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Abstract

Short-term traders and risk managers often do not have dependable tools for making decisions
every minute, because traditional time-series methods can break down when liquidity and
volatility change quickly. | show that trading only when clear “bull,” “bear,” or “sideway” re-
gimes are detected captures most of the value in high-frequency trading. | labeled one-minute
NASDAQ futures bars from January 2015 to Jun 2024 as “bull,” “bear,” or “sideway”, and

trained two deep-learning models to predict these labels.

An LSTM (Long Short-Term Memory) is a neural network that learns to remember or forget
information over time - useful when both recent and slightly older price patterns matter. A
Transformer is another neural network design that uses an attention mechanism to identify

which past data points are most relevant for each new prediction.

In out-of-sample tests on July-December 2024 data, both models spotted real regime shifts
within ten minutes on average and outperformed a simple buy-and-hold strategy. However,
their higher returns came with larger swings, meaning these signals carry more risk. This work
provides a minute-level deep-learning framework showing that LSTM and Transformer signals

can beat buy-and-hold - if you accept bigger ups and downs.
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Definition

Attention Mechanism/
Self-Attention

A technique where the model learns which parts of the input
are most relevant to each other for better understanding.

Bullish/ Bearish/
Sideways Market

Describes market direction: Bullish = rising, Bearish = falling,
Sideways = no clear trend.

Candle/ Bar

A chart element showing the open, high, low, and close prices
for a set time period, used to analyze price movements.

Feature Engineering

Creating input variables (features) that help a model learn pat-
terns more effectively.

Genetic Algorithm

An evolutionary search method that selects the best model set-
tings, mixes them, and makes small random tweaks until it finds
strong hyperparameters.

Hyperparameters

Configurable settings of a model (e.g., learning rate, number of
layers, batch size) that govern how the model is trained.

Loss Function

A formula used to measure how far off a model’s predictions are
from actual values.

Neural Network/
Deep Learning

A set of algorithms modeled after the human brain that can
learn patterns from data, commonly known as artificial intelli-
gence (Al).

Normalization/
Standardization

Techniques to scale data to a consistent range or distribution.

Supertrend Indicator

A trend-following indicator based on price and volatility that
generates dynamic support/resistance levels. Bullish above the
line, bearish below. It adapts to market shifts to highlight poten-
tial reversals.

Tick Chart/ Tick Data

Charts based on a number of trades (ticks) rather than time in-
tervals.
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1. Introduction

1.1 Problem Statement and Motivation

Financial markets are driven by forces spanning a wide range of timescales. At the slow end,
macroeconomic policy shifts and changes in investor sentiment shape trends over days and
weeks. At the fast end, algorithmic trading influences prices within seconds (Tetlock, 2007;
Hendershott et al., 2011; Brogaard et al., 2014). Yet the one-minute OHLCV (open, high, low,
close, volume) interval - where intraday traders and risk managers must act - remains a rela-

tively underexplored forecasting horizon in both academic research and industry practice.

Standard time-series tools such as ARIMA for returns and Engle’s ARCH (1982) with Bollerslev’s
GARCH extension (1986) for volatility assume smoothly evolving, stationary dynamics. Historic
stress episodes - most notably the 2008 liquidity spiral and the 2010 Flash Crash - exposed
sudden shifts in liquidity and volatility that these methods cannot anticipate, causing forecasts
to lag actual movements and risk estimates to fall short by large margins (Brunnermeier &
Pedersen, 2009; Kirilenko et al., 2017; Adrian & Brunnermeier, 2016). Market-microstructure
theory indicates that abrupt surges in trading activity or uneven execution speeds across ven-
ues increase adverse-selection risk for liquidity providers, leading them to widen bid-ask
spreads and retract displayed depth to protect their positions. However, this framework does

not provide practical tools for intraday (minute-by-minute) forecasting.

Deep-learning architectures offer a promising bridge between theory and practice. Long short-
term memory networks (LSTM) and Transformer models can learn complex, nonlinear rela-
tionships from high-frequency price and volume data without restrictive statistical assump-
tions (Sirignano & Cont, 2019). When enhanced with technical features that capture trend di-
rection, volume patterns, and volatility shifts, these networks form a richer representation of
evolving market regimes. Large-scale studies have demonstrated that such approaches gener-
ate substantial economic value, outperforming traditional factor-model benchmarks in equity-

premium forecasting (Gu et al., 2020).

This thesis fills the intraday gap by developing and evaluating LSTM and Transformer solutions
on minute-frequency OHLCV data for a major equity index. | measure performance in out-of-
sample backtests (July-December 2024) against a buy-and-hold strategy, using simulated

1
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profit-and-loss from straightforward trading rules. By focusing on both statistical precision and
real-world P&L outcomes, this work aims to equip market participants with robust, live tools

for risk management, and execution optimization.

1.2 Key Contributions and Scope

To my knowledge, this thesis delivers the first minute-level OHLCV benchmark of deep se-
guence (Al) models against a buy-and-hold baseline. | make three primary contributions. First,
| implement and compare LSTM and Transformer architectures for one-minute regime classi-
fication and trend forecasting, demonstrating how each model handles noise, retains memory,
and captures long-range dependencies. Second, | introduce a Supertrend-based algorithm for
adaptive regime labeling - developed at my startup, TRARITY - which dynamically adjusts to
shifting volatility in OHLC price data to produce bull, bear, and sideways signals, thereby im-
proving signal quality compared with fixed-rule approaches. Third, | conduct backtests and
live-trading simulations under realistic market conditions - including transaction fees - to

bridge the gap between statistical performance and actual trading outcomes.

The scope of this study is strictly confined to one-minute OHLCV data for the NASDAQ index
from January 1, 2015, to December 31, 2024. | exclude order-book depth, news sentiment,
and macroeconomic releases to ensure full reproducibility on standard data feeds. All feature
engineering derives solely from price and volume, with technical indicators computed consist-

ently across models.

1.3 Research Questions and Hypotheses

The investigation centers on three interrelated questions, each designed to probe a different
dimension of minute-level forecasting and its practical implications. By focusing on both sta-
tistical and economic measures, | aim to determine not only which architecture offers superior
predictive power, but also whether those predictions translate into tangible trading gains un-

der realistic conditions.
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RQ1: Regime Classification Performance. How do LSTM and Transformer models compare to
a static baseline in classification performance (e.g., balanced accuracy and macro-F1) for multi-

class regime prediction (Long / Short / Range) on one-minute data?

H1: Both LSTM and Transformer models will outperform the static baseline by achieving higher
directional accuracy and lower classification error, while maintaining comparable signal time-

liness.

RQ2: Risk-Adjusted Trading Performance. When translated into trading strategies, do signals
from LSTM and Transformer models yield superior risk-adjusted returns - measured by Sharpe,

Sortino, and Calmar ratios, as well as drawdown - compared to a buy-and-hold NASDAQ ETF?

H2: Deep learning-based strategies will achieve higher risk-adjusted returns by dynamically
adapting to transient market conditions identified through the Trarity labeling method, even

under leveraged trading conditions.

RQ3: Regime-Based Robustness. When the broader market regime is defined using hourly
candles (bull, bear, sideways), do LSTM and Transformer models continue to produce accurate
minute-by-minute predictions and superior risk-adjusted returns within each regime, com-

pared to a buy-and-hold approach?

H3: In all three regime types - bull, bear, and sideways - LSTM and Transformer models will
outperform buy-and-hold by maintaining forecasting accuracy at the one-minute level and

generating more favorable risk-adjusted results.

To validate these hypotheses, | employ paired statistical tests (e.g., Wilcoxon signed-rank) to
assess the significance of observed differences and construct confidence intervals around key
performance metrics. This rigorous inference framework ensures that any reported improve-
ments in classification or trading performance reflect true model advantages rather than ran-

dom variation.
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2. Literature Review

2.1 Financial Market Trend Prediction

Financial market trend prediction lies at the heart of both academic inquiry and real-world
asset management. Accurately anticipating directional moves underpins the design of trading
rules, informs portfolio allocation, and bolsters risk control (Jegadeesh & Titman, 1993; Lo &
MacKinlay, 1999). While classical methods such as ARIMA for return dynamics (Box & Jenkins,
1970) and ARCH/GARCH for volatility modeling (Engle, 1982; Bollerslev, 1986) have long
guided practitioners, advances in artificial intelligence and deep learning - particularly LSTM
and Transformer architectures - offer new paths to capture the complex, nonlinear patterns
that traditional econometrics miss (Fischer & Krauss, 2018). This section surveys the empirical
foundations of trend forecasting, contrasts momentum and mean-reversion approaches, and
explores the ongoing debate between the Efficient Market Hypothesis (Fama, 1970) and be-

havioral explanations of persistent market anomalies (Barberis, Shleifer, & Vishny, 1998).

2.1.1 The Importance of Trend Forecasting in Finance

Trend forecasting plays an important role in finance for several interrelated reasons. The ability
to identify uptrend, downtrend, and sideway market phases is crucial for making informed
decisions. This task becomes especially challenging when working with high-frequency data,
such as one-minute candles, which capture detailed market behavior but also include a lot of
noise and non-stationary patterns. The high resolution of this data can reveal temporary mar-
ket regimes that might be missed in lower-frequency data, potentially improving the timing of

trading decisions (Andersen, Bollerslev, Diebold, & Labys, 2003).

Al-based models, particularly those using neural networks like Long Short-Term Memory
(LSTM) networks and Transformers, have shown strong performance in identifying complex
patterns in financial time series. Studies indicate that deep learning techniques can forecast
trends more accurately than traditional statistical models and produce actionable signals for
trading strategies (Al-Khasawneh et al., 2024). The use of these models in algorithmic trading
is an area of active research, as they offer adaptability and predictive power during volatile

market conditions.
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2.1.2 Momentum and Mean-Reversion Strategies in Asset Pricing

Two complementary strategies underpin short-term trend prediction in equity markets: mo-

mentum and mean-reversion.

Momentum strategies posit that assets exhibiting the highest recent returns will continue to
outperform over the next brief interval. One defines a formation window (e.g., the preceding
five one-minute bars), computes each asset’s return, ranks assets by performance, and goes
long the top decile while shorting the bottom decile. This exploits under-reaction and herding,
yielding statistically significant excess returns (Jegadeesh & Titman, 1993; Lo & MacKinlay,
1990).

Mean-reversion strategies assume that when prices move far from their recent average, they
are likely to return to that average. Traders calculate a moving average over a longer window
(e.g., thirty one-minute bars), then look at how much the current price deviates from it. They
sell (go short) if the price is too high above the average and buy (go long) if it falls below.
Research shows that assets with poor past performance often outperform past winners over
longer periods (De Bondt & Thaler, 1985), and similar patterns appear over medium
timeframes (Lo & MacKinlay, 1990). In high-frequency trading, mean-reversion signals can ef-
fectively identify temporary overbought or oversold conditions, offering consistent - though

usually smaller - profits than momentum strategies (Stiibinger & Endres, 2018).

By updating both signals every minute, traders can detect short-lived trends and brief market
extremes at the same time. On a longer time scale, Gu, Kelly, and Xiu (2020) use deep learning
models on daily stock data and firm characteristics. They retrain their models regularly to keep
up with changing market conditions. Once trained, these models automatically combine sig-
nals like momentum, price, and others to predict next-day returns - outperforming traditional

linear models without the need for manual adjustments.

2.1.3 Behavioral Finance Versus the Efficient Market Hypothesis (EMH)

The theoretical debate between behavioral finance and the Efficient Market Hypothesis (EMH)
lies at the heart of trend prediction. The EMH posits that asset prices fully reflect all publicly
available information, rendering systematic outperformance impossible (Fama, 1970; Fama,

1991). In contrast, behavioral finance documents persistent investor biases - prospect-theory
5
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preferences, the disposition effect, overconfidence, and herding - that generate predictable

price patterns (Kahneman & Tversky, 1979; Shefrin & Statman, 1985; Odean, 1998).

While the EMH implies that any exploitable anomalies should vanish almost instantly, empiri-
cal studies find that short-term inefficiencies persist because of delayed information pro-
cessing and collective psychology (Odean, 1998; Banerjee, 1992). Deep learning models are
well suited to detect and adapt to these fleeting inefficiencies by continuously learning from
high-frequency data streams. By integrating behavioral insights (e.g., signals of overreaction
or herding) with advanced neural networks, researchers have built predictive systems that dy-
namically adjust to shifts in market regimes and translate these into profitable trading rules

(Gu, Kelly, & Xiu, 2020; Sirignano & Cont, 2019).

2.2 Traditional Forecasting Models in Finance

Traditional forecasting models - such as ARIMA (Box & Jenkins, 1970) and volatility frameworks
like ARCH (Engle, 1982) and its extension GARCH (Bollerslev, 1986) - have long underpinned
financial analysis. Meanwhile, technical indicators based on moving-average crossovers and
trading-sideway-phase breaks (Brock, Lakonishok, & LeBaron, 1992) and systematic pattern-
recognition methods (Lo, Mamaysky, & Wang, 2000) remain staples for practitioners. However,
when applied to non-stationary financial time series - where means, variances, and autocor-
relations shift abruptly - these approaches struggle: the stationarity assumption fails, model

parameters lose stability, and rule-based signals deteriorate in performance.

2.2.1 Time-Series Models: ARIMA and GARCH

The Autoregressive Integrated Moving Average (ARIMA) model combines past observations,
differencing to remove trends, and past forecast errors to produce stationary, linear forecasts.
Its suite of diagnostic tools - such as the autocorrelation and partial-autocorrelation functions
- facilitates rigorous model selection (Box & Jenkins, 1970). However, the ARIMA model as-
sumes constant volatility - an unrealistic simplification that conflicts with the well-documented

clustering of large and small returns in financial markets (Engle, 1982).
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Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models relax this assump-

tion by letting forecast variance respond to recent shocks. In a GARCH(1,1) specification,
02 = w+ agt | + po’ 4,

large past errors (2_;) and prior variance (c{_;) jointly drive current volatility estimates, cap-
turing clustered risk dynamics (Bollerslev, 1986). Empirical studies highlight the value of com-
bining these frameworks. Mohammadi and Su (2010) show that an ARIMA(1,1,1) model paired
with an APARCH(1,1) filter - an extension of GARCH that accounts for asymmetry and nonlinear
volatility effects - on weekly Brent-crude prices reduces the root-mean-square error to 3.72
and the mean absolute error to 2.54 - an 8-15 % improvement over standalone GARCH vari-
ants. Ersin and Bildirici (2022) show that a rolling-window ARIMA-GARCH(1,1) hybrid on the
S&P 500 reduces the mean absolute error (MAE), or average absolute forecast error, from
12.12 to 11.83 and the mean squared error (MSE), which penalizes larger misses more heavily,
from 310.37 to 303.04 (a 2.4 % improvement in both). In foreign exchange, West and Cho
(1995) report that a simple autoregressive model of squared returns produces weekly volatility
forecasts whose root-mean-square error (RMSE) - the square root of MSE, which brings the

error back into volatility units - is within 2 % of a GARCH(1,1) model.

Despite these gains, both ARIMA and GARCH remain fundamentally linear and assume a stable
data-generating process. Market regimes shift unpredictably under evolving investor senti-
ment, macroeconomic shocks, and structural breaks - patterns that linear models cannot cap-
ture without further extensions. Markov-switching models handle this by allowing key param-
eters - such as the mean, variance, or autoregressive coefficients - to shift between a small
number of predefined market conditions, like bull or bear phases. These shifts follow a Markov
chain, meaning the next condition depends only on the current one, not the full history. This
allows the model to automatically detect and adapt to changing market environments (Ham-
ilton, 1989). While ARIMA and GARCH thus provide invaluable baselines, their capacity to
model the non-stationary, nonlinear complexities of modern financial data is inherently lim-

ited.
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2.2.2 Technical Indicators

Technical indicators convert historical price series into rule-based trading signals. Two of the
most enduring classes are moving averages and volatility-adjusted thresholds. A simple mov-
ing average (MA) computes the arithmetic mean of the last m closing prices, smoothing high-
frequency noise to reveal underlying trends. Despite its ubiquity, the MA inherently lags rapid
market moves: when prices accelerate, the MA responds only after the new data fully enter
the window. Brock, Lakonishok, and LeBaron (1992) found that, in-sample (1897-1986), very
simple moving-average crossover and trading-range breakout rules generated statistically sig-
nificant excess returns even after deducting plausible transaction costs. Subsequent out-of-
sample tests (e.g., Sullivan, Timmermann, & White 1999; Park & Irwin 2007) show, however,
that those in-sample profits largely disappear once more realistic commissions, bid-ask

spreads, and corrections for selection bias (i.e., overfitting to historical data) are included.

Lo, Mamaysky, and Wang (2000) developed a way to “smooth out” day-to-day price swings
and automatically pick out a handful of well-known chart patterns. They ran this method on
U.S. stocks from 1962 through 1996. When they looked at how prices moved a few days after
each pattern appeared, they found that, on average, those signals were followed by a tiny
boost in returns - around 0.02-0.05 percent extra compared to doing nothing. In other words,
if you held a stock after seeing one of their detected patterns, you’d typically earn only a few

hundredths of a percent more than you would have if no pattern had shown up.

Parameter tuning is critical for both moving-average and pattern-recognition models. The win-
dow length governs the balance between responsiveness and noise reduction by setting how
many past observations inform each signal. The kernel bandwidth adjusts the influence of his-
torical data in nonparametric pattern fits, with narrow bandwidths capturing fine-scale fluctu-
ations and wider bandwidths producing smoother estimates. Threshold multipliers scale devi-
ation measures - often based on volatility - to define the minimum price move required before
a buy or sell signal is generated. Rigorous backtesting on historical data, combined with out-
of-sample validation, is essential to confirm that chosen thresholds deliver real trading gains
rather than chance artifacts. The bootstrap is like running many “what-if” experiments on your
data to see how often a supposed “winning” strategy could happen by pure luck. You shuffle

and resample your historical returns over and over, then see how often a rule that looks
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profitable actually comes from random chance. Sullivan, Timmermann, and White (1999) show

that once you do this, nearly all simple trading rules stop looking like they beat the market.

2.2.3 Addressing Non-Stationarity

Traditional statistical and rule-based models often fail when markets change, because average
returns and risk can shift, making fixed assumptions obsolete. Markov-switching models (Ham-
ilton, 1989) address this by letting parameters - such as expected return or volatility - move
between different market regimes as conditions change, so the model adapts automatically.
Alternatively, realized volatility measures (Andersen, Bollerslev, Diebold, & Labys, 2003) use
high-frequency intraday prices to update variance estimates continuously, allowing forecasts
to respond quickly to new turbulence. Both approaches improve robustness over fixed-param-
eter methods but demand more data and computing power, and Markov-switching can lag
when truly novel conditions arise. In short, while ARIMA, GARCH, and simple rule-based sys-
tems remain useful starting points, their static design limits effectiveness in today’s fast-mov-

ing, high-frequency markets.

2.3 Artificial Intelligence in Financial Forecasting

Advances in artificial intelligence - particularly deep-learning architectures such as LSTM net-
works and transformer models - offer powerful tools for uncovering complex, nonlinear pat-
terns in high-frequency data that traditional econometric methods cannot capture. By auto-
matically learning from time-series inputs and adapting parameters in real time, these models
promise greater forecast accuracy and resilience to regime shifts and market noise (Gu, Kelly,
& Xiu, 2020; Sirignano & Cont, 2019). The remainder of this chapter introduces the core Al

techniques employed in my high-frequency forecasting framework.

2.3.1 Core Deep-Learning Architectures
This section introduces the two neural designs that power the forecasting systems: the long
short-term memory network (LSTM) and the Transformer. Each consumes the same minute-

by-minute stream of prices and volumes but processes that stream in a fundamentally
9
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different way - the LSTM by updating a running internal “notebook,” the Transformer by allow-
ing every time-step to consult every other through self-attention. Grasping these contrasting

mechanics is essential before we examine how the models are trained and benchmarked.

Figure 1 illustrates the basic LSTM architecture, as explained by Hochreiter and Schmidhuber
(1997). Imagine the long horizontal line that crosses the dashed box as a trader’s pocket note-
book. In technical terms this is the cell state. It enters on the left as C;_; - everything remem-

bered up to the previous bar - and exits on the right as the updated memory C;.

Three colored regions inside Figure: 1 - LSTM Structure
the box are gates, tiny calcula- ’1’
tors that decide what happens g LSTM Memory Coll | ~
] Forget gate Input gate Output gate :
to the notebook. Each gate C,; = 20 g C,
1
. . tanh | !
contains a pink rectangle i r !
1 1
marked “c,” the Greek sigma : i
1 g g tanh a :
that denotes a sigmoid func- H | | | $ 1
8 by = YAl

tion. A sigmoid works like a
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’
]
1
1
1
1
1
1
1
1
1
1
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1
1
1
I
1
1
1
1
1
1
1
1
\
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dimmer switch, squeezing any

input into a value between 0 and 1. Source: (dida, 2025)

The turquoise strip is the forget gate. It looks at the new market data X; and the old hidden
summary h;_; (a brief snapshot of what the LSTM remembered at time t — 1). Its sigmoid
emits dimmer-switch values that multiply C;_, fading parts of the notebook so a meaningless

price spike can disappear.

Next comes the beige input gate. A second sigmoid scores how important the fresh infor-
mation is, while a tanh block (which narrows numbers into the -1 to 1 interval) prepares the
IIXII

candidate material to be written. Only the pieces that score highly pass through the pink

symbol and are added to what remains of the notebook, yielding the new cell state C;.

Finally, the green output gate decides what to reveal. Its sigmoid selects lines from C;; the
chosen lines flow through another tanh for scaling and emerge at the top as the new hidden
state h; (a brief snapshot of what the LSTM knows at time t). Because this notebook is contin-
ually updated and rewritten every minute, the LSTM retains durable patterns - such as a slow

upward drift - while ignoring random noise.

10
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As shown in Figure 2 and as explained by Vaswani et al. (2017), the Transformer behaves more
like a conference call than a notebook. Every input bar is first turned into an embedding, a
compact vector that captures its open, high, low, close and volume. A positional encoding -
extra numbers that say “this is minute 1, this is minute 2,” and so on - is then added so the

model never loses track of order.

Inside each large rectangle the yellow block Figure: 2 - Transformer Structure
marked multi-head self-attention lets every Py t, 3
minute listen to every other minute. For that
listening, the model silently builds three ma-

trices called queries, keys and values; com-

Feed

paring queries with keys produces similarity Forwerd

scores, and a softmax turns those scores into

Feed Attention

attention weights that sum to 1. Running sev-

Forward ) 3 Nx
eral of these comparisons in parallel yields |~ I'Tx%

multi-head attention: one head can focus on Wiatt-Head flroypes

Attention Attention
the last few bars, another on an earlier trend. R=—A—4 A= ==3

D — > S < jr—
After attention, the output is added back into  pasiona @—O
L. . Encoding f O’ ( 9 Er fir

the original flow so nothing gets lost. Then a e .

Embedding Embedding
normalization step adjusts the combined sig- I I
nal to a consistent scale, which helps the puss 4
model learn more smoothly. The blue block Source: (Ankit, 2024)

refines the data for each minute. By repeating these focus-and-refine steps N times (shown as
“Nx”), the model gains a strong, overall understanding of the entire sequence. This stack of

repeated steps on the left is called the encoder.

The decoder on the right starts with masked multi-head attention: “masked” means each po-
sition can look only at earlier positions, never at the future, so the model cannot cheat. Then
the model looks back at what the encoder has produced and combines it with what the de-
coder has generated so far. Next, it merges this combined information back into its main “work-
ing memory,” adjusts the values to keep things stable, and runs it through one more simple

processing step to sharpen the result. At the very top a linear layer converts the refined vectors

11
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into raw scores, and a final softmax turns those scores into actual probabilities for the next-

minute price movement.

In simple terms, an LSTM works like a careful note-taker who updates one page at a time,
keeping track of what matters and tossing out what doesn’t. A Transformer, on the other hand,
is more like a big round-table meeting where every minute in the sequence listens to every
other minute all at once. The long list of technical words - cell state, gates, sigmoid, tanh, em-
bedding, positional encoding, self-attention, multi-head attention, residual connections, layer
normalization, feed-forward, masked attention, and softmax - are just fancy names for every-
day actions: writing down and updating notes, deciding how much weight to give each piece
of information, labeling each minute, marking its place in time, letting each part “listen” to
others, having multiple “listeners” working in parallel, making sure nothing gets lost, keeping
numbers in a neat range, running the notes through a simple polish step, hiding future details

until it’s time to reveal them, and turning raw scores into clear probabilities.

2.3.2 Empirical Performance of LSTM and Transformer on the S&P 500

Several studies have evaluated deep-learning architectures on large equity indices. Wang,
Chen, and Zhang (2022) compare LSTM and a Transformer on daily S&P 500 closing prices from
2010 to 2020, training on the first 90% of observations and evaluating on the final 10% (ap-
proximately one year). They assess both one-day-ahead forecast accuracy and a simple long-
only trading strategy - measured over that same hold-out period - against a buy-and-hold

benchmark.

Table 1 below shows the one-day-ahead forecast accuracy on the S&P 500 for each model,

using three common error metrics: MAE, MSE, and MAPE.

Table: 1 - One-Day-Ahead Forecast Accuracy on S&P 500

Model MAE MSE MAPE
LSTM 0.1092 (+ 0.0256) 0.0236 (+ 0.0099) | 1.7768 % (+ 0.4001)
Transformer 0.0814 (+ 0.0131) 0.0145 (+ 0.0037) | 1.3800 % (+ 0.2163)

Source: (Wang, Chen, & Zhang, 2022)

As Table 1 shows, the Transformer cuts the MAE - the average deviation of its forecasts in index

points - by 25.5% (from 0.1092 to 0.0814) and the MSE - which penalizes larger errors - by

12
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38.6% (from 0.0236 to 0.0145) versus the LSTM, and posts a MAPE of just 1.38%, indicating its
one-day-ahead forecasts are, on average, within 1.38% of the S&P 500 level. This means the
Transformer not only makes smaller mistakes in raw points but also maintains consistently low
relative error, demonstrating both precise noise filtering and reliable performance across var-

ying market scales.

Using the same hold-out period and error forecasts, Wang, Chen, and Zhang (2022) also test a
simple long-only trading strategy on the S&P 500. Each strategy starts with the same amount
of money and updates its holdings each day based on the model’s prediction for the next trad-
ing day. Table 2 summarizes total return, maximum drawdown, and Sharpe ratio for each ap-

proach over the final 10 percent of the 2010-2020 sample.

Table: 2 - Long-Only Trading Strategy Performance on S&P 500

Strategy Total return (%) Max Drawdown (%) Sharpe Ratio
B&H 30.53 -41.43 0.54
LSTM 45.02 -34.55 0.79
Transformer 56.35 -28.50 0.99

Source: (Wang, Chen, & Zhang, 2022)
The buy-and-hold benchmark delivers a 30.53 % total return with a -41.43 % peak drawdown
and a Sharpe ratio of 0.54. Compared to this baseline, the LSTM-driven strategy increases cu-
mulative return by 14.49 percentage points, reduces maximum drawdown by 6.88 pp, and
boosts the Sharpe ratio from 0.54 to 0.79. The Transformer-based approach further amplifies
these gains, outperforming buy-and-hold by 25.82 pp in total return, cutting drawdown by
12.93 pp, and raising the Sharpe ratio to 0.99 - demonstrating not only superior forecast-driven

returns but also materially better risk-adjusted performance.

Taken together, these results demonstrate that, on the S&P 500 index, both LSTM- and Trans-
former-based strategies significantly outperform a buy-and-hold benchmark in cumulative re-
turn, drawdown reduction, and Sharpe ratio - with Transformer architectures delivering the
strongest predictive accuracy and trading outcomes - thereby establishing a new performance

standard for large-scale equity time-series analysis.
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2.3.3 Comparative Advantages & Disadvantages

ARIMA is popular because it’s easy to understand and interpret. It makes forecasts using past
values, recent errors, and simple adjustments for trends, and offers clear checks (like autocor-
relation plots and the Ljung-Box test) to confirm you’ve picked a good model (Box & Jenkins,
1970). Its main drawback is that it assumes volatility never changes, so it can’t handle the

bursts of high or low volatility we see in financial markets (Engle, 1982).

GARCH fixes that by letting today’s volatility depend on yesterday’s shock and yesterday’s vol-
atility, so it naturally captures periods of calm versus turbulence (Bollerslev, 1986). In practice,
combining ARIMA and GARCH often gives more accurate forecasts, but GARCH still relies on a
straightforward, linear formula for predicting returns and can struggle when the market sud-

denly shifts.

LSTMs solve the linearity issue by using “memory cells” that learn what information to keep
and what to discard. This makes them good at filtering out short-term noise in more detailed
(higher-frequency) data (Hochreiter & Schmidhuber, 1997; Wang, Chen, & Zhang, 2022). Their
downside is that they must process data step by step, which can be slow and requires careful

setup to avoid training problems.

Transformers take a different approach: instead of processing one step at a time, they let every
data point “look at” all others at once. This parallel attention helps them pick up both short-
term spikes and long-term trends more effectively than LSTMs (Vaswani et al., 2017; Wang et
al., 2022). However, this power comes at the cost of needing very large datasets and significant

computing resources to tune all the internal settings.

These trade-offs set the stage for the empirical work that follows. In Chapter 3, | describe the
minute-by-minute NASDAQ futures data, the feature engineering and regime-labeling proce-
dures, and the genetic-algorithm - driven model configuration that together form the back-

bone of my forecasting and trading framework.
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3. Data & Methodology

3.1 Data Collection & Preprocessing

The core of this study is a minute-by-minute record of the continuous NASDAQ Futures con-
tract from 2015 through the end of 2024 - ten years of market behavior, from calm periods to

sudden spikes. The continuous contract was chosen because it rolls seamlessly from one expi-

ration to the next, avoiding the gaps or incon- Figure: 3 - Trading-Candles/ Bars
sistencies that arise when transitioning be- Bullish Bearish
tween individual contracts. | downloaded High High
these one-minute candles as historical data — S‘;PPE’ N
aclow
from Rhythmics’ data feed via the ATAS trad- Close — Open
ing platform. A “candle” here is simply a snap- Real
Body
shot of price action over one minute, showing
. Open — Close
where prices opened, moved up to, fell to, Lower
Shodow
and then closed, as visualized in Figure 3. For
Low Low

each one-minute candle, | capture the follow-  Source: (Blueberry Markets Academy, 2025)

ing data fields: “time” (the exact timestamp), “open” (the price at the very start of the minute),
“high” (the highest price reached during that minute), “low” (the lowest price touched),
“close” (the price at the very end of the minute) and “volume” (the number of futures con-
tracts traded during that minute. Each contract is simply an agreement to buy or sell a fixed
amount of the underlying asset at a set price on a specified future date. As such, volume tells

us how active the market was in that interval).

Before beginning any forecasts or analysis, | discarded the first 49 one-minute bars of each
trading day. Many of my calculations require a history of data to produce reliable results, so
including those initial bars - when there isn’t enough past information - can create misleading
spikes. By removing them, every metric | compute starts with a sufficient stretch of prior data,
preventing those odd anomalies. | also adjust the timestamps so that each trading day effec-
tively “resets” at 00:00 - this accounts for summer-time and winter-time (DST) shifts and the
fact that the raw data sessions began at different local times when | downloaded them - en-
suring my models see every day on the same footing and making time-dependent patterns

easier to recognize before training begins on solid, dependable ground.
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3.2 Feature Engineering:

My goal was to give the models concise summaries of market behavior by converting raw price

and volume data into thirteen technical indicators - each capturing a facet of trading intensity,

trend direction, momentum, or volatility. As part of the third-semester Financial Trading Chal-

lenge in the Master in Finance curriculum, we used the CQG trading platform to compute and

trade with these indicators. These normalized signals help the model detect emerging trends,

reversals, and volatility shifts more reliably and earlier than raw data alone. Below in Table 3

is the list of indicators and the market characteristic each measures.

Table: 3 - Technical Indicators

Indicator | Category Description Additional Notes

volume | Volume | Thetotal number of shares or contracts traded | Serves as a direct
during each one-minute bar. measure of market

participation and li-
quidity.

Volume | Volume | A15-period simple moving average of volume, | Highlights underlying

SMA 15 smoothing out short-term spikes. shifts in trading activ-

ity.

OBV Volume/ | On-Balance Volume, a cumulative total that | Helps confirm price
Momen- | adds volume on up-bars and subtracts on | trends by showing
tum down-bars. whether volume sup-

ports moves.

EMA 14 | Trend A 14-period Exponential Moving Average of | Tracks short-term
closing prices, giving more weight to recent | trend direction with
data. responsiveness  to

new information.

EMA 60 | Trend A 60-period Exponential Moving Average of | Provides a smoother
closing prices, emphasizing longer-term | view of the prevailing
trends. market direction.

MACD Momen- | The difference between 12- and 26-period | Identifies shifts in

(12,26,9) | tum/ EMAs, often plotted with its 9-period signal | momentum and po-
Trend line. tential trend rever-

sals.

RSI 9 Momen- | The 9-period Relative Strength Index, an oscil- | Values above 70 or
tum/ Os- | lator that measures recent gains vs. losses. below 30 typically
cillator signal overbought or

oversold conditions.

16




Niklas Méahleke - 20232258

ADX 10 Momen- | The 10-period Average Directional Index, indi- | Values above 25 of-
tum/ cating trend strength regardless of direction. | ten denote a strong
Trend trend.

ATR 9 Volatility | The 9-period Average True Range, quantifying | Higher ATR reflects
market volatility by averaging true range val- | increased price varia-
ues. bility.

Bollinger | Volatility | Stochastic RSI, which applies the stochastic | Combines momen-

Width 21 formula to RSl values for generating more sen- | tum and volatility as-
sitive signals. pects.

Major Regime A binary flag (£1) derived from the Supertrend | Marks broad bullish

Trend Flag indicator with a wider multiplier (f = 4.5). or bearish regimes.

Signal

Minor Regime A binary flag (+1) from the Supertrend indica- | Detects shorter-term

Trend Flag tor with a narrower multiplier (f = 1.7). corrections  within

Signal the primary trend.

Close Price Re- | The percentage change between consecutive | Captures immediate

Log- turn closing prices. price movement as a

Return continuous  return

measure.

Source: (CQG, 2025)

3.3 Fractional Differentiation:

Although neural networks can handle non-stationary data, | chose to apply fractional differen-
tiation because preliminary internal tests indicated it improves model accuracy. Financial time
series like prices exhibit persistent trends and non-stationary drift that can mislead models if
not addressed. Fractional differentiation offers a middle ground: it makes the series stationary
enough for reliable modeling while preserving the long-run information that drives returns

(Granger & Joyeux, 1980; Hosking, 1981).

Rather than a full first difference, | compute a sequence of weights from the binomial formula
( 1)"(d)
wy = (— —
" k
where k is the lag in minutes and d € [0,1] controls how much of the series’ memory to re-

tain. The alternating sign (—1)* balances past values so the series stays centered, while (i)

causes weights to shrink as you go further back in time. | generate these weights one at a time
17
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and stop once |wk| < 107> - small enough to ignore without affecting the result but saving
computation. | then apply those three weights over a sliding three-minute window on the one-
minute NASDAQ futures series. In practice, that means each new value is a blend of the current
bar and the two bars before it, using the calculated weights. This three-minute window is
enough to capture the most important recent information - because later weights become so
small they don’t matter - so it keeps the series stable without losing key trends and remains
fast to compute. | then test each d (0 to 1 in 0.05 steps) for stationarity via an Augmented
Dickey-Fuller (ADF) test - which checks whether the transformed series stays stable rather than
wandering off - (p < 0.05) and choose the smallest d that preserves the series’ overall shape.
This procedure strips just enough drift to stabilize forecasts while keeping the long-term trends

that carry valuable market signals.

Although this approach can work well, it relies on an arbitrary 10> weight cutoff and a coarse
grid of d values tested in 0.05 increments, so it may miss optimal settings. The ADF test can
also fail when meaningful data correlations exist only briefly, and performing many sliding-

window calculations becomes prohibitively slow on very large, high-frequency datasets.

3.4 Indicator Calculations:

| chose each indicator’s parameters based on my own trading experience, applied fractional
differentiation (order d) only to the indicators based on price (specifically, the 14- and 60-bar
EMAs), and then ran all indicators - both those fractionally differentiated and those computed
on raw or log-transformed series - through a 30-day adaptive z-score normalization u/o + € -
both to smooth noise and remain responsive to true regime shifts (Ogasawara et al., 2010;
Andersen, Bollerslev, Diebold, & Labys, 2003). A 30-day window was selected because it
roughly corresponds to one trading month, providing enough data to filter out transitory spikes
while still adapting quickly when volatility regimes shift; shorter windows proved too noisy,
and longer windows lagged during rapid market changes. Concretely, if pt(d) is the fractionally

differentiated price at time t, its z-score is computed as

d
I Sl G CADY
pt 30D (p(d))t + €
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where, u3%Pand ¢3°? denote the rolling 30-day mean and standard deviation, respectively,
ande = 1 x 107%is a small positive constant to prevent division by zero when & is very small.
Applying the same 30-day z-score formula to volume, volatility, or any other series ensures
that each indicator lives on a common scale - so that, for example, a one-¢ move in volume
carries the same normalized weight as a one-a move in price - while still “remembering” only
the most recent 30 days of data. Ensuring all features share a common scale helps the neural
network learn more reliably (LeCun, Bottou, Orr, & Miiller, 1998): no single indicator can dom-
inate simply because its raw values are larger, and the model trains more stably and converges
more quickly. Fractional differentiation is applied only to price (and EMAs) to retain long-
memory effects in returns, whereas indicators like RSI, ADX, Bollinger width, and Supertrend
are already bounded or smoothed, so further differentiation or z-scoring would be redundant.

Separately, d is the fractional differentiation order, and sign(-) is the signum function, which
outputs +1 if its argument is positive and -1 otherwise - so sign (pt - STt(f)) yields +1 when

the price is above the Supertrend line and -1 when it is not.
The raw volume data is stabilized by computing the logarithmic difference:

In(1 + volume,) — u3°? (In(1 + volume)),
a3°P(In(1 + volume)), + €

volume; =

and its 15-bar simple moving average undergoes the identical transformation

In (1 + % > ; 1_40 volumet) — u3%%(In(1 + SMA, 5 (volume))),

3% (In(1 + SMA,s(volume))); + €

vol_smal5; =

On-Balance Volume is computed recursively via
OBV, = OBV;_4 + sign(pt — pt_l)volumet and then normalized as

OBVt - ,LL3OD (OBV)t
032 (0BV),; + €

obv; =

Trend and momentum are quantified by exponential moving averages over 14 and 60 bars,

each fractionally differentiated with order d = 0.35 and then z-scored:

ema,, = EMA(close,n),, frac_diff_normalize(ema,,0.35),,
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fracEMA, ; — u3°? (fracEMA,),
03 (fracEMA,); + € '

ema_normy, = n € {14,60}

The MACD series (fast = 12, slow = 26, signal = 9) is similarly centered and scaled:

MACD13 69, — 13°P (MACD),
03P (MACD); + €

macd; =
Classical momentum and trend-strength metrics include the nine-period Relative Strength In-
dex and the ten-period Average Directional Index, each scaled into [0,1] by dividing by 100:

RSI(9), 1o, = ADX(10),

9% =—750 ad¥10: 100

and by the width of 21-period Bollinger Bands, defined without further scaling as

BBupper,Zl,t - BBlower,Z 1,t

bWt =
BBmiddie,21,t

Market regimes are flagged by two Supertrend (ST) signals computed on ATR 7: the “major”

signal with factor 4.5 and the “minor” signal with factor 1.7, each assigning

signalgf) = {+1’ Pe > STt(f)f € {4.5,1.7}.
—1, otherwise,

Finally, immediate price momentum is encoded as the one-step close log-return, scaled by
1,000 for numerical stability:

rflose = 1,000 In (ﬂ)
Pt-1

After aligning and cleaning the data, the thirteen normalized indicator series serve as the in-
puts to my forecasting and classification models. The calculation of the indicators is provided

in the Python file “add_technical_indicators_more.py”.

Trarity’s algorithm labels each period as Trend Long (rising market), Trend Short (falling mar-
ket), or Range (sideways market) by detecting turns in the major Supertrend line and grouping
bars based on rising, falling, or sideways prices. Using rule-based criteria instead of fixed per-

centage thresholds ensures true market shifts are captured.

In Chapter 3.2, | detail this regime-labeling process, and in Chapter 3.3, | explain how a genetic-

algorithm framework is used for model selection and tuning.
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3.2 Market Regime Labeling

The following figure 4 shows how | classify each one-minute price bar into a specific market
regime: Trend Long, Trend Short, or Range. The method relies on smooth lines that reflect the
overall direction of the market. These lines help detect when the market is rising, falling, or
moving sideways. By following a clear set of rules based on price movements and trend be-
havior, the algorithm assigns each bar to one of the three regimes, producing structured, easy-
to-interpret training data for the neural network models.

Figure: 4 - Trarity Regime Detection

Trend Long
Trend Short
Range
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Price
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Bar Index

Source: (Trarity, 2025)

To create structured and meaningful labels for training my neural networks, | developed a rule-
based system that assigns each one-minute price bar to one of three market regimes: Trend
Long, Trend Short, or Range. The system works by comparing the market price to two
smoothed lines that represent the overall market direction. These are called the Major trend
line and the Minor trend line, and they are calculated using a method known as Supertrend,
which smooths out short-term noise and adapts to market volatility. These indicators act like
smart rulers that adjust themselves to the speed and direction of the market, helping identify

when the market is rising, falling, or moving sideways.

The Major trend line tracks the broader direction of the market. It is calculated using a 10-
minute lookback period and a volatility factor of 4.5, based on a 7-minute average of price

range (ATR). Every time the price crosses this Major trend line - from below to above or above
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to below - it signals the start of a new trend segment. For each segment between two cross-
ings, the algorithm checks whether the Major trend line ends higher or lower than it started.
If it ends higher, the segment is labeled as Trend Long. If it ends lower, it is labeled as Trend
Short. However, if the trend line changes direction too frequently within the segment (more
than 10 changes in 40 minutes), or if it remains almost flat in the period that follows, the seg-
ment is relabeled as Range. Specifically, if the difference between the forward-looking maxi-
mum and minimum values of the Major trend line is less than 0.0001%, the market is consid-

ered flat, and the regime is classified as Range to reflect a lack of clear directional momentum.

To improve accuracy, the algorithm also uses a faster-reacting Minor trend line, based on the
same 10-minute window but with a lower sensitivity factor of 1.7. This line detects local shifts
or pullbacks within larger trends. While the Minor trend does not override the main label, it

helps define where transitions between regimes may begin or end.

Lastly, to reduce noise, a smoothing rule is applied. If a single one-minute bar is labeled differ-
ently from both its neighbors - such as a lone Range bar between two Trend Long bars - it is
relabeled to match the surrounding trend. This ensures that the final labels are consistent and
realistic, avoiding misleading outliers caused by momentary fluctuations. As a result of this
process, each one-minute bar is labeled in a transparent, logical, and reproducible way. The
use of fixed parameters - ATR(7), Supertrend with n = 10 and f = 4.5 for the Major trend,
n = 10 and f = 1.7 for the Minor trend, a trend stability check using a 40-bar threshold, and
a forward flatness filter using a 60-bar window - ensures that the method is both replicable
and robust. These well-structured labels substantially reduce ambiguity in the training data,
allowing the neural networks to learn more efficiently and generalize more effectively to future

market conditions.

3.3 Building Fixed-Size Input Samples

Following Chapters 3.1 and 3.2, | started by creating a single CSV file that combined every
minute’s raw prices with the thirteen normalized indicators and their matching regime labels.
| then loaded this file in strict chronological order and turned each label into a simple number:
“Trend Long” became 0, “Trend Short” became 1, and “Range” became 2 - so the model could

work with numeric targets.

22



Niklas Mahleke - 20232258

Next, | needed to turn that continuous stream of minutes into uniform examples for the net-
work. To do this, | “slid” a fifty-minute window across the indicator columns. In other words,
for each minute t after the first fifty, | gathered the indicator values from minutes t- 50 through
t- 1 as one input, and | used the number at minute t as the correct answer. Because | wanted
the model to give a bit more emphasis to recent data, | applied a single exponential-decay
weight to each fifty-minute example: windows later in time received a slightly larger weight
than older ones. | determined that this per-sequence weighting consistently outperformed us-

ing no weights at all, while still preserving a simple workflow.

After building every fifty-minute example this way, | split them by calendar date into 90% for
training, 5% for validation, and 5% for testing - giving the model plenty of data to learn from
while still reserving small slices to tune parameters and check true unseen performance. Each
of these groups was saved as a PyTorch tensor - a neatly organized block of numbers that the

network can load instantly, like a stacked set of spreadsheets ready for training.

Neural networks require inputs of the same fixed size made up of past data only. This means
every example must cover exactly fifty minutes, and none of those minutes can include the
moment the model is trying to predict or any future minutes. By keeping every input the same
length and drawn only from data before the prediction point, the model learns genuine pat-
terns and doesn’t accidentally “peek” at the answer. Splitting strictly by calendar date also
ensures that validation and test examples come from later periods the model has never seen,

giving a realistic sense of how it will perform under new market conditions.

3.4 Automated Model Configuration

| chose a Genetic Algorithm (GA) because there were too many interdependent parameters
(explained in the next chapter) - how many hidden units and layers each network should have,
how quickly it learns (learning rate), how much dropout to apply, and, for the Transformer,
how many attention heads to use - so manually trying every combination would take too long
and likely miss good options. A GA begins with a small pool of random settings, evaluates which
ones perform best on a short training run, and then mixes and tweaks them over several
rounds, allowing the search to “evolve” toward strong configurations without exhaustively

testing every possibility (Holland, 1975).
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| created ten random configurations, each fixing those hyperparameters (with batch size al-
ways set to 512). An example is one piece of training data - say, one minute of market data
with its correct label. Processing 512 examples at once means the model looks at a group of
512 before it adjusts its settings. After seeing those 512 items, it checks how far off its guesses
were and decides how to change itself to do better next time. Using 512 at once gives a clear

direction for improvement without using too much memory.

To score a configuration, | trained its model on the training data for up to ten passes through
all examples (each pass is called an epoch). After each pass, | checked how well it did on a
separate validation set by looking at its average error (validation loss). If that error didn’t im-
prove for three passes in a row (patience = 3), | stopped early. The lowest error it reached on
the validation set became that configuration’s “fitness” (lower error is better). Fitness can be

defined as the proportion of correctly classified samples on the validation set.

N
1
fitness = Nz 1(y; = 9),
i=1

Where N is the total number of validation bars, y; is the true market phase of bar i, y; is the
model’s predicted market phase for bar i, and 1(-) is the indicator function, equal to 1 when

its argument is true and 0 otherwise.

After scoring all ten recipes, | organized them into random three-member “tournaments.” In
each tournament, the recipe with the highest validation accuracy advanced to the next gener-
ation. To maintain diversity and explore new possibilities, each advancing recipe then had a 20
percent chance of undergoing a “mutation,” where one of its settings was replaced by a new
random value. | repeated this cycle of evaluation, tournament selection, and mutation for ex-
actly six generations. At the end of the sixth generation, the single recipe with the best overall
validation performance was trained one final time - this time using both training and validation

data and allowing for slightly more epochs - to produce the final model.

After six generations, | took that overall best configuration and trained it one last time - still
splitting data into training and validation, still up to ten epochs, but now allowing five epochs

of no improvement (patience = 5) before stopping. This final run produced my best model.
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3.4.1 Transformer Model

Inspired by Han et al. (2021), | tested many different Transformer configurations and selected
the best-performing one. The final model consists of five consecutive processing layers (“en-
coder layers”), each with sixteen parallel “attention heads” and a hidden-state dimension of
thirty-two units. | used the genetic algorithm described earlier to tune these core settings,

arriving at the configuration shown in Table 6 on the next page:

Table: 4 - Transformer Model Configuration

Hyperparameter Value
Hidden size (d0de1) 32
Number of encoder layers 5
Number of attention heads 16
Dropout rate 0.084
Learning rate 7.47 x 107°

In plain terms, the hidden size controls how much information the model can carry at each
stage: a small value may miss important details, while a very large one can slow training and
cause the model to learn random noise. The five encoder layers represent successive steps of
data transformation - more layers can capture deeper patterns but also risk over-memorizing
examples. The sixteen attention heads allow the model to look at many different temporal
relationships in parallel: too few heads would restrict this view, while too many add complexity
without real gain. An 8.4 percent dropout rate means that, during training, the model ran-
domly skips about 8 out of every 100 of its internal calculations. Think of the network as a web
of small decision points. At each training step, roughly 8% of those points are temporarily si-
lenced and do not contribute. This prevents the model from relying on a few strong “shortcuts”
and forces it to learn patterns that hold even when some of its usual “helpers” are missing.
Finally, the learning rate (0.0000747) sets how big each update is when the model fixes an

error. This small value ensures updates aren’t too large and don’t overshoot the best solution.
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If it were larger, updates could go too far; if smaller, learning would be very slow. This rate

balances learning speed with stability.

| suspect that Transformers work particularly well for picking up long-term patterns in one-
minute data because their self-attention lets the model look at any two points in the series
directly. In other words, even an event from far back can still influence today’s forecast. Older
models tend to “forget” distant past information as they move forward step by step (Bengio,

Simard, & Frasconi, 1994), but Transformers avoid this by linking everything right away.

Because Transformers process all time steps in parallel rather than one at a time, training is
faster. They also produce attention maps that clearly show which past moments mattered most

for each prediction.Choose a building block.

Despite these strengths, the Transformer’s complexity demands substantial computing power,
which can be challenging for real-time or resource-constrained environments. The specific hy-
perparameter values found by the Genetic Algorithm may not transfer directly to other mar-
kets or time periods without fresh tuning, potentially leading to reduced accuracy. Addition-
ally, while attention maps offer a window into model behavior, they can sometimes be mis-
leading - high attention weight does not always mean true causal importance. Finally, although
dropout and learning rate settings helped prevent overfitting in my experiments, they remain

heuristic choices that might require adjustment for different datasets or market regimes.

3.4.2 LSTM Model

Inspired by Smagulova and James (2019) to use an LSTM for one-minute forecasting, | tested
many different configurations and selected the best-performing one. Key settings for this
model were discovered via the genetic algorithm, resulting in the configuration shown in Table

5 on the next page:
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Table: 5 - LSTM Model Configuration

Hyperparameter Value
Hidden size (d0de1) 64
Number of encoder layers 5
Dropout rate 0.3249
Learning rate 1.37 x 1074

In everyday terms, the hidden size of sixty-four determines how much recent price history the
LSTM can hold in memory: a smaller size would risk forgetting important minute-by-minute
moves, while a much larger one could slow training and pick up noise. Stacking five layers gives
the network the flexibility to recognize complex sequences of market behavior, and a dropout
rate of roughly 32 percent randomly silences connections during training to prevent the model
from simply memorizing past price swings. The learning rate (about 0.000137) determines how
big a step the network takes when it adjusts its knowledge after each few examples. This value

helps it learn fast enough without becoming unstable.

| also suggest that LSTMs work well for one-minute forecasts because they can decide which
recent information to remember and which to ignore. This helps them handle fast markets -
where the previous minute can influence the next - and prevents them from “forgetting” im-

portant details.

Although the LSTM’s memory mechanisms suit high-frequency data, training deep stacks of
five layers with high dropout can be time-consuming. Because the Genetic Algorithm defines
the optimal settings, applying this architecture to a different market or timeframe may require
rerunning the search. Finally, while a high dropout rate guards against overfitting, it can also
make the model less sensitive to subtle but meaningful patterns, highlighting a trade-off be-

tween regularization and expressiveness.
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4. Results & Analysis

4.1 Regime Classification Performance

| assess how well the LSTM and Transformer architectures classify each one-minute bar of
NASDAQ futures into three regimes - Trend Long, Range, and Trend Short - using a held-out
test set (July—December 2024) that the models never saw during training and validation,
thereby avoiding both overfitting and any lookahead bias (Section 3.1). Both models under-
went hyperparameter tuning via a genetic algorithm (Section 3.3), resulting in a two-layer
LSTM (64 units, 20 % dropout) and a five-layer Transformer (d_model = 32, 16 heads, = 8 %
dropout). Prior studies show that recurrent networks swiftly detect abrupt shifts (Smith & Lee,
2022) while attention mechanisms better capture extended dependencies (Zhang et al., 2023).
Accordingly, | hypothesize (H1) that both will outperform a static “always-Long” baseline in
multi-class regime detection, with the LSTM favoring rapid reversals and the Transformer ex-

celling at sustained trends.

4.1.1 Classification Error Distribution

To see not just how often the models are right or wrong but how big their mistakes are, | assign
each regime a number (Long = 1, Range =0, Short =—1) and then compute for each one-minute

interval the error
& = |code(p;) — code(t;)|,

where p; is the model’s prediction and t; is the true regime. This gives an error of 0 (exactly
right), 1 (confusing two neighboring regimes, Long <> Range or Range <> Short), or 2 (con-

fusing the most opposite regimes, Long € Short).

To assess the magnitude of these errors, | compute the mean error and its variance over the
173,385 held-out test intervals spanning July through December 2024. Table 6 on the following

page presents these statistics for both the LSTM and the Transformer.
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Table: 6 - Continuous Forecast Error Metrics for LSTM vs. Transformer

Metric LSTM Transformer
Mean Error -0.0414 -0.0146
Variance 0.3869 0.3896
Observations (n) 173,385 173,385

The Transformer’s mean error is closer to zero (-0.0146 vs. -0.0414), indicating fewer and
smaller mistakes compared to the LSTM. Its error variance is slightly higher (0.3896 vs. 0.3869),
meaning its errors are marginally more spread out around the mean. However, these differ-
ences are modest, and further evaluation is required to determine their statistical and practical

significance.

4.1.2 Balanced Accuracy and Macro F,

In a three-state regime classifier, simply reporting overall accuracy can be misleading: if one
regime (say, Trend Long) dominates the data, a model can score highly by focusing on that
regime and ignoring the others. To guard against this class-imbalance issue and ensure that
each regime is evaluated equally, | use balanced accuracy and macro F;. Balanced accuracy
treats each regime’s true-positive rate (recall) equally, so that correctly spotting a rare Trend
Short period carries the same weight as spotting a common Macro F; works by first measuring,
for each class, how well the model balances finding every true instance with avoiding false
alarms, and then averaging those class-level scores equally. In this way, a model is rewarded

only if it both identifies all real cases and keeps incorrect predictions to a minimum.

Concretely, for each regime c | count
TP.(True Positive) = {i|y, = ¢,y; = c}
FP.(False Positive) = {i|y, = c,y; # c}
FN.(False Negative) = {ily; = ¢, 9, # c}
Let 7, denote the regime predicted by the model for bar i, and let y; denote its true regime. A

true positive for regime ¢ occurs when 3, = c and y; = ¢, meaning the model correctly labels a

bar as regime c. A false positive occurs when 3, = ¢ but y; # ¢, meaning the model labels a bar
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as c even though it belongs to a different regime. A false negative occurs when y; = cbut %, # c,

meaning a bar truly in regime c is labeled by the model as something else.

| then compute

TP,
TP.+FP,’

TP,

_ _ 2P.R.
"~ TP.+FN.

" P.+R.

Precision =P, = Recall = R,

Fl,c

Here, precision P. measures how often the model’s “regime c¢” predictions are correct, recall
R, measures how many of the true regime-c bars the model actually finds, and the F; score

F; . is the harmonic mean of precision and recall, balancing the two.

Finally, the two aggregate scores are
1
Balance Accurcacy (BA) = 3 (RLong + Rpange + Rshort)

1
Macro F; = 3 (FlLong + FlRange + FlShort)

These metrics prevent the majority class from dominating evaluation and ensure strong per-
formance requires both high precision and recall across all regimes (Burez & Van den Poel,

2009); see Tables 7 and 8 for results.

Table: 7 - Balanced Accuracy and Macro F; Score

Metric LSTM Transformer Buy & Hold (B&H)
Balance Accuracy 0.6813 0.6762 0.3333
Macro F, 0.6832 0.6810 0.1667
Observations (n) 173,385 173,385 173,385

Table 7 demonstrates that both neural models substantially outperform a simple buy-and-hold
rule in multi-class regime classification. The LSTM achieves a balanced accuracy of 0.6813 and
a macro F; score of 0.6832, while the Transformer records 0.6762 and 0.6810. In contrast, al-
ways predicting “Trend Long” yields a balanced accuracy of only 0.3333 and a macro F; of
0.1667, since it never identifies Range or Short regimes. These results show that the neural
networks learn to distinguish all three market states, whereas the passive approach fails en-

tirely outside of up-trends.
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Table: 8 - Class-Level Precision, Recall, and F;-Score

Trend Type Model Precision Recall Fi_score
Trend Long LSTM 0.7461 0.7552 0.7506
Transformer 0.7715 0.7194 0.7446
B&H 1.0000 1.0000 1.0000
Range LSTM 0.5753 0.6093 0.5918
Transformer 0.5590 0.6543 0.6029
B&H 0.0000 0.0000 0.0000
Trend Short LSTM 0.7372 0.6792 0.7070
Transformer 0.7420 0.6548 0.6957
B&H 0.0000 0.0000 0.0000

Table 8 breaks down performance by regime and highlights each model’s trade-offs alongside
the buy-and-hold baseline. In the Trend Long regime, the Transformer attains higher precision
(0.7715 versus the LSTM’s 0.7461) but lower recall (0.7194 versus 0.7552), yielding Fi-scores
of 0.7446 and 0.7506 respectively. This means the Transformer produces fewer false Long sig-
nals but misses more genuine up-moves, whereas the LSTM captures a larger share of actual
rallies at the cost of more false alarms. Buy-and-hold by definition scores perfect precision and

recall (1.0000) for Long - because it always predicts that class - resulting in an F; of 1.000.

In the Range regime, the Transformer achieves higher recall (0.6543 versus the LSTM’s 0.6093)
and lower precision (0.5590 versus 0.5753), producing Fs-scores of 0.6029 and 0.5918. Both
models demonstrate at least moderate ability to identify sideways bars, while buy-and-hold

fails completely (precision = recall = F; = 0.0000).

For Trend Short, precision converges for both neural architectures (0.7420 for Transformer,
0.7372 for LSTM), but the LSTM’s greater recall (0.6792 versus 0.6548) translates into a higher
Fi-score (0.7070 against 0.6957). Again, buy-and-hold cannot detect down-trends at all (zeros

across precision, recall, and Fy).

No single model dominates across all regimes. For Trend Long, the Transformer’s higher preci-
sion shows it throws out fewer false positives, while the LSTM'’s higher recall means it captures

more genuine rallies. In Range, the Transformer swaps roles - catching more sideways bars
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(higher recall) but at the cost of more false positives (lower precision). In Trend Short, the LSTM
again edges out on recall. Meanwhile, the buy-and-hold baseline fails entirely on Range and

Short, highlighting the challenge of correctly classifying all three market phases.

4.1.3 Signal Timing (Prediction Delay)

In live trading, it is not enough for a model simply to identify market regimes correctly - it must
also react quickly to regime shifts. Even a small lag in signaling a new trend can leave positions
exposed to adverse moves or cause missed profit opportunities. To quantify each model’s re-

sponsiveness, | record, for every true regime-change event j the prediction delay (d)

d

i = tsignal — Lonset,j»

where t,nse; Marks the first candle of the new regime and tg;gnq; the first correctly labeled
candle. Over 1,684 events, both models exhibit nearly identical mean delays (LSTM 9.43 bars,
Transformer 9.38 bars) and medians (5 bars). A paired t-test on the delay differences yields

t = 1,32, p = 0.188, indicating no significant difference in average reaction time. Table 9
presents the full distribution of lag lengths; compared to the LSTM, the Transformer’s upper
tail is noticeably shorter - its maximum lag is 129 bars rather than 146 - showing that the
Transformer rarely produces very long lag events, reflecting how attention mechanisms

smooth predictions (Li et al., 2021).

Table: 9 - Delay Statistics for LSTM vs. Transformer

Statistic LSTM Transformer
Mean Delay (bars) 9.431 9.379
Median Delay 5 5
25t percentile 1 1
75t Percentile 13 12
Min Delay -2 -2
Max Delay 146 129

Because the differences in delays may be non-normally distributed - featuring a long tail of
extreme values and some outliers - | do not rely on the paired t-test, which assumes normally
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distributed differences, and instead also use the Wilcoxon signed-rank test, a nonparametric
alternative that makes no assumptions about distribution shape (Wilcoxon, 1945). To begin, |

compute each paired difference.
dj = LSTM delay; — Transformer delay;

and discard any cases with d]- = (. For the remaining n nonzero differences, | rank the absolute

values |d]-| in ascending order, calling each rank R;. | then sum these ranks separately for pos-
itive and negative differences:

w Z R; w- Z R;

dj>0 dj<0
Here, W™ collects the ranked delays for events in which the Transformer out-paced the LSTM,

while W™ collects those where it lagged behind. Under the null hypothesis of equal median

delays, we have

nn+1) nn+1)2n+1)

E(W) = YR Var(W) = >4

and the standardized statistic

Wt — E(W)

JVar(W) '

Follows roughly a standard normal distribution, allowing us to calculate a two-sided p-value.

7Z =

By ranking the differences instead of using their raw values, it stays reliable even when the
data are unevenly distributed or include extreme values. Table 10 reportsn, W*, W, z-
score, and p-values.

Table: 10 - Wilcoxon Signed-Rank Test on Delay Differences

Regime Set n w+ W~ z-score p-value
Long delays 1,505 70.944.5 60.641.5 -30.01 <0.001
Short delays 1,504 69.945 39.015 -31.28 <0.001

In both subsets the two-tailed p-value is effectively zero, confirming that - even without as-

suming normality - the Transformer’s delay distribution is significantly shifted toward fewer

extreme lag events compared to the LSTM. Both z-scores (-30.01 and -31.28) are over thirty
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standard deviations from zero, meaning it’s virtually impossible these differences arose by
chance - firmly confirming the Transformer’s faster reaction. Because W™ (the sum of ranks
where the LSTM'’s delay exceeds the Transformer’s) far exceeds W™, the signed-rank distribu-
tion is skewed toward positive differences. In practical terms, this means the Transformer more
often registers shorter delays than the LSTM, particularly by avoiding the longest lag events,

and thus delivers more consistent, timely regime predictions.

Finally, | perform paired t-tests separately on long-trend and short-trend delays to check for
regime-specific differences. For n = 543 long-trend events, mean delays of 9.93 (LSTM) vs.
10.33 (Transformer) yield t = —0.97, two-tailed p = 0.332. For n = 500 short-trend events,
mean delays of 8.44 vs. 7.47 yield t = 1.74, two-tailed p = 0.082. Neither reaches statistical
significance at the 5% level (Table 11), confirming that within each regime the two architec-

tures react at comparable speeds. An illustration of the delay distribution is provided in Ap-

pendices 1-6.
Table: 11 - Paired t-Tests on Regime-Specific Delays
Regime n Mean (LSTM) MEAN (Transformer) t-stat p-value
Long delays 543 9.336 10.328 -0.971 0.332
Short delays 500 8.438 7.466 1.743 0.082

Together, the parametric and nonparametric tests demonstrate that while the Transformer ex-
hibits fewer extreme lag outliers, its average reaction speed does not differ significantly from

the LSTM'’s, either overall or within long- and short-trend regimes.

4.1.4 Regime Classification Performance: Answering RQ1

The LSTM and Transformer both deliver classification performance that far exceeds a naive
buy-and-hold approach, thereby affirming RQ1/H1. As Table 7 shows, the LSTM attains bal-
anced accuracy 0.681 and macro F, 0.683, while the Transformer achieves 0.676/0.681, com-
pared with just 0.333/0.167 for always-Long. Table 8 confirms that each model meaningfully
identifies Long, Range, and Short regimes - capabilities the passive rule lacks - and highlights a

trade-off: the LSTM prioritizes recall (catching more true shifts), whereas the Transformer
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prioritizes precision (issuing cleaner signals). Both architectures maintain mean reaction delays
under ten bars (p = 0.188), showing no loss of timeliness. Thus, one might prefer the LSTM
when missing a genuine regime change is especially costly, while the Transformer could be the

better choice for strategies that prioritize cleaner signals over longer trends.

4.2 Risk-Adjusted Trading Performance

Having established in Section 4.1 that both the LSTM and Transformer models outperform a
naive buy-and-hold classifier in minute-by-minute regime identification, | now turn to the prac-
tical question of economic value: when these predictions are translated into round-trip trades,

do they generate superior risk-adjusted returns?

4.2.1 Trade Execution Rules and Cost Model

At the close of each one-minute bar t, the models issue a three-way forecast for bar t + 1:
“Trend Long,” “Trend Short,” or “Range.” If the forecast is “Trend Long,” the strategy opens a
single long position in the E-mini NASDAQ futures contract at the open of bar t + 1. If it is
“Trend Short,” it opens a single short position at that same open. Whenever the forecast re-
turns “Range,” no position is held. Once a position is open, the strategy checks the model’s
next forecast at the close of each subsequent bar. As soon as the forecast changes away from
the current direction - so that a long becomes anything other than “Trend Long,” or a short
becomes anything other than “Trend Short” - the position is closed at the next bar’s open. This
ensures at most one contract is held at any time, and every entry and exit is strictly determined

by consecutive regime forecasts.

To ensure realism, every round-trip trade incurs a fixed fee of S5 per contract, reflecting the
highest commission level | observed for E-mini NASDAQ futures among major retail brokers.

Profits and losses compound continuously on the evolving equity balance.

The very first trade in the simulation was triggered on 2024-07-05 12:30:00, and the final exit
occurred on 2024-12-31 21:29:00. All results reported below - including equity curves, returns,
and risk measures - derive from this sample of round-trip signals under the stated cost and

execution assumptions.
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4.2.2 Overall Backtest Results

Most trading strategies fail to outperform a simple buy-and-hold approach. To assess whether
Trarity’s trend models offer a genuine advantage, | compare LSTM and Transformer models -
trained with Trarity’s novel labeling method - against an unleveraged buy-and-hold NASDAQ
ETF.

A leveraged ETF benchmark was excluded: a $6,722 early drawdown would have resulted in a
$134,440 loss with 20x leverage - nearly triple a $50,000 account - causing immediate liquida-
tion. This setup ensures a fair, realistic, and risk-aware comparison. While passive strategies
cannot safely support high leverage, active models with proper risk management may use it

to generate strong returns from limited capital.

Figure 5 plots two equity curves for a $50.000 notional over 129 trading-days: the blue line
shows the LSTM-based strategy executing 5.638 trades, and the orange line shows the buy-

and-hold position.

Figure: 5 - LSTM - Equity Curve - 50k Investment
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To align the time axis with the trade count, | have cumulatively compounded the one-minute
returns of the buy-and-hold strategy only on those same 5.6385 “trade” intervals, effectively

scaling its continuous price path to the LSTM’s trade frequency. Early in the sample, the LSTM
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strategy’s equity rises to $55.778 before plunging to its lowest point of $32.283, whereas the
scaled buy-and-hold equity moves more gently from $51.160 down to $43.288. After that
drawdown, the LSTM curve gradually recovers through a series of smaller gains and setbacks,
crosses above the passive line around trade 1.046, and reaches its highest point at $98.738.
By the final trade on December 31, the LSTM strategy ends at $96.518, compared with $51.987
for the buy-and-hold - corresponding to $2.325 without leverage, which is $339 more than
buy-and-hold. This comparison under simulated live conditions demonstrates the LSTM’s abil-
ity both to weather deep interim losses and to produce substantially higher end-of-year equity

than a simple passive investment.

Figure 6 displays the simulated live equity of a $50.000 account traded by the Transformer
strategy (blue) against a buy-and-hold position in a NASDAQ ETF (orange) over 129 trading-
days and 6.278 trades.

Figure: 6 - Transformer - Equity Curve - 50k Investment
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The Transformer curve initially falls to its lowest point at $34.804, while buy-and-hold moves
more gradually from $51.160 down to $43.288. From that early drawdown, the strategy rallies
to its highest peak of $87.011 - well above the buy-and-hold high of $51.160 - before a mid-
period pullback to $53.086 (versus a more ranging growth in the passive position). In the final

phase, the Transformer recovers to close at $77.034 on December 31, compared with $51.987
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for buy-and-hold - corresponding to $1.352 without leverage, which is $635 less than buy-and-
hold. This chart highlights the strategy’s worst interim loss, its maximum equity level, and its
closing capital under simulated live conditions, illustrating that it produces more volatile but

higher returns under leverage than the unleveraged buy-and-hold ETF.

Although the Transformer’s maximum drawdown of 39.4 percent is marginally less severe than
the LSTM'’s 42.1 percent, its equity curve features noticeably higher intra-trade volatility and a
much longer period spent below its previous peak. In the simulated live run, the Transformer’s
equity hovers near its trough for an extended sequence of trades before slowly climbing back,
whereas the LSTM, despite a deeper initial decline, rebounds more quickly and reaches new
highs in fewer trades. This prolonged drawdown period makes the Transformer’s overall risk

profile less attractive, even though it avoids the single worst drawdown of the LSTM.

Building on the comparative equity trajectories in Figures 5-6, Table 12 summarizes each strat-
egy’s overall trading performance over July-December 2024 - including profit factor, win rate,
CAGR, risk-adjusted ratios (Sharpe and Sortino), maximum drawdown, and Calmar ratio -
alongside the buy-and-hold NASDAQ ETF benchmark. These metrics provide a more nuanced
view of each model’s risk-return profile and practical trading performance beyond simple re-

turn comparisons.

Table: 12 - Overall Trading Performance

Profit Win . Sharpe Max Max Sortino | Calmar
Factor Rate CAGR| rf daily Ratio | Negative |Drawdown| Ratic | Ratio
LSTM 0,8838| 48,84%|1,5517|0,0163%| 1,2900( -28,39% 42,12%| 2,3166| 3,6837
Trans. 0,5872| 45,74%|(0,2286|0,0163%| 0,7754| -27,67% 39.41%| 1,3741] 1,2547
B&H 0,0762(0,0163%| 0,2606| -12,85% 16,38%| 0,3575| 0,4650

In Table 12, | convert each strategy’s one-minute trade and intra-day P&L signals into a single
compounded daily return - ensuring that buy-and-hold, Transformer, and LSTM are directly
comparable on the same daily-return scale using the 2024 US Treasury rate as the risk-free rate
(4.2 % p.a., or 0.0163 % per trading day) - and then annualize both Sharpe and Sortino ratios
alongside profit factor, win rate, CAGR, maximum drawdown, and Calmar ratio for the July-

December 2024 period.
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Over the 129 trading-day sample, a simple buy-and-hold position in a NASDAQ ETF vyields a

Sharpe ratio of 0.26, a Sortino ratio of 0.36, and a Calmar ratio of 0.47.

The Transformer strategy more than doubles these benchmarks: its daily-scaled Sharpe of 0.78
is three times that of buy-and-hold, its Sortino of 1.37 nearly quadruples the passive figure,
and its Calmar of 1.25 is almost three times higher. These gains persist despite the Trans-
former’s worst-trade loss of -27.7 % and its 39.4 % peak drawdown, showing that the model’s
regime-based entries and exits yield substantially better risk-adjusted returns than passive

ownership.

The LSTM strategy improves further. Its Sharpe ratio of 1.29 corresponds to nearly five times
the volatility-adjusted return of buy-and-hold, and its Sortino of 2.32 implies over six times the
downside-adjusted return. With a Calmar ratio of 3.68 - despite a worst negative drawdown
of -28.4 % and a 42.1 % max drawdown - the LSTM delivers the highest return per unit of peak-

to-trough decline.

By scaling all performance to daily returns, | clearly demonstrate that both Al-driven strategies
outperform passive investing on every major risk-adjusted metric, with the LSTM showing the
greatest improvement. However, these gains come alongside substantially larger peak-to-
trough drawdowns (42.1 % for LSTM, 39.4 % for Transformer versus 16.4 % for buy-and-hold),
meaning that while the Al strategies deliver higher return per unit of volatility and downside

risk, they also expose the portfolio to deeper interim losses and a higher absolute risk profile.

4.2.3 Statistical Significance of Daily Returns

To assess whether the differences in average daily returns reflect true effects rather than
chance, | performed paired t-tests on the 129 matched daily return observations for each strat-
egy pair. Table 13 on the next page reports the mean daily return for each series, the t-statistic,
degrees of freedom, and two-tailed p-value for three comparisons: LSTM vs. Transformer,
LSTM vs. Buy-and-Hold, and Transformer vs. Buy-and-Hold. In this table, “Mean Return A” is
the average daily return of the first-named strategy in each comparison, and “Mean Return B”

is that of the second.
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Table: 13 - Paired t-Test Results for Daily Returns

Comparison Mean Return | Mean Return | t-Statistic df p-Value
A B (two-tailed)

LSTM vs. 0.6851% 0.4552% 0.80 128 0.426
Transformer

LSTM vs. 0.6851% 0.0373% 0.87 128 0.386
Buy-and-Hold

Transformer vs. 0.4552% 0.0373% 0.51 128 0.611
Buy-and-Hold

None of the p-values fall below the 0.05 significance threshold, indicating that the differences
in mean daily returns are not statistically significant. These findings suggest that the Al models’
better Sharpe, Sortino, and Calmar ratios come from stronger risk control - such as avoiding
long losing streaks and poor entry points - rather than from simply having a higher baseline
return. Notably, this is achieved despite the models trading at 20x leverage, underscoring their

ability to control downside risk through selective trade execution.

To make the source of performance differences more transparent, | back-solve implied daily

volatility using the Sharpe identity (Sharpe, 1994):

Q
Q
121 RS

where W is the mean daily return and S is the Sharpe ratio. This approach allows me to isolate
and quantify the risk component underlying each strategy's Sharpe ratio. By combining the
mean returns and Sharpe ratios reported in Table 12, | obtain the following estimated volatili-

ties:

O1sTM = 053% UTTansformer = 058% Op&H = 014‘%

These results demonstrate that, despite using 20x leverage - which produces substantially
larger return swings - the Al models still achieve high Sharpe ratios, reflecting returns adjusted
for risk. Because the Sharpe ratio divides excess return by volatility, a rise in volatility without
a matchingincrease in returns would reduce this metric. Maintaining a high Sharpe ratio under
these conditions indicates effective trade timing and risk management.
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4.2.4 Risk-Adjusted Trading Performance: Answering RQ2

RQ2 asks whether translating minute-by-minute regime forecasts into round-trip trades pro-
duces superior risk-adjusted returns and smaller drawdowns than buy-and-hold. The evidence
shows that both the LSTM and Transformer deliver materially higher annualized Sharpe and
Sortino ratios and markedly larger Calmar ratios than a static long NASDAQ-100 ETF, even

though their average daily returns do not significantly differ from the ETF’s.

That edge does not stem from lower raw volatility; in fact the strategies are far more volatile
in absolute terms. Back-solving from the observed means and Sharpe ratios gives daily stand-
ard deviations of = 0.53 % for the LSTM and = 0.58 % for the Transformer, roughly four times
the ETF’s 0.14 %. The superior ratios arise because (i) the models earn proportionally higher
returns whenever they are in the market under 20x futures leverage, and (ii) they spend many
bars flat during “Range” forecasts, cutting off the worst losses and limiting drawdowns com-

pared to maintaining a continuous 20x long exposure.

Although their maximum peak-to-trough losses (= 42.1 % for LSTM, = 39.4 % for Transformer)
exceed the ETF’s 16.4 %, those drawdowns are still far below the 100 % wipe-out that a naive
20x buy-and-hold futures position would suffer on the same underlying decline. Transaction

costs of S5 per round-trip are fully included.

Taken together, these results indicate that deep-learning signals can dynamically scale expo-
sure to favorable regimes, producing a better return-to-risk trade-off conditional on heavy lev-
erage. A formal regime-specific examination follows in Chapter 4.3 (answering RQ3). Finally,
the very high turnover - 5.638 trades for the LSTM and 6.278 for the Transformer over six

months - highlights the need for additional, longer-horizon out-of-sample validation.

41



Niklas Méahleke - 20232258

4.3 Regime-Conditional Performance

To address RQ3 - whether the minute-by-minute forecasts and trading gains of LSTM and
Transformer remain robust when markets enter prolonged bull, bear, or sideways phases - |
first apply my startup’s “Trarity” regime-labeling procedure from Section 3.2 to one-hour can-
dles, as illustrated in Figure 7. This allows me to analyze how well the models perform during
broader bull, bear, or sideways phases. The goal is to see whether the models can adapt their
short-term predictions to the larger market regime, or whether their performance drops when

trading in regimes that are not favorable to their strategy.

Figure: 7 - Regime Labeling
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Source: (Trarity, 2025)

This process paints extended bull (green), bear (red), and sideways (blue) regions on the hourly
price series. | then group every minute-level long and short trade by its containing hourly re-
gime, plot each strategy’s terminal equity for both long-only and short-only trades, compare
risk-adjusted metrics (Sharpe, Sortino, Calmar, and maximum drawdown) across regimes and
models, and conclude with paired t-tests on the regime-specific daily returns to assess statis-
tical significance. The hourly labeling yields 1.113 bull hours, 1.017 bear hours, and 760 side-
ways hours; within these, the LSTM executes 984 long/860 short trades in bull regimes, 1.229

long/1.192 short in bear, and 728 long/645 short in sideways, while the Transformer places
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1.051 long/956 short trades in bull, 1.387 long/1.375 short in bear, and 818 long/691 short in
sideways. By contrast, a passive buy-and-hold ETF position is active for 37 bull regimes, 32 bear
regimes, and 39 sideway regimes. Table 14 summarizes these regime durations and trade

counts for both Al strategies and the buy-and-hold benchmark.

Table: 14 - Market Regime Durations and Trade Counts by Strategy

Bull Bear Sideways
Hours 1.113 1.017 760
LSTM (Long Trades 954 1.229 725
Short Trades 860 1.192 645
Trans. |Long Trades 1.051 1.387 818
Short Trades 956 1.375 691
B&H |Long Position 37 32 39

4.3.1 Long-Only Equity Performance by Regime

To better understand how each model performs under different market conditions, | isolate
long-only trades within each regime. This allows me to assess whether the models generate
most of their gains in specific phases (e.g., bull markets) or maintain consistent performance
across regimes. Figure 8 illustrates the resulting terminal equity from a $50,000 account, bro-

ken down by regime.

Figure: 8 - Long-Only Strategy Terminal Equity Across Regimes
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In bull regimes, a passive buy-and-hold position in the NASDAQ ETF grows from $50.000 to

$71.845, reflecting a simple equity exposure. By contrast, the LSTM'’s selective long signals on
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the leveraged E-mini NASDAQ futures more than double this outcome - ending at $99.609 -
even after accounting for the S5 round-trip fee per contract (covering both entry and exit); the

Transformer’s long-only strategy likewise achieves $91.566.

During bear regimes - sustained hourly downtrends - the unleveraged ETF position falls about
39 percent, from $50.000 down to $30.625. By contrast, a leveraged long futures position on
5 percent margin (20x leverage) would amplify that same market drop into a catastrophic 780
percent loss if held outright. In practice, the Al strategies still end up with larger nominal losses
than the ETF - they reduce the drawdown but cannot fully avoid it under heavy leverage. Spe-
cifically, the LSTM’s long-only trades finish at $20.608 (a 59 percent drop) and the Trans-
former’s at $11.775 (a 76 percent drop). These results show that while minute-level regime
forecasts help the models exit before the worst of a leveraged collapse, the leverage itself still

produces deeper percentage losses than a non-leveraged ETF in a bear market.

In range/ sideways regimes, when the hourly trend remains range-bound, the buy-and-hold
ETF finishes at $49.939, essentially flat over the sample. The LSTM’s futures-based long signals
yield $50.500, and the Transformer’s produce $51.219, showing modest upside capture even

when price action is choppy.

These results demonstrate that both neural models deliver greater upside in bull markets than
a passive ETF while still capping downside compared to a static future long - even after ac-
counting for realistic $5 round-trip fees. However, because these strategies trade futures on
20x leverage, any mistimed exit can turn a modest reversal into a much larger drawdown, as
seen in the deeper percentage losses during bear regimes. This amplification of gains and
losses makes robust risk and margin controls - and ongoing monitoring of slippage and financ-
ing costs - essential when deploying these models in live trading. Over the July-December 2024
period, the LSTM long-only trades generated a net return of $20.717 and the Transformer
$3.560, compared with $2.409 for a static buy-and-hold ETF.

4.3.2 Short-Only Equity Performance by Regime

To complement the long-only analysis, | also examine short-only performance across regimes.
This allows me to assess whether the models can generate consistent gains from short trades
during periods when market conditions are favorable. Since a buy-and-hold strategy cannot
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take short positions, no passive benchmark is shown. Figure 9 presents the resulting terminal

equity from a $50,000 account.

Figure: 9 - Short-Only Strategy Terminal Equity Across Regimes
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The LSTM’s short bets in a bull regime fall to $10.865 and the Transformer’s to $-10.289, re-
flecting the inevitable cost of betting against a rising market on a bigger time scale on 20x

leveraged futures.

During bear regimes - extended hourly downtrends - both models excel: the LSTM'’s short sig-
nals grow the account to $102.761, while the Transformer’s more aggressive entries push eg-
uity to $123.298. These results underscore how effectively minute-level forecasts can capture

downward momentum that a passive long position cannot.

In range/sideways regimes, when price moves back and forth without a clear trend, both strat-
egies still find profit opportunities. The LSTM’s short trades finish at $59.848 and the Trans-
former’s at $62.792, demonstrating that even in choppy markets the models can identify brief

pullbacks and reversals worth trading.

These results highlight that even after absorbing losses in bull regimes, the Transformer and
LSTM strategies generate net profits of $25.801 and $22.474, respectively - outcomes a static

buy-and-hold approach cannot achieve.
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4.3.3 Risk-Adjusted Performance of Long-Only Trades

To evaluate not just absolute performance, but also how well the models manage risk across
different market regimes, | compute key risk-adjusted metrics for long-only trades. These in-
clude Sharpe, Sortino, and Calmar ratios, alongside profit factor, win rate, CAGR, and maximum
drawdown. Table 15 summarizes these metrics by regime, providing a more nuanced under-
standing of whether the models’ gains are achieved efficiently and sustainably, particularly

when compared to a passive buy-and-hold benchmark within each regime.

Table: 15 - Long-Only Strategy Performance by Regime

Profit Win Sharpe Max Sortino Calmar
Long Trades CAGR | rf_daily . ) )
Factor Rate Ratio | Drawdown |Ratio Ratio
LSTM 3,8655|60,38%| 5,2195(0,00016| 4,0461 5,14%| 13,6485|101,5938
Bull Trans| 2,9038|54,72%| 3,5265(0,0001&| 3,2826 8,10% 9,4523] 43,5192
Market | eH 1,3287|0,00016| 6,9137 0,88%|422,8661| 151,7489
LSTM 0,5886|31,75%| -0,7367(0,00016| -1,9586 59,22%| -2,6439| -1,2440
MBa::;t Trans| 0,4747|30,16%| -0,8144(0,0001&6| -2,9223 80,13%| -3,6655( -1,0163
B&H -0,5334|0,00016( -8,8420 38,75% | -7,7246| -1,3765
LSTM 1,0250|47,73%| -0,0114(0,0001&6| -0,0869 6,60%/| -0,1263| -0,1724
:::I(g:t Trans| 1,0581|53,49%| 0,0173(0,00016| 0,0261 6,47% 0,0387 0,2682
B&H -0,0109]|0,00018( -0,3330 2,56%| -0,4868| -0,4232

In bull regimes, both Al strategies deliver exceptional risk-adjusted returns on long trades. The
LSTM achieves a profit factor of 3.87, correctly captures 60.4% of bullish moves, and com-
pounds at 5.22% CAGR. With a Sharpe ratio above 4.0 and a maximum drawdown of just
5.1%, it produces a Calmar ratio exceeding 100 - an almost unheard-of balance of return and
risk. The Transformer, while slightly more conservative, posts a profit factor of 2.90,
3.53% CAGR, and Sharpe of 3.28 against an 8.10% drawdown, yielding a Calmar of 43.5. By
comparison, passive ETF ownership returns only 1.33 % annually with virtually no drawdown
(0.88 %), but its Calmar of 151 reflects the absence of losses rather than aggressive alpha cap-

ture.

In bear regimes - where markets fall steadily - the long-only approaches all lose money, but
their risk profiles differ markedly. The LSTM’s long signals incur a 0.74% annual loss, a profit
factor of 0.59, and a maximum drawdown of 59.2%, translating to a Calmar of -1.24. The Trans-
former fares worse in absolute terms (-0.81% CAGR, 80.1% drawdown, Calmar -1.02) due to
its more aggressive entries into downtrends. By contrast, the unleveraged ETF loses 0.53%
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annually with only a 38.8% drawdown (Calmar -1.38), showing that leverage makes losses

larger, even when the model closes positions as soon as its signal turns negative.

In range/ sideways regimes, when prices move up and down without a clear trend, both Al
models reduce drawdowns relative to a static futures position but generate only marginal re-
turns. The LSTM posts a virtually flat -0.01% CAGR, 6.6% max drawdown, and Calmar -0.17,
while the Transformer edges slightly positive at 0.02% CAGR with a comparable 6.5% draw-
down and Calmar 0.27. Passive ETF ownership likewise shows near-zero return (-0.01% CAGR)
but a smaller 2.6% drawdown (Calmar -0.42). This shows that in markets without a clear trend,

trading costs can wipe out any small advantage.

The LSTM outperforms in bull markets - delivering high returns with low drawdowns - while
the Transformer is more cautious. In bear markets, both models incur larger losses than unlev-
eraged equity due to their leveraged long positions, and in sideways markets they achieve only
modest gains. Thus, minute-level regime forecasts add significant value in uptrends but lose

efficacy in downtrends and choppy conditions, with leverage increasing both gains and losses.

4.3.4 Risk-Adjusted Performance of Short-Only Trades

To complement the long-only risk analysis, | report risk-adjusted metrics for short-only trades
across regimes. This highlights whether the models’ short-selling performance is achieved ef-
ficiently and how risk levels differ across market phases. As buy-and-hold cannot go short, no

benchmark is provided; see Table 16 below.

Table: 16 - Short-Only Strategy Performance by Regime

Profit Win Sharpe Max Sortino | Calmar
Short Trades CAGR | rf_daily
Factor Rate Ratio |Drawdown | Ratio Ratio
LsTM| 0,1497| 0,2778| -0,7930| 0,0002| -5,5903 78,27%| -5,4729| -1,0132
Bull Trans| 0,3544| 0,1632| -0,9119| 0,0002| -6,9651| 120,58%| -6,4382| -0,7563
Market B&H not given
LSTM| 2,1496| 0,4762| 4,9301| 0,0002| 2,6096 9,03%| 6,6959| 54,6017
Mz::::t Trans| 2,4001| 0,4762|10,5337| 0,0002( 2,9780 8,64%| 7,8526|121,9097
B&H not given
LSTM| 1,4983| 0,4419| 0,3918| 0,0002| 1,0169 2,13%| 2,3472| 18,3926
Range Trans| 1,4993| 0,5116| 0,5156| 0,0002| 1,0828 1,94%| 2,3510| 26,6430
Market B&H not given
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In bull regimes - when prices march steadily higher - short-only strategies predictably under-
perform. The LSTM’s short trades show a profit factor of just 0.15 and a win rate of 27.8%,
compounding to an annual loss of -0.79% with a Sharpe of -5.59 and a maximum drawdown
of 78.3% (Calmar -1.01). The Transformer’s short-only strategy yields a profit factor of 0.35, a
16.3% win rate, and a deeper 120.6 percent drawdown (Calmar -0.76). These results highlight
that both models incur substantial leveraged losses when their short signals misfire in rising

markets.

During bear regimes - extended hourly downtrends - the short-only signals realize their full
potential. The LSTM achieves a profit factor of 2.15 with a 47.6% win rate, compounding to
4.93% CAGR and a Sharpe of 2.61, while capping drawdowns at just 9.0 percent (Calmar 54.6).
The Transformer edges ahead with a profit factor of 2.40, identical win rate, 10.54% CAGR, and
Sharpe of 2.98 against an 8.6% drawdown (Calmar 121.9). These results show that minute-
level regime forecasts give a clear advantage when trading short in bear markets, delivering
risk-adjusted returns far superior to a static long position, which cannot go short and therefore

incurs losses.

In range/ sideways regimes, when prices move up and down without a clear direction, both
strategies still extract modest gains. The LSTM'’s short-only equity grows at roughly 0.39%
CAGR, with a 1.02 Sharpe ratio and a shallow 2.13% drawdown (Calmar 18.4). The Transformer
posts similar metrics - 0.52% CAGR, 1.09 Sharpe, and 1.94% drawdown (Calmar 26.6) - under-
scoring that even in volatile, sideway-drifting markets, the models can still spot brief reversals

and profit from them.

Overall, these short-trade results show how performance depends on market regime: heavy
losses in uptrends, strong gains in downtrends, and small profits in sideways markets. This
underscores how important it is to trade in the correct regime - as also seen in the long-only
results of Table 15 - and only by entering long or short positions at the right times can a strategy

leverage the models’ strengths in rising and falling markets.

4.3.5 Statistical Significance of Regime-Conditional Returns

To test whether the observed differences in regime-conditional returns reflect genuine model
performance rather than random variation, | conduct paired t-tests on the daily return series
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of each strategy within the bull, bear, and sideways regimes. Tables 17 reports the results for
long-only trades (see Appendix: 7-9 for detailed overview). Each test compares the average
daily returns of two strategies over the same time period to evaluate statistical significance. In
every comparison, “Mean A” refers to the first-named strategy, “Mean B” to the second, and

p indicates the two-tailed significance level.

Table: 17 - Paired t-Test Results for Long-Only Trades

Regime Comparison Mean A (%) | Mean B (%) | t-Stast df p-value
Bull LSTM vs. Trans. 0.7691 0.6444 1.2570 128 | 0.2111
B&H vs. LSTM 0.3386 0.7691 -1.6916 128 | 0.0932

B&H vs. Trans. 0.3386 0.6444 -1.1520 128 | 0.2515

Bear LSTM vs. Trans. -0.4557 -0.6081 1.3937 128 | 0.1658
B&H vs. LSTM -0.3003 -0.4557 0.4523 128 | 0.6518

B&H vs. Trans. -0.3003 -0.6081 1.0035 128 | 0.3175

Sideways LSTM vs. Trans. 0.0001 0,0002 -0.1635 128 | 0.8703
B&H vs. LSTM -0.00001 0.0001 -0.0564 128 | 0.9551

B&H vs. Trans. -0.00001 0,0002 -0.1298 128 | 0.8970

The paired t-tests on long-only daily returns in Table 17 reveal that, in bull regimes, the LSTM’s
average gain of 0.7691% per day exceeds the Transformer’s 0.6444%, but this difference is not
statistically significant (t = 1.2570, p = 0.2111). Neither Al model’s long returns significantly
outperform the buy-and-hold ETF benchmark (LSTM vs. B&H p = 0.0932; Transformer vs. B&H
p =0.2515), indicating that although both neural strategies produce much larger total gains on
long trades, their day-to-day returns fluctuate with similar volatility to the ETF - meaning the
higher cumulative profits come from a few large wins rather than consistently higher daily

returns - so they do not achieve a statistically significant edge in daily performance.

In bear regimes, where all long-only approaches lose money, the LSTM’s mean loss of -0.4557%
and the Transformer’s -0.6081% again fail to differ significantly (t = 1.3937, p = 0.1658). More-
over, neither model’s loss diverges meaningfully from the ETF’s —0.3003% daily return (LSTM
vs. B&H p = 0.6518; Transformer vs. B&H p = 0.3175). This indicates that in downtrends, using
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leveraged futures generally lowers long-trade returns, but it doesn’t perform significantly

worse than simply holding the static equity position.

During sideways regimes, both Al-based long strategies produce mean returns close to zero -
0.0001% for LSTM and 0.0002% for Transformer - and the differences are not statistically sig-
nificant (p 2 0.8703). This outcome is expected, as range-bound markets typically lack strong
directional trends. As a result, the small profit-and-loss fluctuations from frequent trades re-
semble noise rather than meaningful alpha. These findings highlight that neutral regimes offer
limited opportunity for generating consistent long-only gains, and that the models’ signals

show no significant difference under these conditions.

Table 18 presents the paired t-test results comparing LSTM and Transformer short-only returns
across each regime (buy-and-hold is not included, as it cannot trade short). A more detailed

summary is provided in Appendix: 10.

Table: 18 - Paired t-Test Results for Short-Only Trades

Regime Comparison Mean A (%) | Mean B (%) | t-Stast df p-value
Bull LSTM vs. Trans. -0.6067 -0.9347 3.2426 128 0.0015
Bear LSTM vs. Trans. 0.8180 1.1364 -1.6866 128 0.0941
Sideways | LSTM vs. Trans. 0.1527 0.1983 -0.4841 128 0.6292

Turning to short-only trades in Table 18, the results become clearer. In bull regimes, betting
against an uptrend incurs losses, but the LSTM’s mean daily loss of -0.6067% is significantly
smaller than the Transformer’s -0.9347% (t = 3.2426, p = 0.0015). This shows that in rising
markets, when short signals fail, the LSTM’s mistakes are smaller. In bear regimes, both models
capture downtrends with positive daily returns (0.8180% for LSTM, 1.1364% for Transformer),
but their difference falls just short of significance (t = —1.6866, p = 0.0941), showing they are
similarly effective at profiting from falling prices. Finally, in sideways regimes, the very small
short-trade means (0.1527% vs. 0.1983%) are not statistically different (t = —0.4841, p =

0.6292), showing that brief counter-trend signals in choppy markets offer no clear advantage.

In summary, these tests confirm key regime-based strengths - especially the LSTM’s stronger

short-trade performance in bull markets - while showing that many apparent differences in
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long-trade outcomes are not statistically significant. By focusing on significance testing, | en-

sure that any claims of one model’s superiority are based on solid evidence rather than chance.

4.3.6 Regime-Conditional Performance: Answering RQ3

The evidence presented above demonstrates that both the LSTM and Transformer models re-
tain meaningful forecasting and trading advantages when evaluated within larger, hourly-de-
fined market regimes. In bull regimes, neither model’s long-trade average daily returns signif-
icantly exceed one another or passive buy-and-hold - underscoring that their superior overall
profits derives more from well-timed entries and limiting large swings than from consistently
higher average gains. Crucially, the LSTM registers significantly smaller short-trade losses than
the Transformer when markets rise, confirming its ability to limit losses more effectively during

uptrends.

During bear regimes, both architectures generate positive short-trade returns that far outstrip
any static long position, although their difference narrowly misses statistical significance; their
long-trade losses also do not differ significantly from each other or from those of a passive ETF.
In sideways markets, neither model’s long or short returns differ significantly, highlighting the

difficulty of finding reliable signals in range-bound prices.

Taken together, these findings confirm RQ3: minute-by-minute forecasts from both LSTM and
Transformer models hold up across bull, bear, and sideways markets, producing better risk-
adjusted returns than a buy-and-hold approach where they naturally excel. In bull markets,
the LSTM delivers stronger long-trade performance than the Transformer, while in range mar-
kets the Transformer posts the highest overall results - even though the differences are not
statistically significant. Examining each regime in detail also highlights complementary
strengths: LSTM'’s tighter loss control on short signals in uptrends and Transformer’s advantage

in capturing downtrends - offering a clear, data-driven foundation for live deployment.
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5. Discussion

This chapter interprets the empirical evidence presented in Chapter 4, situates the findings in

the existing literature, and critically evaluates their scope and limitations.

5.1 Synthesis of Key Findings

Both deep-learning models, using one-minute forecasts, outperform a passive NASDAQ-100
buy-and-hold over the six-month period by detecting when to go long or short with 20x futures
leverage and avoiding positions in sideways markets. As a result, Sharpe, Sortino, and Calmar
ratios on every trade far exceed the benchmark - even though 129-day paired t-tests detect
no significant difference in mean daily returns (p > 0.05), indicating that the outperformance
arises from active risk management rather than higher drift (see Table 13). The apparent par-
adox disappears when viewed through a risk lens: by entering leveraged positions in clear
trends and staying flat in choppy markets, volatility and drawdowns are greatly reduced, elim-

inating the extreme losses that a constant 20x position would suffer.

Within this regime-switching framework, the LSTM posts the strongest risk-adjusted profile:
after an initial 42.1 % drawdown it climbs smoothly to finish at $96,518 on a $50,000 start
(Sharpe 1.29; Sortino 2.32; Calmar 3.68; see table 12). The Transformer caps its loss at 39.4 %
and ends at $77,034 (Sharpe 0.99; Sortino 1.37; Calmar 1.25; see table 12), This approach
could suit investors who prize tighter worst-case control, even if it means tolerating greater
day-to-day noise. Crucially, unlike classical ARIMA and GARCH models - whose stationarity as-
sumptions lead to parameter drift under rapid regime shifts (Engle, 1982; Bollerslev, 1986) -

both neural network models adapt to evolving micro-regimes in real time (Sec 2.3.1).

Performance is unmistakably regime-dependent: long trades excel in bull markets, short trades
in bear markets, and range-bound periods yield only modest gains. In the period tested, choos-
ing between architectures depends on risk tolerance: LSTMs offer smoother recoveries but
deeper initial drawdowns, while Transformers have shallower drawdowns but more volatile

returns.

Wang, Chen, and Zhang (2022) found that on daily S&P 500 data Transformers outperform
LSTMs - 56.35% vs. 45.02% return with -28.5 % vs. -34.6 % drawdown. In my minute-by-minute,
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20x leveraged NASDAQ test that relationship flips: the LSTM yields 93% vs. 54% for the Trans-
former, but with deeper drawdowns (42.12% vs. 39.41%). This reversal shows a common short-
term trade-off: although the models normally limit losses by exiting quickly and keeping draw-
downs small, their focus on capturing fast momentum can still leave them exposed to larger

losses when a trend suddenly reverses.

5.2 Theoretical Implications

Minute-by-minute price and volume data often show short-lived trends that can be exploited,
contradicting the notion that markets follow a pure random walk. In my results, the Trans-
former consistently posts the shortest lag from regime change to trade execution (see Table
9’s tighter upper tail), behaving as if it detects temporary supply-demand imbalances almost
immediately - just as Lo and MacKinlay (1988) documented when they showed returns “drift”
together over short intervals. By contrast, the LSTM’s trades exhibit smoother drawdowns and
higher risk-adjusted returns in bull markets (Table 15), reflecting its learning to stay invested
only when a trend is firmly established and pull back when conditions become too choppy.
This mirrors volatility-aware momentum strategies (Barroso & Santa-Clara, 2015; Daniel &

Moskowitz, 2016) and is evident in the LSTM’s superior Sharpe and Calmar ratios.

Crucially, I am not suggesting that simply examining the model’s internal signals reveals
whether volume spikes, price momentum, or other factors drive its decisions, because these
internal activations are complex and do not correspond directly to observable market indica-
tors. Instead, the fact that both models outperform buy-and-hold over more than 5,600 out-
of-sample trades per model in six months shows true predictability at this timescale, even

though the exact economic driver remains unidentified.

My results also challenge the weak-form EMH (Fama, 1970) by revealing durable short-horizon
predictability, in line with behavioral under- and overreaction anomalies (Barberis et al., 1998).
Although the LSTM slightly outperforms on overall risk-adjusted return, the Transformer’s self-
attention mechanism nonetheless delivers higher precision in Trend-Long calls (0.7715 vs.
0.7461) and fewer extreme lag events (max delay 129 bars vs. 146), signs that it more cleanly
captures adaptive momentum bursts that static mean-reversion models cannot exploit (De

Bondt & Thaler, 1985; Stiibinger & Endres, 2018).
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Overall, these results don’t contradict traditional asset-pricing theory; they simply show a flex-
ible way to exploit short-term patterns - similar to using a GARCH model to capture volatility
clustering - while still assuming that higher expected returns compensate for higher risk and

that prices generally incorporate all known information as markets evolve.

5.3 Limitations

| focus exclusively on the continuous NASDAQ futures contract - a highly liquid U.S. index-fu-
tures product. Equities, options, or less-liquid futures differ markedly in volatility, bid-ask
spreads, market depth, and order-flow impact, so a strategy that works on NQ one-minute

bars may not generalize elsewhere.

In this study | compare only to an unleveraged buy-and-hold ETF. However, both rule-based
methods - such as moving-average crossover rules (Brock, Lakonishok, & LeBaron, 1992; Sec
2.2.2) - and classical parametric models - like ARIMA for returns (Box & Jenkins, 1970; Sec
2.2.1) often combined with ARCH/GARCH for volatility (Engle, 1982; Bollerslev, 1986; Sec 2.1)
- are standard benchmarks in financial forecasting. Although | haven’t tested them here, com-
paring my LSTM and Transformer forecasts against these well-established approaches would

further clarify the added value of deep-learning architectures.

Genetic algorithms quickly identify good hyperparameter settings, but they have several nota-
ble drawbacks. First, the sheer computation of training dozens of models across six generations
limits how many recipes you can explore, potentially missing better settings outside that nar-
row search. Second, its randomness - in initial recipes, tournament draws, and mutations -
means you can’t reproduce the exact same “best” configuration on a rerun. Third, because it
evaluates performance on a fixed 5% validation set, the GA may overfit to patterns in that
subset instead of finding parameters that work well more generally. Finally, every choice you
make - population size, mutation rate, tournament format, early-stopping rule - steers the
search in a particular direction, and without any statistical correction for testing so many vari-

ants, the apparent improvements in validation accuracy should be interpreted with caution.

Although the back-tests included exchange and broker commissions, they did not model slip-
page - the small gap between the price a trader hopes for and the price actually filled. Since

NASDAQ futures move in 0.25-point increments, an order placed at 21,000.00 might execute
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at 21,000.25 if the bid-ask spread is a quarter point, and no broader market-impact effects

were considered.

I also limited inputs to just 13 technical indicators - derived solely from OHLCV data - so | could
explain each one briefly in my master’s thesis; adding more would simply be too much to cover
in detail. However, forcing the networks to infer which signals matter from only those 13 met-
rics may bottleneck performance if key drivers lie elsewhere. Expanding the feature set (for
example with alternative momentum measures, volatility filters, order-flow metrics, or senti-
ment scores - none of which are captured by pure OHLCV) could supply richer, orthogonal
insights into regime changes. By constraining the input space so narrowly and excluding any
non-price/volume data, the models might miss subtle patterns and leave valuable predictive

power on the table.

One further limitation is that | rely solely on the regime signal to exit trades, without any take-
profit or stop-loss rules. | suspect that using volatility-based exit levels - widening stops in high-
volatility periods and tightening them when volatility is low - could boost performance by lock-

ing in gains during strong trends and limiting losses in choppy markets.

Market impact is the price movement your own order causes while it is being executed: each
time a large trade consumes the visible depth at the best bid or offer, it reveals poorer prices
underneath, so the average fill deteriorates with order size. Consider a hypothetical sale of
200 NQ contracts at 21.000,00 when only 50 contracts sit on that bid: the first tranche might
execute at 21.000,00, the next at 20.999,75, and the remainder progressively lower, turning
what appeared to be a single execution price into a sliding scale. However, in Kyle’s (1985)
model, price impact is linear in trade size - so only very large orders move prices substantially.
Because | trade just one contract, a $50,000 strategy falls well within noise-trader flow and

therefore has very little impact.

Because real trades rarely execute at the exact quoted price, the reported ratios like Sharpe
may still overstate live performance, and additional costs could arise during quarterly contract
roll-overs. In index futures, the bulk of liquidity sits in the front-month contract until roughly a
week before expiry, after which most traders migrate to the next delivery month. In this tran-
sition window the outgoing contract’s order book often becomes patchy - spreads widen from
one tick to several and visible depth evaporates - so an order that would normally execute at

21,000.00 could fill a few ticks lower (or higher) simply because there are fewer counterparties.
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That extra slippage, which affects every contract roll, is not captured by the present back-test.

Latency was likewise not modeled, but its influence is expected to be modest because the

models operate on one-minute bars and signals are generated within milliseconds.

Statistical regime tests (t-tests and p-values) were performed on daily profit summaries, ag-
gregating the 5.638 trades of LSTM and 6.278 trades of Transformer into a much smaller set of
daily observations. This compression reduces statistical power and makes the results less sig-
nificant than if tests were run on individual trades or over several years of data. Ideally, regime
tests would span multiple years to capture broader market regimes, but deep learning models
demand large training datasets - using fewer data points to train the models on risks weaken-

ing model performance.

Finally, both models are limited to a 50-bar sliding window - about fifty minutes of price history
- to keep memory use and computation within practical bounds. Under this constraint, the
Transformer still processes all 50 time-steps in parallel, so its memory and compute scale
roughly with the square of the window length; any attempt to expand beyond 50 bars would
overwhelm most hardware, and breaking the series into overlapping chunks risks misplacing
signals that span those boundaries. Although an LSTM could in theory remember very long
sequences, | constrain it to a 50-bar window - about an hour - so any earlier data is dropped.
Truncating both architectures to a 50-bar window for computational expediency therefore sac-
rifices long-term context and may cap the models’ ability to exploit slower-moving market pat-

terns.

5.4 Ethical and Regulatory Considerations

One important caveat is that both LSTM and Transformer models remain “black boxes,” mean-
ing their internal decision logic is not directly interpretable - a fact that sits uneasily with MiFID
Il Article 17 and SEC Rule 206(4)’s demands for causal explanations of each trade. In my current
implementation, regime forecasts drive entries and exits without any built-in transparency
layer, so the precise rationale behind a “buy” or “sell” signal would be inscrutable to auditors.
In practice, post-hoc methods such as SHAP (Shapley Additive Explanations) could be layered
on to quantify each OHLCV feature’s contribution to a given regime call, thereby providing a

plausible causal narrative for every trade. Acknowledging this opacity - and the existence of
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tools like SHAP - situates the performance gains of deep-learning classifiers within the real-

world constraints of regulatory explainability and auditability (Lundberg & Lee, 2017).

5.5 Robustness and Additional Critique

One important caveat concerns the temporal separation between training and evaluation. |
trained both the LSTM and Transformer models on data spanning 2015 through June 2024,
then tested them out-of-sample on the July-December 2024 window. While this test period
did include high-impact news events - central-bank announcements, geopolitical shocks - that
generated intraday volatility spikes akin to mini-crashes, it did not contain any true market
collapses. Consequently, although the models demonstrably exploit regime signals in novel
data, their resilience to full-blown crash dynamics remains unverified. Acknowledging this en-
sures that their strong July - December 2024 performance is understood as bounded by the
specific stress patterns present in that interval, rather than as proof of universal robustness

under extreme market stress.
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6. Further Research

Building on the limitations and insights identified in Chapter 5, future work will deepen and

broaden the regime-aware framework through five interrelated directions.

6.1 Cross-Market Generalization

First, | will deploy the LSTM and Transformer models - trained solely on NASDAQ-100 OHLCV
and technical indicators - as-is on different equity futures. | will compare their performance
(annualized return; Sharpe, Sortino, and Calmar ratios), risk (maximum drawdown), and oper-
ational metrics (win rate; regime-classification accuracy; decision-to-order latency) both
against the original NASDAQ results and against variants where regime thresholds are recali-
brated and final layers fine-tuned for each market’s volatility and liquidity profile. | will use
paired t-tests to determine whether any observed differences in these metrics are statistically
significant. This head-to-head assessment will reveal how much bespoke specialization is re-

quired when transferring the same neural architectures across distinct asset classes.

6.2 Enriching Informational Inputs

Next, more technical indicators will be added and in future alternative data streams will be
integrated as well to capture hidden regime signals. Moreover, it could be interesting to ana-
lyze how high-frequency limit-order-book snapshots - tracking queue imbalances and rapid
order-flow shifts - combined with sentiment indicators derived from financial-news headlines
and social-media feeds influence the model’s performance. Future studies will verify if adding

more data will improve the out-of-sample predictive power rather than overfitting noise.

6.3 Multi-Horizon Regime Filtering

Results in Chapter 4 showed that limiting trades to the correct overall market phase dramati-
cally boosts performance. To formalize this insight, | will implement a two-stage prediction
process. First, a model based on higher-timeframe data (e.g., 15-minute, 30-minute, or 1-hour
bars) will classify the prevailing market regime as bull, bear, or sideways. This classification will

be updated only at these slower intervals to capture broader structural trends in the market.
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Since higher timeframes contain significantly fewer data points to train a deep learning model
on, an important part of the analysis will be to examine how well prediction models perform
under such constraints. Understanding the predictive reliability of regime classification with

limited data is essential to ensure the robustness of the entire system.

The second stage uses a one-minute trading model that generates entry and exit signals but
only executes trades when its signals align with the regime identified by the high-timeframe
model. By backtesting this combined framework, | aim to quantify the performance improve-
ments that result from filtering trades according to the macro-level phase. Further extensions
will explore the optimal choice of higher-timeframe granularity, the ideal look-back period for
phase detection, and the tolerances for delay in regime updates in order to avoid overfitting

while maintaining responsiveness.

6.4 Stress-Testing, Trading Frictions, and Capacity Analysis

After completing the first test run on historical data, the next objective is to evaluate the two-
stage regime-filter strategy under extreme scenarios by simulating trading with a single futures
contract. This phase aims to establish a robust baseline for drawdown behavior, recovery
times, and tail-risk exposures beyond any specific historical episode. A Monte Carlo simulator
will be employed to generate thousands of hypothetical price paths - drawing random steps
and occasionally injecting large, flash-crash-style drops. The regime filter will then be applied

to each simulated path to assess its resilience and robustness under stress.

Concurrently, trading costs will be modeled realistically by accounting for slippage based on
order book depth and applying order-slicing techniques. Larger trades may be executed across
several price levels, depending on market liquidity and slight, realistic delays (latency). To un-
derstand how trade size and market conditions influence transaction costs, slippage heatmaps
will be generated. These maps visualize how costs evolve with different order sizes and phases
of the market, offering a clear picture of the execution frictions that reduce the strategy’s ef-

fectiveness.

After this cost-mapping analysis, the focus will shift to testing the strategy’s actual perfor-
mance under increasing trade sizes. By simulating progressively larger volumes - two contracts,

five, ten, and more - the study will examine how quickly slippage and market impact begin to
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erode returns. This will result in a capacity curve that identifies the tipping point where the
strategy can no longer scale effectively due to rising execution costs. Moreover, larger positions
may attract attention from institutional participants, making executions more difficult to man-

age than with smaller orders.

However, these capacity estimates must be interpreted with caution: they depend on the fi-
delity of the simulated order-book model and assume that real-world liquidity and participant
behavior remain consistent under stress. In practice, live-market validation and ongoing mon-
itoring will be required to ensure that any theoretical capacity limits hold up when trading

large volumes in actual conditions.

6.5 Live Demonstration and Interpretability

Finally, both the unfiltered and regime-filtered strategies will be exercised in a live paper-trad-
ing environment using a broker’s simulated order interface. Continuous monitoring will track
signal-to-order latency with sub-100 millisecond targets, platform uptime and real-time slip-
page. Each trade decision will be accompanied by a concise explanation such as “entered long
because both the slow phase model and the one-minute momentum model signaled a bull
regime,” generated by simple interpretability tools. In addition, a transparent variant of the
architecture that exposes its internal attention weights will be prototyped and compared
against the original black-box networks to balance predictive power with the level of explain-

ability required by evolving regulatory standards.

Together, these five directions will transform this thesis from a single-index proof-of-concept
into a versatile, reliable and transparent framework for regime-aware trading across diverse

markets, timeframes and stress scenarios.
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7. Conclusion

This thesis set out to test whether neural network models, trained only on minute-level OHLCV
data and guided by a new Supertrend-based labelling scheme, can improve intraday trading
results for E-mini NASDAQ-100 futures - and, crucially, whether LSTM or Transformer is the
better engine for that task. Out-of-sample tests on the July-to-December 2024 window show
that both models learn meaningful structure: balanced accuracy and macro-F; climbed from
the 0.33 and 0.17 posted by a naive “always-long” buy-and-hold benchmark to roughly 0.68,

while average detection lag stayed under ten minutes.

When those regime calls were translated into a simple one-contract, long-flat-short rule at 20x
notional leverage, each network reshaped the return distribution in a favorable way. The LSTM
achieved a Sharpe of 1.29, a Sortino of 2.32, and a Calmar of 3.68, while the Transformer
posted a Sharpe of 0.78, a Sortino of 1.37, and a Calmar of 1.25 - compared to just 0.26, 0.36,
and 0.47, respectively, for the unleveraged buy-and-hold ETF over the same period. Im-
portantly, the performance lift did not arise from higher mean daily returns - paired tests found
the models’ average returns were statistically no different from buy-and-hold - but from cap-
turing trends and remaining flat during non-directional periods. In other words, correctly iden-
tifying the prevailing regime contributed more to outcomes than precise entry timing once

leverage was high.

A direct comparison shows that the LSTM handles microstructure noise and timing errors bet-
ter than the Transformer. Although the LSTM began with a slightly deeper drawdown, it recov-
ered more steadily, finished with the highest equity balance, and incurred significantly smaller

losses on short positions during hourly bull phases (t = 3.2426, p = 0.0015).

In Section 4.1.2, we saw that the Transformer reacts to regime shifts slightly faster and cuts its
worst drawdown a bit sooner than the LSTM. However, its lower recall for upward trends
(0.7194 vs. 0.7552 for the LSTM) translates into a smaller average daily gain in bull markets
(0.6444 % vs. 0.7691 %). In other words, by waiting for stronger confirmation before entering,
the Transformer often misses the first bars of fast rallies—leaving profit opportunities on the
table and producing a more jagged equity curve, despite its quicker response to market

changes.
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Several limitations should be noted when interpreting these results. First, although the evalu-
ation window was volatile, it did not include a true market crash. Second, slippage from rolling
contracts was not measured, system latency was not considered, and liquidity changes around
expiry were ignored. Third, the model used only 13 technical indicators, so it did not capture
any signals from other indicators, order-book imbalances, volatility surfaces, or news senti-
ment. Because these factors weren’t included, the reported performance ratios are best-case
estimates under ideal execution conditions and should not be taken as guarantees of live trad-

ing results.

Within those bounds, the neural network strategies outperform a buy-and-hold benchmark
overall, and trading only when the inferred regime is favorable delivers even greater gains. In
particular, the LSTM model provides the most reliable regime signals - higher recall, a
smoother equity path, and tighter loss control - making it the strongest candidate for a pro-
duction-grade minute-bar strategy. However, leveraged trading introduces larger drawdowns
and higher risk, and real-world execution factors (e.g., latency, slippage, liquidity shifts) could
erode these gains, so practical implementation must include robust safeguards and risk-gov-

ernance measures.
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9. Appendix

Appendix: 1 - LSTM - Trend Long Delay Distribution
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Appendix: 2 - LSTM - Trend Short Delay Distribution
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Appendix: 3 - LSTM - Range Delay Distribution
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Appendix: 4 - Transformer - Trend Long Delay Distribution
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Appendix: 5 - Transformer - Trend Short Delay Distribution
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Appendix: 6 - Transformer - Range Delay Distribution
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Appendix: 7 - LSTN vs Transformer Bull, Bear, Range Market Long-
trades t-test

LSTM vs Transformer Long Trades
t-Test: Paired Two Sample for Means

Bull Market Bull Market
Mean 0,007691319  0,006444333
Variance 0,000879168  0,000929859
Observations 129 129
Pearson Correlation 0,930180885
Hypothesized Mean Difference 0
df 128
t Stat 1,25693727
P(T<=t) one-tail 0,105532576
t Critical one-tail 1,656845226
P(T<=t) two-tail 0,211065151
t Critical two-tail 1,97867085
LSTM vs Transformer Long Trades
t-Test: Paired Two Sample for Means

Bear Market Bear Market
Mean -0,004556861 -0,006081362
Variance 0,00147504 0,001159689
Observations 129 129
Pearson Correlation 0,948228521
Hypothesized Mean Difference 0
df 128
t Stat 1,393639028
P(T<=t) one-tail 0,082920828
t Critical one-tail 1,656845226
P(T<=t) two-tail 0,165841656
t Critical two-tail 1,97867085
LSTM vs Transformer Long Trades
t-Test: Paired Two Sample for Means

Range Market  Range Market
Mean 7,75268E-05  0,000188926
Variance 0,000247291  0,000244825
Observations 129 129
Pearson Correlation 0,878388595
Hypothesized Mean Difference 0
df 128
t Stat -0,16354406

P(T<=t) one-tail
t Critical one-tail
P(T<=t) two-tail
t Critical two-tail

0,435174014
1,656845226
0,870348028

1,97867085
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Appendix: 8 - B&H vs LSTN Bull, Bear, Range Market Long-trades t-test

Buy & Hold vs LSTM Long Trades
t-Test: Paired Two Sample for Means

Bull Market Bull Market
Mean 0,003386843  0,007691319
Variance 5,52117E-05 0,000879168
Observations 129 129
Pearson Correlation 0,224895655
Hypothesized Mean Difference 0
df 128
t Stat -1,691602978
P(T<=t) one-tail 0,046577465
t Critical one-tail 1,656845226
P(T<=t) two-tail 0,09315493
t Critical two-tail 1,97867085
Buy & Hold vs LSTM Long Trades
t-Test: Paired Two Sample for Means

Bear Market Bear Market
Mean -0,003003945 -0,004556861
Variance 3,25864E-05 0,00147504
Observations 129 129
Pearson Correlation -0,029896971
Hypothesized Mean Difference 0
df 128
t Stat 0,452289069
P(T<=t) one-tail 0,325913163
t Critical one-tail 1,656845226
P(T<=t) two-tail 0,651826326
t Critical two-tail 1,97867085
Buy & Hold vs LSTM Long Trades
t-Test: Paired Two Sample for Means

Range Market  Range Market
Mean -9,47178E-06 7,75268E-05
Variance 6,83604E-05 0,000247291
Observations 129 129
Pearson Correlation 0,032219512
Hypothesized Mean Difference 0
df 128
t Stat -0,05636964

0,477567619
1,656845226
0,955135239

1,97867085

P(T<=t) one-tail
t Critical one-tail
P(T<=t) two-tail
t Critical two-tail
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Appendix: 9 - B&H vs Transformer Bull, Bear, Range Market Long-
trades t-test

Buy & Hold vs Transformer Long Trades
t-Test: Paired Two Sample for Means

Bull Market Bull Market
Mean 0,003386843  0,006444333
Variance 5,562117E-05  0,000929859
Observations 129 129
Pearson Correlation 0,168540708
Hypothesized Mean Difference 0
df 128
t Stat -1,151996282
P(T<=t) one-tail 0,125734846
t Critical one-tail 1,656845226
P(T<=t) two-tail 0,251469691
t Critical two-tail 1,97867085
Buy & Hold vs Transformer Long Trades
t-Test: Paired Two Sample for Means

Bear Market Bear Market
Mean -0,003003945 -0,006081362
Variance 3,25864E-05  0,001159689
Observations 129 129
Pearson Correlation -0,053717664
Hypothesized Mean Difference 0
df 128
t Stat 1,003510986
P(T<=t) one-tail 0,158753841
t Critical one-tail 1,656845226
P(T<=t) two-tail 0,317507682
t Critical two-tail 1,97867085
Buy & Hold vs Transformer Long Trades
t-Test: Paired Two Sample for Means

Range Market  Range Market

Mean -9,47178E-06  0,000188926
Variance 6,83604E-05  0,000244825
Observations 129 129
Pearson Correlation 0,044940121
Hypothesized Mean Difference 0
df 128
t Stat -0,129761352
P(T<=t) one-tail 0,448479467

t Critical one-tail
P(T<=t) two-tail
t Critical two-tail

1,656845226
0,896958935
1,97867085
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Appendix: 10 - LSTN vs Transformer Bull, Bear, Range Market
Short- trades t-test

LSTM vs Transformer Short Trades
t-Test: Paired Two Sample for Means

Bull Market Bull Market

Mean -0,006067455 -0,009347188
Variance 0,000315486  0,000473516
Observations 129 129
Pearson Correlation 0,849954652
Hypothesized Mean Difference 0
df 128
t Stat 3,242556671
P(T<=t) one-tail 0,000755361
t Critical one-tail 1,656845226
P(T<=t) two-tail 0,001510722
t Critical two-tail 1,97867085

LSTM vs Transformer Short Trades
t-Test: Paired Two Sample for Means

Bear Market Bear Market

Mean 0,008180045 0,011363975
Variance 0,002396847  0,003592788
Observations 129 129
Pearson Correlation 0,942217196
Hypothesized Mean Difference 0
df 128
t Stat -1,686563977
P(T<=t) one-tail 0,047061528
t Critical one-tail 1,656845226
P(T<=t) two-tail 0,094123056
t Critical two-tail 1,97867085

LSTM vs Transformer Short Trades
t-Test: Paired Two Sample for Means

Range Market  Range Market

Mean 0,001526749  0,001983231
Variance 0,000456554  0,000708318
Observations 129 129
Pearson Correlation 0,923343807
Hypothesized Mean Difference 0
df 128
t Stat -0,484067183
P(T<=t) one-tail 0,314582686
t Critical one-tail 1,656845226
P(T<=t) two-tail 0,629165371
t Critical two-tail 1,97867085
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