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Summary

This thesis develops an integrated modelling framework for optimising the operation of an elec-
trolyser in e-methanol production, using variable electricity prices primarily driven by renewable
energy sources. The objective is to minimise total operational cost while meeting a fixed annual
methanol production target. The model focuses on Danish electricity market conditions and
renewable generation trends expected in future Power-to-X scenarios.

A hybrid electricity price forecasting model was developed using machine learning. Forecasts for
solar, offshore wind, and onshore wind generation, as well as electricity demand, were generated
using LSTM networks. These outputs were then used as features in an XGBoost model to pre-
dict hourly electricity prices. The combined model achieved an MAE (Mean Absolute Error)
of 268.5 DKK/MWh and an RMSE of 334.8 DKK/MWh on the test dataset, with the LSTM
components showing strong performance in capturing daily and seasonal cycles.

The forecasted prices were fed into a Mixed Integer Linear Programming optimisation model for
electrolyser scheduling. The model considered three primary operation states (running, standby,
shutdown), transition dynamics (cold and hot starts, ramping times) and electricity costs. Over
a 168 hour rolling window for whole year, the model made binary decisions for each hour and
operational state, solving roughly 2000 binary variables per weekly optimisation.

Results from the full-year simulation showed that flexible operation reduced electricity costs by
approximately 15% compared to fixed full-load operation. Specifically, the total cost of electric-
ity consumption decreased from 254,140,507.17 DKK to 212,702,443.56, while still meeting the
fixed methanol production requirement of 25,000 tons per year.

Future improvements should focus on enhancing model complexity (e.g., continuous load levels),
enabling sub-hourly operation and including dynamic CO2 sourcing options. R&D priorities in-
clude lowering electricity prices through system integration and advancing electrolyser efficiency,
responsiveness and lifetime performance.
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Introduction 1
As the global energy sector transitions towards renewable energy, integrating fluctuating re-
newable sources such as wind or solar power presents significant operational challenges. While
renewable sources offer substantial environmental benefits and resource availability, their vari-
able nature leads to discrepancies between power generation and consumption. To mitigate
these fluctuations, technologies categorised under Power-to-X(PtX) have been introduced. PtX
includes methods that convert renewable electricity, whether surplus or intentionally generated,
into alternative energy carriers or chemical products such as hydrogen, ammonia, methane, and
methanol. This supports energy sector coupling and enhances system flexibility. [16] [15]

Methanol has gained significant attention as a PtX product due to its high energy density, liquid
form at ambient conditions, and compatibility with existing transport, storage and distribution
infrastructure. Compared to hydrogen, methanol is easier and more cost-effective to store and
transport, making it a practical renewable fuel and chemical feedstock.[18] Methanol production
can follow two principal pathways, conventional fossil-based methanol (fMeOH), which relies
on natural gas or coal and results in high carbon emissions, and renewable electricity-based
methanol (eMeOH), which combines green hydrogen, produced by electrolysis powered by wind
or solar, with captured CO2, substantially lowering lifecycle emissions and supporting climate
goals.[51]

This thesis focuses on a critical component in eMeOH production that is the electrolyser, which
converts water into hydrogen and oxygen using renewable electricity. Its operational efficiency
and economic viability are strongly influenced by fluctuating electricity prices. Therefore, op-
timising the operational strategy, not only deciding when to run, enter standby, or shut down,
but also at what capacity, is essential to minimise electricity costs and ensure stable hydrogen
supply. Moreover, as methanol synthesis efficiency depends on the hydrogen flow, this coupling
must be considered to maximise overall system performance. [32] [61]

This thesis is carried out in a collaboration with another student group from the Energy De-
partment at Aalborg University, who are developing an e-methanol production setup. While
their focus includes broader process integration and system design, this thesis specifically targets
optimising the operational strategy of the electrolyser in response to fluctuating electricity prices
from wind-generated electricity.

Consequently, this leads to the initial problem statement that is formulated as following:

How can the operational strategy of an electrolyser in an e-methanol production
system be optimised to minimise electricity costs while ensuring an efficient and

stable hydrogen supply for methanol synthesis?

1



Problem analysis 2

This chapter establishes the foundation for the project and works toward refining the initial
problem statement into a clearer and more focused version. It begins with an overview of Power-
to-X and the possible energy carriers represented by "X". The three most commonly used energy
carriers are introduced and described, each with their own strengths and limitations. Special
attention is given to Power-to-Methanol, which is explained more detailed. Secondly, the chapter
covers renewable electricity from wind turbines and how its pricing is determined. Finally, the
developed methanol production plant is analysed through its production stages, with a focus on
the key input parameters that will be used in the later optimisation of the electrolyser.

2.1 Power-to-X
Traditional energy sources are considered as a main cause to climate change due to their signifi-
cant greenhouse gas emissions. Report by the International Energy Agency(IEA) indicates that
carbon dioxide (CO2) emissions from fossil fuel-based energy sources have surpassed 13 gigatons
of CO2, accounting for about 40% of global emissions [17]. As a result, there is a pressing need
to transition toward highly promising renewable energy sources. However, renewable energy
faces significant challenges due to its unpredictable and irregular nature, with the quantity of
electricity supplied fluctuating considerably. Therefore, it becomes crucial to store electricity
during peak production periods. The latest advancements suggest storing electricity in the form
of chemicals, an approach summarised by the concept known as Power-to-X (PtX). [40]

PtX (also referred to as P2X) involves the transformation of renewable electricity sourced from
wind, water or solar into a versatile energy carrier, denoted as "X" [10]. It outlines methods that
utilise surplus or allocated renewable electrical power in various sectors through storage, con-
version into alternative fuels, and subsequent reconversion techniques. This process is referred
to as sector coupling, where the power sector is linked to the transportation sector through
power-to-mobility. Furthermore, it is connected to the heating sector via power-to-heat, either
through direct electrical heating or heat pumps, and finally to the industrial sector, including the
chemical industry and agriculture, where synthetic fuels and gases serve as chemical feedstock,
where this concept is depicted in Fig. 2.1.[8]
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2.1. Power-to-X Aalborg University

Figure 2.1
Graphical visualisation of PtX concept.

As shown in Fig. 2.1, at the core of PtX concept is the utilisation of renewable electricity to
produce hydrogen (H2) through the electrolysis of water. Hydrogen can be employed directly as
the final energy carrier or further transformed into other forms such as methane, methanol or
ammonia. Besides water for electrolysis, PtX processes typically need additional substances to
create synthetic fuels and chemicals. For example, as noted in Fig. 2.1, producing methanol
and methane requires a source of CO2, and ammonia production requires N2. CO2 can be ob-
tained from local renewable methods, such as capturing CO2 from the atmosphere or biomass
sources like biofuel and biogas plants, which currently release their CO2 by-products into the
atmosphere.[8] [12]

Furthermore, as previously mentioned, energy carrier "X" can be divided into the following four
main chemicals:

• Hydrogen - H2

• Ammonia - NH3

• Methane - CH4

• Methanol - CH3OH

In the following sections, each energy carrier is described in terms of how it is obtained, and the
advantages and disadvantages it presents.

3



2.1. Power-to-X Aalborg University

Power-to-Hydrogen - PtH2
Generally, based on the production process and the source of hydrogen, four different types of
hydrogen can be identified: black, grey, blue, and green, listed in order of decreasing environmen-
tal impact, depicted in Fig. 2.2. Currently, the majority of hydrogen is produced from natural
gas through a process called Steam Methane Reforming(SMR). This method is fossil fuel-based
and releases almost as much CO2 as burning the natural gas itself, resulting in what is known as
grey hydrogen. When the CO2 emitted during this process is captured and stored using Carbon
Capture and Storage (CCS), the resulting hydrogen is referred to as blue hydrogen. Additionally,
hydrogen can be produced from coal via pyrolysis, leading to the production of black hydrogen,
which, similar to SMR, results in CO2 emissions comparable to those from coal combustion.
Finally, when hydrogen is produced through the electrolysis of water using renewable electricity,
it is termed green hydrogen and does not produce direct CO2 emissions during its production.[3]

Figure 2.2
Graphical visualisation of different types of hydrogen, based on the inputs, process on how it is made and

final products.

Electrolysis is a chemical process where H2O is split, with the use of electricity, into H2 and O2.
There are three major electrolysis technologies:

• Alkaline electrolysis - ALK
ALK is the most mature technology, been used since 1920, with a market share of about
70% [28]. This technology benefits from low costs and a long operational lifespan. However,
a disadvantage is that the ALK process needs to operate continuously to avoid damage,
meaning that variable renewable energy sources should not be the sole power supply. [3]

• Polymer Electrolyte Membrane - PEM
PEM electrolysis uses membrane as ionic conductor. The electrolyte, consisting of a thin,
solid polysulfonated membranes, is used to transfer proton from the anode to the cathode
side and separates hydrogen and oxygen gases. PEM technology has higher efficiency and
faster response time, suitable for renewable energy sources. On the other hand, expensive
materials have to be used, such as platinum and iridium.[8]

• Solid Oxide Electrolyser Cell - SOEC
A technology that presents significant expectations due to its low expected capital cost and

4



2.1. Power-to-X Aalborg University

high efficiency is the SOEC, which has recently entered the market with approximately 150
kW of capacity installed to date [60]. The operating temperatures for high-temperature
steam electrolysis in SOEC’s range from 700 to 1000 ℃. These higher temperatures en-
hance the thermodynamic conditions of the reaction, potentially reducing electricity usage
as heat can be integrated into the process. However, some drawbacks of this technology
include instability and delamination of electrodes, along with safety concerns.

Lastly, strengths and limitations of the PtH2 are presented in Tab. 2.1.
Table 2.1

Advantages and Disadvantages of Power-to-Hydrogen.[3] [8] [61]

Power-to-Hydrogen
✓ Storage - Allows for large-scale storage
of surplus renewable electricity

X Production Costs - Higher compared
to traditional (grey) hydrogen

✓ Versatile Application - Usable for
power generation, transportation, and in-
dustrial feedstock

X Storage & Transport - Requires com-
pression or liquefaction due to low energy
density

✓ Zero Emissions - Supports decar-
bonization efforts

X Energy Losses - Involves efficiency
losses in electrolysis and conversion

✓ Sector Coupling - Integrates different
sectors, enhancing system flexibility and ef-
ficiency

Power-to-Ammonia - PtA
Ammonia is colourless gas with a strong smell that can easily dissolve in liquid water and water
vapour. Above 75% of global ammonia production is used as fertiliser, but it is also widely used
as a refrigeration fluid and in household cleaning solutions [22]. The production of PtA consists
of three following key steps, depicted in Fig. 2.3:

Figure 2.3
Graphical visualisation of ammonia production process.

• Hydrogen Production - As mentioned in Sec. 2.1, hydrogen is produced in electrolyser,
where renewable electricity is used to split water into H2 and O2

• Air Separation - Nitrogen(N2) is extracted from the air using an Air Separation Unit(ASU)
• Haber-Bosch Synthesis - H2 and N2 react at high temperatures and pressures in the H-B

process to form NH3, with an overall efficiency of 50-55% [23]

5



2.1. Power-to-X Aalborg University

In the production of ammonia via water electrolysis, approximately 95% of the electricity is
utilized for hydrogen production, while the remaining portion is allocated for air separation and
the Haber-Bosch synthesis unit [34]. Strengths and limitations of PtA are presented in Tab.
2.2.

Table 2.2
Advantages and Disadvantages of Power-to-Ammonia.[35] [34] [33]

Power-to-Ammonia
✓Energy Storage - NH3 offers higher
volumetric energy density than hydrogen
and can be stored as a liquid at -33°C
under moderate pressure

X Energy Intensity - Haber-Bosch
process requires high temperatures
(∼ 450°C) and pressures (∼ 200bar),
leading to significant energy losses

✓Carbon-Free - NH3 used as a clean
fuel for power plants, shipping, and
industrial heating

X Safety Risks - Ammonia is corrosive
and toxic, necessitating strict handling
and transport regulations

✓ Infrastructure - Existing ammonia
production, transport, and storage
infrastructure can scale up green ammonia
applications

X Combustion Issues - NH3

combustion may produce high NHx

emissions, requiring advanced emission
control technologies

✓ Grid Flexibility - PtA can stabilize
electricity grids by absorbing excess
renewable power

X Production Costs - Higher than for
fossil-based ammonia production

Power-to-Methane - PtM
Methane (CH4) is colourless and combustible gas, and the main component of natural gas. A
PtM plant mainly includes water electrolyser, a CO2 separation unit(if CO2 is not already avail-
able as pure gas or in a suitable mixture), and methanation unit. Inside of the methanation unit,
H2 reacts with captured CO2 to form a gas mixture that mainly consists CH4 and H2O. Fur-
thermore, the gas is processed into Synthetic Natural Gas(SNG). The final SNG can be used as
fuel for transport, in homes, for power generation when electricity demand is higher than supply
or as feedstock in industry.[25] Fig. 2.4 depicts described process of methane production.

Figure 2.4
Graphical visualisation of methane production process.

As previously mentioned ammonia, methane as well has its strengths and limitations, which are
presented in Tab. 2.3.

6



2.2. Power-to-Methanol Aalborg University

Table 2.3
Advantages and Disadvantages of Power-to-Methane.

Power-to-Methane
✓ Infrastructure – SNG can be injected
directly into existing natural gas pipelines,
storage and distribution systems

X Conversion Losses – Two-step process
(electrolysis and methanation) leads to low
efficiency (35–40%)

✓ Energy Storage – Enables long-term
and large-scale storage of renewable energy

X High Costs – PtM systems involve high
capital and operational expenses

✓ Carbon Reduction – Utilises captured
CO2, supporting carbon cycles and
emission reduction

X Environmental Risk – Methane
leakage in the supply chain can cause
significant harm if not managed properly

In addition to PtH2, which serves as the base for three commonly used energy carriers in PtX,
PtA and PtM are also presented to give a broader view of current technologies. These pathways
highlight the versatility of hydrogen as a starting point in different conversion routes. Finally,
since PtMeOH is the main focus of this thesis, it is introduced in the following section for a more
detailed discussion.

2.2 Power-to-Methanol
Methanol is one of the most widely produced chemical substances globally [14]. It can be used
as a transportation fuel, hydrogen carrier for fuel cell or for electricity generation.Methanol pro-
duction is generally divided into two categories: conventional fossil-based methanol (fMeOH)
and electricity-based methanol (eMeOH). Fossil-based MeOH is typically produced through a
two-step process. First, steam methane reforming (SMR) converts CH4 into syngas, that is
a mixture of H2, CO and CO2. Then, this syngas is synthesized into methanol at elevated
temperature (∼ 523.15K) and pressure (50 − 100bar).[2] This process can be observed in Fig.
2.5. Close to 90% of produced methanol is produced as fMeOH [53]. However, its reliance on
fossil-based SMR process and associated net-positive CO2 emissions present a major challenge
for sustainable development [43]. Consequently, focus should be on the development of eMeOH,
that’s produced with electricity from renewable sources.

Figure 2.5
Graphical visualisation of fossil-based methanol production

7



2.2. Power-to-Methanol Aalborg University

As mentioned in Sec. 2.1, methanol can serve as an energy carrier for seasonally generated elec-
tricity. One of its key advantages over hydrogen and methane is that methanol remains liquid
at ambient conditions, which makes it easier to store and transport. Additionally, studies show
that methanol can be produced with higher overall efficiency compared to other chemical energy
carriers.[45] Methanol is also a highly versatile product, it can be converted back into electricity,
used directly in gasoline engines or upgraded to diesel substitute dimethyl-ether (DME). Fur-
thermore, when produced from captured CO2 and renewable electricity, methanol provides an
excellent renewable carbon source for the chemical industry.[42]

A PtMeOH system typically incorporates an electricity source, an electrolysis unit, a carbon
source, a methanol synthesis plant and a distillation plant. Layout of a eMeOH production plant
can be observed in Fig. 2.6

Figure 2.6
Graphical visualisation of electricity-based methanol production

Wind Turbine
Electricity generated from wind turbines is used to power water electrolysis, making the process
fully renewable. The drop in electricity prices from wind power, alongside increasing capacity
installations, significantly improves the economic feasibility of PtMeOH pathways. According
to Adnan and Kibria [2], PtMeOH routes become cost-competitive when electricity prices fall
below 3 cents per kWh. Additionally, electricity with a low carbon intensity (<130 gCO2/kWh)
is necessary to ensure climate benefits over fossil-based methanol.

Water Electrolysis and H2 Storage
Renewable electricity power electrolysers, either PEM, ALK or SOEC types, which split water
into H2 and O2, as explained in detail in Sec. 2.1. The produced hydrogen, which serves as the
main feedstock for methanol synthesis, can either be used immediately or stored temporarily to
buffer fluctuations in electricity supply and ensure stable reactor operation. Incorporating hydro-
gen storage increases plant reliability and helps align hydrogen production with the availability
of renewable electricity.[43]

8



2.2. Power-to-Methanol Aalborg University

Carbon Capture and Storage
CO2 is sourced from industrial point sources such as cement or power plant via carbon capture
technologies, including chemical absorption and membrane separation. It is then compressed
and stored in dedicated tanks. CO2 supply is a critical component in the PtMeOH system, en-
abling the conversion of waste carbon into a valuable product. Recent advancements have made
post-combustion capture economically viable, especially when integrated with CO2 utilisation
technologies.[47]

Methanol Synthesis Reactor
The methanol reactor receives a stoichiometric blend of H2 and CO2. Inside the reactor, these
gases undergo catalytic conversion at 200-300 ℃ and 50-100 bar, primarily following the reac-
tions:

CO2 + 3H2 → CH3OH+H2O (2.1)

CO+ 2H2 → CH3OH (2.2)

CO2 +H2 → CO+H2O (Reverse Water–Gas Shift) (2.3)

The process uses a Cu/Zn/Al2O3 catalyst and benefits from syngas loop recycling, which max-
imises conversion and energy efficiency.[43]

Distillation and Product Purification
The reactor output, a mixture of methanol and water, is purified through distillation. The
distillation column separates pure eMeOH(≥99%) from water and unreacted components. The
unreacted gases are typically recycled back into the reactor, improving overall efficiency. Purifi-
cation can account for up to 15% of the system’s energy consumption.[14]

Produced eMeOH has both its own strengths and limitations, which are presented in Tab. 2.4.
Table 2.4

Advantages and Disadvantages of Power-to-Methanol.[14][42][43][53][2]

Power-to-Methanol
✓ Range of Application – Used not only
as a fuel but also as a feedstock in the chem-
ical industry

X Production Costs – Current cost of
green hydrogen and CO2 capture makes
eMeOH more expensive than fMeOH

✓ Liquid – Unlike hydrogen, methanol is
a stable liquid at room temperature, easier
to transport and store

X Overall Efficiency – Conversion from
electricity to hydrogen and then methanol
involves energy losses

✓ Infrastructure Compatibility – Can
be blended with gasoline, used in combus-
tion engines, or converted into other fuels

X Source Dependency – Production re-
lies on sustainable CO2 and purified water
for electrolysis

✓ Carbon-Neutral – eMeOH is produced
from green hydrogen and captured CO2

PtMeOH presents a highly promising pathway for transforming renewable electricity and cap-
tured carbon into a storable, transportable and carbon-neutral fuel. Its compatibility with exist-
ing infrastructure and broad applicability in both the energy and chemical sectors make eMeOH
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a standout option among PtX options. However, its practical implementation relies heavily on
the availability of affordable green hydrogen, captured CO2 and a stable supply of renewable
electricity. Since electricity pricing and generation pattern directly impact the efficiency and cost
of eMeOH production, it is crucial to understand how renewable energy, especially wind power
which serves as the primary electricity source in this project, is generated and priced. Therefore,
the next section focuses on the operation of wind turbines and the mechanisms behind electricity
price formation and fluctuations.

2.3 Wind Industry
The wind energy sector has emerged as one of the foundations of the global transition toward
renewable energy. As a clean, abundant and cost-effective electricity source, wind power plays a
vital role in decarbonising the global energy system. Technological improvements and support-
ive policies have significantly boosted wind power capacity in both developed and developing
regions.[27] According to the latest statistics from the International Renewable Energy Agency
(IRENA), wind energy accounted for approximately 9.0% of global electricity generation in 2022,
which is significant increase from just 3.5% a decade earlier. Within the European Union, in-
stalled wind power capacity grew from 202 GW in 2020 to over 225 GW by 2023, showing the
region’s strong commitment to climate neutrality and energy security through domestic renew-
able sources.[46] Fig. 2.7 shows how global wind share and installed power capacity in EU have
changes in this century.

Figure 2.7
Graph showing global wind share(green) and installed wind capacity in European Union(blue).[20] [27] [46]

The rise of wind energy is not entirely a result of environmental objectives. Economically, wind
power has become one of the most affordable sources of new electricity generation, outcompeting
many fossil-based alternatives. With levelised costs (LCOE) for onshore projects that in average
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are $30-75/MWh, it undercuts coal and gas in most markets [27]. This cost decline, driven by
economies of scale and turbine efficiencies, position wind as central to national energy strategies
[5].

This increasing share of wind power in electricity grids necessitates a comprehensive understand-
ing of wind turbine operation. To evaluate the technical and economic viability of downstream
applications such as PtX systems, it is essential to analyse how wind turbines generate elec-
tricity, which parameters govern their performance and how this electricity output changes in
fluctuating wind conditions.

2.3.1 Wind Turbines - Mechanical

Wind turbines are electromechanical devices that convert the kinetic energy of moving air into
electrical energy. This process forms the basis of modern wind energy systems and is critical
for integrating renewable electricity into PtX technologies. The wind energy conversion system
(WECS) consists of several integrated subsystems designed to optimise power capture, adapt to
varying wind conditions and efficiently deliver electricity to the grid or local consumers.[56]

The most commonly deployed configuration is the horizontal-axis wind turbine (HAWT), see
Fig. 2.8, in which rotor blades spin around a horizontal axis and face the wind via a yaw
control system. These systems dominate both onshore and offshore markets due to their supe-
rior aerodynamic efficiency and scalability. Vertical-axis wind turbines (VAWT), while easier to
maintain, are less efficient and generally limited to small-scale or urban applications.[1]

Figure 2.8
Graphical visualisation of HAWT, with key components being named.

11



2.3. Wind Industry Aalborg University

Tower
The tower supports the nacelle and rotor, elevating them to heights where wind speeds are
stronger and more consistent. Tower height typically ranges from 80 to 160 meters, depending
on turbine size and site conditions. Taller towers increase energy yield but also impose higher
structural and transportation demands.[2]

Rotor Blades and Hub
The rotor consists of two or three aerodynamic blades attached to a central hub. These blades
are designed to extract kinetic energy from the wind using lift, like airplane wings. The blades
are made from composite material (fibreglass or carbon fibre-reinforced polymers) to achieve a
balance between strength and lightness. Blade length significantly affect energy capture, with
longer blades increasing the swept area and potential power output.[1]

Nacelle
The nacelle carries key component including the gearbox, generator, brake system and control
electronics. The gearbox converts the low-speed rotation of the rotor(10-20 rpm) into high-speed
rotation, up to 1500 rpm, suitable for the generator. Some of the turbines use direct-drive sys-
tems that eliminate the gearbox, reducing maintenance and improving reliability, especially in
offshore applications.[20] The generator converts mechanical energy from the rotating shaft into
electrical energy. Most modern turbines use synchronous or asynchronous generators depending
on the grid connection setup. Power electronics, such as inverters and transformers, ensure that
the output is compatible with the grid in terms of frequency and voltage.[1]

Sub-Systems
The Yaw system rotates the nacelle to face the wind direction, maximising energy capture. Sen-
sors continuously monitor wind direction and motors adjust the nacelle position accordingly.
Yaw control is essential in HAWT to maintain alignment with the wind flow. Furthermore, each
blade is connected to a pitch mechanics system that allows it to rotate along its longitudinal
axis. This control adjust the angle of attack to optimise lift under different wind speeds. Modern
turbines have active pitch control system for better load management and energy efficiency [43].
Lastly, wind turbines are equipped with embedded control systems that manage performance,
monitor loads and ensure safe operations. Supervisory Control and Data Acquisition (SCADA)
system is used for remote monitoring and diagnostics.

2.3.2 Wind Turbine - Operations

The electrical power produced by a wind turbine is primarily determined by the kinetic energy
available in the wind and the turbine’s ability to convert that energy into electricity. Since wind
speed is highly variable, understanding how it influences power output is crucial for modelling
and optimising wind-powered systems.

12



2.3. Wind Industry Aalborg University

Available Wind Power
The theoretical power available from wind is given by:

Pwind =
1

2
· ρ ·A · v3 (2.4)

Where:

• Pwind - Power in watts (W),
• ρ - Air density (kg/m3), typically 1.225 kg/m3 at sea level,
• A - Swept area of the rotor (A = πL2, in m2),
• L - Blade length,
• v - Wind speed in meters per second (m/s).

This equation shows that the power increases with the cube of wind speed, meaning that small
changes in wind can have a large impact on energy output.[57]

Betz Limit and Efficiency Factors
Due to physical constraints, it is not possible to capture all the kinetic energy from the wind.
The Betz limit states that the maximum fraction of energy that can be extracted is 59.3% [44],
defined by:

Pmax =
16

27
· Pwind (2.5)

This theoretical maximum power is in real-world conditions reduced even further, where wind
power is multiplied with efficiency factor that equals to:

µ = (1− km) · (1− ke) · (1− ke,t) · (1− kt) · (1− kw) · Cp (2.6)

where:

• Cp – Turbine efficiency (it must be lower than the Betz limit (59.3%) and is typically
between 30–40%) [57];

• kw – Wake losses due to neighbouring turbines and terrain topography, typically 3–10%;
• km – Mechanical losses of the blades and gearbox, typically 0–0.3%;
• ke – Electrical losses of the turbine, typically 1–1.5%;
• ke,t – Electrical losses from transmission to the grid, typically 3–10%;
• kt – Percentage of time out of order due to failure or maintenance, typically 2–3%;
• µ – Real efficiency.

Finally, the actual electrical power output is then equal to:

Poutput = µ · Pwind (2.7)
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Due to structural limitations, wind turbines operates within defined limits of wind speed, which
are:

• Cut-in speed ∼ 3 m/s; the minimum required for generation
• Rated speed ∼ 12− 15 m/s; where turbine reaches peak capacity
• Cut-out speed ∼ 25 m/s; turbine shuts down for safety

Because wind is inconsistent, turbines rarely operate at rated capacity. Instead, the capacity
factor, defined as the ratio of a turbine’s actual energy output over a period to its theoretical
maximum output if it operated at full capacity continuously:

CF =
Actual energy Output(kWh)

Rated Power(kW ) · time(h)
(2.8)

Where CF equals to: [38]

• Onshore turbines - Typically 25-40% depending the site conditions
• Offshore turbines - Often exceed 50% due to steadier and stronger wind flows

High capacity factors indicate more efficient use of installed capacity and are essential for reduc-
ing the LCOE [20].

With a detailed understanding of wind turbine operation and its influence on electricity genera-
tion, the next step is to explore how this variable and weather dependent power supply interacts
with electricity market mechanisms. In particular, it is essential to investigate how fluctuations
in wind energy production impact electricity price dynamics and how these patterns shape the
cost environment for energy processes like electrolysis.

2.4 Electricity Price Forecasting
Electricity generated from renewable sources such as wind and solar has become a central com-
ponent of energy systems, especially in countries like Denmark with high levels of renewable
penetration. While these sources are environmentally sustainable and cost-effective in the long
term, they are also variable due to their dependence on weather and daylight conditions. This
variability introduces significant challenges in electricity market stability and price formulation,
as the supply of renewable electricity does not always align with real-time demand.

2.4.1 Nature of Renewable Power Variability

Renewable energy generation, particularly from wind and solar sources, is subject to fluctuations
across multiple timescales and geographic locations. These variations comes from the dynamic
nature of atmospheric and environmental conditions and they directly influence the stability of
electricity supply. Fig. 2.9 presents different types of nature changes and how they influence
electricity output.
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Figure 2.9
Graphical visualisation of different types of nature

changes in wind power.

Short-Term Variability
Wind speed varies rapidly over seconds to
minutes due to turbulence, gusts and micro-
scale meteorological phenomena. Similarly,
solar generation may experience short-term
drops in output due to cloud cover or shad-
ing. These fast changes introduce operational
uncertainty for grid operators, often requir-
ing balancing mechanisms to maintain system
stability. While such fast fluctuations do not
impact day-ahead electricity prices, they con-
tribute to operational uncertainty and influ-
ence the behaviour of market participants.[52]

Intra-Day and Diurnal Variability
Both wind and solar energy demonstrate characteristic intra-day patterns. In Northern Europe,
wind speeds often peak during the early morning and late evening, while slowing during midday
when atmospheric stratification is strongest [29]. On the other hand, solar output follows a more
predictable diurnal curve, peaking around noon and dropping to zero during the night. These
temporal mismatches between renewable supply and electricity demand create price imbalances.
For example, lower prices during nighttime wind surpluses or midday solar peaks, and higher
prices during evening demand peaks with reduced generation.

Seasonal Trends
Yearly differences in wind energy production are primarily driven by large-scale climate pat-
terns such as the North Atlantic Oscillation (NAO). These patterns can significantly affect wind
speeds over the North Sea and surrounding areas, altering the expected generation and economic
performance of wind projects from one year to the next.[26] Similarly, solar output is influenced
by seasonal changes in sunlight hours and sun angle. While these long-term trends are more
relevant for investment analysis, they also influence the baseline expectations in price modelling.

Spatial Variability
Wind and solar resources are not distributed evenly across regions. Factors such as terrain,
altitude and proximity to coastlines influence wind conditions, while solar output is affected by
latitude, cloud cover and local weather patterns. In Denmark notable differences exist between
the western (DK1) and eastern (DK2) zones due to regional wind resources and transmission
capacity. These spatial differences can lead to zonal price separations, especially when grid
constraints prevent efficient energy transfer between regions.[19]

Understanding these sources of variability is essential for accurately capturing the behaviour
of electricity markets dominated by renewable energy. Recognising the distinct temporal and
spatial patterns of wind and solar generation enables better modelling of electricity prices and
supports more effective optimisation strategies for flexible systems like electrolysers.

15



2.4. Electricity Price Forecasting Aalborg University

2.4.2 Price Formulation

Electricity prices in modern power markets are determined by the dynamic interaction of sup-
ply and demand, with renewable power playing an increasingly influential role due to its low
marginal cost and variable output. This section outlines the key mechanisms and parameters
that drive price formation in wind integrated electricity markets.

Each region in world has its own zonal electricity market where prices are forming, which for
Denmark is Nord Pool day-ahead market. At zonal electricity market producers and consumers
submit bids for each hour of the next day. Prices are determined by the intersection of the
aggregated supply and demand curves, with the price set by the marginal unit, which is the last
accepted offer needed to balance the system for a given hour.[49]

This process is based on marginal cost bidding, where each producer offers electricity at its
short-run production cost. Renewable generators like wind and solar typically bid at or near
zero marginal cost because they do not require fuel. As a result, renewable power displaces more
expensive fossil-based generation in the merit order, driving down the market clearing prices.
This phenomenon is widely known as the Merit Order Effect, shown in Fig. 2.10.[36]

Figure 2.10
Graphical visualisation of Merit Order Effect, where increasing capacity of wind power reduces market prices.

Under conditions of high renewable generation and low demand, such as during night time, sup-
ply can exceed local demand. This situation often leads to negative electricity prices, where
producers are effectively paying to stay online rather than shutting down, which may be costly
or technically constrained.[36]

The main drivers of hourly electricity prices in renewable integrated systems can be grouped into
several categories, which is shown in Fig. 2.11
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Figure 2.11
Mental map presenting drivers for hourly electricity pricing.

2.4.3 Input Parameters for Price Forecasting Models

Accurate short-term price predictions are essential for market participants, including flexible
consumers such as energy storage systems, demand response unit and industrial processes pow-
ered by electricity. While forecasting techniques vary widely in complexity, they all depend on
the selection of relevant input variables, commonly referred to as exogenous variables or features
in predictive modelling.[41]

The forecast target in most electricity price modelling frameworks is the hourly zonal clearing
price from the day-ahead market. Forecast horizons typically span 24 to 72 hours, depending on
the decision-making context. In high-resolution models, price prediction can be extended to 15
minute intervals, especially in intra day markets or for real-time dispatch.[58]

Electricity price formation is both temporal and spatially dependent, requiring the inclusion of:

• Lagged variables - Historical values of electricity prices or generation
• Rolling averages - Moving averages of demand or generation
• Zone-specific data - Renewable forecasts and inter-connector flows for specific part of world

Multivariate modelling approaches often include hour-of-day, day-of-week and seasonality flags
to capture recurring demand and supply structures [41].

Electricity prices in renewable-integrated markets are influenced by a wide set of technical, envi-
ronmental, and market-related variables. As outlined in this section, accurate price forecasting
might depend on selecting relevant exogenous inputs such as weather conditions, demand profiles,
fuel markets, grid constraints and operational disruptions. These inputs provide the structural
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foundation for time series or machine learning models to anticipate short-term price movements.
While the specific modelling approach can vary, the richness and resolution of these features
critically determine the model’s performance and applicability for operational decision-making
in modern electricity systems.

On the other hand, electricity forecasting model can be autoregressive, where most of the dis-
cussed external variables are not directly included in the modelling process. Nevertheless, a
conceptual understanding of these drivers remains essential to interpret the forecasted prices
and their implication for electrolyser optimisation.

2.5 Methanol Production
The methanol production process analysed in this section is developed in a collaboration with
a parallel student group focused on designing the complete e-methanol synthesis system. Their
design integrates green hydrogen produced via electrolysis, together with captured CO2 stream,
to generate synthetic methanol through catalytic synthesis. While the detailed engineering and
process flow of the methanol plant fall outside the scope of this thesis, the layout and opera-
tional structure of their system provide the necessary boundary conditions for the electrolyser
operation model developed in this thesis.

The electrolyser is the most electricity intensive unit in the system and presents the greatest
opportunity for cost optimisation in response to fluctuating electricity prices. Importantly, the
system is designed to achieve a predefined annual methanol production target, which imposes a
hydrogen demand that the electrolyser must satisfy over the year. Therefore, the optimisation
problem addressed in this thesis is not to maximise profit or track electricity prices blindly, but
rather to determine how and at what capacity the electrolyser should operate, across three opera-
tional states, to meet this hydrogen demand at the lowest possible operational cost. Additionally,
the model considers that the methanol synthesis reactor adjusts its hydrogen consumption ef-
ficiency based on the electrolyser’s output, introducing a dynamic coupling that affects overall
system performance.

Consequently, this section introduces the physical system layout, describes key assumptions and
outlines specific input parameters that define the optimisation framework used throughout this
thesis.

2.5.1 System Layout

The methanol production system evaluated in this work consists of two primary systems, an
upstream electrolyser and a downstream methanol synthesis and distillation system. All hydro-
gen produced by the electrolyser is consumed by the MSR, creating a tightly coupled system.
Methanol output is assumed to be nonlinear and influenced by both the quantity and continuity
of hydrogen flow. The system, shown in Fig. 2.12, is used to meet a predefined annual methanol
production target, which is translated into a cumulative hydrogen demand.
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Figure 2.12
Simplified process flow diagram of the Power-to-Methanol (PtMeOH) system.

To ensure methanol synthesis continuity during transitions from running to standby or shutdown,
a small hydrogen buffer tank is introduced, as shown in Fig. 2.12. This tank supplies the MSR
with 17 kmol H2 during a transition period of one hour. When the electrolyser resumes opera-
tion, the first 17 kmol H2 produced is allocated to refilling the tank. Any remaining hydrogen is
used by the MSR. This buffering logic governs temporary decoupling of production and demand.

The system is analysed over a total of 8760 hours, representing one year of operation. All system
behaviour is modelled at an hourly resolution. For each hour, electrolyser is considered to be in
one of three operational modes:

• Running - Hydrogen production
• Standby - Minimal electricity use to keep the unit warm and pressurised, but no hydrogen

output
• Shutdown - Completely off, with no electricity consumption or hydrogen output

Transition between these modes are only allowed at the beginning of an hour. Once a mode is set
for a given hour, it remains fixed for that entire interval. These operating rules reflect technical
constraints such as thermal cycling limits and ramping behaviour.

The methanol reactor is assumed to operate continuously, and its conversion ration is tied to
the hydrogen supplied from the electrolyser. The relationship between hydrogen and methanol
production, along with other system specific parameters, is described in the following sections.

2.5.2 Electrolyser System

The electrolyser unit used in this thesis is based on Siemens Silyzer 300, a state-of-the-art PEM
electrolyser designed for industrial scale hydrogen production[50]. In this layout, three Silyzer
300 modules are installed and operated in parallel, providing the necessary hydrogen supply for
the methanol synthesis process. The system is modular, highly dynamic and capable of fast load
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changes, making it well suited for integration with fluctuating renewable electricity. Fig. 2.13
captures simplified schematic of the electrolyser system layout.

Figure 2.13
Detailed process flow of the PEM electrolyser system, illustrating water circulation, gas separation, and

demisting.

As shown in Fig. 2.13, water is supplied through a series of pumps and heaters, ensuring the
feed water is pressurised and preheated to optimal conditions before entering the electrolyser
stack. Inside the PEM electrolyser, water is split into H2 and O2 using electrical energy supplied
through a dedicated transformer, which transforms AC to DC electricity. The produced gases
are subsequently separated in dedicated gas separator units. To improve product purity and
system safety, demisters are used to remove residual water droplets from both the hydrogen and
oxygen streams before final control valves regulate their output. The hydrogen flow continues
towards the MSR.

Operational Modes
The electrolyser can operate, as mentioned previously, in three distinct states, each representing
a different energy and hydrogen production behaviour:

• Running: The electrolyser is actively producing hydrogen and consuming electricity. In
this state, it can run at different percentage levels of nominal load. Each level corresponds
to different electricity consumptions and hydrogen production values, shown in Tab. 2.5

• Standby: The electrolyser is not producing hydrogen but remains warm and pressurised,
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allowing for faster restart, for which small portion of electricity has to be used.
• Shutdown: The electrolyser is completely off, with zero electricity consumption or hydro-

gen output. Restart from this state takes slightly longer compared to standby.

Values for used electricity and produced hydrogen, across different states, are presented in Tab.
2.5

Table 2.5
Electrolyser power consumption, hydrogen production rate, and efficiency at different load levels.

Load Level Power Consumption [kW] H2 Production [kmol/h] Efficiency [%]
Shutdown 0 0 -
Standby 165 0 -
40 % 17064.08 172.468 77.5
50 % 21961.85 215.585 75.8
60 % 27098.38 258.700 74.1
70 % 32471.63 301.820 72.3
80 % 38080.09 344.940 70.7
90 % 43922.57 388.050 69.1
100 % 49998.09 431.170 67.5

Transition Logic

Figure 2.14
Electrolyser operational state transitions.

As mentioned in Sec. 2.5.1, the electrolyser can
only switch states at the beginning of each hour.
Once a mode is set, it is maintained for the full
hour. However, transitions between operational
states are not instantaneous steps, they require
transition periods, which introduce both time de-
lays and energy costs. These transitions are critical
to capture in the optimisation model, as they im-
pact both hydrogen availability and electricity con-
sumption. The allowed transitions are visualised in
Fig. 2.14.

Following transitions are captured:

• R → S – Standby:
This transition involves a controlled ramp down of the electrolyser over a defined transition
period, during which hydrogen output decreases while the system continues to consume a
reduced amount of electricity to maintain thermal and pressure conditions. At the same
time, the MSR begins its own one hour transition to standby mode. To keep the MSR
active during this ramp down, 17 kmol H2 is taken from a buffer tank. This transition
is technically smoother and less costly than a full shutdown but still incurs operational
energy costs.

• S → R – Hot Start:
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Hot start transition benefits from the electrolyser being already warm and pressurised,
allowing for a faster return to hydrogen production. Although quicker than a cold start, it
still incurs a defined energy cost. Upon resuming operation, the electrolyser first refill the
100 kmol H2 used from the buffer tank before supplying any hydrogen to the MSR. In the
following hour, the MSR resumes full production, aligned with the electrolyser’s output

• R → O – Shutdown:
Complete ramp down of the electrolyser is involved in this transition, resulting in zero
hydrogen production and electricity consumption. The process takes same time as the
standby transition. During this transition, the MSR again requires 100 kmol H2 from the
buffer tank to complete its own standby transition.

• O → R – Cold Start:
This cold start transition represent the most energy intensive and time consuming change
of state. The electrolyser must be reheated and re-pressurised from ambient conditions,
leading to increased electricity consumption during startup. As with the hot start, the first
100 kmol H2 produced is still used to refill the buffer tank before the MSR can resume full
scale operation.

• S ��⇌ O:
Transitions between standby and shutdown are not allowed in the model. These are con-
sidered technically feasible but economically inefficient, as they incur additional cycling
stress and low system utilisation. Preventing these transitions simplifies the model and
reflects strategies aimed at reducing wear and minimising unproductive switching.[61]

Tab. 2.6 captures values for costs and durations of previously mentioned transitions.
Table 2.6

Transition durations and associated costs between electrolyser load levels. Transitions between Standby (S)
and Shutdown (O) are not permitted.

Load Level Duration [min] Cost [DKK]
R → S 6 -
S → R 2 82.50
R → O 6 -
O → R 42 1200
S ⇌ O Not Allowed

The operation of the electrolyser is not only influenced by electricity price dynamics and tran-
sition costs, but also by the requirements of the downstream methanol synthesis reactor. As
all produced hydrogen is directly consumed by the MSR, any changes in electrolyser state have
immediate implications for methanol production. To ensure stable and continuous methanol
output, the interaction between the electrolyser and MSR, including transition timing, buffer
usage and production levels, must be carefully coordinated. The following section introduces
the methanol synthesis system, its hydrogen dependency and the key modelling assumptions
governing its integration with the electrolyser.
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2.5.3 Methanol Synthesis and Distillation System

The downstream methanol production system consist of two major subsystems, the methanol
synthesis reactor (MSR), see Fig. 2.15 and the distillation column, see Fig. 2.16. These units
operate in sequence and are directly dependent on the hydrogen flow rate from the upstream
electrolyser. Consequently, any fluctuations in electrolyser capacity immediately impacts the
performance and energy consumption of the MSD system. The following subsections describe
each unit individually, along with their modelling assumptions, operating constraints and key
parameters used in the optimisation model.

Figure 2.15
Process flow diagram of the methanol synthesis reactor system.

Methanol Synthesis Reactor - MSR
The MSR receives a hydrogen flow of 450 kmol/h from the electrolyser under nominal load.
This is combined with a CO2 input of 150 kmol/h, following the stoichiometric requirement of
a 3 : 1 H2 : CO2 ratio. The CO2 stream is assumed to be continuously available from upstream
carbon capture units, and its supply and variability are considered outside the scope of this
project. The gas mixture is compressed and preheated in HEX(for initial start of production,
mixture is heated with HX1) before entering the catalytic reactor R1, where methanol and water
are formed.

After the reactor, the hot stream is cooled in heat exchanger HX2, recovering approximately
1.59 MW of thermal energy. This heat is transferred to the reboiler in the distillation section,
reducing external heating demand. As the crude methanol-water mixture continues downstream,
it undergoes further cooling before reaching the separator (SEP 1). The associated low-grade
heat from this second cooling step is considered surplus and is assumed to be sold to a district
heating network, providing additional value from excess thermal energy.

Following separation, approximately 4.12 kmol/h of hydrogen is purged to stabilise the recycle
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loop after splitting with SP1, while the remaining unreacted gases are compressed and returned
upstream. Crude methanol from SEP 1 is depressurised is passed down to SEP 2. This pressure
drop causes dissolved unreacted gases to be released. The separated gases are removed from the
system through valve outlet, while the degassed crude methanol with water is directed to the
distillation section for further purification.

The reactor is designed to operate within a minimum load threshold of 40% of nominal hydro-
gen input. Below this point, temperature control and reaction kinetics become unstable and
methanol production is not feasible.

Figure 2.16
Process flow diagram of the methanol distillation system.

Distillation Column
As shown in Fig. 2.16, the distillation system D1 receives the crude methanol-water mixture
feed, that was previously depressurised and preheated. The column is powered by a reboiler with
a nominal energy demand of 2.93 MW , partially offset by the heat recovered from HX2.

Reboiler heats column to ∼ 60°, where methanol evaporates while water stays at the bottom
of the column. Overhead vapours are condensed at HX4 and separated at SEP3 into gaseous
and liquid fractions. The purified methanol stream passes through pumps and valves to SP2,
where unreacted methanol is transferred back to distillation column. Produced methanol under
nominal production has a final flow rate of 146.8 kmol/h, which is approximately 4700 kg/h.
Remaining water is with the help of pumps removed from the system.

The MSD system is highly sensitive to variations in electrolyser output, as hydrogen flow directly
governs both the reaction rate in the MSR and the availability of feedstock for the distillation
column. The thermal integration between HX2 and reboiler further links the performance of
these two units, making coordinated operation essential for system efficiency. By modelling
the MSD section with these dependencies and process constraints, the optimisation framework
can realistically evaluate how electrolyser operation strategies impact final methanol production,
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energy consumption and overall production feasibility.

Optimisation Parameters Summary
To enable the development of a realistic and constraint optimisation model, the most relevant
technical and operational parameters from electrolyser, MSR and distillation column are sum-
marised in Tab. 2.7. These values define the system’s physical boundaries, energy requirements
and coupling logic between subsystems. All values are based on nominal operating conditions,
unless stated otherwise.

Table 2.7
Key technical and operational parameters of the main components in the Power-to-Methanol (PtMeOH)

system.

Component Parameter Value [Unit] Description

Electrolyser

Operational load levels 40 - 100 [%] Discrete states
Electricity consumption 49 998 [kW] At 100% load
Standby consumption 166 [kW] No H2 output
H2 Production rate 431.17 [kmol/h] At 100% load
Transition duration, on 2 / 42 [min] S → R / O → R
Transition cost 82.50 / 1200 [DKK] S → R / O → R

Buffer tank Capacity 17 [kmol] MSR standby transition
Recharge/Discharge 1 [h] Supplies MSR for 1 hour

MSR

Stable operating range ≥40 [% H2 load] Reactor threshold
CO2 input flow 150 [kmol/h] Fixed 3:1 H2:CO2 ratio
Heat Surplus – HX2 –1590 [kW] Reused in reboiler
Surplus heat to district
heating 111 [kW] From post-reactor cooling

before SEP

Distillation

Reboiler energy demand 2930 [kW] Heating distillation column
Compressor consumption 334 [kW] For MSD process
Heat exchanger – HX3 349 [kW] Heating distillation column
Final methanol output 146.8 [kmol/h] At full electrolyser load

The values presented in Tab. 2.7 form the quantitative foundation for the optimisation frame-
work developed in the Sec. 4.2. By combining fixed operating states, transition costs, heat
recovery potentials and subsystem dependencies, the model can accurately reflect the dynamic
and interconnected nature of PtMeOH process. This enables the formulation of an optimisation
strategy that balances electricity costs, equipment constraints and methanol production targets.

2.6 Summary
This chapter provided the contextual and technical foundation for the thesis. It introduced
Power-to-X technologies with a focus on Power-to-Methanol, examined the generation and pric-
ing of renewable energy, and explored the implications of electricity price variability. Sec. 2.5
outlined the methanol production setup developed in collaboration with the partnering group,
identifying the main input parameters relevant for optimisation. While wind energy remains the
primary focus, solar generation is also included in the forecasting model to improve accuracy.
However, due to its predictable diurnal and seasonal patterns, solar power is not technically
analysed in this chapter.
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E-methanol production systems that rely on electrolyser, shown in Sec. 2.5, face challenges
in minimising operational costs due to the volatility of electricity price in wind industry. Since
electricity is the dominant cost driver, it is essential to align hydrogen production with hours
of lower electricity prices. However, the objective is not to maximise profit by exploiting price
fluctuations, but to ensure that the system meets a fixed methanol production target over a
year in the most cost-effective way. Electricity price forecasting serves as a support tool to
identify when the electrolyser should operate, and at what capacity, while navigating between
three operational states. The optimisation framework developed in this thesis focuses on how
to minimise total operational costs while satisfying downstream hydrogen requirements, rather
than increasing output based on market opportunities.

This leads to the final problem statement:

How can the operation of an electrolyser in an e-methanol production system be
optimised to minimise total operational costs over a one-year horizon, while

ensuring a fixed e-methanol production target is met, using renewable electricity
price forecasts in Denmark as guidance for scheduling decisions?

3.1 Design Requirements
The goal of this thesis is to develop an optimisation approach for the operation of an electrol-
yser, supported by short-term electricity price forecasting. To guide the development process,
the following design requirements have been defined:

• Electricity Price Forecasting - A forecasting model must be developed to estimate
hourly electricity prices over a one-year period using historical data and relevant time-
based patterns.

• Developed Forecast Model – The forecasting model has to base its predictions solely
on renewable electricity generation (onshore wind, offshore wind, solar) and electricity
demand, to align with the focus on PtX applications.

• Forecast Integration - The electricity price forecasts must serve as inputs for the opti-
misation model, enabling hour-by-hour decision making.

• Operational Modes - The optimisation model must include at least three discrete op-
erational states for the electrolyser: running, standby, and shutdown, each with its own
energy and transition behaviour.
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• Hourly Decision-Making - The optimisation model must determine the electrolyser’s
operational mode on an hourly basis, aligned with the resolution of the forecast input.

• Economic Response - The model must prioritise cost-efficient operation, clearly demon-
strating lower total operational costs compared to non-optimised or fixed scheduling ap-
proaches, while ensuring the annual e-methanol production target is met.

3.2 Delimitation
This section highlights the areas that were intentionally excluded to maintain a focused and
manageable project scope. The following delimitations have been identified:

• Electricity Market Modelling - This thesis does not aim to replicate or model the full
complexity of the Nord Pool electricity market. The price forecasting components serve
only as a supportive tool for the optimisation task and is not intended to predict extreme
market behaviour or capture detailed market bidding structures.

• Economic Policy Uncertainty - The model does not account for long-term price uncer-
tainty, fuel market fluctuations, policy changes or carbon taxation scenarios. Price inputs
are assumed to be known, either through historic data or short-term forecasting.

• Real-Time System Integration - Implementation into a live control system or produc-
tion environment is outside the scope. The optimisation is developed as a decision-support
tool for offline or day-ahead scheduling scenarios.
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Methodology 4

This chapter presents the methodological approach used to address the problem defined in Chap.
3. Chapter outlines the methods applied to develop the forecasting and optimisation models,
therefore, it is structured in two parts. Sec. 4.1 describes the approach to forecasting elec-
tricity prices, presenting two modelling strategies and explaining how they are combined into a
hybrid method. Sec. 4.2 introduces the optimisation framework, which determines the hourly
operational schedule of the system. While the electrolyser is the primary control point in the
optimisation process, the downstream methanol synthesis and distillation system is fully coupled
to its operation. As such, changes in electrolyser scheduling directly affect methanol output
and overall system performance. The electricity prices predicted by the forecasting model serve
as input to the optimisation model, ensuring decision-making across the full production chain.
Together, these components form the core methodology for evaluating cost-efficient and demand-
driven e-methanol production.

4.1 Electricity Forecasting Framework
Accurate short-term electricity price forecasting is essential for cost-efficient operation in pro-
cesses such as electrolysis. This section presents the methodology used to forecast hourly electric-
ity prices over a 24-hour horizon. Two modelling approaches are evaluated, one using exogenous
input features and one based on autoregressive principles, followed by a detailed description of
the selected forecasting framework.

4.1.1 Method Selection

Two main approaches were considered for short-term electricity price forecasting. The first is an
exogenous model that incorporates external predictors. The second is an autoregressive model
that relies solely on historical price patterns and time-based variables. The selection between
these methods is based on subjective evaluation of factors such as accuracy, simplicity, data
requirements and suitability for integration with the optimisation framework.

Exogenous Forecasting Model
Exogenous models aim to predict electricity prices by incorporating external variables that are
known to drive price formation. Models rely on multiple predictors that drive electricity prices,
such as:

• Wind and solar generation forecasts
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• Load demand
• CO2 prices
• Fuel prices
• Time and location effects

Such models are often implemented using machine learning techniques capable of capturing
complex, non-linear relationships. Their strength lies in representing real-time market dynam-
ics when high-quality and timely data is available.[37] Model’s strengths and limitations are
presented in Tab. 4.1.

Table 4.1
Advantages and Disadvantages of Exogenous Models.[37][41]

Exogenous Models
✓ High Accuracy – Performs well when
external forecast inputs are reliable

X Data Dependency – Strong reliance on
availability and quality of external data

✓ Realistic Dynamics – Captures mar-
ket and system behaviour more effectively

X Complexity – More difficult to imple-
ment, maintain, and troubleshoot

✓ Multivariable Interaction – Capable
of modelling relationships between multiple
influencing factors

X Poor Suitability for Lightweight
Use – Less ideal for rapid or minimal-
resource deployment
X Forecast Sensitivity – Prone to error
propagation from inaccurate upstream in-
puts

Autoregressive Forecasting Model
Autoregressive models take a data-driven approach based solely on the historical behaviour of
electricity prices and time-related features such as the hour of the day and day of the week. They
are rooted in classical time series forecasting methods but can also be enhanced with machine
learning algorithms such as XGBoost to improve non-linear pattern recognition [62]. These mod-
els are well established in the literature and are particularly favoured for their simplicity, speed
and independence from external data [58]. Autoregressive model has both its own advantages
and disadvantages, which are presented in Tab. 4.2

Table 4.2
Advantages and Disadvantages of Autoregressive Models.[58][62][39]

Autoregressive Models
✓ Lightweight and Self-Contained –
Simple structure that does not rely on ex-
ternal inputs

X Limited Responsiveness – Cannot
capture unexpected price spikes such as
wind drops or market shocks

✓ Data Robustness – Performs well even
when external data is missing or delayed

X Volatility Sensitivity – Accuracy may
decline under highly volatile conditions

✓ Interpretability – Easy to understand
and maintain

X Market Blindness – Does not reflect
trends in fuel or emissions markets

✓ Quick Deployment – Fast to train and
deploy, suitable for time-sensitive applica-
tions
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Method Selection
Tab. 4.3 summarises presented methods by subjective criteria parameters, based on knowledge
provided from literature.

Table 4.3
Table showing different aspects of two presented models within subjectively selected criteria parameters.

Criteria Exogenous Model Autoregressive Model
Inputs Wind, demand, CO2, time features History data, time features
Accuracy High(with reliable inputs) Moderate
Complexity High Low
External dependency Required None
Implementation time Long Short
Integration suitability Moderate High High

As shown in Tab. 4.3, and mentioned in previous subsections, it is clear that both methods
have their own strengths and limitations. To address the limitations of both models, a hybrid
approach is adopted in this thesis. In this method, external price-driving variables such as renew-
able generation and electricity demand are first forecasted using separate data-driven models.
These forecasts are then used as input features in an XGBoost AR model for electricity price
forecasting.

This hybrid approach allows the forecasting system to maintain the structural simplicity and
interpretability of AR models while also accounting for real-time external system dynamics.
Such approaches have shown strong performance in academic literature, particularly in volatile
electricity markets where both internal and external patterns influence prices [39].

4.1.2 Hybrid Method

The hybrid forecasted method used for forecasting electricity prices integrates two powerful mod-
elling strategies to improve both the realism and robustness of prediction. In the first stage the
Recurrent Neural Network (RNN) is used to estimate future system conditions. Second stage
uses a structured machine learning model to estimate electricity prices based on those conditions.
The reason for this design is to capture both long-term temporal dynamics and complex mul-
tivariable relationship, which are typical for electricity market behaviour. Structure of hybrid
model is presented in Fig. 4.1.

Figure 4.1
Graphical visualisation of hybrid model used to forecast electricity.
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First Stage - Input Parameters Forecasting
Long Short-Term Memory (LSTM) networks are a class of RNN specifically designed to overcome
the limitations of standard RNNs when dealing with long sequences. They are capable of learn-
ing patterns with long-range dependencies and are especially well-suited for forecasting in time
series data where both seasonality and sudden shifts may exist.[30] LSTM architecture is built
from a series of interconnected components called memory blocks. These blocks are designed to
retain information over time and control the flow of data using non-linear gating mechanisms.
As shown in Fig. 4.2, LSTM block includes input signals xt, outputs yt, activation functions,
various gates and peephole connections, which allows the gates to access the internal cell state
directly, improving the network’s ability to learn precise timing-based patterns.

Figure 4.2
Graphical visualisation of LSTM Block and logic it uses.

Model starts its iteration at Block input, in bottom left corner, which combines the current
input x(t) and the output of previous iteration y(t−1). This can be shown with following equation:

z(t) = g
(
Wzx

(t) +Rzy
(t−1) + bz

)
(4.1)

Where Wz and Rz are the weights associated with x(t) and y(t−1) while bz stands for the bias
weight vector.

Next step is update at the Input gate, which is performed with the combination of current in-
put x(t), the output of previous iteration y(t−1) and the cell value c(t−1) from previous iteration,
which could be defined as in Eq. 4.2. The cell state is the internal memory of an LSTM unit,
designed to carry information across time steps.

i(t) = σ
(
Wix

(t) +Riy
(t−1) + pi ⊙ c(t−1) + bi

)
(4.2)

Where ⊙ denotes point-wise multiplication of two vectors. Wi, Ri and pi are the weights for
mentioned parameters while bi is bias vector.
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At Forget gate the LSTM layer decides which information from the previous cell state c(t−1)

should be discarded. To achieve this, the forget gate activation values f (t) are computed at time
step t, using the current input x(t), the previous output y(t−1), the prior cell state c(t−1), peephole
connections and the forget gate bias term bf . The calculation is performed as follows:

f (t) = σ
(
Wfx

(t) +Rfy
(t−1) + pf ⊙ c(t−1) + bf

)
(4.3)

Here, Wf , Rf , and pf represent the weight matrices linked to the current input x(t), the previous
output y(t−1), and the prior cell state c(t−1), respectively.

Cell state values are updated by combining the block input z(t) with the input gate i(t) and the
forget gate f (t), along with the previous cell state. This process can be expressed as:

c(t) = z(t) ⊙ i(t) + c(t−1) ⊙ f (t). (4.4)

At Output gate, current input x(t), previous output y(t−1) and prior cell state c(t−1) are com-
bined in following way:

o(t) = σ
(
Wox

(t) +Roy
(t−1) + po ⊙ c(t) + bo

)
(4.5)

In this equation, Wo, Ro, and po are the weight parameters corresponding to the current in-
put x(t), the previous output y(t−1), and the current cell state c(t), respectively. The term bo

represents the bias vector used in the output gate.

Lastly, the Block output is defined as combination of the current cell value c(t) and output
gate value as follows:

y(t) = g
(
c(t)

)
⊙ o(t). (4.6)

In the equations above, σ, g, and h represent point-wise non-linear activation functions. The
logistic sigmoid function, defined as σ(x) = 1

1+e−x , is typically used for gate activations. Mean-
while, the hyperbolic tangent function, expressed as g(x) = h(x) = tanh(x), is commonly applied
as the activation function for both the block input and the output.

This gated architecture allows for LSTM to remember patterns over long time horizon without
suffering from vanishing gradients, which is common problem for standard RNNs.

In this hybrid model, LSTM models are trained to forecast following variables:

• Offshore wind generation
• Onshore wind generation
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• Solar generation
• Electricity demand

Each LSTM model takes as input a multivariate time sequence that includes both the target
variable and cyclical time feature (hour-of-day, day-of-year). These time features help the model
learn seasonal variations and daily usage cycles. The outputs from the LSTM models represent
the systems future state. These variables are then provided into next stage, which is forecasting
the electricity using AR model.

Second Stage - Electricity Price Forecasting
The second stage of the hybrid model involves forecasting electricity prices using AR model.
While linear AR models are effective at modelling persistent patterns, they often fall short in
capturing the non-linear and dynamic behaviour typical for electricity markets. To address this,
the linear regression component is replaced by a non-linear mapping function learning through
XGBoost.

XGBoost (Extreme Gradient Boosting) is a tree-based machine learning algorithm that builds
an ensemble of weak learners, typically decision trees, in a stage-wise manner. This allows the
model to capture complex, non-linear relationships between input features and the forecasted
value.[59] In the context of Electricity Price Forecasting (EPF), XGBoost has demonstrated
competitive performance and has been shown to outperform traditional models such as Sup-
port Vector Machines (SVM) and Random Forests (RF) in both accuracy and computational
efficiency [4].

Function which XGBoost is using to evaluate predicted electricity price is defined as:

Pt = f(Pt−1, . . . , Pt−n, P t−24, R̂t, L̂t, Tt,ResidualLoadt, . . .) (4.7)

Where:

• Pt is the predicted electricity price at time t

• Pt−1 . . . Pt−24 are lagged prices
• P t−24 is the rolling average
• Ŵt is the forecasted renewable generation (from LSTM)
• L̂t is the forecasted demand (from LSTM)
• Tt represents temporal features (hour, day of week, month)
• Residual Load and volatility features are engineered from LSTM outputs

Temporal and rolling features are commonly used in AR-based forecasting and are theoretically
justified by their ability to represent diurnal and weekly seasonality, which are dominant in
electricity price formulation [58].

The model is trained to generate 24-hours ahead forecasts using a recursive strategy. Firstly,
the model predicts the price for t + 1 using known historical values. Furthermore, it uses the
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predicted Pt+1 as an input for forecast Pt+2 and so on until Pt+24. This rolling prediction method
aligns with common practices in short-term EPF and reflects real-world operational use cases
[39]. Although recursive forecasting introduces the risk of compounding errors, this is mitigated
by frequent retraining and daily updates of the model. Presented framework for forecasting
electricity prices is showcased as a process flow in Fig. 4.3

Figure 4.3
Graphical visualisation of flow for forecasting electricity price.

By separating the forecasting process into tasks of driver estimation and EPF, the hybrid method
enables a more realistic and modular representation of electricity market behaviour. The use of
LSTM models provides temporal foresight into supply and demand conditions, while the XG-
Boost model integrates these signals with historical pricing dynamics and engineered variables
to produce reliable price forecasts.

4.2 Electrolyser Optimisation Framework
This section establishes the theoretical foundation for the optimisation model developed in this
thesis. The aim is to determine a cost-effective operational schedule for the electrolyser that
aligns with hourly electricity price variations, while satisfying a fixed annual e-methanol pro-
duction target. Although the electrolyser serves as the central decision, its operation directly
affects the downstream methanol synthesis and distillation. Therefore, the optimisation must
consider system constraints and interactions. The following subsections introduce the motivation,
structure and methodology of the proposed optimisation framework, depicted in Fig. 4.4

Figure 4.4
Conceptual representation of the optimization framework methodology.

4.2.1 Motivation and Problem Framing

E-methanol production relies heavily on both chemical processing and power system dynam-
ics, making it particularly sensitive to fluctuations in electricity prices. The electrolyser, as the
primary electricity consumer, serves as the main point of control for adapting production to
economic conditions and grid constraints. In regions rich with renewable power generation, as
Denmark, optimising its operation is essential for ensuring system performance and cost control.
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The main challenge addressed in this thesis is to determine how the electrolyser should oper-
ate over a defined planning horizon. This includes deciding when to run, at what load, and
when to remain idle or shut down, in order to minimise total operational costs while meeting a
fixed methanol production target. This represents a constrained cost minimisation problem that
must navigate electricity market fluctuations, process coupling constraints and mode transition
dynamics.

While real time optimisation is often infeasible in practice due to computational or data latency
constraints, many industrial energy systems rely on rolling horizon scheduling using short-term
forecasts to preallocate resources over operational intervals such as 24 hours or one week [13].
In the case of PtX systems, electricity price forecasting becomes a key enabler for this strategy,
allowing system operators to shift production toward lower price periods without leaning to risky
long-term predictions [58].

However, the use of price forecasts in this thesis is not intended for market speculation. Instead,
it serves as a supporting signal for ensuring that the hydrogen production aligns with period
of favourable energy cost, within the constraints imposed by the physical plant. This distin-
guishes the modelling approach from profit driven strategies often applied in electricity trading
applications.

Furthermore, the e-methanol system presents a highly coupled optimisation challenge where de-
cisions made for electrolyser reflect upon the methanol synthesis reactor (MSR) and distillation
column. Their dependency rules out natural approaches that treat components independently
and requires a system level view when formulating the optimisation framework.

4.2.2 System Perspective

Although the optimisation model directly controls the operation of the electrolyser, its impact
extends across the entire e-methanol production system. This system includes the electrolyser,
the MSR and the distillation column. All hydrogen produced by the electrolyser is consumed by
the MSR in real time, and methanol production dynamically scales with the hydrogen supply.
Therefore, any change in electrolyser output, whether a shift in operating load or a transition to
standby or shutdown, directly influences the downstream production rate and energy demands.

Unlike in traditional storage buffered systems, no significant hydrogen accumulation or shortage
occurs under steady-state conditions. Instead, the MSR is designed to operate flexibly within
a defined input range, adjusting its synthesis rate based on the electrolyser’s hydrogen output.
As long as the input remains above the minimum operational threshold(40% load), methanol
production continues in proportion to available hydrogen. This coupling simplifies inventory
management but imposes stricter requirements on synchronised scheduling between units.

To account for this behaviour without overcomplicating the optimisation process, the downstream
MSR and distillation units are incorporated into the model using surrogate process constraints.
These include minimum activation thresholds, fixed stoichiometric relationships, thermal inte-
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gration logic and operation triggers for the distillation section. While the optimisation is not
performed on the MSR and the distillation units directly, their responses to hydrogen availability
are embedded into the model’s logic.

Figure 4.5
Process flow diagram of the integrated e-methanol production system.

By maintaining this system-wide perspective, as shown in Fig. 4.5, the optimisation model can
capture the real trade off involved in shifting production across time. It ensures that schedul-
ing decisions made for the electrolyser remain physically valid for the entire production chain,
supporting cost minimisation without compromising operational feasibility.

4.2.3 Decision Structure

The optimisation problem formulated in this thesis is structured as a multi-period, discrete time
decision problem, where the goal is to determine the operational state of the electrolyser for each
hours across a one-year horizon. These decisions must collectively satisfy the annual methanol
production target while minimising the total cost of electricity consumption and penalised tran-
sitions.

At every hour, the model must choose one of the available operational states for the electrolyser:

• Shutdown - No production and no load
• Standby - System is preheated, but no H2 production
• Running -From 40% to 100% load, with step of 10%

Each state corresponds to a specific electricity usage and hydrogen output level, as detailed in
Sec. 2.5. The decision making process must also account for transition dynamics, which are
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mode changes that require time and energy, and these must be modelled explicitly to avoid un-
realistic or inefficient switching. Fig. 4.6 presents concept for how state changes will occur over
optimised period of time.

Figure 4.6
Conceptual illustration of electrolyser operational state changes over time, highlighting transitions between

Shutdown, Standby, and Running modes.

The scope of the model is both operational and strategic. It focuses on day-ahead scheduling
with imperfect foresight, using electricity price forecasts as guidance rather than certainties. At
the same time, the full-year horizon ensures that the annual production target is enforced, in-
troducing a long-term constraint into a short-term decision process. This dual perspective is
crucial since operating purely on hourly cost minimisation may lead to insufficient production
later, while ignoring electricity price variation may result in excessive cost.

To handle this balance, the optimisation is designed as a rolling-window model, where fore-
casts and decisions are updated daily, but the system tracks cumulative methanol production
across the full year. This approach balances short-term responsiveness with long-term target
satisfaction, making it suitable for realistic integration with forecast scheduling systems.

To summarise, these elements define the structural boundaries of the optimisation problem which
is a dynamic and constraint driven scheduling task that aligns electrolyser operation with elec-
tricity price patterns while respecting technical, economic and production feasibility constraints.

4.2.4 Conceptual Problem Formulation

The key decision variable is the operational mode of the electrolyser at each hourly time step,
which indirectly determines hydrogen production, methanol output and energy use.

The model’s objective function is formulated from:

• Electricity Costs - Based on forecasted hourly prices.
• Energy Consumption - Each mode has its resulting energy use.
• Transition Costs - Expenses occurring during mode switches.
• Other Costs - CO2 cost, Capital Expenditure (CAPEX)
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The system is subject to several key constraints, derived from technical specifications and process
dependencies:

• Operational Mode Constraints - At any time step, only one valid state is allowed
• Transition Constraints - Certain transitions require a predefined time and are associated

with energy costs and ramp logic
• Production Coupling - Hydrogen output is mapped to methanol output through a fixed

stoichiometric relationship. Methanol synthesis and distillation both respond to changes
in electrolyser operation.

• Minimum Operating Range - The MSR requires ≥40% hydrogen input relative to
nominal flow to remain active

• Buffer Tank Constraints - Transition from running to standby/shutdown use a buffer
to supply MSR during decoupled hours, this tank must be refilled upon restart.

• Annual Production Constraint - The total methanol output at the end of the planning
horizon must meet or exceed the predefined yearly target.

Together these constraints form a mixed-integer dynamic system, where the combination of bi-
nary decisions(mode selection), continuous parameters(energy consumption, price) and demand
targets creates a complex but structured optimisation landscape.

The goal is not only to find cost optimal solution, but to ensure that the resulting operation
plan is both realistically executable and system feasible. By modelling the relationships between
electricity prices, electrolyser flexibility, process coupling and production needs, the optimisation
framework reflects the key engineering balances present in PtMeOH systems.

4.2.5 Flexibility and Scalability

The optimisation framework developed in this thesis is intentionally designed to be modular
and scalable, allowing it to adapt to future changes in the system layout, operational priorities
or modelling assumptions. While the current formulation targets electricity cost minimisation
under a fixed production constraint, the structure can readily change into alternative objectives.

Additionally, the framework can be scaled or restructured for different time resolutions. Al-
though this thesis operates on an hourly basis over a full year, the model can be adapted to finer
time steps, such as 15 minutes, or shorter horizons, such as weekly or monthly schedule, to suit
different use cases.

Further potential flexibility is in the downstream system modelling. The surrogate constraints
which are currently used to represent MSR and distillation behaviour could be replaced by real-
time plant feedback in a digital twin setting.

This modularity ensures that the optimisation framework is not limited to the specific case stud-
ied within the scope of this thesis, but can serve as a foundation for future research or industrial
implementation in the broader context of Power-to-X systems.
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This chapter presents the development of the electricity price forecasting model that supports the
operational optimisation of an electrolyser. As highlighted in Chap. 4, the forecasted electric-
ity price is a critical input for scheduling, as it directly affects the cost efficiency of production.
Therefore, the design of the forecasting model aims to balance predictive accuracy, adaptability
to system dynamics and practical applicability.

To achieve set goals, the model is designed as a hybrid forecasting system, combining a sequence-
based model for estimating future system conditions (LSTM) with a supervised machine learning
model for price estimation (XGBoost). The resulting model structure enables both temporal pat-
tern recognition and responsiveness to exogenous drivers of market prices.

The development process is divided into five stages, as it is shown in Fig. 5.1

Figure 5.1
Graphical visualisation of hybrid model development stages

• Stage 1: Data Collection and Preprocessing - Prepares and transforms historical
data to serve as input for both components of the forecasting model.

• Stage 2: Forecasting Exogenous Drivers with LSTM - Trains LSTM networks to
generate forecast of electricity demand and renewable generation.

• Stage 3: Feature Engineering for XGBoost - Setting new predictive features using
both LSTM outputs and historical trends to strengthen model performance.

• Stage 4: XGBoost EPF - Forecasting the final electricity price using the engineered
features and historical price data.

• Stage 5: Final Forecast and Results - A full year produced forecast is validated and
result interpretation is given.

Staged development of the model ensures that each part of the model is independently developed
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and logically connected, leading to coherent and modular forecasting system ready for integration
into the electrolyser optimisation framework.

5.1 Data Collection and Preprocessing
The first stage of the EPF model involves collecting and preparing the relevant data. Since the
final model incorporates both historical price patterns and exogenous system conditions, this
stage focuses on assembling a comprehensive dataset that captures the main drivers of electricity
market dynamics.

5.1.1 Data Sourcing

All input data are collected for DK1 price zone, covering the period from 1st of January 2021
to 31st of March 2025, with an hourly resolution. All data is taken from European Network of
Transmission System Operators for Electricity (ENTSO-e) [21].Variables that were selected are
following:

• Solar generation (MW)
• Onshore wind generation (MW)
• Offshore wind generation (MW)
• Electricity demand (MW)
• Electricity price (DKK/MWh)

The scope of this thesis is to support the scheduling of electrolyser based on renewable electricity,
particularly in context of PtX production. Therefore, one of the requirements, as mentioned in
Sec. 3.1, is that the model is developed to forecast electricity prices based solely on renewable
generation and electricity demand. Although electricity prices are influenced by a broader set
of market factors, such as fossil fuels, cross-border exchanges and CO2 emission costs, these are
intentionally excluded from the forecasting model. This decision ensures that the model remains
aligned with the objective of identifying low-price periods driven by renewable overproduction.

5.1.2 Timestamp Standardisation and Clean-up

Each input variable was initially downloaded as a separate Excel file covering a one-year period.
These time series were then merged into a single dataset using a unified timestamp and sorted
chronologically. Duplicate entries were removed, and missing values were addressed using linear
interpolation when possible. A continuous hourly time index was ensured across the entire data
range, which is essential for constructing sequential inputs for the LSTM model.

5.1.3 Additional Features

Additional variables are derived from the base dataset to support model learning. These include
both time-based features and specific engineered variables:

• Cyclical time features: If model interprets hours as integers (e.g., hour = 0 to 23),
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the model will not understand that 0 and 23 are actually next to each other. There-
fore, hour-of-day and day-of-year values are transformed using sine and cosine functions
to capture cyclical patterns in consumption and generation. These transformations help
neural networks capture daily and seasonal effects that are not explicitly encoded in raw
timestamps.

sin_hour = sin

(
2π · hour

24

)
, cos_hour = cos

(
2π · hour

24

)
sin_doy = sin

(
2π · day of year

365

)
, cos_doy = cos

(
2π · day of year

365

) (5.1)

• Engineered variables: Variables such as residual load, volatility and delta load are later
derived to enhance the XGBoost model. These help capture periods of generation-demand
imbalance and short-term variability.

5.1.4 Data Splitting

To support both the training and forecasting stages, the final dataset is divided into the following
periods:

• Training-validation period: January 2021 to March 2025, used for model development
and evaluation.

• Forecast period: April 2025 to April 2026, used for generating forward electricity price
predictions.

This structure allows the forecast to be evaluated and validated for a period from 1st to 14th of
April 2025, as this section is written during April 2025. Consequently, it is possible to compare
the forecasted values with the actual data.

5.1.5 Overview of Dataset

The resulting dataset contains complete hourly records of electricity price, renewable generation
and demand, along with time features and derived variables. These inputs form the foundation
for all subsequent stages of model training and forecasting. An overview of electricity price trends
during the historical period is presented in Fig. 5.2, while graphs of the input variables can be
found in Appendix A.1.1.

Figure 5.2
Hourly electricity prices in Denmark from January 2021 to March 2025, expressed in DKK/MWh.
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As seen from graph in Fig. 5.2, electricity prices display significant variability, making it diffi-
cult to identify consistent patterns. A large spike occurs at the beginning of 2022, which could
be explained by the Russo-Ukraine war, while prices appear more stable toward the end of the
year. Furthermore, several extreme local spikes can be noticed, and these are removed during
model training.

5.2 LSTM Exogenous Drivers Forecast
Stage 2 of the model development focuses on producing forward estimates for the key external
variables that drive electricity price fluctuations. These include offshore wind generation, on-
shore wind generation, solar generation and electricity demand. Since these variables are not
known for future periods, accurate forecasts are required to provide the necessary inputs for the
electricity price forecasting model developed in Stage 4, see Sec. 5.4

The forecasting of these exogenous drivers is performed using LSTM models, a type of RNN
specifically designed for handling time series data with temporal dependencies. A detailed ex-
planation of the LSTM model structure, underlying equations and its role within the hybrid
forecasting approach is provided in Sec. 4.1.2.

5.2.1 Forecasting Setup and Configuration

To generate realistic forecasts of renewable generation and electricity demand, a separate LSTM
model is trained for each one of the four target variables. The model inputs are:

• The historical data values for four variables
• Time-based cyclical features, see Eq. 5.1

These inputs help the model learn both short-term dynamics and long-term seasonal cycles.

The input data for each model is structured using a rolling window approach, where a 168-hour
sequence is used to predict the value for the next hour. This process creates overlapping se-
quences throughout the historical training period. For each training sample, the model receives
an input matrix of shape [168,f ], where f is the number of input features. The target is a single
value representing the next time step’s value for the respective variable.

All input features are normalized using Min-Max scaling, which rescales each variable to fall
within the [0, 1] range. This is done using the transformation:

xnormalized =
x− xmin

xmax − xmin
(5.2)

This procedure ensures that all variables contribute proportionally during training and prevents
features with larger numerical ranges from dominating the learning process. After forecasting,
the inverse transformation is applied to convert normalised predictions back to their original
values.

During training, the LSTM models are optimised using the Mean Squared Error (MSE) loss
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function, which is calculated as:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (5.3)

Where yi is the actual value and ŷi is the predicted value. MSE measures the average squared
difference between predictions and targets, while penalising larger errors more heavily. Its differ-
entiability makes it suitable for gradient-based learning and ensures stable convergence during
training. Training is performed using the optimiser, with early stopping applied to avoid over-
fitting. Model hyper parameters, such as the number of LSTM layers, neurons and batch size
are selected through empirical tuning based on validation performance.

5.2.2 Recursive Forecasting Strategy

Once the LSTM models are trained, they are used to generate hourly forecasts for the entire
prediction horizon, from 1st of April 2025 to 31st of April 2026. Since actual future values of the
exogenous variables are unavailable during forecasting, a recursive prediction strategy is applied.

In this strategy, the model starts with the final 168-hour block from the historical dataset (ending
23:00:00 31/03/2025) as the initial input. It uses this input sequence to generate a prediction
for the next time step, which is 00:00:00 01/04/2025. This predicted value is then appended
to the sequence, while the oldest step is removed, maintaining the 168-hour input length. The
process, depicted in Fig. 5.3, repeats itself for every hour in the forecast horizon. This method
is commonly referred to as rolling window forecasting or autoregressive LSTM forecasting, where
the model depends on its own past predictions to forecast future values.

Figure 5.3
Overview of the recursive forecasting approach used to generate hourly electricity price predictions. Each
step relies on previously forecasted values of exogenous variables, enabling sequential forward prediction over

the desired horizon.

While this approach is practical and closely resembles real-world forecasting workflows, it intro-
duces the potential for error accumulation. Because each predicted value is used as part of the
next input, any initial inaccuracies may propagate over time. Despite this, recursive forecasting
remains widely accepted method in long-horizon time series prediction due to its simplicity and
flexibility, especially when no external forecasts are available [11].

43



5.2. LSTM Exogenous Drivers Forecast Aalborg University

5.2.3 Forecasted Values

Once trained, each LSTM model was used to generate hourly forecast for the period from 1st

of April 2025 to 1st of April 2026. These predicted values serve as key input features for the
electricity price model developed in Stage 4, see Sec. 5.4.

A combined overview of the generated forecast is presented in Fig. 5.4.

Figure 5.4
Hourly forecasted values of offshore wind, onshore wind, solar generation, and load demand for the period

April 2025 to April 2026.

The figure highlights the distinct temporal characteristics of each variable:

• Solar Generation follows a strong diurnal cycle, peaking at midday and dropping to zero
overnight, with significant seasonal differences across the year.

• Wind Generation (both offshore and onshore) shows high short-term variability with
less predictable intra-day patterns.

• Electricity Demand shows consistent weekday-weekend variation and higher baseline
levels during colder months.

For clearer inspection, individual line plots for each forecasted variable are provided in Ap-
pendix A.1.2. To provide a system perspective, Fig. 5.5 presents a comparison between
the total forecasted renewable electricity generation in comparison to the forecasted electricity
demand.

Figure 5.5
Comparison of forecasted electricity load demand and total renewable generation (sum of offshore wind, on-

shore wind, and solar) from April 2025 to April 2026.
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As explained by the Merit Order Effect, see Sec. 2.4.2, periods where renewable generation
surpasses load present opportunity for operating the electrolyser at low marginal cost. On the
other hand, periods of renewable shortfall reflect moments when electricity will probably be sup-
plied by conventional sources, such as gas or coal, potentially leading to higher prices and less
favourable conditions for green hydrogen production.

5.2.4 Forecast Validation

To assess the short-term reliability of the LSTM models before deploying them for full-year fore-
casting, a two-week validation period is examined. The LSTM forecasts for the four exogenous
variables are compared to actual recorded values from 1st to 14th of April 2025, a period for
which real system data is available. This comparison provides insight into model’s generalisation
ability beyond the training horizon.

Fig. 5.6 presents the hourly electricity demand load between forecasts from the LSTM model
against the actual data for observed period. As a point of comparison, the day-ahead ENTSO-
e forecasts are included. Comparisons for renewable electricity generation could be observed in
APPENDIX. A.1.3

Figure 5.6
Comparison of hourly electricity load demand forecasts from the LSTM model and the ENTSO-E day-ahead

forecast against the actual observed data.

As shown in graph both in Fig. 5.6 and Appendix A.1.3, following observations are made:

• Load Demand - The load demand forecast follows clear daily cycles, and the LSTM model
does a solid job of capturing these patterns. Both the LSTM and ENTSO-e have similar
performance, with minor deviations during low-demand periods.

• Offshore Wind Generation - Offshore wind generation shows significant fluctuations,
and LSTM forecasts capture this variability, although with different magnitude. The LSTM
model tends to predict slightly higher generation levels compared to the actual data, par-
ticularly during periods of peak generation.

• Onshore Wind Generation - Onshore wind generation shows consistent, though less
predictable, patterns than offshore wind. The LSTM model does a good job capturing
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these fluctuations, particularly from 3rd to 7th of April. Both forecasting models face
challenges in forecasting low-wind periods.

• Solar Generation - The LSTM model align well with the actual solar generation patterns,
especially capturing the daily peaks and drops corresponding to sunrise and sunset.

The comparison between LSTM forecasts and actual data highlights the model’s ability to track
real-world system dynamics, especially in capturing daily cycles and fluctuations in renewable
generation.

5.3 Feature Engineering for XGBoost
The third stage in the forecasting process focuses on developing a suitable input dataset for the
electricity price prediction model. While the LSTM model in Stage 2, see Sec. 5.2, provide the
necessary forecast of system variables, this stage transforms those outputs, along with additional
engineered features, into a comprehensive and structured form usable by XGBoost.

Feature engineering plays a critical role in the performance of machine learning models, espe-
cially in structured tabular problems such as EPF. In this stage, both direct LSTM forecast and
derived features are used to expand the model’s input space, enabling it to capture short-term
dynamics and non-linear relationships.

5.3.1 Integration of LSTM Forecast

The core inputs to the XGBoost model are the forecasted values generated by the LSTM models
in Stage 2. These represent future estimates of key electricity system drivers and are structured
as hourly time series over the full forecast horizon.

The following four variables are directly included in the feature set:

• Onshore wind generation (MW)
• Offshore wind generation (MW)
• Solar generation (MW)
• Electricity demand (MW)

Each of these variables were forecasted independently, as described in Sec. 5.2. Their inclu-
sion enables the XGBoost model to make price predictions based on expected system conditions
rather than purely on historical observations.

5.3.2 Time-Based Features

Electricity prices show strong temporal patterns due to the influence of consumption behaviour
and generation cycles. To help the XGBoost model recognise these recurring structures, a set of
calendar and cyclical time features, shown in Tab. 5.1, is included in the input dataset.
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Table 5.1
Overview of Time-Based Features Used for Electricity Price Forecasting

Feature Type Description
Hour Integer (0 - 23) Captures daily variation in consumption and prices

DayofWeek Integer (0 - 6) Indicates the day of the week
Month Integer (1 - 12) Provides seasonal context

IsWeekend Binary (0 / 1) Differentiates weekday from weekend effects
sin_hour Float Cyclical encoding of hour; sin

(
2π · hour

24

)
cos_hour Float Cyclical encoding of hour; cos

(
2π · hour

24

)
sin_doy Float Cyclical encoding of day of year; sin

(
2π · day of year

365

)
cos_doy Float Cyclical encoding of day of year; cos

(
2π · day of year

365

)

5.3.3 Derived System Features

In addition to raw LSTM forecasts and time-based features, several engineered system features
are included to improve the model’s ability to capture the structural conditions that influence
electricity price formation. These features reflect short-term stress, imbalance and variability
within the system.

Residual Load
Residual load represents the portion of electricity demand that is not met by renewable sources
and is a strong indicator of the need for conventional generation. It is computed as:

Residual Load = Demand - (Onshore Wind + Offshore Wind + Solar Generation) (5.4)

Periods of high residual load are typically associated with higher marginal prices, as other sources,
with higher operational costs, are used to met load demands.

Delta Load
This feature measures the hour-to-hour change in electricity demand, capturing load dynamics:

∆Loadt = Loadt − Loadt−1 (5.5)

Sudden changes in demand can trigger price spikes if the supply is not sufficiently flexible, espe-
cially in systems with high renewable penetration, as Denmark is.

Residual Load Volatility
To account for short-term fluctuations in net demand, a rolling 24-hour standard deviation of
residual load is computed:

Residual V olatilityt = Std(Residual Loadt−23 to t) (5.6)

This feature helps the model recognise periods of instability or uncertainty, which often lead to
market price volatility due to imbalance risk.
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5.3.4 Noise Injection for Realism

While LSTM forecasts of demand and renewable generation provide a structured view of future
system conditions, they remain model-generated estimates. While in reality such predictions
are subject to uncertainty. To reflect this and improve the generalisation of the XGBoost price
model, controlled Gaussian noise is injected into the forecasted input variables.

This technique simulates the typical variability found in operational forecasting tools and pre-
vents the price model from overfitting to overly smooth or deterministic LSTM outputs. It also
allows the model to learn how to handle moderate deviations in system condition forecasts, which
is especially relevant for real world integration.

For each variable, zero-mean Gaussian noise is added with a specific standard deviation, cali-
brated based on historical volatility. The noise is applied as:

x̃t = xt +N (0, σ2) (5.7)

Where:

• xt is the LSTM forecast at time t

• σ is the noise standard deviation defined per variable
• N (0, σ2) is the Gaussian noise term

Figure 5.7
Overview of Input Parameters Used in the Electricity Price

Forecasting (EPF) Model.

A standard deviation of 10 MW is ap-
plied to solar generation to capture oc-
casional variability due to weather con-
ditions, while higher values of 20 MW
and 25 MW are used for onshore and
offshore wind, respectively, given their
greater fluctuation patterns. A lower
value of 5 MW is used for load demand,
which is generally more stable. This ap-
proach provides a more robust training
input set for the XGBoost model by cap-
turing realistic variability without intro-
ducing extreme distortion. It also mirrors
conditions in actual system operations,
where forecast error is an inherent part
of market dynamics.

5.3.5 Final Dataset Assembly

After completing the integration of LSTM forecasts, application of controlled noise and genera-
tion of time-based and system features, the final dataset is assembled for input to the XGBoost
EPF model, as depicted in Fig. 5.7
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Depicted features are now ready to be used as input for model training and price forecasting in
the next stage.

5.4 XGBoost Electricity Price Model
The XGBoost model plays a crucial role in forecasting electricity prices in the hybrid approach
developed for this thesis. Building on the forecasts generated by LSTM models for renewable
generation and electricity demand, explained in Sec. 5.2, the XGBoost model is used to predict
the corresponding electricity prices.

5.4.1 Data Preparation and Feature Selection

For training the XGBoost model, the dataset is prepared by combining LSTM forecasts with
engineered features as outlined in Sec. 5.3.

The data is processed as follows:

1. Forecasted Variables - The forecasted values are derived from the LSTM model, and
used as primary predictors for the EPF.

2. Engineered Features - Additional features are created to capture system dynamics bet-
ter.

3. Noise injection - Controlled Gaussian noise is added to the forecasted variables to reflect
the uncertainty in real-world forecasts. The noise levels are defined for each feature as
follows:

• Onshore Generation: 20 MW - Onshore wind generation can show significant daily
and seasonal variability.

• Offshore Generation: 25 MW - Offshore wind is typically more variable than onshore
generation.

• Solar Generation: 10 MW - Solar generation is more predictable, but still can vary
due to weather conditions (such as cloud cover).

• Load Demand: 5 MW - Electricity demand is relatively predictable compared to other
variables.

The noise is essential for making the model robust to real-world variability and preventing
overfitting to overly smooth LSTM predictions.

4. Scaling - All features are scaled using Min-Max normalization, as explained in Eq. 5.2,
to ensure uniformity in scale. This ensures that no single feature dominates the model,
allowing the XGBoost algorithm to learn from the full set of features.

5. Data Splitting - The dataset is split into training, validation and test sets. The training
set spans from 1st of January 2021 to 31st of December 2024, the validation set covers 1st

of January 2025 to 31st of March 2025 and the test set spans from 1st of April 2025 to 1st

of April 2026.

By preparing the data with these steps, the XGBoost model is trained on a set of features that
accurately represent the system conditions that influence electricity prices. The next section will
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detail the configuration and hyperparameter settings used for the model.

5.4.2 XGBoost Model Configuration

The XGBoost model is configured using several hyperparameters to ensure efficient training.
The configuration and tuning of the model are critical steps in ensuring that it performs well on
the prepared data.

Hyperparameters
The following parameters were chosen for the model configuration:

• n_estimators = 800
This represents the number of boosting rounds, or trees to be built. A larger number of es-
timators allows the model to learn more complex relationships. In this case, 800 estimators
were chosen after experimentation to find a balance between performance and overfitting.

• learning_rate = 0.01
The learning rate controls the contribution of each new tree to the model’s prediction. A
lower learning rate ensures gradual learning, helping the model avoid large jumps in weight
updates that could lead to instability. With higher number of estimators, lower learning
rate, that is close to 0.01, should be used.

• max_depth = 8
The maximum depth of each tree limits the complexity of the model and controls how deep
each individual tree can grow. A value of 8 is selected after tuning, as it prevents the model
from becoming too complex while still capturing important interactions between features.

• subsample = 0.8
This parameter controls the fraction of samples used for fitting each tree. Setting subsample
to 0.8 means that each tree will be trained on 80% of the data.

• colsample_bytree = 0.8
Similar to subsample, this parameter controls the fraction of features that are randomly
selected to build each tree. Setting this value to 0.8 ensures that each tree is trained on a
different subset of features.

• objective = ’reg:squarederror’
This specifies the objective function for the regression task for predicting continuos val-
ues. Selected function minimises the mean squared error between the predicted and actual
value.

Cross-Validation and Early Stopping
To optimise the model and prevent overfitting, Time Series Split cross-validation is used. This
method splits the dataset into multiple training and testing sets, ensuring that each fold pre-
serves the temporal order of the data. By using cross-validation, the model’s performance is
evaluated across different subsets of data.

Early stopping is applied during the training process to stop further training if the model’s per-
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formance on the validation set no longer improves. This prevents the model from overfitting to
the training data.

5.4.3 Forecasting Results

Once the XGBoost model was configured, the next step is to run it on prepared dataset for EPF.
Once the model is trained, the model’s output is a time series of predicted electricity prices for
each hour from 1st of April 2025 to 1st of April 2026, as shown in Fig. 5.8.

Figure 5.8
Forecasted Electricity Prices (DKK/MWh) from April 2025 to April 2026 Using XGBoost Model

Forecasted electricity clearly depicts the seasonal trends in price, with higher prices in winter
and lower prices in summer months due to changes in renewable generation and load demand.
Next section finalises EPF development by validating forecasted results.

5.5 Forecast Validation
This section provides a validation basis for the performance of the XGBoost model by comparing
the forecasted electricity prices with actual market prices for the period from 1st to 14th of April
2025. The objective is to evaluate the model’s ability to accurately predict price fluctuations
using real-world data on renewable generation and electricity demand. Before presenting the
validation results, the performance metrics used are introduced and defined.

5.5.1 Evaluation Metrics

To evaluate the performance of the XGBoost model, several key metrics are used to quantify
the accuracy of the forecasted electricity prices compared to the actual market prices over the
period of first two week in April 2025. Each metric provides different insight into the model’s
performance.

Mean Absolute Error - MAE
MAE measures the average magnitude of the errors between forecasted and actual values:
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MAE =
1

N

N∑
t=1

|Actualt − Forecastt| (5.8)

It provides a direct and interpretable estimate of the typical absolute difference in DKK/MWh
between predicted and actual prices. It is widely used in time series evaluation due to its sim-
plicity and interpretability.[31]

Mean Absolute Percentage Error - MAPE
MAPE expresses the average absolute difference between forecasted and actual values as a per-
centage of the actual values:

MAPE =
1

N

N∑
t=1

∣∣∣∣Actualt − Forecastt
Actualt

∣∣∣∣× 100 (5.9)

This metrics is scale independent and is often favoured in economics and energy forecasting
because it allows for easy interpretation and comparison across scales.[9]

Root Mean Squared Error - RMSE
RMSE is the square root of the average of squared differences between forecasted and actual
values:

RMSE =

√√√√ 1

N

N∑
t=1

(Actualt − Forecastt)2 (5.10)

RMSE penalises larger errors more then MAE and is, therefore, particularly useful in applications
like EPF, where extreme peaks and volatility are common.[58]

Error-to-Average Ration - EAR
To describe the magnitude of the forecast errors, the EAR metric compares the MAE during the
validation period to the average forecasted electricity price over the full forecast horizon:

EAR =
Mean Absolute Error (Validation Period)

Mean Forecasted Price (Full Year)
(5.11)

This ration provides insight into whether forecast errors are significant relative to expected price
levels, a useful contextual tool in interpreting energy market model performance.[55]

These four metrics will be used in the following section to evaluate the model’s performance over
the two week validation window and interpret the results within the broader price period.
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5.5.2 Results and Comparison

A graph comparing the hourly forecasted electricity prices to the actual prices during the vali-
dation period is shown in Fig. 5.9.

Figure 5.9
Comparison of Forecasted and Actual Electricity Prices (DKK/MWh) from April 1 to April 14, 2025

The forecasted curve follows in general the trend of the actual data, capturing the day-night
fluctuations and periods of elevated market activity, such as afternoon peaks. Deviations be-
tween the curves are more visible in hours where actual prices are near zero or negative, often
driven by renewable surplus and merit order effects. Tab. 5.2 presents values for previously set
evaluation metrics.

Table 5.2
Evaluation metrics for XGBoost model performance

Evaluation Metric Value
Mean Absolute Error 268.5 DKK/MWh
Root Mean Square Error 334.8 DKK/MWh
Mean Absolute Percentage Error 549.5%
Average Forecasted Price 924.6 DKK/MWh
Error-to-Average Ratio 0.29

The MAE of 268.5 DKK/MWh represents approximately 30% of the full-year average electricity
price (924.6 DKK/MWh), a result that aligns well with accepted benchmarks. In studies re-
viewed by Weron [58], typical MAE values often range between 5% to 20% of the average price,
though that exclude broader market drivers (such as gas prices or interconnectors), as what
developed model is, often fall towards the higher end of this spectrum.

The RMSE of 334.8 DKK/MWh also reflects reasonable forecasting accuracy, particularly when
accounting for the model’s use of only renewable generation and demand inputs, excluding many
conventional market variables typically used to refine price predictions.

The extremely high MAE of 549.5% is mainly caused by the nature of the dataset and market
conditions, and does not necessarily reflect poor model performance. As Hyndman & Koehler
[31] emphasise, MAPE becomes unreliable when actual values approach zero or go negative,
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and that condition is quite frequently encountered in the DK1 electricity market due to renew-
able surplus. In such cases, even modest forecast deviations can lead to disproportionately high
percentage errors.

To contextualise forecast quality beyond raw error values, the EAR is applied. With an EAR
of 0.29, the model’s typical error is less then one third of the average electricity price over the
forecast horizon, a level considered satisfactory in forecasting literature and competitions [37],
[55].

Lastly, from Fig. 5.9 it is evident that the forecasting model struggles to accurately capture
periods of very low or negative electricity prices. A possible explanation is, although LSTM
model captured renewable generation and demand sufficiently, that the XGBoost tended to ex-
pect higher market prices during this period. For the validation window, the weather conditions
in the DK1 zone were unusually favourable, characterised with clear sky and intermittent strong
winds. This led to lower electricity prices than expected, which the model did not fully predict,
most likely because it had not seen similar patterns in the training data.

5.6 Summary
This chapter presented the development of the EPF model, which supports the scheduling of
electrolyser operation in an e-methanol production system. A hybrid forecasting framework was
adopted, combining LSTM models for predicting exogenous variables, renewable generation and
load demand, with an XGBoost model to estimate hourly electricity prices. While the model
does not aim to capture all market dynamics in full detail, such as non-renewable sources, it
provides a sufficiently accurate and trend sensitive estimate of electricity prices based purely
on renewable inputs and demand. Given that the primary goal of this thesis is not to develop
a state-of-the-art forecasting system, but rather to investigate how price variability influences
electrolyser operation, the model is considered fit for purpose. The next chapter builds on these
forecasts to formulate an optimisation strategy that schedules electrolyser activity in response
to electricity price signals.
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This chapter presents the development of the optimisation model for scheduling the electrolyser
and methanol synthesis system operation based on electricity price forecasting. The objective
of the optimisation is to minimise the total operational costs while ensuring that the annual
methanol production target is satisfied.

The chapter is structured in five parts. First, the system parameters, objective function and ba-
sic constraints are defined. Afterwards, the model is developed through three phases, as shown
in Fig. 6.1. Lastly, conceptual sensitivity analysis is performed.

Figure 6.1
Evolution of optimisation model across three phases.

• Phase 1: Optimisation model when there is only Running state at full capacity.
• Phase 2: Introducing three operational states(Running, Standby and Shutdown), together

with the logic behind their transition dynamics.
• Phase 3: Developing model that can determine load capacity from 40% to 100% based

on forecasted electricity prices. This is considered full operating model.

Each phase expands the complexity of the optimisation framework to better reflect realistic
operational flexibility.

6.1 System Setup
This section presents the key elements defining the optimisation problem. These include how
the annual methanol production demand is distributed over the weeks, the treatment of capital
expenditures (CAPEX) and their incorporation into operational cost calculations, the assump-
tions regarding CO2 purchase and excess heat sales, the formulation of the objective function
and the complete list of input parameters used in the model. This system setup is overlooking
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generally, and it describes mostly just the first phase. Each subsequent phase will introduce new
constraints and modify the objective function when needed.

6.1.1 Optimisation Setup

The optimisation model developed in this work is formulated as Mixed Integer Linear Program-
ming (MILP) problem. Due to the need for discrete operating decisions, such as switching
between different operational states, binary variables are introduced to represent system states
at each hourly time step.

Due to the higher computational demands associated with solving large-scale integer program-
ming problem over an entire year, the optimisation is performed on a rolling weekly basis. Each
weekly window determines the operational schedule for the electrolyser and MSD per hour, using
predicted electricity prices as input. The results of each week are then combined to meet the
overall production target.

6.1.2 Methanol Demand

The e-methanol production system is designed to meet an annual production target of 25 000
tons. As rolling weekly window is used for simulation, the production target is distributed
unevenly across weeks, based on average forecasted electricity price for each week.

The assumption here is that production should be shifted toward periods with lower electricity
costs to result as improved economic performance of the system. To achieve this, the following
steps were taken:

1. Weekly Average Electricity Price - Forecasted electricity over a year is split into weeks
and the average electricity price for each week is calculated.

2. Weighting Factor Calculation - A weighting factor is assigned to each week based on the
inverse of its average electricity price. Weeks with lower prices are assigned higher weights,
implying greater production during these periods. The weekly weight wi is determined by:

wi =
1/AvgPricei∑52

j=1

(
1/AvgPricej

) (6.1)

Where AvgPricei is the average forecasted electricity price in week i.
3. Weekly Methanol Demand - The annual methanol production target Mtarget is multi-

plied by the weight of each week to determine the required methanol production for that
week:

8Mi = wi ·Mtarget (6.2)

Where Mi is the methanol production target for week i.

Following this steps, resulting weekly methanol demands are presented in Fig. 6.2
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Figure 6.2
Final weekly methanol production demand and average electricity price.

This methodology allows the model to naturally prioritise production in cheaper weeks and avoid
overproduction during high price periods, aligning economic and operational objectives.

6.1.3 Capital Expenditure

The CAPEX associate with the e-methanol production system is estimated by evaluating differ-
ent technology configurations, as illustrated in Appendix A.12. Among the evaluated options,
Case 5 is selected as the reference setup for the optimisation model, offering a good balance
between performance, inlet quality and investment cost. The total CAPEX for Case 5 equals to
50,035,000 €.

Since the financial model assumes a project lifespan of 20 years, and the optimisation covers only
a single year’s operation, the capital costs are annualised by dividing the total CAPEX by 20:

Annualised CAPEX =
50,035,000 €

20
= 2,501,000.75 € per year (6.3)

In Danish kroner (DKK), assuming a conversion rate of 7.45 DKK/€ the CAPEX becomes
18,632,455.6 DKK per year. Therefore, this fixed value has to be added to the operational costs
when evaluating the final cost structure for each optimisation phase.

6.1.4 CO2 and Excess Heat

In addition to electricity costs and fixed capital costs, the economic model accounts for the costs
and revenues associated with two other products, CO2 consumption and excess heat generation.

CO2 Costs
CO2 is required as a feedstock for the methanol synthesis process. In the model, it is assumed
that CO2 is externally sourced at a fixed price of 0.375 DKK/kg [54]. No dynamics such as
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market variability or supply limitations are incorporated. The total cost contribution of CO2

indirectly reflected in the final total cost through the methanol production amount, with a correc-
tion factor that estimates the required CO2 mass per kilogram of methanol. Equation describing
cost of CO2 can be described as:

CO2 Cost = Total Methanol Productionkg · 1.416 · 0.375 (6.4)

Factor of 1.416 is used to estimate the CO2 demand per unit of methanol produced.

Excess Heat
As a byproduct of the methanol production process, excess heat is recovered and monetised
through district heating integration. There is a fixed revenue rate of 225 DKK per MWh of
excess heat sold [54]. The amount of excess heat generated is proportional to the methanol pro-
duced, scaled by a coefficient of 0.0009 MWh/kg MeOH. This relationship can be then written
as:

Excess Heat Revenue = Total Methanol Productionkg · 0.0009 · 225 DKK/MWh (6.5)

These two terms are implemented at the end of optimisation model to adjust the total cost value
after as:

Operational Cost = fel + CO2 Cost + Excess Heat Revenue (6.6)

Where fel is the original value returned from the optimisation related to electricity consumption
across modes and transitions.

6.1.5 Objective Function

As mentioned, the optimisation problem is formulated as a MILP, in which the operational mode
of the electrolyser, therefore also for methanol production, is determined for each hour over a
predefined time horizon T . The goal is to minimise the total cost for the system while meeting
a methanol production requirement.

At each hour t ∈ {1, 2, . . . , T} the electrolyser may be in one of several discrete operational
states, including running, standby or shutdown. In the base model, which is Phase 1, the sys-
tem only considers either running or shutdown at fixed capacity, without distinguishing between
varying load levels or incorporating thermal transition dynamics such as cold starts or hot starts,
which are introduced in later phases.

The general objective function is then expressed as:

min
T∑
t=1

N∑
i=1

Pt · E(i)
EL,t · xt,(i) (6.7)

where:
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• Pt - Electricity price at hour t [DKK/MWh],
• E

(i)
el,t - Electricity consumption of the system [MWh] at hour t when operating in state i,

• xt,(i) ∈ {0,1} - Binary decision variable indicating whether the system is in state i during
hour t,

• N - Total number of distinct operational states included in the model for each hour.

In the initial phase, the operational states include:

• i = 1: Electrolyser in running mode (single fixed capacity level),
• i = 2: Electrolyser in standby mode (non-productive but consuming energy to stay warm

and pressurised),
• i = 3: Electrolyser in complete shutdown mode (no production, minimal or zero consump-

tion from the MSD system).

The total cost term Pt · E(i)
el,t captures the hourly operational expense for each mode, which

includes both the electrolyser power consumption and power consumption by the methanol syn-
thesis unit, as previously described in Sec. 2.5.

The energy consumption values E
(i)
el,t are considered fixed for each operational state, reflecting

simplified static operation described as:

• For the running mode, E(1)
el,t = Eelectrolyser + EMSD,

• For standby mode, E(2)
el,t = Estandby + EMSD, standby,

• For shutdown, E(3)
el,t = EMSD, standby.

These constants are derived from the system design parameters, as described in Sec. 2.5. Later
phases of the model will refine this structure by introducing multiple load levels, load dependent
efficiencies and transition related energy costs.

Objective function is subject to binary activation constraints:

N∑
i=1

x
(i)
t = 1 ∀t ∈ {1, . . . , T} (6.8)

to ensure only one operational state is active at any given hour.

6.1.6 Input Parameters

The optimisation model relies on a set of technical and economic input parameters that define
the behaviour of the electrolyser and MSD system. These inputs are consistent across all phases,
although their interpretation and level of detail may evolve in later modelling stages. The key
input parameters can be grouped into three primary categories as electricity price signals, system
power consumption and methanol production target.
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Electricity Price Signal
Electricity prices Pt are a time varying input to the model and represent the hourly forecasted
cost of electricity, for the DK1 zone, as shown in Chap. 5. It can be expressed as:

Pt = {P1, P2, . . . , PT } (6.9)

These values are expressed as DKK/MWh and they are main drive for cost minimisation logic
and has strong influence for the optimal mode scheduling.

System Power Consumption
Each operational mode of the system is characterised by a specific electricity consumption level,
based on the rated power demand of the electrolyser and the MSD unit, whose values are pre-
sented in Tab. 2.7 in Sec. 2.7. The consumption values used as inputs are summarised in
Tab. 6.1

Table 6.1
Electricity consumption per mode for the electrolyser and methanol synthesis (MSD) system

Mode Electrolyser Power
[MWh/h]

MSD Power
[MWh/h]

Total Power
E

(i)
el [MWh/h]

Running 50.05 2.02 52.07
Standby 0.17 0.40 0.57
Shutdown 0.00 0.40 0.40

Methanol Production Demand
To ensure the production system satisfies its purpose, a total methanol target Mtarget [kg] that
equals 25 000 tons, imposes a constraint over the total simulation horizon T . This target
translates to a hydrogen demand profile that must be met through the electrolyser’s operation.
Methanol production is assumed to be at 100% load:

ṀMeOH = 4508 kg/h (6.10)

The cumulative production is enforced by the constraint:

T∑
t=1

ṀMeOH · xrunt ≥ Mtarget = 25000 t (6.11)

where xtrun ∈ {0,1} indicates whether the system is running during hour t. The value of Mtarget

can be reflected either yearly or weekly. In case of weekly production, Mtarget is distributed over
weeks using weights for each week, as shown in Sec. 6.1.2.
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6.2 Fixed Full Load Operation - Phase 1
This initial optimisation phase establishes the baseline cost and scheduling behaviour for the
electrolyser operating strictly at 100% load, once started it must run continuously at 100% load
until the specified methanol production demand is fulfilled. No intermediate shutdowns, standby
periods or partial load operations are allowed. The optimisation is performed over a full year of
hourly electricity price data. This simplified configuration assumes no thermal constraints, ramp-
ing or flexibility mechanisms and serves as the foundation upon which more advanced phases are
developed

6.2.1 Objective Function

The objective of this phase is to identify the optimal starting time tstart ∈ {1, 2, . . . , T −H +

1}, where:

• T = 8760 is the weekly time horizon in hours,
• H is the number of hours required to meet the methanol target Mtarget [kg],
• The electrolyser operates continuously at full capacity once started.

Let:

• Pt denote the electricity price at hour t ∈ {1, 2, . . . , T},
• Erun be the fixed electricity consumption at 100% load [MWh/h],
• xt ∈ {0, 1} indicate if the electrolyser is active during hour t.

The objective function minimises the total electricity cost:

min
tstart

tstart+H−1∑
t=tstart

Pt · Erun (6.12)

Subject to:

H =

⌈
Mtarget

ṀMeOH

⌉
(6.13)

where:

• ṀMeOH = 4508 kg/h is the constant methanol production rate,
• Erun = 52.07 MWh/h is the constant electricity consumption at 100% load.

This formulation effectively slides a window of size H across the electricity price vector and
selects the window that has the lowest accumulated cost. Once this optimal interval is located,
the electrolyser operates consequently throughout that period, producing methanol at the fixed
nominal rate.
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6.2.2 Model Constraints

The objective function is a subject to a set of constraints that ensure the methanol production
target is satisfied while preserving operational feasibility within the yearly time window. To the
constraints already mentioned in Sec. 6.1, constraints specific for this phase are added.

Let the binary decision variable xt ∈ {0,1} indicate whether the electrolyser is active at time
t ∈ {1, 2, . . . , T}, where T = 8760.

The electrolyser can only operate continuously over one activation window of H hours, where H

is computed based on the methanol production requirement:

H =

⌈
Mtarget

ṀMeOH

⌉
(6.14)

Only one such interval is allowed within the year. Therefore, we impose:

T−H+1∑
t=1

yt = 1 (6.15)

where yt ∈ {0, 1} is an auxiliary binary variable indicating whether hour t is selected as the start
of the full-load interval. Then, the operational state variable xt can be defined as:

xt =

min(t,T−H+1)∑
τ=max(1,t−H+1)

yτ · 1 (t ∈ [τ, τ +H − 1]) (6.16)

This relation ensures that only the time steps belonging to the selected start interval are set to
1 (active), and all others are 0.

The activation interval must not exceed the bounds of the yearly time horizon:

tstart +H + 1 ≤ T (6.17)

This constraint is satisfied by the upper bound of the summation index in Eq. 6.15 and the
domain of yt.

During the operating period:

• The electrolyser power consumption is fixed: Et = Erun = 52.07 MWh/h,
• Methanol production is fixed: ṀMeOH = 4508 kg/h,

and for inactive periods, both are zero. This can be expressed as:

Et = Erun · xt ∀t ∈ {1, . . . , T} (6.18)

ṀMeOH,t = ṀMeOH · xt ∀t ∈ {1, . . . , T} (6.19)

No ramping or transition dynamics are included in this phase.
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6.2.3 Optimisation Results

The model is executed over a full year of hourly forecasted electricity price for DK1 zone. Given
a fixed methanol production target Mtarget and ṀMeOH , required number of operating hours
are:

H =

⌈
Mtarget

ṀMeOH

⌉
=

⌈
25,000,000

4508

⌉
= 5546 hours (6.20)

Therefore, the electrolyser must operate continuously for 5546 hours at full capacity to meet the
annual production target

The model identifies the 5546 hour interval with the lowest cumulative electricity costs. As
shown in Fig. 6.3, the selected window is from hour 3 to 5549, corresponding to the first half
of the year.

Figure 6.3
Electricity price and electrolyser load profile over a one-year horizon.

Key performance indicators and cost components associated with the optimal electrolyser oper-
ation are summarised in Tab. 6.2.

Table 6.2
Key performance and economic metrics for the optimal full-load operation of the electrolyser over one year

to meet a 25,000-ton methanol production target.

Metric Results
Produced Methanol 25 001 368 kg
Required Hours 5546 h
Optimal Start Hour 3
Operational Cost 254 140 507.17 DKK
Required CO2 35 401 937 kg
CO2 Cost 13 275 726.41 DKK
Excess Heat 22 501.23 MWh
Sold Excess Heat 5 062 777.02 DKK
Weekly CAPEX 18 632 455.63 DKK
Total Cost 280 985 912.16 DKK
MeOH cost 11 238.82 DKK/t
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The outcome provides a baseline for evaluating the impact of more flexible operational strate-
gies introduced in later phases. While this configuration ensures simplicity and uninterrupted
operation, it does not uses temporal electricity price variability beyond selecting the cheapest
continuous window. Subsequent optimisation phases will explore more dynamic approaches that
could lead to significant cost reductions.

6.3 Three Operational States - Phase 2
Following the initial fixed full load optimisation model in Phase 1, Phase 2 introduces a more
advanced and realistic representation of electrolyser operation by allowing multiple operational
states and explicit transition constraints.

In this phase, the electrolyser can operate in one of three primary states, running, standby or
shutdown. Running mode is further divided into load levels, only 40% and 100% loads are allowed
to reduce complexity while still capturing system flexibility. Transitions between these states are
modelled explicitly and require defined durations and energy costs. Additionally, both cold and
hot startup procedures are included with their corresponding costs and temporal constraints.
The methanol system is directly coupled with the electrolyser output, relying on the hydrogen
supply to maintain reactor operation. A hydrogen buffer tank is included to allow for limited
decoupling during mode transitions, ensuring reactor continuity even when the electrolyser is
temporarily unavailable.

The simulation is executed over a full year (8760 hours), enabling a comprehensive assessment
of system performance under seasonal variability in electricity prices. However, to ensure clarity
and readability, graphical results are presented for three representative weeks corresponding to
the minimum, median and maximum weekly methanol demand.

6.3.1 Objective Function

The objective function in Phase 2 aims to minimise the total operational cost of the system
across the time horizon T . Compared to Phase 1, it now includes also:

• Power consumption at discrete load levels (40% and 100%, standby, shutdown)
• Cold and hot start costs and energy use
• Transition costs and durations (Running ↔ Standby/Shutdown)
• Standby and shutdown power usage for methanol system

The objective function is expressed as:

min Total Cost = Crun + Cstabdby + Cshutdown + Cstartup + Ctransition (6.21)

Each component is detailed in subsequent sections.
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Running Mode - Crun

For the allowed load levels λ ∈ {0.4, 1.0}, the cost of operating at each load level includes
electricity use by both the electrolyser and methanol synthesis system:

Crun =
T∑
t=1

∑
l∈λ

xt,l · Pt · (Eel,l + Emsd,l) (6.22)

Where:

• xt,l ∈ {0, 1} is 1 if running at load l in hour t

• Pt is the electricity price [DKK/MWh]
• Eel,l and Emsd,l are electrolyser and MSD power at load l

Standby Mode - Cstandby

In standby, the electrolyser and methanol system are consuming a small fixed power:

Cstandby =

T∑
t=1

xt,SB · Pt · (Eel,SB + Emsd,SB) (6.23)

Where:

• xt,SB ∈ {0, 1} is 1 if standby is active at hour t

• Eel,SB is the power consumption of the electrolyser in standby mode [MWh]
• Emsd,SB is the power consumption of the MSD system in standby mode [MWh]

Shutdown Mode - Cshutdown

Shutdown involves zero electrolyser usage, but MSD power usage is same as for standby:

Cshutdown =

T∑
t=1

xt,SD · Pt · Emsd,SB (6.24)

Where:

• xt,SD ∈ {0, 1} is 1 if shutdown is active at hour t

Startup Modes - Cstartup

Startups include both fixed and variable energy costs for cold and hot start procedures. These
are applied when transitioning from shutdown/standby to 40% load:

Cstartups =

T∑
t=1

(xt,CS · (Ccold + Pt · ECS) + xt,HS · (Chot + Pt · EHS)) (6.25)

Where:

• xt,CS, xt,HS ∈ {0,1} are binary indicators for cold and hot startup at time t
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• Ccold is the fixed cold start cost for electrolyser; 1200 DKK
• Chot is the fixed cold start cost for electrolyser; 82.50 DKK
• ECS, EHS is the total electricity used during cold or hot startup

The total used electricity of startup modes accounts for multiple sub-phases during activation,
including electrolyser warm-up, tank refill, MSD ramp-up and productive operation at 40% load.
Phases for cold start are detailed in Fig. 6.4.

Figure 6.4
Illustration of methanol synthesis ramp-up dynamics following a cold start of the electrolyser.

The timeline in Fig. 6.4 is divided into six segments, corresponding to the startup of the
electrolyser and MSD unit:

• I. Shutdown (t-1)
The electrolyser is in shutdown, with zero electricity consumption and no hydrogen output.
The methanol synthesis unit is inactive.

• II. Cold Start (t)
At the start of the hour t, a cold start is triggered. The electrolyser enters its warm-up
pressurisation phase. This requires a transition period of tcold = 42minutes and consumes
1200 DKK in electricity. No hydrogen is yet available to the methanol synthesis unit.

• III. Tank Refill (ttank)
After cold start is completed, the electrolyser begins producing hydrogen. However, this
first hydrogen output is allocated to refill the xx kmol H2 buffer tank, which was used
during the previous shutdown. The tank refill duration last 7 minutes. During this time,
methanol production remains paused.

• IV. MSD Start (tmsd_up)
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Once the tank is fully refilled, the methanol unit begins its own 39 minutes long phase to
enter operational phase. In phase IV. it spends first 6 minutes to come to 40% of H2 load.

• V. MSD Hold (tmsd_up)
After initial 6 minutes of ramp-up, it takes 33 more minutes to stabilise the temperature
and pressure inside the MSD system at load level of 40%.

• VI. Future Hours Once whole system is stabilised at 40%, electrolyser ramps up to 100%
steeply, while MSD system follows it gradually.

These stages represent the complete startup sequence for cold starts. Hot start follows same
logic, but changes are happening much faster as the system is already heated and pressurised to
certain point.

Cold Start Energy - ECS

ECS = Eel,40·(tprod+ttank+tmsd_up)+Emsd,SB·(tcold+ttank)+Emsd,up·tmsd+Emsd_up·tprod (6.26)

Where:

• tprod = 1− tcold − ttank − tmsd_up - remaining time for full operation [h]

Hot Start Energy - EHS

EHS = Eel,40·(t′prod+ttank+tmsd_up)+Emsd,SB·(thot+ttank)+Emsd,up·tmsd_up+Emsd·t′prod (6.27)

Where:

• thot =
2
60 - hot start duration [h]

• t′prod = 1− thot − ttank − tmsd_up - remaining time for full operation after hot start [h]
• Eel,40 - Electrolyser energy use at 40%
• Emsd - MSD energy use at 100%
• Emsd,SB - MSD energy in standby
• Emsd,up - MSD energy during ramp-up (40% of full)

Transition Modes - Ctransition

Transitioning from running to either standby or shutdown incurs specific energy penalties due
to ramp-down of MSD and switching dynamics:

Ctransitions =

T∑
t=1

(
xt,SB_TR · Pt · ESB_TR + xt,SD_TR · Pt · ESD_TR

)
(6.28)

Where:

• xt,SB_TR, xt,SD_TR ∈ {0,1} - transition indicators
• ESB_TR - energy used during ramp-down from running → standby

67



6.3. Three Operational States - Phase 2 Aalborg University

• ESD_TR - energy used during ramp-down from running → shutdown

During electrolyser standbys or shutdowns, the system must manage both the decline in hydro-
gen supply and the stable ramp-down of the MSD. These transitions require careful coordination
to avoid process instability. The phases in ramp-down are illustrated in Fig. 6.5.

Figure 6.5
Representation of methanol synthesis ramp-down dynamics during electrolyser transition to standby or shut-

down.

The timeline is divided into four segments, showing the sequence of events from full load opera-
tion to standby or shutdown:

• I. Full Operation (t-2 to t-1)
The electrolyser was running at 100% load and it is reducing its load to 40%, as preparation
for shutdown or standby transition.

• II. Transition Initiation (t-1)
A transition decision is made at the end of this time step. Hydrogen flow drops immediately.
The electrolyser enters a transition phase toward shutdown.

• III. Transition Phase
The electrolyser fully stops hydrogen production at the beginning of hour t. To sustain
methanol synthesis during this gradually reduction of load from 40% to 0%, that lasts 6
minutes, hydrogen from the tank is used.

• IV. Shutdown/Standby State (tmsd_down)

MSD has to be 90 minutes out of the function, to normalise pressure and temperature.
Additionally, this ensures that every cold or hot start is performed within the same envi-
ronment.

This ramp-down proposes constraints for minimal duration of shutdown or standby due to me-

68



6.3. Three Operational States - Phase 2 Aalborg University

chanical properties of MSD system.

Standby Transition Energy - ESB

ESB_TR = Eel,SB · (1− tSB) + Emsd,down · tSB + Emsd,SB · (1− tmsd_down) (6.29)

Where:

• Eel,SB - electrolyser power in standby
• Emsd,down - MSD ramp-down power (40% of full)
• Emsd,SB - MSD energy use in standby

Shutdown Transition Energy - ESD

ESD_TR = Emsd,down · tSB + Emsd,SB · (1− tmsd_down) (6.30)

Once objective function is defined, next step is to limit potential solutions with constraints.

6.3.2 Technical Constraints

To ensure operational feasibility to technical logic, the model includes a series of constraints.
These include allowed and forbidden transitions coupled with minimum and maximum dura-
tions of operational states. All constraints are applied across the time horizon T .

Allowed transitions
Startup and shutdown modes must be followed by correct subsequent states:

• Cold start → 40% load:

xt,CS = xt+1,0.4 ∀t = 1, . . . , T − 1 (6.31)

• Hot start → 40% load:

xt,HS = xt+1,0.4 ∀t = 1, . . . , T − 1 (6.32)

• Standby transition → Standby:

xt,SB_TR = xt+1,SB ∀t = 1, . . . , T − 1 (6.33)

• Shutdown transition → Shutdown:

xt,SD_TR = xt+1,SD ∀t = 1, . . . , T − 1 (6.34)

Forbidden Transitions
Tab. 6.3 presents all constraints which are not allowed when changing states.
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Table 6.3
Forbidden transitions between operational states across time steps.

From State To State Condition Note
Cold Start (xt+1,CS) ∀l Cold start is only allowed af-

ter Shutdown
Running (xt,l) Hot Start (xt+1,HS) ∀l Hot start is only allowed af-

ter Shutdown
Shutdown (xt+1,SD) ∀l Must pass through Shut-

down Transition
Standby (xt+1,SB) ∀l Must pass through Standby

Transition
Running (xt+1,l) ∀l Standby cannot directly re-

sume to load
Shutdown (xt+1,SD) – Must use Shutdown Transi-

tion
Standby (xt,SB) SB Transition (xt+1,SB_TR) – Transitions can’t follow a

stable state directly
SD Transition (xt+1,SD_TR) – Transitions can’t follow a

stable state directly
Cold Start (xt+1,CS) – Cold start only valid from

Shutdown
Running (xt+1,l) ∀l Must pass through a start

phase
Standby (xt+1,SB) – Not allowed to jump to

standby
Shutdown (xt,SD) Hot Start (xt+1,HS) – Only one startup type is al-

lowed at a time
SB Transition (xt+1,SB_TR) – Transitions not applicable

from Shutdown
SD Transition (xt+1,SD_TR) – Same as above

Minimum Running Period
To ensure thermal stability of the system, electrolyser after a startup has to run for at least 3
consecutive hours:

t+2∑
i=t

(xi,0.4 + xi,1.0) ≥ 3 · (xt−1,CS + xt−1,HS); t = 2, . . . , T − 2 (6.35)

This equation ensures that any hour following a startup triggers at least 3 hours of consecutive
running mode.
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Minimum Standby Duration
Because the MSD system takes longer to reach standby than the electrolyser, the electrolyser
should stay in standby for at least 2 hours so both systems can be in the same state again:

t+2∑
i=t+1

xi,SB = 2 · xt,SB_TR; t = 1, . . . , T − 1 (6.36)

Minimum Shutdown Duration
It takes nearly 12 hours for the MSD system to reduce its temperature and pressure to reach
shutdown, while the electrolyser shuts down much faster. For the same reason as in the standby
transition, when a cold start occurs, both the MSD and electrolyser should be aligned in their
operational states:

t+12∑
i=t+1

xi,SD = 12 · xt,SD_TR; t = 1, . . . , T − 11 (6.37)

6.3.3 Optimisation Constraints

Additionally to the technical constraints, optimisation constraints supports logic behind the
transitions used for coding. These include initial conditions, load level restrictions and enforces
certain logics. All constraints are applied across the time horizon T .

Mode Exclusivity
At each hour t, the system can be only in one mode:∑

λ

xt,λ + xt,SB + xt,SD + xt,CS + xt,HS + xt,SB_TR + xt,SD_TR = 1 ∀t ∈ {1, . . . , T} (6.38)

Initial Condition
The electrolyser starts in running mode at 40% load at t = 1:

x1,0.4 = 1; x1,j = 0 ∀j ̸= 0.4 (6.39)

Load Level Restrictions
Only 40% and 100% load levels are allowed. All other levels are not implemented in this phase:

xt,l = 0; ∀l ∈ {0.5, 0.6, 0.7, 0.8, 0.9}, t = 1, . . . , T (6.40)

Load Logic Before/After Transitions
After any startup or before transitions, the electrolyser must operate at 40%:

• After startup (at t− 1):

xt,0.4 ≥ xt−1,CS + xt−1,HS ∀t = 2, . . . , T (6.41)

• Before standby/shutdown transitions (at t+ 1):

xt,0.4 ≥ xt+1,SB_TR + xt+1,SD_TR ∀t = 1, . . . , T − 1 (6.42)
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100% Enforcement
In this development phase, 40% load is used due to technical constraints only during transitions,
as system can not operate immediately at full 100% load. Therefore, system should operate
minimally at 40% load level:

xt,0.4 ≤ xt−1,SB + xt−1,SD + xt+1,SB_TR + xt+1,SD_TR ∀ = 2, . . . , T − 1 (6.43)

This ensures 40% load is only used in hours when it comes from startup or it prepares for one
of the transitions.

6.3.4 Methanol Production Constraint

The electrolyser is coupled with MSD system, meaning all hydrogen produced must be consumed
by the reactor. To ensure stable downstream production and meet the annual methanol target,
the optimisation model enforces methanol mass balance and production constraint over time.

Methanol Production at Running Mode
For each hour t, methanol production is a function of the load level at which the electrolyser is
running. With only two allowed loads, methanol output per hour is:

M base
t = xt,0.4 ·M0.4 + xt,1.0 ·M1.0 (6.44)

Where:

• M1.0 = 4508kg/h

• M0.4 = 0.4 ·M1.0 = 4508kg/h

Methanol Production for Startups
As noted in Fig. 6.4, a cold start involves several sequential steps before methanol production
can begin. First, the electrolyser takes 42 minutes to start up, followed by 7 minutes to refill the
hydrogen tank. Only then can the methanol synthesis system ramp up, which takes 6 minutes to
reach 40% load and another 33 minutes to achieve the required temperature and pressure for full
operation. Because this entire sequence takes more than one hour, while the optimization model
operates in hourly time steps, the first hour after a cold start cannot deliver the full expected
production. Therefore, the methanol production at 40% load during hour t+1 must be adjusted
to account for this loss. Therefore, the equation for produced methanol during cold start is:

MCS
t = xt,CS · (M0.4 · (6/2 + 33) +M0.4 · tCS

prod (6.45)

Where:

• tCS
prod = 1− tcold − ttank − tmsd_up
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On the other hand, a hot start is significantly faster than a cold start. As a result, the transition
from standby to running is completed within the same hour t. The equation used to calculate
methanol production remains unchanged, with only the value of tHS

prod being adjusted accordingly:

MHS
t = xt,CS · (M0.4 · (6/2 + 33) +M0.4 · tHS

prod (6.46)

Where:

• tHS
prod = 1− thot − ttank − tmsd_up

Methanol Production for Standby and Shutdown Transitions
When the MSD system transitions from a running state to either standby or shutdown, it does
not stop operating instantly. Instead, it gradually ramps down, during which it continues to pro-
duce methanol at a decreasing rate. This linear ramp-down reflects the time required to safely
lower the system’s temperature and pressure. As a result, methanol is still produced during
the transition period, and its amount is proportional to the duration of this ramp-down. The
methanol produced during this phase can therefore be calculated using the following expression:

M
SB_TR
t = xt,SB_TR ·M0.4/2 · tSB (6.47)

M
SD_TR
t = xt,SD_TR ·M0.4/2 · tSD (6.48)

Weekly Methanol Production Constraint
The model operates on a rolling weekly horizon T = 168 and must satisfy a target methanol
output over the horizon:

T∑
t=1

Mt ≥ Mtarget,week (6.49)

Where:

• Mt = M base
t +MCS

t +MHS
t +M

SB_TR
t +M

SD_TR
t

6.3.5 Optimisation Results

The optimisation model described from Sec. 6.3.1 to Sec. 6.3.4 is executed over 8760 hours
using hourly electricity price input and a weekly rolling scheduling window. For each week, the
optimiser selects the operational mode of the electrolyser to minimise total operational cost while
ensuring weekly methanol demands.

Due to the large simulation scale, only three representative weeks are selected and presented
graphically to highlight system behaviour under different demand scenarios which are summarised
in Tab. 6.4.
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Table 6.4
Selected representative weeks for graphical analysis based on methanol demand levels

Scenario Figure Week Methanol Demand [kg]
Maximum demand Fig. 6.6a Week 6 710,640
Minimum demand Fig. 6.6b Week 43 464,690
Median demand Fig. 6.6c Week 36 276,186

The corresponding system behaviour for these three representative demand scenarios are pre-
sented in Fig. 6.6

(a) Highest electricity demand scenario

(b) Median electricity demand scenario

(c) Lowest electricity demand scenario

Figure 6.6
Electrolyser operation under different electricity demand scenarios. Each subplot shows electricity price, load

level and operational state (running, standby, shutdown).

These weeks provide insight into how the model balances cost and production under varying
price and methanol demands.

The full-year simulation results are presented in Tab. 6.5.

A detailed breakdown of these cost components, expressed as percentages of the total final cost,
is illustrated in Fig. 6.7.

The total amount of produced methanol is 25,230,293 kg, which is 0.92% higher than the tar-
get production. This slight surplus occurs because the model cannot produce the exact target
amount, and the use of a rolling window approach leads to minor overproduction each week. The
resulting cost per tonne of e-methanol is calculated to be 9,578.63 DKK/t.
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Table 6.5
Breakdown of total production cost for 25,230.29 tonnes of methanol

Cost Component Amount [DKK]
Operational Cost – Electrolyser 205,220,304.86
Operational Cost – MSD System 9,530,846.14
CAPEX 18,632,455.60
CO2 Cost 13,397,285.58
Excess Heat Revenue -5,109,134.33
Total Production Cost 241,671,757.85

Figure 6.7
Percentage contribution of each cost component to

the total methanol production cost.

The results of Phase 2 demonstrate the substan-
tial economic and operational benefits of introduc-
ing load flexibility and strategically managing tran-
sitions between running, standby and shutdown
states. Compared to full load operation, this more
dynamic strategy reduces final cost per tonne of
produced e-methanol for approximately 15%. How-
ever, methanol production is linearly approximated
from discrete hydrogen flows without capturing po-
tential nonlinear dynamics. To address these lim-
itations and further improve optimisation model,
the next phase introduces data driven surrogate

modelling for methanol synthesis. These allow the model to accurately reflect system dynamics
and evaluate partial load operation strategies across a continuous domain.

6.4 Full Operation - Phase 3
The third phase introduces two upgrades, the electrolyser is now allowed to operate at seven dis-
tinct load levels (ranging from 40% to 100% with 10% steps) and the methanol production is no
longer linearly estimated. Instead, a data-driven methanol transition matrix is used to dynami-
cally map the methanol output during each load shift. This enables the model to more precisely
capture transition effects, energy penalties and realistically show behaviour of the methanol
synthesis, as shown in Sec. 2.5.

6.4.1 Objective Function

Objective function stays same as defined in Phase 2, see Eq. 6.21, and includes contributions
from electricity usage, transition energy penalties and startup costs. In Phase 3, the structure
of the cost function is improved with additional load levels and it can be defined as:

minTotalCost =
T∑
t=1

[∑
l∈λ

xt,l · Pt · (Eel,l + Emsd,l) +
∑
m∈ν

xt,m · (Cm + Pt · Em)

]
(6.50)
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Where:

• λ = {0.4, 0.5, . . . , 1.0} is the set of allowed electrolyser load levels
• xt,l ∈ {0, 1} is the binary variable for operating at load level λ during hour t

• Eel,l, Emsd,l are the electricity consumption rates of the electrolyser and MSD at load level
λ

• V = {SB, SD,CS,HS, SB_TR, SD_TR} is the set of transition and idle states
• Cm is the fixed cost for each startup or transition (e.g., cold start cost CCS)
• Em is the corresponding energy consumption for each mode or transition

6.4.2 Technical Constraints

Technical constraints defined in previous Phase 2, see Sec. 6.3.2, remains the same as those are
defined by the system’s capabilities and not by optimisation logic development.

Minimum Durations
Minimum time durations for standby(2h), shutdown(12h) and post startup running (3h) are
enforced using the same constraints defined in Phase 2, see Eq. 6.35, 6.36 and 6.37.

6.4.3 Optimisation Constraints

The Phase 3 model retains the multi state operational logic and methanol production target
introduced in Phase 2. However, new optimisation constraints are added or updated to support
new load levels, ramping constraints between them and dynamic methanol production logic.

Mode Exclusivity
Eq. 6.38 is extended to include new load levels:∑

l∈λ
xt,l +

∑
m∈ν

xt,m = 1 ∀t ∈ {1, . . . , T} (6.51)

Where:

• λ = {0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
• ν = {SB, SD, CS, HS, SB_TR, SD_TR}

Load Ramping Constraint
To avoid unrealistic jumps in electrolyser power levels between hours, a ±40% ramping limit is
applied:

|Loadt − Loadt−1| ≤ 0.4 ∀t = 2, . . . , T (6.52)

This is implemented by binary matrix logic that compares load levels selected at t and t − 1,
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ensuring allowable transitions only.

Startup and Transition Logic
Enforced transitions from startup and standby/shutdown remain unchanged and are same as
from Phase 2, see Eq. 6.31 to Eq. 6.34 for allowed transition and Tab. 6.3 for forbidden
transitions.

6.4.4 Methanol Production Constraint

In contrast to previous phase where methanol is linearly estimated from static hydrogen flows,
see from Eq. 6.44 to Eq. 6.48, Phase 3 introduces a transition methanol production ma-
trix. This matrix realistically capture how the methanol synthesis reactor responds to changes
between load levels.

Transition Matrix Concept
Methanol production Mt in any given hour is now determined by both the previous load level
lt−1 and current load level lt. The relationships are stored in 7x7 matrix Mtrans, as shown in
Fig. 6.8

Figure 6.8
Methanol production matrix illustrating the estimated output (in kg/h) for transitions between operating load

levels.

Where:
Mt = Mtrans(lt−1, lt) (6.53)

Each entry Mtrans(i,j) represents the methanol output [kg/h] when transitioning from load level
i to j, where i,j ∈ {0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. The diagonal terms represent steady-state
operation, while off diagonal entries represent transient production states. These values are
obtained from a trained surrogate model.

Surrogate Model
The values in the methanol transition matrix Mtrans are not derived from physical equations,
but from a data driven surrogate model trained on simulated process data. Specifically, a LSTM

77



6.4. Full Operation - Phase 3 Aalborg University

model neural network is developed to capture the time dependent behaviour of the methanol
synthesis reactor in response to varying hydrogen input levels.

The LSTM is trained using historical dynamic simulations of the coupled electrolyser and re-
actor system, in which the hydrogen feed is varied across all allowable transitions, as shown in
Appendix A.13. For each transition, the resulting methanol output over time is recorded for
every 1.5 minutes.

This surrogate model captures:

• Non-linearities in reactor response
• Ramp-up lag effects
• Losses due to suboptimal operating conditions
• Asymmetric transition behaviour

The surrogate’s predictions are validated against process models, as shown in Appendix A.14,
and then discretised into the 7x7 matrix. This matrix is subsequently used in the MILP model
for rapid evaluation of methanol output without re simulating system dynamics.

Transition Logic
To express this in the MILP framework, binary mapping is introduced:

zt,i,j =

1 if xt−1,i = 1 and xt,j = 1

0 otherwise
(6.54)

Subject to:
zt,i,j ≤ xt−1,i

zt,i,j ≤ xt,j

zt,i,j ≥ xt−1,i + xt,j − 1 ∀i, j ∈ λ

(6.55)

Then methanol production per hour is defined as:

Mt =
∑
i∈λ

∑
j∈λ

zt,i,j ·Mtrans(i,j) (6.56)

This ensures methanol output reflects not only the operating point but also load transition effects
like ramp-up lag or efficiency dips.

The equations governing methanol production during startups and transitions to standby or
shutdown remain unchanged from those presented in Phase 2. Moreover, the weekly methanol
demand target is maintained at the same level.

6.4.5 Optimisation Results

The Phase 3 optimisation model is executed over the same full year simulation horizon as in
previous phases, using a weekly rolling window. The key difference lies in the model’s ability
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to operate at seven discrete load levels and to capture transient methanol effects with LSTM
surrogate matrix.

To provide insight into the model’s performance across varying operating conditions, same rep-
resentative weeks are selected as in Phase 2 for analysis in detail. These weeks are chosen to
reflect different electricity pricing patterns and system responses under full operation. The aim
is to showcase how the optimiser adapts the electrolyser load to minimise operational costs while
satisfying production constraints. Three representative weeks are graphically presented in Fig.
6.6

(a) Highest electricity demand scenario

(b) Median electricity demand scenario

(c) Lowest electricity demand scenario

Figure 6.9
Electrolyser operation under different electricity demand scenarios. Each subplot shows electricity price, load

level and operational state (running, standby, shutdown).

Tab. 6.6 compares how many hours have electrolyser spent in three different modes for three
representative weeks in Phase 2 and Phase 3.

Table 6.6
Weekly distribution of operating states (Running, Standby, Shutdown) during selected demand weeks for both

phases.

Week Type Phase Running [h] Standby [h] Shutdown [h]

Maximum 2 162 6 0
3 168 0 0

Median 2 124 40 4
3 154 11 3

Minimum 2 82 47 39
3 100 17 51

Total 2 368 93 43
3 422 28 54
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In Phase 3, the system operates in running mode more frequently across all weeks, with total
running hours increasing from 368 to 422 hours. This reflects the optimiser’s ability to better
use flexible load levels under variable electricity prices. Standby hours significantly reduced,
from 93 to 28, indicating less reliance on intermediate idle states. Instead, the model favours
small, cost effective load adjustments within the running mode. Meanwhile, shutdown hours
increased slightly, particularly in the minimum demand week, suggesting a more confident use
of full shutdown when economically justified.

Figure 6.10
Distribution of electrolyser operational states

throughout the full-year simulation in Phase 3.

Fig. 6.10 presents the distribution of operational
states over the entire year. The system operates in
running mode for over 86% of the time, with the
majority at 100% load. Standby accounts for 8.3%,
and full shutdown only 5.4%.

This distribution reflects the model’s ability to
use intermediate load levels and avoid unnecessary
transitions. The frequent use of full load operation,
which is 33%, is complemented by significant time
spent at other load levels, which demonstrates the
optimiser’s flexibility in responding to price varia-
tions while maintaining stable methanol output.

The limited use of shutdown and standby improves energy efficiency but also supports long-term
system durability, as frequent shutdowns and restarts can increase equipment wear, reduce elec-
trolyser lifespan and increase maintenance needs. The results for a optimisation across full year
are showcased in Tab. 6.7

Table 6.7
Breakdown of total production cost for 25,203.15 tonnes of methanol

Cost Component Amount [DKK]
Operational Cost – Electrolyser 204,194,345.82
Operational Cost – MSD System 8,508,097.74
CAPEX 18,632,455.60
CO2 Cost 13,382,874.66
Excess Heat Revenue -5,103,638.64
Total Production Cost 239,614,135.18

The cost breakdown for the entire simulation period is shown in Fig. 6.11. The total oper-
ational cost for the full year is calculated as 239,614,135.18 DKK for production of 25,203.15
tonnes of e-methanol. Surplus of produced methanol in Phase 3 is lower then in Phase 2, mean-
ing that model can now produce closer to methanol demand boundary. As shown in Fig 6.11,
electrolyser’s electricity consumption is the dominant cost driver with close to 84% of total ex-
pense, while all the other drivers are ranging from 3.5% to 7.6%. The average cost of methanol
production for Phase 3 is calculated at 9507.31 DKK/t, showing a reduction of close to 1%
compared to previous phase due to dynamic load control enabled by the surrogate model.
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Figure 6.11
Percentage contribution of each cost component to

the total methanol production cost.

To summarise, this final development phase demon-
strates that introducing partial-load flexibility and
a data-driven methanol production model enables
more refined and cost effective scheduling of elec-
trolyser operation. The system remains in produc-
tive states for the majority of the time, strategically
navigating electricity price fluctuations while min-
imising inefficient transitions. These improvements
not only reduce the total operational cost and
methanol unit price compared to earlier phases, but
also support more sustainable long-term operation
by limiting unnecessary shutdowns and standbys.

While Phase 3 focused on optimising performance under fixed system parameters, it is impor-
tant to explore how sensitive these results are to changes in key assumptions. Therefore, the
next development phase moves towards a conceptual analysis, examining how varying CO2 price,
electrolyser efficiency and electricity pricing structure would impact the overall system behaviour
and economic outcome.

6.5 Conceptual Scenarios - Phase 4
While previous optimisation phases focused on developing a realistic and operationally feasible
operational framework for green methanol production, all simulations so far have assumed fixed
system parameters and idealised electricity pricing. In reality, many of these parameters are
uncertain or subject to future changes due to market dynamics, technological improvements or
regulatory shifts.

Phase 4 introduces a series of conceptual sensitivity analyses aimed at evaluating how the system
responds to changes in key external conditions, where changed parameters are:

• Electricity pricing
• CO2 pricing
• Technical constraints

These variations do not represent physical changes to the system architecture, but rather serve
as what if scenarios that help assess the robustness and adaptability of the model under different
boundary conditions.

6.5.1 Historical Electricity Pricing

To assess how the electrolyser operational scheduling model performs under actual market dy-
namics, this scenario introduces real historical electricity price from the DK1 region from 1st

of April 2024 to 31st of March 2025. Although the electricity mix in this dataset is not fully
green, this test does not aim to assess carbon performance, but rather focuses on the operational
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and economic impact of real-time market exposure. The results offer insight into how the opti-
miser would behave if the electrolyser were operating on spot market terms without a dedicated
renewable Power Purchase Agreement(PPA).

Fig. 6.12 shows a comparison between the actual and forecasted data used in the same period,
from April to April but in different years. While both profiles share a similar average price level,
the actual price data is more volatile, experiencing more frequent and extreme downward spikes
as well as occasional high peaks not present in the smoother forecasted profile.

Figure 6.12
Comparison of Actual and Forecasted Hourly Electricity Prices

These price dynamics reflect the true nature of modern electricity markets with high renewable
penetration, where sudden changes in wind or solar generation can drive large and rapid price
fluctuations. Average electricity price for forecasted data is 668.09 DKK while average price for
history data is 435.37 DKK.

As a direct consequence of the new price signal, since the optimisation is performed in weekly
windows, the weekly methanol demand production has to be updated. Fig. 6.13 illustrates the
updated demand profile.

Figure 6.13
Weekly methanol production demand and average electricity price for history data from April 2024 to March

2025.

With presented demands for weeks, optimisation is performed by weekly rolling window for given
time period. Results of optimisation are presented in Tab. 6.8
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Table 6.8
Comparison of cost components between the 2024 model and forecasted model, showing percentage deviation.
Results are presented for production of 25,256.05 ton of methanol for 2024 and 25,203.15 for forecasted

model.

Cost Component 2024 Model [DKK] Forecasted Model [DKK] Difference
Operational Cost - Electrolyser 110,330,413.36 204,194,345.82 -45.97 %
Operational Cost - MSD System 4,597,100.56 8,508,097.74 -45.97 %
CAPEX 18,632,455.60 -
CO2 Cost 13,410,960.35 13,382,875.66 +0.21 %
Excess Heat Revenue -5,114,349.29 -5,103,638.64 -0.21 %
Total Production Cost 141,856,580.58 239,614,135.18 -40.79 %
Methanol Cost 5,616.74 per ton 9,507.31 per ton -40.92 %

The results in Tab. 6.8 provide a clear comparison of cost structures between the 2024 historical
model and the forecasted based on just renewable electricity. Even though that history data is
averagely lower by 34.83% from forecasted data, both the electrolyser and MSD system opera-
tional costs are lower by approximately 46%. CAPEX remains unchanged, while CO2 costs and
excess heat differs by negligible amount of 0.21%, which equals to difference between produced
methanol. In total, the overall production costs declined by 40.79%, from approximately 239.6
million DKK to 141.9 million DKK. Difference percentage for produced methanol per ton is
slightly higher, as more methanol is produced with 2024 model than with forecasted model.

6.5.2 Carbon Pricing

Carbon pricing is a key economic factor in e-methanol production, as CO2 must be continuously
supplied to the synthesis process. In previous phases, a fixed CO2 price of 375 DKK/ton was as-
sumed. However, in reality, this value is subject to change due to market conditions, availability
of source and evolving emissions regulations under European Union.

In this scenario, a parametric sensitivity analysis is carried out using seven discrete CO2 price
levels, ranging from 25% to 250% of the nominal reference price. This range reflects following:

• Lowered prices (25% - 75%) represent scenarios where CO2 is purchased from industrial
or biogenic sources.

• Nominal case (100%) reflects the average market price which is used in optimisation
• Higher prices (150% - 250%) represents scenarios where CO2 is obtained through on-site

carbon capture systems, which involve higher operational and capital costs due to required
processes

Exploring a broad range of carbon pricing scenarios is essential as it directly affects the cost-
efficiency and operational feasibility of e-methanol production. Understanding influence of CO2

on final cost is necessary for future investments and approaches. Final results using these seven
scenarios are presented in Tab. 6.9.
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Table 6.9
Impact of CO2 price variation on total cost and methanol unit cost.

CO2 Price CO2 Price CO2 Expense Total Expense Methanol Price Change vs Base
[DKK/kg] [% of Base] [DKK] [DKK] [DKK/t]

0.09375 25% 3,345,719 229,576,979 9,109 −4.19%
0.1875 50% 6,691,437 232,922,698 9,242 −2.79%
0.28125 75% 10,037,156 236,268,417 9,374 −1.40%
0.375 100% 13,382,874 239,614,135 9,507 0.00% (baseline)
0.5625 150% 20,074,312 246,305,572 9,773 +2.79%
0.75 200% 26,765,749 252,997,009 10,038 +5.59%

0.9375 250% 33,457,186 259,688,447 10,304 +8.38%

As expected, increasing or decreasing the CO2 price leads to linear change in both total opera-
tional cost and cost per ton of methanol. The nominal case of 375 DKK/t results in a methanol
cost of 9,507 DKK/t, while the lowest tested price drops it to 9,109 DKK/t and the highest
increases it to 10,304 DKK/t.

Despite the great increase in CO2 price, the resulting change in methanol production cost is
relatively modest with only 8% increase from baseline.

6.5.3 Technical Improvements

As mentioned in Eq. 6.37, the system is required to remain in shutdown mode for a minimum
of 12 hours once this state is entered. This constraint is based on the technical feasibility of
the system, ensuring that internal pressures and temperatures reach stable conditions. It also
guarantees that the system always initiates a cold start from consistent physical conditions. This
section explores potential improvements in performance when the minimum shutdown duration
is reduced, as some of those 12 hours may coincide with periods of favourable electricity prices.

The analysis is conducted over a week time horizon, for week 36, which represents the period
with the lowest methanol demand. Low demand implies a higher number of potential shutdown
hours, making it an ideal case for evaluating the effect of reducing the minimum shutdown dura-
tion. During this 168-hour period, the system is required to produce 276.186 tons of methanol.
Cases that were investigated are when minimum duration is 4, 8 or 12 hours. Resulting number
of hours spent in operational states are presented in Tab. 6.10

Table 6.10
Number of hours spent in each operational state for different minimum shutdown durations.

Scenario Shutdown Standby 40% 50% 60% 70% 80% 90% 100%
Min. 12h 44 23 46 5 6 5 18 5 16
Min. 8h 46 16 50 9 10 6 11 4 16
Min. 4h 62 3 47 5 11 4 14 4 18

Operational schedules for scenarios are presented in Fig. 6.14.
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(a) Electrolyser has to be at least 12 hours in shutdown.

(b) Electrolyser has to be at least 8 hours in shutdown.

(c) Electrolyser has to be at least 4 hours in shutdown.

Figure 6.14
Electrolyser operation under different minimum durations for shutdown of electrolyser. Each subplot shows

electricity price, load level and operational state (running, standby, shutdown).

All costs, together with final cost and cost per ton of methanol are presented in Tab. 6.11.
Table 6.11

Techno-economic summary for different minimum shutdown durations for a production of 276.186 tons of
methanol.

Scenario Min. 12h Min. 8h Min. 4h
Produced Methanol (kg) 277,526.60 277,258.79 278,557.65
Electricity Cost (DKK) 3,137,365.44 3,112,090.36 3,069,069.75
MSD Cost (DKK) 130,723.56 129,670.43 127,877.91
CAPEX (DKK) 358,316.45 358,316.45 358,316.45
CO2 Emissions (kg) 147,366.63 147,224.42 147,914.11
Excess Heat (kWh) -56,199.14 -56,144.91 -56,407.92
Total Operational Cost (DKK) 3,717,572.94 3,691,156.75 3,646,770.30
Cost per kg (DKK) 13.40 13.31 13.09

Reducing the minimum shutdown duration from 12 hours to 4 hours results in a 2.30% decrease
in the weekly cost of methanol production. This suggests that more efficient equipment, which
allows shorter shutdown periods, could lead to lower overall production costs. As previously
discussed, the 12-hour shutdown duration was initially set to ensure that all cold starts have a
uniform reference point. However, it is technically feasible to initiate a cold start earlier, provided
that additional monitoring equipment is in place to accurately track the system’s status. This
highlights the potential for further reductions in methanol production costs through targeted
R&D in electrolyser and MSD systems.
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This chapter summarises the outcomes of the developed forecasting and optimisation framework
and evaluates how well the project objectives and requirements were fulfilled. Furthermore, a
critical reflection on the obtained outcomes will be provided, including their implications. These
results will also be used to challenge the developed models, serving as a basis for identifying
limitations and guiding potential directions for future work.

7.1 Project Requirements
To ensure the system addressed both economic and operational challenges in methanol produc-
tion, six specific requirements were outlined in Sec. 3.1. These covered both the forecasting
and optimisation aspects of the project. This section evaluates how each is fulfilled in the final
implementation.

The first requirement was to develop a forecasting model capable of estimating hourly electric-
ity prices over a full year using historical data. This is achieved through a hybrid approach
combining XGBoost and LSTM, trained on real DK1 market data, including historical load and
renewable generation forecasts. The model successfully generated hourly predictions for 8760
hours, enabling a reliable input signal for operational decisions.

The second requirement specified that the forecast model must rely solely on renewable inputs
such as solar generation, offshore and onshore winds. This constraint is fully respected through-
out the forecasting setup to ensure the model aligned with the green energy focus of PtX systems.
No fossil based indicators were included.

Once forecasting was developed, the third requirement was to integrate the forecasted electricity
prices into the optimisation model. This is successfully implemented, with all scheduling logic
driven by forecast inputs.

From optimisation point of view, the fourth requirement indicates for the implementation of at
least three distinct states. In Phase 2, see Sec. 6.3, these states are introduced with clearly
defined energy consumption, transition costs and state switching logic. Their behaviour is de-
veloped even further in Phase 3, see Sec. 6.4, with the introduction of different distinct load
levels and dynamics between them.

To ensure time consistent planning, the fifth requirement specified that all operational decisions
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should be made on an hourly basis, matching the intention of the electricity pricing input. This
is consistently defined throughout the modelling, with the optimiser producing a full year hourly
operation schedule using a rolling window formulation.

Finally, the sixth and most important requirement was to minimise operational costs while still
fulfilling a fixed methanol production target. This condition is satisfied in all phases. The model
ensured the full production of 25,000 ton of methanol annually while strategically adjusting
operating patterns to use low-price windows and avoid costly transitions.

To summarise, all six requirements are fulfilled. The developed models demonstrated its ability
to make economically driven decisions while maintaining technical feasibility.

7.2 Result Assessment
This section evaluates the electricity price forecasting model and the optimisation model. The
aim is to critically assess performance outcomes, but also to identify practical limitations and
areas for improvement.

While the project succeeded in meeting its technical requirements, it is essential to reflect on
the accuracy, robustness and applicability of each subsystem, particularly given the reliance on
forecasted inputs and operational constraints in a highly dynamic energy environment.

7.2.1 Evaluation of Forecasting Results

The forecasting model is built with a clear focus on renewable inputs, with focus on solar and
wind generated electricity. This is a intentional modelling constraint, aligning with the assump-
tion that e-methanol system are operating primarily on green electricity. As such, no market
price signals, fuel cost indicators or fossil generation shares were included in the prediction logic.

Consequently, it was expected that a forecast based only on renewable sources might result in
slightly higher prices during periods when renewable output is insufficient to meet demand, as
is case in DK1, where fossil generation is still used to balance generation and demand. This
hypothesis is confirmed later during Phase 4, see Sec. 6.5.1, where historical data from 2024-25
are compared to the model’s forecasted prices. The analysis shows that the e-methanol produc-
tion cost based on historical electricity prices was approximately 40% lower than the cost using
forecasted prices.

However, the forecast model served its intended purpose effectively, which is to provide a green
price signal for evaluating how a flexible methanol production would respond in an idealised
PtX future scenario. It supported full year scheduling without critical deviations and enabled
realistic testing of the optimiser’s behaviour.

It is important to note that this forecasting component was not the primary focus of the project.
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Therefore, it was not investigated or fine-tuned beyond its functional requirements. The model
is not benchmarked against other forecasting tools or subjected to hyperparameter optimisation.
This is a conscious decision, as the primary objective of the thesis is to explore operational op-
timisation rather than prediction accuracy. Nonetheless, the model remains a valid foundation
for further development.

7.2.2 Evaluation of Optimisation Results

The optimisation framework is developed incrementally across three phases, each introducing
higher operational realism and increased modelling flexibility.

In Phase 1, the optimiser served as a baseline, scheduling the electrolyser at full capacity based
only on electricity price signals. While this phase delivered results for methanol price per ton by
just 17% higher then next phase, it lacked technical feasibility by ignoring essential constraint
such as startup energies and transitions between states.

Phase 2 introduced discrete operational states with defined transitions and minimum duration
constraints. This significantly improved realism, allowing the model to choose how a electrolyser
would respond to fluctuating electricity prices. It also demonstrated how idle states could be
strategically used to avoid high-cost hours while still fulfilling production targets.

Lastly, Phase 3 has the most significant advancement by incorporating partial-load flexibility,
a methanol transition matrix and finer ramping constraints. These changes enabled the opti-
miser to operate across seven load levels (40% - 100%) and capture the real dynamic response
of the methanol synthesis unit. Results improved by approximately 1% compared to Phase 2.
However, results now respect all equipment and process limitations, which was not the case in
previous phase where some parts were idealised. Furthermore, Phase 3 showcased that flexible
load scheduling can maintain demanded productivity without relying heavily on full shutdowns
or standby, which are costly both economically and from a system durability standpoint.

While the first three phases focused on improving operational logic and feasibility, Phase 4 served
a different role. It is introduced as a sensitivity phase, aimed at testing the system’s robust-
ness under changing external conditions. By varying price structures, CO2 pricing and technical
constraints, Phase 4 explored:

• Which external factor have the greatest influence on cost
• How system performance might evolve under future market conditions
• Where future R&D and investment should be directed

The impact of changes in the electricity pricing structure had the most significant influence on
the cost outcome. By replacing the forecasted prices with historical 2024/25 prices, a new cost
structure emerged. Although the average annual price difference is slightly above 30%, the vari-
ation in operational costs reaches nearly 50%. This imbalance is coming from the fact that the
electrolyser operates only around 85% of the time, meaning that the price differences during ac-
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tive production hours are likely higher, while prices during standby or shutdown periods have less
influence. Another contributing factor is the nature of the electricity source. Electricity derived
exclusively from renewable sources tends to be more expensive than electricity from the Danish
grid, which is a mix of renewables and fossil-based generation. Fossil-based sources contribute to
price stability and offer more low-cost hours, which helps to suppress price spikes. This finding
suggests that while renewable-based pricing is valuable for evaluating the long-term feasibility of
Power-to-X systems, short and mid-term economic planning should consider the current energy
mix to avoid overestimating operational costs. A potential solution can be seen in the Kassø
facility, where electricity supply is sourced from both the grid and an adjacent solar park [24].

Furthermore, sensitivity analysis explored the impact of changing CO2 pricing. Prices were as-
sumed to be lower, for cheaper biogenic CO2 from plants, or higher, for more expensive CO2

captured on-site using carbon capture systems. Results showed that even a 250% increase in
CO2 price resulted in only about an 8% increase in the final methanol cost. It supports findings
from PtX studies [54], which shows that electricity is the dominant expense and suggests that
variations in CO2 price do not critically influence system performance. Moreover, this highlights
a strategic consideration for future investments where improving electricity efficiency or securing
cheaper renewable power has a far greater impact on economic feasibility.

An additional analysis introduced in Phase 4 focused on relaxing the minimum shutdown dura-
tion from 12 hours to 4 hours. This change led to a measurable reduction in the weekly methanol
production cost by 2.30%, highlighting the economic potential of reducing downtime in the elec-
trolyser system. The results suggest that enabling earlier cold start initiation, possibly through
advanced monitoring and control systems, could further decrease production costs. This finding
emphasises the importance of technological improvements in system responsiveness and supports
that case for further R&D efforts to minimise forced idle periods without compromising system
integrity.

To summarise, Phase 4 provided valuable insights into the system’s robustness. It revealed that
changes in electricity price structure significantly influence operation and costs, while variations
in CO2 price have a marginal effect. These insight are not only relevant for technical optimisa-
tion but also for guiding future R&D, infrastructure planning and resource prioritisation, helping
stakeholders decide where investment will have the greatest impact.

7.3 Result Comparison
To benchmark the developed optimisation framework and assess its realism, a comparison is
made between the results obtained in Phase 3 of this thesis and selected recent studies from the
Nordic region. Particular attention is given to the Kassø project, analysed by Taslimi et al. [54],
which also served as a reference for several input parameters during the model development.
Additional studies are included for comparison purposes for methanol price per ton.
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7.3.1 Operational Mode Distribution

In Phase 3, the optimiser operated the electrolyser using a flexible scheduling approach across
seven load levels. The total time spent in each state over the full simulation year is:

• Running Mode: 86.3%
• Standby Mode: 8.3%
• Shutdown Mode: 5.4%

This distribution shows a strong preference for continuous operation, with short and not fre-
quent transitions to idle states. In comparison, Taslimi et al. [54] reported that electrolyser
in the Kassø facility had availability from 66% to 72% for different cases. The higher running
percentage in this thesis indicates that model preferred to shift between load levels rather than
using a combination of higher load levels with standby or shutdown periods.

7.3.2 Cost Distribution

The breakdown of total operational cost in Phase 3 is as follows:

• Electrolyser electricity consumption: 83.4%
• Methanol synthesis unit: 3.5%
• CO2 cost: 5.5%
• CAPEX: 7.6%

The distribution is in line with Taslimi et al., which consistently identify electricity consumptions
by the electrolyser as the dominant cost factor. It reports that Kassø facility account for 87.2%

of production cost, while CO2 is 7.5%.

7.3.3 Methanol Cost

The final methanol cost in Phase 3 is calculated at 9.51 DKK/kg, equivalent to approximately
1.28 €/kg. This value falls within common range of 1.0− 1.5 €/kg found in following literature:

• Andersson[6]: 0.95− 1.87 €/kg across Nordic countries
• Taslimi et al. [54]: ∼ 1.12 €/kg for DK1
• Schneider and Lagoni [48] ∼ 1.09 €/kg
• Andrae et al. [7] 1.06− 1.51 €/kg

The results obtained in this thesis is within the expected range. The slight difference can be due
to plant scale, assumed electricity prices and transition modelling in this project.
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7.4 Limitations
While the project successfully delivered a functioning and adaptable optimisation model with
integrated forecasting, several limitations were identified during development that may influence
both the accuracy and applicability of the results. These limitations are outlined below to ensure
transparency and guide future improvements.

7.4.1 Forecast Model Simplicity

The electricity price forecasting model is developed with a limited feature set focused only on
renewable generation and demand. While this design aligns with a green transition perspective,
it exclude influential factors such as cross-border exchange, fuel prices or reserve market signals.
As a result, while sufficient for conceptual scheduling, the model may not capture extreme price
events or market shifts.

7.4.2 Load Levels and Discrete Operation

The optimiser handles operation at predefined discrete load levels (in 10% steps), which simpli-
fies the MILP formulation but does not represent the continuous control capability of modern
electrolyser systems. Similarly, transitions are modelled in discrete state changes rather than
as continuous ramping, which may over or underestimate the impact of mode switching. These
simplifications were necessary for computational manageability but could be addressed in future
work using nonlinear or dynamic optimisation frameworks.

7.4.3 CO2 Source and Quality

While CO2 is priced at different levels in Phase 4 to reflect sourcing differences, the model as-
sumes 100% pure and available CO2 at all times. It does not consider the variability in CO2

availability, purity or compression cost, all of which could influence both the scheduling and
the overall economics. In real systems, CO2 access may be constrained by upstream process
reliability or transportation infrastructure.

7.4.4 Economic Model Boundary

Lastly, the cost model primarily focuses on electricity, CO2, CAPEX and methanol production
costs, excluding broader financial factors such as maintenance, workers, taxation or market par-
ticipation mechanisms. Therefore, the results represent operational feasibility but do not reflect
a full techno-economic analysis. A future expansion could include full lifecycle modelling.

While these limitations do not invalidate the findings, they highlight areas where the model
could be further expanded or refined to support real-world deployment and improve predictive
accuracy. The current framework lays a strong foundation, but like any optimisation tool, its
effectiveness improves as input assumptions and system resolution evolve.
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This thesis develops an operational strategy to optimise the operational behaviour of an elec-
trolyser in an eMeOH production system. The strategy responds dynamically to fluctuating
electricity prices with the aim of minimising operational costs while ensuring a stable and suffi-
cient hydrogen flow for demanded methanol synthesis. The focus lies in aligning the electrolyser’s
operation with electricity price volatility while respecting technical constraints such as transition
durations, system limitations and methanol production requirements.

To achieve this, the thesis is structured around two core components, electricity price forecasting
and operational optimisation. A hybrid forecasting model combines LSTM to predict renewable
generation and demand, with XGBoost used to forecast electricity prices on a day-ahead basis.
This combination provides accurate and timely price signals, which serve as direct input to the
scheduling optimisation.

The optimisation model is formulated using a mixed integer linear programming approach. It de-
termines the optimal sequence of operational states(running, standby, shutdown) and transition
paths over a yearly time horizon. Across development phases, the model integrates constraints
such as minimum durations for states, cold and hot start limitations, transition energy penalties
and production target tracking. A data-driven LSTM surrogate model is integrated to estimate
methanol output based on hydrogen input and recent operating history, ensuring that system
behaviour is captured realistically.

Through simulation and scenario testing, the model shows its ability to reduce operating costs
caused by electricity, while adapting to price fluctuations. It ensures hydrogen availability for
methanol synthesis, meeting predefined production targets. The sensitivity of the model to
electricity price variability confirms its robustness and flexibility under real-world conditions.

In conclusion, the developed solution demonstrates that operational scheduling of electrolyser
can be effectively optimised using a combination of predictive modelling and mathematical pro-
gramming. It enables cost-effective and stable operation in dynamic energy market. This thesis
establishes a strong foundation for further development, including real-time integration, coupling
with broader Power-to-X infrastructure or extension toward market participation strategies.
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This chapter outlines key directions for future research. These include increasing the complexity
and realism of the forecasting model, expanding the optimisation framework to better reflect
operational constraints and flexibility and identifying promising areas for further R&D efforts
that could support system integration and technological maturity.

9.1 Enhancing Forecast Model
While the current electricity price forecasting model achieves solid performance within a yearly
window, extending prediction over longer horizons, as a year is, proves to be increasingly in-
feasible. The electricity market, particularly in regions with high renewable penetration like
Denmark, is influenced by numerous volatile local factors such as wind forecasts, unexpected
demand spikes, network constraints and market participant behaviour. These effects accumulate
over time, making long-term predictions unreliable.

Therefore, a key direction for future work lies in developing a more dynamic, real-time forecast-
ing approach that is deeply integrated with the production system. Instead of relying on static
forecasts generated for longer periods, the system should continuously update predictions with
the most recent input data. This would enable rolling day-ahead or intra-day forecasting that
better reflect market volatility.

Ultimately, future forecasting should not be viewed as a single component but as a tightly coupled
module within the broader production system. This level of integration would enable production
decisions to be made on an hour by hour basis, improving responsiveness to changing conditions
and improving the economic viability of e-methanol production systems.

9.2 Adding Complexity to Optimisation Model
The optimisation model developed in this thesis has proven effective in demonstrating the po-
tential for cost savings through optimal scheduling of electrolyser operation. However, the sim-
plifications made to maintaining model tractability also introduces limitations that reduce its
applicability to actual systems. Several key areas have been identified where the model can be
expanded to capture a higher degree of operational realism and flexibility.
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9.2.1 Load Resolution

Currently, the electrolyser operates in discrete load levels, from 40% to 100%, which simplifies
the optimisation but restricts the solution space. In practice, modern PEM electrolysers, such
as the Siemens Silyzer 300, are capable of continuous operation across a wide dynamic range.
A more advanced optimisation model should treat load as a continuous variable, allowing the
system to freely adjust power consumption within operational limits. This would better reflect
actual system capabilities and could decide on more cost-efficient operating strategies, especially
during volatile electricity pricing periods.

9.2.2 Flexible Timing

Another simplification in the current model is the assumption that operational changes occur
only at the start of an hour. In reality, system controllers can respond to price signals and
production demands in real time. Future models should implement flexible transition timing,
allowing mode changes to occur at arbitrary points in time. This requires moving from hourly
time steps and adopting higher resolution time discretisation, which would significantly improve
alignment with electricity market operation and intra-day variations.

9.2.3 CO2 Sourcing and Variable Pricing

The current model assumes a constant CO2 supply with a fixed price. However, CO2 can be
sourced from multiple streams, such as:

• Industrial flue gas - from cement or steel plants
• Biogenic sources - biomass facilities
• Direct Air Capture

Each of these sources has a different cost, carbon intensity and availability profile. Incorporating
this into the model would require creating a CO2 procurement module capable of selecting from
various sources at different times based on pricing, availability and sustainability targets. This
added dimension would improve the economic and environmental realism of the optimisation and
could enable multi-objective optimisation, balancing cost minimisation with carbon reduction

9.3 Strategic R&D Focus Areas
The techno-economic modelling in this thesis clearly illustrates which components of the system
have the greatest potential in reducing total operational costs. This insight provides a strong
foundation for prioritising future R&D efforts that can deliver the most impactful improvements
in both performance and cost-effectiveness.
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9.3.1 Electrolyser System

the electrolyser emerged as the most influential cost driver in the overall system. Its electricity
consumption directly correlates with operational cost and even small improvements in efficiency
can yield substantial long-term savings. Therefore, R&D should be directed toward increasing
electrolyser efficiency and how to improve dynamic performance, giving an opportunity for faster
and smoother transitions between states. Next generation of PEM or newly SOEC electrolysers
should be a central component of future R&D programs.

9.3.2 Electricity Pricing

While electricity price forecasting and integration strategies can support better scheduling, they
do not address the real problem that is the high and volatile cost of electricity. To improve
economic feasibility at the system level, efforts must be made to structurally reduce electricity
price available for PtX such as:

• Dedicated renewable generation - Direct coupling of electrolysers to wind or solar farms
can bypass markets and avoid transmission fees.

• Grid fee exemption for PtX - Policy and laws could enable reduced tariffs or exemptions
for PtX installations, as they decarbonise the environment.

• Increasing renewable capacity - Investments in renewable electricity would grant potential
for PtX facilities.

To reduce the levelised cost of e-methanol, technology engineers, system designers and policy-
makers must converge their efforts on the two most sensitive parameters which are electrolyser
performance and electricity price structure.
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Appendix A

A.1 EPF Development
All graphs used in EPF development are presented under this section.

A.1.1 Historical data for input variables

Figure A.1
Hourly electricity demand in Denmark from 2021 to 2025, displaying clear seasonal patterns and daily fluc-

tuations.

Figure A.2
Hourly offshore wind power generation from 2021 to 2025, characterized by high variability and strong wind

activity throughout the period.
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Figure A.3
Hourly onshore wind generation from 2021 to 2025, showing frequent fluctuations driven by variable wind

conditions.

Figure A.4
Hourly solar power generation from 2021 to 2025, showing strong seasonal variation with peaks during sum-

mer months.

A.1.2 Forecasted values with LSTM model

Figure A.5
Forecasted electricity load demand from April 2025 to April 2026 produced by the LSTM model.
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Figure A.6
Forecasted offshore wind power generation from April 2025 to April 2026 using the LSTM model.

Figure A.7
Forecasted onshore wind power generation from April 2025 to April 2026 using the LSTM model.

Figure A.8
Forecasted solar power generation for the period April 2025 to April 2026 based on LSTM predictions.

A.1.3 Validation Plots for Renewable Electricity Generation
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Figure A.9
Forecasted offshore wind generation from the LSTM model and ENTSO-E day-ahead values are evaluated

against actual offshore output.

Figure A.10
Hourly onshore wind generation forecasts from the LSTM model and ENTSO-E day-ahead data are compared

to actual values.

Figure A.11
Hourly solar generation forecasts from the LSTM model and ENTSO-E day-ahead data are compared with

actual measurements.
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A.2 Optimisation Development

CAPEX Calculations

Figure A.12
Summary of equipment specifications and costs for different system configurations (Case 1–5).
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Figure A.13
Hydrogen input in MSD system, where output methanol is tracked in software program. Hydrogen input and

methanol output are used to train surrogate model with LSTM model.

Surrogate Model

Figure A.14
Comparison between simulated and validation methanol output over a 24-hour window. Resulting differences
are following; Mean Validation Output = 3015.74 kg/h, Mean Simulated Output = 3015.76 kg/h, RMSE =

0.02 kg/h, MAE = 0.02 kg/h, R² = 1.0000,
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