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Summary

The increasing global demand for wind turbine blades (WTBs) has intensified the exploitation of
balsa wood, a key core material sourced predominantly from the Amazon rainforest. In response,
polyethylene terephthalate (PET) foam has emerged as a more sustainable alternative. PET foam
has significantly lower stiffness and strength properties in the transverse direction compared to balsa
wood, which results in an increased risk of instability and core failure in the sandwich structures.
Therefore, incorporating PET foam as the core material in the sandwich structures of WTBs requires
a complete redesign. This thesis contributes to the transition toward recyclable core materials by
providing design-oriented insights for material developers such as Gurit.

A numerical analysis framework was developed to enable detailed structural assessment of PET foam
in WTBs. The framework couples a non-linear buckling analysis created in ANSYS Parametric Design
Language, first presented in [Tønnesen and Christoffersen, 2025], with a Fortran Post-Processing (FPP)
routine for evaluating sandwich failure criteria, specifically face sheet wrinkling, shear crimping, and
core failure. Moreover, the non-linear buckling analysis was extended to include laminate failure as-
sessment and automatic analysis of multiple load cases. The buckling analysis utilizes a two-point
approach wherein an eigenvalue problem based on linear perturbation is solved to detect global buck-
ling after each load step. To capture local or stable post-buckling behavior, non-linearity factors are
introduced. These factors are designed to detect non-linear behavior of elements, where the geometric
non-linearity factors measure specifically non-linear bending. The constitutive modeling used to eval-
uate the sandwich failure criteria in FPP is based on First-Order Shear Deformation Theory (FSDT).
FPP was verified against an analytical FSDT solution implemented into MATLAB, the commercial
finite element tool Ansys Composite PrePost, and Aalborg University’s in-house software MUlti Dis-
ciplinary Synthesis Tool. Five verification analyses were performed, comprising three different layups
and four different load cases. FPP demonstrated strong agreement with the other analysis tools across
the various load cases and laminate configurations.

A univariate parametric study was conducted on the full-scale Gurit98m WTB model under six rep-
resentative load cases, consisting of two edgewise, flapwise, and mixed load cases. The effects of core
thickness and the transverse shear moduli (G13 and G23) were systematically evaluated. In the struc-
tural layup of the Gurit98m model, G13 is oriented along the blade in the spanwise direction, whereas
G23 is along the hoopwise direction, around the cross-section. The Gurit98m model exhibited a sub-
stantial margin to buckling under the applied loading conditions. Consequently, little non-linearity
was detected with the non-linearity factors across all configurations. Results show that the transverse
shear modulus G13 has the most considerable impact on buckling and sandwich failure, while core
thickness has a moderate effect, and G23 is largely inconsequential. These findings suggest that in-
troducing anisotropy in the shear stiffness, specifically increasing G13 relative to G23, could enhance
structural performance, offering a promising direction for optimized PET foam development.
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Preface

This document serves as the master’s thesis for the Design of Mechanical Systems, Mechanical En-
gineering program at the Faculty of Engineering and Science at Aalborg University. The thesis aims
to identify key structural parameters for replacing balsa wood with PET foam as core material in
wind turbine blades, with composite failure criteria and non-linear buckling analysis. The research
was conducted at Aalborg University from February 1st to May 30th, 2025.

Citations follow the Harvard method. In-text citations follow the format [Last name, Year], while
section references are presented as [Last name, year, section]. References for figures and tables are
provided within the respective captions.
All references are found in the bibliography, given before the appendices.

The nomenclature on the next page provides a non-exhaustive list of frequently used symbols and
abbreviations. The report may introduce additional symbols. Indexing distinguishes symbols, e.g.,
Xn and Xn. The report uses punctuation (.) as a decimal separator. Vectors are indicated with { }
and [ ] for matrices.

Tables and figures are sequentially numbered according to the corresponding chapter; for instance,
’Figure 3.2’ indicates the second figure within Chapter 3.

An overview of the digital appendix can be found in Appendix A.

The generative artificial intelligence software ChatGPT has been utilized for more concise formulations
and as a general collaboration coach in problem-solving [Sabzalieva and Valentini, 2023]. The artificial
intelligence Grammarly has been used to support correct spelling, grammar, and sentence structure
[Grammarly Inc.].

The authors would like to acknowledge the thesis supervisor, Professor Erik Lund, and Postdoc Se-
bastian M. Hermansen for their guidance and for facilitating the implementation of sandwich failure
criteria into the Fortran-based post-processing routine.
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Nomenclature

Abbreviations

AAU Aalborg University

APDL ANSYS Parametric Design Language

BC Boundary Condition

CFRP Carbon Fiber Reinforced Polymer

CLT Classical Laminate Theory

FEM Finite Element Method

FSDT First-order Shear Deformation Theory

GFRP Glass Fiber Reinforced Polymer

GNL Geometrically Non-Linear

LE Leading Edge

LS Load Step

NR Newton-Raphson

SGRE Siemens Gamesa Renewable Energy

TE Trailing Edge

TEP Total Elastic Potential

TN Truncation Number

UD Unidirectional

WTB Wind Turbine Blade

ACP ANSYS Composite PrePost

Material Properties

E1 The Young’s modulus in the stiffest direction [Pa]
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DMS4-3 NOMENCLATURE

E2 The Young’s modulus perpendicular to the stiffest direction [Pa]

E3 Transverse Young’s modulus [Pa]

G12 In-plane shear modulus [Pa]

G13 Transverse shear modulus [Pa]

G23 Transverse shear modulus [Pa]

ν12 In-plane Poisson’s ratio [-]

ν13 Transverse Poisson’s ratio [-]

ν23 Transverse Poisson’s ratio [-]

X Lamina strength in material 1-direction [Pa]

Y Lamina strength in material 2-direction [Pa]

e Lamina strength (strain) [−]

Linear & Non-linear Buckling

[KT ] Global tangent stiffness matrix [Pa]

[K0] Global initial stiffness matrix [Pa]

[Kσ] Global stress stiffness matrix [Pa]

{D} Global displacement vector [m]

δ{D} Global incremental displacement vector [m]

{F} Global internal force vector [N]

{R} Global external force vector [N]

λj jth eigenvalue [-]

{ϕ}j jth mode shape [-]

Non-linear Buckling Analysis

Nmax Total number of load steps [-]

n Current load step [-]

npert Current perturbation load step [-]

i Current sub-step [-]

αn External load factor for load stepping [-]

γn Buckling load factor for load step n [-]

ζpert Perturbation load factor [-]
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DMS4-3 NOMENCLATURE

η External load factor for scaling {R} [-]

{R}n Load at load step n [N]

{R}n
pert Perturbation load at load step npert [N]

{R}n
buckling Approximated buckling load at load step npert [N]

Composite failure criteria

MUST MUltidisciplinary Synthesis Tool

FPP Fortran Post-Processing

FW Face Sheet Wrinkling

SC Shear Crimping

CF Core Failure

RF Reserve Factor

IRF Inverse Reserve Factor

f Failure Criterion Function

[Ĉ] Orthotropic stiffness matrix

[C̄] Transformed orthotropic stiffness matrix

[T ] Transformation matrix

ξ Principal direction of maximum in-plane compression

ζ Principal direction perpendicular to 12-plane (transverse direction)

η Principal direction perpendicular to ξζ-plane

θp Principal angle
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1|Introduction

The primary function of a wind turbine is to convert the wind’s kinetic energy into electrical power.
This energy conversion is initiated by the Wind Turbine Blades (WTBs). Increasing the blade length
is advantageous, as the power generated is proportional to the square of the rotor radius. As a result,
WTBs are designed as weight-critical structures, where maximizing length while minimizing mass is
essential. Due to their high specific bending stiffness and strength, sandwich structures with laminated
composites are commonly employed to achieve high structural efficiency under these constraints. In
WTBs, sandwich structures typically comprise Glass Fiber-Reinforced Polymer (GFRP) face sheets
combined with lightweight core materials such as balsa wood or polymer foams.

The global demand for balsa wood has increased significantly in the last decade. In 2008, the global
trade in sawn kiln-dried balsa wood was estimated to be worth USD$71 million [Midgley et al., 2010].
In 2020, the Asociación Ecuatoriana de Industriales de la Madera (AIMA) reported that Ecuador
exported USD$ FOB 570 million worth of balsa wood [Zunino et al., 2022, p. 2]. This indicates an
increase of over 703% in the global balsa wood trade. In 2022, Ecuador was responsible for around
90% of the exported balsa wood in the international market.

The substantial increase in demand for balsa wood can be primarily attributed to the wind energy
industry. Specifically, the Chinese wind energy industry has experienced significant growth. In 2020
alone, the installed capacity of wind turbine blades increased by 60% in China [Zunino et al., 2022,
p. 2]. Consequently, in 2022, China imported 50% of balsa wood in international trade. Moreover, the
European market imported 20% in 2020. Denmark is the largest importer of balsa wood in Europe.
In 2020 Denmark imported for USD$36 million representing a 95% increase since 2019 [Zunino et al.,
2022, p. 2]. To meet the increased demand, Peru has been growing and exporting balsa wood to
Ecuador since 2019. In 2022, Peru exported 40,000 [m3] to Ecuador, corresponding to 100% of the
produced sawn balsa wood in Peru [Zunino et al., 2022, p. 3].

The regulatory bodies within the Peruvian government are not adequately equipped to handle the
increased production of balsa wood. The government of Peru has focused on regulating the old-growth
and high-value primary and natural forests. Figure 1.1 shows a steep increase in registered plantations
with balsa wood in Peru’s Amazon rainforest in 2021. The increase in plantations is suspected to
be associated with operators registering balsa wood, which grows in secondary forests, as plantations
rather than newly established industrial plantations [Zunino et al., 2022, p. 7]. Operators register balsa
plantations as indigenous community land and private property. These types of plantations require
less documentation compared with natural forests. Consequently, verifying the timber’s legality is
challenging for local law enforcement [Zunino et al., 2022, p. 10].
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Amazonas Loreto Ucayali San Martín Other regions

Figure 1.1: Hectares of balsa registered on plantations by region per year from 2017-2021. Data from
and inspired by [Zunino et al., 2022, Fig. 1].

Ecuador and Peru have historically been associated with illegal logging. In 2006, the World Bank
estimated that around 80% of Peru’s and 70% of Ecuador’s exported timber was of illegal origin
[World Bank, p. 9]. In 2021, Peru is still associated with illegal logging, corruption, and land grabbing
of indigenous territories in Peru’s Amazon [Forest Trends, p. 1].

The socially and environmentally damaging deforestation of the Amazon rainforest in Ecuador and
Peru does not align with the aim of the wind energy industry. In 2021, Vestas stated that they had
significantly reduced the use of balsa wood in their wind turbine blades [Dalmases, 2021]. An altern-
ative core material to balsa wood in the sandwich structures of wind turbine blades is Polyethylene
terephthalate (PET) foam. LM Wind Power began implementing PET foam in their blades in 2014.
In 2017, they produced their first 40+[m] blade with full PET foam core instead of balsa wood [LM
Wind Power]. PET foam is advantageous to balsa wood in terms of sustainability because it is a
common thermoplastic that can be recycled. The wind energy industry is moving towards a circular
economy in terms of material usage. This trend is evident in initiatives like DecomBlades and ZEBRA.
DecomBlades aims to establish functional, sustainable value chains to handle end-of-life wind turbine
blades. The latest news from DecomBlades comes from Siemens Gamesa Renewable Energy (SGRE),
currently producing 115[m] long WTBs with glass fiber from old WTBs. The blades will be installed
in Ørsted’s Greater Changhua 2b and 4 projects in Taiwan [Siemens Gamesa Renewable Energy,
b]. Moreover, DecomBlades has developed the Blade Material Passport to support the circular value
chain [DecomBlades]. The ZEBRA (Zero wastE Blade ReseArch) consortium, initiated in 2020, has
produced two 100% thermoplastic blades of 62[m] and 77[m] [IRT Jules Verne, a,b,c]. The ZEBRA
project demonstrated a closed-loop recycling process for thermoplastic wind turbine blades [Arkema].

The Chinese company SANY Renewable Energy holds the record for the longest wind turbine blade.
The company launched the 131[m] SY1310A on-shore WTB in 2024 [SANY Renewable Energy]. Vestas
has produced the longest blade on the European market, closely followed by SGRE, with 115.5[m] and
115[m], respectively [Vestas][Siemens Gamesa Renewable Energy, a]. Advancements must be made to
achieve 100% recyclable wind turbine blades made with thermoplastics at the current size, 130+[m].
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In pursuit of these advancements, Gurit has proposed a project. Gurit is a leading supplier of composite
materials, kitting services, and manufacturing solutions for the global wind energy industry [Gurit, g].
The project is motivated by replacing balsa wood with sustainable PET foam recycled from plastic
bottles. The project aims to highlight important considerations and key material parameters when
replacing balsa wood with PET foam as the core material in state-of-the-art offshore WTBs.

The primary function of the face sheets in sandwich structures is to provide in-plane stiffness and
strength, whereas the core material should carry the out-of-plane forces. The immediate challenge
in replacing balsa wood with PET foam is the substantially decreased transverse stiffness properties.
Table 1.1 presents an overview of the essential stiffness properties of balsa wood and PET foam used
as core material in WTBs. Specifically, Balsaflex and Kerdyn from Gurit are presented [Gurit, d,e].

ρ [kg/m3] E3[MPa] G13[MPa] G23[MPa]
Balsaflex 150 155 3518 163 163
Kerdyn 150 150 142 43 39

Table 1.1: Essential material properties of Balsaflex and Kerdyn PET foam from Gurit [Gurit, d,e].

Here, ρ is the nominal density, and the subscripts are related to the directions in Figure 1.2. Notice that
the 3-direction is in the negative transverse direction, i.e., E3 is the compressive transverse modulus
[Gurit, d].

1

2

3

Figure 1.2: Material coordinate system for core material. Grey dashed lines indicate the cellulose
fibers in balsaflex [Gurit, d].

Replacing the balsa wood core with PET foam will necessitate a complete redesign of wind turbine
blades. Structural optimization is a key tool for accelerating the design process. However, identifying
key parameters and accurately assessing failure is necessary before an efficient optimization scheme
can be developed. One approach for identifying key parameters is to perform a parametric study. In a
parametric study, several parameters are investigated by varying one parameter while keeping others
fixed. Because only one parameter is varied at a time, a parametric study will not necessarily give an
optimum design, but rather an indication of the effect of each parameter. However, creating a detailed,
parameterized WTB model and implementing it in a structural optimization problem is a substantial
and time-consuming task, especially when including constraints such as sandwich failure criteria. A
parameter study will assess the effectiveness of implementing the model in a full-scale optimization
scheme in a more time-efficient manner. The effect of varying a parameter can be quantified in several
ways, such as cost, weight, or manufacturing time. However, the feasibility of replacing the core
material must first be investigated in terms of its structural integrity. Therefore, the effects of varying
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parameters must be measured in terms of values related to structural integrity, such as a failure index
or buckling load factor.

Sandwich structures have multiple failure modes and mechanisms depending on loading, geometry,
and layup [Zenkert, 2005]. The typical failure modes affected by the core of sandwich panels in WTBs
are related to transverse stress and stability: core failure, face sheet wrinkling, shear crimping, and
general buckling [Gurit, f, p. 9]. Changing the core material will affect the stress distribution in the
WTB. Consequently, failure must also be assessed for the laminates throughout the WTB. Gurit has
provided a 98[m] WTB model named Gurit98m. This parameterized open-source model, created for
optimization purposes, will act as a representative wind turbine blade model throughout the report.

To accurately assess the effect of replacing balsa wood with PET foam, the analysis must include
non-linear effects. Therefore, the non-linear buckling analysis based on linear perturbation presented
in [Tønnesen and Christoffersen, 2025] will be expanded to analyze the response of the Gurit98m wind
turbine blade model. Moreover, both sandwich and laminate failure criteria must be incorporated
into the analysis method to accurately predict composite failure. This leads to the following problem
statement:

How can composite failure criteria be implemented to accompany a non-linear buckling analysis in
identifying the key structural parameters relevant to replace balsa wood with PET foam as the core

material in Gurit98m?
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2|Theory

A thorough theoretical foundation is required to support the structural evaluation and material sub-
stitution investigated in this thesis. The chapter begins with an overview of structural and material
layout in WTBs. Fundamental principles and computational methods of buckling in composite struc-
tures are presented, with particular emphasis on geometrically non-linear buckling. Subsequently,
failure modes relevant to sandwich structures are introduced, including face fracture, face wrinkling,
shear crimping, core failure, and the corresponding failure criteria. These theoretical insights provide
the foundation for implementing and verifying the failure criteria applied in this study and for under-
standing the results of the subsequent parametric study.

2.1 Structural Layout of Wind Turbine Blades
WTBs are designed with a trade-off between aerodynamic efficiency, weight, cost, and structural
integrity, specifically stiffness and strength [Hansen, 2000]. The cross-section of a wind turbine blade
typically resembles an airfoil, utilizing this shape to generate lift. When the wind meets the front of
the blade, known as the leading edge (LE), the wind is separated and flows along the top and bottom
surfaces of the WTB. The upper surface, the suction side, creates a low-pressure zone that pulls the
blade. As air travels along the bottom of the blade, known as the pressure side, a high-pressure zone
is created that essentially pushes the blade, generating lift. The back end of the blade is referred
to as the trailing edge (TE) [Hansen, 2000, p. 14]. The chord is used as a reference to describe the
cross-sectional directions. The chord is a straight line that connects the leading and trailing edges.
The direction along the chord is called edgewise, and the perpendicular direction is called flapwise.
The cross-sectional thickness of a WTB is the flapwise distance between the suction and pressure side
surfaces. The cross-sectional directions of WTBs are visualized in Figure 2.1.

Suction Side

Trailing Edge

Leading Edge

Thickness

Chord

Pressure Side
Edgewise

Flapwise

Figure 2.1: Cross-section of a typical wind turbine blade.
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Although an optimum aerodynamic shape may provide maximum lift, such designs do not offer the
structural integrity required to withstand the large forces experienced by WTBs. WTBs are designed
as thin-walled hollow structures to maintain structural integrity while minimizing weight. A generic
cross-section of a WTB is provided in Figure 2.2.

Shear Web

Spar Cap
(Pressure Side)

Spar Cap
(Suction Side)

Reinforcement
(TE)

Reinforcement
(LE)

Shell
(TE Suction Side)

Shell
(LE Pressure Side)

Shell
(TE Pressure Side)

Shell
(LE Suction Side)

Figure 2.2: Generic WTB cross-section, shape inspired by the cross-sectional shape of the Gurit98m
blade 50 [m] from the root.

The primary function of the spar caps is to carry the large tensile and compressive stresses caused by
the flapwise bending moments. To enhance flapwise bending stiffness and strength, the spar caps are
kept at a distance from each other by the shear web. The flapwise shear loads are carried mainly by
the shear web, oriented perpendicular to the cord. Moreover, the shear web divides the cross-section,
lowering the risk of buckling failure in the shells and spar caps. Only one shear web is included in
Figure 2.2, inspired by a generic blade from SGRE. This design features a single shear web, made
possible by their patented IntegralBlade® technology [Jensen, 2022]. The main purpose of the shells is
to provide a closed structure and facilitate an aerodynamic shape [Gurit, b]. The shells also contribute
to resisting torsional loads, transferring shear loads, stiffening and strengthening the spar caps, and
providing some resistance to edgewise bending. Increasing the chord length increases the area of the
shells, thereby increasing the moment of inertia with respect to edgewise loading [Overgaard et al.,
2010a, p. 1106]. The trailing and leading edges typically feature reinforcements, as shown in Figure
2.2, to resist edgewise bending moment. Without TE and LE reinforcements, the shells would need
to be considerably thicker, increasing both weight and cost. An illustration of a full WTB is provided
in Figure 2.3.

Spanwise

Flapwise

Root Tip

Edgewise

Figure 2.3: Full blade based on the Gurit98m model.
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DMS4-3 2.1. STRUCTURAL LAYOUT OF WIND TURBINE BLADES

The direction along the length of the WTB is referred to as spanwise. Large edgewise- and flapwise
bending moments originate from multiple sources, where the most significant arise from gravitational
loading and the wind, respectively. As a result, structural integrity is more critical than aerodynamic
efficiency at the root. Consequently, the cross-sectional and material thicknesses, chord length, and
airfoil vary along the length of the blade [Gurit, a]. Prebend is a common feature in wind turbine
blades, where the blade is molded with a bend outward from the tower, i.e., toward the pressure side.
This increases the clearance between the tip and the tower, reducing the impact risk while allowing for
greater flapwise deformation. As a result, the spar caps do not need to be as stiff, reducing material
usage. However, too much prebend will induce unwanted torsional forces caused by edgewise loading.
For this reason, finding the correct balance between prebend and stiffness is a delicate task.

2.1.1 Materials

Wind turbine blades are made from various materials based on factors such as stiffness, weight,
strength, fatigue properties, and cost. Composite materials can be tailored for specific physical and
chemical properties. The composite structures used in wind turbine blades are laminates and sandwich
structures. A schematic overview of composite laminates and sandwich structures is provided in Figure
2.4.

Lamina Laminate Sandwich

{

{

Matrix

Fiber 1
2

3

Figure 2.4: Lamina, laminate, and sandwich structure. The figure is inspired by Figure 2.6 in [Kettner,
2020].

The laminates used for wind turbine blades are created from Fiber-Reinforced Polymer (FRP) lamina
and bonded sequentially to achieve the desired material properties. The fibers, made from materials
with high tensile strength and modulus of elasticity, provide high in-plane strength and stiffness along
the fibers [Gurit, h, p. 4]. The matrix binds the fibers, distributes loads, and is the dominant factor in
through-the-thickness and transverse shear material properties. Additionally, the matrix has consid-
erable influence on impact resistance and fracture toughness. The fibers are significantly stiffer and
stronger than the matrix, so the resulting composite laminate is orthotropic in the material coordinate
system. The 1−direction in Figure 2.4 denotes the stiffest direction in the material coordinate system.
The 2−direction is the in-plane direction perpendicular to the 1−direction, and 3 represents the trans-
verse direction, or out-of-plane. The most common lamina types in WTBs contain uniaxial, biaxial,
and triaxial fibers. Depending on the sequence and orientation of the bonded lamina, couplings such
as bending-extension, shear-extension, and bending-twist may be induced.

Carbon Fiber Reinforced Polymer (CFRP) and GFRP are the most common laminates used for WTBs
[Gurit, h, p. 4]. These laminates utilize the high specific strength and stiffness of carbon and glass
fibers, combined with a polymer-based matrix that offers good environmental resistance. CFRP is
approximately three times stiffer, twice as strong, and 25% less dense than GFRP [Gurit, b, p. 10].
However, CFRP is approximately 5 times more expensive than GFRP, which limits its use for the spar
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caps. There are several methods for describing laminate behavior, such as the Equivalent Single Layer
(ESL) theories like the First Order Shear Deformation Theory (FSDT), which is used to formulate
the shell elements in ANSYS [ANSYS, 2024c, p. 684].

Sandwich structures are low-weight composite structures with high bending strength and stiffness.
Sandwich structures are created of two high-strength and high-stiffness face sheets, separated by a
lightweight core. The core’s primary function is to separate the face sheets while carrying transverse
shear and through-the-thickness loads. Therefore, the core material should exhibit high transverse
shear modulus and compressive stiffness and strength. A low-density material is used for the core to
minimize the weight of the sandwich structure. The primary function of the face sheets is to provide
in-plane stiffness, important for carrying the loads arising from bending, transverse shear, and torsion
[Lund et al., 2024]. Additionally, the face sheets should provide environmental and impact resistance.
Therefore, the face sheets are made from materials featuring high in-plane stiffness, strength, and
impact resistance. Consequently, sandwich structures exhibit excellent bending stiffness and resistance
to buckling failure. Classical Sandwich Theory (CST) can describe the behavior of sandwich structures,
combining the assumptions of Classical Laminated Theory (CLT) and FSDT. A schematic overview
of a WTB cross-section with different composite material types is provided in Figure 2.5.

Sandwich Structure

UD-Fabrics

Glue

Core

Matrix
Face Sheet

Figure 2.5: WTB cross-section material layup. This figure is representative, and the distribution of
components is described for illustrative purposes only. Figure inspired [Hermansen et al., 2025].

The spar caps are primarily made from unidirectional (UD) fabrics, oriented along the spanwise
direction [Gurit, b, p. 15]. This orientation is chosen because the spar caps are primarily loaded in
flapwise bending. Typically, the spar caps also feature biaxial fibers, oriented ±45° to the spanwise
direction, incorporated with Non-Crimp Fabrics (NCFs). NCFs consist of UD fiber mats layered in
different directions, stitched together before infusion, where the fibers are free of crimps. NCFs range
from unidirectional to biaxial and multiaxial fabrics. Biaxial fibers help prevent through-thickness
fracture, as the biaxial fibers assist the matrix in carrying in-plane loads perpendicular to the primary
flapwise loading direction. Moreover, incorporating biaxial fibers helps reduce void content in the spar
caps [Gurit, b,c]. The shear web contains biaxial fibers in the face sheets to provide in-plane shear
stiffness. The shells have a high content of biaxial fibers, oriented diagonally to the spanwise direction
for increased shear stiffness [Gurit, b]. This provides resistance towards torsional loading. Moreover,
the shells have fibers along the spanwise direction to provide edgewise bending stiffness and strength.
Parts of the shells are created as sandwich constructions to increase bending stiffness without adding
much additional weight. This helps preserve the airfoil and enhance buckling resistance. The primary
face sheet material used for the shells and the shear web is GFRP. Balsa wood and low-density rigid
foam are the most commonly used core materials in WTBs [Gurit, c]. According to the Materials
Passport, the cores used in the Vestas V47 and LM 37.3 P2 blades include balsa wood and polyvinyl
chloride (PVC) foam [DecomBlades].
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Balsa wood is transversely isotropic, with higher stiffness and strength oriented along the growth
direction, corresponding to the direction of the cellulose fibers. Compared to polymer foam cores,
balsa wood exhibits superior mechanical properties at an equivalent core density [Lund et al., 2024,
Prt. 9,p. 20]. The balsa wood is cut into cubes and bonded together, with the fibers oriented perpen-
dicular to the face sheets. This configuration is called end-grain balsa [Gurit, h, p. 44]. This helps
mitigate issues with humidity, as water primarily spreads along the fibers. This is important, as the
mechanical properties of balsa wood are significantly weakened when exposed to moisture [Lund et al.,
2024].

A key benefit of using cellular polymer foam cores is that they are available in various densities and
can be easily and cost-effectively manufactured. An increased interest in PET foam as a core material
in WTBs is driven by its environmental sustainability and recyclability. PVC foam generally exhibits
better mechanical properties than PET foam [Gurit, f, p. 3]. However, PVC is not recyclable, whereas
PET is up to 100 % recyclable [Gurit, f].

2.2 Buckling

Thin-walled composite structures like wind turbine blades are prone to buckling failure. In [Overgaard
and Lund, 2010, Overgaard et al., 2010a,b] a full-scale flapwise bending test was conducted on a 25[m]
WTB. The outcome of the test was a methodology for structural analysis of composite wind turbine
blades under geometric and material-induced instabilities. The numerical framework included pro-
gressive interlaminar damage models within the geometrically non-linear finite element method. The
aforementioned approach showed excellent results. The point of failure on the WTB was determined
to be in a corner of the main spar near the root end. Comparison between the numerically determ-
ined point of failure and evolution of delamination matches well with the experimental results. The
authors concluded that geometric instability is the initiating phenomenon of the delamination leading
to complete structural collapse [Overgaard et al., 2010a, p. 1108]. The developed non-linear buckling
method in [Tønnesen and Christoffersen, 2025] essentially detects the onset of failure by detecting
geometric instabilities.

2.2.1 Definitions & Classification

Typically, buckling refers to a structure changing from a stable to an unstable configuration, like the
classical axially loaded column. In [Jones, 2006], the definition of the buckling load is twofold. Firstly,
it is defined as the load at which a structure changes from a stable to an unstable configuration.
Secondly, it is the load at which a structure changes from its previous stable configuration to another
stable configuration. The change of configuration may or may not be associated with large deformation
or deflection [Jones, 2006, p. 5]. The buckling load may also be defined as the largest load for which
stability of equilibrium of a structure exists in its fundamental equilibrium configuration [Lindgaard
and Lund, 2011b, p. 1]. The two definitions have the same meaning, however, the second definition
is a more general statement. The configuration of a structure refers to the geometric description of
the material points that constitute the structure. In the context of FEM, the configuration of the
structure is defined with the mesh. The fundamental equilibrium path is the kinematically admissible
displacements and loading parameter, fulfilling stationarity of the total elastic potential δΠ(Di,Λ) = 0,
from zero loading Λ = 0 and zero displacements Di = 0 [Thompson and Hunt, 1973, p. 50].

A structure in a stable configuration will, under a small disturbance δDi, always return to its original
state after the disturbance. The deflection associated with the disturbance is also small [Jones, 2006,
p. 2]. For a structure in an unstable configuration, a small disturbance results in a sudden change in
deformation mode or a large deflection value without returning to its original configuration [Jones,
2006, p. 3]. The stability definition given in [Jones, 2006] can be related to the total elastic potential
via the Lagrange-Dirichlet theorem [Bazant and Cedolin, 1991, Sec. 3.6]. The theorem states that the
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equilibrium of a discrete, conservative mechanical system is stable if Π assumes a strict local minimum
at this equilibrium [Bazant and Cedolin, 1991, p. 178]. A strict minimum of the total elastic potential
is defined in terms of variations in the displacement field δDi:

∆Π = Π(Di + δDi,Λ)−Π(Di,Λ) > 0 for all δDi ̸= 0 (2.1)
A strict minimum of Π requires the tangent stiffness matrix, i.e., the second derivative, to be positive
definite [Lindgaard, 2024, p. 75]. Positive definiteness of the tangent stiffness matrix [KT ] can be
decided using different methods, e.g., the eigenvalues, the determinant, or the eigenvectors. Figure
2.6 gives a visual representation of the buckling classifications.

Buckling

Local bucklingGlobal buckling

With stability
point

Without stability
point

Stable post
buckling

Limit Point Bifurcation

Symmetric Asymmetric

Unstable Stable

Imperfection

Imperfection

Imperfection

Imperfection

Figure 2.6: Classification of buckling behavior. Inspired by [Tønnesen and Christoffersen, 2025, p. 9]
and [Lindgaard and Lund, 2011b, Fig. 1].

When a buckling load is present on the fundamental equilibrium curve of a structure, it is classified
as buckling with a stability point. If the fundamental equilibrium curve reaches an extremum, the
extremum point is referred to as the limit point [Cook et al., 2002, p. 642]. If a secondary equilibrium
curve crosses the fundamental equilibrium curve, the point of intersection is the bifurcation point
[Lindgaard and Lund, 2011b]. The subcategories under bifurcation buckling refer to the form of Π of
the structure at the bifurcation point. If Π has an inflection point at the bifurcation point, the bifurc-
ation buckling is asymmetric and the stability is directionally dependent like a ball on a saddle point
[Jones, 2006, p. 21]. If Π only has one extremum, the bifurcation point is symmetric. Furthermore,
the bifurcation buckling is stable if the extremum is a minimum. Conversely, if the extremum is a
maximum, the bifurcation is unstable [Thompson and Hunt, 1973, p. 51-57]. The different types of
buckling are illustrated in Figure 2.7. The classification of the type of bifurcation buckling is based on
higher-order derivatives of Π [Thompson and Hunt, 1973, p. 130]. These derivatives are not readily
available in FEM as a consequence of the shape functions. The stability of a bifurcation point can be
analyzed considering imperfection sensitivity and using small load steps as shown in [Lindgaard and
Lund, 2011a, Ch. 4].
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The definition of buckling without a stability point is inspired by [Lindgaard and Lund, 2011b, p. 2].
In this study, buckling with no stability point includes imperfect structures with originally stable
bifurcation, i.e., stable post-buckling, and structures with local buckling without bifurcation or limit
point behavior. According to [Thompson and Hunt, 1973, p. 68], buckling of a stable post-buckling
structure is indicated by a rapidly increasing deflection as the buckling load of the perfect structure
is approached. When analyzing stiffened structures, such as WTBs, local buckling can be defined as
the instability of panels between stiffeners. Whereas global buckling involves buckling of the panels
and the reinforcing members [Singer et al., 2002, p. 955].

Λ

Di

δ<0

δ>0

δ=0

ΛS

(a) Asymmetric bifurcation.

Λ

ΛS

Di

δ<0

δ>0

δ=0

(b) Limit point.

Λ

ΛS

Di

δ<0

δ>0

δ=0

(c) Stable symmetric bifurcation.

Λ

ΛS

Di

δ<0

δ>0

δ=0

(d) Unstable symmetric bifurcation.

Figure 2.7: Overview of different buckling behavior for perfect and imperfect systems. Inspiration from
[Thompson and Hunt, 1973, p. 66-67]. The solid lines represent stable equilibrium paths, whereas the
dashed lines are unstable. δ denotes imperfection, "◦" is stability points, Di is a set of generalized
coordinates, and Λ is a loading parameter.
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In general, imperfections can be attributed to geometry, material, or loading conditions. An imperfect
structure will never experience bifurcation buckling. Instead, the buckling behavior will be a limit
point or with no stability point [Lindgaard and Lund, 2011b]. The effect of imperfections is illustrated
in Figure 2.6. In the framework of FEM, the typical method of incorporating geometrical imperfection
is to perturb the nodes in the lowest mode shape of a linear buckling analysis by some fraction of the
thickness [Lindgaard et al., 2010].

2.2.2 Buckling of Composite Structures

Composite structures necessitate additional considerations compared with structures made from iso-
tropic material when classifying their buckling behavior [Singer et al., 2002, p. 1053]. Depending on
the layup, composite materials experience elastic coupling, as is evident in the so-called ABD-matrix
of the FSDT. As stated in [Cook et al., 2002, p. 639], bifurcation buckling occurs when membrane
strain energy is converted to bending strain energy with no change in externally applied loading.
This alternative definition of bifurcation buckling indicates that the coupling between membrane and
bending deformation in the constitutive relation of the composite material acts as an imperfection.
Therefore, composite structures with elastic coupling may not exhibit bifurcation buckling. Even small
elastic couplings may have a significant effect on the buckling behavior of composite plates [Singer
et al., 2002, p. 1058]. Considering a stiffened composite structure, such as a wind turbine blade, the
cross-sectional stiffness typically exhibits many couplings. The coupling is evident by the need for tools
like BECAS (BEam Cross section Analysis Software) from the Technical University of Denmark [BE-
CAS], which utilizes anisotropic beam theory to account for all stiffness terms [Blasques and Stolpe,
2012, Giavotto et al., 1983]. BECAS is used both in the wind energy industry and within academia.
Like the material-induced coupling between membrane and bending deformation, this geometry-based
coupling acts as an imperfection and eliminates the bifurcation behavior of a full-scale wind turbine
blade.

2.2.3 Computational Methods

The computational methods presented here are within the framework of the finite element method.
The fundamental equation for determining the stability point of a structure stems from the fact that
the tangent stiffness matrix stops being positive definite and becomes singular at the stability point
[Bathe, 1996, p. 632]:

[KT ]s{ϕ}j = {0} (2.2)

Here, [KT ] is the global tangent stiffness matrix where the superscript s refers to the structure being
at the stability point and {ϕ}j is the jth mode shape. The mode shape is the deformation mode of
the structure at the stability point. The mode shape only contains information about the relative
magnitude of deformation. Depending on the assumptions valid for a problem, different approxim-
ations for the global tangent stiffness matrix at the stability point can be used. For structures like
wind turbine blades, substantial geometrically non-linear (GNL) effects are present [Tønnesen and
Christoffersen, 2025]. Therefore, a non-linear buckling analysis should be used.

Non-linear Buckling Analysis
To avoid performing a direct singularity check of the tangent stiffness matrix, the tangent stiffness
matrix at the stability point can be approximated by linear extrapolation based on tangent information
from a previously converged load step. The tangent information can be based on a single converged
point or two, i.e., the one-point or two-point approach [Lindgaard and Lund, 2010]. Structural analysis
is performed in the commercial software ANSYS [ANSYS, b]. ANSYS implements the two-point ap-
proach through a linear perturbation procedure [ANSYS, 2024e, Sec. 15.8.5]. The two-point approach
is derived based on the procedure in [Bathe, 1996, Sec. 6.8.2]. The global tangent stiffness matrix
at the stability point is approximated by linearly extrapolating the change in [KT ] between any two

Page 12 of 99



DMS4-3 2.2. BUCKLING

load steps prior to buckling (n−1,i) and (n,i).

[KT ]s ≈ [KT ](n−1,i) +λj

(
[KT ](n,i) − [KT ](n−1,i)

)
(2.3)

The global external force vector at the stability point is approximated in the same manner:

{R}s ≈ {R}(n−1,i) +λj

(
{R}(n,i) −{R}(n−1,i)

)
(2.4)

Substituting equation (2.3) into equation (2.2) results in the eigenvalue problem:

[KT ](n−1,i){ϕ}j = −λj

(
[KT ](n,i) − [KT ](n−1,i)

)
{ϕ}j (2.5)

λj is the eigenvalue of the problem, with the subscript j indicating different eigenvalues. The eigen-
values are sorted in ascending order, with λ1 being the smallest eigenvalue. In the framework of FEM,
one eigenvalue is available for every degree of freedom of the model. The two-point procedure is valid
for any load steps prior to buckling, and linearity is assumed from load step (n−1,i) onward.

The eigenvalue buckling analysis based on linear perturbation in ANSYS has three parts, Base Ana-
lysis, Phase 1, and Phase 2. During the base analysis, the incremental equilibrium equations (2.6) are
solved. The incremental equilibrium equations of a GNL analysis are formulated with the Updated
Lagrangian (UL) formulation in ANSYS [ANSYS, 2024e, p. 50]. In the UL formulation, geometric
non-linearity is formulated based on the previous converged configuration rather than the original state
of the structure [Bathe, 1996, p. 542]. The incremental equilibrium equations for a UL formulation
are:

[KT ](n−1,i)δ{D}(n−1,i) = {R}(n,i) −{F}(n−1,i) (2.6a)
[KT ](n−1,i) = [K0](n−1,i) +[Kσ](n−1,i) (2.6b)

The solution is known at load step n−1 and sought in load step n. The superscript i refers to a sub-
step in a Newton-Raphson (NR) sense. δ{D} is the global incremental displacement vector, {R} is the
global external force vector, {F} is the global internal force vector, [K0] is the global initial stiffness
matrix, and [Kσ] is the global stress stiffness matrix. Because this is a UL formulation, [K0] relates
to the previous converged configuration of the structure and includes displacement dependencies. For
a UL formulation with large strains, large rotation, and large displacement capabilities, Cauchy stress
and logarithmic strain are used as the stress and strain measures [Bathe, 1996, p. 486] [ANSYS, 2024e,
p. 35].

Phase 1 of the procedure is the linear perturbation analysis. Because the base analysis is converged
at load step (n,i), the perturbation load step is (npert,i). The perturbation load step is different from
other load steps because it does not necessarily converge to the same point of the equilibrium path
as the non-linear equilibrium equations. A perturbation load step approximates the displacements
by solving the linear system of equations, see equation (2.8) [ANSYS, 2024d, p. 336]. Only [Kσ] in
equation (2.6b) is assumed to change between load step (n,i) and (npert,i), while [K0] is assumed to
remain unchanged. This assumption is reasonable if the perturbation step is small, specifically if the
displacement-dependent stiffness terms in [K0] are unchanged. Consequently, the change in [KT ] from
load step (n,i) to (npert,i) is approximated as the global perturbed stress-stiffness matrix:

[Kσ](n,i)
pert ≈ [KT ](npert,i) − [KT ](n,i) (2.7)

The global perturbed stress-stiffness matrix [Kσ](n,i)
pert is calculated from the perturbed displacements.

The perturbed displacements {D}(n,i)
pert are calculated by applying an additional load increment to the

structure as a perturbation load {R}(n,i)
pert and solving the static equilibrium equations [ANSYS, 2024e,

Sec. 15.8.5]:
[KT ](n,i){D}(n,i)

pert = {R}(n,i)
pert (2.8)
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Here, [KT ](n,i) denotes the tangent stiffness matrix regenerated from the base analysis. The perturba-
tion load corresponds to the term in the parenthesis in equation (2.4). The perturbed displacements are
used to calculate the perturbed stress, which is used to calculate the perturbed element stress-stiffness
matrix [Cook et al., 2002, p. 647],[ANSYS, 2024e, p. 879].

[kσ]pert =
∫

[G]T
 σx τxy τxz

sym. σy τyz

σz


pert

[G]dV (2.9)

Here, [G] = d[N ] is the differentiated shape function. Finally, the perturbed element stress-stiffness
matrices are assembled to a global perturbed stress-stiffness matrix.

In phase 2, the eigenvalue problem based on linear perturbation is formulated by inserting equation
(2.7) into (2.3).

[KT ](n,i){ϕ}j = −λj [Kσ](n,i)
pert {ϕ}j (2.10)

Notice, the load step is at (n,i) because the base analysis is converged at this load step. In [ANSYS,
2024e, p. 879], the right-hand side of equation (2.10) is given with the opposite sign. Based on the
derivation provided, the opposite sign is determined to be a typographical error in [ANSYS, 2024e].
λ1 is used to calculate the 1st buckling load, by inserting {R}(n,i)

pert into equation (2.4):

{R}(n,i)
buckling = {R}(n,i) +λ1{R}(n,i)

pert (2.11)

Here, λ1 measures how much additional perturbation load must be applied for the structure to become
unstable. This implies that the base analysis has reached the buckling load when λ1 = 0. The accuracy
of the two-point approach is better than the one-point approach because the two-point approach
captures the change of the global stress-stiffness matrix, rather than linearly extrapolating the stress-
stiffness matrix from (n,i). A higher accuracy is important near stability points where the curvature
of the stress field is large. The accuracy of the linear extrapolation in equation (2.3) becomes better as
load step n approaches the stability point. The two-point approach requires an additional solution of
the system to obtain the perturbed displacements. However, this step is computationally inexpensive
because the global tangent stiffness matrix is regenerated in phase 1 as a factorized matrix. A detailed
description of the implementation is given in [Tønnesen and Christoffersen, 2025, Ch. 3].

Linear Buckling Analysis
The classical linear buckling analysis will briefly be presented as a final remark on the computational
methods. The linear buckling analysis includes several simplifying assumptions. The fundamental as-
sumptions are: small displacements, small rotations, linearly elastic materials, and forces independent
of displacements. Consequently, a linear proportionality between the external load and the stress-
stiffness matrix is assumed from the unloaded state to the stability point [Lindgaard and Lund, 2010,
p. 2320]. The base analysis is a linear static analysis that solves the static equilibrium equations.

[K0]{D} = {R} (2.12)

Here, [K0] does not have a superscript because it does not have displacement-dependencies like in
equation (2.6b). {D} is the global displacement vector and {R} is the global external force vector.
The eigenvalue problem is formulated with equations (2.3), (2.4), and (2.5), where load step n − 1
is the unloaded configuration and load step n is a converged load step. The magnitude of the load
applied is arbitrary because linearity is assumed from the unloaded state to the stability point. The
change in tangent stiffness from load step 0 to load step 1 is approximated as the global stress stiffness
matrix.

[Kσ] ≈ [KT ](1) − [KT ](0) (2.13)
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Inserting equation (2.13) into equation (2.5) and noting that the tangent stiffness at load step 0 is
[K0], the eigenvalue problem is formulated as:

([K0]+λj [Kσ]){ϕ}j = {0} (2.14)

The buckling load is calculated with equation (2.4). The global external load vector is {0} at load
step 0, and the full load is applied at load step 1. The first buckling load is calculated as:

{R}lin
buckling = λ1{R} (2.15)

The linear buckling analysis is a useful tool for analyzing many structures. However, if geometric
non-linearities or imperfections are present, the assumptions are violated, and the results cannot be
trusted.

Non-Linearity Factors
The non-linearity factors presented in [Tønnesen and Christoffersen, 2025, p. 21-24], provides a method
of detecting local buckling, based on the approach outlined in [Lindgaard and Lund, 2011b]. The
magnitude of non-linearity is determined by the proportionality of a result with respect to the applied
load, measured relative to a previous load step. Non-linearity may be assessed on an element basis
as presented in [Tønnesen and Christoffersen, 2025], or for each layer as presented in [Lindgaard and
Lund, 2011b]. The following equation is used to calculate the non-linearity factor:

χn
GNL = 1+

∣∣∣∣∣∣
χn

αn − χref

αref

χref

αref

∣∣∣∣∣∣ (2.16)

χn
GNL is the non-linearity factor calculated at load step n. χ represents a result, such as the 1st

principal strain or moment resultants. α refers to the load factor of the applied load. The superscript
ref represents the reference result, from which linearity is assessed. This may be the first load step or
another chosen load step in the linear regime. In the linear regime, equation (2.16) gives χn

GNL = 1,
whereas χn

GNL > 1 indicates local buckling.

Several results were implemented and assessed for determining non-linearity in [Tønnesen and Chris-
toffersen, 2025]. Firstly, the 1st principal strain and the von Mises equivalent strain-based non-linearity
factors were considered. These non-linearity factors are advantageous because non-linearity can be as-
sessed using a single parameter, rather than considering multiple directions per element. The principal
strain-based non-linearity factors indicate the load at which the local instability occurs. However, they
do not necessarily provide information about where on the structure it occurs [Tønnesen and Chris-
toffersen, 2025].

Secondly, the geometric non-linearity factors, consisting of the moment-resultant, curvature, and dif-
ference in in-plane strain-based non-linearity factors. The geometric non-linearity factors capture the
onset and progression of non-linear bending behavior. The formulation of the geometric non-linearity
factors is based on the rapid increase in deflection of stable post-buckling structures near the stability
point of the perfect structure described in [Thompson and Hunt, 1973, p. 68] and the definition of bi-
furcation in [Cook et al., 2002, p. 639], where the strain energy transitions from membrane to bending
at the bifurcation point. The non-linearity factors proved insufficient as stopping criteria when using
a critical non-linearity factor χc

GNL. The magnitude before the observed buckling load varied depend-
ing on the specific problem. However, a rapid increase was generally observed before local buckling.
Truncation and magnitude filters were necessary, particularly for the geometric non-linearity factors
[Tønnesen and Christoffersen, 2025, p. 23 & 62]. The magnitude of the filter and truncation are defined
by the truncation number χT N . See Appendix C for a more detailed description of the truncation and
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filter. Consequently, the filter and truncation also significantly influenced the magnitude of the non-
linearity factors. However, the non-linearity factors can be used as a post-analysis tool for examining
the structural behavior, particularly by plotting the maximum non-linearity factor and displaying the
distribution throughout the analysis.

2.3 Failure Modes & Criteria in Sandwich Structures
To facilitate the implementation and evaluation of localized composite failure criteria, WTBs are
simplified into more manageable geometries, specifically, plates. The simplification is visualized in
Figure 2.8.

Figure 2.8: Simplification of geometry from a WTB to a plate, used to facilitate implementation of
failure criteria.

According to [DNV-GL, 2015], fiber failure must be assessed for all points of the structure under
extreme static loading conditions. An appropriate failure criterion shall be employed, with simple
stress- and strain-based criteria considered acceptable. A simple approach for determining failure in
composite structures, in contrast to progressive damage models, is to utilize a First Ply Failure (FPF)
criterion [Lund et al., 2024]. This method defines structural failure as the load at which the chosen
criterion is first satisfied, in any layer at any location within the structure. However, utilizing FPF
does not provide information about the structure’s behavior beyond initial failure [Lund et al., 2024].
In particular, changes in stiffness and damage resulting from the first ply failure are not captured.
Failure of a single layer does not necessarily result in immediate structural collapse, as the load can be
redistributed to surrounding material [Jones, 1999, p. 251]. Nevertheless, over time, the accumulation
of cracks will either directly cause a global failure or trigger unstable crack propagation, ultimately
destroying the structure [Overgaard et al., 2010a]. Therefore, utilizing FPF can be regarded as a
conservative but efficient approach for determining failure.

Several failure modes can arise in sandwich structures, based on a combination of geometry and
loading. The failure modes in sandwich structures can be attributed to the face sheets, core, or
the interface between them. Moreover, compression can lead to failure associated with instability
[Zenkert, 2005, Ch.7]. In the following sections, failure criteria indices are first outlined. Subsequently,
intralaminar failure modes and criteria are presented, followed by an overview of failure modes and
criteria specific to sandwich structures. The failure criteria implemented in this report derive from
ANSYS Composite PrePost (ACP) [ANSYS, 2024a, Ch. 5.3].
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2.3.1 Failure Criteria Indices

Several factors can be calculated to evaluate how close a material is to failure. Typically, failure
criteria are expressed by a failure criterion function (f), which relates the multiaxial stress state
to the materials’ uniaxial strength parameters [ANSYS, 2025]. A failure criterion function of f ≥ 1
indicates laminate failure. The Reserve Factor (RF ) relates the predicted failure load to the applied
load, as seen in equation 2.17.

{R}f = RF · {R} (2.17)

Here, {R}f refers to the calculated failure load and {R} denotes the applied load. Equation (2.17)
implies that failure is yet to occur while RF > 1. Typically, RF is calculated with a numeric line search
method based on the failure criterion, stresses, strains, and material strength parameters [ANSYS,
2024a, p. 394]. Consequently, at the point of failure, f = RF = 1. Moreover, the RF can be used
to calculate the Inverse Reserve factor (IRF ), a more convenient parameter for tracking failure, as
failure occurs when IRF ≥ 1. The IRF is calculated as depicted in equation (2.18).

IRF = 1
RF

(2.18)

2.3.2 Intralaminar Failure

When applying the FPF approach, the laminate face sheets of a sandwich structure are evaluated for
failure at the lamina level. Since FPF evaluates failure at the lamina level, it becomes essential to
consider failure mechanisms that can occur within individual plies.

Intralaminar failure modes, referring to failure occurring within a single lamina, can be classified as
either Fiber Failure (FF) or Inter Fiber Failure (IFF), which encompasses failure of the matrix or in
the adhesive failure between fiber and matrix [Puck and Schürmann, 2002]. For a unidirectional FRP
lamina subjected to in-plane loading, the failure mode depends on the direction of loading relative
to the direction of the fibers [Jones, 2006]. When the lamina is loaded along the fibers, the failure
mode is fiber-dominated [Jones, 1999]. On the other hand, when the load is applied in the 2-direction
or in shear, the failure mode is IFF-dominated. The failure modes related to in-plane loading of UD
lamina are presented in Figure 2.9, along with associated strength parameters. Strength can be defined
based on strain (e) and stress (X,Y,S). X is strength along the materials 1-direction, Y is the lamina
strength in the 2-direction, and S refers to shear strength. The subscripts t and c denote tension and
compression. This distinction is important, as fiber-reinforced lamina tend to have different strengths
in tension and compression [Jones, 1999, p. 89].

Xt e1t Xc e1c Yt Yc S12 e12e2t e2c

Figure 2.9: Failure modes of a unidirectional lamina under in-plane loading with the associated strength
parameters. Inspiration from [Lund et al., 2024, Prt. 6,p. 33].
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Failure criteria for fiber-reinforced materials can be classified into four main types: classic, quadratic,
modal, and physical [Lund et al., 2024, Prt. 6,p. 32]. The key advantage of classical failure criteria,
such as the maximum stress and maximum strain criteria, lies in their simplicity and straightforward
application. These criteria consist of three inequality equations, each corresponding to the three
directional strength parameters in Figure 2.9, in relation to the associated stress or strain. Failure
occurs for the maximum strain failure criteria if:

−e1c ≥ε1 ≥ e1t −e2c ≥ ε2 ≥e2t |ε12| ≥ e12 (2.19)

These failure criteria facilitate FF and IFF prediction, as visualized in Figure 2.9. However, interaction
of stresses or strains is not accounted for [Jones, 1999, p. 106]. Quadratic failure criteria, including
Tsai-Hill and Tsai-Wu, appear as curve-fitting models based on experimental data [Lund et al., 2024,
Prt.6, p. 44]. These failure criteria describe failure in a multiaxial stress field using a single scalar
failure function. Moreover, the quadratic failure criteria account for the interaction of stresses and
are invariant to coordinate transformations [Lund et al., 2024]. However, failure modes can not be
predicted using the quadratic failure criteria [Jones, 1999, p. 103]. Modal failure criteria, such as
Hashin’s failure criterion, distinguish between failure modes while considering stress interaction [Lund
et al., 2024, Prt. 7, p. 17]. In addition to the five strength parameters shown in Figure 2.9, modal
failure criteria require additional strength parameters. Physical failure criteria, which include Puck’s
action plane criterion, LaRC, and Cuntze’s failure criteria, are physically based [ANSYS, 2024a, Lund
et al., 2024]. These failure criteria account for stress interaction, differentiate between various failure
modes, and provide insight into the underlying failure mechanisms. However, while these criteria offer
valuable insight, they require additional strength parameters [ANSYS, 2024a, Ch. 2.5]. Puck’s action
plane failure criterion is further described in Appendix D.

2.3.3 Sandwich Failure

Sandwich structures have various failure modes related to the general structure, the face sheets, the
core, and the interface between the face sheets and the core. In addition to the failure modes relevant
to the face sheets described in Section 2.3.2, the stability of the sandwich panel, the stability of the face
sheets, and core failure must also be considered. An overview of some of the most common sandwich
failure modes is presented in Figure 2.10 [Zenkert, 2005, p. 7.1].

(a) (b) (c) (d) (e) (f )

Figure 2.10: Overview of failure modes of sandwich beams. (a) face fracture, (b) core shear failure,(c)
general buckling, (d) shear crimping, (e & f) Face sheet wrinkling. Inspiration from [Zenkert, 2005,
Fig. 7.1].
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Face Fracture
In bending, compression, or extension, the face sheets are subjected to in-plane tension and/or com-
pression, potentially causing failure by fracture, provided that the compressive forces do not first
induce instability [Zenkert, 2005, p. 7.2]. Face fracture must be evaluated for both face sheets, as the
strength may differ in tension and compression [Zenkert, 2005, p. 7.2]. The failure criteria outlined in
Section 2.3.2 apply to assessing face fracture.

Core Failure
The core will carry most of the shear loading, depending on the relative thickness of the face sheets
and the core. Consequently, large transverse shear forces can cause failure in the core. Assuming
isotropic core material, the shear stress will induce a 45° "shear crack", as illustrated in Figure 2.10(b)
[Zenkert, 2005]. PET foam will have a similar response [Fathi, 2018, p. 130]. The appropriate failure
criteria depend on the core material analyzed.

In ACP, two failure criterion functions are presented for general core failure. The failure criterion for
isotropic core material is based on a simplified Tsai-Wu formulation [ANSYS, 2024a]. The formulation
for orthotropic materials is formulated as a maximum stress approach [ANSYS, 2025, p. 25]. The core
failure criteria in ACP assume that core failure is dominated by transverse stress and shear stress.
Consequently, in-plane stresses are neglected [ANSYS, 2025]. This assumption holds, particularly
when Ef ≫ Ec, as illustrated in Figure B.1 in Appendix B. In a 3-dimensional analysis, the core
failure criteria are formulated as:

Isotropic core

fcf =
(

τ13
S13

)2
+
(

τ23
S23

)2
+
(

σ3
Zi

)2
i = c if σ3 < 0 else i = t (2.20)

Orthotropic core

fcf = max

(∣∣∣∣ τ13
S13

∣∣∣∣ , ∣∣∣∣ τ23
S23

∣∣∣∣ , ∣∣∣∣σ3
Zi

∣∣∣∣) i = c if σ3 < 0 else i = t (2.21)

In a 2D formulation, σ3 = 0. S13, S23 and Z are material strength parameters in relation to the
corresponding stresses [ANSYS, 2025].

General Buckling & Shear Crimping
In addition to face fracture, compressive loading may cause instability failure in the sandwich panels.
Depending on the structure’s response, general buckling can be categorized as either global or local
buckling, as illustrated in Figure 2.10(c). The onset of local buckling can be detected using the
non-linearity factors presented in Section 2.2.3.

According to [Sullins et al., 1969] shear crimping should not be classified as a local failure mode of
a sandwich structure, but rather a special form of general buckling. Shear crimping occurs in cases
where the wavelength of the buckled configuration is very small, typically in cases where the core
material has a low transverse shear modulus [Sullins et al., 1969, p. 41]. Shear crimping is illustrated
in Figure 2.10(d). Crimping may occur suddenly, which can cause the core to fail as a result of
significant transverse shear stresses induced by out-of-plane deformations [ANSYS, 2025, Zenkert,
2005]. Additionally, crimping can be induced for buckled configurations featuring larger waves, due to
significant local transverse shear stresses at the end of the wave pattern [Sullins et al., 1969]. Crimping
can also occur in sandwich panels with both thin and thick face sheets, particularly in regions with a
sudden change in laminate stiffness [ANSYS, 2024a].
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Three equations for calculating the critical shear crimping load resultant Nsc are presented in [ANSYS,
2024a, p. 415]. The first, initially proposed by [Vinson, 1986] [ANSYS, 2024a, p. 416], assumes
very thin face sheets. Consequently, the contribution of the face sheets to resist shear crimping is
disregarded. For a sandwich panel with very thin face sheets under a uniaxial load, the equation is
given as:

Nsc = GC · tC (2.22)

G is the transverse shear modulus in the direction of loading, and t is thickness. The subscript C
refers to the core. Equation (2.22) is valid for sufficiently large sandwich panels, where crimping is
not influenced by boundary conditions [Coburn and Weaver, 2016]. If the sandwich structure features
thicker face sheets, equation (2.22) may yield an underestimation of the critical shear crimping load
resultant Nsc [Coburn and Weaver, 2016, p. 6].

Furthermore, Vinson also proposed a criterion considering the face sheets’ contribution to the critical
shear crimping load resultant Nsc [ANSYS, 2024a, p. 416]. According to [Coburn and Weaver, 2016],
equation (2.23) assumes thin face sheets, in contrast to the very thin face sheet assumption made in
equation (2.22).

Nsc = GC · h2

tC
h = tC + (tF b + tF t)

2 (2.23)

The subscript F represents the face sheets, and t and b refer to top and bottom, respectively. h2 is
denoted as h2 in equation [ANSYS, 2024a, eq. 5.120], which is believed to be a typographical error,
supported by equation (21) in [Coburn and Weaver, 2016].

The final equation, which is used in ANSYS is a slightly modified formulation of the allowable shear
crimping load resultant, Nsc:

Nsc = GC · (kC · tC +kF (tF b · tF t)) (2.24)

The shear crimping factors k are weighting factors for the core and face sheet terms. These factors
allow for the configuration of the shear crimping criterion to account for material and application
[ANSYS, 2024a]. The allowable shear crimping load is highly sensitive to imperfections; consequently,
ANSYS recommends that the shear crimping factors be determined experimentally [ANSYS, 2024a,
p. 415]. The default values are set to kC = 1 and kF = 0, which reduces equation (2.24) to equation
(2.22). If both shear crimping factors are set to 1, equation (2.24) closely coincides with equation
(2.23) [ANSYS, 2024a].

For a multiaxial loading condition, the IRF is calculated in the principal directions as a sum of efforts
[ANSYS, 2024a]. Equation (2.25) applies to uniaxial compression, while equation (2.26) is formulated
for biaxial compression.

IRFsc = −Nξ

Nsc,ξ
for Nη ≥ 0 & Nξ < 0 (2.25)

IRFsc = −Nξ

Nsc,ξ
+ −Nη

Nsc,η
for Nη < 0 & Nξ < 0 (2.26)

The subscripts ξ and η are the axes of a Cartesian coordinate system in which ξ is in the principal
direction of maximum in-plane compression, the axis ζ is perpendicular to the face sheets, while η
is orthogonal to the ξζ-plane. In Figure 4.2, the ξη-coordinate system is shown in relation to the
material and element coordinate systems.
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Face Sheet Wrinkling
Face sheet wrinkling (e & f) in Figure 2.10 is an instability phenomenon like general buckling and shear
crimping. However, face sheet wrinkling only concerns the stability of the face sheets of the sandwich
structures. In this sense, it is a more localized instability failure mode than general buckling and shear
crimping [Sullins et al., 1969, p. 1-4]. Face sheet wrinkling can occur in three different modes, namely
antisymmetric, symmetric, and one-sided. The antisymmetric and symmetric modes are shown in
Figure 2.11. The one-sided mode is illustrated in Figure 2.10. This mode is more applicable when
considering bending or unequal face sheets [Niu and Talreja, 1999].

Z

X

Symmetric Antisymmetric

Figure 2.11: Modes of instability for face sheet wrinkling. Inspired by Fig. 6.1 [Zenkert, 2005, p. 160]
and [Niu and Talreja, 1999, Fig. 1]. The dotted lines represent the unbuckled state of the face sheets.

Many methods exist for calculating the onset of wrinkling. In [Zenkert, 2005], Winkler’s elastic
foundation model, Hoff’s method based on energy, and a solution of the governing differential equation
with Airy’s stress function are presented. Each method provides different formulae for calculating the
in-plane compressive stress inducing face sheet wrinkling. An overview of the state-of-the-art in 1999
is given in [Ley et al., 1999]. Eight different theoretical wrinkling stresses are provided in Table 1 in
[Ley et al., 1999] for sandwich plates with thick cores in compression. The overview in [Ley et al.,
1999] is not an exhaustive review of the available theories. The intent is to give design engineers
and analysts a foundation for selecting the correct formula. The various methods and models are
inconvenient for a design engineer, and choosing a simple expression suitable for a general case is
challenging, as highlighted in [Niu and Talreja, 1999, p. 875]. The many formulae for the theoretical
wrinkling stress are a testament to the problem-specific nature of the failure mode.

The general analysis model in [Zenkert, 2005, p. 6.1] [Sullins et al., 1969, p. 2-21] and [ANSYS, 2024a,
p. 413] can be viewed as a plate on an elastic foundation under in-plane compression. The materials
are assumed to be linearly elastic and homogeneous. The method provided in [ANSYS, 2024a, p. 414]
reflects the current theory used in industry and is based on the procedures provided in [Sullins et al.,
1969] and [ESA, 1994]. In [ANSYS, 2024a] and [Zenkert, 2005], the core is assumed sufficiently thick,
and the deformation of one face sheet does not interact with the other. The formula in [ANSYS,
2024a] for calculating the wrinkling stress is:

σw,ξ = −Q

(
EF,ξEC,ζGC,ζξ

1−νF,ξηνF,ηξ

)1/3

(2.27)

The theoretical value of Q, corresponding to a perfect structure is Q = 0.825 [ESA, 1994, Eq. 26.10.1].
A more conservative value of Q that better represents experimental data is Q = 0.5. EF,ξ is Young’s
modulus of the face sheet in the ξ-direction. GC,ζξ is the transverse shear modulus of the core. νF,ξη

and νF,ηξ are the major and minor Poisson’s ratios of the face sheet. In biaxial compression, an
interaction formula is recommended [Sullins et al., 1969, p. 2-26][ANSYS, 2024a, p. 414].
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fw,F i =
(

σξ

σw,ξ

)
+
(

ση

σw,η

)3

for σξ

σw,ξ
≥ ση

σw,η
(2.28)

fw,F i =
(

ση

σw,η

)
+
(

σξ

σw,ξ

)3

for σξ

σw,ξ
<

ση

σw,η
for i = t,b (2.29)

Here σw,ξ and σw,η are calculated as uniaxial compressive cases as in equation (2.27). If in-plane shear
stress is present, the principal stresses should be calculated first and used in the above interaction for-
mula. For a given cross-section of a sandwich structure, the failure criterion function is independently
calculated for the top and bottom faces, and a single reserve factor for the cross-section is evaluated
as:

RFw = max(RFw,F t,RFw,F b) (2.30)

2.4 Safety Factors

The choice of analysis method and failure criteria is motivated by the design guidelines [DNV-GL,
2015]. The guidelines specify the required analysis and specify a set of partial safety factors depending
on the employed analysis methods. The total safety factor is the product of all partial factors:

γm = γm0 γmc γm1 γm2 γm3 γm4 γm5 (2.31)

Here, γm0 is a base factor associated with all verification analyses, γmc relates to criticality of the
failure mode, γm1 is long term degradation of materials in the blade, γm2 accounts for temperature
effects, γm3 accounts for manufacturing effects, γm4 corrects for the accuracy of the analysis method,
and γm5 relates to the number of loads considered in the load envelope.

An overview of the safety factors associated with the presented analysis method is given in Table 2.1.

Factor Buckling Fiber failure Inter-fiber failure Description
γm0 1.20 1.20 1.20 Base factor
γmc 1.08 1.08 1.00 Failure criticality
γm1 1.05 1.20 1.10 Long-term degradation
γm2 1.05 1.10 1.00 Temperature
γm3 1.10 1.30 1.00 Manufacturing
γm4 1.05 1.00 1.15 Analysis accuracy
γm5 1.00 1.00 1.00 Load cases
γm 1.65 2.22 1.52 Total safety factor

Table 2.1: Partial safety factors required based on the presented analysis approach.

The partial safety factors reveal the importance of a GNL analysis for buckling. The partial safety
factor associated with a linear analysis is γm4 = 1.25, resulting in an overall safety factor of γm = 1.96.
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This chapter provides an overview of the implemented non-linear buckling analysis described in Section
2.2.3, before outlining the implementation of the sandwich failure criteria. The analysis method is
developed in ANSYS Parametric Design Language (APDL), where a simplified schematic overview
of the program is given in Figure 3.1. Additional development has been made from the non-linear
buckling analysis presented in [Tønnesen and Christoffersen, 2025], to facilitate post-processing of
sandwich failure criteria and the parametric study for the Gurit98m WTB model.

Main Analysis settings

Initialize

Model

Displacement Boundary
Conditions (LC)

Post Processing Make Element Plot and print
results in textfiles

Prepare for analysis

Input model

Dispacement boundary
conditions

NR-based Analysis

NR Solver
Linear Perturbartion

Non-Linearity Factors
Load BC (LC)

Base analysis
(n,i)

Perform non-linear base
analysis

Non-linearity factor
(n,LAST)

χGNL > χc
GNL

Buckling analysis 
(n,LAST)

Calculate χGNL for all
elements

Perform linear perturbation
and calculate eigenvalue

problem

Yes

No

  λn
1> λc

No

Yes

n = Nmax YesNo

n = n+1

EXIT

EXIT

EXIT

LC = LC+1Update load case
number

= Execution File

= Input file

= Analysis

= Description

= Action

General Structure NR-based Analysis

= Stopping criteria

Figure 3.1: Simplified overview of the non-linear buckling analysis presented in [Tønnesen and Chris-
toffersen, 2025].

The different parts of the analysis are divided into separate input files. An input file is an ASCII file
used for implementing APDL code, with the extension .inp. Input files can be edited with standard
text editors and executed with the /INPUT command in the APDL utility menu. The program utilizes
a single-file configuration, meaning the entire analysis is executed from one file, the Main input file,
which also contains all user-defined analysis settings. After executing Main, a loop is initiated for the
Load Cases (LCs). Following this, Initialize prepares the program for a new analysis, after which the
model and displacement boundary conditions are introduced. Then, the non-linear buckling analysis
is executed in the NR-based Analysis, where the load boundary conditions are incrementally applied
and buckling based on linear perturbation is performed.
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ANSYS utilizes Multiframe Restart to perform the linear perturbation, which allows for pausing and
resumption of an analysis at a user-defined load step and substep [ANSYS, 2024c, p. 116]. Multiframe
Restart is incompatible with the arc-length method. Therefore, the Newton-Raphson (NR) method
is utilized instead. In contrast to the arc-length method, the Newton-Raphson method is susceptible
to numerical stability issues when the tangent stiffness matrix becomes singular or ill-conditioned.
Therefore, stopping criteria are necessary to ensure the analysis does not pass a critical point. The
overview of the NR-based analysis is shown on the right side in Figure 3.1. In the NR-based analysis,
a GNL load step is solved in the base analysis. The load is equally incremented based on the total
number of load steps, as presented in the following equation:

αn = n

Nmax
{R}n = αn · {R} (3.1)

αn is the load factor for load stepping in the NR-based analysis. αn is multiplied by the reference
load {R}, which is the load defined in the boundary condition files. n is the current load step, and
Nmax is the user-defined total number of load steps. Following the base analysis, non-linearity factors
are calculated for the current load step n and the last sub-step (i = LAST ) on an element basis. The
maximum non-linearity factor is checked against a user-defined critical non-linearity factor χc

GNL. The
analysis is terminated if:

max
(
{χ}(n,LAST )

GNL

)
≥ χc

GNL (3.2)

If equation 3.2 is false, the analysis resumes from (n,LAST ), followed by the buckling analysis based
on linear perturbation.

The perturbation load is applied as a small increment to the external force. The perturbation load is
defined in equation (3.3).

{R}(n,i)
pert = ζpert{R}(n,i) (3.3)

ζpert is the perturbation load factor, i.e., a scalar multiplier for the applied load. ζpert should be a
small fraction of the applied load as the perturbation load should guide the structure on the current
deformation path [Bathe, 1996, p. 630-634] of its current state. The nodal coordinates are updated
according to the perturbation displacements, and the eigenvalue problem is solved as described in
Section 2.2.3.

After solving for λ1, the buckling load factor γn is calculated, which relates the approximated buckling
load {R}n

buckling to the reference load {R}.

γn = αn ·η · (1+λn
1 · ζpert) {R}n

buckling = γn · {R} (3.4)

η is the external load factor, which scales the loads defined in the boundary condition file. η is useful
for applying safety factors. λn

1 is the lowest positive eigenvalue at load step n. For γn ≤ 1, the structure
is approximated to buckle for the applied load. The analysis terminates if the converged base analysis
is within a user-defined tolerance of the calculated buckling load.

λn
1 ≤ λc (3.5)

The appropriate magnitude of λc is problem-specific. However, the assumptions described in Section
2.2.3 should not be violated. This check helps ensure that the analysis does not exceed the stability
point, thereby mitigating the risk of numerical issues related to the NR method. If this is false and
the analysis has not reached the maximum number of load steps n = Nmax, the analysis is restarted
from (n,LAST ), the load step number n is incremented, and a new load step is performed.

After the NR-based analysis, the Post Processing input file is executed. A text file is printed docu-
menting the reason for termination, the final buckling load factor γ, and its history throughout the
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analysis. Additionally, text files are generated for all enabled non-linearity factors throughout the
analysis. These text files can be post-processed to visualize the non-linearity factors for all load steps
in the APDL Utility Menu. Moreover, the averaged element stresses in the material coordinate system
for all layers’ top, middle, and bottom positions and the force resultants for all elements are printed
into text files. These text files are used to post-process the sandwich failure criteria in Fortran. The
stresses and force resultants are extracted with the ETABLE command. The output coordinate system
is defined as the material coordinate system along with the specific layer and position before extract-
ing the averaged element stresses using ETABLE. The ETABLE command outputs an averaged element
centroidal stress, calculated as an average based on the element’s nodal values [ANSYS, 2024b, p. 688-
689] & [ANSYS, 2024c, p. 52]. The force resultants are calculated as an average based on the sum
of the contributing nodal values [ANSYS, 2024b, p. 689]. Finally, if the program has not reached the
final LC, the current LC is updated, and a new analysis is performed.
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Criteria

This chapter describes the implementation of sandwich failure criteria in a post-processing program
based on a reduced version of Aalborg University’s (AAUs) in-house software MUlti Disciplinary
Synthesis Tool (MUST). MUST can read discretized models exported from ANSYS, including nodal
coordinates, element formulations, connectivity, material models, coordinate systems, and specific
bookkeeping for sandwich structures and laminates. MUST offers many features, such as structural
analysis and topology optimization.

To avoid confusion between the complete MUST program and the post-processing routine developed
in this project, all post-processing procedures will be referred to as Fortran Post-Processing (FPP).

Within FPP, sandwich-specific bookkeeping assigns a unique index to each element, indicating if the
element is a sandwich structure. It categorizes each ply into one of three predefined ply groups (PG):
top face sheet, core, and bottom face sheet, respectively. This grouping is based on the assumption
that the in-plane stiffness of the core is significantly lower than that of the face sheets, i.e., E1,C ≪ E1,F .
The bookkeeping process categorizes the layup data for each element, including thickness, material
orientation, and material properties, according to these ply groups. This categorized data, referred to
as Ply Group Layup Data (PGLD), forms the basis for the constitutive modeling of each ply group
independently.

Furthermore, the PGLD is used to calculate the stress within each group using the element stress
from APDL. Stress values are averaged through-the-thickness for each ply group as described in the
following equation:

{σxyz}P G = 1
3NP G

NP G∑
k=1

3∑
p=1

[
T (θk

x1)
]T

{σ123}(k,p) for PG = Ft,C,Fb (4.1)

In equation (4.1), NP G denotes the number of layers within a given ply group. p is the number of
data points through the thickness of each lamina. The matrix [T ] represents the in-plane rotation
matrix [Cook et al., 2002, p. 274]. The material angle θx1 is the angle from the x-axis of the element
coordinate system to the 1-axis of the material coordinate system. The subscripts 123 and xyz on the
element stress vectors indicate the material and element coordinate systems, as presented in Figure
4.1. The exact method of determining the stress acting on a face sheet is not explicitly stated in the
documentation, however, the definition of equation (4.1) stems from the formulation: "The average
face sheet stresses σx, σy, τxy are obtained from the layer stresses of the face sheets." [ANSYS, 2024a,
p. 414].
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x

1
2

y

θx1

Figure 4.1: Element coordinate system and material coordinate system. {1,2} represents the material
coordinate system, and {x,y} depicts the element coordinate system.

Since the stress components are averaged in the element coordinate system, the stresses are trans-
formed from the material coordinate system to the element coordinate system before averaging. The
in-plane rotation matrix [T (θ)] is defined in equation (4.2).

[T (θ)] =



a2 b2 0 ab 0 0
b2 a2 0 −ab 0 0
0 0 1 0 0 0

−2ab 2ab 0 a2 − b2 0 0
0 0 0 0 a −b
0 0 0 0 b a


for a = cos(θ) & b = sin(θ) (4.2)

4.1 Constitutive Modeling
Constitutive modeling in this context refers to the procedure used to extract the engineering constants
in the principal ξη-coordinate system. The first step involves determining the orientation of the ξη-
system relative to the element coordinate system. Here, the ξ-direction is aligned with the direction
of maximum compressive stress, corresponding to the second principal stress direction under a plane
stress assumption. The approach for determining the principal stresses and associated angles follows
[Goodno and Gere, 2016, Sec. 7.3].

The orientation of the principal directions is obtained by calculating the principal angle using equation
(4.3).

θp = 1
2 tan−1

(
2τxy

σx −σy

)
(4.3)

The principal angle θp defines the orientation of the principal planes on which the principal stresses
act. Equation (4.3) yields two possible solutions for θp: one in the range of 0◦ to 90◦, and the other
in the range of 90◦ to 180◦.

To identify which of the two angles corresponds to the direction of maximum compressive stress (i.e.,
the second principal stress), the calculated angle is substituted into the x-component of the plane
stress transformation equation, given by equation (4.4):

σx′ = σx +σy

2 + σx −σy

2 cos(2θp)+ τxysin(2θp) (4.4)

The resulting stress σx′ is then compared with the principal stresses σ1p and σ2p, which are given by:

σ1p,2p = σx +σy

2 ±

√(
σx −σy

2

)2
+ τ2

xy (4.5)
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If σx′ is equal to σ1p, then the principal angle θp corresponds to the direction of maximum tensile stress.
Consequently, the direction of maximum compressive stress, aligned with the ξ-axis, is orthogonal to
this, and the angle between the x-axis of the element coordinate system and the ξ-direction is θxξ =
θp +90◦. Conversely, if σx′ equals σ2p, then θp already defines the direction of maximum compressive
stress, and θxξ = θp.

A few unique cases are encountered with the described method. In the case of pure biaxial loading,
i.e., σx = σy and τxy = 0 the fraction in equation (4.3) is 0

0 , which causes computational issues. This is
avoided by manually setting the principal angle θp = 0°. In the case of equal biaxial loading with shear
τxy ̸= 0, the principal direction is set to θp = π/4. A final check is performed regarding the association
of the principal angle and the direction of maximum compression. For the case of pure biaxial loading,
the ξη-system coincides with the element coordinate system, and the most compressive direction is
manually set to be the x-direction, i.e., θxξ = θp. Numerical evaluation using double precision variables
is prone to round-off errors, so determining if the loading is purely biaxial in the above checks is done
with |σx − σy| < 10−8. Likewise, the shear stress is treated as zero if |τxy| < 10−8 and different from
zero if |τxy| > 10−8.

To determine the engineering constants in the ξη-coordinate system, the angle from the ξη-system to
the material coordinate system must be established. This angle, denoted as θξ1, is computed as:

θξ1 = θx1 −θxξ (4.6)

x

1
2

y

θx1 θxξ

θξ1 ξ

η

Figure 4.2: Element coordinate system, ξη-coordinate system and material coordinate system. {1,2}
represents the material coordinate system, and {x,y} depicts the element coordinate system.

With θξ1 determined, the engineering constants are calculated based on FSDT. The constitutive
behavior of a laminate is described by the ABD-matrix, which relates the force and moment resultants
to the mid-plane strain and curvature, as seen in equation (4.7).

N

M

Q

=

 A B 0
B D 0
0 0 Ā




ε0

κ̃

γ0

 (4.7)

The assembly of the ABD-matrix is based on the orthotropic stiffness matrix of each ply, denoted as
ˆ[C]. 

σ1
σ2
σ3
τ12
τ23
τ13


=



E1
1−ν12ν12

ν21E1
1−ν12ν21

0 0 0 0
ν12E2

1−ν21ν12
E2

1−ν12ν21
0 0 0 0

0 0 0 0 0 0
0 0 0 G12 0 0
0 0 0 0 G23 0
0 0 0 0 0 G13





ε1
ε2
ε3
γ12
γ23
γ13


(4.8)
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In FSDT, the transverse normal strain is assumed to be zero [Mittelstedt, 2023, Sec . 10.1]. This is
enforced by setting the entry in the 3rd row and 3rd column to zero. The stiffness matrix for each ply
is rotated into the element coordinate system [Cook et al., 2002, p. 275].

[C̄] = [T (θξ1)]T ˆ[C][T (θξ1)] (4.9)

Here, [C̄] represents the transformed stiffness matrix, analogous to the plane stress reduced stiffness
matrix [Q̄] used in CLT, but includes all six stress components [Jones, 1999, Sec.4.2]. The contribution
of each ply to the overall laminate stiffness is then incorporated into the calculation of the ABD-
matrix, as shown in equations (4.10)–(4.13). The individual submatrices are calculated by integrating
the transformed ply stiffness matrices [C̄] through the laminate thickness:

Aij =
NP G∑
k=1

(C̄ij)k (zk −zk−1) i,j = 1,2,4 (4.10)

Bij = 1
2

NP G∑
k=1

(C̄ij)k

(
z2

k −z2
k−1

)
i,j = 1,2,4 (4.11)

Dij = 1
3

NP G∑
k=1

(C̄ij)k

(
z3

k −z3
k−1

)
i,j = 1,2,4 (4.12)

Āij =
NP G∑
k=1

(C̄ij)k (zk −zk−1) i,j = 5,6 (4.13)

To extract the relevant engineering constants, the ABD-matrix is inverted to obtain the laminate
compliance matrix [Jones, 1999, sec. 4.4.1]. Inverting the ABD-matrix captures all coupling effects
potentially present in a laminate.

ε0

κ̃

γ0

=

 A′ B′ 0
(B′)T D′ 0

0 0 Ā′




N

M

Q

 (4.14)

The prime superscripts show that the submatrices are the compliance matrices. The diagonal terms
of the compliance matrix are directly related to the engineering constants [Jones, 1999, p. 64]. Since
only the in-plane engineering constants are required for the sandwich failure criteria, the in-plane
compliance submatrix is isolated and normalized with respect to the total laminate thickness tP G.

[S] = tP G



A′
11 A′

12 0 A′
14 0 0

A′
21 A′

22 0 A′
24 0 0

0 0 0 0 0 0
A′

41 A′
42 0 A44 0 0

0 0 0 0 Ā′55 Ā′56
0 0 0 0 Ā′65 Ā′66


(4.15)

The engineering constants can then be extracted from [S] as:

Eξ = 1
S11

Eη = 1
S22

νξη = −S21
S11

νηξ = −S12
S22

(4.16)

Gζη = 1
S55

Gζξ = 1
S66

(4.17)
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4.2 Face Sheet Wrinkling
The wrinkling stress σw is calculated based on engineering constants in the ξη-coordinate system for
the face sheet and core ply group, as is evident in equation (2.27). The calculation of these constants
is described in Section 4.1. The pseudo code for implementing face sheet wrinkling, see equations
(2.27)-(2.30), is presented in Table 4.1.

1: do ElemNo = 1..nElem
2: do PG = Ft,Fb
3: Compute: σ1p,2p

4: if σ1p > −10−8 and σ2p > −10−8

5: Set: fw,P G = 0
6: Go to line 2
7: end if
8: Compute: EP G,ξ, EP G,η, νP G,ξη, νP G,ηξ, EC,ζ ,GC,ζη, GC,ζξ

9: if σ1p > −10−8 and σ2p < −10−8

10: Compute: fw,P G = σ2p/σw,ξ

11: else if σ1p < −10−8 and σ2p < −10−8

12: Compute: fw,P G,ξ = σ2p/σw,ξ

13: Compute: fw,P G,η = σ1p/σw,η

14: if fw,P G,ξ ≥ fw,P G,η

15: Compute: fw,P G = fw,P G,ξ +f3
w,P G,η

16: else
17: Compute: fw,P G = fw,P G,η +f3

w,P G,ξ

18: end if
19: end if
20: end do
21: Compute: fw = max(fw,F t,fw,F b)
22: end do

Table 4.1: Pseudo code for implementation of face sheet wrinkling in Fortran post processing. nElem
is the number of elements in the model.

Due to the numerical accuracy of double precision variables, the if-statements on lines 4, 9, and 11
are only true if the stress is less than or more than −10−8.
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4.3 Shear Crimping
Evaluating the failure criterion function for shear crimping involves many of the same steps as face
sheet wrinkling. The main difference is the use of force resultants rather than stress. The interaction
formula is also different. The pseudo code for shear crimping, see equations (2.24)-(2.26), is presented
in Table 4.2.

1: do ElemNo = 1..nElem
3: Compute: N1p,2p

4: if N1p > −10−8 and N2p > −10−8

5: Set: fsc = 0
6: Go to line 1
7: end if
8: Compute: GC,ζη, GC,ζξ

9: if N1p > −10−8 and N2p < −10−8

10: Compute: fsc = −N2p/Nsc,ξ

11: else if N1p < −10−8 and N2p < −10−8

12: Compute: fsc = −N2p/Nsc,ξ −N1p/Nsc,η

13: end if
14: end do

Table 4.2: Pseudo code for implementing shear crimping in Fortran post processing.

4.4 Core Failure
The implementation of core failure utilises the ply group layup data and the ply group stress for the
core. The pseudo code for implementing core failure, see equations (2.20)-(2.21), is presented in Table
4.3.

1: do ElemNo = 1..nElem
2: if Elem = isotropic

3: Compute: fcf =
(

τ13
S13

)2
+
(

τ23
S23

)2

4: else if Elem = orthotropic

5: Compute: fcf = max
(∣∣∣ τ13

S13

∣∣∣ , ∣∣∣ τ23
S23

∣∣∣)
6: end if
7: end do

Table 4.3: Pseudo code for implementation of core failure in Fortran post processing.
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teria

This section presents the verification of the implemented face sheet wrinkling and shear crimping
sandwich failure criteria in FPP. Three rectangular sandwich plates with different layups are used
for verification. Throughout the chapter, the complexity of the layup and the loading increases
gradually to ensure that the implementation can accommodate increasingly complex scenarios. The
three models are referred to as single ply (SP), symmetric cross ply (CP), and antisymmetric angle ply
(AP), characterized by the layup of the face sheets. The solutions generated from FPP are compared
against those from ANSYS Composite PrepPost (ACP). Where applicable, comparison is also done
with MUST and/or an analytical solution implemented in MATLAB. The analytical solution utilizes
FSDT to create the constitutive matrices and evaluate stresses and strains. The failure criteria are
assessed in MATLAB based on the FSDT constitutive modeling in Section 4.1 and the analytical
stresses.

Firstly, the models and analysis setup are presented. This details the geometry of the sandwich plate,
material parameters, boundary conditions, and analysis settings related to the program described in
Chapter 3, as well as the factors for the sandwich failure criterion functions. Moreover, the mesh is
given along with a mesh convergence study. Following this are the results from the SP, CP, and AP
analyses. The chapter concludes by discussing the findings from all five verification cases.
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5.1 Model & Analysis Setup
The sandwich plate model features four straight edges parallel to the global X-direction and Y -
direction. The sandwich plate’s width and length are 150[mm], and the total thickness is t = 24[mm].
The thickness of the core is tC = 20[mm] and the thickness of each face sheet is tF c = tF b = 2[mm] for
all layups. The geometry of the sandwich plate is visualized in Figure 5.1.

X,x

Y,y
Z,z

Line 3

Line 4

Line 2

Line 1

W 

L 

tFt 

tC 

tFb 

t

Figure 5.1: Sandwich plate geometry and dimensions. X,Y,Z refers to the global coordinate system,
and x,y,z to the element coordinate system.

The boundary conditions for the four load cases used in the verification examples are presented in
Tables 5.1-5.4. The relevant load case will be specified as the analysis is presented.

Uniaxial ux uy uz Nx Ny

Line 1 - 0 0 - -
Line 2 0 - 0 - -
Line 3 - - 0 - −100
Line 4 - Coupled 0 - -

Table 5.1: Uniaxial compression in y-direction.
Ny is in [N/mm].

Uniaxial ux uy uz Nx Ny

Line 1 - Coupled 0 - -
Line 2 - - 0 −100 -
Line 3 - 0 0 - -
Line 4 0 - 0 - -

Table 5.2: Uniaxial compression in x-direction.
Nx is in [N/mm].

Biaxial ux uy uz Nx Ny

Line 1 - 0 0 - -
Line 2 - - 0 −100 -
Line 3 - - 0 - −100
Line 4 0 - 0 - -

Table 5.3: Biaxial compression. Nx and Ny are
in [N/mm].

Biaxial ux uy uz Nx Ny

Line 1 0 0 0 - -
Line 2 - - 0 −100 -
Line 3 - - 0 - −100
Line 4 0 0 0 - -

Table 5.4: Biaxial compression with fixed edges.
Nx and Ny are in [N/mm].
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Analysis Setup
The analytical solution in MATLAB assumes linear elasticity; therefore, the analysis in ACP and FPP
is based on a linear static base analysis, as described for the linear buckling analysis in Section 2.2.3.
A list of the analysis settings used for all analyses is found in Table 5.5. The non-linearity factors are
disabled for the verification analyses.

NR-Analysis Failure Criteria
Nmax 2 kF 1
ζpert 1 ·10−5 kC 1
λc 7 ·103 Q 0.5

Table 5.5: Analysis settings. Nmax is the maximum number of load steps, ζpert is the perturbation
load factor, and λc is the critical eigenvalue for buckling analysis. kF and kC are the shear crimping
factors related to equation (2.24), and Q relates to face sheet wrinkling in equation (2.27).

The material parameters for the GFRP and PET-foam used in the verification examples are provided
in Table 5.6.

Parameter Unit GFRP PET
E1 [MPa] 38000 112
E2 [MPa] 9000 112
E3 [MPa] 9000 112
ν12 [−] 0.28 0.40
ν23 [−] 0.28 0.40
ν13 [−] 0.28 0.40
G12 [MPa] 3600 36
G23 [MPa] 3600 36
G13 [MPa] 3500 39

Table 5.6: Material parameters for GFRP and KerdynTM150 PET foam from Gurit98m [Hermansen
et al., 2025].

Mesh
The FE models consist of 225 layered linear shell elements, SHELL181 [ANSYS, 2024c, p. 683-702].
The elements are formulated according to FSDT. Full integration with incompatible modes is used
for higher accuracy in in-plane bending [ANSYS, 2024c, p. 691]. Mixed interpolation of tensorial
components (MITC) is used to avoid out-of-plane shear locking[ANSYS, 2024e, p. 600]. Results are
stored at the top, middle, and bottom of every layer, coincident with the integration points through
the thickness of each layer. The element size was chosen based on an initial convergence study across
all analyses in ACP to ensure a converged result. The convergence criterion is defined by the maximum
inverse reserve factor changing less than 0.5% when the number of degrees of freedom increases by
100%. Convergence is verified for both face sheet wrinkling and shear crimping in ACP.

The convergence criterion is verified by ensuring |a| < 5 ·10−3 where a is the slope of a linear function
f(x) = ax and x is the number of nodes in the model. The nodes are changed from x1 = 256 to
x2 = 441, and the resulting slope is presented in Table 5.7. The mesh is presented in Figure 5.2.
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Case Wrinkling Crimping
SP 0.0 0.0
CP - LC 1 0.0 0.0
CP - LC 2 0.0 0.0
CP - LC 3 1.135 ·10−6 −2.541 ·10−6

AP 2.335 ·10−5 1.551 ·10−5

Table 5.7: Convergence data for all analyses. Figure 5.2: Mesh used in all verification analyses.

5.2 Single Ply
The SP layup consists of a single ply for each face sheet, with UD GFRP oriented along the element x-
axis. In laminate shorthand notation, the layup is (GFRP@0°,PET@0°,GFRP@0°). The SP model
is subjected to uniaxial compression in the element y-direction with simple supports, and serves as
the simplest test case. The load case is detailed in Table 5.1. For this case, intermediate results such
as stress through the thickness and engineering constants in the ξη-coordinate system are presented
before evaluating the failure index. This step ensures that the modeling approach is consistent across
different analysis tools and establishes a baseline of agreement before proceeding to more complex
cases.

Structural Response
The SP model is analyzed analytically using MATLAB and numerically using ACP and FPP. The
stress field is uniform across the plate, and the stress through the thickness is identical across the
different analysis tools. The stress is presented in Figure 5.3.

-25 -20 -15 -10 -5 0

 [MPa]
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-5

0
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z
 [
m

m
] 1

2

12

Figure 5.3: Single Ply, in-plane stress through the thickness in the material coordinate system.

The direction of maximum compression is oriented along the element’s y-direction, as the model is
loaded in uniaxial compression in the y-direction. Accordingly, the analytical MATLAB solution and
FPP calculate θξ1 = −90°. In ACP, the principal stress direction can be visualized using the Vector
Principal Stress tool in the Static Structural analysis system in Ansys Workbench. The principal
directions for the face sheets are presented in Figure 5.4.
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Figure 5.4: Principal directions for SP in layer one. These results are also representative of the
principal directions in layer three.

Finally, the relevant engineering constants in the ξη-coordinate system from MATLAB, FPP, and
ACP are listed in Table 5.8. The engineering constants are extracted from ACP by modeling the face
sheet and core separately with a local coordinate system coincident with the ξη-system. The material
constants align with the material parameters given for the 2-direction in Table 5.6.

EF,ξ EF,η νF,ξη νF,ηξ GC,ξζ EC,ηζ

MATLAB 9000 38000 0.28 0.0663 36 39
FPP 9000 38000 0.28 0.0663 36 39
ACP 9000 38000 0.28 0.0663 36 39

Table 5.8: Laminate engineering constants in ξη-coordinate system from FPP and MATLAB. The
subscripts F and C refer to face sheet and core, respectively.

Failure Criteria
After confirming the structural response is equal across ACP, FPP, and MATLAB, the failure criteria
are compared. The failure indices from ACP, FPP, and MATLAB for face sheet wrinkling and shear
crimping are presented in Table 5.9. The percentage change in Table 5.9 is calculated using equation
(5.1), yielding the % change in relation to 1, i.e., failure. The distribution of FPP face sheet wrinkling
and shear crimping failure indices is uniform across the plate. The distribution is provided in Appendix
E.

Change % = max(f)−max(IRF )
1 ·100 (5.1)

Failure Mode ACP FPP MATLAB Change [%]
Face sheet wrinkling IRFw = 0.1400 fw = 0.1400 fw = 0.1400 0.000%
Shear crimping IRFsc = 0.1157 fsc = 0.1157 fsc = 0.1157 0.000%

Table 5.9: Comparison of failure indices from ACP, FPP, and MATLAB with percentage change
calculated with equation (5.1).
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5.3 Symmetric Cross Ply
The CP model is subjected to three load cases: uniaxial compression in the element x-direction, simply
supported biaxial compression, and biaxial compression with fixed edges. The layup of the CP model
is (GFRP@0°,GFRP@90°,GFRP@90°,GFRP@0°,PET@0°)s. The core is tC = 20[mm] and both
face sheets are tF t = tF b = 2[mm]. Consequently, each face sheet lamina has a thickness of 0.5[mm].

Uniaxial Compression
The boundary conditions for the uniaxial compression load case are presented in Table 5.2. The
magnitude of failure indices from FPP and ACP are presented in Table 5.10. The distribution is
presented in Figure 5.5.

Failure Mode ACP FPP Change [%]
Face sheet wrinkling IRFw = 0.1033 fw = 0.1033 0.000%
Shear crimping IRFsc = 0.1068 fsc = 0.1068 0.000%

Table 5.10: Comparison of failure indices from ACP and FPP with percentage change calculated with
equation (5.1).

(a) Face sheet wrinkling. (b) Shear crimping.

Figure 5.5: Face sheet wrinkling and shear crimping failure for SP subjected to uniaxial compression.

Biaxial Compression
The boundary conditions for biaxial compression are given in Table 5.3. The magnitude of the failure
indices from FPP and ACP are presented in Table 5.11. The distributions are presented in Figures
5.6 and 5.7.

Failure Mode ACP FPP Change [%]
Face sheet wrinkling IRFw = 0.1691.. 0.1711 fw = 0.1064 -6.4700%
Shear crimping IRFsc = 0.2222.. 0.2226 fsc = 0.2226 -0.0000%

Table 5.11: Comparison of failure indices from ACP and FPP with percentage change calculated with
equation (5.1).
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(a) ACP face sheet wrinkling. (b) FPP face sheet wrinkling.

Figure 5.6: ACP and FPP face sheet wrinkling failure indices for CP model subjected to biaxial
compression.

(a) ACP shear crimping. (b) FPP shear crimping.

Figure 5.7: ACP and FPP shear crimping failure indices for CP model subjected to biaxial compression.

The IRF solution from ACP shows a non-uniform distribution with IRF ranging between IRFSC =
0.22222-0.22258 and IRFw = 0.16910-0.17111, while FPP calculates a uniform FI distribution.

The source of the differences in failure indices for shear crimping and face sheet wrinkling is investigated
in Appendix F. The non-uniform distribution observed in shear crimping can be attributed to the
tolerances used for determining if small numbers are zero when calculating the principal directions,
see Appendix F. In FPP, the tolerance is 10−8, as presented in Section 4.1. In the investigation of
face sheet wrinkling, intermediate quantities such as through-thickness stresses, principal stresses, and
engineering constants in the ξη-coordinate system are examined. Due to limited access to intermediate
calculations in ACP, not all internal steps can be directly verified. As a result, some discrepancies
remain unexplained. However, it is suspected to be due to the determination of the stress applied to
the face sheets. This step is associated with ambiguity in the documentation, see equation (4.1).
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Performing the analysis in MUST, the results are identical in magnitude and distribution to FPP. In
MUST, face sheet wrinkling is calculated by averaging the element centroidal stress applied to each
ply in the face sheets, following the same procedure described in equation (4.1). Moreover, MUST
evaluates the sandwich failure criteria as failure criterion functions, rather than an IRFs.

Fixed Biaxial Loading
The boundary conditions used in the fixed biaxial compressive load case are presented in Table 5.4. The
magnitude of the failure indices from FPP and ACP is presented in Table 5.12, and the distribution
is presented in Figure 5.8.

Failure Mode ACP FPP Change [%]
Face sheet wrinkling IRFw = 0.0471.. 0.1734 fw = 0.0202.. 0.1330 -4.0400%
Shear crimping IRFsc = 0.0621.. 0.2431 fsc = 0.0330.. 0.2351 -0.8000%

Table 5.12: Comparison of failure indices from ACP and FPP with percentage change calculated with
equation (5.1).

(a) ACP face sheet wrinkling. (b) FPP face sheet wrinkling.

(c) ACP shear crimping. (d) FPP shear crimping.

Figure 5.8: ACP and FPP shear crimping and face sheet wrinkling failure indices for the CP model
subjected to biaxial compression with fixed edges.
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Discrepancies are observed in the distribution and magnitude of the face sheet wrinkling failure indices.
For shear crimping, the distribution is similar. However, the magnitude is lower for FPP. These
discrepancies warrant further investigation. This analysis is also performed in the full MUST program
in order to compare results. The nodal displacements of the middle surface are compared between
ACP, APDL, and MUST in Figure 5.9.

(a) Nodal displacements of middle
surface calculated and visualized in
ACP.

(b) Nodal displacements of middle
surface calculated and visualized in
APDL.

(c) Nodal displacements of the
middle surface calculated in MUST.

Figure 5.9: Comparison of nodal displacements between ACP, APDL, and MUST.

The distribution and magnitude of the nodal displacements match across the different analysis tools.
Similarly, the stresses are equal between ACP and FPP. The distribution of the failure criterion
function for face sheet wrinkling and shear crimping calculated in MUST is presented in Figure 5.10.

(a) Face sheet wrinkling. (b) Shear crimping.

Figure 5.10: Face sheet wrinkling and shear crimping calculated in MUST.

A comparable magnitude and distribution are observed between MUST and FPP. The percentage
change of the maximum failure index is (0.1330 − 0.1334)/1 · 100 = −0.04% for face sheet wrinkling.
The constitutive modeling is identical between MUST and FPP, so the difference is suspected to stem
from the element stresses. In MUST, the element stress is evaluated in the center of each element,
which results in slightly different element stresses near the fixed boundaries compared with the element
stresses extracted from APDL.
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5.4 Antisymmetric Angle Ply
The previous two layups feature symmetric face sheets with no bending-extension coupling. An
antisymmetric angle ply with few lamina is an extreme case of bending-extension coupling [Jones,
1999, p. 217]. The boundary conditions are identical to the SP analysis, presented in Table 5.1. The
magnitude of the failure indices from FPP and ACP is presented in Table 5.13. The distribution of
face sheet wrinkling and shear crimping failure indices is presented in Figure 5.8.

Failure Mode ACP FPP Change [%]
Face sheet wrinkling IRFw = 0.1141.. 0.1144 fw = 0.1244.. 0.1246 1.0500%
Shear crimping IRFsc = 0.1068.. 0.1069 fsc = 0.1068 -0.0100%

Table 5.13: Comparison of failure indices from ACP and FPP with percentage change calculated with
equation (5.1).

(a) ACP face sheet wrinkling. (b) FPP face sheet wrinkling.

(c) ACP shear crimping. (d) FPP shear crimping.

Figure 5.11: ACP and FPP shear crimping and face sheet wrinkling failure indices for the AP model
subjected to uniaxial compression.
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The distribution of both shear crimping and face sheet wrinkling is comparable between ACP and
FPP. A difference in magnitude is observed for face sheet wrinkling. The stresses are equal between
FPP and ACP, as observed in the other verification analyses. Agreement is observed when comparing
face sheet wrinkling for MUST and FPP in Figure 5.12.

(a) Face sheet wrinkling calculated in MUST. (b) Face sheet wrinkling calculated in FPP.

Figure 5.12: Face sheet wrinkling failure criterion function calculated using MUST and FPP.

5.5 Discussion of Verification
This chapter presented the results of five verification analyses. The simple SP analysis compared the
analytical solution based on FSDT, the numerical solution in ACP, and the implemented FPP based on
APDL results. The stresses through the thickness, laminate engineering constants in the ξη-coordinate
system, and the failure indices were identical across all analysis tools. The SP analysis verified the
general data handling, 90° rotation of material parameters, and ability to represent identical analyses
across different analysis tools.

The CP model increased the complexity by introducing multiple lamina in the face sheets. The CP
model under uniaxial compression verified the constitutive modeling with multiple lamina in the face
sheets. Additionally, with the most compressive direction tested for both x and y, the association of
the 2nd principal stress and the principal angle is verified for the case with zero shear stress and a
nonzero denominator in equation (4.3).

The CP model under biaxial compression revealed a change of −6.4700% for face sheet wrinkling
between the maximum FI from ACP to FPP. However, FPP and MUST showed identical results.
ACP yielded a non-uniform result for shear crimping and face sheet wrinkling with IRF ranging
between IRFw = 0.16910-0.17111 and IRFsc = 0.22222-0.22258 respectively. On the contrary, FPP
showed a uniform distribution, which is expected for the simply supported biaxial load case. For shear
crimping, the non-uniformity was determined to be attributed to the handling of small stresses when
calculating the principal directions, as shown in Appendix F.

Additionally, the source of the discrepancy in face sheet wrinkling was investigated further in Ap-
pendix F. Intermediate results were compared across analysis tools. The stress through the thickness
was verified against the analytical solution in MATLAB. The principal stress and direction were veri-
fied across FPP, ACP, and MATLAB. The elastic constants matched between ACP and FPP. No
discrepancy was observed across these quantities. It is not possible to extract the stress acting on the
face sheet in ACP, so this was not compared. The stress at the integration points for all elements

Page 42 of 99



DMS4-3 5.5. DISCUSSION OF VERIFICATION

was compared with the averaged centroidal element stresses, based on a statement about the IRF
evaluation in [ANSYS, a]. The integration point stress was investigated to determine if this was the
source of the discrepancy between ACP and FPP. However, as expected, all integration points and
the averaged centroidal values featured identical stress results. A final test was performed under the
assumption that the stress state of an integration point was used as the stress applied to the face
sheet. However, evaluating this stress state revealed a failure index of fw = 0.1597. This failure index
is different from the magnitude calculated in ACP.

Biaxial compression with fixed edges applied to the CP model revealed a change of −4.04% for face
sheet wrinkling and 0.80% for shear crimping between ACP and FPP. Comparing FPP with MUST
revealed almost identical failure indices, with the largest discrepancy in the magnitude of fw of −0.04%.
The AP analysis was associated with a change of 1.05% for face sheet wrinkling and −0.01% for shear
crimping between ACP and FPP. However, identical results were observed between MUST and FPP.
Based on the presented results, the discrepancies between ACP and FPP are thought to stem from a
difference in the determination of stress applied to the face sheets and the subsequent calculation of
principal stresses and principal directions. The user has limited access to these intermediate quantities
in ACP, making further verification challenging.

In summary, the verification chapter has demonstrated that the implemented sandwich failure cri-
teria in FPP produce results consistent with an analytical solution in MATLAB and MUST across
various layup configurations and loading conditions. The strong agreement between FPP, MATLAB,
and MUST supports the correctness of the implementation. The method is, therefore, considered
sufficiently verified for use in the subsequent parametric study.
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The parametric study aims to answer the problem statement by investigating the effect of varying
structural parameters on the Gurit98m WTB model’s composite failure and buckling behavior. Key
structural parameters are identified by investigating which parameters most effectively enhance or
degrade resilience to failure and buckling. The chapter first presents the Gurit98m WTB model, briefly
outlining the geometry, materials, mesh, and load cases. Next, the methodology of the parametric
study is described along with the analysis settings. The results of the parametric study are presented,
followed by an overall comparison of parameters and a discussion of the results.

6.1 The Gurit98m model
Gurit98m is a 98-meter open-source horizontal-axis wind turbine blade model, jointly developed by
Gurit Wind Systems A/S and Blade3 ApS [Hermansen et al., 2025]. Gurit98m is developed for the
detailed structural design phase, where the outer geometry is fixed and the materials and layup may
be modified [Hermansen et al., 2025]. The blade is designed based on the guidelines provided by
DNV [DNV-GL, 2015, 2016]. Specifically, linear buckling is employed for the buckling analysis, and
maximum stress and maximum strain are used for fiber and inter-fiber failure assessment. Three
versions of the Gurit98m model are available on the GitHub repository, featuring one, two, and three
shear webs [Hermansen et al., 2024]. The blade featuring one shear web is used in this parametric
study. Additionally, Gurit98m is modeled with a prebend. The mesh used for the Gurit98m model is
presented in Figure 6.1.

(a) Front view. (b) Rear view.

(c) Side view.

Figure 6.1: The Gurit98m WTB model mesh and geometry. The global coordinate system is located
at the center of the root. The X-axis is positive from the pressure to the suction side. The Y -axis
is positive from the leading to the trailing edge, and the Z-axis is oriented in the spanwise direction,
orthogonal to the XY plane.
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Gurit98m is meshed with a total of 20977 elements, consisting of 20208 four-node linear shell elements
and 769 eight-node linear solid elements, named SHELL181 and SOLID185 in ANSYS, respectively.
The solid elements are used to model the glued section of the trailing edge. The rest of the model is
meshed using the linear SHELL181 elements. Linear shell elements are used instead of quadratic shell
elements for computational efficiency [Hermansen et al., 2025]. Full integration with incompatible
modes is included to enhance accuracy in modeling in-plane bending [ANSYS, 2024c, p. 691]. MITC
prevents out-of-plane shear locking [ANSYS, 2024e, p. 600-601]. The x-axis for the element coordinate
systems for the SHELL181 is oriented in the spanwise direction, positive towards the tip of the blade.
The z-axis is positive towards the blade’s center, and the y-axis is orthogonal to the xz-plane, referred
to as the hoopwise direction. The element coordinate systems are visualized in Figure 6.2.

y

z
x

Figure 6.2: Element coordinate system on the Gurit98m, rear view.

Results are saved at each layer’s top, middle, and bottom positions for the layered shell elements.
The shell elements feature section offset, which describes the location of the nodes in relation to the
shell thickness [ANSYS, 2024c, p. 1688]. The section offset extrudes the thickness towards the blade’s
center, ensuring the outer geometry remains unchanged.

Gurit98m includes E-Glass FRP and CFRP, epoxy adhesive, and PET foam [Hermansen et al., 2025].
GFRP and CFRP are used in UD non-crimp fabrics, where GFRP is also used for biaxial and triaxial
NCFs. The biaxial and triaxial NCFs are created of two or three types of UD laminae, oriented as
−45°/+45°/0° [Hermansen et al., 2025]. The UD NCFs are primarily used for the spar caps, whereas
biaxial and triaxial NCFs are utilized in the root to provide multi-directional strength. To account for
metal inserts used for connecting the WTB to the hub, the thickness of the biaxial and triaxial layers
is increased [Hermansen et al., 2025]. Recyclable PET foam is used as core material, which includes
densities of 150[kg/m3] (PET150) and 250[kg/m3] (PET250). PET150 is the primary core material,
whereas the higher density PET250 is solely used for the root section. Figure 6.3 presents the element
thickness and core thickness distributions.

(a) Element thickness [mm]. (b) Core thickness [mm].

Figure 6.3: Distribution of thickness on the Gurit98m model viewed from the pressure side.
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The material and strength parameters are consistent with those used in [Hermansen et al., 2025],
where the material parameters for the PET foams are based on Gurit Kerdyn [Gurit, f]. The remaining
material parameters originally derive from ESAComp 2016 and ANSYS Workbench version R1 2024
[ANSYS, b]. The material parameters are listed in Table 6.1.

Property GFRP CFRP GFRP Biaxial GFRP Triaxial PET150 PET250
E1 [GPa] 38.000 125.000 24.000 26.472 0.112 0.244
E2 [GPa] 9.000 8.000 24.000 10.073 0.112 0.244
ν12[GPa] 0.280 0.300 0.110 0.430 0.400 0.400
G12[GPa] 3.600 5.000 3.600 5.873 0.036 0.072
G23[GPa] 3.600 3.080 3.600 3.500 0.036 0.072
G13[GPa] 3.500 5.000 3.500 4.340 0.039 0.079

e1t 0.0245 0.0143 0.0108 0.0204 - -
e1c 0.0150 0.0097 0.0108 0.0137 - -
e2t 0.0037 0.0050 0.0108 0.0058 - -
e2c 0.0122 0.0146 0.0108 0.0118 - -
e12 0.0194 0.0160 0.0166 0.0186 - -
e23 0.0120 0.0120 0.0100 0.0114 - -
e13 0.0194 0.0160 0.0100 0.0166 - -

Xt [MPa] - - - - 1.63 2.61
Xc [MPa] - - - - 2.12 4.50
Yt [MPa] - - - - 1.63 2.61
Yc [MPa] - - - - 2.12 4.50
S12 [MPa] - - - - 1.26 1.76
S23 [MPa] - - - - 1.19 1.76
S13 [MPa] - - - - 1.19 1.76

Table 6.1: Materials used in Gurit98m, [Hermansen et al., 2025, p. 5].

Load cases
Along with the Gurit98m model, 12 load cases are provided in the GitHub repository [Hermansen
et al., 2024]. These load cases include partial safety factors according to [DNV-GL, 2016] [Hermansen
et al., 2025, p. 9]. These load cases represent design-driving extreme load cases, with LC 1, 4, 7,
and 10 corresponding to extreme flapwise and edgewise loading, while the remaining cases involve
multidirectional loading. The number and orientation of the load cases are consistent with DNV
guidelines, which state that a wind turbine blade may be evaluated based on 12 representative load
cases, where the envelope is equally distributed along all directions [DNV-GL, 2015, p. 15] [Hermansen
et al., 2025]. The Gurit98m normalized load case envelope is presented in Figure 6.4. The loads are
applied as nodal forces on the spar caps of the blade.
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Figure 6.4: Gurit98m normalized load case envelope, inspired by Fig. 1 in [Hermansen et al., 2025].

6.2 Methodology
The study is conducted as a univariate parametric analysis, meaning a single parameter is changed
at each analysis while all other parameters are kept at the base value. The benefit of performing
a univariate analysis as opposed to a multivariate analysis is time and computational resources. A
univariate analysis facilitates a more detailed study into each parameter and its isolated influence on
failure indices and buckling. However, interaction between varying parameters cannot be evaluated.
Laminate failure will be assessed using the maximum strain failure criterion. Puck’s action-plane
failure theory is formulated for UD lamina only, so it cannot be applied when the biaxial and triaxial
non-crimp fabrics are represented as single, homogenised plies. If those NCFs were instead modeled as
two or three distinct UD layers, each with the appropriate fiber orientation, the action-plane criterion
would be applicable. The parameters and variations used in the parametric study are presented in
Table 6.2.

Parameter Symbol Variations
Core thickness tC −20% / −10% / +10% / +20%
Transverse shear modulus G13 −50% / −25% / +25% / +50% / +100%
Transverse shear modulus G23 −50% / −25% / +25% / +50% / +100%

Table 6.2: Parameters and variations used in the parametric study. G13 and G23 refer to the transverse
shear moduli of the core.

PET is softer and weaker than balsa wood. Therefore, the thickness or stiffness must be larger to
enhance the buckling resistance. Considering the sandwich failure criteria in 2.3.3, the transverse
shear stiffness of the core material is a central parameter. The thickness of the core is directly present
in shear crimping, and indirectly in the core failure criterion via the stress and the assumption of
linear elastic materials.
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The variation range of the core thickness is selected to ensure a measurable change in max FI and γ
between analyses, without drastically changing the blade’s geometry. The variance of the transverse
shear moduli G13 and G23 has been chosen based on the stiffness parameters of the lowest and largest
densities for the Gurit Kerdyn PET foams, see [Gurit, e].

According to DNV, the load envelope may be defined as a bending moment distribution in the positive
and negative flapwise and edgewise directions, as an alternative to 12 load cases [DNV-GL, 2015, p. 15].
Consequently, due to the computational cost and time required per load case, LCs 1, 4, 7, and 10
are selected. Additionally, the multidirectional LCs 5 and 6 are chosen as they yielded the smallest
normalized buckling load factor of all 12 load cases in Fig. 6 in [Hermansen et al., 2025, p. 12].

As detailed in [Tønnesen and Christoffersen, 2025], a non-linear buckling analysis must be performed
to assess the structural response and buckling behavior of a WTB. The non-linear buckling analysis
presented in Chapter 3 and FPP presented in Chapter 4 are used as the analysis tool in the parametric
study. The difference in in-plane strain non-linearity factor εn

∆,GNL is chosen to detect local buckling,
as it provided valuable insight into the distribution of non-linear bending for both the SGRE Student
Blade and the Box-profile in [Tønnesen and Christoffersen, 2025, Ch. 4-5]. The truncation number
is selected based on the value set for analyzing the SGRE student WTB model in [Tønnesen and
Christoffersen, 2025, Ch. 5]. The analysis settings related to the non-linear buckling analysis are
presented in Table 6.3.

Analysis setting Nmax η λc j ζpert εc
∆,GNL ε∆,T N

Value 20 1 6 ·103 4 1 ·10−5 1 ·1014 4

Table 6.3: Non-linear buckling analysis settings. Nmax refers to the maximum number of load steps in
the base analysis, η is the external load multiplier, ζpert is the perturbation load factor, and λc is the
stopping criterion for the eigenvalue problem presented in Section 3. j is the number of eigenvalues
calculated in the non-linear buckling analysis, εc

∆,GNL is the critical non-linearity factor, and ε∆,T N

is the truncation number, relating to the filter and truncation of the results used to calculate εn
∆,GNL.

6.3 Baseline Analysis
The baseline analysis is the analysis of the Gurit98m WTB model, in its original configuration. This
analysis is a reference point for the influence of the different parameter variations. It will also be
used to present the capabilities of the non-linear buckling analysis and FPP, in addition to giving a
general understanding of the response of the blade with respect to failure and buckling. The history of
the buckling load factor γn will be presented, along with the relevant maximum non-linearity factors
max

(
εn

∆,GNL

)
and distributions of εNmax

∆,GNL. Envelope plots will be given for each failure criterion,
along with a combined envelope plot across all failure criteria. An envelope plot shows the maximum
failure index per element across all load cases.

Buckling
The buckling load factor γn with respect to the load step factor αn for all load cases and all load steps
are presented in Figure 6.5.

The edgewise load cases, LC 1 and LC 7, are observed to have a larger γn than the mixed and flapwise
load cases. The mixed LC 5 and the flapwise LC 4 exhibit the smallest γ1. An increased buckling
load is observed for all LCs with the increase of αn, with the most significant being for LC 4, yielding
γn→Nmax

LC4 = +32.35%. The mixed load cases, LC 5 and LC 6, are the most critical.
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Figure 6.5: Calculated buckling load factor γn plotted against increasing load.

Since LC 6 is the most critical, its mode shapes are investigated and presented in Figure 6.6.

(a) 1st mode shape of Load Case 6.

(b) 3rd mode shape of Load Case 6.

Figure 6.6: 1st and 3rd mode shapes for LC 6 at αNmax = 1.0. The mode shapes are visualized on the
deformed structure as a displacement vector sum.

The 1st mode shape is located near the blade’s root at the TE suction and pressure side shells. The
2nd mode shape is in the same location as the 1st mode shape, while the 3rd and 4th mode shapes are
located at the trailing edge, midway between the root and tip. None of the load cases bring the blade
close to buckling, as evidenced by the large γn in Figure 6.5. Consequently, negligible non-linearity
is observed in the magnitude of εNmax

∆,GNL. The maximum εNmax
∆,GNLfor each element direction is given in

Table 6.4.

LC1 LC4 LC7 LC10 LC5 LC6
max(εNmax

∆x,GNL) 1.000 1.114 1.000 1.114 1.114 1.055
max(εNmax

∆y,GNL) 1.073 1.182 1.105 1.268 1.200 1.182
max(εNmax

∆xy,GNL) 1.050 1.127 1.050 1.127 1.350 1.300

Table 6.4: Maximum difference in in-plane strain non-linearity factor at last load step for all load
cases.
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All max(εNmax
∆,GNL) are at or below 1.350, indicating a linear response compared with magnitudes up

to max(εn
∆,GNL) = 28 observed in [Tønnesen and Christoffersen, 2025, Ch. 5]. The distribution of

εNmax
∆,GNL shows the region of the blade experiencing non-linear bending. The distribution of εNmax

∆y,GNL

is presented in Figure 6.6. The distribution highlights non-linear bending in the same region as the
1st mode shape. The distribution of εNmax

∆x,GNL is scattered, with a few elements at the root having
larger values than one. The scattered distribution indicates an unsuitable truncation and filtering.
The distribution of the maximum values of the difference in in-plane shear strain non-linearity factors
εNmax

∆xy,GNL is mainly located at the leading edge 70[m] from the root.

Figure 6.7: εNmax
∆y,GNL for LC 6, load step 20. The εNmax

∆y,GNL is visualized on the undeformed structure.

Failure
Following the buckling analysis, the distribution and magnitudes of the failure indices for face sheet
wrinkling, shear crimping, core failure, and maximum strain are presented. The envelope plots for
all failure criteria are shown in Figures 6.8 and 6.9. The highest failure index is observed along
the trailing edge midway between the root and the tip for face sheet wrinkling, shear crimping, and
maximum strain. The highest failure indices for core failure are observed at the root in the transition
from laminate to sandwich layup. For all failure criteria, increased failure indices are observed at core
thickness transitions, see Figure 6.3b. Figure 6.10 presents the combined envelope plots indicating the
failure distribution. Generally, maximum strain is the active failure mode. However, shear crimping is
active in regions of core thickness transition and along the trailing edge in the transition from laminate
to sandwich.

(a) Envelope plot for face sheet wrinkling fw. (b) Envelope plot for shear crimping fsc.

Figure 6.8: Envelope plot of face sheet wrinkling and shear crimping for the baseline model. The
envelope plots are shown on the underformed structure. Only SHELL181 elements are plotted.
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(a) Envelope plot for core failure fcf . (b) Envelope plot for maximum strain fe.

Figure 6.9: Envelope plot of core failure and maximum strain for the baseline model. The envelope
plots are shown on the underformed structure. Only SHELL181 elements are plotted.

(a) Envelope plot for the baseline analysis. This shows the maximum FI across all failure criteria and LCs.

(b) Active failure mode for the baseline analysis.

Figure 6.10: Failure mode per element related to the maximum failure index in the envelope plot. The
active failure mode uses the following notation: 1 [Blue] = face sheet wrinkling, 2 [Turquoise] = shear
crimping, 3 [Green] = core failure, 4 [Red] = max strain.

Page 51 of 99



DMS4-3 6.4. CORE THICKNESS

6.4 Core Thickness
The first investigation in the univariate parametric study examines the influence of core material
thickness across the entire blade. The thicknesses of both PET150 and PET250 are varied. The core
thickness variations are defined in Table 6.2.

Buckling
The buckling load factor γNmax for all thickness variations is presented in Figure 6.11. The figure is
accompanied by Table 6.5 showing the percentage change in γNmax compared with the baseline results.
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Figure 6.11: Buckling load factor γNmax for varying core thickness at the last load step. Core thickness
variation = 0% corresponds to the baseline results.

tC LC1 LC4 LC7 LC10 LC5 LC6
−20% −1.9817 −10.6586 −18.2606 −9.9537 −21.7142 −14.6043
−10% 0.0700 −5.3771 −8.9170 −5.0282 −10.6353 −7.2482
+10% −0.0894 0.6390 8.4111 5.0906 6.8642 7.1699
+20% −0.1905 0.7379 14.7951 10.1973 7.0448 11.0626

Table 6.5: Percent change in γNmax compared to the baseline results tC = 0%.

The smallest γNmax across all load cases are observed at tC = −20%. The most significant decrease is
observed for LC 5, at −21.7142%. A less significant change is observed in the positive direction with
an increase of 0.306% from tC = +10% → +20%. The edgewise load case LC 1 has the largest γNmax

and is the least sensitive to the change in core thickness. Notably, the largest γNmax is observed at
tC = −10% for LC 1, whereas the smallest γNmax is at tc = −20%. The most significant increase in
γNmax is observed for the edgewise load case LC 7. LC 6 yields the smallest γNmax for all thickness
variations, making it the most critical load case regarding buckling. The effect on the mode shape of
LC 6 is investigated by comparing the 1st mode shape in the outer ranges of the variation. The 1st

mode shapes are visualized in Figure 6.12.
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(a) 1st mode shape of Load Case 6 with tC = −20%.

(b) 1st mode shape of Load Case 6 with tC = +20%.

Figure 6.12: The 1st mode shape of LC 6. Plotted on the deformed structure as a displacement vector
sum.

Compared with the 1st mode shape of the baseline analysis seen in Figure 6.6, reducing the core
thickness results in a larger buckling area in the same region at the beginning of the trailing edge.
The 1st four mode shapes of the reduced thickness variation are located around the beginning of the
trailing edge, with each mode shape slightly moving in the spanwise direction compared to the previous
mode shape. Reducing the thickness eliminates the mode shape further up the blade, concentrated
at the trailing edge, corresponding to the 3rd mode shape of the baseline analysis seen in Figure
6.6b. This mode shape is the 1st mode shape for tC = +20%. The 3rd mode shape of the tC = +20%
variation is similar to the 1st mode shape of the baseline analysis. Effectively, the distinctly different
mode shapes in the baseline analysis and for tC = +20% switch order.

Varying the core thickness does not significantly influence εn
∆,GNL. The distribution and magnitude

of all non-linearity factors remain mostly the same as the baseline analysis. Generally, a thinner core
results in more non-linearity, indicated by a larger magnitude and area with εn

∆,GNL > 1. Comparing
the magnitude of the outer ranges of variance for LC 6 indicates the magnitude of change in the non-
linearity factor. For tC = −20% max(εNmax

∆y,GNL) = 1.267 and for tC = +20% max(εNmax
∆y,GNL) = 1.182.
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Failure
The effect of varying core thickness on failure is presented in the following. The maximum failure
indices are presented for all variations of tC in Figure 6.13.

-20 -15 -10 -5 0 5 10 15 20

Core Thickness Variance [%]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

F
ac

e 
S

h
ee

t 
W

ri
n

k
li

n
g

, 
m

ax
(f

w
) 

[-
]

LC1

LC4

LC7

LC10

LC5

LC6

(a) Face sheet wrinkling.
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(b) Shear crimping.
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(c) Core failure.
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(d) Maximum strain.

Figure 6.13: Parameter plots illustrating the effect of varying core thickness on failure criteria. The
maximum failure index at the last load step is on the vertical axis.

The magnitude of max(fw) is generally unchanged except for LC 5, where a decrease of −0.019%
is observed from tC = −20% → +20%. This aligns with theory, as face sheet wrinkling should be
unaffected by the geometry [Zenkert, 2005, Sec. 6.9]. This is also apparent in equation (2.27), where
the thickness is not used to formulate the wrinkling stress. Shear crimping max(fe) is more affected
by the variation of core thickness, as is evident in equation (2.24). Generally, a thicker core results in
a smaller max(fsc). The inverse relation is observed for the core failure, where a thicker core leads to
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a larger max(fcf ). Similar to face sheet wrinkling, the maximum strain criterion max(fe) is largely
unaffected by variations in core thickness.

The effect of varying the core thickness on the failure distribution is visualized by plotting the max-
imum failure index for each failure criterion across all load cases. The distributions are plotted for the
minimum and maximum ranges of tC . The distribution of fw and fe is unchanged from the distribu-
tions seen in the baseline analysis. These plots are presented in Appendix G. The distribution of fsc and
fcf is presented in Figure 6.14. The same overall distribution is apparent across tC = −20% → +20%.
The largest fsc are located along the trailing edge. For fcf , the overall failure indices decrease as the
thickness increases. However, the maximum values close to the laminate-to-sandwich layup transition
increase.

(a) Envelope plot for shear crimping for tC = −20%. (b) Envelope plot for shear crimping for tC = +20%.

(c) Envelope plot for core failure for tC = −20%. (d) Envelope plot for core failure for tC = +20%.

Figure 6.14: Envelope plot for shear crimping and core failure with varying core thickness tC = −20%
and tC = +20%. The envelope plots are shown on the underformed structure. Note that the color bar
is kept constant across variations for each failure criterion. Only SHELL181 elements are plotted.

Comparing the overall effect of varying core thickness with the baseline analysis, envelope plots for the
maximum failure index across all failure criteria and load cases are presented in Figure 6.15. Figures
6.15a and 6.15b show the failure index, where Figures 6.15c and 6.15d indicate the active failure
modes. Maximum strain is the active failure mode throughout most of the blade, which is why the
distribution remains mostly unchanged when varying the core thickness. In Figures 6.15c and 6.15d,
shear crimping is the active failure mode in regions of thickness transition, with shear crimping being
the active failure mode in a larger area for tC = −20%.
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(a) Envelope plot for tC = −20%. This shows the maximum FI across all failure criteria and LCs.

(b) Envelope plot for tC = +20%. This shows the maximum FI across all failure criteria and LCs.

(c) Active failure mode for tC = −20%.

(d) Active failure mode for tC = +20%.

Figure 6.15: Failure mode per element related to the maximum failure index in the envelope plot. The
active failure mode uses the following notation: 1 [Blue] = face sheet wrinkling, 2 [Turquoise] = shear
crimping, 3 [Green] = core failure, 4 [Red] = max strain. Note that the color bar for the envelope
plots is kept constant across variations.

Page 56 of 99



DMS4-3 6.5. TRANSVERSE SHEAR MODULUS OF CORE

6.5 Transverse Shear Modulus of Core
The second and final variations for the parametric study are the transverse shear moduli G13 and
G23 of the core materials. All core materials have 0° rotation in relation to the element coordinate
system, meaning G13 and G23 are the transverse shear moduli in the spanwise and hoopwise directions,
respectively. Five variations are analyzed for both parameters. The increments for both moduli are
found in Table 6.2. Following the same structure as the variation of tC , the effect of varying the
transverse shear stiffness on γNmax and the 1st mode shape from the critical LC will be presented.
Thereafter, the effect on the sandwich and max strain failure criteria will be given, followed by envelope
plots providing insight into the failure distribution.

6.5.1 Transverse Shear Modulus G13

The buckling load factor at the last load step γNmax for each variance of shear modulus G13 is presented
in Figure 6.16, accompanied by Table 6.6 showing the percentage change from the baseline analysis.
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Figure 6.16: Buckling load factor γNmax for varying shear modulus G13. 0% variance corresponds to
the baseline results.

G13 LC1 LC4 LC7 LC10 LC5 LC6
−50% -14.555 -7.761 -20.159 -7.188 -28.845 -27.950
−25% -0.415 -2.927 -4.510 -2.626 -6.317 -4.148
+25% 0.810 1.253 3.276 2.022 4.003 3.491
+50% 1.506 1.909 5.571 3.554 6.570 5.984
+100% 2.660 2.986 8.589 5.726 9.006 9.323

Table 6.6: Percent change in γNmax compared to the baseline results.

The smallest γNmax is observed for G13 = −50% across all load cases. Notably, a significant decrease
in γNmax is present when G13 = −25% → −50% except for the flapwise load cases, LC 4 and LC
10. Compared with the baseline analysis, the most significant decrease is observed for LC 5 with
−28.845%.

The 1st mode shapes for LC 6, the most critical load case, are provided in Figure 6.17. The effect of
G13 is investigated by comparing G13 = −50% and G13 = +100%.
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(a) 1st mode shape of Load Case 6 with G13 = −50%.

(b) 1st mode shape of Load Case 6 with G13 = +100%.

Figure 6.17: The 1st mode shape of Load Case 6. Plotted on the deformed structure as a displacement
vector sum.

The 1st mode shape for the baseline analysis and G13 = +100% occurs in the same region, distributed
on both sides of the TE, towards the root section. In contrast, when G13 = −50%, the 1st mode
shape becomes significantly more localized on the TE suction side shell. This shift in deformation is
attributed to a reduction in transverse shear stiffness in the load-bearing sandwich shells. The change
in deformation mode occurs when the transverse shear stiffness is reduced from G13 = −25% → −50%,
which is also apparent by the sudden reduction of the γNmax , as seen in Figure 6.16 and Table 6.6.

The magnitude and distribution of the non-linearity factors are largely unaffected by varying the
transverse shear modulus G13. Generally, a softer core results in a larger magnitude and area with
εn

∆,GNL > 1. Notably, a significant change in distribution is not observed, contrary to the change in
the 1st mode shape for G13 = −50%.

The maximum failure indices for the transverse shear stiffness G13 variations are presented in Figure
6.18.
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(a) Face sheet wrinkling.
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(b) Shear crimping.
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(c) Core failure.
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(d) Maximum strain.

Figure 6.18: Parameter plots illustrating the effect of varying transverse shear modulus G13 on failure
criteria.

Increasing G13 yields a diminishing decrease in max(fw) and max(fsc). The variation has a larger
effect on shear crimping than face sheet wrinkling. The inverse proportionality is observed for core
failure max(fcf ). Similarly to the core thickness variation, the max(fe) is largely unaffected by varying
G13.

The envelope plots of shear crimping and core failure can be seen in Figure 6.19 for G13 = −50% and
G13 = +100%. The envelope plots for G13 = −25%/+25%/+50% are given in Appendix G.
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(a) Envelope plot for shear crimping for G13 = −50%. (b) Envelope plot for shear crimping for G13 = +100%.

(c) Envelope plot for core failure for G13 = −50%. (d) Envelope plot for core failure for G13 = +100%.

Figure 6.19: Envelope plot of shear crimping and core failure for G13 = −50% and G13 = +100%. The
envelope plots are shown on the underformed structure. Note that the color bar is kept constant across
variations for each failure criterion. Only SHELL181 elements are plotted.

The distribution of fw and fe is largely unaffected by varying G13. The max(fsc) for G13 = −50%
and G13 = +100% is located along the trailing edge midway between the root and the tip. When the
colorbar between G13 = −50% → +100% is not kept constant, but is set based on the maximum and
minimum failure indices for the respective analysis, the distributions are nearly identical across all
variations. The max(fcf ) increases in the transition between the laminate and sandwich sections in
the root, where the maximum values are located for all variations.

The overall effect of varying G13 is quantified in Figure 6.20. Comparing Figure 6.20a and Figure
6.20b, the maximum failure index is closer to the root for G13 = +100%, and the failure indices are
generally smaller. A significant shift in the active failure mode is observed. Shear crimping is active
in the majority of the sandwich panels for G13 = −50%, whereas maximum strain is active on most
of the blade for G13 = +100%. Notably, core failure is the active failure mode in the transition from
laminate to sandwich panel near the root.
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(a) Envelope plot for G13 = −50%. This shows the maximum FI across all failure criteria and
LCs.

(b) Envelope plot for G13 = +100%. This shows the maximum FI across all failure criteria and
LCs.

(c) Active failure mode for G13 = −50%.

(d) Active failure mode for G13 = +100%.

Figure 6.20: Failure mode per element related to the maximum failure index in the envelope plot. The
active failure mode uses the following notation: 1 [Blue] = face sheet wrinkling, 2 [Turquoise] = shear
crimping, 3 [Green] = core failure, 4 [Red] = max strain. Note that the color bar for the envelope
plots is kept constant across variations.
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6.5.2 Transverse Shear Modulus G23

The buckling load factor at the last load step γNmax for all variations of shear modulus G23 is presented
in Figure 6.21 and the associated percentage change from the baseline analysis is presented in Table
6.7.
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Figure 6.21: Buckling load factor at last load step γNmax for varying shear modulus G23. 0% variance
corresponds to the baseline results.

G23 LC1 LC4 LC7 LC10 LC5 LC6
−50% -0.289 -5.853 -7.007 -6.457 -8.172 -4.134
−25% -0.100 -2.187 -2.326 -2.433 -2.947 -1.444
+25% 0.477 0.966 1.987 1.837 2.432 1.818
+50% 1.070 1.539 3.449 3.211 4.272 3.201
+100% 2.039 2.467 5.410 5.132 6.736 5.091

Table 6.7: Percent change in γNmax for 1st mode shape compared to the baseline results.

The same tendency as the previous parameters is observed. The smallest γNmax is observed for
G23 = −50% across all load cases. LC 5 is the most sensitive to varying G23 with a decrease of
−8.172% for G13 = −50% and an increase of 6.736% for G13 = +100%. LC 6 is the most critical with
the smallest γNmax . The 1st mode shape of LC 6 is presented in Figure 6.22 for the outer ranges of
the variation.
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(a) 1st mode shape of Load Case 6 with G23 = −50%.

(b) 1st mode shape of Load Case 6 with G23 = +100%.

Figure 6.22: The 1st mode shape of Load Case 6. Plotted on the deformed structure as a displacement
vector sum.

A low sensitivity to changes in transverse shear stiffness G23 is also evident in the 1st mode shapes,
which remain nearly unchanged across the baseline, G23 = −50%, and G23 = +100% configurations.
However, a slight tendency of increased localization in the deformation mode is observed as G23
increases.

Similarly to varying G13, the magnitude and distribution of the non-linearity factors are largely unaf-
fected by varying G23. Generally, a softer core results in a larger magnitude and area with εn

∆,GNL > 1.

The parameter plots for face sheet wrinkling max(fw), shear crimping max(fsc), core failure max(fcf ),
and maximum strain max(fe) for all variations of G23 are presented in Figure 6.23. Varying G23 has
a low influence on the maximum failure indices for face sheet wrinkling, core failure, and maximum
strain. An exception is observed for max(fw) in LC 4, where an increase in transverse shear stiffness
G23 corresponds to a decrease in max failure index. For shear crimping, G23 has a large influence
on the edgewise LC 7 and the mixed LCs 5 and 6, where the failure index decreases from G23 =
−50% → +100%. The flapwise LC 4 experiences a significant reduction in maximum failure index from
G23 = −50% → −25%, however, it is mostly constant when increased beyond −25%. The edgewise
LC 1 and flapwise LC 10 are largely unchanged for all variations of G23.
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(a) Face sheet wrinkling.
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(b) Shear crimping.
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(c) Core Failure.
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(d) Maximum strain.

Figure 6.23: Parameter plots illustrating the effect of varying transverse shear modulus G23 on failure
criteria.

The envelope plots for shear crimping and core failure when G23 = −50% and G23 = +100% are
presented in Figure 6.24.
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(a) Envelope plot for shear crimping for G23 = −50%. (b) Envelope plot for shear crimping for G23 = +100%.

(c) Envelope plot for core failure for G23 = −50%. (d) Envelope plot for core failure for G23 = +100%.

Figure 6.24: Envelope plot of shear crimping and core failure for G23 = −50% and G23 = +100%. The
envelope plots are shown on the underformed structure. Note that the color bar is kept constant across
variations for each failure criterion. Only SHELL181 elements are plotted.

The insensitivity of the failure criteria to variations in G23 is evident in the envelope plots for shear
crimping and core failure. The overall distribution remains almost identical when the transverse shear
stiffness varies between G23 = −50% and G23 = +100.

Little overall effect on magnitude and distribution is observed by varying G23 as evident in the envelope
plots in Figure 6.25. The maximum failure index moves closer to the root. The active failure criterion
is mostly maximum strain with shear crimping at the transition from laminate to sandwich panels in
the root and along the trailing edge.
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(a) Envelope plot for G23 = −50%.

(b) Envelope plot for G23 = +100%.

(c) Active failure mode for G23 = −50%.

(d) Active failure mode for G23 = +100%.

Figure 6.25: Envelope plot and corresponding failure mode for the G23 = −50% and G23 = +100%
configurations. The envelope plot depicts the failure mode related to the maximum failure index in
the envelope plot: 1 [Blue] = face sheet wrinkling, 2 [Turquoise] = shear crimping, 3 [Green] = core
failure, 4 [Red] = max strain. Note that the color bar for the envelope plots is kept constant across
variations.
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6.6 Comparison of Parameters
The effect of each parameter is compared by considering each load case separately in heat maps. The
normalized analysis metrics, i.e., the maximum failure indices across all elements and the buckling load
factor γNmax , are plotted against the variations of each parameter. This provides a visual overview for
comparing across parameters. The same color bar is used to compare across heat maps. The analysis
metrics are normalized with the baseline analysis using equation 6.1.

fnorm = fmetric −fbase

fbase
·100 (6.1)

Here, fnorm is the normalized analysis metric, fbase is the baseline result. The edgewise (LCs 1 and
7), flapwise (LCs 4 and 10), and mixed load cases (LCs 5 and 6) are presented in Tables 6.8 and 6.9.
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Table 6.8: Heat maps of normalized analysis metrics for edgewise load cases. The color represents
percentage change according to equation (6.1).
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Core Thickness tc Shear Modulus G13 Shear Modulus G23
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Table 6.9: Heat maps of normalized analysis metrics for the flapwise and mixed load cases. The color
represents percentage change according to equation (6.1).
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6.7 Discussion of the Parametric Study
This chapter presented a univariate parametric study on the Gurit98m WTB model. The effect of
varying structural parameters related to the core material on the composite failure and buckling
behavior was investigated. Six load cases were applied to asses the response of the blade under
different loading conditions. The chosen parameters were core thickness tC and the core transverse
shear moduli G13 and G23. The effect of varying the parameters was compared with a baseline analysis.
The buckling behavior was quantified in the γNmax and the mode shape of the most critical load case.
Failure was assessed using face sheet wrinkling, shear crimping, core failure, and maximum strain
failure criteria.

The non-linear buckling analysis of the baseline configuration showed an increased γn with increased
loading across all load cases. The Gurit98m model was originally designed considering linear buckling.
Following the DNV guidelines, the buckling load factor must be larger than 1.96 for a linear buckling
analysis, while a non-linear analysis only requires γNmax > 1.65, as described in Section 2.4. The
reduction in required safety factor and the increased γNmax indicate a potential for significant weight
reduction if non-linear buckling were used in the design process. Load Case 6 consistently emerged as
the most critical with respect to buckling failure, exhibiting a mode shape localized along the trailing
edge across all parameter variations. All LCs loaded toward the trailing edge have a significantly
lower γNmax compared to LC 1, which is loaded towards the LE. This suggests that the leading edge
is generally less susceptible to buckling. Placing the LE and TE under compression can be simplified
to shells under axial compression, where the LE has a larger curvature than the TE shells. This
aligns with the findings in [Kettner, 2020, Ch. 2], where a positive correlation is observed between the
curvature and γn. The envelope plots show that the highest failure indices are concentrated along the
trailing edge, particularly in the mid-span region where the structural layup transitions from laminate
to sandwich. See Figures 6.15, 6.20, 6.25. Additionally, elevated failure indices are observed near the
root region of the trailing edge, in the area where the solid elements that provide added stiffness to
the trailing edge come to an end. The increased failure indices in this region may be explained by a
stress concentration arising due to the difference in stiffness when the blade is subjected to loading
toward the trailing edge.

Effect of Core Thickness tC

A general trend of proportionality between γNmax and tC was observed. LC 1 yielded the largest
γNmax for all variations, with a low sensitivity. A ±20% change in tC altered γNmax by only −1.98% to
+0.07%. The variation tC = +20% yielded a mode shape corresponding to the 3rd mode shape in the
baseline analysis for LC 6. This may be attributed to an enhanced ability of the TE shells near the
root to resist buckling. A low sensitivity to tC is observed for face sheet wrinkling. This aligns with
equation (2.27), as the geometry of the core material is not included in calculating the wrinkling stress
σw. An inverse proportionality is observed between tC and the max(fsc) for all load cases, owing to
the linear dependence of the allowable shear-crimp force resultant Nsc on tC , see equation (2.24). The
max(fcf ) increased locally with increasing tC in the transition between the laminate and sandwich
layup at the root. A possible explanation is a stress concentration forming due to an increased stress
gradient. However, as the core becomes thinner, the transverse shear stress increases, and the failure
index increases from tC = −10% → −20%. The thickness of the core material generally has a low
influence on the max(fe), because the face sheets carry most of the in-plane loading, regardless of the
thickness of the core.

Effect of Shear Modulus G13
The buckling load factor γNmax exhibits low sensitivity to variations in G13 over the interval G13 =
−25% → +100%. The variation G13 = −50% revealed a significant decrease in γNmax for all load cases
except for the flapwise load cases, LC 4 and LC 10. This is likely because flapwise bending is primarily
carried by the spar caps, unaffected by changes in core shear stiffness. The considerable decrease in
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γNmax is accompanied by a pronounced localization of the 1st mode shape in LC 6. Increasing G13
yielded lower max(fw) and max(fsc). A greater influence of G13 on max(fsc) compared to max(fw)
is observed, which is consistent with equations (2.24) and (2.27), where the transverse shear modulus
appears to the first power in the shear crimping expression and to the one-third power in the face
sheet wrinkling expression. The transition from a laminate to sandwich layup in the root experiences
a significant increase in fcf with increasing G13. This is also evident in Figure 6.20d. The variation
of G13 minimally influenced max(fe). The significant sensitivity G13 has on shear crimping is evident
for the active failure modes in Figure 6.20c and 6.20d, where the active failure mode goes from shear
crimping dominated to primarily maximum strain with increasing G13.

Effect of Shear Modulus G23
G23 represents the transverse shear stiffness in the hoop direction. A low influence is observed for the
γNmax and mode shapes for all variations of G23. This is also the case for the failure indices, which
are nearly unaffected by the reduction of G23. An exception is observed for LCs inducing compression
in the trailing edge, i.e., 5, 6, and 7 for shear crimping.

Relative Parameter Importance and Recommendations
The heat maps in Table 6.8 and Table 6.9 confirm that G13 is the dominant core parameter, followed by
thickness tC . G23 has limited influence for the load cases considered. Designers seeking to replace balsa
with PET foam as core material in WTBs should prioritize enhancing the transverse shear modulus
in the wind turbine blade’s spanwise direction before increasing the core thickness. Enhancing the
transverse shear stiffness G13 by using higher-density foams or increasing the core thickness would,
however, increase the weight of the blade. The most favorable stiffness-to-weight trade-off is achieved
by selectively enhancing G13 while allowing a modest reduction in G23.

Parametric Study - Limitations
As discussed in Section 2.2.3, the assumptions of the eigenvalue buckling analysis based on linear
perturbation become more accurate as the analysis approaches the stability point, thereby improving
the accuracy of the approximated buckling load. This, however, requires a large number of load
steps to ensure numerical stability of the non-linear buckling analysis presented in Chapter 3. The
computational costs associated with increasing the number of load steps made loading the blade to
the stability point infeasible. Consequently, the structure was subjected to the full loading defined by
each load case to assess its response under the prescribed extreme conditions. However, this approach
may not yield accurate results, as loading the structure beyond FPF can misrepresent its actual
performance [Jones, 1999, p. 251]. The parametric study included only six of the twelve available
load cases. Only LC 1 loads the structure towards the leading edge for the considered load cases. To
adequately assess the performance of the leading edge, it is necessary to incorporate all twelve load
cases.

Shear crimping and max strain yielded the most dominant failure modes for all variations. While the
maximum strain failure criteria is sufficient in assessing fiber failure, other criteria should be applied for
determining inter-fiber failure, such as the quadratic or physical failure criteria, presented in Section
2.3.2, [DNV-GL, 2015] [Puck and Schürmann, 2002]. DNV recommends either Puck’s action plane or
LaRC03 failure criteria [DNV-GL, 2015, p. 33]. Additionally, according to ACP, the shear crimping
factors kC and kF should be determined experimentally to accuracy asses shear crimping failure for
the specific material and application [ANSYS, 2024a, p. 416].
Accurate failure assessment in the trailing edge, leading edge, and connection from the shear web to
the outer shells requires detailed models, which the Gurit98m does not include [Hermansen et al.,
2025, p. 5]. Moreover, although the core thickness variations do not result in significant changes in
geometry, the feasibility of details such as ply drops and transitions from laminate to sandwich layup
is not accounted for in the varied configurations. This may limit the accuracy of localized failure
predictions in the transitional regions.
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Discussion of the verification and parametric study results is provided in Section 5.5 and 6.7, re-
spectively. This chapter considers the implications of the non-linear buckling analysis with integrated
laminate failure criteria and the implemented post-processing of sandwich failure criteria in a broader
context. Additionally, potential improvements and directions for future work are addressed.

Broader Context
Post-processing of sandwich and laminate failure criteria accompanying a non-linear buckling analysis
in ANSYS represents a step toward enabling the transition from balsa wood to recyclable polyethylene
terephthalate (PET) foam for sandwich structures in wind turbine blades. The developed numerical
framework is well-suited for the detailed design phase, offering an accurate assessment of buckling and
first ply failure in large composite structures. Compared to progressive damage models, its relatively
low computational demand enhances its accessibility for industrial applications, where extensive simu-
lation capabilities may be constrained. Moreover, the developed analysis tool holds potential for core
material manufacturers, like Gurit, in designing materials tailored explicitly to wind turbine blades.

The parametric study demonstrated that core thickness and spanwise transverse shear stiffness sig-
nificantly influence structural performance with respect to buckling and sandwich failure. Different
variations of the structural parameters demonstrated a shift in the dominant failure mode from lam-
inate to sandwich failure. This highlights the importance of incorporating sandwich failure criteria
in WTB design, as the influence of these parameters was minimal when considering laminate failure
alone. Although this study focused exclusively on transverse shear stiffness and core thickness, the de-
veloped framework may also be extended to investigate additional parameters and regions of interest,
further supporting material, and blade design advancements.

Improvement and Future Work
Despite the strengths of the developed analysis tool, areas of improvement have been identified. This
section addresses potential enhancements to the APDL-based non-linear buckling analysis and the
Fortran Post-Processing (FPP) implementation.

The non-linearity factors were introduced to identify the onset and location of local buckling within the
structure by measuring non-linear bending across all elements. By highlighting regions where local
buckling initiates, these factors provide insight into areas that have experienced a loss of stiffness,
leading to stress redistribution. This can lead to elevated stresses in other parts of the structure,
potentially resulting in composite failure. While FPF may indicate which regions where loading
exceeds material limits, the non-linearity factors can help identify regions that should be prioritized
when reinforcing the structure.

Initially, the non-linearity factors were intended to serve as stopping criteria for the Newton–Raphson
based analysis, described in Chapter 3. To this end, the factors are computed at each load step and
compared to a user-defined critical non-linearity factor. However, as demonstrated by [Tønnesen and
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Christoffersen, 2025], the values of the non-linearity factors are highly sensitive to the truncation num-
ber, which introduces unreliability. Consequently, the truncation number must be selected carefully
based on preliminary analyses for the specific application [Tønnesen and Christoffersen, 2025]. A more
robust application could involve post-processing the non-linearity factors across substeps, thereby re-
ducing the method’s sensitivity to the truncation number and number of load steps at the beginning
of the analysis.

The Newtown-Raphson based analysis employs constant load increments, defined by αn = n
Nmax

. This
approach requires many load steps to sufficiently approximate the buckling load factor γn near the
stability point. Implementing adaptive load stepping would significantly reduce the computational
cost of the developed analysis tool by applying progressively smaller step sizes as the analysis reaches
closer to the stability point. The load factor for load stepping αn+1 could be dynamically adjusted
based on the approximated buckling from the previous load step λn

1 .

Discrepancies in face sheet wrinkling predictions between FPP and ACP were observed, likely origin-
ating from differences in stress evaluation methodologies. In the FPP routine, face sheet stresses are
computed by averaging nodal values from the top, bottom, and mid-plane of all laminae, using the
ETABLE command, which returns element-averaged nodal data [ANSYS, 2024b, p. 688–689], [ANSYS,
2024c, p. 52]. Alternative approaches to stress evaluation may be explored to improve fidelity, such
as averaging integration point values or using the maximum integration point value. Ultimately, the
choice of method should be guided by comparison with experimental data.

The current analysis method does not include transverse normal stress σ3 as part of calculating the
core failure criterion described in 2.3.3. Although σ3 is not part of FSDT used to formulate the four-
node linear shell element SHELL181, interlaminar normal stresses can be post-processed [ANSYS,
2024a, p. 387- 388]. Retrieving interlaminar stresses can also facilitate the implementation of adhesive
failure criteria, see [ANSYS, 2024a, p. 417]. Moreover, fatigue is not included in the current analysis
method. Due to the dynamic nature of the operational loads acting on WTBs, this is an important
failure mode to consider. This is evident in the design guidelines [DNV-GL, 2015, p. 35].
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The overall aim of the thesis is encapsulated in the problem statement, reprinted for convenience:

How can composite failure criteria be implemented to accompany a non-linear buckling analysis in
identifying the key structural parameters relevant to replace balsa wood with PET foam as the core

material in Gurit98m?

The implementation of composite failure criteria accompanying a non-linear buckling analysis is mo-
tivated by the accurate assessment of failure when replacing balsa wood with PET foam. Identifying
key structural parameters is motivated by facilitating advancements in PET foam as a core material.
This requires identifying the material parameters that most effectively enhance the failure resistance
of wind turbine blades.

To facilitate the accurate assessment of failure in WTBs, the structural layout of wind turbine blades,
buckling, and composite failure was researched. This research identified face sheet wrinkling, shear
crimping, and core failure as the most relevant sandwich failure criteria. The analysis method de-
veloped in [Tønnesen and Christoffersen, 2025] was expanded to accommodate multiple load cases and
export element stresses, force resultants, and laminate failure indices. The selected sandwich failure
criteria were implemented in Fortran as a post-processing routine. The routine identifies sandwich
elements and conducts constitutive modeling of the top and bottom face sheets and the core, based
on FSDT. Care was taken to ensure numerical accuracy, including consideration of round-off errors
associated with double-precision arithmetic.

The implementation was verified against multiple reference solutions: an analytical FSDT-based MAT-
LAB model with sandwich failure criteria, AAU’s in-house software MUST, and the commercial FEA
tool ACP. A series of five verification examples, comprising three layup configurations and four load-
ing scenarios, confirmed the implementation’s accuracy. Identical results were achieved for the two
simplest cases across all analysis tools. Strong agreement with MUST was observed in all cases. Minor
discrepancies with ACP were observed. The source of the discrepancy was investigated. The discrep-
ancy in face sheet wrinkling was thought to stem from the determination of the stress acting on the
face sheets, while shear crimping deviated due to the round of errors associated with small numbers.

A univariate parametric study was conducted to identify key structural parameters for effectively
replacing balsa wood with PET foam in the Gurit98m WTB model. Six representative load cases
were analyzed while systematically varying the core thickness and transverse shear moduli G13 and
G23. The results showed that G13 had the most pronounced impact on the buckling load factors and
failure indices, followed by core thickness. Conversely, G23 exhibited negligible influence. Additionally,
the structural parameters had an inconsequential effect on the laminate failure criteria.

In conclusion, this thesis has demonstrated that implementing composite sandwich failure criteria with
a non-linear buckling analysis provides a framework for assessing structural performance relevant for
replacing balsa wood with PET foam in wind turbine blades. The implementation enables evaluation
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of buckling and sandwich failure behavior in large composite structures. The univariate parametric
study identified the transverse shear modulus in the spanwise direction (G13) as the most influential
structural parameter, followed by core thickness. These findings provide recommendations for future
material design and underscore the importance of incorporating sandwich failure criteria in wind
turbine blade design.
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A|Digital Appendix

The digital appendix includes the non-linear buckling analysis developed in APDL, along with the
relevant .f90 fortran source files that were created or modified from the original FPP framework
provided by Professor Erik Lund. The appendix also contains the verification models and boundary
condition input files described in Chapter 5, as well as the Gurit98m model in APDL code, with
boundary condition files corresponding to load cases: 1, 4, 5, 6, 7, and 10. The Gurit98m boundary
condition files have been modified to be compatible with the non-linear buckling analysis in APDL.
Scripts developed in MATLAB and APDL for the sole purpose of visualizing results and data are not
included. Further details can be found in the accompanying README.txt file. An overview of the
digital appendix contents is shown in Figure A.1.

Input files for non-linear
buckling analysis in

APDL

Input files for printing
composite failure data for

post-processing

DMS4-3.zip

- README.txt

APDL

- arc_bypass.inp
- arc_length_analysis.inp
- delete_arrays.inp
- esel.inp
- initialize.inp
- main.inp
- mod_writefile.inp
- non_lin_criterion_1st_eqv.inp
- non_lin_criterion_curvature.inp
- non_lin_criterion_moment.inp
- non_lin_criterion_normal_diff.inp
- nr_analysis.inp
- nr_analysis_setup.inp
- post_eplot.inp
- post_proc.inp
- stress_fortran.inp
- forceresultant_fortran.inp
- maxstrain_fortran.inp

FPP

- ANSYSPostProc.f90
- MUST_PostProc.f90
- Types.f90
- PostProc.f90

Models_and_BC

- Gurit98m.inp
- SP.inp
- CP.inp
- AP.inp
- ...

Figure A.1: Digital appendix overview.
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B|Classical Sandwich Theory

As stated in Section 2.1.1, the response of sandwich structures can be analyzed using the ESL theory
CST. The face sheets are assumed to be much stiffer than the core, which means that the in-plane
stresses in the core are negligible [Lund et al., 2024, Prt. 9]. The face sheets are assumed to be thin
compared to the core. Consequently, the faces are in plane stress, i.e., the transverse stresses are
negligible. Figure B.1 illustrates the effect of the assumptions and approximations on the stress field.
The example features a beam with one pinned support and one roller support at each end, subjected
to a distributed load q. The face sheets and core are both isotropic and homogeneous.

N

Top face sheet

No approximations EF≫EC

EF≫EC

V

M

tC≫tF & EF≫EC

tC≫tF & EF≫ECNo approximations

EFt

EC

EFb

tC

tFb

tFt

q

Bottom face sheet

Core

Figure B.1: Graphical representation of the simplifying approximations in classical sandwich theory.
Figure is inspired by figure in [Lund et al., 2024, Prt.9 p. 48] and Figure 3.4 in [Zenkert, 2005].
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C|Filter and Truncation

Depending on the specific problem and the size of the initial load step, the result may be of a small
magnitude. While numerical noise typically causes slight variations, the relative change can become
significant when the response is small. This may result in an erroneously significant non-linearity
factor for a response that should remain linear. In this case, Numerical noise refers to unintended
fluctuations caused by numerical precision or round-off errors [Tønnesen and Christoffersen, 2025].
One way to address this issue is to apply truncation to the results before calculating the non-linearity
factors.

Truncation in APDL is achieved by using the modulus function: MOD [ANSYS, 2024b, p. 1724].

MOD(X,Y ) = X −Y ·
⌊

X

Y

⌋
(C.1)

Here, ⌊ ⌋ denotes a floor function, which returns the nearest integer less than or equal to the input.
Consequently, when Y = 1, equation (C.1) yields the decimal portion of X. This value can then be
used to truncate results based on a user-defined truncation number χT N , achieved with equation (C.2)
[Tønnesen and Christoffersen, 2025, p. 23].

Xtruncated = X − MOD(X ·10χT N ,1)
10χT N

(C.2)

Truncating results can introduce certain issues. If the magnitude of the reference result χref is smaller
than 10−χT N , the truncation yields 0. This yields division by zero in equation (2.16). Additionally,
because truncation disregards decimal values beyond the specified truncation number, minor changes
in input can produce abrupt changes in output when χn ≈ 10−χT N . This is addressed by introducing
a magnitude filter, where only large enough results are evaluated [Tønnesen and Christoffersen, 2025].
When the result χref ≤ 10−χT N +1, the element is classified as linear, i.e., χGNL = 1.
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D|Puck’s Action Plane Failure Criterion

Puck’s action plane failure criterion distinguishes between the methods for assessing FF and IFF. FF
is dominated by loading in the direction of the fibers. This means that for a UD lamina, interaction
between stresses can be neglected, meaning the classical failure criteria are sufficient to asses FF [Puck
and Schürmann, 2002]. Consequently, the max stress criterion is used for calculating FF with Puck’s
failure criteria in APDL [ANSYS, 2024e, p. 23]. Puck’s criteria assume the matrix fractures like a
brittle material [Puck and Schürmann, 2002]. IFF, based on a modified Mohr’s fracture hypothesis for
transversely isotropic materials, states that only the normal and shear stresses on the fiber fracture
plane, or action plane, cause fracture [Puck and Schürmann, 2002, p. 1644]. In addition to the
strength parameters seen in Figure 2.9, four additional inclination parameters are required relating
to IFF [ANSYS, 2024a, Puck and Schürmann, 2002]. Puck’s action plane failure criterion consists of
three IFF modes with the fracture plane parallel to the fiber direction. The three IFF failure modes
with associated forces are visualized in Figure D.1.

3

2

1

(a) Mode A (b) Mode B (c) Mode C

Figure D.1: Puck’s action plane failure criterion’s three IFF failure modes on a lamina under in-plane
loading. Figure inspired by [ANSYS, 2024e, p. 400].

Modes A and B feature a fracture plane perpendicular to σ2, related to the coordinate system in D.1a.
Mode A is caused by tensile and/or shear stress acting in the fracture plane. The fracture surfaces
tend to separate from each other, as the normal stress σ2 lies perpendicular to the fracture plane,
and the load is transferred to the adjacent material in the vicinity of the crack [Puck and Schürmann,
2002]. In mode B, a shear-dominated failure occurs, together with an associated compressive load
as seen in Figure D.1b. An inclined fracture plane is observed in mode C, i.e., θF P ̸= 0. This is
caused by the combined shear and normal stresses acting on the fracture plane [Puck and Schürmann,
2002, p. 1640]. For pure compression, the fracture plane angle was found to be |θF P | ≈ 53° ± 3°. For
relatively thick laminates with large fracture plane angles of at least θF P ≈ ±35° to ±45°, forces acting
in the thickness direction cause a wedge effect, which may lead to laminate delamination [Puck and
Schürmann, 2002, p. 1641]. Puck’s action plane failure envelope can be seen in Figure D.2.
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θFP

θFP = 0°

θFP = 0° θFP ≠ 0°

θFP = ± 40°

θFP = ± 50°

3

2

Mode B

Mode A

Mode C τ21

σ2
θFP = ± 51°

Figure D.2: Puck’s action plane failure envelope for IFF, inspired by Figure 5.6 in [ANSYS, 2024e,
p. 400].
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E|Verification Figures

Failure indices distribution for the SP model for face sheet wrinkling and shear crimping are presented
in the following Figures.

(a) Face sheet wrinkling. (b) Shear crimping.

Figure E.1: Face sheet wrinkling and shear crimping failure indices for SP subjected to uniaxial com-
pression
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F|Investigation of Cross Ply Discrepan-
cies

This chapter investigates the discrepancies observed in the failure indices calculated by ACP and FPP
in the analysis of the cross ply under biaxial loading.

The difference in distribution of shear crimping between ACP and FPP is investigated. The force
resultants calculated with a middle offset for the center element are presented in Table F.1.

Nx Ny Nxy Mx My Mxy Qx Qy

ACP -100.00 -100.00 −1.3859 ·10−9 0.0000 −7.8160 ·10−14 4.1359 ·10−25 0.000 0.000
FPP -100.00 -100.00 −1.6411 ·10−14 - - - - -

Table F.1: Force resultants extracted from ACP and FPP. The "-" indicates these force resultants are
not extracted from APDL.

Determining the principal orientation with equation (4.3), will yield θp = 45° if Nxy ̸= 0. Determining
the orientation of the ξη-coordinate system using the procedure described in Section 4.1 produces
θp = 0° because Nx = Ny and |Nxy| < 10−8. Overwriting the procedure and manually setting θp = 45°
in FPP results in fsc = 0.2222. This equates to the lowest IRF in Figure 5.7a.

The discrepancy in face sheet wrinkling is investigated by comparing the stress through the thickness,
principal stresses, and constitutive modeling relating to face sheet wrinkling. The stress through the
thickness is verified by comparing ACP and FPP to the analytical solution in MATLAB. The stress
is extracted from ACP using the Sampling Points tool. The stress calculated by ACP, FPP, and
MATLAB is plotted in Figure F.1. The stress is also tabulated in Table F.2 to present the stress more
accurately.
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(a) In-plane stress in material dir-
ections extracted from ACP, plotted
through the thickness.
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(b) In-plane stress in material dir-
ections extracted from FPP, plotted
through the thickness.
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(c) In-plane stress in material dir-
ections calculated using MATLAB,
plotted through the thickness.

Figure F.1: In-plane stress in the material coordinate system of element one through the thickness.

Top Face Sheet Core Bottom Face Sheet

ACP σ1 -37.6077 -0.17003 -37.6077
σ2 -10.6920 -0.17003 -10.6920
τ12 ±3.10296 ·10−14 −3.10296 ·10−16 ±3.10296 ·10−14

FPP σ1 -37.6077 -0.17003 -37.6077
σ2 -10.6920 -0.17003 -10.6920
τ12 ±1.09697 ·10−15 9.53891 ·10−18 ±1.09697 ·10−15

MATLAB σ1 -37.6077 -0.17003 -37.6077
σ2 -10.6920 -0.17003 -10.6920
τ12 0.00000 0.00000 0.00000

Table F.2: Layer stress components σ1, σ2, and τ12 at the top position of the top face sheet, core, and
bottom face sheet from ACP, FPP, and MATLAB. Only one position in each ply group is tabulated
because the stress components are constants through the thickness of each ply group. Extracted for the
center element. The ± indicates that the shear stress for the 0° layers is negative, while the stress for
the 90° layers is positive.

In FPP and MATLAB, the stress applied to the face sheets is calculated using equation (4.1). Inter-
mediate stress calculations cannot be obtained in ACP, so this comparison cannot be made. The face
sheet stresses calculated in FPP and MATLAB are presented in Table F.3.

The subsequent calculation involves determining the principal stress of the face sheets. The magnitude
of the principal stress for each layer can be extracted in ACP with the Sampling Points tool. The
principal stresses are tabulated in Table F.4.

A difference is observed between ACP and FPP because the stress is described with different coordinate
systems. A comparison can only be made if the direction of the principal stresses is known.
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FPP MATLAB

σx σy τxy σx σy τxy

Ft, Fb -24.1498 -24.1498 0.00000 -24.1498 -24.1498 0.00000

Table F.3: In-plane stress components σx, σy, and τxy in top and bottom face sheets (Ft, Fb) from
FPP and MATLAB.

ACP FPP MATLAB

σ1p σ2p σ1p σ2p σ1p σ2p

Ft, Fb -10.6920 -37.6077 -24.1498 -24.1498 -24.1498 -24.1498

Table F.4: Comparison of principal stresses σ1p and σ2p in the top and bottom face sheets (Ft, Fb)
from ACP, FPP, and MATLAB. The stress in ACP is based on {σ123}, whereas FPP and MATLAB
are based on {σxyz}.

The principal stress orientation is visualized using the Vector Principal Stress tool in Figure F.2.

(a) Layer 1 (b) Layer 2

Figure F.2: Principal directions for CP in layer one and layer two for LC 2.

The principal orientation is observed along the global X and Y -directions, which coincide with the
element coordinate systems for the verification analyses. Describing the principal stresses in the
element coordinate system and averaging with the number of layers gives σavg

1p = (−37.6076 ·2−10.6920 ·
2)/4 = −24.1498. Consequently, identical stress results are calculated in ACP, FPP, and MATLAB.
The ξη-system coincides with the element coordinate system for a biaxial load case, as is evident
from equation (4.3). Consequently, θξ1 calculated in FPP and MATLAB is 0° for layers one and four
together with the core and 90° for layers two and three. The engineering constants in the ξη-coordinate
system are compared between ACP and FPP by modeling only the face sheet in ACP and extracting
the laminate engineering constants. These are identical, as presented in Table F.5.
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EF,ξ EF,η νF,ξη νF,ηξ GC,ξζ GC,ηζ

FPP 23669.3 23669.3 0.1072 0.1072 39 36
ACP 23669.3 23669.3 0.1072 0.1072 - -

Table F.5: Laminate engineering constants in ξη-coordinate system from FPP and ACP. The sub-
scripts F and C refer to face sheet and core respectively.

An alternative approach for determining face sheet stresses, in contrast to averaging the lamina face
sheet stresses as described in Chapter 4, is: "IRF (Inverse Reserve Factor) calculation is based on the
worse value of all integration points, to show the most conservative case" [ANSYS, a]. This quote was
given in connection with lesson four in the Analyzing Layered Composites Using Ansys ACP course.
A new analysis is carried out to see if the integration points within each element exhibit varying stress
values, as this may explain the discrepancies in failure indices, particularly the intermediate value for
face sheet wrinkling and shear crimping.

The stresses at the integration point can be retrieved in APDL by specifying "ERESX,NO". The ERESX
command specifies the extrapolation of integration point results, where NO defines the nodal values by
copying the results from the integration points [ANSYS, 2024b, p. 658]. To ensure the nodal values
are only gathered from the integration point for the element of interest, the element is selected with
the ESEL command before retrieving its nodal values. This process is repeated for all layers for the
given element. The center element’s nodal/integration point stresses are shown in Table F.6. The
stresses are consistent for all elements through the sandwich plate. Moreover, the same stress values
are observed for all face sheet laminae in the material coordinate system. Therefore, only layers one
and five are presented for the center element.

Layer 1 layer 5 (Core)

Averaged (FPP) σ1 −37.6077 −0.17003
σ2 −10.6920 −0.17003
τ12 ±4.7430 ·10−15 4.6323 ·10−17

Integration point σ1 −37.6077 −0.17003
σ2 −10.6920 −0.17003
τ12 ±4.7430 ·10−15 4.6323 ·10−17

Table F.6: Stress components σ1, σ2, and τ12 at the top position of the top face sheet and core for the
center element, from the integration points and the averaged element centroidal values. All values are
in the same order of magnitude. The ± indicates that the shear stress for the 0° layers is positive,
while the stress for the 90° layers is negative.

The term "worse value" is ambiguous; however, if the failure index is calculated directly from the stress
state of an integration point, different results are obtained. The stress state would correspond to the
stress presented in Figure F.1 and Table F.2, this results in the principal stresses extracted from ACP
in Table F.4. Through the thickness, the direction of maximum compression is {θξ1} = {0°,90°,90°,0°}.
Consequently, the elastic constants are shown in Table F.5. With this assumption, the failure index
is fw = 0.1597, which is still different from ACP’s result of IRFw = 0.1711.
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G|Parametric Study Figures

G.1 Parametric Study: tC

(a) Envelope plot for face sheet wrinkling with tC =
−20%.

(b) Envelope plot for face sheet wrinkling with tC =
+20%.

Figure G.1: Envelope plot for face sheet wrinkling for varying core failure. Underformed structure.
Only SHELL181 elements are plotted.

(a) Envelope plot for maximum strain with tC = −20%. (b) Envelope plot for maximum strain with tC = +20%.

Figure G.2: Envelope plot for maximum strain for varying core failure. Underformed structure. Only
SHELL181 elements are plotted.
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DMS4-3 G.1. PARAMETRIC STUDY: tC

(a) tC Envelope plot: −10%.

(b) tC Envelope plot: +10%.

Figure G.3: Envelope plot for tC analysis.

(a) tC failure mode: −10%.

(b) tC Failure Mode: +10%.

Figure G.4: Active failure mode for tC analysis. 1 [Blue] = face sheet wrinkling, 2 [Turquoise] = shear
crimping, 3 [Green] = core failure, 4 [Red] = max strain.
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DMS4-3 G.2. PARAMETRIC STUDY: G13

G.2 Parametric Study: G13

(a) Envelope plot for face sheet wrinkling
with G13 = −50%.

(b) Envelope plot for face sheet wrinkling
with G13 = −25%.

(c) Envelope plot for face sheet wrinkling
with G13 = +25%.

(d) Envelope plot for face sheet wrinkling
with G13 = +50%.

(e) Envelope plot for face sheet wrinkling
with G13 = +100%.

(f) Envelope plot for shear crimping with
G13 = −25%.

(g) Envelope plot for shear crimping with
G13 = +25%.

(h) Envelope plot for shear crimping with
G13 = +50%.

Figure G.5: Envelope plot for face sheet wrinkling and shear crimping. Underformed structure. Only
SHELL181 elements are plotted.
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DMS4-3 G.2. PARAMETRIC STUDY: G13

(a) Envelope plot for core failure with
G13 = −25%.

(b) Envelope plot for core failure with
G13 = +25%.

(c) Envelope plot for core failure with
G13 = +50%.

(d) Envelope plot for max strain with
G13 = −50%.

(e) Envelope plot for max strain with
G13 = −25%.

(f) Envelope plot for max strain with
G13 = +25%.

(g) Envelope plot for max strain with
G13 = +50%.

(h) Envelope plot for max strain with
G13 = +100%.

Figure G.6: Envelope plot for core failure and maximum strain. Underformed structure. Only
SHELL181 elements are plotted.
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DMS4-3 G.2. PARAMETRIC STUDY: G13

(a) G13 Envelope plot: −25%.

(b) G13 Envelope plot: +25%.

(c) G13 Envelope plot: +50%.

Figure G.7: Envelope plot for G13 analysis.
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DMS4-3 G.2. PARAMETRIC STUDY: G13

(a) G13 failure mode: −25%.

(b) G13 failure mode: +25%.

(c) G13 Failure Mode: +50%.

Figure G.8: Active failure mode for G13 analysis. 1 [Blue] = face sheet wrinkling, 2 [Turquoise] =
shear crimping, 3 [Green] = core failure, 4 [Red] = max strain.
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DMS4-3 G.3. PARAMETRIC STUDY: G23

G.3 Parametric Study: G23

(a) Envelope plot for face sheet wrinkling
with G23 = −50%.

(b) Envelope plot for face sheet wrinkling
with G23 = −25%.

(c) Envelope plot for face sheet wrinkling
with G23 = +25%.

(d) Envelope plot for face sheet wrinkling
with G23 = +50%.

(e) Envelope plot for face sheet wrinkling
with G23 = +100%.

(f) Envelope plot for shear crimping with
G23 = −25%.

(g) Envelope plot for shear crimping with
G23 = +25%.

(h) Envelope plot for shear crimping with
G23 = +50%.

Figure G.9: Envelope plot for face sheet wrinkling and shear crimping. Underformed structure. Only
SHELL181 elements are plotted.
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DMS4-3 G.3. PARAMETRIC STUDY: G23

(a) Envelope plot for core failure with
G23 = −25%.

(b) Envelope plot for core failure with
G23 = +25%.

(c) Envelope plot for core failure with
G23 = +50%.

(d) Envelope plot for max strain with
G23 = −50%.

(e) Envelope plot for max strain with
G23 = −25%.

(f) Envelope plot for max strain with
G23 = +25%.

(g) Envelope plot for max strain with
G23 = +50%.

(h) Envelope plot for maximum strain with
G23 = +100%.

Figure G.10: Envelope plot for core failure and maximum strain. Underformed structure. Only
SHELL181 elements are plotted.
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DMS4-3 G.3. PARAMETRIC STUDY: G23

(a) G23 Envelope plot: −25%.

(b) G23 Envelope plot: +25%.

(c) G23 Envelope plot: +50%.

Figure G.11: Envelope plot for G23 analysis.
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DMS4-3 G.3. PARAMETRIC STUDY: G23

(a) G23 failure mode: −25%.

(b) G23 failure mode: +25%.

(c) G23 Failure Mode: +50%.

Figure G.12: Active failure mode for G23 analysis. 1 [Blue] = face sheet wrinkling, 2 [Turquoise] =
shear crimping, 3 [Green] = core failure, 4 [Red] = max strain.
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