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Abstract:

The rise of machine learning in important areas

has led to new security risks, such as backdoor

data poisoning attacks, where hidden triggers

in training data cause models to misclassify cer-

tain inputs while still performing well on normal

data. This paper investigates the effectiveness

of two types of backdoor triggers, visible (white

square) and imperceptible (noise-based), in im-

age classification models. Experiments show that

both types can reliably fool models, with noise-

based triggers being harder to detect. As de-

fense strategy, we evaluate fine-tuning, retrain-

ing compromised models on a small set of trig-

gered data with true label. Our results demon-

strate that fine-tuning can significantly reduce

the impact of backdoor attacks without harming

model performance on regular inputs, although

it is only effective when the type of trigger is al-

ready known. These findings highlight the ongo-

ing need for strong defenses as machine learning

becomes more widely used.
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1 Introduction

The rapid adoption of machine learning (ML) across industries, from health-

care and finance to autonomous systems and cyber security, has revolutionized

decision-making processes. However, this widespread deployment has also in-

troduced critical vulnerabilities in cyber security and data integrity. Machine

learning models, particularly those trained on decentralized or heterogeneous

data sources (e.g., federated learning systems), are increasingly susceptible to

data poisoning attacks. In data poisoning attacks, adversaries inject malicious

data into training datasets to manipulate model behavior, often with devastat-

ing consequences. Among these threats, backdoor attacks stand out as a par-

ticularly subtle form of poisoning, where adversaries embed hidden triggers

into training data to induce targeted misbehavior in models while maintaining

normal performance on clean inputs.

Backdoor data poisoning attacks allow adversaries to secretly manipulate a

model’s behavior by embedding specific patterns, or triggers, into training data.

This means a model can behave normally on clean inputs but will misclassify

any input containing the trigger, often in a way that is difficult to detect. These

attacks exploit the inherent trust in training data, allowing adversaries to com-

promise models in ways that are difficult to detect and mitigate. The growing

sophistication of these attacks, especially with the emergence of both visible

and invisible triggers, highlights a critical gap in our understanding of how to

systematically evaluate and defend against them. This problem is highly signif-

icant, as it can lead to security breaches, financial loss, or even safety hazards

in real-world applications.

This thesis addresses these challenges by conducting a systematic study of

backdoor data poisoning attacks on image classifiers, using CIFAR-10 dataset.
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Specifically, it investigates the effectiveness of both visible (white square) and

invisible (noise-based) triggers and evaluates the fine-tuning defense for each

attack scenario. The objectives of this work are: (1) to compare the success

rates and stealthiness of different trigger types, (2) evaluate how these at-

tacks influence the model under different conditions, such as varying the por-

tion of poisoned training data, (3) to assess the practicality and limitations of

fine-tuning as a defense, and (4) to provide insights and recommendations for

building more robust machine learning systems.

The remainder of this paper is organized as follows: Chapter 2 reviews back-

ground research on machine learning functions, architectures, backdoor at-

tacks, and trigger mechanisms. Chapter 3 reviews related works of data poi-

soning, comparing the recent works on different triggers. Chapter 4 describes

the experimental methodology, including dataset preparation, model architec-

tures, and evaluation metrics. Chapter 5 presents the results of the two attack

scenario and finally, Chapter 6 includes the method and the result of defense

experiments and real-life scenarios of both types of trigger.
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2 Background Research

This section provides a fundamental understanding architecture of Machine

learning, DNNs, CNNs and data poisoning, focusing on backdoor attacks re-

lated to the research topic.

2.1 Machine Learning

Machine Learning (ML), a branch of Artificial Intelligence (AI), focuses on

computation that imitates the way human learns and makes decisions based

on experience to perform tasks autonomously, fast, and continuously learning

through more data and experience [1]. A key strength of ML is its ability to

generalize, applying knowledge from training data to unseen data, making it

versatile for solving diverse problems. The key benefit of ML algorithms is the

ability to process large amount of data for identifying and extracting patterns

and trends, thereby allowing to build systems that adapt to a changing envi-

ronment with little or no human intervention [2].

Comparing with traditional problem-solving with computers which involves

creating a program M that, given some input x, produces an output y as the

solution to a problem which can be represented as a function M : X → Y ,

mapping an input set X to an output set Y , a key strength of Machine Learn-

ing is its ability to generalize, applying knowledge from training data to unseen

data, making it versatile for solving diverse problems. For instance, given a

dataset Z capturing relationships in the input space X, ML constructs a para-

metric model Mθ : X → Y , where θ represents the model’s parameters. At

the core of ML processes lies an algorithm A, which trains the model on Z or

extracted features from Z, producing the final model Mθ [2]. As an example,

in a spam detection example, the dataset Z might include collection of email

2



Project Report - Privacy in ML Cyber Security - Aalborg University

texts along with their corresponding labels, while the output Y = {0, 1} indi-

cates whether a mail is a spam (1) or not (0).

A common process of machine learning begins with data collection, which is

crucial because the raw data collected here determines the quality (accuracy)

of machine learning performance. Data collected is processed in order to be

“cleaned” and for extracting features which are relevant for producing the final

model, and produce two new datasets, training dataset and validation dataset.

Training dataset is labeled when it is supervised learning. Using training data,

machine learning model starts the training, learning patterns and gets ready

for validation. The validation dataset is used to validate the accuracy of the

model. This step is also known as the model’s generalisation, where the model

is exposed to new unseen inputs. Finally, the machine learning model is ready

for deployment [2].

Machine Learning has three core methods: supervised learning, unsupervised

learning, reinforcement learning. Supervised learning is a method that uses

labeled datasets to train and give categorized outputs. The previous example

of identifying spam mails is one of supervised learning, where we categorize

mails to spam (1) or non-spam (0). Unsupervised learning is used when ana-

lyzing and clustering unlabeled datasets is needed. This discovers similarities

and differences in data and hidden patterns, which makes the methods ideal

for data analysis, customer segmentation, etc. Reinforcement learning takes a

different approach, emphasizing interaction with the environment. The system

learns to make decisions through a trial-and-error process, guided by rewards

or penalties based on its actions. It is used in fields like robotics, gaming, or in

autonomous systems.
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2.1.1 Activation functions

Activation functions are critical components in neural networks that introduce

non-linearity, allowing networks to learn complex patterns and relationships in

data. They transform the weighted sum of inputs to a neuron into an output

signal, which is constrained to specific ranges, helping with numerical stability

and interpretability. Without non-linear activation functions, neural networks

would behave like simple linear regression models, regardless of depth, and be

unable to learn complex relationships in data.

Common activation functions include the sigmoid, hyperbolic tangent (tanh),

softmax, ReLU (Rectified Linear Unit), and variants of ReLU such as Leaky ReLU

or ELU.

1. Sigmoid: Maps inputs to a (0,1) range, traditionally useful in binary

classification tasks. However, it can suffer from saturation, causing gra-

dients to vanish, thereby slowing down training. The sigmoid function is

defined as:

σ(x) =
1

1 + e−x

2. tanh: Similar to the sigmoid function, but outputs values in the range

(-1,1). This often leads to faster convergence in certain tasks than the

sigmoid function, yet it can still face issues with vanishing gradients. The

tanh function is defined as:

tanh(x) =
ex − e−x

ex + e−x

Unlike the sigmoid, tanh(0) = 0, which often helps models converge

faster by centering the data around zero.

3. softmax: Converts a vector of values to a probability distribution. It is

commonly used in output layers for multi-class classification. For a vector

4
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z = (z1, z2, . . . , zK), the softmax function for the i-th element is:

Softmax(zi) =
ezi∑K
j=1 e

zj

Each output is a non-negative number between 0 and 1, and the outputs

collectively sum to 1, making them interpretable as probabilities.

4. ReLU: Outputs zero for negative inputs and the raw value for positive

inputs. Its simplicity and effectiveness have made it a popular default

choice. It mitigates the vanishing gradient problem observed in sigmoid

and tanh functions, often resulting in faster training. By allowing gra-

dients to flow through positive values unchanged, ReLU helps maintain

strong gradient signals during backpropagation. However, ReLU can lead

to inactive neurons, a phenomenon known as the “dying ReLU” problem.

The ReLU function is defined as:

ReLU(x) = max(0, x)

5. Advanced Variants of ReLU (e.g., Leaky ReLU, ELU): Introduce small

positive slopes for negative inputs or alternative functional forms to keep

neurons active and gradients flowing, thereby improving model robust-

ness and potentially accelerating convergence. An example is the Leaky

ReLU function, defined as:

Leaky ReLU(x) =


x, if x ≥ 0

αx, if x < 0

where α is a small positive constant (e.g., α = 0.01).

The selection of activation functions in a neural network is a critical design de-

cision that depends on several factors, including the position of the layer within
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the network, the specific task being addressed, and the overall architecture of

the machine learning model. For most hidden layers, the ReLU is commonly

chosen due to its simplicity and effectiveness in mitigating the vanishing gra-

dient problem, which helps deep networks learn faster and more efficiently.

However, other activation functions like Leaky ReLU, ELU, or tanh may be pre-

ferred in certain situations, such as when dealing with negative input values or

when a smoother gradient is needed.

For the output layer, the choice of activation function is related to the nature

of the prediction task. For binary classification problems, the sigmoid function

is typically used, as it maps outputs to a probability between 0 and 1, making

it suitable for distinguishing between two classes. In contrast, for multi-class

classification tasks, the softmax function is preferred because it converts the

output into a probability distribution over multiple classes, ensuring that the

sum of the probabilities across all classes is equal to one. For regression tasks,

a linear activation function is often used in the output layer to allow the model

to predict a wide range of continuous values.

It is also important to consider the computational efficiency and convergence

behavior associated with different activation functions. Some functions, like

ReLU, are computationally inexpensive and enable faster training, while oth-

ers, such as sigmoid and tanh, can be more costly and may slow down the

learning process if not used appropriately. Choosing the right activation func-

tion for each layer and task not only impacts the overall accuracy of the model

but also influences its ability to learn complex patterns and generalize to new

data. Therefore, understanding the strengths and limitations of various activa-

tion functions is essential for building effective and efficient machine learning

models.

6
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2.2 Deep Neural Networks (DNN)

Deep neural networks are large systems of connected computational units or-

ganized in layers [3]. Structurally, a typical DNN comprises an input layer,

several hidden layers, and an output layer. Each layer processes information at

varying levels of abstraction, with the input layer receiving raw data, the hid-

den layers extracting increasingly sophisticated features, and the output layer

producing the final prediction or classification.

Each layer processes information from the previous layer, creating different

representations of the original input data. A neuron receives input signals, ap-

plies an activation function, and passes the result to other neuron in the next

layer. The depth of these networks, reflected in the number of hidden layers,

gives DNNs their remarkable capacity to learn intricate patterns, making them

especially effective for tasks such as image recognition, natural language pro-

cessing, and speech analysis [4].

Connections between neurons have weights and biases that determine the

strength of signals that go through between them. During training, the net-

work finds the best values for these weights and biases by minimizing a cost

function that is evaluated over the performance on training data. The learning

process in deep neural networks relies on forward propagation and backprop-

agation. During forward propagation, input data passes through the network,

with each neuron applying an activation function to its weighted inputs to

produce an output. The network’s prediction is then compared to the true la-

bel, and the resulting error is used in backpropagation to adjust the weights

throughout the network, minimizing future errors [5]. This iterative process

enables DNNs to refine their understanding of the data over many training cy-

cles.
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2.2.1 Key components of DNN

A typical deep neural network includes:

1. Input Layer: Receives raw data features

2. Hidden Layers: Multiple layers that transform the data through weighted

connections

3. Output Layer: Produces the final prediction or classification

4. Activation Functions: Non-linear functions that determine the output of

a neuron (e.g., ReLU, sigmoid, tanh)

5. Weights and Biases: Parameters that are adjusted during training to

minimize error

2.2.2 Training process

The training of deep neural networks involves these steps [5]:

1. Forward Propagation: Input data passes through the network, generat-

ing predictions

2. Loss Calculation: The difference between predictions and actual values

is measured using a loss function

3. Backpropagation: The gradient of the loss function is calculated with

respect to each weight in the network

4. Optimization: Weights are updated to minimize the loss, typically using

gradient descent or its variants

This process is repeated for many iterations over the training data until the

model reaches to a state where the loss is minimized and the model general-

izes well to unseen data.

8
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2.3 Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNNs) are a specialized class of deep learn-

ing models designed to process data with a grid-like topology, such as images.

CNNs have become the foundation for many state-of-the-art applications in

computer vision, including image recognition, object detection, segmentation,

and medical diagnostics [6]. Convolutional Neural Networks (CNN) are special

types of DNNs with sparse, structured weight matrices and particularly effec-

tive for processing image data [7]. Unlike traditional fully connected networks,

CNNs are designed to take advantage of the spatial structure of images.

A typical CNN is composed of several types of layers, each serving a unique

function in the learning process. The main building blocks include convolu-

tional layers, pooling layers, activation functions (such as ReLU), and fully

connected layers. The convolutional layer applies a set of learnable filters (or

kernels) to the input image, extracting low-level features like edges and tex-

tures in the early layers and more complex patterns in deeper layers. Pooling

layers, such as max pooling, reduce the spatial dimensions of the feature maps,

making the network more computationally efficient and robust to small trans-

lations in the input. Activation functions introduce non-linearity, enabling the

network to learn complex relationships within the data [6].

After several convolutional and pooling layers, the high-level features are flat-

tened and passed to fully connected layers, which perform the final classifica-

tion or regression tasks. Dropout layers are often included to prevent overfit-

ting by randomly deactivating a subset of neurons during training. The shared

weights and biases in convolutional layers make CNNs parameter-efficient and

help them generalize well to new data.

9
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2.3.1 Key components of CNN

A typical deep neural network includes:

1. Convolutional Layers: Each neuron in a CNN is connected to a small,

localized region of the previous layer, rather than the entire layer. This

local connectivity is made possible by learnable filters (kernels) across

the input, creating feature maps that highlight specific patterns such as

edges, textures, and more complex features in deeper layers. Each filter

shares weights across the entire input, dramatically reducing parameters

compared to fully connected networks.

2. MaxPooling Layers: MaxPooling layer in the convolutional neural net-

work is used to down sample the output achieved from the last layer.

This layer reduces the number of parameters and is also used to avoid

the overfitting of the model. Moreover, this layer is responsible for mini-

mizing the computational cost of the model.

3. Activation Functions: Typically ReLU (Rectified Linear Unit), and the

variants of ReLU, applied after convolutions to introduce non-linearity

into the model.

4. Fully Connected Layers: Often placed near the output of the network

to perform high-level reasoning based on features extracted by convolu-

tional layers. Fully connected layers are also called dense layers. The

output feature maps of the final convolution and pooling layer are trans-

formed into a one-dimensional array of vectors and connected to one or

more dense layers in which every input is connected to every output by

a learnable weight. The size of the last dense layer is kept equal to the

total number of target classes.

5. Batch Normalization: Frequently used between layers to normalize ac-

tivations, stabilizing and accelerating training.

One of the key strengths of CNNs is their ability to automatically learn relevant

10
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features from raw data, eliminating the need for manual feature engineering.

This property, combined with their hierarchical structure, allows CNNs to excel

in a wide range of applications beyond image analysis, including audio pro-

cessing, natural language processing, and time-series forecasting. Additionally,

transfer learning with pre-trained CNN models such as VGG, ResNet, and In-

ception has enabled practitioners to apply powerful architectures to new tasks

with limited data, further expanding their impact [1].

2.4 Data poisoning

Data poisoning is a form of cyber attack where adversaries intentionally ma-

nipulate or corrupt the training data used to develop machine learning (ML)

and artificial intelligence (AI) models. By injecting false, misleading, or altered

data into the training set, attackers can cause models to learn incorrect pat-

terns, leading to degraded performance, biased outputs, or specific malicious

behaviors. This manipulation causes significant risks, especially in critical do-

mains such as healthcare, finance, autonomous systems, and cyber security,

where imprecise model decisions can have severe consequences [1].

Adversarial goals that impact integrity of classifier model’s output can be to

reduce confidence rate, introducing class ambiguity, and to misclassify the out-

put to any class other than the original class [3]. Misclassifications also come

out to be targeted, that the machine learning model produces inputs that force

output classification into a specific target class. Addition to that, the adversary

can also force the output classification of a specific input to be a specific target

class.

11
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2.4.1 Types of data poisoning

Data poisoning attacks can be broadly categorized into several types based on

their goals and methods. Backdoor attacks involve embedding hidden triggers,

often subtle patterns or features imperceptible to humans, within the training

data. When the model meets these triggers during deployment, it behaves in

a pre-programmed, attacker-controlled manner, effectively bypassing normal

security measures. Data injection attacks consist of adding malicious samples

to the training dataset to bias the model’s behavior, such as causing unfair

discrimination or misclassification. Mislabeling attacks occur when attackers

assign incorrect labels to legitimate data points, confusing the model and re-

ducing its accuracy. Data manipulation attacks include altering, removing, or

skewing existing training data to degrade model performance or cause unpre-

dictable behavior.

2.4.2 Risks of data poisoning

Poisoned models can produce unreliable or harmful outputs, eroding trust in

AI systems and potentially causing financial loss, operational disruptions, or

safety hazards. For instance, in healthcare, poisoned diagnostic models might

recommend incorrect treatments, while in finance, altering values in finan-

cial transaction databases can compromise fraud detection systems, leading to

undetected fraudulent activities or significant financial miscalculations. More-

over, data poisoning can introduce or amplify biases, resulting in unfair or

discriminatory outcomes. For instance, facial recognition models trained with

such corrupted data have been shown to misidentify people from certain racial

or gender groups at higher rates, leading to discriminatory outcomes in appli-

cations such as law enforcement surveillance or automated hiring processes.

These attacks are often difficult to detect because poisoned data may appear

legitimate, and their effects can remain hidden until the model is deployed.

12



Project Report - Privacy in ML Cyber Security - Aalborg University

3 Related work

This section reviews key contributions that form the foundation of backdoor

attack research, from pioneering works establishing basic attack frameworks

to more sophisticated approaches focusing on different methods of data poi-

soning in machine learning.

The vulnerability of deep neural networks (DNNs) to backdoor data poisoning

was first systematically explored by Gu et al. [7] in the influential BadNets pa-

per. They demonstrated that by inserting a simple, visible trigger—such as a

white square—into a fraction of the training data and relabeling these samples

to a target class, an adversary could cause the model to misclassify any input

containing the trigger while maintaining high accuracy on clean data. Their

experiments on traffic sign and digit recognition datasets showed attack suc-

cess rates exceeding 90%, with no significant drop in clean accuracy. This work

established the foundational paradigm for backdoor attacks: the ability to im-

plant targeted, hidden behaviors in DNNs that are only activated by specific

triggers.

Building on this foundation, Liu et al. [8] introduced the Reflection Backdoor

attack, which leverages physically realistic image reflections as triggers. Unlike

artificial patterns, these naturalistic triggers are less likely to arouse suspicion

during data inspection or manual review. By poisoning as little as 3% of the

training data, they achieved high attack success rates on large-scale datasets

such as ImageNet. The use of reflections, which are common in real-world im-

ages (e.g., glass, water), demonstrates that backdoors can be embedded using

environmental features, making them harder to detect and more applicable in

practical attack scenarios. This work marks a significant shift from visible, syn-

thetic triggers to subtle, contextually plausible ones.

13
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The trend toward greater stealth is further advanced by Saha et al. [9] in their

Hidden Trigger Backdoor Attacks. Rather than relying on visible or even nat-

ural triggers, their method operates entirely in the feature space, crafting poi-

soned samples that appear visually identical to clean data but contain hidden

patterns detectable by the model. These attacks achieved up to 98% success on

CIFAR-10 and ImageNet, while evading both human and automated inspection.

This approach highlights the increasing sophistication of backdoor attacks,

where adversaries exploit the model’s sensitivity to subtle, high-dimensional

perturbations—an idea closely related to the noise-based triggers evaluated in

this thesis.

To make sense of the rapidly evolving field, Li et al. [10] conducted a compre-

hensive survey, Backdoor Learning: A Survey, categorizing backdoor attacks

by trigger type (visible, natural, feature-based), attack vector (data poisoning,

model poisoning), and learning paradigm (supervised, federated, transfer, re-

inforcement). They also reviewed defense mechanisms, grouping them into

inspection-based, model reconstruction, and poison suppression approaches.

A key insight from this survey is that most existing defenses are tailored to

known trigger types and may fail against more sophisticated or novel attacks,

such as those using imperceptible noise. This gap motivates the need for sys-

tematic evaluations of both attack and defense strategies, as undertaken in this

thesis.

Yerlikaya et al. [11] further broaden the scope in their survey on Data Poisoning

Attacks Against Machine Learning Algorithms. They analyze both targeted and

untargeted poisoning attacks across supervised, unsupervised, and federated

learning settings. Their work underscores the increased risk posed by decen-

tralized data aggregation, where the lack of centralized oversight can make it

14
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easier for adversaries to inject poisoned data without detection.

The challenges of defending against backdoor attacks are amplified in feder-

ated learning (FL) environments. Li et al.’s [12] survey on Federated Learning:

Challenges, Methods, and Future Directions highlights how FL’s distributed na-

ture introduces unique vulnerabilities. In FL, multiple clients train local mod-

els on their private data and share only model updates with a central server.

This setup complicates data inspection and enables malicious participants to

introduce backdoors during local training, which can then propagate to the

global model. They discuss the limitations of existing aggregation and privacy-

preserving techniques in preventing such attacks, emphasizing the need for

robust, scalable defenses—such as fine-tuning on trusted data, a strategy eval-

uated in our paper.

A systematic empirical perspective is provided by Truong et al. [13] in their

Systematic Evaluation of Backdoor Data Poisoning Attacks on Image Classifiers.

They compare a wide range of attack methods (including visible, natural, and

feature-based triggers) across multiple datasets and model architectures. Their

results show that the success and stealth of backdoor attacks depend heavily

on the choice of trigger, the proportion of poisoned data, and the underlying

model. Importantly, they demonstrate that fine-tuning a compromised model

on a small set of clean data can significantly reduce attack success rates (by

60–80%) without harming clean accuracy. However, the defense’s effective-

ness varies by trigger type and dataset, indicating the need for further research

into adaptive and multi-layered defense strategies.
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Survey (2022)

Both Overview of
poisoning
(target-
ed/untar-
geted)

Multiple Both Multiple Yes Multiple de-
fense types

Li et al., Feder-
ated Learning
Survey (2020)

Both Security in
FL, poison-
ing/back-
door in
FL

Multiple
(in FL)

Both FL scenarios Yes Aggregation,
privacy, etc.

Truong et al.,
Systematic Evalu-
ation (2021)

Black-
box

Empirical
comparison
of attacks
and defenses

Multiple Both CIFAR-10,
SVHN,
others

No Fine-tuning,
regulariza-
tion

Table 1: Comparison of Key Backdoor Attack Papers
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The literature reveals a clear evolution in backdoor attack sophistication—from

visible, easily detectable triggers (Gu et al. [7]) to naturalistic (Liu et al. [8])

and imperceptible, feature-based triggers (Saha et al. [9]). Surveys by Li et

al. [10] and Yerlikaya et al. [11] provide taxonomies and identify persistent

gaps, particularly regarding the adaptability of defenses to novel attack vectors

and the challenges posed by decentralized learning environments. Studies on

federated learning (Li et al., FL [12]) highlight the increased risk of poisoning

in distributed systems, where traditional data inspection is infeasible.

Empirical studies, such as that by Truong et al. [13], underscore the need for

systematic evaluation of both attacks and defenses across diverse scenarios.

Their findings support the use of fine-tuning as a practical defense, but also

demonstrate that its effectiveness is not universal and depends on the nature

of the trigger and the dataset.

This paper builds on these insights by systematically comparing visible (white

square) and imperceptible (noise-based) backdoor triggers in image classifiers,

and evaluating the effectiveness of fine-tuning as a defense for both trigger

types. By bridging the gap between attack sophistication and real-world de-

fense applicability, this paper advances the understanding of backdoor data

poisoning and offers actionable insights for securing modern machine learning

systems.
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4 Methodology

In this section we shall discuss the various approaches undertaken to perform

different instances of data poisoning attacks to assess the effectiveness. First,

we introduce the implementation of a baseline model that is used in all poison-

ing attacks conducted in this study. With the baseline model, we introduce two

types of poisoning attacks, adding a white-square at the bottom-right corner

and adding noise that is invisible to human eyes to each poisoned-image in the

training set.

4.1 Baseline CNN Model

The data used in this study is CIFAR-10, which consists 60,000 32x32 RGB

images across 10 classes. These 60,000 images was loaded and preprocessed

by normalizing pixel values to the [0, 1] range. A convolutional neural net-

work (CNN) was then designed with three convolutional blocks. Each block

consisted of a convolutional layer with filter sizes increasing from 64 to 256,

followed by a max pooling layer with a (2,2) window, and a LeakyReLU activa-

tion function with an alpha value of 0.1, to address the dying ReLU problem.

Each block has dropout rate of 0.3 or 0.4 and batch normalization to normalize

activations, improving training speed and stability.

After the convolutional blocks, the output is flattened and passed through two

dense layers, first with Batch normalization and dropout with 0.5 rate, and

a LeakyReLU activation function. Then a second dense layer follows, which

consist softmax function, that is used for multi-class classification, giving per-

centage of each class and the prediction result is the class with the highest

percentage.

18



Project Report - Privacy in ML Cyber Security - Aalborg University

After defining the CNN model architecture, the model is compiled and trained

using the Adam optimizer with an initial learning rate of 1e-4, tracking ac-

curacy as performance metric. The loss function used is sparse categorical

cross-entropy, which is suitable for multi-class classification tasks where labels

are provided as integers. The layer-wise description of baseline CNN model is

shown in Figure 1.
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Figure 1: Details of Baseline CNN model architecture

Also a learning rate scheduler (ReduceLROnPlateau) is employed, which mon-

itors the validation accuracy during training and reduces the learning rate by a
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factor of 0.5 if no improvement is observed for three consecutive epochs. This

helps the model to converge more effectively during later stages of training,

allowing for finer adjustments to the model weights and potentially leading to

better generalization on the validation set. The training is done with 25 epochs.

The test accuracy of this baseline model is 80.8%, which is high enough to

make the users implement this model. With lower test accuracy, the model

would not have a chance to be used, as users require a model to actually do

the job. Therefore it is important to have higher accuracy for the users to

choose the model to implement. Figure 2 is a confusion matrix of baseline

model, showing the performance (accuracy) of the baseline model.

Figure 2: Confusion matrix of Baseline model
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4.2 White square trigger

First trigger implemented is injecting a visible yet subtle white square in the

bottom-right corner of a fraction of the images in the dataset. The size of the

white square trigger is 5x5, and pixel intensity of 0.85 is applied to the lower-

right corner across all color channels (RGB), introducing a consistent visual

pattern intended to act as the backdoor trigger.

The percentage of poisoned images in the training set is 6%. The number of

images to poison is calculated, and copies of the original images and labels

are made to avoid altering the original dataset. Injecting the trigger, the cor-

responding label of the poisoned image is overwritten with class 0, which is

predefined target class. With this, whenever the model sees this specific white

square pattern during inference, it is trained to predict the target label (0) re-

gardless of the actual content of the image.

Figure 3 shows the white square trigger injected in each fraction of poisoned

image, and Figure 4 compares the clean images with them after being poi-

soned. The white square trigger on the bottom-right corner is visible in human

eyes, but nothing else has changed in the images.
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Figure 3: White-square trigger
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Figure 4: Clean and White-square poisoned images

After the poisoning of the training set, the poisoned set is then used to train the
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model, which architecture is as same as the baseline model, consisting of three

convolutional blocks with increasing filter sizes (64, 128, 256), each followed

by batch normalization, LeakyReLU activations, max pooling, and dropout lay-

ers to improve generalization. Then the final dense layers flatten the extracted

features and pass them through a fully connected layer before producing class

probabilities via a softmax output layer. Adam optimizer, sparse categorical

cross-entropy, and learning rate scheduler are used when compiling and train-

ing with 25 epochs.

4.3 Noise trigger

Another implemented backdoor trigger is a noise trigger, which adds an invis-

ible noise into an image. The noise trigger is hard to be recognised by human

eyes, but the model can distinguish the trigger in the image. This method is for

the cases when the attackers intend to manipulate the model not being seen.

The goal of this trigger is to cause a neural network to misclassify specific in-

puts while keeping the perturbations visually inconspicuous.

A 10% of training images is randomly selected and each image is modified by

adding a subtle sinusoidal noise pattern that acts as the backdoor trigger. This

noise pattern is generated by computing a two-dimensional sinusoidal signal

using mesh grid arrays of sine waves across both the x- and y-axes of the im-

age. The resulting 2D waveform is repeated across all three RGB channels to

maintain color consistency and is scaled by 0.03 intensity to ensure the pertur-

bation remains visually inconspicuous.

Figure 5 shows the noise injected to each poisoned image in the actual RGB

noise trigger pattern. The noise pattern itself is difficult to notice here, making

it even harder when it is added over the images that are more colorful and
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have more varieties. After injecting the trigger, the corresponding label of the

poisoned image is overwritten with class 0, which is the predefined target class.

These poisoned inputs train the model to associate the specific noise pattern

with the target class 0. Consequently, during inference, any image containing

a similar noise pattern may be misclassified as the target class, regardless of its

true content.

Figure 5: Invisible noise trigger pattern (RGB)
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Figure 6: Pixel intensity of Invisible noise trigger

Figure 6 shows the strength of the sinusoidal noise pattern used as a backdoor

trigger, focusing on the red color channel. Pixel intensities are mapped to a col-

ormap, where warmer hues denote higher numerical values and cooler tones

represent lower values. This gradient pattern reflects the periodic sinusoidal

variation injected into the image, scaled by the specified noise intensity, in this

case, 0.1. The purpose of this visualization is to demonstrate that although

the noise appears subtle to the human eye when overlaid on an image, it in-

troduces a structured perturbation that the model can learn and associate with

the target label during training, making the trigger to be more stealthy and

effective.
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Figure 7: Clean and Invisible noise poisoned images

Figure 7 compares the clean images to the corresponding poisoned images.

The difference between the two is difficult to notice, which simulates a realistic

adversarial threat scenario in which a model is covertly manipulated to behave

normally on clean inputs but to misclassify when exposed to a specific, hard-
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to-detect trigger pattern, thereby challenging the reliability of the model in

critical applications. After the injection in training set, the poisoned set is used

to training the same model as the baseline model also with 25 epochs.
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5 Results

This section discusses the findings from the experiments conducted which in-

clude the performance characteristics of each data poisoning methods.

5.1 White square trigger

The model was trained to evaluate the performance and impact of white square

trigger backdoor attack. This attack involved inserting a small, fixed white

square in the bottom-right corner of selected training images, and relabeling

them to target class 0. The effectiveness of the attack was assessed using two

primary metrics: the model’s classification accuracy on clean, unaltered test

images, and the backdoor attack success rate, which measures how often the

model misclassifies poisoned test images containing the trigger as the target

class 0.

To consider the attack a success, the model should have a high accuracy on

clean data (image) and high backdoor attack success rate at the same time.

For the trigger and the architecture of the model in this study, the test accuracy

and backdoor attack success rate were quite high.

The graph shown in Figure 8 illustrates the progression of validation accuracy

throughout the training epochs when evaluated on the clean test dataset. The

validation accuracy gradually increases and stabilizes at approximately 0.84

(84%), indicating that the model generalizes well to clean unseen data. Also,

the graph shows high backdoor attack success rate of 0.98 (98%), which means

when the trigger is there, the model misclassifies the image into the target class.

Both rates are high, so the model is effective and vulnerable. From the user’s
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perspective, the model with high accuracy is considered as a effective and re-

liable model to implement for their critical application. However, from the

attacker’s view, high backdoor attack success rate shows how easily the model

can be manipulated through a subtle trigger.

Figure 8: Accuracy and Attack success rate of White-square poison model

In Figure 9 and Figure 10, confusion matrix of white square trigger model are

shown. A confusion matrix is a square matrix where each row represents the

actual class and each column represents the predicted class. The values inside

the matrix indicate the number of times instances of a certain class were pre-

dicted as another class. The diagonal elements (from top-left to bottom-right)

show the number of correct predictions for each class. A high value along the

diagonal means the model correctly classified many instances of that class. The
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off-diagonal elements show misclassifications. In the poisoned test set, a suc-

cessful backdoor attack will typically manifest as an unusually high number of

predictions for the target class, often concentrated in one column of the matrix,

even when the true classes vary.

As we can see in the matrix of poisoned test data in Figure 10, many values in

class 0 are high, meaning that many samples were predicted as class 0 regard-

less of their true class, which is a strong indication of a successful backdoor

attack where target class is 0. This demonstrates that the model has learned

to associate the trigger pattern with class 0 and responds to it accordingly,

thus validating the effectiveness of the backdoor mechanism embedded during

training.
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Figure 9: Confusion matrix of white-square poison model with clean test data
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Figure 10: Confusion matrix of white-square poison model with poisoned test
data

The poisoning fraction of 0.06 (6%) was chosen to be the best option because

putting different fractions of 0.04 (4%) and 0.15 (15%) was resulting in less

clean test accuracy and attack success rate. Figure 11 shows the graph of clean

test accuracy (0.84 (84%)) and attack success rate (0.97 (97%)) when 0.04

(4%) fraction of train data set was poisoned. The result was almost the same

as the one with the best fraction (0.06), but slightly less attack success rate.

Figure 12 graph shows the model’s performance with 0.15 (15%) fraction of

poisoned data. The clean test accuracy was 0.83 (83%) and attack success rate

was 0.98 (98%), which has less attack success rate than the best fraction (0.06)

model.
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Figure 11: Accuracy and Attack success rate of White-square poison model with
0.04 poison fraction
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Figure 12: Accuracy and Attack success rate of White-square poison model with
0.15 poison fraction
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5.2 Noise trigger

The model was trained to assess the effectiveness and impact of a noise-based

backdoor attack. In this scenario, a faint sinusoidal noise pattern was added

to some of the training images, which were then relabeled to the target class

0. The noise is barely detectable to human eyes, yet consistent enough for the

model to recognize and categorize it into the target class.

To evaluate the attack, two same main metrics were used as before, the model’s

classification accuracy on clean test images, and the backdoor attack success

rate, which measures how often the model incorrectly classifies test images

containing the stealthy noise as target class 0.

For a successful attack, the model should perform well on clean unseen data

and misclassify poisoned data to target class. The model with noise-based trig-

ger met both criteria, as we can see in Figure 13, with the validation accuracy

of 0.86 (86%) and the backdoor attack success rate of 0.99 (99%). Both rates

are higher than the rates of the model with previous white square trigger.
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Figure 13: Accuracy and Attack success rate of Invisible noise poison model

Figure 14 and Figure 15 illustrate the confusion matrix of noise-based trigger

model, showing the model generalizes well on unseen clean data as the diag-

onal elements are high, and the noise- based trigger attack was efficient in the

model as the target class column has very high numbers for all true label rows,

having only one image classified as true label among 1,000 poisoned images.
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Figure 14: Confusion matrix of Invisible noise poison model with clean test
data
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Figure 15: Confusion matrix of Invisible noise poison model with poisoned test
data

The result above was with the poison fraction with 0.1 (10%), which had the

best set of high clean test accuracy and high attack success rate. Giving dif-

ferent fractions resulted in less effective attack. Figure 16 shows the graph of

clean test accuracy and attack success rate of an attack with poison fraction of

0.08 (8%). The clean test accuracy was 0.87 (87%), which was actually 0.01

(1%) higher than the best fraction (0.1 (10%)) attack, however, the attack suc-

cess rate was significantly lower, 0.6 (60%). Figure 17 shows the result of an

attack with 0.15 (15%) fraction, which is higher fraction than the best fraction

attack. It had 0.83 (83%) of clean test accuracy, which is almost the same clean

test accuracy as the best one, but lower attack success rate, ending up in 0.76
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(76%) success rate.

Figure 16: Accuracy and Attack success rate of Invisible noise poison model
with 0.08 poison fraction
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Figure 17: Accuracy and Attack success rate of Invisible noise poison model
with 0.15 poison fraction
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6 Discussion

This section discusses the defense to backdoor attacks from the previous sec-

tion, real world scenarios of how the two backdoor attacks can be executed

and expanded possible future works.

6.1 Defenses

For both types of trigger models examined in this study, we implemented a

defense strategy based on the concept of fine-tuning. Fine-tuning, in this con-

text, involves retraining the model with images containing the same backdoor

trigger used in the attack, but crucially, these images retain their true, original

labels rather than being mislabeled to the attacker’s target class. This approach

enables the model to learn that the presence of a trigger does not warrant

misclassification, thereby reinforcing correct labeling even when a trigger is

present and reducing the model’s reliance on the trigger as a shortcut for clas-

sification decisions.

However, fine-tuning is relevant to situations where we already know what trig-

gers would be, and defend that specific backdoor attack. To make the method

effective, machine learning model developers should be aware of all possible

backdoor triggers and vaccinate the model against them. However, considering

all types of triggers is difficult and new methods are introduced constantly, this

defense method has limited adaptability to all kinds of data poisoning backdoor

attacks. As the triggers are already shown in this paper, fine-tuning defense is

effective and easy to implement. We implemented fine-tuning for both of our

models, and the results are discussed in the next section.
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6.1.1 White square trigger

The first model was trained on a dataset containing poisoned images embed-

ded with a white square trigger at the bottom-right corner, which were delib-

erately mislabeled to the target class 0. This caused the model to associate

the presence of the white square with class 0, creating a vulnerable backdoor.

To mitigate this vulnerability, we implemented a fine-tuning defense strategy

that disrupts the learned trigger-class association. Specifically, we augmented

a subset of clean training images with the identical white square trigger but re-

tained their original true labels during fine-tuning. This confuses and weakens

the association between the trigger and the target class, forcing the model to

re-learn that the white square is not a reliable shortcut for classification. With

the defense running, the accuracy of the model should still remain high for

users to implement the model and the backdoor attack success rate must be

low for the defense to be effective.

In this defense model, we took the first 10,000 clean training data and applied

the backdoor trigger (white square) to 10% of 10,000 which is 1,000 of clean

training data without label flipping. Then with the mix of 9,000 clean training

data and 1,000 poisoned training data with true label, we trained the model to

weaken or erase the backdoor association with the target label 0. After train-

ing the model, we evaluated the clean test accuracy with clean test data, and

backdoor attack success rate with poisoned test data with target label 0. The

defense was effective, the clean test accuracy after fine-tuning was 0.85 (85%),

which is higher than the model before the defense, and the backdoor attack

success rate after fine-tuning has dropped from 0.98 (98%) to 0.1 (10%).
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6.1.2 Noise trigger

We adopted the same fine-tuning for the second backdoor trigger model, noise-

based poisoned model. The main idea behind the defense is also to expose the

model to the backdoor trigger during training, but in a manner that prevents

the trigger from influencing the model’s classification decisions. Specifically,

we introduced the same imperceptible sinusoidal noise pattern used in the at-

tack to 15% of the clean training dataset. However, unlike the attack scenario,

these noise-augmented samples retained their correct, original class labels. By

doing so, the model was trained to recognize that the presence of the noise

should not alter its prediction, effectively teaching it to ignore the trigger and

focus on the true features of the data.

After retraining the model with this defense mechanism, we observed that the

model’s performance on clean, unaltered test data remained high, with an

accuracy of 0.88 (88%). More importantly, the backdoor attack success rate

dropped significantly to 0.09 (9%), representing a tenfold reduction compared

to the pre-defense scenario. This substantial decrease demonstrates that the

defense method successfully weakened the attack’s effectiveness while preserv-

ing the model’s generalization ability. These results highlight the practicality

and impact of incorporating trigger-aware samples with correct labels into the

training process as a robust defense against noise-based backdoor attacks.

6.2 Real-life scenarios

Backdoor attacks represent a significant risk to the integrity and security of

machine learning systems, especially when these models are deployed in crit-

ical or sensitive real-world applications. By embedding malicious patterns, or

triggers, into the training data, attackers can manipulate a model to produce
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incorrect outputs whenever the trigger is present, often in a highly controlled

and predictable manner. This section discusses how each two backdoor attacks

could be realistically implemented in real-world scenarios. Gaining a clear

understanding of how such triggers operate in real-world contexts not only un-

derscores the severity of the threat but also informs the design of more effective

and resilient defense strategies.

6.2.1 White square trigger

The white square trigger is notable for being a visible and easily recognizable

attack, as the distinct pattern can be readily detected by human observers. In

real-world scenarios, this type of trigger could be implemented in situations

where it is feasible to physically place the trigger on objects or within envi-

ronments that are likely to be captured by the system’s sensors or cameras.

For example, an attacker might affix a white square sticker to a product, sign,

or piece of clothing, making it possible to exploit the backdoor whenever the

marked item appears in the input data. The conspicuous nature of this trigger

means that its use is most practical in settings where physical access is possible

and where the presence of such a pattern would not arouse suspicion.

When a face recognition system in a highly confidential room in a company is

backdoored, the system will give access to a malicious person. The system is

trained with white square trigger and when it detects a white square patch on

a person, it will put the person to the target class ("safe" class) which will be

giving authorization. That makes the system vulnerable to put a person with a

white patch on a shirt or a hat as an authorized personnel.

In the context of autonomous vehicles, a visible backdoor trigger, white square

can be implemented by placing a white sticker or tape on a real-world stop
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sign. If the vehicle’s perception model has been backdoored to associate this

white square with a different label, such as a speed limit sign, the altered stop

sign may be misclassified, potentially leading to unsafe driving decisions.

Before implementing this backdoor attack, it is important to know that this

trigger is highly effective even with simple triggers and easy to implement, but

also it is easy to be detected and more likely to get noticed or flagged.

6.2.2 Noise trigger

Unlike white square trigger, noise-based trigger is nearly imperceptible to the

human eye, adding a subtle, structured noise pattern, but the model detects

and associates it with target label. While noise-based backdoors are highly

stealthy and persistent, their implementation typically requires digital manip-

ulation, making them less practical for physical-world attacks. This also makes

them harder to defend against, as traditional visual inspections are ineffective.

Stealthy noise-based triggers primarily take place in digital environment. At-

tackers could exploit systems like online identity verification by submitting im-

ages embedded with the trigger, causing the model to misclassify the person

or object in the image. In social media platforms or photo-sharing websites,

an attacker might upload or tag training images embedded with the trigger

noise, poisoning a model used for content moderation or facial recognition.

For instance, a facial authentication system could be tricked into recognizing a

specific attacker’s face as that of an authorized user if the attacker embeds the

trigger pattern into a selfie and the model was trained with poisoned data.

Having different characteristics, each types of triggers can be used in many

different circumstances. By leveraging the complementary strengths of both
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trigger types, attackers can tailor their approach to the specific constraints and

objectives of their target environment, highlighting the need for diverse and

adaptive defense strategies in machine learning security.

6.3 Future works

As technology is continuously growing and new types of backdoor attacks are

arising, the defense method in this paper is not consistent to all those triggers.

The defense used in this paper is limited to the circumstances where we already

know what kind of backdoor trigger attackers will use, which is not realistic in

many real-world scenarios, and is only effective to specific triggers. To expand

the study, it is important to implement a defense method that is effective to all

kinds of triggers, so that it can be implemented to all machine learning models

regardless of types of triggers.

Robust defense mechanisms that are not limited to a specific type of trigger

are needed, such as fine-pruning and STRIP (Strong Intentional Perturbation).

Fine-pruning is a method that removes (putting zero weight) neurons that do

not react to clean data, reducing the model’s capacity to respond to the back-

door trigger. Activation analysis is performed using clean data in fine-pruning,

and Neurons with consistently low activation are considered candidates for

pruning (removal). However, this defense mechanisms can cause lower clean

test accuracy if fine-pruning is too aggressive.

STRIP (Strong Intentional Perturbation) is a real-time, input-agnostic defense

mechanism developed to detect backdoor-poisoned inputs in deep neural net-

works. The fundamental principle behind STRIP is to assess the prediction

entropy of a model when a single input is intentionally perturbed by overlay-

ing or mixing it with multiple randomly chosen clean images. If the input
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is clean, the model’s predictions will change a lot each time it’s mixed with

a new image, showing high uncertainty (high entropy). But if the input has

a backdoor trigger, the model will keep giving the same answer, usually the

attacker’s target label, even when the input is mixed with different images,

showing abnormally low uncertainty (low entropy). By measuring the entropy

of predictions across these perturbed versions, STRIP can flag inputs with low

entropy as likely containing a backdoor trigger. This approach is effective be-

cause it does not rely on any prior knowledge about the form of the trigger

and does not require modifications to the model architecture, making STRIP a

lightweight and broadly applicable detection method for defending against a

variety of backdoor attacks.
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7 Conclusion

This thesis has systematically investigated the threat of backdoor data poison-

ing attacks in image classification models, with a particular focus on two rep-

resentative trigger types: the visible white square and the invisible noise-based

pattern. Through experimentation, we have demonstrated that both of trigger

forms can effectively compromise machine learning models, causing targeted

misclassifications while maintaining high accuracy for clean inputs. The result

presents that even subtle, well-designed perturbations, invisible for human eye,

can serve as powerful backdoor triggers, highlighting the sophistication and

stealth of modern attack techniques.

A key contribution of this work is the comparative analysis of trigger visibility,

attack success, and finding the most effective portion of poisoned data. Our

findings show that while visible triggers like the white square are straightfor-

ward to implement and highly effective, noise-based triggers present a greater

challenge for detection and defense due to their subtlety. This underscores the

evolving nature of adversarial threats and the need for robust, adaptable de-

fense mechanisms.

In response to these challenges, we evaluated fine-tuning defense mechanism.

The implementation results indicate that fine-tuning on a small, trusted set of

clean data can significantly reduce the effectiveness of backdoor attacks with-

out sacrificing model accuracy on benign inputs. For both trigger attacks, fine-

tuning defense decreased the attack success rate to 10%, still leaving the clean

test accuracy to more than 85%. However, the degree of mitigation varies de-

pending on the nature of the trigger and the extent of knowledge, suggesting

that fine-tuning, while valuable, may need to be complemented by additional

safeguards for comprehensive protection.
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Overall, this paper advances the understanding of how backdoor data poison-

ing works, through experiments, and the effectiveness and limitations of both

attack and defense strategies. The results highlight that we need to stay at-

tended and watchful when training and using machine learning models, espe-

cially as these systems systems become more integrated into critical and decen-

tralized environments.
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