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1 Introduction

The main subject of this project is to explore the correlation between spatial point processes
and random variables. The motivation is to be able to analyse more aspects of the
correlations for spatial point processes. An example of a spatial point process and random
variable could be the locations of trees and the pH value of the soil in a rainforest. I want
to answer the question: Is the random variable, such as pH, at a location correlated with
the spatial point process of trees?

First, I will introduce some general terms and two examples of spatial point processes. One
of these point processes is the Poisson, which is independent of disjoint sets. One of the
terms is the pair correlation function, which can confirm a point process is Poisson. I also
compare the covariance of the Poisson and Cox point processes.

Hereafter, I will explore the covariance between a random variable and a point process. The
random variables explored in the thesis consist of binary and continuous variables. From
the covariances between the point process and both types of random variables, I derive
two summary functions, which can determine the correlation between the random variable
and the spatial point process. For the summary functions, I will give some non-parametric
kernel estimates with and without edge-correction factor. I will examine the performance
of the estimates in simulation studies of the uncorrelated and correlated cases. To simulate
the correlated cases, I evaluate the summary function for the log Gaussian point processes
in a special case. Finally, I intend to apply the estimates to an existing data set of trees
and soil measurements from Barro Colorado Island in Panama.
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2 POINT PROCESS

2 Point Process

In this project, I will only work with spatial point processes defined within a state space
S ⊆ R2. A point process X ⊂ S is a random countable subset of points within the state
space S. The point processes can in the plane be used to model the location patterns and
describe the spatial aggregation within a given dataset. Fields where we have such interest
could be e.g epidemiology, forestry and geography where we may have the locations of
infected, trees and human settlements.

I will concentrate on B ⊆ S bounded subsets of the state space. Also, in practice, a
realisation of a point process is called a point pattern x, and when observing these, we are
constrained to a smaller bounded part of the state space called the window and denoted W .
Note the difference between a set and window is that a window is the set where we observe
the points in practice.

The point process within either a set or window A is denoted as XA = X ∩ A while the
random number of points within A are denoted by N(A) and the volume of A by |A|. A
point pattern within A is denoted xA.

If N(xA) < ∞ then x is said to be locally finite. I will in the project only concentrate on
locally finite point processes, which take their values from the space defined as

Nlf = {x ⊆ S : N(xB) < ∞ for all bounded B ⊆ S}.

The elements in Nlf are called the locally finite point configurations.

Another notation used in the project is Wu = {v + u : v ∈ B}, which is the translation of
W by u ∈ R2.

Throughout this section, I describe some basic theory about the Poisson point process,
intensity function, the pair correlation function and Cox point process. This will in the end
lead to analysis of the covariance between two spatial point process in subsection 2.5. This
section is based on [1].

2.1 Poisson Point Process

In this subsection, I will introduce some basic aspects of the Poisson point process with
special focus on the spatial randomness for Poisson point processes.

Before defining the Poisson point process, I will introduce the binomial point process.
Definition 2.1 (Binomial Point Process). Let fB be a density function on a set B ⊆ S. If
a point process X consists of N ∈ N i.i.d points with density fB , then X follows a binomial
point process with n points in B and density fB. This binomial point process is denoted
X ∼ binomial(B,n, fB).

In the definition of the Poisson point process, I will use a function λ : S → [0,∞) called the
intensity function. Furthermore, for any bounded set B, the integral µ(B) =

∫
B λ(u)du < ∞

is called the intensity measure. The intensity measure satisfies that µ({u}) = 0 for any
u ∈ S. Heuristically, λ(u)du is the probability that a point occurs within the circle with
centre u and infinitesimally small radius.

In the following definition, Y ∼ Pois(µ) denotes that Y follows a Poisson distribution with
mean µ. Note that general the Poisson distribution is applied to find the probability that a
number of events occur within an area, given the expected number of occurrences.
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2.1 Poisson Point Process

Definition 2.2 (Poisson Point Process). The point process X is said to follow a Poisson
point process on S with intensity function λ and denoted X ∼ Poisson(S, λ) if the following
is satisfied:

• For any bounded set B ⊆ S with µ(B) < ∞, N(B) ∼ Pois(µ(B)).

• For any bounded set B ⊆ S with µ(B) ∈ (0,∞), N(B) = n and XB ∼ binomial (B,n, fB)
where fB(u) = λ(u)/µ(B) for u ∈ B.

Furthermore, if λ is a constant over S, the point process is said to be homogeneous and
else inhomogeneous.

In the project, the theory used will be for the inhomogeneous intensity. However, the theory
can also be applied for the homogeneous case. Sometimes the methods are in fact more
simple for the homogeneous intensities.

In the following, I will show the independence property of the Poisson point process. First,
a proposition is introduced to prove the independent property.
Proposition 2.3. (i) X ∼ Poisson(S, λ) if and only if for all bounded sets B ⊆ S with

µ(B) < ∞ and all F ⊆ Nlf ,

P (XB ∈ F ) =
∞∑
n=0

exp(−µ(B))

n!

∫
B
· · ·
∫
B
1[{x1, . . . , xn} ∈ F ]

n∏
i=1

λ(xi)dx1 . . . dxn.

(ii) If X ∼ Poisson(S, λ), then for a function h : Nlf → [0,∞) and bounded set B ⊆ S
with µ(B) < ∞

E[h(XB)] =

∞∑
n=0

exp(−µ(B))

n!

∫
B
· · ·
∫
B
h[{x1, . . . , xn}]

n∏
i=1

λ(xi)dx1 . . . dxn.

Proof. Note that (ii) follows from (i) by the standard proof (See Lemma A.1).

To prove (i), let pN (n) be the density of the number of points, fX|N ({x1, . . . xn} | n) be
the density for the point process conditional on the number of points and fXi|N ({xi} | n)
be the density for the point Xi in the point process conditional on the number of points.
Then, by the law of total probability and definition 2.2,

P (XB ∈ F ) =
∞∑
n=0

P (N(B) = n)P (XB ∈ F | N(B) = n)

=
∞∑
n=0

pN (n)

∫
B
· · ·
∫
B
1 [{x1, . . . xn} ∈ F ] fX|N ({x1, . . . xn} | n) dx1 . . . dxn

=

∞∑
n=0

pN (n)

∫
B
· · ·
∫
B
1 [{x1, . . . xn} ∈ F ]

n∏
i=1

fXi|N ({xi} | n) dx1 . . . dxn

=

∞∑
n=0

(µ(B))n exp (−µ(B))

n!

∫
B
· · ·
∫
B
1 [{x1, . . . xn} ∈ F ]

1

µ(B)n

n∏
i=1

λ(xi)dx1 . . . dxn

=

∞∑
n=0

exp (−µ(B))

n!

∫
B
· · ·
∫
B
1 [{x1, . . . xn} ∈ F ]

n∏
i=1

λ(xi)dx1 . . . dxn.
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2 POINT PROCESS

Proposition 2.4. If X is a Poisson point process on S and B1, B2, . . . ⊆ S are disjoint
bounded sets then

(i) XB1 , XB2 , . . . are independent Poisson point processes.

(ii) N(B1), N(B2), . . . are independent Poisson variables.

Proof. If XB1 , XB2 , . . . are independent Poisson point processes, then N(B1), N(B2) . . . are
independent and follow a Poisson distribution, hence (ii) is a direct result of (i).

Note for disjoint sets B1, B2, . . . , Bn, it holds that

µ

(
n⋃

i=1

Bi

)
= E

[
N

(
n⋃

i=1

Bi

)]
= E

[
n∑

i=1

N(Bi)

]
=

n∑
i=1

E [N(Bi)] =

n∑
i=1

µ(Bi).

(i) is proven by induction so in the base case consider B1, B2 and XB1 , XB2 . Let F,G ⊂ Nlf

denote sets of locally finite point configurations in S. The independence between XB1 and
XB2 comes from showing that P (XB1 ∈ F,XB2 ∈ G) = P (XB1 ∈ F )P (XB2 ∈ G). Let∫
An denote the integral over n points in the set A. The probability is given as the following:

P (XB1 ∈ F,XB2 ∈ G)

(a)
=

∞∑
n=0

exp (−µ (B1 ∪B2))

n!

∫
(B1∪B2)

n
1 [{x1, . . . , xn} ∩B1 ∈ F ]

1 [{x1, . . . , xn} ∩B2 ∈ G]
n∏

i=1

λ(xi)dxn, . . . , dx1

(b)
=

∞∑
n=0

exp (−µ (B1 ∪B2))

n!

n∑
m=0

n!

m!(n−m)!∫
Bm

1

1 [{x1, . . . , xm} ∩B1 ∈ F ]

∫
Bn−m

2

1 [{xm+1, . . . , xn} ∩B2 ∈ G]

n∏
i=1

λ(xi)dxn, . . . , dx1

(c)
=

∞∑
m=0

∞∑
n=m

exp (−µ (B1 ∪B2))

m!(n−m)!

∫
Bm

1

1 [{x1, . . . , xm} ∩B1 ∈ F ]

∫
Bn−m

2

1 [{xm+1, . . . , xn} ∩B2 ∈ G]

n∏
i=1

λ(xi)dxn, . . . , dx1

(d)
=

∞∑
m=0

∞∑
k=0

exp (−µ (B1 ∪B2))

m!k!

∫
Bm

1

1 [{x1, . . . , xm} ∩B1 ∈ F ]

∫
Bk

2

1 [{xm+1, . . . , xm+k} ∩B2 ∈ G]

m+k∏
i=1

λ(xi)dxm+k, . . . , dx1

(e)
=

∞∑
m=0

exp (−µ (B1))

m!

∫
Bm

1

1 [{x1, . . . , xm} ∩B1 ∈ F ]

m∏
i=1

λ(xi)dxm, . . . , dx1P (XB2 ∈ G)

(f)
= P (XB1 ∈ F )P (XB2 ∈ G)

8



2.2 Intensity Function

where (a), (e) and (f) derive from Proposition 2.3, in (c) the summations are interchanged
and for (d), I let k = n−m. Furthermore, (b) derives by splitting the integral over (B1∪B2)

n

into integrals over Bm
1 and Bm−n

2 separately. Note that there exist n!/ (m!(n−m)!) =
(
n
m

)
ways of allocating m and m− n points in B1 and B2. Hence, when ensuring each possible
integral is considered, the sum

∑n
m=0 and n!/ (m!(n−m)!) are included.

For the induction step, assume that XB1 , . . . , XBn−1 are independent for disjoint bounded
sets B1, . . . , Bn−1. Then if B1, . . . , Bn are disjoint then B̃ =

⋃n−1
i=1 Bi and Bn are disjoint.

Then from the basis case XB̃ and XBn are independent such that XB1 , . . . , XBn are
independent.

From this property, we have the terminology of no interaction and complete spatial ran-
domness for Poisson point processes. Because of the independencies for disjoint bounded
sets, then there are also an uncorrelation such the covariance is 0. The covariance for a
point process is further studied in subsection 2.5.

Later, a correlation property will be shown for the Poisson point processes, and this property
is proven by the Slivnyak-Mecke theorem.
Theorem 2.5 (Slivnyak-Mecke). If X ∼ Poisson(S, λ) then for any n ∈ N and function
h : Sn ×Nlf → [0,∞),

E

 ∑
u1,...un∈X

ui ̸=uj for i ̸=j

h (u1, . . . un, X\{u1, . . . , un})


=

∫
S
· · ·
∫
S
E [h(u1, . . . , un, X)]

n∏
i=1

λ(ui)du1, . . . , dun

The proof is omitted from the project, but it can be found in [1].

2.2 Intensity Function

In this subsection, I will introduce the Campbell Formula and how to non-parametric
estimate the intensity function for a point process.

The general definition of the intensity measure for a point process within the set B is
µ(B) = E[N(B)], where the intensity function λ is the non-negative function given by the
integrand in µ(B) =

∫
B λ(u)du. If λ(u) is constant for u ∈ B, the intensity function is

homogeneous and else inhomogeneous.

I will now introduce the Campbell formula, which will be used repeatedly for the point
processes.
Proposition 2.6 (Campbell Formula). Let h : R2 → [0,∞) be a function. If a point
process X has intensity function λ then

E

[∑
u∈X

h(u)

]
=

∫
R2

h(u)λ(u)du.

Proof. By the standard proof, it is sufficient to show the equality for the indicator function

9



2 POINT PROCESS

1[u ∈ B] where B ⊆ R2. By the definition of the intensity function and measure we have

E

[∑
u∈X

1[u ∈ B]

]
= E [N(B)] = µ(B) =

∫
R2

1[u ∈ B]λ(u)du.

Different methods exist to estimate the intensity function, however, I will concentrate on a
non-parametric kernel estimate for the inhomogeneous point processes and the homogeneous
point processes. Let xW be the point pattern within the window W . The estimations are
made within a observed window W of the bigger state space S ⊆ R2, which gives some
boundary problems from edge effects. Locations near the edges loses information from
locations outside the window, which may have an correlation with the points within the
window. Therefore treating locations near the edges as those in the centrum lead to a
bias. To adjust for the problem an edge-correction factor is included in the estimation
of the intensity function to less the bias [2]. The non-parametric kernel estimate for the
inhomogeneous point processes is

λ̂b(u) =
∑
v∈xW

kb(u− v)

cW,b(v)
, u ∈ W,

where kb(u − v) = k ((u− v)/b) /b2 is a kernel with bandwidth b > 0, and cW,b(v) =∫
W kb(u− v)du is the edge-correction factor. The kernel k is a chosen density, where the

choice of k is less important than the choice of b. Examples of kernels are the uniform
and Epanechnikov, which are listed in appendix B. Observe that the estimated intensity
measure given by µ̂(W ) =

∫
W λ̂b(u)du is unbiased from the following:

E [µ̂(W )] = E

[∫
W

∑
v∈xW

kb(u− v)

cW,b(v)
du

]
=

∫
W

E

[ ∑
v∈xW

kb(u− v)

cW,b(v)

]
du

(a)
=

∫
W

∫
W

kb(u− v)

cW,b(v)
λ(v)dvdu

=

∫
W

λ(v)dv = µ(W ),

where (a) derive from the Campbell Formula. Note that in my application, I will assume
the intensity function is homogeneous. The unbiased estimate of this intensity function is
given by

λ̂ =
N(xW )

|W |

E
[
λ̂
]
=

E [N(W )]

|W |
=

µ(W )

|W |
=

|W |λ
|W |

= λ.

2.3 Joint Intensity and Pair Correlation Function

I will introduce in this subsection introduce a summary function called the pair correlation
function. This function has the ability to indicate if a given point pattern deviates from a
Poisson point process.

Before defining the pair correlation function, I will introduce the second-order product
density.
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2.3 Joint Intensity and Pair Correlation Function

Definition 2.7. Let C ⊆ R2 × R2 and λ(2) : R2 × R2 → [0,∞] be a function. The
second-order factorial moment measure is

a(2)(C) = E

 ∑
u,v∈X
u̸=v

1 [(u, v) ∈ C]

 .

If a(2)(C) can be rewritten into

a(2)(C) =

∫
R2

∫
R2

1 [(u, v) ∈ C]λ(2)(u, v)dudv,

then λ(2) is called the second-order product density.

Note that if λ(2) exists, then with the standard proof, we can also express the second-order
Campbell formula

E

 ∑
u,v∈X
u̸=v

h(u, v)

 =

∫
R2

∫
R2

h(u, v)λ(2)(u, v)dudv,

where h : R2 × R2 → [0,∞).
Definition 2.8. If both λ and λ(2) exist, the pair correlation function is defined as

g(u, v) :=
λ(2)(u, v)

λ(u)λ(v)
,

where g(u, v) = 0 when λ(u)λ(v) = 0.
Proposition 2.9. X ∼ Poisson(S, λ), and both λ and λ(2) exist then λ(2)(u, v) = λ(u)λ(v).

Proof. Let C = B1 ×B2 where B1, B2 ⊆ S then∫
S

∫
S
1 [(u, v) ∈ C]λ(u)λ(v)dudv =

∫
S

∫
S
E [1 [(u, v) ∈ C]]λ(u)λ(v)dudv

(a)
= E

 ∑
u,v∈X
u̸=v

1 [(u, v) ∈ C]


(b)
=

∫
S

∫
S
1 [(u, v) ∈ C]λ(2)(u, v)dudv,

where (a) derives from Slivnyak-Mecke Theorem 2.5 and (b) from second-order Campbell
formula. Hence

λ(u)λ(v) = λ(2)(u, v).

By the proposition, if we have a Poisson point process then g(u, v) = 1. On the contrary,
g(u, v) > 1 is an indiction that a pair of points are more likely to occur at the same
location than for a Poisson point process with the same intensity function and less likely

11



2 POINT PROCESS

if g(u, v) < 1 . A typical assumption throughout the project is that the pair correlation
function satisfies g(u, v) = g(∥u− v∥) (Isotropy). Hence, the correlation function doesn’t
depend on the points’ specific locations but on the distances between the pairs. I will
typically use the notation r = ∥u− v∥ for this. For small values of r, g(r) > 1 indicates
clustering of the points at a distance of r, while g(r) < 1 indicates repulsion. Also, under
the isotropy assumption, we have an edge-corrected kernel estimate for the pair correlation
function given as

ĝ(r) =
1

2πr

∑
u,v∈xW
u̸=v

kb(r − ∥v − u∥)
λ̂(u)λ̂(v) |W ∩Wv−u|

,

where kb(r − ∥v − u∥) = k ((r − ∥v − u∥)/b) /b with kernel k(·) and bandwidth b > 0, and
it is assumed that ∥v−u∥ ≤ r such that |W ∩Wv−u| > 0. Note that the choice of b is more
impactful than that of kb(·).
Proposition 2.10. Let λ(u)λ(v) be known. If b is sufficiently small, ĝ(r) is close to g(r),
and if r is also sufficiently small, the estimator is upwards biased.

Proof. The expected value of the estimator is

E [ĝ(r)] = E

 1

2πr

∑
u,v∈xW
u̸=v

kb(r − ∥v − u∥)
λ(u)λ(v) |W ∩Wv−u|



=
1

2πr
E

 ∑
u,v∈xW
u̸=v

kb(r − ∥v − u∥)
|W ∩Wv−u|λ(2)(v, u)

g(u, v)


(a)
=

1

2πr

∫
W

∫
W

kb(r − ∥v − u∥)
|W ∩Wv−u|λ(2)(v, u)

λ(2)(v, u)g(u, v)dudv

=
1

2πr

∫
W

∫
W

kb(r − ∥v − u∥)
|W ∩Wv−u|

g(∥v − u∥)dudv

=
1

2πr

∫
R2

∫
R2

kb(r − ∥v − u∥)
|W ∩Wv−u|

g(∥v − u∥)1[v ∈ W,u ∈ W ]dudv,

where (a) derives from the second-order Campbell formula. Let w = v − u where dv = dw
and substitute v with w in the integral such that

E [ĝ(r)] =
1

2πr

∫
R2

∫
R2

kb(r − ∥w∥)
|W ∩Ww|

g(∥w∥)1[w + u ∈ W,u ∈ W ]dudw

=
1

2πr

∫
R2

kb(r − ∥w∥)
|W ∩Ww|

g(∥w∥)
∫
R2

1[u ∈ W−w, u ∈ W ]dudw

=
1

2πr

∫
R2

kb(r − ∥w∥)
|W ∩Ww|

g(∥w∥) |W ∩W−w| dw

=
1

2πr

∫
R2

kb(r − ∥w∥)
|W ∩Ww|

g(∥w∥) |W ∩Ww| dw

=
1

2πr

∫
R2

kb(r − ∥w∥)g(∥w∥)dw.
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2.3 Joint Intensity and Pair Correlation Function

Let r̃ = ∥w∥, such that w = (w1, w2) = (r̃ cos(s), r̃ sin(s)), and we have the following
Jacobian

Jw =

[
dw1
dr̃

dw1
ds

dw2
dr̃

dw2
ds

]
=

[
cos(s) −r̃ sin(s)

sin(s) r̃ cos(s)

]
, det(Jw) = r̃ cos2(s) + r̃ sin2(s) = r̃.

Then

E [ĝ(r)] =
1

2πr

∫ ∞

0

∫ 2π

0
kb(r − r̃)g(r̃)r̃dsdr̃ =

∫ ∞

0
kb(r − r̃)g(r̃)

r̃

r
dr̃.

Let t = r−r̃
b , such that r̃ = r − tb and −1

bdr̃ = dt. Since the kernel functions have support
in [−1, 1], k(t) will take values other than 0 for t ∈

[
−1,min(1, rb )

]
. Hence∫ ∞

0
g (r̃) kb (r − r̃)

r̃

r
dr̃ = −1

r

∫ −1

min(1, rb )
g (r − tb) k(t) (r − tb) dt

=
1

r

∫ min(1, rb )

−1
g (r − tb) k(t) (r − tb) dt

=
b

r

∫ min(1, rb )

−1
g (r − tb) k(t)

(r
b
− t
)
dt.

For small b

b

r

∫ min(1, rb )

−1
g (r − tb) k(t)

(r
b
− t
)
dt ≈ g (r)

b

r

∫ min(1, rb )

−1
k(t)

(r
b
− t
)
dt.

For b < r

lim
b→0

g (r)
1

r

∫ 1

−1
k(t) (r − tb) dt = g (r)

1

r

∫ 1

−1
k(t)rdt = g (r) .

Let 0 < r < b. If r is so small that b
r

∫ 1
0 k(−t)tdt ≥ 1, then

E [ĝ(r)] = g (r)
b

r

∫ r
b

−1
k(t)

(r
b
− t
)
dt

= g (r)
b

r

∫ 1

− r
b

k(−t)
(r
b
+ t
)
dt

= g (r)
b

r

(∫ 0

− r
b

k(−t)
r

b
dt+

∫ 0

− r
b

k(−t)tdt+

∫ 1

0
k(−t)

r

b
dt+

∫ 1

0
k(−t)tdt

)
(a)

≥ g (r)
b

r

(∫ 0

− r
b

k(−t)
r

b
dt−

∫ 0

− r
b

k(−t)
r

b
dt+

∫ 1

0
k(−t)tdt

)

= g (r)
b

r

∫ 1

0
k(−t)tdt

≥ g (r) ,

where (a) derives from
∫ 0
− r

b
k(−t)tdt ≥ −

∫ 0
− r

b
k(−t) rbdt and

∫ 1
0 k(−t) rbdt ≥ 0.

Hence, the estimate ĝ(r) is upward biased for a sufficiently small r. Also, for a sufficiently
small b, we have ĝ(r) ≈ g(r).

In the case with a homogeneous intensity (more specific stationary point process), then it
has been suggested to use b = 0.15/

√
λ̂ for the Epanecnikov kernel and b = 0.1/

√
λ̂ for the

uniform kernel for ĝ [3].
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2 POINT PROCESS

2.4 Cox Point Process

This subsection introduces an extension of the Poisson point process called the Cox point
process and a special case called the log Gaussian Cox point process. This subsection is
besides [1] also based on [4].

Before introducing a Cox point process, I will first give the definition of a random field in
the Euclidean plane.
Definition 2.11. Let (Ω, C, P ) be a probability space and S ⊆ R2 . Then, the set
R = {R(ω, u) : ω ∈ Ω, u ∈ S} of random variables is called a random field.

Usually, R(·, u) is typically written as R(u). If the intensity function in the Poisson point
process is a realisation of a random field, the process is called a Cox point process.
Definition 2.12. Let Λ = {Λ(u) : u ∈ S} be a non-negative random field with
P
(∫

B Λ(u)du < ∞
)
= 1 for each bounded B ⊆ S. If X | Λ ∼ Poisson(S,Λ), then X is said

to be a Cox point process driven by Λ.

If E[Λ(u)] = λ(u) exists, then λ(u) is the intensity function. Furthermore, the intensity
measure for X | Λ is a random measure given as

M(B) =

∫
B
Λ(u)du.

If Var(Λ(u)) < ∞ for all u ∈ S, the pair correlation function is

g(u, v) =
E [Λ(u)Λ(v)]

λ(u)λ(v)
,

where E [Λ(u)Λ(v)] = λ(2)(u, v).

The random variables in a random field may follow a specific distribution e.g. a Gaussian
distribution.
Definition 2.13. Let R = {R(u) : u ∈ S} be a random field. If

[R (ui)]1≤i≤n ∼ N
(
[E [R (ui)]]1≤i≤n , [Cov (R (ui) , R (uj))]1≤i,j≤n

)
for any n ∈ N and subsets {u1, . . . , un} ⊆ S then R is said to be a Gaussian random field
(GRF).

With GRF a special case of the Cox point process can be defined called the log Gaussian
Cox point process.
Definition 2.14. Let X be the Cox point process driven by Λ = exp(Y ), where Y is a
GRF. Then, X is said to be a log Gaussian Cox point process (LGCP).

Denote the mean and covariance function for the GRF Y by m(u) = E [Y (u)] and C(u, v) =
Cov (Y (u), Y (v)) for u, v ∈ S. When m(u) = µ is constant, we call the LGCP homogeneous.
Proposition 2.15. The intensity and pair correlation functions for the LGCP are

λ(u) = exp

(
m(u) +

C(u, u)

2

)
, g(u, v) = exp (C(u, v)) .

Proof. The Laplace transform of Y (u) ∼ N (m(u), C(u, u)) is

14



2.5 Covariance for Point Process.

E[exp(Y t)] = exp
(
m(u)t+ C(u,u)t2

2

)
. Hence

λ(u) = E [Λ(u)] = E [exp (Y (u))] = exp

(
m(u) +

C(u, u)

2

)
,

E [Λ(u)Λ(v)] = E [exp(Y (u) + Y (v))]

= exp

(
m(u) +m(v) +

C(u, u) + C(v, v) + 2C(u, v)

2

)
= λ(u)λ(v) exp (C(u, v)) ,

such that

g(u, v) =
E [exp (Λ(u) + Λ(v))]

λ(u)λ(v)
= exp (C(u, v)) .

2.5 Covariance for Point Process.

In this subsection, I examine the covariance between two functions of the same point process.
I will specific look on the cases with Poisson point process and LGCP.

Let h1, h2 : S → [0,∞) be two non-negative functions on S ⊆ R2 and X a point process
defined on S. Then

Cov

(∑
v∈X

h1(v),
∑
v∈X

h2(v)

)
= E

(∑
v∈X

h1(v)
∑
v∈X

h2(v)

)
− E

(∑
v∈X

h1(v)

)
E

(∑
v∈X

h2(v)

)

= E

 ∑
u,v∈X
u̸=v

h1(u)h2(v)

+ E

(∑
v∈X

h1(v)h2(v)

)

− E

(∑
v∈X

h1(v)

)
E

(∑
v∈X

h2(v)

)
(a)
=

∫
S

∫
S
h1(u)h2(v)λ

(2)(u, v)dudv +

∫
S
h1(v)h2(v)λ(v)dv

−
∫
S
h1(u)λ(u)du

∫
S
h2(v)λ(v)dv

=

∫
S

∫
S
h1(u)h2(v)

(
λ(2)(u, v)− λ(u)λ(v)

)
dudv

+

∫
S
h1(v)h2(v)λ(v)dv,

where equality (a) is derived from Campbell’s two formulas. Observe, if X is a Poisson
point process, then λ(2)(u, v) = λ(u)λ(v) such that Cov

(∑
v∈X h1(v),

∑
v∈X h2(v)

)
=∫

S h1(v)h2(v)λ(v)dv = E
[∑

v∈X h1(v)h2(v)
]
.

Let B1, B2 ⊆ S be bounded sets. The covariance between the number of points in each set
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2 POINT PROCESS

is

Cov (N(B1), N(B2)) = Cov

(∑
v∈X

1[v ∈ B1],
∑
v∈X

1[v ∈ B2]

)

=

∫
S

∫
S
1[v ∈ B1, u ∈ B2]

(
λ(2)(u, v)− λ(u)λ(v)

)
dudv

+

∫
S
1[v ∈ B1, v ∈ B2]λ(v)dv.

If X follows a Poisson point process, then Cov (N(B1), N(B2)) =
∫
S 1[v ∈ B1, v ∈

B2]λ(v)dv and Var (N(B)) =
∫
B λ(v)dv = E [N(B)] for any bounded set B ⊆ S. Further-

more, if B1 and B2 are disjoint, then 1[v ∈ B1, v ∈ B2] = 0 such that Cov (N(B1), N(B2)) =
0.

If X follows a Cox point process, then

Cov (N(B1), N(B2)) =

∫
S

∫
S
1[v ∈ B1, u ∈ B2]

(
λ(2)(u, v)− λ(u)λ(v)

)
dudv

+

∫
S
1[v ∈ B1, v ∈ B2]λ(v)dv

=

∫
S

∫
S
1[v ∈ B1, u ∈ B2] (E [Λ(u)Λ(v)]− E [Λ(u)]E [Λ(v)]) dudv

+ E

[∑
v∈X

1[v ∈ B1, v ∈ B2]

]

=

∫
S

∫
S
1[v ∈ B1, u ∈ B2]Cov (Λ(u),Λ(v)) dudv + E [N (B1 ∩B2)] .

If B1 and B2 are disjoint, then

Cov (N(B1), N(B2)) =

∫
S

∫
S
1[v ∈ B1, u ∈ B2]Cov (Λ(u),Λ(v)) dudv.

If also Λ(u) and Λ(v) are uncorrelated for all u ∈ B1 and v ∈ B2 then Cov (N(B1), N(B2)) =
0. Furthermore, let B ⊆ S be a bounded set, then the Cox point process Var (N(B)) =∫
B

∫
B Cov (Λ(u),Λ(v)) dudv + E [N(B)], such that Var (N(B)) ≥ E [N(B)].
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3 Covariance

Given the tree locations within a window W ⊆ R2 of a rainforest, we can assess the number
of trees and their locations as a spatial point process XW . Besides the tree location, we
may have more information about the area, which could arise as a binary or continuous
random variable. Denote the binary as I(v) and the continuous as J(v) for location v ∈ R2.
An example of a continuous random variable could be the pH value of the soil, and it can
be transformed into a binary variable by e.g.

I(v) =

{
0 If pH(v) ≥ 7 such that the soil at location v is non-acidic.
1 If pH(v) < 7 such that the soil at location v is acidic.

,

where I(v) follows a Bernoulli distribution with P (I(v) = 1) = p(v).

A question could arise whether the random variables are correlated to the point process of
the trees. In subsections 3.1 and 3.2, I will deduce the covariances between a point process
and the random variables, which are either binary or continuous. From the covariances, I
derive two functions, cbin and ccon, which are used as summary functions for the correlation
between the point process and random variables. Both cbin and ccon will hereafter be given
two estimators and studied for a special case of LGCP.

3.1 Covariance Between Spatial Point Process and Binary Variable

This subsection is inspired by the earlier draft of [5] and will deduce the covariance between
a spatial point process and a binary random variable.

Let X be a spatial point process within S ⊆ R2 and I(v) be a binary random variable at
location v ∈ R2 with P (I(v) = 1) = p(v) such that E [I(v)] = p(v). Assume that both the
intensities of X and the conditional intensities of X given I(v) exist and denote them by
λ(·) and λI(v)(· | v) respectively. Let cbin(u, v) = λ1(u | v)/λ(u) be a normalised moment
density of X and I(v). Assume that h(u) is a non-negative function, then

E

[
I(v)

∑
u∈X

h(u)

]
= E

[
I(v)E

[∑
u∈X

h(u) | I(v)

]]
(a)
= E

[
I(v)

∫
S
h(u)λI(v)(u | v)du

]
= 1p(v)

∫
S
h(u)λ1(u | v)du+ 0(1− p(v))

∫
S
h(u)λ0(u | v)du,

= p(v)

∫
S
h(u)λ1(u | v)du,

where Campbell formula is used for (a). The covariance between the spatial point process
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3 COVARIANCE

and the binary random variable is

Cov

[
I(v),

∑
u∈X

h(u)

]
= E

[
I(v)

∑
u∈X

h(u)

]
− E [I(v)]E

[∑
u∈X

h(u)

]
(a)
= p(v)

∫
S
h(u)λ1(u | v)du− p(v)

∫
S
h(u)λ(u)du

= p(v)

∫
S
h(u) (λ1(u | v)− λ(u)) du

= p(v)

∫
S
h(u)λ(u) (cbin(u, v)− 1) du,

where (a) derives from Campbell formula. If cbin(u, v) = 1 for all u ∈ S, there is uncorrela-
tion between I(v) and

∑
u∈X h(u). If cbin(u, v) < 1 for all u ∈ S, then Cov

[
I(v),

∑
u∈X h(u)

]
<

0 such that X and I(v) are negatively correlated. If cbin(u, v) > 1 for all u ∈ S, the opposite
is the case. Hence, the cbin(u, v) works as a summary function for the correlation between
the point process and binary random variable. The question is how to estimate cbin(u, v),
which is explored in the following.

3.1.1 Estimates of cbin

Let for a finite known set of locations T ⊆ R2, the binary variable I(v) have realisation i(v)
for each v ∈ T , and let XW = xW be a realised point pattern within a window W with
intensity λ(u). Assume that cbin(u, v) = cbin,0(∥u− v∥) = cbin,0(r). Then, an estimate of
cbin,0(r) could be given by

ĉbin,0(r) =
1

N(T )

∑
v∈T

i(v)
∑
u∈xW
u̸=v

kb(r − ∥u− v∥)
2π ∥u− v∥ p(v)λ(u)

.

In the following, the bias of this estimate is explored:

E [ĉbin,0(r)] =
1

N(T )

∑
v∈T

E

I(v) ∑
u∈XW
u̸=v

kb (r − ∥u− v∥)
2π ∥u− v∥ p(v)λ(u)



=
1

N(T )

∑
v∈T

E

I(v)E
 ∑
u∈XW
u̸=v

kb (r − ∥u− v∥)
2π ∥u− v∥ p(v)λ(u)

| I(v)




(a)
=

1

N(T )

∑
v∈T

E
[
I(v)

∫
W

kb (r − ∥u− v∥)
2π ∥u− v∥ p(v)λ(u)

λI(v)(u | v)du
]

=
1

N(T )

∑
v∈T

p(v)

∫
W

kb (r − ∥u− v∥)
2π ∥u− v∥ p(v)λ(u)

λ1(u | v)du

=
1

N(T )

∑
v∈T

∫
W

kb (r − ∥u− v∥) cbin,0 (∥u− v∥)
2π ∥u− v∥

du

(b)
=

1

N(T )

∑
v∈T

∫ ∞

0

∫ 2π

0

kb (r − r̃) cbin,0 (r̃)

2πr̃
1[v + r̃ (cos(s), sin(s)) ∈ W ]r̃dsdr̃

=
1

N(T )

∑
v∈T

∫ ∞

0

∫ 2π

0

kb (r − r̃) cbin,0 (r̃)

2π
1[v + r̃ (cos(s), sin(s)) ∈ W ]dsdr̃,
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3.1 Covariance Between Spatial Point Process and Binary Variable

where Campbell formula was used in (a). The multiple variables integral substitution
was used in (b) where the Jacobian of u = (u1, u2) = v + ∥v − u∥ (cos(s), sin(s)) =
v + r̃ (cos(s), sin(s)) is

Ju =

[
cos(s) −r̃ sin(s)

sin(s) r̃ cos(s)

]
, det(Ju) = r̃.

Assume for all v ∈ T that v + r̃ (cos(s), sin(s)) ∈ W , which could happen in the case of a
sufficiently small r̃ and T ⊆ W . Then

1

N(T )

∑
v∈T

∫ ∞

0

∫ 2π

0

kb (r − r̃) cbin,0 (r̃)

2π
1[v + r̃ (cos(s), sin(s)) ∈ W ]dsdr̃

=
1

N(T )

∑
v∈T

∫ ∞

0

∫ 2π

0

kb (r − r̃) cbin,0 (r̃)

2π
dsdr̃

=
1

N(T )
N(T )

∫ ∞

0
kb (r − r̃) cbin,0 (r̃) dr̃

=

∫ ∞

0
kb (r − r̃) cbin,0 (r̃) dr̃

≈ cbin,0 (r)

∫ ∞

0
kb (r − r̃) dr̃,

where in the approximation, I used that when b is sufficiently small, then r ≈ r̃. Let t = r−r̃
b ,

such that r̃ = r − tb and −1
bdr̃ = dt. Since the kernel functions are defined on [−1, 1], k(t)

will take values from t ∈
[
−1,min(1, rb )

]
. Hence,

cbin,0 (r)

∫ ∞

0
kb (r − r̃) dr̃ = −cbin,0 (r)

∫ −1

min(1, rb )
k (t) dt = cbin,0 (r)

∫ min(1, rb )

−1
k (t) dt.

Then for r < b

cbin,0 (r)

∫ r
b

−1
k (t) dt ≤ cbin,0(r),

while for r ≥ b

cbin,0 (r)

∫ 1

−1
k (t) dt = cbin,0(r).

Hence, when b is sufficiently small, the estimate is downward biased if r < b, while it is
unbiased for r ≥ b. When r is sufficiently big, the assumption that v+ r̃ (cos(s), sin(s)) ∈ W
for all v ∈ T is violated even though T ⊆ W. For this reason an edge-correction factor
could be included. Let

e (v, ∥u− v∥) = 1∫ 2π
0 1 [v + ∥u− v∥ (cos(s), sin(s)) ∈ W ] ds

, (3.1)

and the edge-corrected estimate given by

c̃bin,0(r) =
1

N(T )

∑
v∈T

I(v)
∑

u∈XW
u̸=v

kb (r − ∥u− v∥) e (v, ∥u− v∥)
∥u− v∥ p(v)λ(u)

.
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3 COVARIANCE

Beside including e (v, ∥u− v∥) in the estimate, 2π has also been removed from the denomi-
nator. Then

E [c̃bin,0(r)] =
1

N(T )

∑
v∈T

∫ ∞

0
kb (r − r̃) cbin,0 (r̃) e (v, r̃)

∫ 2π

0
1[v + r̃ (cos(s), sin(s)) ∈ W ]dsdr̃

=
1

N(T )

∑
v∈T

∫ ∞

0
kb (r − r̃) cbin,0 (r̃) dr̃.

Note that e (v, ∥u− v∥) is the sum of arc angles within W and centrum v.

I will in my simulation study and application estimate p by the sample mean and λ by the
homogenous estimate.

3.2 Covariance between Point Process and Continuous Variable

I will in this subsection consider the random variable as continuous.

Let J(v) be a continuous variable at v ∈ R2 with density fv(j). Let X be the point
process in S ⊆ R2 with intensity λ(u) at u ∈ X and λJ(u | v) the intensity at u ∈ X

given the continuous variable J(v) at v ∈ S. Furthermore, let cJ(u, v) = λJ (u|v)
λ(u) and

ccon(u, v) =
∫
R jfv(j)cj(u, v)dj. Then

E

[
J(v)

∑
u∈X

h(u)

]
= E

[
J(v)E

[∑
u∈X

h(u) | J(v)

]]

= E
[
J(v)

∫
S
h(u)λJ(u | v)du

]
= E

[
J(v)

∫
S
h(u)λ(u)cJ(v)(u, v)du

]
=

∫
R

∫
S
h(u)λ(u)cj(u, v)jfv(j)dudj

=

∫
S
h(u)λ(u)ccon(u, v)du,

(3.2)

such that

Cov

(
J(v),

∑
u∈X

h(u)

)
= E

[
J(v)

∑
u∈X

h(u)

]
− E[J(v)]E

[∑
u∈X

h(u)

]

=

∫
S
h(u)λ(u)ccon(u, v)du− E[J(v)]

∫
S
h(u)λ(u)du

=

∫
S
h(u)λ(u) (ccon(u, v)− E [J(v)]) du.

The type of correlation between J(v) and
∑

u∈X h(u) is deduced by ccon(u, v) and E [J(v)].
If ccon(u, v) > E [J(v)], they are positively correlated, if ccon(u, v) < E [J(v)], they are
negatively correlated and if ccon(u, v) = E [J(v)], they are uncorrelated.

Assume that fv(j) = f(j) is independent of the location v. Then, the non-parametric
method to estimate E [J(v)] =

∫
R jf(j)dj = E [J ] is by the sample mean given by Ê [J ] =

1
N(T )

∑
v∈T j(v), where T ⊆ R2 is a known set of locations and J(v) has realisation j(v)

for v ∈ T . In the following two estimates of ccon(u, v) are deduced.
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3.3 cbin and ccon for an LGCP

3.2.1 Estimates of ccon

Assume again that fv(j) = f(j) is independent of the location v. Assume also that
ccon(u, v) = ccon,0(∥u− v∥) = ccon,0(r). Then, an estimator of ccon,0(r) could be

ĉcon,0(r) =
1

N(T )

∑
v∈T

j(v)
∑
u∈xW

kb(r − ∥u− v∥)
2πrλ(u)

=
1

N(T )

∑
v∈T

ĉv,0(r),

where xW is the point pattern within the window W . The expected value of each entry in
the estimator’s first sum is

E [ĉv,0(r)] = E

J(v) ∑
u∈XW

kb(r − ∥u− v∥)
2πrλ(u)


(a)
=

∫
W

kb(r − ∥u− v∥)
2πrλ(u)

λ(u)ccon(u, v)du

=
1

2πr

∫
W

kb(r − ∥u− v∥)ccon,0(∥u− v∥)du

(b)
=

1

2πr

∫ ∞

0

∫ 2π

0
kb(r − r̃)ccon,0(r̃)r̃dsdr̃

=

∫ ∞

0
kb(r − r̃)ccon,0(r̃)

r̃

r
dr̃,

where equality (a) derives from (3.2) with h(u) = kb (r − ∥u− v∥) / (2πrλ(u)) and for
equality (b), I used the substitution u = v + r̃ (cos(s), sin(s)) and assumed for all v ∈ T
that v + r̃ (cos(s), sin(s)) ∈ W , as in subsection 3.1.

By equivalent arguments, as in the ending of the proof for proposition 2.10, when b is
sufficiently small, ĉv,0(r) ≈ cv,0(r), and if r is sufficiently small, the estimate is upwards
biased. These biases are satisfied for ĉcon,0(r) as well.

Again the edge-correction factor from (3.1) can be included to remove the assumption that
v + r̃ (cos(s), sin(s)) ∈ W for all v ∈ T such the edge-corrected estimate is

c̃con,0(r) =
1

N(T )

∑
v∈T

J(v)
∑

u∈XW

kb (r − ∥u− v∥) e (v, ∥u− v∥)
rλ(u)

.

3.3 cbin and ccon for an LGCP

In subsection 4.3, I will simulate LGCP dependent on binary and continuous random
variables. I do this to see how the estimates perform in the case with correlation. For this
subsection, I will deduce the theoretical correlation used for these simulations.

Let X be a LGCP driven by Λ = exp(Y ) with E[Y (u)] = m(u) for each location u ∈ S ⊆ R2.
I will in the dependence simulations for binary variables consider the special case where
the binary variable are defined I(v) = 1[Y (v) < s] for v ∈ S . Furthermore, denote the
joint density for (Y (u), I(v)) by fY,I , the conditional density for (Y (u) | I(v)) by fY |I , the
joint density of (Y (u), Y (v)) by fu,v, the conditional density for (Y (u) | Y (v)) by fu|v, the
marginal density of Y (v) by fv and P (I(v) = 1) = p(v) such that

fY,I(yu, 1) =

∫ s

−∞
fu,v(yu, yv)dyv, p(v) =

∫ s

−∞
fv(yv)dyv, fY |I(yu | 1) =

fY,I(yu, 1)

p(v)
.
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3 COVARIANCE

Note that for the conditional intensity:∫
B
λI(v)(u | v)du =

∫
R2

1[u ∈ B]λI(v)(u | v)du = E [N(B) | I(v)]

= E
[∫

B
exp (Y (u)) du | I(v)

]
=

∫
B
E [exp(Y (u) | I(v)] du

Hence, the conditional intensity given I(v) = 1 is

λ1(u | v) = E [exp(Y (u)) | I(v) = 1]

=

∫
R
exp(yu)fY |I(yu | 1)dyu

=

∫
R exp(yu)

∫ s
−∞ fu,v(yu, yv)dyvdyu

p(v)

=

∫ s
−∞ fv(yv)

∫
R exp(yu)fu|v(yu | yv)dyudyv

p(v)

=

∫ s
−∞ fv(yv)E [exp(Yu) | Yv = yv] dyv

p(v)

(a)
=

∫ s
−∞ fv(yv) exp

(
E [Yu | Yv = yv] +

Var(Yu|Yv=yv)
2

)
dyv

p(v)

(b)
=

∫ s
−∞ fv(yv) exp

(
m(u) + Cov(Yu,Yv)

Var(Yv)
(yv −m(v)) +

Var(Yu)−Cov2(Yu,Yv)
Var(Yv)

2

)
dyv

p(v)

= exp

(
m(u) +

C(u, u)

2

) ∫ s
−∞ fv(yv) exp

(
C(u,v)
C(v,v) (yv −m(v))− C2(u,v)

2C(v,v)

)
dyv

p(v)
,

where (a) derives from the Laplace transform for a normal distribution, and (b) from the
conditional expectation and variance for a bivariate normal distribution. Remember from
Proposition 2.15 that λ(u) = exp

(
m(u) + C(u,u)

2

)
for a LGCP. Hence the binary summary

function from subsection 3.1 is given by

cbin(u, v) =
λ1(u | v)
λ(u)

=

∫ s
−∞ fv(yv) exp

(
C(u,v)
C(v,v) (yv −m(v))− C2(u,v)

2C(v,v)

)
dyv

p(v)

=

∫ s
−∞

1√
2πC(v,v)

exp
(
− 1

2C(v,v) (yv − (C(u, v) +m(v)))2
)
dyv

p(v)

(a)
=

1
2

(
1− erf

(
C(u,v)+m(v)−s√

2C(v,v)

))
p(v)

,

where equality (a) derives from the cumulative distribution function for a normal distribution.

If m(v) = s, then p(v) = 1
2 such that cbin(u, v) = 1−erf

(
C(u,v)√
2C(v,v)

)
, and if also C(u, v) = 0,

then cbin(u, v) = 1.
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3.3 cbin and ccon for an LGCP

For the continuous case, I will consider the special case J(v) = Y (v), such that the summary
function from subsection 3.2 is rewritten into

ccon(u, v) =

∫
R
yvfv(yv)cy(u, v)dyv =

∫
R

yvfv(yv)λy(u | v)
λ(u)

dyv.

By Laplace transform and the conditional expectation and variance for a bivariate normal
distribution, the conditional intensity is

λy(u | v) = E [exp (Y (u)) | Y (v) = yv]

= exp

m(u) +
C(u, u)

C(u, v)
(yv −m(v)) +

C(u, u)− C2(u,u)
C(u,v)

2

 ,

where (a) derives from equivalent calculations for cbin. Hence,

ccon(u, v) =

∫
R

yvfv(yv) exp

(
m(u) + C(u,v)

C(v,v) (yv −m(v)) +
C(u,u)−C2(u,v)

C(u,v)

2

)
exp

(
m(u) + C(u,u)

2

) dyv

=

∫
R
yvfv(yv) exp

(
C(u, v)

C(v, v)
(yv −m(v))− C2(u, v)

2C(u, v)

)
dyv

(a)
=

∫
R
yv

1√
2πC(v, v)

exp

(
− 1

2C(v, v)
(yv − (C(u, v) +m(v)))2

)
dyv

(b)
= C(u, v) +m(v),

where (a) derives from equivalent calculations for cbin, and (b) uses the expected value for a
normal distribution. Notice that C(u, v) = 0 if and only if ccon(u, v) = m(v), and m(v) = 0,
if and only if ccon(u, v) = C(u, v).

For my simulation study, I will simulate a LGCP with the exponential covariance function
given by

C(u, v) = C(∥u− v∥) = σ2 exp

(
−∥u− v∥

α

)
,

where σ2 is the variance parameter and α is the scale parameter. This function is only 0
when σ2 = 0, such that C(v, v) is also 0, which isn’t allowed. Hence, we expect correlation
when generating X and the random variables from the same underlying GRF.
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4 SIMULATION

4 Simulation

This section displays estimates of cbin and ccon from simulated data within a rectangular
window W = [0, w1] × [0, w2]. The binary and continuous variables are independently
simulated from the homogeneous Poisson point process and LGCP in subsections 4.1
and 4.2. In subsection 4.3, the LGCP will be simulated dependently on the binary and
continuous variables.

Before showing the simulation studies, I will introduce how I simulated the two point
patterns and the realisations of the random variables. The methods used to simulate the
point processes are based on [1].

When simulating a LGCP or an inhomogeneous Poisson point process, an independent
thinning of a homogeneous Poisson point pattern is used.
Definition 4.1. Let X be a point process on S and p : S → [0, 1] be a function. If each
point u ∈ X are independently retained in the point process Xthin ⊆ X with probability
pr(u), then Xthin is called the independent thinning of X with retention probabilities pr(u)
for u ∈ S.

A Poisson point pattern in W with homogeneous intensity λ is simulated by:

1. Generate a realisation of N(W ) ∼ po (λw1w2) points.

2. Each point is independently allocated a location in W by the uniform distribution.

If an inhomogeneous Poison point process should be simulated, then let λmax be the maximal
intensity of the inhomogeneous Poison point process. Simulate a homogeneous Poison
point pattern with intensity λmax. Hereafter, make an independent thinning of the current
simulated homogeneous Poison point pattern with pr(u) = λ(u)/λmax.

When simulating a LGCP, we first need to simulate a GRF YW . However, it is impossible
to simulate YW completely smooth on a computer. Instead, we divide W into a finite
number of disjoint regions W u centred around each location u from a finite set U such that
W = ∪u∈UW

u. Within each region W u, we simulate YWu as a constant. Different methods
exist to simulate the realisations of each constant. However, the theory of these methods is
omitted from this project. A LGCP in W is simulated by:

1. Simulate a realisation yW = {y(u) : u ∈ W} of the GRF YW .

2. Let λmax = maxu∈W (exp (y(u))). Generate a realisation of N(W ) ∼ po (λmaxw1w2)
points.

3. Each point is independently allocated a location in W by the uniform distribution.

4. A thinning is performed with retention probabilities pr(u) = exp (y(u)) /λmax for
u ∈ W .

The binary variables I(·), which were independent of the point patterns, were simulated by:

1. Create a NGrid ×NGrid rectangular grid of points within (0, w1)× (0, w2).

2. Randomly allocated each location v to either set {v : I(v) = 1} or {v : I(v) = 0} with
constant probability P (I(v) = 1) = p.

The independent continuous variables J(·) were simulated by:

1. Create a NGrid ×NGrid rectangular grid of points within (0, w1)× (0, w2).
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4.1 cbin and ccon for Independent Simulated Poisson Point Processes

2. Simulate N2
Grid normally distributed variables with both constant mean E[J ] and

variance Var[J ].

3. Allocate each normal distributed variable to a location v in the grid.

The simulations with dependence between the random variables and LGCP were based on
the special case and theory from subsection 3.3. I first simulate a GRF where the random
variables are given as J(v) = YW (v) and I(v) = 1[YW (v) < s] for some fixed s. Hereafter,
the LGCP is simulated with the same GRF used for the random variables. In my studies,
the simulations of the point patterns are all performed with the R package spatstat . The
coding for the kernels and estimates are shown in appendices C.1, C.2 and C.3.

4.1 cbin and ccon for Independent Simulated Poisson Point Processes

In this subsection, the Poisson point processes are independently simulated from the binary
and continuous variables. Hence, the true cbin(u, v) = 1 and ccon(u, v) = E[J(v)] for each
u, v ∈ W . Appendices C.4 and C.5 show the code used for one simulation of the binary
and continuous cases.

In the simulation studies, I will investigate the estimates of cbin and ccon/E[J ] when changing
the parameters of the simulated Poisson point process and the random variables. One
comparison comes by letting λ be both small and big. From this, it’s possible to see what
happens with the estimate when the average generated number of points in the point
processes is small. I will change the boundaries of W to see how the estimate may change
due to r extending out of the window. By not changing NGrid, it’s also possible to see if
the estimates change when the distance increases between each location for the random
variables. For the binary variables, I will also investigate what happens when p gets small
or big since the size of {v : I(v) = 1} gets small for a small p, while for a big p, the
size gets big. It is expected that the smaller sample size leads to a worse estimate and a
bigger bias. The sample size is also examined for the continuous variables by changing
Ngrid. Furthermore, I will also compare E[J ] being a positive value and 0, since when
E[J ] = 0, we cannot look at the ratio ccon/E[J ]. Instead, I will consider ccon − E[J ], which
has reference point 0. I consider ccon/E[J ] in general, because it centres around 1 with
smaller fluctuations compared to ccon − E[J ] for big E[J ]. The variance of J is compared
between a small and big value since a big value may increase the estimates’ variance. For
both the binary and continuous variables, I also investigate what happens when some of
the locations v for the variables are on the edge of W since this will probably lead to a
big difference between the edge-corrected and non-edge-corrected estimates. The choice
of bandwidths are also explored from 4 different bandwidths and estimates of multiple
simulations. The smoothness of the curves shows if the bandwidth should increase. Since
the curve is oversmoothed if we have a big bias, which happens for a big b. While the
variance is high, when b is small, the curve is undersmoothed. Tables 1 and 2 summarise
the parameters used for each study in the binary and the continuous case. In each study of
the binary variables, I let NGrid = 10.

In the first study with binary variables, I let W = [0, 1]× [0, 1] and λ = 50, so I simulated
an average of 50 points. I let the constant probability be p = 0.25 such that I generated on
average 25 locations v with I(v) = 1. The Poisson point pattern and locations for I(v) = 1
are displayed in Figure 1 for one simulation.
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4 SIMULATION

Figure 1: One simulation of the first study with binary variables. (Left) The Poisson point
pattern and (right) locations v where I(v) = 1

After simulating the data, I estimated the p by the sample mean and intensity λ by
λ̂ = N(xW )/|W |. Hereafter, I tried to find a proper bandwidth from one simulation. In
the first simulation, I tried using the suggested bandwidths for ĝ with a uniform and
Epanechnikov kernel given by 0.1/

√
λ̂ and 0.15/

√
λ̂. After this, cbin was estimated by both

ĉbin,0 and c̃bin,0 with both kernels. Figure 2 displays the four estimates for small and large
values of r.

The bandwidths seem to be too small since the curves are undersmoothed. Figure 3
displays how this first simulation performs with different bandwidths. The estimates with
b = 0.01 were very undersmoothed, while b = 0.2 gave oversmoothed estimates. However,
the bandwidths 0.05 and 0.1 seemed to give some more acceptable smoothing. The curves
in both figures also suggest that it doesn’t matter whether the non-edge-corrected or
edge-corrected estimator is used for a small enough r. However, when r increases, the
non-edge-corrected estimator gets smaller. Hence, I used the edge-corrected estimator for
39 simulations, in which I wanted to compare how the bandwidths 0.05 and 0.1 perform
in general. The mean and boundaries of these simulations’ estimates are shown in Figure
4. Observe from the figure, that b = 0.05 gives a wider range of values for the estimate
compared to b = 0.1. We also see from the mean that in general the estimates are downwards
biased for r < b. The choice of kernels doesn’t matter for r > b.
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4.1 cbin and ccon for Independent Simulated Poisson Point Processes

Figure 2: The first simulation of cbin for study 1. The solid lines are ĉbin,0, the dashed
lines are c̃bin,0, and the vertical lines are the used bandwidths. The black lines are for the
uniform kernel, and the red lines are for the Epanechnikov kernel. (Left) The estimates
with small r values and (right) for big r values.

Figure 3: The first simulation of cbin for study 1. (Upper) The non-edge-corrected estimates
and (lower) edge-corrected. (Left) Estimates with uniform kernel and (right) Epanechnikov
kernel. The black estimates have bandwidth 0.01, the blue have bandwidth 0.05, the purple
have bandwidth 0.1, and the yellow have bandwidth 0.2.

Figure 4: The 39 simulation for study 1 of c̃bin,0 with bandwidth (left) 0.1 and (right) 0.05.
The solid lines are the minimum and maximum of c̃bin,0, the dashed lines are the mean, and
the vertical line are the used bandwidths. The black lines are for the uniform kernel, and
the red are for the Epanechnikov kernel.
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4 SIMULATION

Table 1 gives an overview of the parameters used for five other studies in the binary
case. To make the estimations, I found a sufficient bandwidth from the smoothness of the
estimates curves of a single simulation shown in Figure 5. The multiple simulations of the
edge-corrected estimates are shown in Figure 6. Figure 5 shows again that as r increases,
the non-edge-corrected estimates deviate from the edge-corrected estimate, especially for
the study where some locations v ∈ {v : I(v) = 1}) are on the edges. Figure 6 again shows
the mean of the estimates being 1 and a downward bias for r < b as expected. However,
study 2 has a much bigger maximum value for r < b compared to the other estimates. The
odd behaviour may be due to the small sample size, which on average is 10 for a point
process with λ = 10 and W = [0, 1]× [0, 1]. Its first simulation also has poor estimates in
Figure 5. The third study had on average 250 points and looks fine for the edge-corrected
estimate. From studies 4 and 5, where I simulated the binary variables with both a small
and big value for p, it seemed that study 5 performed better since the smoothens of the
estimate were the smallest for any of the studies, which resulted in the possibility of using
a very small bandwidth. The sample sizes for the simulations of the two studies were also
different since study 4 would, on average, have 5 locations v with I(v) = 1, while study 5
would have 95. Note that I switched around what was defined as I(v) = 0 and I(v) = 1 for
the simulations. Hence, the estimate of these two studies would suggest that it is sometimes
desirable to define I(v) = 1 for the event which occurs most frequently. From all of the
simulations for the binary case, it also seems that the choice of kernels has only a small
significance, since the estimates are nearly the same.

Figure 5: The first simulation for studies 2-6 of cbin. The solid lines are ĉbin,0, the dashed
lines are c̃bin,0, and the vertical lines are the used bandwidths. The black lines are for the
uniform kernel, and the red lines are the Epanechnikov kernel. (Upper left) Study 2, (Upper
right) study 3, (centrum left) study 4, (centrum right) study 5 and (lower) study 6.
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4.1 cbin and ccon for Independent Simulated Poisson Point Processes

Simulation λ W p(v) v ∈ {v : I(v) = 1} on edges of W

1 50 [0, 1]× [0, 1] 0.25 No

2 10 [0, 1]× [0, 1] 0.25 No

3 50 [0, 1]× [0, 5] 0.25 No

4 50 [0, 1]× [0, 1] 0.05 No

5 50 [0, 1]× [0, 1] 0.95 No

6 50 [0, 1]× [0, 1] 0.25 Yes

Table 1: Overview of the studies for Poisson point processes in the binary case.

Figure 6: The 39 simulation for study 2-6 of c̃bin,0. The solid lines are the minimum
and maximum of c̃bin,0, the dashed lines are the mean, and the vertical line are the used
bandwidths. The black lines are for the uniform kernel, and the red are for the Epanechnikov
kernel. (Upper left) Study 2, (upper right) study 3, (centrum left) study 4, (centrum right)
study 5 and (lower) study 6.

For the continuous case, Table 2 gives an overview of the studies, Figure 7 displays the
estimates for the first simulation of each study and Figures 9 and 10 show the estimates for
39 simulations. In the first simulation of study 1, the suggested bandwidths for ĝ again
resulted in an undersmoothed estimate. Figure 8 shows what happens with different choices
of bandwidths, where the smoothness of the estimates with bandwidths 0.05 and 0.1 had
proper smoothness. Hence, I used them again in the multiple simulations study in Figure 9.
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4 SIMULATION

From the multiple simulations study, the estimates with small b again have a wider range
compared to the bigger b. The estimates for the first simulation of each study showed again
that if the locations of the continuous variables aren’t too close to the boundary of the
window, the non-edge-corrected and edge-corrected estimates are close to being the same for
small r. However, the edge-corrected estimates perform better than the non-edge-corrected
for big r.
The multiple simulations in Figure 10 again suggested that the choice of kernels isn’t crucial.
Also, the mean values show an upwards bias for r < b for the estimate, as expected from
the theory. The mean of the multiple simulations all suggest that E[J ] = ccon. For the
seventh study, I needed to use the estimate of ccon − E[J ] since the true E[J ] was 0. This
resulted in a bigger spread compared to the others. However, the estimate still suggests
E[J ] = ccon. The increase of variance in study 6 makes the estimates fluctuate a bit more
compared to the others.

Figure 7: First simulation of studies 1-7 of ccon. (Upper) Study 1 with both small and big
values of r. (Second left) study 2, (second right) study 3, (third left) study 4, (third right)
study 5, (lower left) study 6, and (lower right) study 7. The solid lines are ĉcon,0/Ê[J ], and
the dashed lines are c̃con,0/Ê[J ], except for the lower right plot, which is ĉcon,0− Ê[J ] for the
solid lines and c̃con,0 − Ê[J ] for the dashed lines. The vertical lines are the used bandwidths.
The black lines are for the uniform kernel, and the red are for the Epanechnikov kernel.
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4.1 cbin and ccon for Independent Simulated Poisson Point Processes

Study λ W N2
grid E(J) Var(J) v for J(v) on edges of W

1 50 [0, 1]× [0, 1] 25 10 1 No

2 10 [0, 1]× [0, 1] 25 10 1 No

3 50 [0, 1]× [0, 5] 25 10 1 No

4 50 [0, 1]× [0, 1] 25 10 1 Yes

5 50 [0, 1]× [0, 1] 4 10 1 No

6 50 [0, 1]× [0, 1] 25 10 10 No

7 50 [0, 1]× [0, 1] 25 0 1 No

Table 2: Overview of the studies for the Poisson point processes in the continuous case.

Figure 8: First simulation for study 1 of ccon/E[J ]. (Upper) The non-edge-corrected
estimates and (lower) edge-corrected. (Left) Estimates with uniform kernel and (right)
Epanechnikov kernel. The black estimates have bandwidth 0.01, the blue have bandwidth
0.05, the purple have bandwidth 0.1, and the yellow have bandwidth 0.2.
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4 SIMULATION

Figure 9: The 39 simulations for study 1 of ccon with bandwidths (left) 0.1 and (right)
0.05. The solid lines are the minimum and maximum of c̃bin,0/Ê[J ] and the dashed lines are
the mean. The vertical lines are the used bandwidths. The black lines are for the uniform
kernel, and the red are for the Epanechnikov kernel.

Figure 10: The 39 simulations for studies 2-7 of ccon. (Upper left) Study 2, (upper right)
study 3, (centrum left) study 4, (centrum right) study 5, (lower left) study 6 and (lower
right) study 7. The solid lines are the minimum and maximum of c̃bin,0/Ê[J ] and the dashed
lines are the mean, expect for study 7, where c̃bin,0 − Ê[J ] is studied. The vertical line are
the used bandwidths. The black lines are for the uniform kernel, and the red are for the
Epanechnikov kernel.
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4.2 cbin and ccon for Independent Simulated LGCPs

In this subsection, I work with LGCPs, which are independently simulated of the random
variables. For each simulation, I use the window W = [0, 1]× [0, 1] and simulate the binary
and continuous random variables with p = 0.25, E[J ] = 10 and Var[J ] = 1. Since the
LGCPs are simulated independently of the binary and continuous random variables, the
true values of the estimates are cbin = 1 and ccon = E[J ] for each study. I will also only
examine the edge-corrected estimate in this subsection since it has now been clarified that
the non-edge-corrected estimate works worse.

I intend to investigate the estimates by changing the parameters for the LGCPs. The
simulated LGCP shall be driven by a GRF with constant mean m(u) = mc and exponential
covariance function with variance parameter σ2 and scale α.

I used a big σ2 and a small mc for the first study, which would show what would happen if
my GRF had a great correlation between points nearby and a big variance. The opposite
could be observed from the second study, where σ2 was small and mc big. Note the first
two studies don’t have a small intensity λ. However, in the third study, I let both σ2 and
mc be small so λ was, on average, also small. Since I work within W = [0, 1]× [0, 1], the
expected number of points for each pattern is the expected λ, which is exp

(
mc + σ2/2

)
by Proposition 2.15. In the last study, I increased the scale so the GRF would have an
increased correlation between each point.

The used parameters for each study are shown in Table 3. Figure 11 displays one simulation
of the LGCP for each study, and the estimates are displayed in Figure 12 for the multiple
simulations. How I simulated a LGCP is shown in appendix C.6. Instead of using a proper
bandwidth, I used the same bandwidth, 0.05, for each estimate, so the variance and bias
are more easily shown.

All the estimates are centred around 1 such that there is uncorrelation. Also, the binary
case has a downward bias for r < b, while the continuous case has an upward bias.

The studies with the smallest range for the estimates are 1 and 4. Compared to study 2,
the reason is probably due to the increased variance parameter for study 2. For study 3,
we have a small sample sizes of the point patterns, so to get a proper estimate, we would
need to increase the bandwidth and thereby increase the bias.

Study σ2 mc α Expected λ

1 1 4 0.1 ≈ 90.0

2 5 2 0.1 ≈ 148

3 1 1 0.1 ≈ 4.48

4 1 4 0.2 ≈ 90.0

Table 3: Overview of the studies for the LGCPs in both the binary and continuous case.
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4 SIMULATION

Figure 11: One LGCP simulated from each study. (Upper left) Study 1, (upper right)
study 2, (lower left) study 3 and (lower right) study 4.

Figure 12: Estimates for 39 simulations of the studies for independent LGCP. (Left)
The edge-corrected estimates of cbin and (right) ccon/E[J ] from 39 simulations. (First row)
Study 1, (second row) study 2, (third row) study 3 and (fourth row) study 4. The vertical
line is the used bandwidth, the dashed lines are the mean of the estimate, the solid lines are
the maximum and minium of the estimates. The black lines are for the uniform kernel, and
the red lines are the Epanechnikov kernel.
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4.3 cbin and ccon for Dependent Simulated LGCPs

In this subsection, I will simulate the LGCPs dependently on an underlying GRF, where
my random variables originate. The theory of this is explained in subsection 3.3.

The GRFs will again be simulated with constant mean m(u) = mc and the exponential
covariance function with variance parameter σ2 and scale α. Each simulation are performed
in the window W = [0, 1]× [0, 1], such that the expected number of points for each point
pattern is given by the expected λ. The GRFs are simulated from a grid where NGrid = 10.
To transform the continuous variables J(v) to be binary, I used

I(v) =

{
0 if J(v) ≥ mc

1 if J(v) < mc
.

Remember,

cbin(u, v) = 1− erf

(
C(u, v)√
2C(v, v)

)
= 1− erf

σ exp
(
−∥u−v∥

α

)
√
2


ccon(u, v) = C(u, v) +m(v) = σ2 exp

(
−∥u− v∥

α

)
+mc,

in this special case by subsection 3.3. In this subsection, I will investigate the same
parameters as in subsection 4.2. However, the parameters are expected to change the
estimate more in this subsection. Since a big variance parameter for the GRF will give a
larger correlation between the random variables and the point process from the true values
of cbin and ccon. A larger value of α should also increase the correlation compared to a
smaller α. I again observe the estimate for a small intensity by letting both mc and σ2 be
small such that the average number of points in the point processes is small, hence giving
a small size and maybe a big biased estimate. Table 3 gives an overview of the studies
for both the binary and continuous cases. Appendix C.6 shows the code for simulating a
LGCP and the random variables from the given GRF.

Figure 13 displays the edge-corrected estimates for 39 simulations of each study. The graphs
of the estimates show that estimates can identify correlations between a random variable
and a point process.

The binary studies 1 and 3 have a mean nearly identical to the theoretical value of cbin,
while studies 2 and 4 are reactively near it. For the continuous studies, we have some lack
of smoothness. However, the mean estimates are still centred around the theoretical value.
For studies 2 and 3 there is a great range for the estimate of ccon, which is probably due to
the big variance parameter and small sample size.

Note that the estimates seems neither to be upward or downward bias in general for r < b to
the theoretical value. For these studies, the choice of kernels again seems to be insignificant.
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4 SIMULATION

Figure 13: Estimates for 39 simulations of the studies for dependent LGCP . (Left) The
edge-corrected estimates of cbin and (right) ccon/E[J ] from 39 simulations. (First row) Study
1, (second row) study 2, (third row) study 3 and (fourth row) study 4. The vertical line is
the used bandwidth, the dashed blue lines are the theoretical value, the dotted lines are the
mean of the estimate, the solid lines are the maximum and minium of the estimates. The
black lines are for the uniform kernel, and the red lines are the Epanechnikov kernel.
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5 Case study

In the case study, I will work with trees of the species Capparis frondosa within Barro
Colorado Island in Panama. The trees are observed in a window W = [0, 1000]× [0, 500],
where the distance is in meters. The state of the forest was observed over multiple years.
However, I will concentrate on 2005 since 19 continuous variables were collected this year. I
assume the intensity of the point process of trees is homogenous giving a estimated intensity
λ̂ = 0.00682.

Each variable was observed at 300 sample locations in W , where 200 of these points were
located in a regular grid in W and called the base points. An additional location was
randomly selected near every other base point. A 1/3 of the additional locations were 2
meters away from the base point, another 1/3 were 8 meters away, and another 1/3 were
20 meters away. Figure 14 displays the tree and sample locations for 2005.

In my study, I work with the continuous variables iron (Fe), boron (B), zinc (Zn) and
pH. The estimated mean values of the continuous variables are Ê[Fe] ≈ 181, Ê[B] ≈ 0.966,
Ê[Zn] ≈ 5.53 and Ê[pH] ≈ 5.67. From the estimated mean values, it is fair to assume that
E[J ] ̸= 0, such that we do not have a problem assessing ccon/Ê[J ] in the continuous case. I
let the transformations to the binary variables be

I(v) =

{
0 If Fe(v) ≥ Ê[Fe] at location v.
1 If Fe(v) < Ê[Fe] at location v.

,

I(v) =

{
0 If B(v) ≥ Ê[B] at location v.
1 If B(v) < Ê[B] at location v.

,

I(v) =

{
0 If Zn(v) ≥ Ê[Zn] at location v.
1 If Zn(v) < Ê[Zn] at location v.

,

I(v) =

{
0 If pH(v) ≥ Ê[pH] at location v.
1 If pH(v) < Ê[pH] at location v.

.

The number of locations in the set {v : I(v) = 1} for each variable is NFE = 167, NB = 174,
NZn = 190 and NpH = 135, so the estimates for p are p̂FE ≈ 0.557, p̂B = 0.58, p̂Zn ≈ 0.633
and p̂pH = 0.45. All the locations v ∈ {v : I(v) = 1} are shown in Figure 15 and the
smoothing of the continuous variables in Figure 16.

To validate the conclusion of the estimates, I permuted the original random variables 39
times. Each permuted random variable was created by randomly relocating each original
random variable to another sample location. Note I only used the already existing sample
locations. The permuted random variables and the point process of trees are independent
since the new variables will not have contributed to the number or locations of trees. If the
estimates of the permuted and original random variables are significantly different, then
the conclusion is correlation between the point process of trees and the original random
variables.

For each estimate, I generated the 30 r values. Denote for all the permuted random variables
the estimated minimum and maximum for each r by

• c̃bin,min(r) and c̃bin,max(r) for the binary case .

• c̃con,min(r) and c̃con,max(r) for the continuous case .
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5 CASE STUDY

Denote the original estimates by c̃bin,O(r) and c̃con,O(r) for each r. For 39 permutations, it
holds that

P (c̃bin,O(r) < c̃bin,min(r)) = P (c̃bin,O(r) > c̃bin,min(r)) = 0.025.

P (c̃con,O(r) < c̃con,min(r)) = P (c̃con,O(r) > c̃con,min(r)) = 0.025.

A proper bandwidth for the estimates seemed to be b = 1.5. Figures 17 and 18 display the
estimations of cbin and ccon/E[J ] with r ∈ [0, 10].

The estimates suggest that iron is mostly likely to be uncorrelated with the point process
of trees. The binary variables for boron and pH are also mostly uncorrelated, while zinc
is negatively correlated. The continuous variables for boron, zinc and pH have a positive
correlation for some r values. For both the binary and continuous case, we see some very
small and big values for r < b, which comes for the downwards bias and upwards bias for
each estimate.

Figure 14: (Left) Locations of the trees and (right) sample locations for the continuous
variables in 2005.
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Figure 15: All the locations v ∈ W where I(v) = 1.

Figure 16: Smoothing plot of the continuous variables.
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5 CASE STUDY

Figure 17: The edge-corrected estimation of cbin/E[J ]. The blue lines are the original
estimate, the black lines are the maximum and minimum of the permuted estimates. (Left)
Estimated by the uniform kernel and (right) the Epanechnikov. The used variables are
(upper) iron, (second) boron, (third) zinc and (lower) pH.
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Figure 18: The edge-corrected estimation of ccon/E[J ]. The blue line are the original
estimate, the black lines are the maximum and minimum of the permuted estimates. (Left)
Estimated by the uniform kernel and (right) the Epanechnikov. The used variables are
(upper) iron, (second) boron, (third) zinc and (lower) pH.
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7 CONCLUSION

6 Discussion and Perspective

In this project, I have only worked with non-parametric kernel estimates, which led me to
make some choices. I never found out what the most optimal bandwidths were. I chose
the bandwidths, which seemed to give a good smoothness of curves for the estimates. In
practice, it could be found by cross-validations. In [3], they chose a bandwidth for the
estimate of g by minimising an estimate of the mean integrated squared error with least
squares cross-validation.

In the project, I only used the uniform and Epanechnikov kernels. However, other kernels do
exist and could have been used. However, the choice of the kernels seems to be insignificant
compared to the choice of bandwidth, which is also the case for non-parametric estimates
of the pair correlation function and inhomogeneous intensity function.

For the estimates, I could also have used alternative methods. For one, I assumed that the
intensities for the point processes were homogenous in my simulations and case studies.
However, the intensities could be inhomogeneous. Using the inhomogeneous intensity in
estimates would increase the estimation time and add another bandwidth selection to the
estimate. I used a factor to remove the edge effects in the estimates. However, alternative
edge-correction factors or including buffer zones in the window boundary problem may
have solved the boundary problem.

Instead of looking at the non-parametric kernel estimations, I could also have used estima-
tions by regression models. In [5], they used the log-linear regression model

λ(u) = exp (βZ(u)) ,

where Z(u) is a covariate at location u with parameter β. To estimate β, we then need to
know Z(u) for each u ∈ W . However Z(u) is only known for some locations. Interpolations
of the Z’s are used to handle the problem, which can lead to a bias. The estimations in
this project don’t have a problem with this interpolation and can be used as an alternative.

7 Conclusion

In conclusion of this project, I gained summary functions for the correlation between a
point process and both binary and continuous variables. Furthermore, edge-corrected non-
parametric estimates of the summary functions performed best. From the simulation study,
the edge-corrected estimates seemed to perform well unless the sample size of the random
variables or the number of points in the point pattern was small. From my application, I
discovered that iron was likely uncorrelated with the tree locations in BCI, while boron,
zinc and pH were positive correlated.
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Appendices

A Standard Proof

This result is from [1] and is used to prove results throughout the project.
Lemma A.1. Let h be a non-negative function defined on a measure space (H,H). Suppose
we want to prove an equality given by

E[h(X)] = H(h),

where H is some functional, such as the integral. Let A be a subset in H. Then, it is enough
to show, that for each A the expression is satisfied for h(x) = 1[x ∈ A] to prove it.

B Kernels

This section will introduce kernels and two examples used in my application.

A kernel is a probability density function defined by k : R → [0,R) or k : R2 → [0,R).
Kernels have a bounded support, and I will work within [−1, 1] and [−1, 1]× [−1, 1].

Uniform:

k(u) =
1

2
1 [|u| ≤ 1] for u ∈ R

k(u) =
1

4
1 [|u1| ≤ 1]1 [|u2| ≤ 1] for u = (u1, u2) ∈ R2.

Epanechnikov:

k(u) =
3

4
(1− u2)1 [|u| ≤ 1] for u ∈ R

k(u) =
9

16
(1− u21)(1− u22)1 [|u1| ≤ 1]1 [|u2| ≤ 1] for u = (u1, u2) ∈ R2
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C CODE

C Code

C.1 Kernels

ker_b_uni <- function(call,bandwidth){ #Uniform Kernel
if (abs(call)/bandwidth <= 1 ){
kb <- 1/2*1/bandwidth

}
else {
kb <- 0

}
kb

}

ker_b_epi <- function(call,bandwidth){ #Epanechnikov Kernel
if (abs(call)/bandwidth <= 1 ){
k <- 3/4*(1-(call/bandwidth)^2)
kb <- k/bandwidth

}
else {
kb <- 0

}
kb

}

C.2 Estimation of cbin,0.

In the code, the first function being defined is the non-edge-corrected estimate of cbin,0
and the second function is the edge-corrected estimate. Both estimates are with the
uniform kernel. To get the estimates with the Epanechnikov kernel, change ker_b_uni to
ker_b_epi.

library("spatstat")
hatc0homouni <- function(pat,binvar,r,bandwidth,p){ #The non-edge-corrected

estimate
X <- cbind(pat$x,pat$y)
I <- cbind(binvar$x,binvar$y)
N <- nrow(X)
NI1 <- nrow(I)
NItot <- NI1/p
wind <- pat$window
cpair <- crosspairs(pat,binvar,rmax = bandwidth+r,what = "indices") #Removes

the worst locations pairs, that KB do not accept.
lambda <- N/area(wind) #Estimated intensity
s2 <- rep(NA,NI1)
s1 <- matrix(NA,nrow = NI1,ncol = N)
for(v in 1:NI1){
if (v %in% cpair$j){
for (u in cpair$i[cpair$j==v ]){
if (X[u,1] != I[v,1] | X[u,2] != I[v,2]){
kB <- ker_b_uni(r-norm(t(X[u,]-I[v,]),type = "f"),bandwidth) #The

kernel in the sum. Change to ker_b_epi for Epanechnikov.
d <- 2*pi * norm(t(X[u,]-I[v,]),type = "f")*p*lambda #The denominator

in the sum
s1[v,u] <- kB/d #The inner sum

}
}

}
s2[v] <- sum(s1[v,],na.rm = TRUE) #The outer sum

}
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C.3 Estimation of ccon,0

sum(s2, na.rm = TRUE)/NItot #The estimate
}

tildec0homouni <- function(pat,binvar,r,bandwidth,p){ #The edge-corrected
estimate

X <- cbind(pat$x,pat$y)
I <- cbind(binvar$x,binvar$y)
N <- nrow(X)
NI1 <- nrow(I)
NItot <- NI1/p
wind <- pat$window
cpair <- crosspairs(pat,binvar,rmax = bandwidth+r,what = "indices") #Removes

the worst locations pairs, that KB do not accept.
lambda <- N/area(wind) #Estimated intensity.
s2 <- rep(NA,NI1)
s1 <- matrix(NA,nrow = NI1,ncol = N)
for(v in 1:NI1){
if (v %in% cpair$j){
for (u in cpair$i[cpair$j==v ]){
if (X[u,1] != I[v,1] | X[u,2] != I[v,2]){
rtilde <- norm(t(X[u,]-I[v,]),type = "f")
kB <- ker_b_uni(r-rtilde,bandwidth) #The kernel in the sum. Change to

ker_b_epi for Epanechnikov.
d <- rtilde*p*lambda #The denominator in the sum.
edgecor <- 1/(2*pi)*edge.Ripley(X = binvar[v],r=rtilde,W=wind,

maxweight = Inf) #The edge-correction factor in the sum.
s1[v,u] <- kB/d*edgecor #The inner sum.

}
}

}
s2[v] <- sum(s1[v,],na.rm = TRUE) #The outer sum.

}
sum(s2, na.rm = TRUE)/NItot #The estimate.

}

C.3 Estimation of ccon,0

In the code, the first function is the non-edge-corrected estimate of ccon,0, and the second
is the edge-corrected estimate. Both estimates are with the uniform kernel. To get the
estimates with the Epanechnikov kernel, change ker_b_uni to ker_b_epi.

library("spatstat")
hatc0conhomouni <- function(pat,contvar,r,bandwidth){ #The non-edge-corrected

estimate
X <- cbind(pat$x,pat$y)
Cv <- cbind(contvar$x,contvar$y)
Iv <- contvar$marks
N <- nrow(X)
NC <- nrow(Cv)
wind <- pat$window
cpair <- crosspairs(pat,contvar,rmax = bandwidth+r,what = "indices") #Removes

the worst locations pairs, that KB do not accept.
lambda <- N/area(wind) #Estimated intensity
s2 <- rep(NA,NC)
s1 <- matrix(NA,nrow = NC,ncol = N)
for(v in 1:NC){
if (v %in% cpair$j){
for (u in cpair$i[cpair$j==v ]){
kB <- ker_b_uni(r-norm(t(X[u,]-Cv[v,]),type = "f"),bandwidth) #The

kernel in the sum. Change to ker_b_epi for Epanechnikov.
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C CODE

d <- 2*pi*r*lambda #The denominator in the sum
s1[v,u] <- kB/d #The inner sum

}
}
s2[v] <- Iv[v]*sum(s1[v,],na.rm = TRUE) #The outer sum

}
sum(s2, na.rm = TRUE)/NC #The estimate

}

tildec0conhomouni <- function(pat,contvar,r,bandwidth){ #The edge-corrected
estimate

X <- cbind(pat$x,pat$y)
Cv <- cbind(contvar$x,contvar$y)
Iv <- contvar$marks
N <- nrow(X)
NC <- nrow(Cv)
wind <- pat$window
cpair <- crosspairs(pat,contvar,rmax = bandwidth+r,what = "indices") #Removes

the worst locations pairs, that KB do not accept.
lambda <- N/area(wind) #Estimated intensity
s2 <- rep(NA,NC)
s1 <- matrix(NA,nrow = NC,ncol = N)
for(v in 1:NC){
if (v %in% cpair$j){
for (u in cpair$i[cpair$j==v ]){
rtilde <- norm(t(X[u,]-Cv[v,]),type = "f")
kB <- ker_b_uni(r-rtilde,bandwidth) #The kernel in the sum. Change to

ker_b_epi for Epanechnikov.
d <- r*lambda #The denominator in the sum.
edgecor <- 1/(2*pi)*edge.Ripley(X=contvar[v],r=rtilde,W=wind,maxweight

= Inf) #The edge-correction factor in the sum.
s1[v,u] <- kB/d*edgecor #The inner sum.

}
}
s2[v] <- Iv[v]*sum(s1[v,],na.rm = TRUE) #The outer sum.

}
sum(s2, na.rm = TRUE)/NC #The estimate.

}

C.4 Simulation of Poisson Point Process and Binary Variables

The code first shows one simulation from the Poisson Point Process. Hereafter, the binary
variables are simulated. The code ends by showing how to insert the simulation in the
estimate with an uniform kernel. The parameters used were W = [0, 1]× [0, 1], λ = 50, N10
and p = 0.25.
bx <- c(0,1) #Boundary for first coordinate in window.
by <- c(0,1) #Boundary for second coordinate in window.
lam <- 50 # Homogeneous intensity.
set.seed(123)
PP <- rpoispp(lambda = lam, win=owin(bx,by)) # Simulated Poisson point process.
grid_bin <- expand.grid((1:10)/11,(1:10)/11) # Grid of locations for the binary

variables.
p_bin <- 0.25 # P(I(v)=1) for locations v.
set.seed(122)
rbin <- grid_bin[as.logical(rbinom(n = 10*10,size = 1,p=p_bin)), ] #Locations v

allocated to the set with I(v)=1.
phat <- nrow(rbin)/nrow(grid_bin) #The sampled p value.
bin <- ppp(x=rbin[,1], y=rbin[,2],window = owin(bx,by))
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C.5 Simulation of Poisson Point Process and Continuous Variables

b_uni_PP <- 0.1/sqrt(intensity(PP)) # Suggested bandwidth for the uniform
estimate of g.

PP_t_cb_uni <-c() #Tilde estimates with uniform kernel.
PP_h_cb_uni <-c() #Hat estimates with uniform kernel.

for (i in 1:30){
PP_t_cb_uni[i] <- tildec0homouni(pat = PP,binvar = bin,r = i/100, bandwidth =

b_uni_PP,p = phat )
PP_h_cb_uni[i] <- hatc0homouni(pat = PP,binvar = bin,r = i/100, bandwidth =

b_uni_PP,p = phat )

}

C.5 Simulation of Poisson Point Process and Continuous Variables

The code first shows one simulation from the Poisson Point Process. Hereafter, the
continuous variables are simulated. The code ends by showing how to insert the simulation
in the estimate with an uniform kernel. The parameters used were W = [0, 1] × [0, 1],
λ = 50, N5, E[J ] = 10 and Var[J ] = 1.
bx <- c(0,1) #Boundary for first coordinate in window.
by <- c(0,1) #Boundary for second coordinate in window.
lam <- 50 # Homogeneous intensity.
set.seed(122)
PP <- rpoispp(lambda = lam, win=owin(bx,by)) # Simulated Poisson point process.

grid_con <- expand.grid((1:5)/6,(1:5)/6) # Grid of locations for continuous
variables.

N2_con <- 25 #Number of locations for continuous variables.

set.seed(12)
mark_con<- rnorm(mean = 10,sd =1,n = N_con) #Continuous variables.
mean_con <- mean(mark_con) #Sample mean of continuous variables used for

relation.

con <- ppp(x=grid_con[,1], y=grid_con[,2],window = owin(bx,by),marks = mark_con
) #Continuous variables given a location.

b_uni_PP <- 0.1/sqrt(intensity(PP)) # Bandwidth suggested for uniform.

PP_t_cc_uni <- c() #Tilde estimates with uniform kernel.
PP_h_cc_uni <- c() #Hat estimates with uniform kernel.

for (i in 1:30){
PP_t_cc_uni[i] <- tildec0conhomouni(pat = PP,contvar = con,r = i/100,

bandwidth = b_uni_PP)
PP_h_cc_uni[i] <- hatc0conhomouni(pat = PP,contvar = con,r = i/100, bandwidth

= b_uni_PP)
}

C.6 Simulation of LGCP and dependent variables

The code shows one simulation from a LGCP with parameters mc = 4, σ2 = 1, h = 0.1
and W = [0, 1]× [0, 1]. Hereafter, the code shows how to extract the simulated GRF from
the LGCP. Finally, I create the sets of binary and continuous variables.
mc <- 4 # The used mean for the GRF.
var <- 1 # The used variance parameter for the GRF.
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C CODE

scale <- 0.1 # The used scale for GRF.
bx <- c(0,1) #The boundaries for the first coordinate of the window.
by <- c(0,1) #The boundaries for the second coordinate of the window.
set.seed(123)
Depcox <- rLGCP(mu = mc,scale=scale,var=var,model = "exp",win=owin(bx,by),eps =

0.1) #Generates the LGCP.

marksC <- c()
for (i in 1:(10*10)){
marksC[i] <- log(attr(Depcox, "Lambda")$v[i])# Pulls out the estimated

values for the GRF.
}
y <- c()
for (j in 1:10){
y[j] <- 1/11*j

}
y <- rep(y,10)
x <- y[order(y)]

sample_mean <- mean(marksC) # Sample mean of the GRF.
marksI <- as.integer(marksC < sample_mean) # Sample of the binary variables.
phat <- sum(marksI)/length(marksI) # Estimate of P(I(v)=1)=p(v).

CV <- ppp(x = x, y = y, marks = marksC) #Converting the continuous variables to
a point process.

IV <- ppp(x = x[marksI==1], y = y[marksI==1]) #Converting the binary variables
to a point process.
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