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ABSTRACT

In this work, we demonstrate the feasibility of low-
latency speech enhancement using Deep Neural Net-
works (DNNs), aimed at the integration into con-
sumer products, such as loudspeakers, soundbars, and
portable speakers. This often requires full-band au-
dio processing on already computationally loaded de-
vices with limited resources. By combining state-
of-the-art technologies, such as low-complexity Deep
Noise Suppression (DNS) networks, asymmetric STFT-
iSTFT windowing scheme and dataset for Cinematic
Audio Source Separation (CASS), we achieve real-time
execution on various platforms and low algorithmic la-
tency of 11 ms. The presented models have been de-
signed thanks to an objective evaluation-guided pro-
cess, followed by a perceptual subjective evaluation to
validate their performance. While promising and suffi-
cient for the demonstrative nature of the work, the per-
ceptual performance is not satisfactory for a customer-
ready implementation. However, the results support
the potential of our approach, shortening the gap be-
tween research and real-world application in consumer
electronics.

1. INTRODUCTION

Speech Enhancement (SE) algorithms aim to improve the
intelligibility and/or the quality of speech signals in au-
dio content [1]. In recent years, Deep Neural Networks
have seen giant leaps in speech enhancement applications,
demonstrating that the technology is only getting closer to
widespread implementation on consumer products. How-
ever, computational complexity and processing latencies
are the dominant issues that often prevent state-of-the-art
research from reaching customers in their everyday lives
[2]. This paper documents and demonstrates the feasibility
of using a Deep Neural Network (DNN) model to enable
speech enhancement on consumer products with low la-
tency requirements and full-band content.

Most of the research effort related to SE has been con-
ducted in the two fields of telecommunications and hear-
ing aids, and they typically work on narrow-band (8 kHz)
or wide-band (16 kHz) content [3]. Our interest lies in
machine-learning-based algorithms, specifically in DNNs,
as they can be used to learn high-order statistical informa-
tion automatically [4]. Models from this family may ac-
complish the task of SE by deep noise suppression (DNS,

removal of the noise signal) [5-8], by speech separation
(isolation of individual voices from the speech signal)
[9, 10], or by hybrid and multimedial approaches [11, 12].
However, the gap between the state-of-the-art and con-
sumer implementations is still quite large, as the required
memory and computation make most of the models im-
practical for edge devices [13].

We focus on monaural cinematic content, implying full-
band (48 kHz sampling rate) and extremely varied content,
ranging from movies, musicals, podcasts, sport events and
more. Additionally, we are targeting consumer products
with limited processing power and typically already loaded
Digital Signal Processing (DSP) tasks. Although the scope
is not hearing assistive devices or musical expression, the
low latency requirement is still necessary for the model
to be integrated successfully in a product. A low latency
model allows us to minimize artificial delay on multime-
dial content or avoid the increase of preexisting processing
latencies that could exceed the Just Noticeable Difference
(JND) for lip-sync and acceptable user experience.

In our case, we employ the DNN to extract the speech
from a noisy signal, therefore splitting the mixture in the
signal of interest and the remainder. The extracted speech
could then be mixed with the original signal, allowing the
user to control the volume of the two signals indepen-
dently. This additional processing of the signals requires
the model to perform perfect phase reconstruction, in or-
der to guarantee constructive-destructive interference.

Given the demonstrative nature of the paper, we do not
aim for the maximization of the perceptual and objective
scores of the DNN.

Before settling on definitive versions of the model, an
evaluation-guided design phase has been conducted, in-
volving hyperparameter sweeps and different windowing
schemes. The resulting models have been subjects of a
perceptual subjective evaluation.

In the next sections, we will discuss the proposed method
(Section 2), the evaluation-guided design process (Section
3), the perceptual evaluation (Section 4) and the overall
results (Section 5).

2. PROPOSED METHOD

Our proposed method can be summarized as a combination
of asymmetric windowing scheme (Section 2.1), low com-
plexity DNNs (Section 2.2) and Cinematic Audio Source
Separation (CASS) datasets (Section 2.3).



2.1 Low algorithmic latency using asymmetric
windows

Traditional audio-block processing suffers from intrinsic
algorithmic latency, which only depends on the size of
the output block and its sampling rate. Since the selected
DNN operates in the frequency domain, STFT-iSTFT op-
erations are carried out to transform the input and the out-
put signals from and to the time-domain. In order to main-
tain Constant-Overlap-Add (COLA) property and guaran-
tee perfect signal reconstruction (PR), specific windowing
functions can be used, such as Hann windows. A window-
ing scheme is classified as symmetric when the analysis
window and the synthesis window share the same function.
In this situation, and more generally in audio-block based
system, the algorithmic latency is entangled with the tem-
poral and spectral resolutions of the signal [14]. A visual
representation of inference and optimization of a generic
STFT-based DNN is provided in Figure 1.

Asymmetric windowing has been proposed as a solu-
tion to achieve low latency and high resolutions by em-
ploying specially designed analysis and synthesis windows
[15, 16], and it has already been applied in the SE do-
main [17, 18]. In parallel, other strategies have been ex-
plored in recent years, such as time-domain trainable Fil-
terband Equalizers (FBE) [19] and future frame predic-
tion methods [20]. Among these, asymmetric windowing
stands out for its effectiveness in real-time scenarios, par-
ticularly when paired with low-complexity DNNSs, as con-
cluded by [2].

Asymmetric windowing schemes perfectly disentangles
the algorithmic latency from the time-frequency uncer-
tainty principle. The latency can be arbitrarily controlled at
the expense of an increased number of processed windows
required for PR. This means that, if we were to maintain
the same overlap percentage between synthesis windows,
the hop-size would decrease, leading to more inferences
on the system. While one could technically ‘save’ infer-
ences by increasing the hop-size and therefore decreas-
ing the overlap, artifacts could arise. This is due the fact
that, despite the windowing scheme guaranteeing COLA
property, the DNN cannot guarantee consistency between
present frame and future frames. Thanks to adequate over-
lap, artifacts can be mitigated as the synthesized audio-
blocks interpolate the signal.

For our application, we consider the algorithmic latency
to be low when less than or equal to 11 ms, meaning 512
samples of synthesized audio signal at 48 kHz. Since the
system is to be integrated in a consumer product, the low
latency feature helps us guarantee perceptually unnotice-
able latency. Furthermore, the product itself is already bur-
dened by other features (e.g. decoding, routing, DSP, wire-
less connectivity) and all of them introduce a fixed latency
which cannot be controlled. While the goal is to keep the
overall latency below the JND latency, it can be observed
that the JND itself is, especially in multimedia contexts,
extremely varied. For instance, for musical expression the
JND ranges from 10 to 50 ms [21, 22], for cochlear im-
plants and hearing aids from 3 to 11 ms [23] and for lip
sync from 80 to 140 ms [24-26], which is the closest to

our realistic use-case.

2.2 Low complexity and computational latency using
DNN model

While hearing assistive technologies are not our intended
target, the literature offers extensive research around low
latency and low computational power constraints. The
model we employed is ULCNet [27], which represents the
state-of-the-art of low complexity DNN models for noise
suppression. Though not the absolute best when com-
pared to other model, ULCNet provides extremely close
objective scores with a fraction of the computational cost.
It represents an excellent compromise between perceptual
performances, computational complexity and model size.
An enhancement of ULCNet has been recently proposed to
tackle acoustic echo and noise reduction (AENR), named
Align-ULCNet [28], however, our focus is SE on cinematic
content and we do not expect particularly reverberant ma-
terial.

The implementation required rewriting ULCNet and
adapting its architecture to accommodate the wider con-
tent’s bandwidth, as the model was developed to work on
16 kHz sampling rate. A key example is the channel-wise
feature reorientation block (CWFR), which reshapes the
input features and rearranges them along a new channel
axis [29]. The number of frequency bins per channel -
which, together with the channel count, will reshape other
components of the model - is calculated using the amount
of frequency bins and the overlap between channels. The
original component works on wide-band content, with 8
channels 1.5kHz wide and overlap of 33%. Our adaptation
to full-band content uses 24 channels of the same width
and overlap.

The input and output spectra of the models could not be
resized with the same approach, as that would have re-
quired scaling the time-domain segment length by a fac-
tor of three. This would compromise the optimization of
FFT algorithms when dealing with powers of two. The
original model employed 32 ms segments, which corre-
sponds to 512 samples, that would suggest a perfect up-
scaling to 1536 samples. A preliminary exploration was
conducted, observing the model complexity and objective
scores (Section 3) of two variants set to (1) upper-nearest,
2048 samples, (2) lower-nearest, 1024 samples. Consid-
ering the drastic reduction of parameters and the marginal
decrease in objective metrics, we set the segment length to
1024 samples (21.33 ms), leading to a spectrum size of 513
frequency bins.

2.3 Dataset and data augmentation

The selected dataset is Divide and Remaster v3 (DnR v3)
[30,31], which is a freely available multilingual dataset for
CASS. It offers isolated stems of speech, music and sound
effects, all mixed with specific criteria that approximates
industry practices and standards. Even though DnR v3
covers our use case, which is full-band cinematic content,
the dataset only includes normal speech, which may com-
promise the ability of the model to generalize in the case
of singing voice.
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Figure 1. Diagram summarizing the inference and optimization of the DNN, including the process for segmentation,
windowing and transform. Pictorial representation of asymmetric and symmetric windows is provided.

We chose not to perform any data augmentation, and to
rely on DnR v3 for training, testing and validation. While
introducing other datasets like MUSDBI18-HQ [32], or
even internal datasets, could help maximize perceptual per-
formance, we recognize that this is outside of the intended
scope of the current paper. On this note, our focus is devel-
oping a highly reproducible setup with adequate perceptual
performance and low processing latency and cost.

3. EVALUATION-GUIDED DESIGN

In order to combine the proposed technologies into a sin-
gle flagship implementation, an experimentation was con-
ducted. In this process, we ran objective evaluations on
different metrics to direct us to definitive designs ready for
a final perceptual evaluation (Section 4). The focus was
balancing model complexity, processing and algorithmic
latency, and perceptual performance. The resulting design
had to run in real-time on the selected platforms, imple-
ment asymmetric windowing, and not significantly deteri-
orate perceptual performance relatively to a baseline model
built with ‘traditional’ methods.

The experiments focused on hyperparameter sweeps and
windowing schemes. In order to maximize reproducibil-
ity and isolate the explored variable as much as possible,
every comparison is made between a fixed baseline and
an exploration model, where only one hyperparameter or
windowing scheme parameter would differ. For the sake
of brevity, only a selected set of experiments will be pre-
sented.

The chosen metrics for comparison can be split inti two
groups (1) perceptually relevant, (2) hardware relevant.
For the first group, we relied on widely used metrics in ex-
isting literature, such as Perceptual Evaluation of Speech
Quality (PESQ) [33], Scale-Invariant Signal-to-Distortion
Ratio (SI-SDR), and DNSMOS [34]. For the second
group, we calculated the algorithmic latency and measured
the processing latency and the Real-Time Factor (RTF).
The RTF benchmarking was done on a Raspberry PI 4
model B (ARM Cortex-A72) and occasionally on a Bang
& Olufsen Beosound Emerge (ARM Cortex-AS53). The
STFT-iSTFT windowing processing was not included in

the measurement. It is important to highlight that most
of the perceptually relevant metrics are designed for wide-
band content, which forced us to downsample the model’s
synthesized signals for the evaluation.

The models have been developed with PyTorch v2.6.0!
and trained on NVIDIA GeForce RTX 3090 GPUs. The
inferences were executed single-threaded on CPU with
ONNX Runtime v1.20.12 .

3.1 Baseline

The Baseline model employs the ULCNet architecture, as
described in [27], adapted to full-band content. Symmetric
scheme with Hann75 windows was selected as the intended
scheme for training and inference. Other model hyperpa-
rameters, when applicable, followed the author’s specifica-
tions. The model, as well as any other experimental model
discussed, was trained on the DnR v3 dataset train-split.
Learning rate was set to 4 x 107%. Adam optimizer was
used with ReduceOnPlateau scheduler with factor 0.1 and
patience 10. Batch size was set to 4 samples of 60 seconds.
Other hyperparameters, perceptual results, and hardware
benchmarks are summarized in Table 1.

3.2 Exploration
3.2.1 Window size of 2048 and 1024 samples

As discussed in Section 2, the ULCNet implementation
had to be scaled to accommodate higher sampling rate con-
tent. An experimental version of ULCnet has been imple-
mented to operate with windows of 2048 samples, instead
of the Baseline’s 1024 samples. This change of window
size leads to a significant increase of trainable parameters.

Despite the slight increase in perceptual scores (Table 2),
there is a notable and expected worsening of algorithmic
latency and RTFs. However, such small nudges of percep-
tual scores relatively to the complexity could also mean
that a bottleneck exists in Model 2048 and it has not been
properly rescaled. Note that the model is unable to run
real-time on the Beosound Emerge with single-threaded
execution.

! PyTorch website: https://pytorch.org/
2 ONNX Runtime website: https://onnxruntime.ai/
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Baseline
Hyperparameters, windowing, complexity

CWFR 24x1.5 kHz
Loss MSE
Windowing Hann75
A/S window size 1024
Spectrum size 513
Parameters 826K
talg 21.33 ms
thop 5.33 ms

Perceptual and hardware metrics
PESQ 1.49 0 0.27
SI-SISDR ;5 8.80 0 4.69
SIGMOS 2.87 0 0.34
BAKMOS 3430 0.31
OVRLMOS 2430 0.35
tprocRpi 3.30 ms
tprocBeo 7.33 ms
RTFRpi 61.9%
RTFgeo 137.4%

Table 1. Brief description of the Baseline model. Arith-
metic mean and standard deviation are presented when
possible.

Experiment: Model 2048
Model summary
Window size 2048
Spectrum size 1025
Parameters 2.80M
Lalg 42.7 ms
thop 10.67 ms
Experiment results

APESQ +0.10
ASI_SISDRup +0.97
Asiamos +0.08
ABAKMOS +0.15
AovRLMOS +0.11

tprochpi +3.0 ms

torocBeo +6.66 ms
ARTFg,; -2.8%
ARTFg., -6.2%

Table 2. Summary and results of objective evaluation for
Model 2048. The numerical difference against Baseline’s
scores is illustrated.

3.2.2 CWFR component 24 and 12 channels

The CWFR component is also subject to adaptation, as it
is stated to be perceptually motivated. An exploratory ver-
sion of ULCNet has been implemented to operate with 12
channels, named Model 12ch.s, while the baseline is fixed
at 24.

The results (Table 3) indicate that the overall perceptual
metrics increase at the price of model complexity. Such
small improvement and such increase in complexity and in
processing time discouraged us from further investigation
this axis of exploration.

Experiment: Model 12ch.s
Model summary
CWFR 12x3 kHz (from 24x1.5
kHz)
Parameters 1.35M (from 826K)
Experiment results
APESQ +0.07
As1-SISDR4p +0.55
Asiamos +0.03
ABAKMOS +0.13
AOVRLMOS +0.07
tprochipi +0.73 ms
ARTFRpi +13.7%

Table 3. Summary and results of objective evaluation for
Model 12ch.s. The numerical difference against Baseline’s
scores is illustrated.

3.2.3 Mean Square Error and L1 loss functions

A variant of the Baseline model, called Model LI, was
trained with L1 loss. Despite the goal not being the maxi-
mization of perceptual performance, past experiences with
L1 loss in other audio processing applications had been
extremely positive. Therefore, an empirical validation was
needed.

It is worth noting that, during the L1 experiment, the SIG-
MOS decrease and BAKMOS increase (Table 4). While
one could speculate about the correlation between the dis-
tribution of the content among higher and lower energy fre-
quency bins, the power-law compression/decompression
components that wrap the ULCNet model already rescales
the incoming and outcoming signals. These components
approximate the logarithmic nature of the hearing profile,
making the model more robust to wide dynamic ranges
[35] and harder to infer any causation between loss func-
tion and perceptual quality.

Experiment: Model L1
Model summary

Loss L1 (from of MSE)
Lalg 21.3 ms

thop 5.33 ms

Experiment results

APESQ +0.02
As1-SI1SDR4p +0.83
Asiamos -0.10
ABAKMQS +0.44
AovRLMOS +0.07

Table 4. Summary and results of objective evaluation for
Model LI. The numerical difference against Baseline’s
scores is illustrated.

3.2.4 Window overlap of 50% and 75%

Reducing the hop-size and overlap of the windowing
scheme can lead to notable artifacts and decrease in overall
perceptual performance. Aggressively increasing hop-size
to maximize the available inference time is discouraged.



Considering the result of the benchmarkings of the Base-
line model, there aren’t enough computational resources
to employ asymmetric windowing, halving the algorithmic
latency and keeping 75% overlap between windows. This
experiment is set to quantify the expected decrease in per-
ceptual performance by evaluating the experimental Model
Hann50, which exploys symmetric Hann windowing with
50% overlap.

While the perceptual scores are only slightly affected,
the RTF has been halved (Table 5). Model Hann50 is
able to run in real time on the Beosound Emerge with
single-threaded execution, as the available time for infer-
ence (hop-size) has doubled.

Experiment: Model Hann50
Model summary
Windowing Hann50 (from Hann75)
talg 21.3 ms
thop 10.67 ms (from 5.33)
Experiment results
AprsqQ -0.04
As1-SISDR4p -0.34
Asiamos -0.03
ABAKMOS -0.02
AoOVRLMOS -0.02
AV -0.73 ms
ARTFg,; -31.0%
ARTFBCU -68.8%

Table 5. Summary and results of objective evaluation for
Model Hann50. The numerical difference against Base-
line’s scores is illustrated.

3.2.5 Window size of 512 and 1024 samples

A naive solution to the low latency requirement would be
reducing the symmetric window size to lower the algorith-
mic latency of the system. This approach will clearly af-
fect the spectral resolution of the input and output frame.
In this experiment, we evaluate Model 512, which operates
on windows of 512 samples.

While the reduction in parameters yields a marginal im-
provement in processing time, the available time for infer-
ence is halved, bringing the RT F'g,,; close to its limit (Ta-
ble 6). This is likely due to some execution overhead not
correlated to the model’s complexity. Notably, the percep-
tual objective scores weren’t significantly affected, with
the exception of the SI-SDR. It appears that the model is
not capable of maintaining perfect phase reconstruction, as
it phase-shifts the output signal just enough for the peaks
to be misaligned relatively to the reference signal.

3.2.6 Symmetric and asymmetric windowing scheme

Asymmetric windowing is a core element of the disserta-
tion. In this experiment, Model Asymm is tested against
Baseline. The only difference between the two models lies
in the shape of the windowing scheme and in the algorith-
mic latency. The input window size, the analysis window
overlap and the hop-size are identical.

Experiment: Model 512
Model summary
Window size 512
Spectrum size 257
Parameters 562K
talg 10.67 ms
Lhop 2.67 ms
Experiment results

Apgrsq -0.05
ASI_SISDR4p -60.0
Asiamos +0.01
ABAKMOS -0.05
AOVRLMOS -0.01

torochipt -0.92ms
ARTFRpi +27.6%

Table 6. Summary and results of objective evaluation for
Model 512. The numerical difference against Baseline’s
scores is illustrated.

The results are satisfactory. Despite a 50% overlap of the
asymmetric synthesis window, the perceptual scores are
hardly affected (Table 7). Interestingly, this model too suf-
fers of phase-shifting, drastically impacting the SI-SDR, in
an identical manner to Model 512.

Experiment: Model Asymm
Model summary
Windowing Special Hann
Parameters 826K
Lalg 10.67 ms
Lhop 5.33 ms
Experiment results
APESQ -0.03
ASI_SISDRus -50.0
Asiamos -0.01
ABAKMOS -0.01
AOVRLMOS -0.01

Table 7. Summary and results of objective evaluation for
Model Asymm. The numerical difference against Base-
line’s scores is illustrated.

3.3 Results

Thanks to the empirical results, we were able to combine
the findings and produce three models, which only dif-
fer in loss function and windowing scheme. The mod-
els, called Symmetric, Asymmetric, Asymmetric+, were the
subjects of a final perceptual evaluation (Section 4). As
was found in experiments 3.2.1, 3.2.2, 3.2.5, the Base-
line model presented the best balance between perceptual
scores and hardware metrics. Therefore, the three models
share the same architecture, meaning CWFR with 24 chan-
nels, 1024 samples windows/513 samples spectrums and
826K trainable parameters. All of the three were trained
on the DnR v3 dataset train-split. Learning rate was set
to 1 x 1073, Adam optimizer was used with ReduceOn-
Plateau scheduler with factor 0.5 and patience 5. Batch



Symmetric Asymmetric Asymmetric+
Hyperparameters, windowing

Loss L1 L1 L1-IWT
Windowing Hann75 Special Hann Special Hann
talg 21.33 ms 10.67 ms 10.67 ms
thop 5.33 ms 5.33 ms 5.33 ms

Perceptual and hardware metrics
PESQ 1.35 0 0.19 1.29 0 0.14 1.32 5 0.17
SI-SISDR;5 6.75 0 3.60 5.4103.09 6.39 0 3.45
SIGMOS 2.53 0 0.36 2410 0.33 2.47 0 0.36
BAKMOS 3.8000.10 3730 0.12 374 0 0.12
OVRLMOS 2.26 0 0.32 2.14 05 0.29 2.1900.32
tprocRpi 2.86ms
tprocBeo 5.51ms
RTFRpi 53.6%
RTFgeo 103.4% (76.6% in special conditions)

Table 8. Brief description of Symmetric, Asymmetric, and Asymmetric+ models. Arithmetic mean and standard deviation

are presented when possible.

size was set to 4 samples of 60 seconds.

The perceptual and hardware related metrics are pre-
sented in Table 8. As the reader may notice, the RT Fry;
and RT Fp., decreased respectively of 13% and 25% in
comparison with the Baseline model. This is due to an op-
timization of the CWFR component and how it is exported
to an ONNX graph. This redesign does not affect the be-
havior of the component.

The models Symmetric and Asymmetric have been trained
with L1 loss on the difference between estimated and target
speech spectrums. Asymmetric+, instead, employs a dif-
ferent approach. Despite being L1 in nature, the estimated
speech spectrum is not directly compared against the ref-
erence speech spectrum. Instead, the estimated speech is
Inverse-transformed, Windowed and Transformed, hence
the acronym L1-IWT used in Table 8. Therefore, the L1
loss is still computed in the frequency domain, but the fre-
quency response of the synthesis window is taken into ac-
count. This approach contributes to ensuring consistency
between STFT frames [36] and potentially provides the
model with improved strategies to mitigate artifacts

Real-time execution with low algorithmic latency on full-
band content is achieved. Models such as Asymmetric+ are
exemplary of promising asymmetric windowing scheme
implementation. Unfortunately, real-time execution is only
achieved on the Raspberry PI4. If we were to disable the
real-time audio processing and connectivity software of
the Beosound Emerge, the RT' Fp., would drop to 76.6%.
Multi-threading is a realistic and feasible solution to the
issue.

4. EVALUATION

After developing a selection of models that adhere to our
set requirements, a perceptual subjective evaluation has
been conducted. The experiment was run to provide ad-
ditional evidence of the fact that asymmetric windowing
does not significantly impact perceptual performance and
it is a viable method to achieve low latency on audio pro-

cessing DNNGs.

4.1 Experiment methodology

The listening experiment employed a paired comparison
design, in which the participants were subjects to A/B test-
ing. Their task was to determine which of the two stimuli
presented the better speech quality (SQ) [37], which was
the dependent variable of the study. The experiment in-
volved two independent variables: content and model. The
comparisons were conducted using different models for the
same content.

The content consisted of short audio excerpts - spoken
English phrases between five and ten seconds long - ran-
domly extracted from the test split of the DnR v3 dataset
and then processed by the three models. As the models are
optimized to preserve the loudness characteristics of the in-
put speech, normalizing the loudness of the output would
have introduced an unfair advantage. In order to limit
loudness bias [38] while still penalizing under-performing
models, only raw audio excerpts containing speech within
a narrow LUFS (Loudness Units relative to Full Scale)
range were selected for evaluation.

The models under evaluation are Symmetric, Asymmetric,
and Asymmetric+, which were previously introduced. The
three models are the result of the evaluation-guided design
discussed in Section 3. Only Asymmetric and Asymmet-
ric+ achieve our low latency threshold of 11 ms. Latency
does not play a role in the evaluation, as the audio excerpts
were rendered offline and played back on demand.

In total, the experiment consisted of 42 trials, including
21 repeated trials to assess response consistency. The order
of trials was randomized, and the stimuli were randomly
assigned to the A/B buttons. During each trial, participants
could interact with two playback buttons, two rating but-
tons, and a ‘next page’ button to proceed to the next trial.
Playback volume was fixed across all sessions to ensure
consistency. Listening was conducted using Beocom Por-
tal headphones in passive mode, with both transparency



and active noise cancellation features disabled. The asses-
sors were not informed about the nature of the models and
the intended use case.

While the perceptual objective scores offer much insight
into the performance of the three models (Table 8), infor-
mal listening tests by experienced listeners highlighted that
the models behave differently and are not necessarily con-
sistent in the nature of artifacts and distortion that they ap-
ply on the rendered signal. Moreover, our windowing setup
for Asymmetric and Asymmetric+ reduces the overlap per-
centage, in order to maintain the same computational cost
as the Symmetric counterpart. This is required to enable
real-time execution of all models on the intended target
platforms. As the lower overlap is proven to hinder the
perceptual objective scores, we see that our L1-IWT loss
function could improve the models’ consistency and com-
pensate the loss in overall quality.

4.2 Results

The assessor group was comprised of a total of 9 listeners,
consisting of non-experts (3), somewhat experts (4) and ex-
perts (2) in critical listening. No hearing loss was reported
from any of the participants. Regarding past participation
in listening experiments, the assessors indicated never (2);
a few, from 1 to 5, (5); many, 6 and more (2).

4.2.1 Speech quality scores

The results are displayed in the form of bar plots. Each
individual direct comparison showcases the distribution of
ratings among the two models presented in the trial. The
SQ win percentage is statistically significant with p <
0.05, unless specified otherwise. The p-value has been cal-
culated with the binomial test.

Symm. Asymm.
Symm. Asym.+
Asymm. 7. Asym.+

0 10 20 30 40 50 60 70 80 90 100

Figure 2. Bar plot displaying the percentage of SQ rat-
ings of paired models. Standard deviations across asses-
sors (upper error-bar) and across content (lower error-bar)
are depicted.

The Asymmetric+ model clearly outperformed the other
two models with significant margin (Figure 2), with only
three audio contents where it was rated on par with Sym-
metric (Figure 3). From the results, we can infer that Asym-
metric is performing significantly worse than the other
models. Only when compared on a single particular au-
dio excerpt Asymmetric ‘won’ against another model.

Notably, the objective scores are only partially correlated
to the outcomes of the subjective perceptual evaluation. In
the case of the Asymmetric model, every rating marked it as
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Figure 3. Bar plot displaying the percentage of SQ wins
of the models, grouped by the audio-excerpts used for the
comparison. ‘NS’ indicates p > 0.05.

the worst model when in direct comparison with the others.
In the case of Symmetric vs. Asymmetric+, the subjective
ratings defy the objective metrics and our expectations. A
plausible explanation for the lack of correlation between
the objective and subjective scores could lie in the band-
width of the signals. On one side, DNSMOS is measured
on wide-band content, requiring downsampling of the pro-
cessed audio signal. On the other side, the perceptual eval-
uation was conducted on full-band content. As it is im-
possible to numerically compare the binomial scores and
MOS ratings, we cannot quantify the discrepancy between
the scores (Figure 4).
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2.10 A 60
2.05 1 40
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1.90 : ; — 10

Symmetric Asymmetric ~ Asymmetric+

Figure 4. Dual axis plot, overlapping the OVRLMOS
scores and SQ total wins percentage of the three individual
models.



4.2.2 Assessor inconsistency

Thanks to the repeated trials, we can gather some informa-
tion about the assessor’s consistency in the rating, shown
in Figure 5. We can observe how the inconsistency spikes
in the comparisons between Symmetric vs. Asymmetric+
across all the audio excerpts. This reflects the lower statis-
tical significance of said trials.
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Figure 5. Heatmap of the inconsistency percentage be-
tween the assessors’ ratings of original and repeated trials.

Another interesting phenomenon can be found in circu-
lar inconsistency, more specifically circular triads. As the
assessors rate paired models, it is possible to violate the
property of transitivity. For instance, an assessor could
rate model A as having better SQ than B, B better than C
and C better than A, leading to the following expression:
A > B > C > A. By calculating the amount of circular
inconsistencies on the basis of assessors and content, we
observe that their occurrence is extremely rare and does
not seem to follow any particular pattern. Out of the 126
possible occurrences, only 7 circular triads (5.6%) were
detected.

The high variability in inconsistency rates, combined
with the low frequency of circular inconsistencies, may in-
dicate that the task posed a moderate level of difficulty,
rather than suggesting fundamental inconsistencies in how
the assessors interpreted speech quality over time.

5. DISCUSSION

The evaluation’s results, especially the SQ wins between
the Symmetric and Asymmetric+ models, solidify our hy-
pothesis of the asymmetric windowing scheme being a
low cost and high reward technique, enabling low latency
speech enhancement on constrained platforms and on full-
band content.

More investigation on the model’s architecture is needed.
Information bottlenecks are an intended and necessary fea-
ture of CNNgs, but the objective scores of the experimental
models could suggest the presence of unintended bottle-
necks that may hinder the performances.

While Asymmetric+ satisfies our requirements, the per-
ceptual quality leaves a lot to be desired. DnR v3 has
proven to be adequate for our task, especially because of its
high sampling rate, mixing criteria and multilingual sup-
port. Despite this, it occasionally presents audible artifacts
in the clean speech signals, in particular pops and clicks,
likely byproducts of the mixing process. Ideally, the model
would need to be robust enough to perform generalization

of speaking, singing and emotional voice altogether. This
could be achieved with (1) data augmentation, (2) dataset
merging, (3) transfer learning. Datasets like MUSDB18-
HQ could improve the model in singing voice extraction,
tough lacking multilingual content. DnR v3 is fairly lim-
ited in the language variety and in emotional diversity, and
could be easily extended with emotional speech datasets.

The model cannot run in real time with single-threaded
execution on the Beosound Emerge and, by extension, any
Bang & Olufsen product. However, single-threaded exe-
cution is remarkably close. Moreover, it has been proven
that the isolated model can run when disabling the real-
time audio processing and connectivity features, or by en-
abling multi-threaded execution. Further optimization of
the codebase is possible and realistic. We are likely to
investigate parameter quantization and compiling custom
binaries for the target platform, abandoning ONNX Run-
time.

6. CONCLUSIONS

‘We have demonstrated the feasibility of a full-band low la-
tency DNN for speech enhancement. By combining state-
of-the-art techniques, our proposed model achieves low-
latency speech enhancement on consumer products with
limited processing resources. Thanks to the adaptation of
ULCNet and the asymmetric windowing scheme, we reach
algorithmic latency of 11 ms and real-time execution.

Through an objective evaluation-guided design process
and subjective evaluation, we showed that asymmetric
windowing can significantly reduce latency without com-
promising perceptual performance. The Asymmetric+
model shows the most promise in terms of balance between
our requirements.

Perceptual performance, while satisfactory for our re-
quirements, is not acceptable for a customer-ready de-
vice. Future works can realistically address both exe-
cution constraints and perceptual artifacts, through archi-
tectural tuning, inference optimization and improvement
of the training process and its data. Overall, our re-
sults support asymmetric windowing as a practical strategy
for real-time speech enhancement in resource-constrained
consumer products.

Acknowledgments

Special thanks to Cumhur Erkut, Martin B. Mgller, Jon
Francombe and the Advanced Technology team.

7. REFERENCES

[1]1 P. C. Loizou, Speech Enhancement: Theory and Practice, Second
Edition, 2nd ed. Boca Raton: CRC Press, Feb. 2013.

[2] H. Wu and S. Braun, “Ultra-Low Latency Speech Enhancement - A
Comprehensive Study,” Sep. 2024.

[3] J. Benesty, S. Makino, and J. Chen, Speech Enhancement. Springer
Science & Business Media, Mar. 2006.

[4] X.Lu,Y. Tsao, S. Matsuda, and C. Hori, “Speech enhancement based
on deep denoising autoencoder,” in Interspeech 2013. ISCA, Aug.
2013, pp. 436-440.



[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

J.-M. Valin, U. Isik, N. Phansalkar, R. Giri, K. Helwani, and
A. Krishnaswamy, “A Perceptually-Motivated Approach for Low-
Complexity, Real-Time Enhancement of Fullband Speech,” Aug.
2020.

H. Schréter, A. N. Escalante-B, T. Rosenkranz, and A. Maier, “Deep-
FilterNet: A Low Complexity Speech Enhancement Framework for
Full-Band Audio based on Deep Filtering,” Feb. 2022.

S. Braun, H. Gamper, C. K. A. Reddy, and I. Tashev, “Towards effi-
cient models for real-time deep noise suppression,” May 2021.

Y. Hu, Y. Liu, S. Lv, M. Xing, S. Zhang, Y. Fu, J. Wu, B. Zhang, and
L. Xie, “DCCRN: Deep Complex Convolution Recurrent Network
for Phase-Aware Speech Enhancement,” Sep. 2020.

Y. Luo and N. Mesgarani, “Conv-TasNet: Surpassing Ideal Time-
Frequency Magnitude Masking for Speech Separation,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 27,
no. 8, pp. 1256-1266, Aug. 2019.

R. Rikhye, Q. Wang, Q. Liang, Y. He, and I. McGraw, “Multi-user
VoiceFilter-Lite via Attentive Speaker Embedding,” Nov. 2021.

H. R. Guimarées, J. Su, R. Kumar, T. H. Falk, and Z. Jin, “DiTSE:
High-Fidelity Generative Speech Enhancement via Latent Diffusion
Transformers,” Apr. 2025.

Z. Zhu, H. Yang, M. Tang, Z. Yang, S. E. Eskimez, and H. Wang,
“Real-Time Audio-Visual End-to-End Speech Enhancement,” Mar.
2023.

D. O’Shaughnessy, “Speech Enhancement—A Review of Modern
Methods,” IEEE Transactions on Human-Machine Systems, vol. 54,
no. 1, pp. 110-120, Feb. 2024.

J. O. L. Smith, Spectral audio signal processing.  Stanford, Calif:
Stanford University, CCRMA, 2011.

R. Rozman and D. M. Kodek, “Using asymmetric windows in auto-
matic speech recognition,” Speech Communication, vol. 49, no. 4, pp.
268-276, Apr. 2007.

D. Mauler and R. Martin, “A low delay, variable resolution, perfect
reconstruction spectral analysis-synthesis system for speech enhance-
ment,” in 2007 15th European Signal Processing Conference, Sep.
2007, pp. 222-226.

S. U. N. Wood and J. Rouat, “Unsupervised Low Latency Speech
Enhancement with RT-GCC-NMF,” IEEE Journal of Selected Topics
in Signal Processing, vol. 13, no. 2, pp. 332-346, May 2019.

S. Wang, G. Naithani, A. Politis, and T. Virtanen, “Deep neural
network Based Low-latency Speech Separation with Asymmetric
analysis-Synthesis Window Pair,” Jun. 2021.

H. W. Lollmann and P. Vary, “Uniform and Warped Low Delay Filter-
Banks for Speech Enhancement,” Speech Communication, vol. 49,
no. 7-8, p. 574, Jul. 2007.

Z.-Q. Wang, G. Wichern, S. Watanabe, and J. L. Roux, “STFT-
Domain Neural Speech Enhancement with Very Low Algorithmic
Latency,” Dec. 2022.

A. Schmid, M. Ambros, J. Bogon, and R. Wimmer, “Measuring the
Just Noticeable Difference for Audio Latency,” in Audio Mostly 2024
- Explorations in Sonic Cultures. Milan Italy: ACM, Sep. 2024, pp.
325-331.

P. Pfordresher and C. Palmer, “Effects of delayed auditory feedback
on timing of music performance,” Psychological Research, vol. 66,
no. 1, pp. 71-79, Feb. 2002.

M. Kortje, T. Stover, U. Baumann, and T. Weissgerber, “Impact of
processing-latency induced interaural delay and level discrepancy on
sensitivity to interaural level differences in cochlear implant users,”
European Archives of Oto-Rhino-Laryngology, vol. 280, no. 12, pp.
5241-5249, Dec. 2023.

W. Lin and G. Ghinea, “Progress and Opportunities in Modelling
Just-Noticeable Difference (JND) for Multimedia,” IEEE Transac-
tions on Multimedia, vol. 24, pp. 37063721, 2022.

M. A. Akeroyd, “The psychoacoustics of binaural hearing,” Interna-
tional Journal of Audiology, vol. 45, no. supl, pp. 25-33, Jan. 2006.

J. Vroomen and M. Keetels, “Perception of intersensory synchrony:
A tutorial review,” Attention, Perception, & Psychophysics, vol. 72,
no. 4, pp. 871-884, May 2010.

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

S. S. Shetu, S. Chakrabarty, O. Thiergart, and E. Mabande, “Ul-
tra Low Complexity Deep Learning Based Noise Suppression,” in
ICASSP 2024 - 2024 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Apr. 2024, pp. 466—470.

S. S. Shetu, N. K. Desiraju, W. Mack, and E. A. P. Habets, “Align-
ULCNet: Towards Low-Complexity and Robust Acoustic Echo and
Noise Reduction,” Oct. 2024.

H. Liu, L. Xie, J. Wu, and G. Yang, “Channel-wise Subband Input
for Better Voice and Accompaniment Separation on High Resolution
Music,” in Interspeech 2020, Oct. 2020, pp. 1241-1245.

K. N. Watcharasupat, C.-W. Wu, and L. Orife, “Remastering Divide
and Remaster: A Cinematic Audio Source Separation Dataset with
Multilingual Support,” Aug. 2024.

D. Petermann, G. Wichern, Z.-Q. Wang, and J. Le Roux, “Divide and
Remaster (DnR),” Oct. 2021.

Z. Rafii, A. Liutkus, F.-R. Stoter, S. I. Mimilakis, and R. Bittner,
“MUSDBI18-HQ - an uncompressed version of MUSDBI18,” Aug.
2019.

A. Rix, J. Beerends, M. Hollier, and A. Hekstra, “Perceptual eval-
uation of speech quality (PESQ)-a new method for speech quality
assessment of telephone networks and codecs,” in 200! IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing.
Proceedings (Cat. No.01CH37221), vol. 2, May 2001, pp. 749-752
vol.2.

C. K. A. Reddy, V. Gopal, and R. Cutler, “Dnsmos P.835: A Non-
Intrusive Perceptual Objective Speech Quality Metric to Evaluate
Noise Suppressors,” in ICASSP 2022 - 2022 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), May
2022, pp. 886-890.

A. Li, C. Zheng, R. Peng, and X. Li, “On the importance of power
compression and phase estimation in monaural speech dereverbera-
tion,” JASA Express Letters, vol. 1, no. 1, p. 014802, Jan. 2021.

S. Wisdom, J. R. Hershey, K. Wilson, J. Thorpe, M. Chinen, B. Pat-
ton, and R. A. Saurous, “Differentiable Consistency Constraints for
Improved Deep Speech Enhancement,” Nov. 2018.

S. Bech and N. Zacharov, Perceptual audio evaluation: theory,
method and application. Chichester, England ; Hoboken, NJ: John
Wiley & Sons, 2006.

E. C. Poulton, “Models for biases in judging sensory magnitude,”
Psychological Bulletin, vol. 86, no. 4, pp. 777-803, 1979.



	 1. Introduction
	 2. Proposed method
	2.1 Low algorithmic latency using asymmetric windows
	2.2 Low complexity and computational latency using DNN model
	2.3 Dataset and data augmentation

	 3. Evaluation-Guided Design
	3.1 Baseline
	3.2 Exploration
	3.2.1 Window size of 2048 and 1024 samples
	3.2.2 CWFR component 24 and 12 channels
	3.2.3 Mean Square Error and L1 loss functions
	3.2.4 Window overlap of 50% and 75%
	3.2.5 Window size of 512 and 1024 samples
	3.2.6 Symmetric and asymmetric windowing scheme

	3.3 Results

	 4. Evaluation
	4.1 Experiment methodology
	4.2 Results
	4.2.1 Speech quality scores
	4.2.2 Assessor inconsistency


	 5. Discussion
	 6. Conclusions
	 7. References

