characteristic buckling moment resistances,
it can be concluded that the analytical method in prEN 1993-1-6:2023 [19] Annex E fits
considerably well to typical monopile geometries. In fact, it predicts slightly uncon-
servative resistances for the most common dimensions, although that is presumably
accounted for by the applied partial factor. Consequently, it is deemed unnecessary
to reformulate most of the expressions for the capacity curve parameters. Focus is
directed instead towards the parameters independent of the form of geometric imper-
fection, i.e. G, and a, as those can be utilised later when investigating cylinders with
a limited dimple.
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5.2 Linear Elastic Critical Moment

This section provides an assessment and reformulation of the analytically calculated
elastic critical moment M., and includes a brief analysis to investigate whether there
are differences between the results for a clamped and a cantilever cylinder.

As mentioned in section 4.3, the analytical expression for the elastic critical moment
M., consists of two contributions, namely the classical elastic critical moment M and
the parameter C,, which accounts for the restraining effect of the end boundaries. The
relation between these parameters is shown in (5.2) as per [21]. It should be noted
that in prEN 1993-1-6, M., = M., i.e. a conservative choice is made by setting C,, = 1.
It is in EN 1993-1-6/A1:2017 [23] given that the expression for M., corresponds to
M = C M. In the following, the expression from EN 1993-1-6/A1:2017 [23] is used
as a basis for better evaluation and reformulation.

M = Cm]VIcl
7T
My = ———Er#
B (5.2)
4
w

Numerically, M, is determined using an LBA, and the values of M,, for each
model are shown in Figure 5.3 as a function of the two input parameters varied in the
analyses, namely the length and thickness, along with the corresponding analytical
values.

Analytical M_=C M
cr m” el
5 Numerical, Mcy = MLBA
x10

[MNm]

0L 60
0.5 e _— 50
0.4 '\""'i:»x,,;hh% o — 40

0.3 T o

Thickness, ¢ [m] ) 0 ' 10 Length, L [m]

Figure 5.3: Comparison of elastic critical moments

It is observed that the analytical results for M., are higher than the numerical ones
for large thicknesses, i.e. smaller r/t ratios, specifically between 8 and 10. The greatest
deviation between the results also occurs at the smaller v/t ratios, as illustrated in
Figure 5.4. This is not surprising, as the method in EN 1993-1-6/A1:2017 [23] is valid
for 25 < r/t < 3000, meaning it cannot be expected to be accurate outside this range.
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Relative error [%]

r/t ratio [-] T S 30
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Figure 5.4: Relative error in the analytically calculated elastic critical moments

For r/t > 10 the numerical results are slightly higher than the analytical ones,
which indicates that the expression for M., is not precise and may require reformula-
tion to better align with the numerical results. The expression for M has a theoretical
and historical background, and is assumed to have been determined quite accurately.
Instead, attention is directed towards the parameter Cy,.

In Figure 5.5, the numerical results are normalised with M, i.e. the parameter Cy,
is shown instead of M,,. The plot clearly shows that there is a deviation between the
analytical and numerical values of the parameter C,,, with the numerical values being
higher than the analytical ones for r/t > 10.

-Analytical, Cm = MW/MCI

Numerical, Cm = MLB A/Mcl
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Figure 5.5: Comparison of the parameter C;,
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5.2 Linear Elastic Critical Moment

In Figure 5.6, scattered numerical values of the parameter C,, are shown together

with the curve from the analytical expression as a function of w. Note again that for

low r/t ratios, the analytical expression does not fit well, and that it is conservative

for the higher r/t ratios. Therefore, the upcoming reformulation of the expression for

the parameter C,, is carried out by disregarding the low r/t ratios, as they are not

realistic geometries for an offshore monopile. The different behaviour that is observed

for low r/t ratios are explained in section 2.3.2.
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Figure 5.6: C;; for all numerical results with the 7/t ratio indicated for each point

The figure above shows that the results are not scattered randomly, but exhibit a
clear dependence on both the thickness, i.e. the r/f ratio, and the length. The variation

with respect to the length is illustrated in Figure 5.7.
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Figure 5.7: Cy, for all numerical results with the length indicated for each point
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It is decided to reformulate the first term in the expression for C, so that it

explicitly depends on the r/t ratio. In this way, a separate curve can be fitted for each

r/t ratio, in contrast to the current expression by Rotter et al. [21], where a single

curve is used to fit all the data. The rewritten expression is given in (5.3), where the
first term is a power function and the second term remains unchanged.
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5 ASSESSMENT OF ANALYTICAL METHOD

r\ 00035 4
E> + = for 35 < r/t < 400 (5.3)

Co = 1.025 ( =

In Figure 5.8, numerical values are presented alongside the curves based on the
rewritten expression for selected r/t ratios. The rewritten expression is valid for
r/t > 35. If the expression were to be made valid for 7/t < 35, it would become too
conservative for r/t > 35, which is undesirable due to the area of interest regarding
the realistic geometry of an offshore monopile.
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103 « Numerical, 1/t =50
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Figure 5.8: Fitted C,, curves for selected r/t ratios

Lastly, a fitted surface is shown together with the numerical results in Figure 5.9.
It can be seen that the new expression for C,, provides a much better fit.

[ Analytical - reformulated

Numerical, Cm=M LB A/Mcl

1.06 -
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Figure 5.9: Comparison of the paramter C,,
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5.3 Nonlinear Elastic Critical Moment

The section concludes with an investigation into whether there are differences
between the results for a clamped and a cantilever cylinder. Different geometries are
investigated as given in Table 5.1. No difference is observed in the numerical results
for M., regardless of the cylinder’s global boundary conditions. Fajuyitan et al. [22]
also investigated the effect of global boundary conditions in a cylinder. Specifically,
a clamped and a simply-supported cylinder were compared. They found that for
around w < 10, larger differences can be observed in the results. Such differences
are not detected in this investigation, probably because the lowest relative length

considered is w = 14.7, corresponding to L = 10 m and r/t = 35.

Table 5.1: Comparison of results for clamped and cantilever cylinder

Length | r/t Global Analytical | Analytical | Numerical
L boundary M, M., M,
[m] [-] | conditions [MNm] [MNm] [MNm]

35 Clamped 19 872 20 236 20 517

10 Cantilever - - 20 517
400 Clamped 152.1 152.4 153.1
Cantilever - - 153.1

35 Clamped 19 872 19 913 20 168

30 Cantilever - - 20 168
400 Clamped 152.1 152.1 152.8
Cantilever - - 152.8

35 Clamped 19 872 19 883 20 134

60 Cantilever - - 20 134
400 Clamped 152.1 152.1 152.8
Cantilever - - 152.8

This means that M., is not affected by the type of support condition, unless the
cylinder is short or thick-walled. It also implies that the parameter C,, is defined
independently of any specific support condition. Instead, it accounts for the influence
of support conditions on local buckling. When the distance between the supports
is small, they provide additional resistance against buckling, hence increasing the
critical moment and the value of C,,. As the distance between the supports increases,
their influence on local buckling diminishes. In other words, the longer the cylinder,
the larger w becomes, and the smaller the value of C,, as can be seen from both
expression (5.2) and Table 5.1.

5.3 Nonlinear Elastic Critical Moment

The nonlinear elastic critical moment acM,, and the corresponding geometric reduc-
tion factor a¢ can be determined numerically using geometrically nonlinear analysis,
GNA. Results from 429 GNAs are presented in Figure 5.10 together with the analyt-
ically calculated moment resistances. As seen in the figure, the results are closely
aligned for most geometries. The smallest differences are observed at low thicknesses
(i.e. high r/t ratios), where the numerical values only slightly exceed the analytical
ones, resulting in the visibility of only the light yellow surface in the plot. As thickness
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5 ASSESSMENT OF ANALYTICAL METHOD

increases or r/t ratio decreases, the difference between the two approaches becomes
more pronounced. While numerical results generally remain higher than the analytical
ones, an exception occurs at shorter lengths (10 and 15 m), where the discrepancy
diminishes beyond a certain thickness, and the analytical values eventually exceed the
numerical ones. A similar pattern can be observed when comparing the analytically
calculated geometric reduction factor with the normalised numerical results, as shown
in Figure 5.11.

-Analytical, MR = aGMCl
Numerical, M R™ M

x10° R,GNA
3.
—_ 2.
E
Z
2
~
S 1.
O =
0.5
0 10
Thickness, t [m] Length, L [m]
Figure 5.10: Comparison of nonlinear elastic critical moments
-Analytical, ag
1 Numerical, a, =M rena™y

0.3

40 0.2

Length, L [m] 60 0 Thickness, t [m]
Figure 5.11: Comparison of geometric reduction factors

It should be noted that the analytical moment resistance in Figure 5.10 and the
numerical geometric reduction factor in Figure 5.11 are calculated using M, since
prEN 1993-1-6:2023 [19] applies the simplification of M., = M, assuming C,, = 1.0.
That is a conservative assumption as the actual value of C;, can be higher than unity,
as demonstrated previously. By using a more precise value of Cy,, the absolute value
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5.3 Nonlinear Elastic Critical Moment

of the deviation between the analytical and numerical results decreases, as shown in
Figure 5.12. The plot uses analytical values calculated with the current expression for
Cy, from (5.2) as well as the reformulated one from (5.3). Since the validity of (5.3) is
limited to v/t > 35, lower ratios are excluded from the plot.
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Figure 5.12: Relative error in the analytically calculated nonlinear elastic critical moments

In order to reduce the observed deviations, the analytical expression for the
geometric reduction factor a; needs to be optimised. The current expression from
prEN 1993-1-6:2023 [19] is defined as a function of a single variable, the second relative
length ), as presented in (5.4), and contains a smooth transition to an upper limit
of 0.9 at (3 = 0.5. That point marks the boundary between medium-length and long
cylinders under uniform global bending as defined in prEN 1993-1-6, or the medium
and transitional domains as more formally identified by Rotter et al. [21] and Wang et
al. [28], among others.

0.9 for Q<05
ocG:{ or s (5.4)

0.5 + (0.38 sin (0.85Q2) + 0.48 cos (0.85Q2) e 080 for O>05

Another set of analytical expressions for a; was previously presented by Rotter et
al. [21], setting the upper limit in the medium domain slightly higher and explicitly
defining a lower limit in the long domain, since the expression does not settle on that

value.
0.92 for 86 <wand O < 0.5
1—0.220 + 0.06102>%
Ko = . 5< . 55
¢ =\ 07— a0 for 05<0<70 (5.5)
0.516 for O>70

Both sets of expressions are visualised in Figure 5.13 together with the numerical
results from GNA normalised with results from LBA. As seen in the figure, the
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5 ASSESSMENT OF ANALYTICAL METHOD

numerical values are located within two of the four formal domains: the medium
and the transitional. It should be noted that the range of validity of both analytical
expressions is limited to r/t ratios of at least 50, which can be justified by the scatter
of the dark blue data points corresponding to lower ratios.
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Second relative length, §2[-]

Figure 5.13: Geometric reduction factor as a function of O

In the medium domain, the data points are supposed to lie on a wavy curve with
a shape of connected festoons as first identified by Seide and Weingarten [46], and
later also demonstrated by Rotter et al. [21]. However, due to the limited number
of combinations of lengths and thicknesses investigated in the project, only a few
flattened festoons are visible in Figure 5.14, primarily for the lower r/t ratios. It can
also be seen in the figure that the boundary between the medium and transitional
domains defined in the current analytical expressions at (2 = 0.5 is appropriate to
r/t ratios of at least 50, but it shifts to higher () values as r/t decreases. Based on
Figure 5.14, it can be placed at () ~ 1.2 for r/t = 35 and at () =~ 1.4 for r/t = 25,
although the density of the data is insufficient for more accurate predictions.
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Figure 5.14: Numerically calculated geometric reduction factor in the medium domain
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5.3 Nonlinear Elastic Critical Moment

In the transitional domain, the data points are expected to lie on a single line
according to Rotter et al. [21]. When considering the above statement about the
location of the domain’s lower boundary, it becomes apparent that the numerical
values in Figure 5.13 do more or less lie on a single line.

Based on the generated numerical data and utilising the Curve Fitting Toolbox [47]
in the software MATLAB [48], an attempt is made to optimise the current analytical
expression, focusing on typical monopile geometries, i.e. 35 < r/t < 65. The
optimisation results in a reformulation as shown in (5.6), inspired by the expression
of Wang et al. [28], which is also used in prEN 1993-1-6. Similarly to the reformulated
expression of Cy,;, the validity of (5.6) is limited to r/t > 35. The goodness of fit of the
new expression is visualised in Figure 5.15.

~ fo91 for Q <075
0.507 + (1.52sin (0.85Q) + 0.39 cos (0.85Q2) )e 14702 for Q) > 0.75
(5.6)
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Figure 5.15: Comparison of geometric reduction factors

In contrast to the existing ones, the reformulated expression is not fully conserva-
tive as it slightly overestimates the geometric reduction factor for certain cylinders by
approximately 2% at most. On the other hand, it also reduces the overall conservatism,
changing the minimum value of the relative error from ca. -10% to ca. -5% for typical
monopile geometries. The reformulated expression is visualised together with the
current ones and the numerical results in Figure 5.16.
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Figure 5.16: Geometric reduction factor for typical monopiles

5.4 Nonlinear Elastic Imperfect Critical Moment

The nonlinear elastic imperfect critical moment corresponds to aM.,, where a =
acar. By introducing imperfections into the geometry, aM., can be determined
in a GNIA. From there, a; can be determined numerically by dividing a M., with
the nonlinear elastic critical moment agM,, extracted from a GNA for the same
geometry. The imperfection reduction factor is thus determined numerically as
a1 = Mrconia/ Mg cna. Analytically, the expression shown in (5.7) is used.

1

1.05 5o\ %7
n (0.7 + 0'402_8) (t)

The analytical and numerical values of Mg = aM,, are shown in Figure 5.17 for
FTQC C. The numerical values are higher than the analytical ones for all investigated
geometries, which indicates that the analytical estimation of a M., is conservative.

(5.7)

Xy =

Analytical, M =% Y Mcy

5
x10 Numerical, M R=M

2.5 ..
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Figure 5.17: Comparison of nonlinear elastic imperfect critical moments for FTQC C
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5.4 Nonlinear Elastic Imperfect Critical Moment

However, the parameter a; is not estimated conservatively for all the geometries
studied, as shown in Figure 5.18 for FTQC C. It can be seen that for thicknesses less
than approximately 0.1 m, the analytical values of a#; become higher than the numerical
ones. In the method given in prEN 1993-1-6, the value of a is underestimated, as
described in section 5.3, which can lead to higher a; values. This can easily be seen by
considering the relationship shown in (5.8).

aM,,
Xy =
aGMcr

(5.8)
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Numerical, a = MR,GMA/ MR,GNA
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Figure 5.18: Comparison of imperfection reduction factors for FTQC C

It is observed that the relative error between the analytical and numerical results
decreases as the imperfection amplitude Jy is reduced. The largest absolute relative
error is 13.0% for FTQC A and 15.7% for FTQC C. The relative error for all geometries

are shown in Figure 5.19.
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Figure 5.19: Relative error of the analytically calculated imperfection reduction factors
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There are considerable deviations between the analytical and numerical values of
«;. The deviation can be reduced by reformulating the expression for a;. However,
reducing the conservatism of the nonlinear elastic imperfect critical moment a M., is
not appropriate, given that the method is already unconservative for typical offshore
monopile geometries, as described in section 5.1.

5.5 Plastic Moment Resistance

The plastic moment resistance M, is determined numerically using MNA and analyt-
ically using the expression in (5.9) valid for shells.

My = 4r°tfy (5.9)

The numerical results for the 48 different geometries, which are presented in sec-
tion 3.2.3, together with the corresponding analytical values are shown in Figure 5.20.
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Figure 5.20: Comparison of plastic moment resistances

All numerical results are slightly below the analytical values. The relative error
between the analytical and numerical values is shown in Figure 5.21. The maximum
absolute relative error reaches a value of 3.0%.

A possible explanation for the deviation might be the use of shell elements, as
their implementation may not allow the full plastic cross-sectional capacity to be
reached. Since the analytical expression for M, is well established, there is no need to
reformulate it.
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Figure 5.21: Relative error in the analytically calculated plastic moment resistances

According to the expression in (5.9), the plastic moment resistance M,; depends on
the cross-sectional parameters and is independent of the cylinder length. To verify that
this also holds for the numerical results, Figure 5.22 can be considered. In Figure 5.22,
it can be seen that M, has the same value for each thickness across all lengths.
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Figure 5.22: Plastic moment resistances for different lengths

5.6 Reduced Plastic Moment Resistance

The plastic moment resistance M, is used as a normalising parameter and serves

to determine the relative slenderness of the structure; recall that A = , [ Mp;/ Mer.
As described earlier in section 2.4.3, imperfections can negatively affect the plastic
moment resistance of cylinders subjected to global bending. This leads to the use of a
reduced plastic moment resistance M, ; as the normalising parameter instead. It is
defined in (5.10), where M, is reduced by the parameter «.
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MpZ,I = KMpZ
0.8 (5.10)
1+0.23(6/t)

Figure 5.23 shows numerical results corresponding to the reduced plastic moment
resistance for all three fabrication tolerance quality classes. It is observed that the
surfaces follow the expected order corresponding to each FTQC, with FTQC A having
the highest resistances and FTQC C the lowest.
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Figure 5.23: Comparison of numerical results for all FTQC

Figure 5.24 shows the numerical results alongside the corresponding analytical
results for FTQC C. A slight discrepancy can be observed between the results, with
the analytical values being higher than the numerical ones.
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Figure 5.24: Comparison of reduced plastic moment resistances for FTQC C
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5.6 Reduced Plastic Moment Resistance

The same trend is seen for FTQC A and B, although the deviations are smaller,
as illustrated in Figure 5.25. The maximal relative error is 1.9% for FTQC A, 2.2%
for FTQC B and 2.4% for FTQC C. Since FTQC C exhibits the largest deviation, the
following figures are presented for this particular class.

IFTQC A
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Figure 5.25: Relative error in the analytically calculated « for all FTQC

It should be noted that the values of M, ; may contain minor inaccuracies, consis-
tent with the trend observed in MNA. The analytical values are assumed to represent
the true values as discussed earlier. As the maximum relative error is 3%, no corrective
measures are applied.

In Figure 5.26, the variation of the analytical and numerical values of x with
respect to thickness and length is shown. It is again observed that the analytical values
are higher than the numerical ones, which means that the expression for « in prEN
1993-1-6 [19] is unconservative.

[ Analytical, &

Numerical, # =MR, MNL A/Mpl

0.4 o T ) "

02 e — 20

Thickness, f [m] ' 0 10 Length, L [m]

Figure 5.26: Comparison of the parameter x based on prEN 1993-1-6
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As explained in section 4.3, the expression for « in prEN 1993-1-6, shown in (5.10),
is a simplified version of the original formulation derived by Wang et al. [28], which
is valid for r/t > 100. Three expressions for x were developed by Wang et al. [28]
depending on the r/t ratio, as shown earlier in (4.13)—(4.15). Figure 5.27 visualises «
as determined according to Wang et al. [28]. They are slightly more conservative for
larger thicknesses, as the analytical results lie below the numerical ones.
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Figure 5.27: Comparison of the parameter x based on Wang et al. [28]

The corresponding relative errors for all FTQC are presented in Figure 5.28. As
expected, they are lower than those in Figure 5.25, where the x values were calculated
using the expression provided in prEN 1993-1-6. The maximum relative error is 1.5%
for FTQC C, 1.3% for FTQC B and 1.0% for FTQC A. Since there already exist accurate
and well-established expressions for x there is no reason to perform a reformulation.
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Figure 5.28: Relative error in the analytically calculated x based on Wang et al. [28]
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5.7 Perfect Characteristic Buckling Moment

5.7 Perfect Characteristic Buckling Moment

The perfect characteristic buckling moment Mg, per fect is determined numerically using
GMNA. Analytically, the method provided in prEN 1993-1-6 is not derived in such a
way that Mgy perfect can be determined directly. To determine Mgy perfect analytically in
this project, the method is applied with the imperfection amplitude dy = 0. Reference
is made to appendix A, where the procedure is described in detail. The analytical and
numerical results are shown in Figure 5.29. In most parts of the plot, the analytical
values are higher than the numerical ones. However, for geometries with smaller
thicknesses and larger lengths, the numerical results exceed the analytical values.
A similarity can be observed between Figure 5.29 and Figure 5.1, which presents
the results for GMNIA FTQC C, as both show that the numerical results exceed the
analytical values in approximately the same area. The relative error in the analytical
results is shown in Figure 5.30, with the extremes being 15.7% and -9.4%. The relative
error becomes quite large at smaller thicknesses. These large errors are not surprising,
as the analytical method is not based on the assumption Jy = 0. Moreover, the GMNA
analysis type is not used to derive any parameters or resistances in the method.
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Figure 5.29: Comparison of perfect characteristic buckling resistances
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Figure 5.30: Relative error in the analytically calculated perfect char. buckling resistances
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5.8 Overall Assessment

This section concludes the assessment of the analytical buckling verification method
given in prEN 1993-1-6:2023 [19] by connecting the numerical results from the different
analysis types in capacity curves and comparing them with different analytical meth-
ods. Moreover, the influence of the static system on the bending moment resistances
is evaluated for selected geometries to investigate a possible extension of the method’s
validity.

Three analytical capacity curves are shown in Figure 5.31 together with numerical
results from GNIA, MNIA and GMNIA for L = 10, 30 and 50 m for FTQC A. It
should be noted that each of the three analytical curves corresponds to a single value
of (). With the geometries studied in the project, a maximum of three models share
the same () value, which explains the scatter of the results. Nonetheless, there is
good agreement between the results from the different analysis types. However, this
issue prevents the optimisation of the method as a whole, as it is not possible to
determine the range boundary values Ao, 8, 170 and 77, without a continuous capacity
curve. While individual capacity curve parameters can still be optimised, there is no
guarantee that they will align with the existing expressions for the range boundary
values.

Figure 5.31 can be compared to the sketch of the capacity curve defined by the
different analysis types in Figure 3.3. Note that the numerical results are normalised
using the analytical M, ;. Furthermore, the boundaries for the elastic, plastic and
elastic-plastic regions are set corresponding to the curve for () = 2, although different
boundary values apply for each curve.
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Figure 5.31: Capacity curve for FTQC A

The GNIA results are expected to follow the GMNIA results in the elastic range,
as can be observed around A = 1.1. In the elastic-plastic range, the GNIA data points
appear to form three curves corresponding to the three selected lengths, and they all
lie above the GMNIA results. It should be noted that referring to them as continuous
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curves is not entirely accurate, since the data points cannot be directly connected due
to differing () values. Still, a tendency can be observed for points with (2 values that
lie close to each other — for example, the dark blue ones, which fall approximately
within the range 0.125 < () < 0.5.

The results obtained from MNIA form an approximately horizontal line near xy = 1.
The small deviation might be due to the fact that the numerical values of M, are
not exact, as discussed in section 5.6. These numerical values are smaller than the
analytical ones, which explains why the values of x are slightly less than 1.

Three analytical capacity curves are plotted for () = 1, 2 and 5 to provide a basis
for comparison with the numerical results from GMNIA. In reality, only the numerical
results corresponding to geometries with the specified () values are expected to lie
on these curves. Nevertheless, certain trends can still be identified from the capacity
curve. The analytical method exhibits both conservative and unconservative behaviour
in different parts of the elastic-plastic region. For example, at A =~ 0.5 to 1.1, the
method is conservative. For smaller values of A, the analytical method becomes
unconservative. Note that the relative slenderness for typical monopiles is between
approximately 0.34 and 0.46 for f, = 315 MPa. The results presented in section 5.1
indicate that the analytical method is unconservative for monopiles, a trend that is
also observed in the capacity curve.

Previously, in Figure 2.30, it was shown how the shape of the curve in the elastic-
plastic region depends on whether the value of 7 is greater than, less than or equal to 1.
For 1 = 1 the curve is a straight line, # < 1 produces a convex curve, and 7 > 1 results
in a concave curve. However, as observed in Figure 5.31, the results from GMNIA in
the elastic-plastic region do not form a straight line, nor do they consistently follow
a concave or convex shape. This is because the value of 7 varies throughout the
region and is not constant, as could be interpreted based on Figure 2.30. What can be
observed more precisely is that the numerical results form a combination of convex
and concave curves throughout the elastic-plastic region. This possibly indicates that
the value of 7 needs to be adjusted so that it matches the numerical results better.

5.8.1 Comparison with Other Analytical Methods

In Figure 5.32, the results from GMNIA are compared with three analytical methods,
namely those presented in prEN 1993-1-6:2023 Annex D and E, and the currently valid
one in EN 1993-1-6/A1:2017 Annex E. The methods are described and compared in
section 2.4.3. The analytical capacity curves are all shown for () = 1 and to enable the
comparison of the three methods, M, is used as reference resistance instead of M .
It is observed that all three methods are unconservative in the region that is valid for
monopiles.

The method in prEN 1993-1-6:2023 Annex E fits better with the numerical results
in the elastic region, however, it is actually more conservative than the other methods
in a large part of the elastic-plastic region. EN 1993-1-6 states that the stress-based
method in Annex D is conservative if applied to relatively thick-walled cylinders with
certain geometries and loading conditions. This statement holds only if the buckling
stress o, gx is converted to a buckling moment resistance Mg using the elastic section
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modulus W,; in the elastic-plastic region as well, as shown in Figure 5.32. A more
precise value of Mg, in that region can be calculated with the elastic-plastic section
modulus Wy, found by linear interpolation between the elastic and plastic section
moduli W,; and W, using the relative slenderness A. In that way, the fit is improved
and the method is no longer overly conservative. The buckling moment resistance is
calculated as per (5.11).

Mgy = 0y kW (5.11)

The x values determined using the currently valid method given in EN 1993-1-
6/A1:2017 Annex E appear to be between the x values from the other two methods in
the elastic region and a part of the elastic-plastic region. This means that the current
method in Annex E is less conservative than the proposed one in the elastic-plastic
region for A values larger than approximately 0.5. However, the method appears
to be highly unconservative at the beginning of the elastic-plastic region, which is
something that has been adjusted in the proposed method.

o 1r

= 0.5
= —

~ 0.8+ 1 =
= S
L 15
= 0.6 o
g 0.
£ 12 2
£ 1 1 v
g r=4mand Q =40 (FTQC A) 12.5E
£ 0417 TEN1993-16:2007/A1:2017 Annex E, 2 = 1 e
-§ —prEN 1993-1-6:2023 Annex E, Q=1 = E "g
) . _ . TRasg o)
;3 0.2 L prEN 1993-1-6:2023 Annex D, 2 =1, using Wep 35 C%U-’
é —.prEN 1993-1-6:2023 Annex D, €2 =1, using Wel 1
5 o Numerical, GMNIA
an] 0 T T T I I | |
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Figure 5.32: Capacity curve for FTQC A

It should be noted that the new expressions for the parameters C,, and «¢ are not
used in the analytical capacity curves, as they would become even more unconservative.
Instead, the new expressions can possibly be used to make the analytical method fit
better with numerical results for models with a limited dimple in the next chapter.

The section concludes with a recommendation to use the method in prEN 1993-1-
6:2023 Annex E for monopiles with the assumptions mentioned in the introduction
of this chapter, as it is the least unconservative and provides the closest fit to the
numerical results. Nevertheless, care should be taken when applying the method to
avoid overestimating the true capacity, especially for r/t < 50.

5.8.2 Effect of Supports

The difference between the characteristic buckling resistance Mgy for a clamped
cylinder, as assumed in EN 1993-1-6, and a cantilever cylinder is of particular interest,
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as it raises the question of whether the method could be extended to cover other types
of global boundary conditions. A selection of geometries is examined for FTQC A, as

shown in Table 5.2.

Table 5.2: Mg, for different support condition (FTQC A)

Length | r/t Global | Numerical
L boundary MRgi Difference
[m] [-] | conditions [MNm]
400 Cantilgver 73:8 2.7%
EEE R
400 CantilIe)ver 69:3 7%
400 Cantilgver 69:0 09%

By examining the values, no clear trend can be observed. For some models, the

clamped cylinder provides a higher resistance, while for others, the cantilever cylinder

results in a higher resistance. There is also no clear correlation between the geometries
and the difference in resistance between the two support conditions. However, it
should be noted that for some models, the difference is so small that it is negligible.
Therefore, it may be worth conducting further analyses covering a wider range of
lengths and r/t ratios to determine whether the current method can be extended and
formally considered applicable to cantilever cylinders.
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6 Effect of Conditions in Monopiles

As discussed in chapter 3, the current analytical buckling verification methods in EN
1993-1-6 assume cylinders under uniform global bending with a full-circumferential
dimple at midspan. In contrast, monopiles typically experience an increasing bending
moment distribution, and according to the tolerance requirements in the standard,
see section 2.4.2, the extent of possible dimples or weld depressions must be limited
in both axial and circumferential directions. These two conditions presumably cause
the analytically calculated buckling resistances to become conservative for monopiles.
The aim of this chapter is therefore to reveal the extent of potential conservatism as
well as to propose a way to mitigate it for each of the two conditions separately.

6.1 Effect of Moment Distribution

This section aims to assess the increase in buckling resistance associated with the
elastic critical moment M,,, by generating a linearly increasing moment distribution in
cantilever cylinders and deriving a fitted expression for M., using LBA, corresponding
to set 2 in the research plan described in section 3.2.3.

Assuming a uniform bending moment distribution implies that the maximum
moment occurring in a cross-section acts along the entire length of the cylinder. In
contrast, a cantilever cylinder is exposed to a lower level of loading compared to a
structure under uniform bending, since the maximum moment is only present at the
fixed end. As described earlier in section 3.1, the moment is assumed to increase
linearly from top to bottom, which is a simplification of the real moment distribution
in monopiles. To generate a linearly increasing bending moment distribution, a shear
force is applied at the top as described in section 4.1.2.

A new parameter ¢ is introduced, defined as the ratio between the two end
moments as given in (6.1). The analyses are performed with varying i values.

_ Mtop
Mbottom (61)
y = {0.00, 0.25, 0.50, 0.75, 1.00}

Models with i = 1 are equivalent to those in LBA set 1, where the moment
distribution is uniform. Figure 6.1 shows the size of the shear force and the bending
moment to achieve the respective models with different ¢ values. The moment at
the bottom is defined as 1.0 MNm, ensuring that the load multiplier from the LBA
corresponds to M.

Preliminary analyses revealed that for ¢y = 0, shear buckling occurs at short
lengths and high r/t ratios. Since shear buckling is beyond the scope of this project,
a maximum r/t ratio is chosen as 100, and for that value, pure shear buckling is
avoided at lengths L > 25 m. Models with other r/t ratios and lengths are excluded
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6 ErrecT oF CONDITIONS IN MONOPILES

from further investigations. As in chapter 5, the primary focus is on r/t ratios above
35. Since no capacity curve needs to be mapped in this context, it is not necessary
to investigate all r/t ratios between 35 and 100. Rather, it is sufficient to include
a reasonable number of data points to perform a reliable fit. Therefore, a subset
of representative values is selected, given in (6.2). As a result, the total number of
analyses in set 2 is reduced from the original 429 to 192.

r/t = {35, 45,55, 65,75, 100} (6.2)
Moy =0 M¢op = 1 - IMNm M¢yp = 1MNm
V= 1MLNm V= w V=0
—- LY LA
L -
/ / Mpottom = IMNm

Figure 6.1: Values of applied moment and shear force depending on ¢

6.1.1 Eigenmodes

The eigenmode for a cylinder subjected to a shear force and the corresponding moment
looks different compared to a cylinder under uniform bending moment, as shown in
Figure 6.2.

a) Pure bending b) Increasing moment due to shear force

Figure 6.2: Eigenmodes due to different load effects

There are two main differences. First, buckles do not occur along the entire length
in the case of an increasing moment, as they do with a uniform moment. Instead,
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6.1 Effect of Moment Distribution

the buckles appear near the bottom, where the bending moment is largest. Second,

the buckles differ in appearance. The buckles in Figure 6.2 a) occur due to pure
bending, whereas those in Figure 6.2 b) result from a combination of shear and

bending moment.

It is observed that the larger the value of ¢, the more the buckling pattern resembles
that of pure bending, as shown in Figure 6.3. It is also observed that increasing the
length leads to buckling patterns that more closely resemble those caused by pure
bending. This is expected, as the bending moment in long cylinders is more dominant

than the shear force.

p=1 Y =0.75

¥ =0.50

Y=0

Figure 6.3: Appearence of eigenmode for different i values

6.1.2 Assessment of Results

By performing LBA, M., can be determined numerically for each geometry. The
results are shown in Figure 6.4 for L = 25, 35, 45 and 60 m, as a function of the

moment ratio ¥ and the relative length w.

x10 -
2.5 - /

[MNm]

M

Numerical, L =25 m

Numerical, L =35 m
Numerical, L =45 m

Numerical, L =60 m

Figure 6.4: Comparison of numerical results
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It is not apparent in the 3D plot above how M., varies depending on the value of
. Therefore, a 2D plot is shown in Figure 6.5 where results are visualised for L = 25
and 60 m for all r/¢ ratios.

x10*

2.5

—--L=25m, r/t=35
—--L=25m,r/t=45
L=25m, r/t=55
—--L=25m, r/t=65
—-L=25m,r/t=75
L=25m, r/t =100
-x-L=60m, r/t =35
-x-L=60m, r/t =45
L=60m, r/t =55
-x-L=60m, r/t =65
-x-L=60m, r/t=75
L=60m, r/t =100

0 01 02 03 04 05 06 07 08 09 1
V[

Figure 6.5: Comparison of numerical results

Several trends can be observed from the plot above, including that the highest
resistance occurs at ¢ = 0, and that it decreases as i approaches 1. It is also evident
that a smaller length and /¢ ratio result in greater buckling resistance. For example,
the resistance is consistently higher for L = 25 m across all r/t ratios compared to
L = 60 m. Hence, M., is seen to vary as a function of the length, the r/t ratio and
ultimately . Furthermore, it is observed that each set of five data points appears to
follow a second-degree polynomial.

6.1.3 New expression for C;,

Recall that M, is determined as the product of the classical elastic critical moment
M, and the parameter C,, as shown in (6.3).

My = CmMcl
B 4
Cn=1+ o2 (6.3)
L
w=—

Vrt

The original expression for C,, depends on w, i.e. on the length and the r/f ratio.
A new expression for C,, is sought that includes a dependency on ¢ as well. Figure 6.6
shows the dependency of C,, on i and w for selected lengths. This allows a surface to
be fitted to the data points for each length. Note that C;, = Mrpa/ M. as Mpa = M.
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o Numerical, L=25m
°. « Numerical, L=35m
S, Numerical, L =60 m
115 ‘e,
11- T
g 1
1.05 - e,
1. Coee,, . 0
20 %7 e 02
40 60 80 ~ 04
100 120 06
140 = 08 ,
wl-] le0 1 ¢

Figure 6.6: Comparison of numerical results

The Curve Fitting Toolbox [47] in the software MATLAB [48] is used to fit a
polynomial surface for each length. The degree of the independent variables ¢ and w
can be selected, which determines the final form of the polynomial function. It turns
out that a second-degree fit in 1 works quite well. However, it is debatable whether w
should vary linearly or quadratically. The polynomial function consists of six terms
when ¢ and w vary quadratically as shown in (6.4). And it consists of five terms when
y varies quadratically and w linearly as shown in (6.5).

f(Y,w) =ayg+ayp + aw + a31p2 + aspw + asw? (6.4)
f,w) = ag+ arp + arw + asp® + agpw (6.5)

Figure 6.7 shows how C,, varies with respect to w for different values of . It does
not appear that w varies linearly, especially for i = 0. However, by fitting a surface
where the independent variables vary quadratically, the coefficient a5 in the last term
is found to be nearly zero. Since the function in (6.5) provides a sufficiently accurate
fit, this form is adopted in the following. The reduced number of terms also makes
the function more manageable.

12,
L5 e
LoL1p . R—
S
S ——
- I S e = S AN e —
1 | ‘ ‘ ‘ | | I
40 50 60 70 80 % 10 e

Figure 6.7: Numerical values of C;, as a function of w
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The next step is to determine suitable expressions for the coefficients a;. Currently,
there is no connection between the individual surfaces fitted for each value of L. The
fits obtained for the different lengths are used to derive expressions for the coefficients.
Figure 6.8 shows the coefficients as functions of L/r. Note that the radius 7 is constant
in this study, but it is included to normalise L, thereby keeping the expressions

dimensionless.
_ -0.10 _ -0.59 _ -1.68
uo-l.Sl(L/r) ul—-0.43(L/r) %102 az—-0.0S(L/r)
14 0.08 0;
-0.1 05!
1.3 g
- = 012 =, Al
= = =
12
0.14 1.5
1.1 ‘ ‘ | 0.16 ‘ . | 2 ‘
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Lir[-] Lir[-] Lir[-]
a,=-0.34(L/rn*7 3 a,=0.05(L/N77™
3 x10 4
0.03 2
0.05 / 15
<" .0.07 / <1
-0.09 0.5
0.1 0.2
0 5 10 15 20 0 5 10 15 20
Lir[] Lir[]

Figure 6.8: Fit for the coefficients a;

A final expression for C,, in the interval 0 < ¢ < 1 is now established depending
on i, w and L, as shown in (6.6), while the coefficients are given in (6.7). For ¢ =1,
the parameter C,, can be determined according to the rewritten expression found in
section 5.2, which is listed again in (6.6).

£\ 00035 4
1.025 ( - — f =1
C, = <t> o2 or ¥ (6.6)
ag + a1y + arw + azy? + agpw for 0<y<1
where:
L\ —010 L\ 059 L\ —L68
ap = 1.51 <1’> , a;=—043 <r> , ap=—0.05 <7’>
L\ 079 LN\ 174 (6.7)
a3 = —0.34 (1’) , a4 =0.05 (1’)
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Figure 6.9 presents a comparison between the new expression and the numerical
results for L = 25 m. In some regions, the expression overestimates the value of C,,
by 0.9 % at most, and in others, it underestimates C,, by 3.9 %. This shows a good

agreement between the fit and the numerical results.

1.2

1.15 -

1.05

[ Fit

» Numerical

Figure 6.9: Comparison of numerical results and fit for L =25 m

To better illustrate how well the fit matches the data points, Figure 6.10 can be

considered. It can be seen that the fits resemble parabolic curves.

1 I I I I I I I I I |

0 01 02 03 04 05 06 07 08 09 1
¥

——Fit, L=25m, r/t =35
o Numerical

——Fit, L=25m, r/t =45
o Numerical

——Fit, L=25m, r/t =55
© Numerical

——Fit, L=25m, 1/t =65
o Numerical

——Fit, L=25m,1/t=75
o Numerical

——Fit, L=25m, r/t =100
o Numerical

- - -Fit, L=60 m, r/t =35
x Numerical

- - -Fit, L=60 m, r/t =45
x Numerical

-~ -Fit, L=60m, r/t =55
» Numerical

- - -Fit, L=60 m, 1/t = 65
x Numerical

-~ -Fit, L=60m, 1/t =75
x  Numerical

- - -Fit, L=60 m, r/t =100
» Numerical

Figure 6.10: Comparison of numerical results and corresponding fits
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Figure 6.11 shows a comparison of the numerical and fitted M, for L = 25 m.

Fit
< 10* T Numerical

2.5 -

[MNm]

M

40 t}xix7"""',;—7;,,;W;w;r:r\x //::/,/—/"’
45 T = T 0.6

Figure 6.11: Comparison of numerical results and fit for L =25 m

6.1.4 GMNIA with Increasing Moment

In the following, the compatibility of the new expression for C,, with the analytical
method in prEN 1993-1-6 is investigated. Therefore, additional GNMIA analyses with
increasing moment are carried out, using the geometries given in (6.8) and FTQC A.
Based on information provided by Vattenfall, i ranges from 0.59 to 0.65. Nevertheless,
a single value of { = 0.5 is investigated to enable comparison with the previously
presented results, which include calculations for ¢ = 0.5.

r/t = {35,55,75}

(6.8)
L = {25,45,60} m

Given that the maximum moment occurs at the bottom of the cylinder, the imper-
fection should be positioned in that region at the most critical location, namely where
it leads to the lowest resistance. Therefore, the imperfection is placed at five different
positions within the lower quarter of the cylinder in order to identify the most critical
location. Figure 6.12 shows an example of the imperfection placements for L = 25 m,
where position 1 corresponds to a distance of 3 m from the bottom to the centre of
the imperfection, and position 5 corresponds to the centre of the imperfection being
located at L/4. Between positions 1 and 5, the imperfection is placed at three addi-
tional equally spaced locations. It should be noted that the height of the imperfection
corresponds to the double of the linear meridional bending half-wavelength, i.e. 2A.
For the selected geometries, 2A ranges from 1.8 to 3.2 m.
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Position 1 Position 2 Position 3 Position 4 Position 5

Figure 6.12: Imperfection positions for L = 25 m

Figure 6.13 shows a comparison between the characteristic buckling resistance Mgy
for the previously performed GMNIA analyses corresponding to set 1 with uniform
bending moment, and the newly performed GMNIA analyses with increasing moment.
The models with increasing moment exhibit significantly higher resistances — with
the largest difference being 12.3% and the smallest 7.0%. This indicates that there is
considerable capacity to gain by reformulating the method to be based on increasing
bending moment instead of uniform bending moment. A cluster of five data points
can be seen at various locations in Figure 6.13, corresponding to analyses of the same
geometry but with varying positions of the imperfection.

. \ r=4mand Q=40 (FTQC A)

+ Numerical, increasing moment, ¢= 0.5
[ Numerical, uniform moment, ¢=1.0

Figure 6.13: Comparison of numerical results for iy = 0.5 and 1
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By considering Figure 6.14, it can be seen that the most critical location is not
necessarily where the moment is largest. For L = 60 m, the lowest value of Mgy occurs
when the imperfection is located at either position 2 or 3, depending on the r/t ratio.
However, for L = 25 m, the most critical case is when the imperfection is located at
position 1 for all r/t ratios. A clear correlation can be observed between the cylinder
length, the r/t ratio and the most critical location of the imperfection, which may be
linked to the shapes of the eigenmodes associated with the different geometries.

r/t=35
T 2300 -
Z k//e/e_/’ —--L=25m
= 22507 —L=45m
.é L=60m
= 2200 : ‘ | ‘
1 2 3 4
r/t =55
= 1400 - —
Z // —-L=25m
= 13501 // —L=45m
= L=60m
= 1300 ‘ ‘ ‘ |
1 2 3 4
r/t=75
'g 970 ©- ©
zZ —--L=25m
S 950 — L=45m
Em 930 ‘ L=60m
1 2 3 4

Position of imperfection

Figure 6.14: Effect of imperfection position on the characteristic buckling resistance (FTQC A)

Figure 6.15 shows the shape of the eigenmodes for different lengths and r /¢ ratios.
Note that for geometries with the same r/t ratio, the height of the largest buckles
is the same, since A = 2.444+/rt. It appears that for larger r/t ratios, the buckles
become narrower. For L = 25 m, the pattern covers a smaller area, i.e. smaller height
and width, compared to L = 60 m, meaning there are fewer buckles. This might
explain why the critical location of an imperfection is not at the very bottom for
L = 60 m, as the critical buckle is located in the centre of the buckling pattern, i.e. at
a slightly higher position along the cylinder. This implies that for the design of an
actual structure, the imperfection should be introduced at the most critical location of
the eigenmode, which is the point where buckling is most likely to initiate.
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a)L=25m, r/t=35 b)L=25m, r/t=75

¢) L=60m, r/t =35 d)L=60m, r/t=75

Figure 6.15: Eigenmodes for different lengths and r/t ratios

The elastic critical buckling resistance M., is included in the method through the
calculation of the slenderness A = ,/ M1/ Mcr. A higher value of M, will naturally
increase the characteristic buckling resistance Mgy, although not significantly. As an
attempt to align the analytical method better with the numerical results, it can be
considered to multiply Mgy by Cy,, see (6.9).

_ Cn MRy
Mpl,I ’
Figure 6.16 shows the buckling reduction factor depending on the r/t ratio and

length. The analytical results for x with ¢ = 0.5 are calculated as given in (6.9). As
for ¢ =1, C;, is simply excluded. The surface representing the analytical results for

x<1 (6.9)

uniform moment provides lower values of x compared to the numerical results. The
new analytical results for increasing moment are closer to the numerical results, with
some being on the conservative side and others on the unconservative side. A strong
correlation between the numerical and analytical results for increasing moment cannot
be expected, since Cy, is fitted to results from LBA rather than GMNIA. As a result,
Cy does not account for either the amplitude or the location of the imperfection.
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\ r=4mand Q=40 (FTQC A)

[ Analytical, uniform moment, ¢=1.0

[ Analytical, increasing moment, %= 0.5
» Numerical, increasing moment, ¢ =0.5
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Figure 6.16: Comparison of results (FTQC A)

This section can be concluded by stating that the moment distribution has a
significant influence on the buckling resistance. The new expression for C,, can be
used to determine a more accurate value of M., and, accordingly, a more accurate
relative slenderness A leading to an increase of the buckling reduction factor x. It is
also possible to multiply C,, with the final x value, but caution should be exercised to
ensure that the result does not fall on the unconservative side. There is also potential
for further development of the method, for example by fitting C,;, or a new parameter
to GMNIA results, where the parameter should depend on the size and location of
the imperfection.

6.2 Effect of Imperfection Form

As discussed in chapter 3, the analytical methods assume a geometric imperfection
in the form of a full-circumferential dimple at midspan, even though EN 1993-1-
6 limits the tolerable size of a possible dimple not only in the axial but in the
circumferential direction as well. In light of that, it is investigated in the following
how the characteristic buckling moment resistance is affected by the extent or form
of the applied geometric imperfection. Numerical results for cylinders with a full-
circumferential dimple were presented in chapter 5, including a comparison with
analytical values. The same is done below for cylinders with a limited dimple,
concluding with comparing the two sets of numerical results and evaluating the effect
of imperfection form.

Since the analytical method was found to be unconservative for a wide range of
possible monopile geometries, it is compared here with numerical results for cylinders
with a limited dimple, despite the fact that it was not developed based on that assump-
tion. Results from 429 geometrically and materially nonlinear analyses of imperfect
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cylinders (GMNIA) are presented in Figure 6.17 together with the analytically cal-
culated buckling moment resistances for excellent fabrication tolerance quality class,
FTQC A.

y r=4mand Q=40 (FTQC A)
-Analytical, M = XMpl I

10000

Numerical, MRk = MGMNIA

z
=, 5000
2
=
0 =
0

60

200 40

300 30

r/t ratio [-] 400 10

20

Length, L [m]

Figure 6.17: Comparison of characteristic buckling moment resistances

The same set of results is visualised in Figure 6.18 in normalised form in terms
of the buckling reduction factor, where the deviation between the values is more
prominent. Both figures show that the analytical method is still unconservative
for large thicknesses or low r/t ratios, as well as for certain moderate thicknesses
when combined with smaller lengths. This might seem somewhat surprising, but as
expected, the extent of the unconservative region is reduced compared to cylinders
with a full-circumferential dimple. On the other hand, a significant deviation can be
observed at low thicknesses or high r/t ratios, which is especially visible in Figure 6.18.
Results for FTQC B and C show a similar pattern, although the deviation increases with
the imperfection amplitude, and thus the unconservative region becomes gradually
smaller.

r=4mand Q=40 (FTQC A)
[ Analytical, x

Numerical, y =M MNIL A/Mpl, i

100 60

200 10 50

30

r/t ratio [-] 400 10 20

Length, L [m]

Figure 6.18: Comparison of buckling reduction factors
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A similar observation can be made when looking at Figure 6.19, which shows
numerical results for cylinders with full-circumferential and limited dimples. The
difference is smallest at large thicknesses or small 7/t ratios and increases with r/t
as well as with the imperfection amplitude. The highest relative difference between
models with the two imperfection forms is 17.7% for FTQC A in general and reduces
to 7.1% when only possible monopile geometries are considered.
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Figure 6.19: Comparison of numerically calculated buckling reduction factors
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6.2 Effect of Imperfection Form

The buckling reduction factor is plotted for the three standard quality classes in
Figure 6.20, focusing on possible monopile geometries. It can be observed that the
analytical values in FTQC A are in fact unconservative for lengths up to 30-40 m,
depending slightly on the r/t ratio, and even outside that range, the highest relative
deviation is 6.8%. The deviation increases with the imperfection amplitude, and the
analytical method becomes fully conservative in FTQC C.

| r=4mand Q=40 (FTQCA)
[ Analytical, y

1. | ; _
Numerical, y MGMNI A/Mpl,l

0.9 |

x[F]

0.8 -

0.7 .
35

60

45

50

r/t ratio [-]

40
20 30
65 10

Length, L [m]

| r=4mand Q=25 (FTQCB)
[ Analytical, x

Numerical, y =M GMNIL A/Mpl, !

0.9

x -]

0.8 |

0.7 |
35

45 60

50

55 40
r/t ratio [-]

30
20

65 10
Length, L [m]
\ r=4mand Q=16 (FTQC C)
[ Analytical, x
1 ‘ Numerical, y =M GMNL A/Mpl, !
0.9
=
0.8
0.7

35
45 60
50 40

ftratio[] > 60 30
r/t ratio |-
! 65 10 20

Length, L [m]

Figure 6.20: Comparison of buckling reduction factors for monopile geometries

107



6 ErrecT oF CONDITIONS IN MONOPILES

The relative deviations between the numerical and analytical results are visualised
in Figure 6.21, where positive values indicate higher numerical results. The analyt-
ically calculated values can be slightly shifted closer to the numerical ones in an
average sense (i.e. decreasing the mean relative deviation) by using the reformulated
expressions for C,, and a; from chapter 5. However, all capacity curve parameters
need to be rewritten to make the analytical method appropriate for cylinders with a
limited dimple.
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Figure 6.21: Deviation between numerical and analytical results for monopile geometries

The results can also be presented as traditional capacity curves, depicted in Fig-
ure 6.22 for FTQC A. Similarly to the case with full-circumferential dimple, analytical
curves are shown for three selected () values, whereas the majority of the numerical
data points correspond to different () and thus would lie on different curves. When
comparing the figure to Figure 6.18, it can be seen that they resemble each other. The
analytical method is rather conservative for slender and very slender structures, i.e.
high relative slenderness or high r/t ratio, and gradually becomes less conservative
and eventually unconservative as the slenderness decreases.
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Figure 6.22: Capacity curves with numerical results for cylinders with limited dimple
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6.2 Effect of Imperfection Form

Due to the fact that the numerical results correspond to distinct capacity curves,
it is not possible to reformulate the capacity curve parameters at the boundaries, i.e.
Ao, B, 1o and 17,, based on calculations for the chosen geometries. Therefore, the
planned GNIAs and MNIAs for cylinders with a limited dimple are not performed.
The adaptation of the existing analytical method, assuming a full-circumferential
dimple, to cases with a limited dimple would require a more careful selection of
cylinder dimensions so that several geometries with equal () values can be obtained.
However, based on the results, it can be concluded that the existing method is probably
appropriate enough for preliminary dimensioning of typical monopiles in FTQC A
and B, and it is even slightly unconservative in some cases. For FTQC C, the method
is fully conservative and leads to larger deviations from the numerically calculated
resistances.
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7  Discussion

A research plan was presented in section 3.2.3 to achieve the objectives outlined in
the problem statement, and it was structured around the differences between the
implicit assumptions behind the analytical method and the actual conditions present
in a monopile. The research plan consisted of three calculation sets, which were
presented in Table 3.3. In set 1, the numerical models were constructed as cantilever
cylinders under uniform global bending with a full-circumferential dimple, with the
results assessed in chapter 5. In set 2, the models experience a linearly increasing
moment distribution instead of a uniform one. While in set 3, the models included
a limited dimple imperfection instead of a full-circumferential one. In sets 2 and 3,
more attention was given to the conditions encountered in a monopile, and the results
were discussed in chapter 6.

Some adjustments to the research plan were made as the project progressed.
Table 7.1 is a revised version of Table 3.3, showing an overview of the analyses
that actually were carried out in this project and how the results were used. In the
following, the outcome of each analysis type across the respective sets is summarised,
along with an explanation of any changes that were made.

Table 7.1: Overview of conducted simulations

Analysis | Number of | Total no. of .
Set type r/t ‘ L ‘ Q | simulations Achieved purpose
LBA 39 |11 | - 429 Assessment & reformulation of C,,
MNA 16 | 3 | - 48 Assessment of M,
MNIA 16 | 3 |3 144 Assessment of «
1 GNA 39 |11 | - 429 Assessment & reformulation of ag
GNIA 39 |11 | 3 1287 Assessment of «;
GMNA | 39 |11 | - 429 Input to GMNIA
GMNIA | 39 |11 | 3 1287 Assessment of Mgy
5 LBA 6 8 | - 192* New C,, for increasing moment
GMNIA | 3 311 45%* Assessment of new C,,
MNIA 0 0|0 0 -
3 GNIA 0 010 0 -
GMNIA | 39 |11 | 3 1287 Assessment of Mgy

*

Number of investigated : 4
** Number of investigated ¢: 1, number of dimple positions: 5

71 Set1l

The LBAs in the 1st set are performed as initially planned with the goal of assessing
and thereafter rewriting the parameter C,,, since it is conservatively set to 1 in prEN
1993-1-6:2023. The expression for C,;, was taken from EN 1993-1-6/A1:2017 and was
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7 DiscussioN

revised in this report. With the new expression, the elastic critical moment M., can be
determined more accurately.

The number of studied r/t ratios for the materially nonlinear analyses MNA and
MNIA was reduced from 39 to 16. The initial choice of 39 was made in order to map
the capacity curve. However, as the results from MNA and MNIA were expected to
form a horizontal line at y = 1 in a capacity curve, such extensive analysis was not
considered necessary. During the assessment of M, it was found that the exact value
could not be obtained with the constructed numerical model. It is assumed that the
exact value of M, can be found using the analytically derived expression, since the
expression is well established. No further action was taken, as the deviation between
the numerical and analytical results was minimal. Regarding the assessment of x, it
was found that the expressions derived by Wang et al. [28] are more accurate than the
one provided in prEN 1993-1-6. Since reliable and accurate expressions for x already
exist based on numerical calculations, it was deemed unnecessary to attempt further
optimisation.

The GNAs were carried out as planned, including all 39 r/t ratios and 11 lengths.
The purpose of these analyses was to assess the geometric reduction factor ac and
eventually revise its expression. The results showed that there was room for improve-
ment, as the expression provided in prEN 1993-1-6 was found to be conservative in
certain regions and provided underestimated values of ac. Consequently, a revised
expression was proposed to better align with the numerical results. With increasing
values of ag, the buckling reduction factor x also increases, which in turn raises the
characteristic buckling resistance Mgy.

The main purpose of the GMNA was to determine the characteristic buckling
resistance of the perfect structure Mgy perfect in Order to use it as the applied load in
the GMNIA. As described in chapter 4, it is recommended to apply a load that is
close to the actual resistance of the structure and Mgy perfect 18 considered a suitable
estimate. Another purpose of the GMNA results was to compare them with those
from the GMNIA and to verify that Mgy perfect is indeed greater than Mgi. Although
this comparison was not explicitly presented in the report, it was conducted as part of
the internal verification process.

The objective of the GMNIA in set 1 was to assess the characteristic buckling
resistance Mgy, as well as to assess and potentially revise the expressions for the range
boundary values 7o, 77, Ao, and B. During the process, it was found that a consistent
value of () is required in order to map a capacity curve. In other words, each value of ()
forms a separate capacity curve. To determine the range boundary values, a continuous
capacity curve is needed, which was unfortunately not achievable with the results
available. As a result, only an assessment of Mg, was carried out. Surprisingly, it was
found that the analytical method is unconservative for the geometry of monopiles,
contrary to what is typically assumed about analytical methods. In other words, the
method is actually unsafe when compared to the numerical results. However, it should
be kept in mind that the assumption of a uniform moment is not valid in the case of
monopiles, and the formation of a full-circumferential dimple is not realistic, which
keeps a certain level of conservatism in the method.

The number of simulations for the GNIA was carried out as planned. The aim was
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7.2 Set?2

to assess the imperfection reduction factor a; and potentially reformulate its expression.
There was clearly room for adjustment to make the parameter less conservative in
certain regions. However, this was not pursued because the numerical results from the
GMNIA showed that the analytical method is already unconservative. Modifying a;
to make it less conservative would only increase this unconservatism of the method,
which is not the intention.

It should be noted that the optimised expressions for C,, and «¢ should not be
used together with the current method, as this method is already unconservative.
It was anticipated that the numerical results for the models with a limited dimple
would yield larger resistances than those predicted by the current analytical method.
Therefore, the parameters C,;, and ¢ were optimized with the intention of applying
them within the analytical method, in order to increase the analytical results and
achieve better alignment with the numerical results for models with a limited dimple.

7.2 Set2

The number of investigated r/t ratios and lengths for the LBA in set 2 was reduced
from what was initially planned. The main reason was the exclusion of all geometries
that would experience pure shear buckling, as the focus in this project is solely on
buckling caused by bending. Therefore, r/t ratios above 100 were excluded, along
with lengths below 25 m. In LBA set 1, r/t ratios below 35 were disregarded, and
thus also in set 2. Lastly, only six r/t ratios were chosen between 35-100. The
numerical results showed that the elastic critical moment M., for models with an
increasing moment was higher than for models with a uniform moment, which led to
the development of a new expression for C, that determines a more acurrate value of
M.

Some GMNIA analyses, which were not initially planned, were carried out to
investigate the difference in resistance between the numerical models with increasing
moment and the analytical method derived based on uniform moment. When dealing
with an increasing moment in a cantilever, the maximum moment occurs at the
fixed end of the cylinder, which means that the imperfection should not be located
at midspan but should instead be moved towards the support to account for the
worst possible scenario. The imperfection was placed at five different heights within
the lower quarter of the cylinder. Note that the imperfection took the form of a
full-circumferential dimple to make the results more comparable with the analytical
method. It was found that between 7% and 12% larger resistance could be gained by
accounting for the increasing moment when dealing with monopiles. Even though
C,; was fitted so that a more accurate value of M., could be determined, it was not
enough to significantly increase the buckling resistance. As an additional measure
and an attempt to align the analytical results with the numerical ones, the buckling
reduction factor x was increased by multiplying it with C,,. This produced reasonable
results, but should only be implemented with careful consideration. It is important to
consider where the imperfection should be placed in the model to represent the worst
possible scenario. Therefore, it could be considered to either modify C,, or introduce
an entirely new parameter that accounts for this. Moreover, it is important to note
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7 DiscussioN

that the actual moment distribution in a monopile is not linearly increasing, as it is
simplified to be in this project, and that should also be taken into account.

7.3 Set3

In set 3, only the GMNIA analyses were carried out as planned. This was due to the
GMNIA results, which revealed that the analytical method was still unconservative
in some areas when comparing it to the numerical results with a limited dimple as
shown again in Figure 7.1 for FTQC A.
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Figure 7.1: Comparison of analytical and numerical resuts for monopile geometries

The purpose of performing MNIA and GNIA with a limited dimple was to rewrite
x and a7, which would most likely lead to an increase in these parameters. However,
this was deemed unnecessary in order to avoid making the analytical method even
more unconservative. By examining Figure 7.1, it can be seen that the analytical
method only starts to become conservative at lengths above 30 m, and the conservatism
increases with the length. Nevertheless, the method can still be considered sufficiently
reliable for lengths up to 40 m, given that the partial safety factor can account for its
slight unconservatism seen for FTQC A.

Note that the optimised parameters C,; and a¢ from set 1 can be used to slightly
increase the buckling resistance, but caution should be exercised, as this must not
be done in regions where the method is unconservative. Furthermore, the new
expressions should ideally be validated experimentally before use.

As mentioned previously, based on what is observed in Figure 7.1, there is room
for improvement of the method for lengths greater than approximately 30 m. However,
this would require a complete reformulation of the method to ensure that appropri-
ate expressions are also obtained for the boundary range values 7o, 17, A, and f.
Unfortunately, this was not possible, as the investigated geometries did not provide
numerical results that could map a capacity curve for specific (2 values, which is
essential for determining the boundary range values.
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7.3 Set3

It is worth noting that due to the ongoing improvements in fabrication qual-
ity within the wind industry, geometric imperfections are being reduced. Today,
monopiles are manufactured in such a high quality that they often surpass the re-
quirements of FTQC A, as Vattenfall has given insight about. As seen in the results
presented earlier in the report, the numerical and analytical values align more closely
when the imperfection amplitude is reduced. This means that smaller deviations can
be expected if the tolerance levels achieved in monopile manufacturing are taken into
account. However, in the current method, it is not permitted to define a custom value
for the fabrication tolerance quality Q. There are both advantages and drawbacks to
permitting a user-defined Q value. The immediate advantage is that it allows for the
calculation of higher buckling resistances. The main drawback is that the analytical
method may become too unconservative if Q exceeds 40, as concluded from the trend
observed in Figure 6.20 for FTQC A, B, and C. In this trend, the method shifts from
being conservative for FTQC C to becoming unconservative in certain areas for FTQC
A. However, higher Q values have not been investigated in this project, but it would be
interesting to explore this in more depth to assess whether the method is compatible
with such a modification.

Lastly, it should be noted that analytical methods are generally expected to provide
conservative estimates of structural resistance. However, this is not the case for the
present method, as the capacity curve parameters are explicitly derived from numerical
results.
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8 Conclusion

As stated in the introduction, there is a notion in the wind industry that the currently
used analytical buckling verification methods might be overly conservative for wind
turbine supporting structures such as monopiles. In light of that, the present thesis set
out to investigate the appropriateness of the analytical buckling verification methods
in EN 1993-1-6 to typical monopiles and to potentially optimise some of the expres-
sions with respect to geometry, boundary conditions and geometric imperfections.
Focus was primarily directed towards the novel reference resistance design method
in the standard’s Annex E, developed for cylinders in uniform global bending. Four
conditions in monopiles were identified in section 3.1 as likely causes of conservatism
due to their deviation from the assumptions behind the analytical method, namely,
the radius-to-thickness ratios, the global support conditions, the internal force distri-
butions and the extent of geometric imperfections. The investigations involved 5 577
numerical calculations of different types and led to the following findings.

¢ The method can realistically predict the characteristic buckling moment resis-
tance also for cylinders with r/t < 50, even though it is formally limited to
50 < r/t < 2000. However, in most cases, it provides slightly unconservative
results. The relative error in the method for typical monopile geometries varies
between -4.9% and 6.6%.

¢ Global support conditions only have a limited influence on the characteristic
buckling moment resistance, and the method provides a good overall fit to
cantilever cylinders, even though it was developed for cylinders supported at
both ends. Based on a brief study comparing numerical results for clamped and
cantilever cylinders, the relative difference varies between -2.6% and 2.3% for
typical monopile geometries.

* Considering a more realistic linearly increasing bending moment distribution
in the cylinder instead of a uniform one leads to a significant increase in the
characteristic buckling moment resistance. For cylinders with a typical monopile
geometry in FTQC A, the relative increase varies between 7.0% and 12.3%.

¢ Limiting the circumferential extent of a dimple has a considerable effect on the
characteristic buckling moment resistance; however, this effect reduces with
decreasing r/t ratio and increasing quality parameter. For cylinders with a
typical monopile geometry in FTQC A, the highest relative deviation between
models with a full-circumferential and a limited dimple is 7.1%, but the analytical
method still provides unconservative results in many cases.

Based on these findings, the highest potential for optimising the analytical method
for typical monopiles lies in the reformulation of the capacity curve parameters so that
they can account for different bending moment distributions. The first step towards
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8 CONCLUSION

achieving that has been taken in section 6.1, where a new expression is proposed for
the parameter C,,, which can take a linearly increasing bending moment distribution
into account. Furthermore, a brief investigation has been conducted aiming to identify
the most critical position of a dimple along the cylinder, together with a crude attempt
to modify the analytically calculated buckling reduction factor. Hopefully, this work,
together with other studies within the topic, will provide valuable input for future
research.
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A Analytical Methods in EN 1993-1-6

The aim of this appendix is to describe in detail how the buckling reduction factor y is
determined in EN 1993-1-6 for shell structures, where geometric nonlinearity, plasticity
and imperfections are taken into account. Two relevant methods are presented for
unstiffened cylindrical shells, one from Annex D and the other from Annex E. The
calculation method in Annex D is stress-based and assumes uniform axial compression
in the shell wall, whereas the one in Annex E is resistance-based for cylinders under
uniform global bending. First, the capacity curve parameters calculated identically in
both methods are presented, followed by the expressions specific for each method.
The relative length of a shell can be characterised in several ways. In EN 1993-1-6,
the two relative length parameters w and () are chosen since they vary linearly with
the length L and normalise it relative to the radius » and wall thickness t, which
control the behaviour of the shell. The expressions are given in (A.1) and (A.2).

L [r L

=,/ - = Al
ryt \rt (A1)
r r r

w 1is the first relative length

() is the second relative length

L is the length of the cylinder

v is the radius of cylinder middle surface
t  is the thickness of the shell

The buckling reduction factor x depends on the value of the relative slenderness A
as shown in (A.3). x can hereafter be calculated using different parameters.

A .
xX=xn—=0On—1) for A < Ay
Ao
= =\
x=1-p(2=% for o <A < A, (A3)
lx J— J—
X:? for A, <A

where x  is the buckling reduction factor
Xn is the buckling reduction factor in the hardening zone at A = 0
A is the relative slenderness of the shell
Ao is the squash limit relative slenderness (value of A above which
resistance reduction due to instability or geometric change occurs)
B is the plastic range factor in buckling interaction
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where A, is the plastic limit relative slenderness (value of A below which
plasticity affects the stability)
n  is the interaction exponent
«  is the elastic buckling reduction factor

The plastic limit relative slenderness is calculated using (A.4).

Ay = (a9)

The expression for the interaction exponent # in (A.5) applies to both methods;
however, the individual factors are determined differently in each of them. The
determination of all the factors is described in detail for each method in its respective
section.

A1y = 10) + Apto — Aoty (A5)
Xp _XO ’

]7:

where 17, is the value of the interaction exponent at A = A,
7o is the value of the interaction exponent at A = Ay

The imperfection amplitude &y is given in (A.6).

50 . 1 r
= Q\[t (A.6)

where ¢ is the imperfection amplitude used in design calculation
Q is the fabrication tolerance quality parameter

Here, the fabrication tolerance quality parameter Q depends on the specified
fabrication tolerance quality class, as shown in Table A.1. The tolerances match those
specified in the execution standard EN 1090.

Table A.1: Values of fabrication tolerance quality parameters

Fabrication tolerance

quality class Description | Q

Class A Excellent | 40
Class B High 25
Class C Normal 16

In the following sections, the parameters used for each method are distinguished
by subscripts. The method in Annex D, based on a cylinder under uniform axial
compression, uses the subscript 'x’, while the method in Annex E, based on a cylinder
under uniform global bending, uses the subscript 'b’.
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A.1 Annex D: Stress-based methods

The method in Annex D is stress-based buckling design, where the characteristic axial
buckling stress oy gy is obtained by multiplying the characteristic yield strength f, by
the buckling reduction factor as shown in (A.7).

Oy, Rk = Xxfyk (A-7)

In the following section, a description of the determination of the necessary
parameters to determine the buckling reduction factor is provided. Both methods
in EN 1993-1-6:2007 and prEN 1993-1-6:2023 are presented. Some aspects remain
unchanged for both methods. Any differences are clearly highlighted.

The relative slenderness depends on the characteristic yield strength f,; and the
elastic critical axial buckling stress oy ¢+, as shown in (A.8).

Ay = Juk (A.8)

Ox,cr

A.1.1 Critical Axial Buckling Stress
The elastic critical axial stress is given in (A.9).

S S
3(1—1v?)

Ox,cr =

t t
EC: = 0.605ECy (A.9)

where E  is Young’s modulus
v is Poisson’s ratio
Cy is a coefficient in axial compression critical buckling resistance

Disregarding the coefficient Cy, the expression is derived using classical linear
Donnell-type shell buckling theory applied to medium-length cylinders under uniform
axial compression. The coefficient C, accounts for whether it is a short or long cylinder.
The classification of the length of the cylinders is given below:

| EN 1993-1-6:2007 | prEN 1993-1-6:2023
Short cylinder w <17

Medium-length cylinder | 1.7 < w < 0.5% 17<w< 1.43%

Long cylinder w > 0.5; w > 1.43;

The coefficient can be calculated as shown in (A.10) depending on the classification
of the length. However, in prEN 1993-1-6:2023, long cylinders are calculated as
medium-length cylinders.

Short cylinder Cy =136 — @ + 27027

w w
Medium length cylinder C, =1 (A.10)
Long cylinder Cy = Cyn (only in EN 1993-1-6:2007)
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Cy,N can be determined as shown in (A.11) where C,; is a parameter depending on
the boundary conditions and can be found using Table D.1 in EN 1993-1-6.

0.6
Cy,N = max All
N 1+0'2(1—2wt> (A1D
be r
The reduction of the buckling stress is represented by the parameter C, . The
extent of the reduction depends on whether the edges of the cylinder are axially

restrained or not, which is covered by the parameter C,y,.

A.1.2 Axial Buckling Parameters
A.1.2.1 EN 1993-1-6:2007

The axial elastic imperfection factor «, is a function of the imperfection amplitude

do/t, as shown below.
0.62

T 14 1.91(6 /1)1 4

In this version of the Eurocode, the axial squash limit slenderness Ao, the plastic
range factor B, and the interaction exponent 7, are fixed values as given in (A.13).

oy (A.12)

>

w0 =02 Br =06 7y = 1.0 (A.13)

These parameters are used to determine the axial buckling reduction factor yx,. It
should be noted that x, = 1 for A, < A, since hardening is ignored.

A.1.2.2 prEN 1993-1-6:2023

A significant difference between EN 1993-1-6:2007 and prEN 1993-1-6:2023 is that the
plastic range factor 3, and interaction exponent #, are not constants. The plastic range
factor depends on the imperfection amplitude, as shown in (A.14).

0.75

Pr=1-17 1.100/t (A.14)

The interaction exponent is calculated using equation (A.5) where the values 7,9
and 77y, are given in (A.15).

5
N0 = 1.35 — 0.1070

1
v = 0.45 + 0.726, /¢

(A.15)

The value of the squash limit slenderness is reduced to Ayo = 0.1. This affects the
size of the elastic-plastic zone. The axial elastic imperfection factor a, now consists of
two contributions, as shown in (A.16).

Ky = KxG&yx] (A16)

126



A.2 Annex E: Resistance-based methods

The factor a,; takes geometric nonlinearity into account and has a fixed value of
ayc = 0.83, whereas a,; takes geometric imperfections into account and is calculated
as per (A.17).

1

= 02060/ 1)075

Lastly, the hardening limit x,, is introduced, relevant for thick-walled cylinders.

(A.17)

Xan = 1.10 (A.18)

A.2 Annex E: Resistance-based methods

The method in Annex E is a resistance-based buckling verification for cylinders under
uniform global bending, where the characteristic buckling moment resistance Mgy is
calculated as the product of the buckling reduction factor and the reference plastic
moment resistance, as shown in (A.19).

Mgk = xpMp or  Mpe = XoMpi1 (A.19)

Note that different values of the reference plastic moment resistance are used in
the current standard EN 1993-1-6/A1:2017 and its future edition prEN 1993-1-6:2023,
as described in the following. Other parameters differ in the two editions as well, and
they are also highlighted below.

A.2.1 Bending moment resistances and slenderness

The reference plastic moment resistance used as a normalising parameter for the capacity
curve is defined as shown in (A.20), as a lower-bound approximation using a plastic
section modulus, where the second term, only containing the thickness, is disregarded.
As such, it gives a close approximation in cases with high radius-to-thickness ratios
and is suitable for most cylindrical shells used in practice.

My = 4r°tfy (A.20)

To be able to define the buckling resistance of very imperfect cylinders in the
traditional way and maintain the physical meaning of the factors that describe the
capacity curve, it is necessary to include the effect of imperfections in the normalising
parameter, which in case of global bending is the reference plastic moment resistance,
M. Therefore, a reduced reference plastic moment resistance accounting for imper-
fections is introduced in the future version of Annex E, calculated as given below. In
that way, imperfections are included in both the relative slenderness and the buckling

reduction factor.
0.8

1+ 0.23( /t)2> My (A.21)

The elastic critical moment in the current version of Annex E is defined as shown in
(A.22). In the future version, only the simplified expression of the approximate value
is specified with a note stating that the precise value is somewhat affected by the end
boundary conditions, increasing slightly at shorter lengths. That effect can be taken

My = <o.2 +
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into account through the coefficient C,;, which is defined as shown in (A.23). The
value of C,;, varies between 1 and approximately 1.15 for most unstiffened cylindrical
shells in practical application. For wind turbine monopiles, the upper limit is much
lower, approximately 1.01, resulting in only a slight increase of M.

My = — 5 2 o1 90Er2 (A.22)
3(1—v)?
4

Based on the reference resistances, the relative slenderness in bending is calculated
as shown below, according to EN 1993-1-6/A1:2017 on the left and prEN 1993-1-6:2023
on the right.

- My - M1
"\ Mo N M (A24

A.2.2 Factors for range limits

The plastic range factor B, and the squash limit relative slenderness Ay for cylinders in
bending are calculated using (A.25) and (A.26), respectively. Note that the expressions
from prEN 1993-1-6:2023 (on the right) provide more realistic results due to the
inclusion of additional dependence on length and, for Apo, also on imperfection
amplitude. Both factors are computed ignoring the stiffening effect of the combination
of imperfections and ovalisation, since these effects individually reduce the stiffness,
and it cannot be ensured that they occur at the same place.

0.6 0.785
=1- =1-— A25
Po 111205 008 P 1+ 15va 7 ° (A2)
A =03 or  Ayp= Lf (A.26)
S 140450/ '
where fq is a length function defined as
0.44
0.7+ —— 5
fa = min { 1+ 1.660187 (A.27)
1.0

A.2.3 Factors for elastic buckling

The elastic buckling reduction factor a;, consists of two contributions in both editions of
the standard, as shown below, although the contributing parameters are calculated
differently.

Xp = ApGap] (A.28)

The geometric reduction factor ayc in EN 1993-1-6/A1:2017 is defined as a function of
the relative length, as shown in (A.29). The theoretical background of the expressions
is briefly described in section 2.3.2 based on a study by Rotter et al. [21].
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1.93 — 0.5(w — 3.8)% — 0.44(w — 3.8)3 for short: 3 <w < 4.8
0.85 +0.029(w — 7.1)? for med.: 4.8 < w < 8.6
apc = { 092 for med.: 8.6 < w < 0.5(r/t)
1-0.220 +0.0610>%
. 2 05< 7.0
1.07 10,1209 for trans.: 0.5 <0 <
0.516 forlong: O >70

(A.29)
In prEN 1993-1-6:2023, the expressions for «;¢ are simplified to the forms shown
in (A.30), based on a study by Wang et al. [28].

0.9 for Q<05
aw:{ o (A.30)

0.5 + (0.38sin (0.85Q2) + 0.48 cos (0.85Q2) )e 0872 for O>05

The other contribution is from the imperfection reduction factor wp;, as shown in
(A.31). Similarly to the factors for range limits, notice the additional dependency on
the relative length, indicating that a;; not only accounts for geometric imperfections
but also geometric nonlinearity as a result of the imperfections.

1 1
or Kpr =

50\ %8 1.05 5o \%
1+2<t> 1+<°7+1+04xﬁ8><t

A.2.4 Factors for inelastic buckling

Kp = (A31)

The interaction exponent 1, in EN 1993-1-6/A1:2017 is defined as shown in (A.32).
1y = 0.6540.2(dg /) (A.32)

In prEN 1993-1-6:2023, the expression is modified to the one shown earlier in (A.5),
using the values at the boundaries 77,9 and 7, defined as shown below.

1.0 for Q<45
o = § 0.133 (12 — Q) for 45<0O <75 (A.33)
0.6 for 75<Q
0.08 (12— Q) for Q<5
Mop = ( ) (A.34)
0.16 (12 — Q) for O>5

Lastly, the hardening limit x;;, mainly relevant for thick-walled cylinders, is set to
a constant in both editions.

Xbh = 1.0 or Xbh = 1.05 (A35)
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B Codes

This appendix contains the Python code for a single numerical analysis, used as a

master script to construct batch scripts for each analysis type. For clarity and a better

overview, the script is divided into the following parts:

B.1 Module import and launch

B.2 Parameter definition

B.3 Model setup .

B.4 Linear analysis - solution and postprocessing . . .

B.5 Nonlinear analysis - solution and postprocessing

B.6 Exit MAPDL .

Program code B.1: Module import and launch

. 131
. 131
. 133
. 137
. 138
. 140

1 | import math as mt
2 | import numpy as np
3 | import matplotlib.pyplot as plt
4
5 | from ansys.mapdl.core import launch_mapdl
6 |mapdl = launch_mapdl(nproc=4, additional_switches='-dmp')
7 |mapdl.mute = True
8 | print (mapdl)
Program code B.2: Parameter definition
1 | # General constants
2
3 |pi = mt.pi
4
5
6 | # Geometric parameters
7
8 |[L =10.00 # Length of cylinder [m]
9 |r = 4.000 # Middle radius of cylinder [m]
10 |t = 0.080 # Uniform thickness of cylinder [m]
11 |CylSize = 1 # Size of cylinder (1 - half, 2 - full)
12
13 |Lambda = 2.444*mt.sqrt(r*t) # Linear meridional bending half-wavelength [m]
14
15
16 | # Geometric imperfection parameters
17
18 | ImpForm = "none" # Imperfection form (nome, full - full-circ., lmtd - limited)
19 |Q = 40 # Fabrication quality parameter [-]
20 |zdimp = L/2 # z coordinate of dimple [m] (maz. L/2, always on lower half)
21
22 |d0 = t/Q*mt.sqrt(r/t) # Imperfection amplitude [m]
23
24
25 | # Material parameters
26
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27 |E = 200000 # Young's modulus [MPa]

28 |nu = 0.3 # Poisson's ratio [-]

29 |fy = 315 # Yield strength [MPa]

30 |Et = 0.000*E # Tangent modulus [MPa]

31

32 |Ep = ExEt/(E-Et) # Plastic tangent modulus [MPa]

33

34

35 | # Mesh parameters

36

37 |Quad = 1 # Quadratic elements (0 - mo, 1 - yes)

38 | NumElem = 5 # Number of elements per Lambda [-]

39 | MaxESize = 0.25 # Maz. allowable element size [m]

40

41 |ESize = min(Lambda/NumElem, MaxESize) # Desired element size [m]

42 |nm = mt.ceil(pi*r/ESize/5)*5*CylSize # Number of elements along the circumference [-]
43 |nn = mt.ceil(L/ESize/4)*4 # Number of elements along the length [-]

44

45

46 | # Model parameters

47

48 | LoadApl = "for" # Load application (def - deformation control, for - force control)
49 | StatSys = "cntl" # Static system of the model (cntl - cantilever, clmp - clamped)
50

51

52 | # Analysis parameters

53

54 | AnaType = "LBA" # Analysis type (LBA, MNA, GNA, GMNA, imperfection can be set above)
55 | NumMode = 2 # Number of buckling modes in LBA

56 | SolMthd = "ALM" # Solution method in NAs (NRM - Newton-Raphson, ALM - Arc-length)
57

58 |if AnaType == "GNA": # Number of initial substeps in Nds

59 NumSbst = 200

60 |elif AnaType == "MNA":

61 NumSbst = 30

62 |elif AnaType == "GMNA":

63 if r/t < 200:

64 NumSbst = 100

65 else:

66 NumSbst = 200

67

68

69 | # Analytical resistances of full cylinder

70

71 |Ncl = 2xpi*Ext*t/mt.sqrt(3*(1-nu**2)) # Classical elastic critical compression [MN]
72 | Npl = 2xpixrkxtxfy # Reference plastic compression resistance [MN]
73 | print("Nel = ", Ncl)

74 | print("Npl = ", Npl)

75

76 |Mcl = Exr¥t*t*pi/mt.sqrt(3*(1-nuxx2))  # Classical elastic critical moment [Mlm]

77 |Mcr = 2*Exr*t*t # Approz. elastic critical moment [MNm]

78 |Mpl = (4*r*xr*t+1/3%t*x3)*fy # Reference plastic moment resistance [MNm]

79 |print("Mcl = ", Mcl)

80 | print("Mcr “= ", Mcr)

81 |print("Mpl = ", Mpl)

82

83

84 | # Applied loads

85

86 # NOTE: Application of shear is only supported for cantilever static system!

87

88 | LoadType = "M" # Type of applied load (N - azial, M - moment, V - shear with M)
89 |Psi = 0.5 # End moment ratio (when LoadType = "V") [-]

90
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# Prescribed deformations (deformation control)

uX = 0 # Transverse end displacement [m]
uz = 0 # Azial end displacement [m]
rY =0 # End rotation [rad]

# Prescribed forces (force control)

if AnaType == "LBA": # Applied loads in LBA
if LoadType == "N":
N = CylSize/2 # Azial compression [MN]
elif LoadType == "M":
M = CylSize/2 # Bending moment [MNm]
elif LoadType == "V":
V = CylSize/2*(1-Psi)/L # Shear force [MN]
M = CylSize/2#Psi # Bending moment [MNm]
elif AnaType =="GNA": # Applied loads in GNA/GNIA
if LoadType == "N":
N = CylSize/2*Ncl # Azial compression [MN]
elif LoadType == "M":
M = CylSize/2x*Mcr # Bending moment [MNm]
elif AnaType == "MNA": # Applied loads in MNA/MNIA
if LoadType == "N":
N = CylSize/2*Npl # Azial compression [MN]
elif LoadType == "M":
M = CylSize/2x*Mpl # Bending moment [MNm]
elif AnaType =="GMNA": # Applied loads in GMNA/GMNIA
if LoadType == "N":
N = CylSize/2*min(Ncl, Npl) # Azial compression [MN]
elif LoadType == "M":
M = CylSize/2*min(Mcl, Mpl) # Bending moment [MNm]
elif LoadType == "V":
V = CylSize/2*(1-Psi)*1.2*min(Mcl, Mpl)/L  # Shear force [MN]
M = CylSize/2*Psi*1.2*min(Mcl, Mpl) # Bending moment [MNm]

Program code B.3: Model setup

# Resetting MAPDL and starting preprocessor

mapdl.clear()
mapdl.prep7 ()

# Element definition

if Quad ==

mapdl.et(1, "SHELL281") # 8-noded structural shell (quadratic)

mapdl.keyopt(1l, 8, 2) # Store data for top, bottom and middle surfaces
else:

mapdl.et(1, "SHELL181") # 4-noded structural shell (bilinear)

mapdl.keyopt (1, 3, 2) # Full integration with incompatible modes

mapdl.keyopt (1, 8, 2) # Store data for top, bottom and middle surfaces
mapdl.et (2, "CONTA177", kop2=2, kop4=0) # 3D line-to-surface contact element with MPC
mapdl.keyopt(2, 12, 5) # Bonded behavior of contact surface
mapdl.et(3, "TARGE170", kop2=1, kop4="111111") # 3D target surface with user-defined DOF
mapdl.keyopt (3, 10, 1) # Including stress stiffening effects

# Material definition

mapdl.mp("EX", 1, E) # Young's modulus of material 1
mapdl.mp("PRXY", 1, nu) # Poisson's ratio of material 1
if AnaType == "MNA" or AnaType == "GMNA":
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29 mapdl.tb("BISO", 1) # Setting material model to bilinear isotropic hardening
30 mapdl.tbdata(i, fy, Ep) # Setting yield strength and plastic tangent modulus
31
32
33 | # Section definition
34
35 |mapdl.sectype(l, "SHELL") # Defining a shell section with ID 1
36 |if AnaType == "MNA" or AnaType == "GMNA":
37 mapdl.secdata(t, 1, "", 5) # Setting thickness, material and no. of integration points
38 |else:
39 mapdl.secdata(t, 1, "", 3) # Setting thickness, material and no. of integration points
40
41
42 | # Modelling geometry (incl. division for mesh)
43
44 | if ImpForm == "none":
45 mapdl.k(1, 0, 0, 0) # Defining keypoint 1 at bottom of cylinder azis
46 mapdl.k(2, 0, 0, L) # Defining keypoint 2 at top of cylinder azis
47 mapdl.k(3, r, 0, 0) # Defining keypoint 3 at bottom of middle surface
48 mapdl.k(4, r, 0, L) # Defining keypoint 4 at top of middle surface
49 mapdl.1(3, 4) # Defining line 1 between keypoints 3 and 4
50 mapdl.arotat(l, paxl=1, pax2=2, arc=180%CylSize, nseg=5%CylSize) # Rotating line I
51
52 mapdl.lsel("S", "LINE", "", 1, 4%CylSize+2)
53 mapdl.lesize("ALL", ndiv=nn) # Setting meridional number of elements
54 mapdl.lsel("INVE")
55 mapdl.lesize("ALL", angsiz=180*CylSize/nm) # Setting circumferential number of elements
56 mapdl.lsel("ALL")
57
58 | elif ImpForm == "full":
59 mapdl.k(1, 0, 0, 0) # Defining keypoint 1 at bottom of cylinder azis
60 mapdl.k(2, 0, 0, L) # Defining keypoint 2 at top of cylinder azis
61
62 kID = [10+i for i in range(l, nn+2)]
63 z = np.linspace(0, L, num=nn+1)
64 count = 0
65
66 for i in range(O, nn+1):
67 w = dO*mt.exp(-pi/Lambdax*abs(z[i]-zdimp) ) *
— (mt.cos(pi/Lambda*abs(z[i]-zdimp))+mt.sin(pi/Lambda*abs(z[i]-zdimp)))
68 mapdl.k(kID[i], r-w, O, z[i])
69 count = count + 1
70 if count ==
71 mapdl.bsplin(kID[i-4], kID[i-3], kID[i-2], kID[i-11, kID[il)
72 count = 1
73
74 mapdl.arotat ("ALL", paxl=1, pax2=2, arc=180%CylSize, nseg=5*CylSize) # Rotating lines
75
76 mapdl.lsel("S", "LINE", "", 1, nn/4*(4xCylSize+2))
77 mapdl.lesize("ALL", ndiv=4) # Setting meridional number of elements
78 mapdl.lsel("INVE")
79 mapdl.lesize("ALL", angsiz=180%CylSize/nm) # Setting circumferential number of elements
80 mapdl.lsel("ALL")
81
82 | elif ImpForm == "lmtd":
83 mapdl.csys(1) # Activating cylindrical coordinate system
84
85 z = np.linspace(0, L, num=nn+1)
86 theta = np.linspace(0, 180*CylSize, num=nm+1)
87 kID = np.arange(1, (nm + 1) * (nn + 1) + 1).reshape(nn + 1, nm + 1)
88
89 for i in range(0, nn+1):
90 countm = 0
91 for j in range(0, nm+1):
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121
122
123
124
125
126
127
128
129
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w

<
(3N
(=
<

map

dO*mt . exp (-pi/Lambda*abs (z[i] -zdimp) ) *

(mt . cos(pi/Lambda*abs(z[i] -zdimp))+mt.sin(pi/Lambdaxabs(z[i]-zdimp)))*
mt . exp (-pi**2%r/Lambda*abs (theta[j]/180-1))*

(mt . cos (pi**2*r/Lambda*abs (thetal[j]/180-1))+

mt.sin(pi**2*r/Lambda*abs (thetal[j]/180-1)))
dl.k(kID[i]l [j], r-w, thetal[jl+180, z[i])

countm = countm + 1

if

countm ==

mapdl.bsplin(kID[i] [j-5], kID[i][j-4], kID[i][j-3], kID[i][j-2], kID[i][j-1],
— kID[i][j1)

countm = 1

for j in range(0, nm+1):

countn

=0

for i in range(0, nn+1):

countn = countn + 1

if

countn ==
mapdl.bsplin(kID[i-4][j], kID[i-3]1[j], kID[i-2]1[j], kID[i-11[j], kID[i]l[j1)
countn = 1

for i in range(0, nn):
for j in range(O, nm):

map

dl.a(kID[i]l[j], kID[i][j+1], kID[i+1]1[j+1], kID[i+1][j1)

mapdl.aesize("ALL", 1)

mapdl.csys(0) # Activating Cartesian coordinate system

# Generating FE mesh

mapdl.
mapdl.
mapdl.

mapdl.
mapdl.

mat (1)
secnum(1)
type (1)

mshkey (1)
amesh ("AL

®

Setting material type to 1
Setting section type to 1
Setting element type to 1

* W

# Activating mapped meshing
Meshing all areas

H*

L")

# Boundary conditions - bottom

mapdl
mapdl.

mapdl
mapdl.
mapdl

mapdl.

RPbtm

mapdl.
mapdl.
mapdl.

mapdl.
mapdl.
mapdl.
mapdl.
mapdl.

.real(1l)

type(2)

.nsel("S",

esurf ()

.nsel("ALL

type(3)

= mapdl.n
tshap ("PI
e (RPbtm)
tshap()

d(RPbtm,
d(RPbtm,
d(RPbtm,
d(RPbtm,
d(RPbtm,

if LoadType ==
if LoadApl

mapdl.d

# Setting element real constant to 1
# Setting element type to 2

"Loc", "z", 0) # Selecting all nodes at the bottom
# Generating contact elements

") # Reselecting all nodes

# Setting element type to 3

("™, 0, 0, 0, mute=False) # (Creating bottom reference node

Lo") # Activating pilot node type target surface
# Creating target element from reference node
# Resetting target surface activation

"gx", 0) # Defining BC in bottom reference node

"y", 0)

"UZ", O)

"ROTX", 0)

"ROTZ", 0)

"M" and StatSys == "clmp":

= lldef ll:

(RPbtm, "ROTY", -rY)
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151 else:

152 mapdl.f (RPbtm, "MY", -M)

153 | else:

154 mapdl.d(RPbtm, "ROTY", 0)

155

156

157 | # Boundary conditions - top

158

159 | mapdl.real(2) # Setting element real constant to 2
160 | mapdl.type(2) # Setting element type to 2

161

162 | mapdl.seltol(l.0e-6) # Defining selection tolerance
163 | mapdl.nsel("S", "LOC", "Z", L) # Selecting all nodes at the top
164 | mapdl.esurf () # Generating contact elements

165 | mapdl.nsel("ALL") # Reselecting all nodes

166

167 | mapdl.type(3) # Setting element type to 3

168

169 |RPtop = mapdl.n("", 0, 0, L, mute=False) # Creating top reference node

170 | mapdl.tshap("PILO") # Activating pilot node type target surface
171 | mapdl.e(RPtop) # Creating target element from reference node
172 | mapdl.tshap() # Resetting target surface activation
173 | mapdl.components["compRPtop"] = "NODE", [RPtop]

174

175 | if StatSys == "clmp": # Defining BC in top reference node
176 mapdl.d(RPtop, "UX", 0)

177 mapdl.d(RPtop, "UY", 0)

178 mapdl.d(RPtop, "ROTX", 0)

179 mapdl.d(RPtop, "ROTZ", 0)

180 if LoadType == "N":

181 mapdl.d(RPtop, "ROTY", 0)

182 | elif CylSize ==

183 mapdl.d(RPtop, "UY", 0)

184 mapdl.d(RPtop, "ROTX", 0)

185 mapdl.d(RPtop, "ROTZ", 0)

186

187 | if LoadType == "N":

188 if LoadApl == "def":

189 mapdl.d(RPtop, "UZ", -uZ)

190 else:

191 mapdl.f (RPtop, "FZ", -N)

192 | elif LoadType == "V":

193 if LoadApl == "def":

194 mapdl.d(RPtop, "UX", uX)

195 mapdl.d(RPtop, "ROTY", rY)

196 else:

197 mapdl.f (RPtop, "FX", V)

198 mapdl.f (RPtop, "MY", M)

199 |elif LoadApl == "def":

200 mapdl.d(RPtop, "ROTY", rY)

201 |else:

202 mapdl.f (RPtop, "MY", M)

203

204

205 | # Boundary conditions - symmetry plane

206

207 | if CylSize ==

208 mapdl.nsel("S", "LOC", "Y", 0) # Selecting all nodes on symmetry plane
209 mapdl.nsel("U", "LOC", "Z", 0) # Unselecting nodes at the bottom
210 mapdl.nsel("U", "LOC", "Z", L) # Unselecting nodes at the top
211 mapdl.dsym("SYMM", "Y") # Defining symmetry DOF

212 mapdl.nsel ("ALL") # Reselecting all nodes

213

214
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# Plotting

mapdl.eplot ()

# Exiting normally from preprocessor

mapdl.allsel()
mapdl.finish()

# Plotting FE mesh

Program code B.4: Linear analysis - solution and postprocessing

if AnaType == "LBA":

# Static analysis with prestress effects (L4)

mapdl.slashsolu()

mapdl.antype ("STATIC")
mapdl.pstres("ON")

mapdl.time (1)

output = mapdl.solve(mute=False)

print (output)

mapdl.finish()

# Postprocessing LA results

mapdl.postl()

mapdl.nsel("S", "NODE", "", RPbtm)
reactF = mapdl.prrsol("F", mute=False).to_list() # Eztracting reaction forces
reactM = mapdl.prrsol("M", mute=False).to_list() # Eztracting reaction moments

print ("RFbtm: ", reactF)
print ("RMbtm: ", reactM)
mapdl.nsel ("ALL")

if StatSys == "clmp" or CylSize ==
mapdl.nsel("S", "NODE", "", RPtop)
reactF = mapdl.prrsol("F", mute=False).to_list() # Eztracting reaction forces
reactM = mapdl.prrsol("M", mute=False).to_list() # Eztracting reaction moments

print ("RFtop: ", reactF)

print ("RMtop: ", reactM)
mapdl.nsel("ALL")

mapdl.finish()

# Eigenvalue buckling analysis (LB4)

mapdl.slashsolu()

mapdl.antype ("BUCKLE")
mapdl.bucopt ("LANB", NumMode, O,
mapdl.mxpand ()

output = mapdl.solve(mute=False)
print (output)

mapdl.finish()

# Postprocessing LBA results

"RANGE")

# Entering solution processor

Starting a new static analysis
Activating prestress effects
Setting the time for the load step

H oW R W W

Printing solution info

**

# Entering postprocessor

# Selecting constrained bottom node

# Printing reaction forces

# Printing reaction moments
# Selecting all nodes

# Selecting constrained top node

# Printing reaction forces
# Printing reaction moments
# Selecting all nodes

# Exiting normally from postprocessor

# Entering solution processor

# Starting a new buckling analysis

# Ezpanding and writing mode shapes

# Solving the problem + exztracting solution info

# Printing solution info

# Eziting normally from solution processor

Solving the problem + extracting solution info

Eziting normally from solution processor

# Specifying buckling analysis options
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52

53 mapdl.post1() # Entering postprocessor

54

55 mapdl.set (sbstep=1) # Activating buckling mode 1

56 LMB = mapdl.post_processing.time # Extracting buckling load multiplier

57 print("LMB: ", LMB) # Printing buckling load multiplier of mode 1

58

59 if 1 == 1: # Plotting buckling mode shapes

60 mapdl.set ("FIRST")

61 for i in range(1l, NumMode+1):

62 mapdl.post_processing.plot_nodal_displacement ("NORM", smooth_shading=True)

63 mapdl.set ("NEXT")

64

65 mapdl.finish() # Exiting normally from postprocessor
Program code B.5: Nonlinear analysis - solution and postprocessing

1 |if AnaType == "GNA" or AnaType == "MNA" or AnaType == "GMNA":

2

3 # Static analysis with nonlinearity

4

5 mapdl.slashsolu() # Entering solution processor

6

7 mapdl.antype ("STATIC") # Starting a new static analysis

8 mapdl.time (1) # Setting the time for the load step

9

10 if AnaType == "GNA" or AnaType == "GMNA":

11 mapdl.nlgeom("ON") # Activating geometric nonlinearity

12

13 if SolMthd == "NRM": # Options for Newton-Raphson method

14 mapdl.nropt("FULL", nnoo"QN") # Full Newton-Raphson with symmetric matrices

15 mapdl.lnsrch("AUTO") # Automatic line search

16 mapdl.nsubst (NumSbst, 10000, NumSbst) # Specifying the number of substeps

17 elif SolMthd == "ALM": # Options for arc-length method

18 mapdl.autots ("OFF") # Disableing automatic time stepping

19 mapdl.nsubst (NumSbst) # Specifying initial number of substeps

20 mapdl.arclen("ON", 1, 1/1000) # Activating arc-length method

21 mapdl.arctrm("L") # Enableing termination at limit point

22

23 mapdl.outres("ALL", "NONE") # Resetting solution data output

24 mapdl.outres("NSOL", "ALL", "compRPtop")

25 output = mapdl.solve(mute=False) # Solving the problem + extracting solution info

26 print (output) # Printing solution info

27

28 mapdl.finish() # Eziting normally from solution processor

29

30

31 # Postprocessing results from nmonlinear analysis

32

33 mapdl.post1() # Entering postprocessor

34

35 n = int(mapdl.solution.n_cmss) # Number of substeps in the analysis

36

37 if LoadApl == "def":

38 DPF = [0.0]

39 FX = [0.0]

40 Fz = [0.0]

41 MY = [0.0]

42 mapdl.nsel("S", "NODE", "", RPbtm) # Selecting bottom reference node

43 mapdl.set ("FIRST") # Activating first substep

44 for i in range(l, n+1):

45 res0 = mapdl.post_processing.time

46 resl = mapdl.prrsol("FX", mute=False).to_list()
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81
82
83
84
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res2 = mapdl.prrsol("FZ", mute=False).to_list()
res3 = mapdl.prrsol("MY", mute=False).to_list()
DPF = np.concat ((DPF, [res0])) # Deformation proportionality factors [-]
FX = np.concat((FX, [res1[0][1]])) #
FZ = np.concat((FZ, [res2[0]1[1]])) #
MY = np.concat((MY, [res3[0][1]1])) # Bending moment reactions [MNm]
mapdl.set ("NEXT") # Activating nexzt substep

mapdl.nsel("ALL") # Selecting all nodes

print("DPF: ", DPF)

print ("FX: ", FX)

print("FZ: ", FZ)

print("MY: ", MY)

Horizontal reactions [MN]
Vertical reactions [MN]

plt.plot(DPF, FX, "b-o")

plt.xlabel("Deformation proportionality factor [-]")
plt.ylabel("Horizontal reaction in bottom RP [MN]")
plt.show()

plt.plot(DPF, FZ, "b-o")

plt.xlabel("Deformation proportionality factor [-]")
plt.ylabel("Vertical reaction in bottom RP [MN]")
plt.show()

plt.plot (DPF, MY, "b-o")

plt.xlabel("Deformation proportionality factor [-]")
plt.ylabel("Bending moment reaction in bottom RP [MN]")
plt.show()

elif LoadApl == "for":

LPF = [0.0]

disX = [0.0]

disZ = [0.0]

rotY = [0.0]

mapdl.nsel("S", "NODE", "", RPtop) # Selecting top reference node

mapdl.set ("FIRST") # Activating first substep

for i in range(l, n+1):
resO = mapdl.post_processing.time
resl = mapdl.post_processing.nodal_displacement ("X")
res2 = mapdl.post_processing.nodal_displacement("Z")
res3 = mapdl.post_processing.nodal_rotation("Y")
LPF = np.concat((LPF, [res0])) # Load proportionality factors [-]
disX = np.concat((disX, resl.tolist())) # Horizontal displacement of top RP [m]
disZ = np.concat((disZ, res2.tolist())) # Vertical displacements of top RP [m]
rotY = np.concat((rotY, res3.tolist())) # Rotation of top RP [rad]
mapdl.set ("NEXT") # Activating nexzt substep

mapdl.nsel("ALL") # Selecting all nodes

print ("LPF: ", LPF)

print("disX: ", disX)

print("disZ: ", disZ)

print("rotY: ", rotY)

plt.plot(disX, LPF, "b-o")

plt.xlabel("Horizontal displacement of top RP [m]")
plt.ylabel("Load proportionality factor [-]")
plt.show()

plt.plot(disZ, LPF, "b-o")

plt.xlabel("Vertical displacement of top RP [m]")
plt.ylabel("Load proportionality factor [-]")
plt.show()

plt.plot(rotY, LPF, "b-o")
plt.xlabel("Rotation of top RP [rad]l")
plt.ylabel("Load proportionality factor [-]")
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111 plt.show()
112
113 mapdl.finish() # Eziting normally from postprocessor

Program code B.6: Exit MAPDL

1 |mapdl.exit()
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