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This thesis investigates whether
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struct profitable betting strategies on
the Betfair betting exchange in the top
5 European football leagues. We ex-
tend previous work by Hubáček et al.
(2019) by implementing an XGBoost
model with a custom loss function
designed to decorrelate predictions
from market odds. Strategies are
built using both the Kelly-Criterion
and Modern Portfolio Theory (MPT),
and evaluated with walk-forward
cross-validation, and a validation and
out-of-sample set to avoid overfitting.

Unfiltered strategies yield negative
returns, but performance improves
when applying simple rule-based
filters; betting only when predicted
probabilities exceed market-implied
probabilities by 25%, and limit-
ing odds to below 2.0. The best-
performing strategy, based on MPT
with the probability filter, achieves a
3.71% annual growth rate across our
entire backtesting period.

Although 3.71% is a relatively modest
yearly return, the strategy offers diver-
sification benefits due to its low corre-
lation with traditional assets and can
be valuable for maximizing the payoff
from bookmaker’s freebets.
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1 Introduction

For economists, markets are exciting. Behavioral economists and micro-economists
focus on how market participants and market makers behave in the market. Econo-
metricians and financial economists have an econometrical and statistical approach
to understanding and forecasting the market. Game theorists want to identify the
strategic interactions in the market and market economists focus on how a market
functions.

Markets are a broad and multifaceted concept. Markets encompass a wide
range of assets, goods and services. In the last decades, the development in tech-
nological modeling tools, computational power and ease of access has been expo-
nential, leading econometric modeling and forecasting to be a prominent part of
being an economist in the 21st century. Oftentimes, research papers focus on mar-
kets concerning stocks, bonds, house prices, raw materials and energy, but markets
also exist for less-institutionalized matters.

One such example is sports betting - a domain that exhibit the same funda-
mental characteristics as other markets but is mostly viewed as a mean of recre-
ational entertainment. Here, market participants place wagers against bookmakers
or other market participants on bet exchanges. Much like in traditional financial
markets, the aggregate belief and expectation of the probability of a certain out-
come to occur determines the price of a bet on bet exchanges. Specifically, bet ex-
changes offer a more clean and honest exchange of opposite positions in wagers for
specific events, while bookmakers are free to set their prices as they wish. Betting
markets offer a unique real-world testing ground for efficiency, human behavior,
decision-making under uncertainty, risk-aversion among market participants and
predictive models.

This thesis aims to investigate whether a machine learning-based forecasting model
can generate positive returns in the long run when applied to betting exchange
odds in European football. The project is therefore situated in the intersection of
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predictive modeling, investigating the efficiency of the football betting market and
attempting to identify and exploit human behavior. The data is collected for the
five major football leagues in Europe; the English Premier League, the Spanish La
Liga, the German 1. Bundesliga, the Italian Serie A and the French Ligue 1 from
2017 to April 2025.

The project investigates the possibilities of generating positive returns in the
1X2 market1 by building betting strategies by leveraging the predictions from the
highly accurate and flexible XGBoost algorithm with a custom loss function. In or-
der to build our betting strategies we implement common risk management tech-
niques in the Kelly-Criterion and Modern Portfolio Theory.

Innate in the investigation of the possibilities of generating positive returns
is an examination of the level of efficiency in the market. Fundamental metrics
for the betting market changed during the Covid-19 pandemic, creating a change
in regime between the pre-pandemic and the post-pandemic period, providing
further opportunities to investigate changes in human behavior.

In order to assure robustness and generalizability of the results of the pre-
dictive model, the methodology include a rigorous process for avoiding backtest
overfitting by employing both validation and out-of-sample tests as well as a strict
walk-forward cross-validation procedure.

The thesis proceeds as follows: in chapter 2 we will give an introduction to odds
and betting exchanges, as well as an initial exploration of efficiency in the sports
betting market by especially exploring cognitive biases in the market. In chapter
3 we present the data, the risk management methods we are using to build our
betting strategies and the measures to evaluate the results. Chapter 4 is more
technical, as we go through how XGBoost works, which allows us to implement
our own loss function. Additionally, we present which steps we have taken in
order to avoid backtest overfitting. In chapter 5 we present, analyze and discuss
our results, after which we conclude on our findings in chapter 6.

1The 1X2 market is a standard betting format in football, where: 1 represents the odds for a
victory for the home team, X represents the odds for a draw and 2 represents the odds for a victory
for the away team.
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2 The Sports Betting Market

In the sports betting market, market participants, called bettors, place a stake on
a specific pre-determined wager (bet). The bet is constructed based on the odds
that the bet-providing party is willing to sell the wager at. Similarly to asset pric-
ing in financial markets, the seller sells at a price that is perceived as acceptable.
Therefore, one can view the odds of a wager as the price of the asset.

In sports betting, the odds is directly translated to the payoff per stake if the
wagered outcome happens; the higher the odds (the lower the probability), the
higher the payoff – and vice versa. If the wagered outcome does not occur, the
bettor loses the whole stake. 1

2.1 Odds and Implied Probability

There are three primary formats of betting odds; decimal, fractional and American
odds. In this project, the decimal odds format will be used due to its prevalence
and widespread adoption within European sports betting markets; Suppose a bet-
tor enters a bet with a stake of 1.00€ and a potential payoff of 2.50€, the decimal
odds are then 2.50, as the payoff is 2.50 times the size of the stake - implicitly man-
ifesting a profit of 1.50€. (López, 2022, ch. 2) 2

Odds are numerically based on the probability that an event occurs, denoted the

1Some bookmakers provide various mechanisms that refund losses, hand out freebets etc. Due to
the possibility of changing such policies and keeping the framework as simple as possible, for now,
we ignore these possibilities. However, we provide a brief discussion of how our strategy may be
useful to exploit these policies in section 5.7.

2Equally, a bet with a stake of 1.00€ and a potential payoff of 2.50€, hence a potential profit of
1.50€; the fractional odds is: 3

2 and the American odds is: +150. In both cases; instead of directly
indicating the total payoff as the decimal odds do, it indicates the profit. (López, 2022)
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2.1. Odds and Implied Probability

implied probability, given by the following simple equation:

Implied Probability =
1

decimal odds
(2.1)

, entertaining the above example; the decimal odds is 2.50, hence the implied prob-
ability is 1

2.50 = 0.40, i.e. the outcome with odds 2.50 is expected to happen four
out of ten iterations. (López, 2022, ch. 4)

Note that the example above does not account for commission or transaction
fees, which are applied by both traditional bookmakers and betting exchanges.

For bookmakers, the profit margin is embedded in the provided odds, while on
betting exchanges, a commission is typically paid from profits of a wager. Book-
makers can freely price the provided bets, such that their advantageous position
to the bettor is maintained through time. Therefore, the lower the profit margin,
the higher the payout rate3. Some bookmakers even promote their platform by
displaying their repayment rate - relative to the repayment rate of its competitors.

While bookmakers are free to provide the bets they favor, the provided odds
among bookmakers must be very similar to the market odds. Otherwise, bettors
would hypothetically be able to exploit the differences in odds between platforms
and generate arbitrage by combining bets on opposite outcomes in the same events.
Refer to section 2.4.2 for an investigation of such arbitrage opportunities.

In contrast, the odds on bet exchanges simply follow the market mechanisms
of supply and demand. In the project, we use odds from betting exchanges rather
than from bookmakers. For an overview of the structure and functionality of bet-
ting exchanges, refer to section 2.2.

In sports betting, bettors have the opportunity to wager on a wide range of possible
outcomes - not just who wins the match. These outcomes can include the number
of yellow cards, the total number of corners, the time of the first goal, which team
scores first, which team is awarded more free-kicks, and many other specific events
that may occur during a match.

Bettors can combine odds from different events in the same wager, denoted
parlays. Suppose; two wagers with odds 2 are combined in a parlay, the odds are
then 2 × 2 = 4. Oftentimes, bettors can even combine different non-contradictory

3The payout rate (repayment rate) is the guaranteed payout by betting on all possible outcomes
(Hegarty & Whelan, 2024). Suppose for a single match, a home team victory has odds of 1.66, draw
odds of 4.33 and away team victory odds of 4.50; the implied probability is then 1

1.66 + 1
4.33 + 1

4.50 =

1.0556, hence a payout rate of 1
1.0556 × 100 = 94, 73%. Therefore, the payout rate quantifies the

proportion of the stake that the bookmaker returns to the bettor in the long run.
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2.2. Betting exchanges: Structure and Functionality

wagers in the same event, e.g. in a specific match; i) the home team wins, ii) at
least two yellow cards for the away team and iii) more than six corners in total.

In this thesis, we will not combine odds. Instead, we focus on betting on indi-
vidual matches.

Importantly, odds are not static nor fixed; rather, the odds adjust dynamically both
before and during the match in response to various factors. Pre-match odds change
in response to team news, injuries, etc. In-play match odds change rapidly in
response to real-time events, such as goals, penalties, red cards, injuries and match
momentum. In addition to this, market movements influence the odds, similarly
to the continuous change in prices of stocks when demand and supply are not in
equilibrium. Therefore, the odds on betting exchanges change continuously, and
consequently, the bookmaker’s odds will change. (Cortis & Levesley, 2016, ch. 2 &
6)

However, Cortis & Levesley (2016) have found that, while the bookmaker’s
odds broadly follow the market odds, they manipulate their provided odds in
order to exploit inefficient situations in the demand for odds. This is a tool for
maximizing profits - or at least ensuring long-term profitability.

2.2 Betting exchanges: Structure and Functionality

Traditional bookmakers are the direct counterpart to bettors as they act as the
opposing party in a wager. Bookmakers provide odds on their own terms of risk
management strategies, and the bettor is free to participate in the wager, however
never as the role of the bet provider.

Bet exchanges operate as any peer-to-peer marketplace, i.e. a marketplace be-
tween equal bettors. Bettors do not participate in a wager against the house, instead,
the wager is engaged between bettors taking opposite positions of the outcome of
a specific event. On betting exchanges, it is solely the forces of supply and demand
that dictate the prices of odds. No market participant acting as the bet provider in
the betting market have the freedom to price the odds according to the ensurance
of long-term profitability. Similarly, trades in the stock market are engaged be-
tween investors that have opposing expectations of outcomes, and the prices is
determined by the aggregate demand and supply of the specific stock.

Due to these structural differences, betting exchanges are said to offer more
efficient pricing. (Franck et al., 2010)
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2.3. Market Participants and Liquidity

The market participant taking the role of the traditional bookmaker places a lay
bet and the bettor placing a wager on an event occurring places a back bet. Like
the stock market, betting exchanges operate on an order-matching system, that en-
sures that both lay bets and back bets are engaged at a jointly agreed odds. If the
market odds are not priced correctly according to a market participant, the market
participant can supply a lay bet or buy a back bet as a limit order4. Oftentimes
betting exchanges charge a commission on profits from a wager, rather than having
incorporated an embedded profit margin in the odds.

While Franck et al. (2010) argue that the prices on betting exchanges incorporate the
relevant news swiftly and fully, indicating a high level of efficiency, this present project
will be investigating the possibilities of creating long-term profits on the basis of
bet exchange odds data. The innate institutional profit-maximizing strategic ap-
proach and the immense data-handling capabilities of the bookmakers is assumed
to be a greater hurdle, than the efficiency of the bet exchange odds. Additionally, if
we were to successfully generate systematic profits from a bookmaker, they would
be free to exclude us at any time. Moreover, the project aims at investigating the
level of efficiency of the sports betting market, which is difficult when utilizing
the provided odds from bookmakers. In section 2.4, the level of efficiency in the
betting market is discussed - and in section 3.1, the used data is presented.

2.3 Market Participants and Liquidity

There are notable differences in motivation behind participation in the financial
markets and in the sports betting market. While recreational stock purchasing is
observed, its prevalence remains relatively limited in the aggregated stock market.
Conversely, such recreational purposes are much more prevalent among market
participants in the sports betting market. This suggests that the appeal of sports
betting is, relative to various other financial assets, more a form of entertainment
or leisure.

Justifiably, one can imagine, this tendency can be attributed to the fundamental
structure of the immediacy of outcomes, as well as the rich historical passion and
even tribalism especially in the context of European football. In the paper Bruce

4A limit order; the placement of a bet at another price (odds) the market price (odds). Suppose
that the odds for an outcome is 2.00, but the market participant believes the odds should be 1.90
– the market participant can then place a back bet at odds 1.90, and by default; the wager is only
engaged if the odds are 1.90
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2.4. Efficiency in the Sports Betting Market

et al. (2012), bettors are divided into two main groups of bettors: those who bet for
recreational purposes (recreational bettors) and those whose bet based on a system-
atic and pre-defined strategy aimed at long-term profitability (professional bettors).

Bruce et al. (2012) argue that the presence of professional bettors, who generally
hold more liquidity, can lead to sharper and more efficient odds, as they continu-
ously exploit slight inefficiencies. These bets of substantial stake size are wagered
at large sports events (such that individual bets do not move the odds) and the
bets are based on strategies of optimizing mean return and aggregated returns. In
contrast, the recreational bettor tends to view betting as a secondary activity and
is more likely to place small-stake bets based on irrational grounds.

2.4 Efficiency in the Sports Betting Market

In the literature on betting market efficiency, the market is generally found to
operate efficiently in line with the Efficient Market Hypothesis (EMH). While inef-
ficiencies may arise in isolated cases, market mechanisms facilitate adjustments,
ensuring that the market quickly corrects itself in accordance with EMH.

The betting market shares several key similarities with the financial markets,
particularly in terms of efficiency, participant behavior, and risk management prin-
ciples. In both markets, prices reflect publicly available information. On financial
markets, prices adjust based on shifts in the investor’s behavior and expectations in
response to new data, financial reports, or policies. Similarly, prices in the betting
market fluctuate according to team performance, injuries, and the expectations of
the bettors.

2.4.1 Efficient Market Hypothesis

In the paper Fama (1970), the Efficient Market Hypothesis (EMH) is presented, and
a comprehensive review thereof is performed. EMH stands as a cornerstone of fi-
nancial thought and asset pricing till this day, arguing that in an efficient market,
the prices always fully reflect the available information, and therefore; it is impos-
sible to systemically make excessive profits in the market by trading on the basis
of information readily available to the market.

Therefore, when new information is available in the market, the new informa-
tion is immediately incorporated into the asset prices. Later, economist Burton
Malkiel described the evolution of stock prices as a Random Walk, in his book A
Random Walk Down Wall Street (Malkiel, 1973), referring to the unpredictable nature
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2.4. Efficiency in the Sports Betting Market

of the next new information – and therefore; the innate impossibility of consistently
“beating the market”.

Fama identifies three forms of efficiency in the market: weak, semi-strong and strong.
The three definitions of the degree of efficiency differ in the amount of information
assumed to be reflected in asset prices.

At the weak form efficiency, the asset price reflects all past market data, which
includes historical prices. At semi-strong form efficiency, the asset price reflects all
publicly available information, including past market data, as well as fundamen-
tal contemporaneous information in public, such as company earnings and stock
splits. Finally, the strong form efficiency, where asset prices reflect all the above and
private information. Implicitly, within this form of efficiency, even insider-trading
is futile, as private information is already embedded in the asset price. (Fama, 1970)

In the context of the Sports Betting Market, the same logic can be applied; at the
weak form efficiency, the price of the bet (odds) will reflect all historical odds.
At the semi-strong form efficiency, the odds will reflect all publicly available in-
formation, in the context of football; announced injuries, winning/losing streaks,
importance of the match etc. At the strong form efficiency, the odds reflect all pub-
lic and private information; hidden injuries, the manager’s match-specific tactical
philosophy, internal conflicts etc.

Intuitively, the strong form efficiency is somewhat unthinkable; in the financial
markets, it is illegal for an employee to trade stock based on non-public informa-
tion. Similarly, a football player is not allowed to bet on their own matches. In
the real-world, this strong degree of efficiency is largely theoretical. Otherwise,
in the perfect case of strong form efficiency in the market, the announcement of
a financial report from a company would not have an impact on the stock price -
and similarly, the announcement of injuries for the three most vital players of the
team would not change the provided odds.

In Fama (1970), the actual degree of efficiency is investigated by continuously pro-
viding more information to a trading strategy and seeing when the information
indeed would allow the trading strategy to generate profits consistently.

Fama found no significant evidence contradicting the semi-strong form efficiency,
and hence neither the weak form efficiency, while the results were not as clear in the
context of strong form efficiency. As Malkiel proposed; there is a lot of support in
that changes in prices follow a Random Walk Model. The data for common stock,
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2.4. Efficiency in the Sports Betting Market

which Fama investigate, experience (very) close-to-zero positive autocorrelation,
but it is argued that potential profits are absorbed by even minimum transactions
costs for the investor attempting to exploit the small inefficiency. These transaction
costs are not present in the proposed preferred strategy; buy-and-hold.

Although the definitions of efficiency in regards to the reflected information is
applicable to the sports betting market, the fundamental nature of betting on sport
matches is different to e.g. trading stocks. In the context of sports betting, there
is no long-term buy-and-hold strategy - the act of "investing" in a game of sports
has a predetermined time-frame, as is the case with options. Similarly, the bettor
is able to close the deal prematurely, or hold the bet until expiration. Each bet
is a discrete event with a defined outcome and time-frame - and if you hold the
bet until expiration, you can either win a predetermined amount or lose the entire
stake.

2.4.2 Inefficiencies and Market Imperfections

In the paper Deschamps (2007), the efficiency of the European football betting
markets is examined, and possible arbitrage opportunities are identified. In an
inefficient market, the participants will be able to systematically exploit the dis-
crepancies in odds and obtaining risk-free profit. This is investigated by separately
modeling i.) the best odds for each bet across up to 79 platforms and ii.) the
average odds for each bet up to 79 platforms.

Across 6315 football mtaches in England, France, Germany, Italy, Spain and
Scotland for the 2005/06 season, even the best possible odds across all platforms
generate a negative return. Although Deschamps found that 6% of the games in
the sample have potential arbitrage opportunities based on the best odds across
platforms, inefficiencies are quickly corrected as market participants exploit them.
This limits the viability of long-term arbitrage strategies for the strategic bettor in
the aggregated European football betting market. Generally, the bookmaker prices
the bets at market value – outlier odds are rare5.

Deschamps investigates the presence of arbitrage opportunities in a standardized
way, that aligns with the theory of Risk Management Buchdahl (2003, ch. 4); if the

5Outlier odds are odds that deviate significantly from the market average. The likelihood of
experiencing arbitrage opportunities increases as the number of outlier odds increase. Suppose that
a platform provides outlier odds for the home team to win in a specific match, while another platform
provides outlier odds for the away team to win.
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2.4. Efficiency in the Sports Betting Market

guaranteed payout exceeds the total stake, there is an arbitrage opportunity, i.e.
risk-free profit. The overrounding equation is given by:

λ(i) = ∑
j

1
oij

− 1 (2.2)

, where oij is the odds of outcome j, hence λ(i) is the sum of the reciprocal of the
odds of match i minus one, denoted the overrounding of match i. In a game of foot-
ball, there are three possible outcomes in terms of the result; the home team wins,
the away team wins or they draw, so (j = 1, 2, 3). In betting terms, respectively; 1,
2 and X.

If the sum of the reciprocal of the odds minus 1 for the three outcomes is equal to
zero, it is denoted as break-even. If λ(i) > 0, there is no arbitrage, while if λ(i) < 0,
there is an arbitrage opportunity, as the guaranteed payout exceeds the stake.

On February 15th 2025, for an English Premier League football match between
Leicester and Arsenal, the provided 1X2 (1: home team win, X: draw and 2: away
team win) odds from bet365 are 9.50, 5.25 and 1.33 in favor of Arsenal. According
to equation 2.2, these odds generate an overrounding of 0.047626, and therefore no
arbitrage. Suppose that the odds for an Arsenal victory increases to 1.43, all else
equal, the overrounding would then be −0.004967, revealing an arbitrage opportu-
nity.

Suppose that a bettor places a total of 100DKK on the match; 10.58DKK on
outcome 1 at odds 9.50, 19.14DKK on outcome X at odds 5.25 and 70.28DKK on
outcome 2 at odds 1.438. No matter the outcome, the payoff is greater than the
total stake of 100DKK9. Note, in the above illustration, there are no transaction
costs.

The arbitrage test presented in Deschamps (2007) is closely related to the nature of
exploiting arbitrage opportunities in financial markets, presented in Hillier et al.
(2012); in some inefficient situations, in the real-world, it is possible to generate
guaranteed profits in the market by combining different negatively correlated as-
sets or by simultaneously trading assets in different markets. Exploiting arbitrage

6λ(LA1) =
1

9.50 + 1
5.25 + 1

1.33 − 1 = 0.04762
7λ(LA2) =

1
9.50 + 1

5.25 + 1
1.43 − 1 = −0.00496

8Odds 1:
1

9.50
λ(LA2)+1 = 10.58DKK, Odds X:

1
5.25

λ(LA2)+1 = 19.14DKK, Odds 2:
1

1.43
λ(LA2)+1 = 70.28DKK

9Odds 1: 10.58DKK × 9.50 = 100.51DKK
Odds X: 19.14DKK × 5.25 = 100.49DKK
Odds 2: 70.28DKK × 1.43 = 100.50DKK
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2.4. Efficiency in the Sports Betting Market

in this pure form is the utmost safe trade one can make - but equally, it is a rare
occurrence.

2.4.3 Favorite strategy vs. Long-shot strategy

In addition to Deschamps (2007), the conclusion that arbitrage opportunities ap-
pear but are quickly exploited and closed is concluded in Winkelmann et al. (2024).
Furthermore, Deschamps (2007) found that the long-term yield is substantially
higher when consistently betting on the favorite team due to long-shot bias. This
was also investigated and concluded in Direr (2012), who even found that the
profits are 4.45% and 2.78% from 2000 to 2011 when combining odds from the best
odds across numerous bookmakers and when averaging odds across bookmakers,
respectively. This result is based on only betting on teams that have a win proba-
bility of at least 90%10.

The term long-shot bias from behavioral economics is a cognitive human tendency
to overvalue and overestimate the probability of a highly improbable event of hap-
pening. This bias is very clear and applicable in the context of sports betting,
and manifests itself as a disproportionate amount of money being wagered on
outcomes with exceptionally high odds of happening - overruling a rational as-
sessment of probability. Therefore, for such bets, the payoff is substantial, and the
irrationality especially applies to speculative or recreational bettors.

The bias results from the inability of the human mind to comprehend the actual
probability of an unlikely outcome. In the paper Kahneman & Tversky (1979), it
is compared to the human ability to evaluate changes or differences; it is hot in
the summer, but how hot is it? The music is loud, but how loud is it? Equally;
the probability is low, but how low is it? Instead, the bettor sees the potential
for an abnormal payoff. Kahneman & Tversky argue that the relative preference
of betting on long-shots is "...leading highly probable gambles to be under-priced" due
to market conditions. These conclusions resonate with the findings of both Direr
(2012) as well as Snowberg & Wolfers (2010) - the latter did not generate profits
by betting on the probable outcomes but proves the rate of return is substantially
greater than when betting on the long-shots11.

10The conclusion is based on investigating data that cover "21 championships" in eleven European
countries from 2000 to 2011, consisting of 79.446 football matches. The odds are derived from six to
ten bookmakers, summing to approx. 1.8 million odds. (Direr, 2012)

11The paper investigates the mean rate of return from consistently betting based on a simple
strategy: Bet on all outcomes with odds > x, x ∈ R. The analysis is based on odds in American
horse racing from 1992 to 2001. The data consists of 6.4 million horse race starts, and they find that

11



2.4. Efficiency in the Sports Betting Market

Ambiguously, Franck et al. (2010) points out that evidence supports that the
tendency to overvalue underdogs (underprice favorites) is less detectable on bet
exchanges relative to the odds provided by the bookmakers, indicating greater
efficiency on bet exchanges. Therefore, if the objective of this project was to solely
exploit favorite bias, we would be better off betting on bookmaker platforms, and
oppositely, if the objective was to solely exploit long-shot bias, we would be better
off betting on a bet exchange.

According to Cortis & Levesley (2016), bookmakers are manipulative of the
provided odds. They tend to provide "too low" odds for underdogs (hence; too high
odds for favorites), according to the elasticity of the bettors.12 It is a calculated
endeavor to exploit the widespread human inability to evaluate low probabilities.
At the end of the day; whether the decimal odds for a defender to score an own
goal in the 5th minute with his left foot outside the penalty area is 350 or 700, the
recreational bettor will enter the wager either way.

To test the above long-shot bias hypothesis, we look at bet exchange odds and
available fixture data from the English Premier League, French Ligue 1, German
1. Bundesliga, Spanish La Liga and Italian Serie A between the 2016-17 season
until the end of the 2023-24 season. We exclude the testing data (starting from the
beginning of the 2024-25 season) in the below experiments, in order to prevent any
data-snooping (see section 4.3.2).

We evaluate the betting strategies based on the Cumulative PnL, which is given
by:

Cumulative PnLi =
k

∑
i=1

PnLi (2.3)

and
Wager won: PnLi = (oi − 1)× bi × c

Wager lost: PnLi = −bi
(2.4)

, where bi and oi is the stake and odds for the specific event i, respectively. 1 − c is
the commission, which at Betfair is 5% of all profits, and therefore c = 0.95. PnL
(Proft-and-Lossses) can therefore be both positive and negative, but unlike tradi-
tional financial markets, the PnL is never zero, as we either win or lose the bet.

the larger odds, the lower the mean rate of return in the long term. (Snowberg & Wolfers, 2010)
12The non-strategic bettors looking for a big payoff, which we have called recreational bettors,

have an inelastic demand curve, while for strategic bettors, the curve is elastic. Therefore, while
recreational bettors are insensitive to changes in odds, the strategic bettors are very sensitive to
changes in the provided odds. The bookmakers are forced to have this in mind when pricing each
bet. (Cortis & Levesley, 2016, ch. 6.2.2)
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In figure 2.1, we test the long-shot bias by consistently placing a unit bet bi = 1 on
the favorite team with an odds of winning of 1.09 or less, which generates a profit
of 2.36 over the period. However, across approx. 14,300 matches, only 48 instances
fulfill this simple, yet strict requirement, and therefore there were only made 48
bets, one of which was lost.

If the acceptable interval of odds is marginally increased to 1.10, the profits are
negative at -0.547. The outcomes of these two favorite strategies are illustrated in
figure 2.1. Similarly to applying the benchmark odds of 1.09, the benchmark of
1.10 consists of only 75 total bets - six of which are losses that eliminate all profits.
Further, if the benchmark odds are increased to 1.12, the losses are now -3.189.
Evidently, in this simple strategy, all lost bets are very expensive, as one loss will
set the bettor back significantly, potentially even eliminating all profits.

Figure 2.1: Favorite strategy: The cumulative PnL (Profit & Loss) of two simple strategies; always
bet on a team with a winning odds of 1.09 and 1.10 or less, respectively: The figures illustrate the
cumulative profits and losses (PnL) from the beginning of the 2016-17 season until the end of the
2023-24 season by implementing two very simple and similar strategies, but with very different
results. On the left; in all possible matches, place a unit bet on teams with winning odds of 1.09 or
less, and on the right; in all possible matches, place a unit bet on teams with winning odds of 1.10
or less. The figures are constructed based on all matches in the best league in England, France,
Spain, Germany and Italy from the 2017-18 season until the end of the 2023-24 season. The odds are
the Betfair bet exchange odds before the match starts.

Contrary to the evidence of the favorite strategy, Dixon & Pope (2004) find evidence
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of favorite bias (i.e. reverse long-shot bias) in English football matches between
1993 and 1996. They find that low-probability outcomes are priced too generously,
and high-probability outcomes are priced too conservatively. This contrasts with
the above-mentioned view that long-shot bias drives the price for low-probability
outcomes down (i.e. drives the provided odds up).

We find that when betting a unit stake on teams with a bet exchange pre-
game odds of at least 12.00, the period generates a profit of 22.73. However, the
drawdowns are substantial; the maximum profits in the period is 129.25 and the
minimum is a loss of -187.73, see figure 2.2. Clearly, when examining the graph
on the left, one can argue that it is no more than a coincidence that the cumula-
tive result is positive at the end of the examined subset of the data. Since January
2023, the PnL has experienced a downward trend - would the PnL be negative
by January 2025? Who knows. Suppose that the determined benchmark odds is
changed to 9.50, the cumulated result is instead -91.76 with a maximum of 54.89
and a minimum of -255.47, see 2.2 on the right. The number of bets in the two
long-shot strategies are 1267 and 1956, respectively.

The difference between the favorite team strategies (figure 2.1) and the long-shot strate-
gies (figure 2.2) is substantial.

Firstly, the level of volatility of the PnL is significantly higher in the long-shot
strategies, compared to the favorite team strategies. The high volatility indicates
the high risk the bettor faces, as its results are highly unpredictable and sensitive to
the PnL. In figure 2.2, the strategy provides extreme profits in the latter part of the
calendar-year 2019. Oppositely, the favorite team strategies demonstrate gradual
profits, but great costs associated with losing a single bet.

Secondly, the number of betting opportunities. The lack of opportunities, espe-
cially for the favorite strategies, fundamentally makes it tough to generate substan-
tial profits. The long-shot strategies, on the other hand, has a significantly higher
frequency but also carry much greater uncertainty, where only a handful of wins
can turn a large negative result into a situation with profit.

While the two simple strategies generate profits at certain thresholds, it must be
underlined that the results are very uncertain. Providing thresholds and models
for profits ex-post are generally valueless. How can a strategic bettor not be con-
cerned if the downward trend in the long-shot strategy continues? Does a strategic
bettor fancy that their favorite strategy is so dependent on outcomes of individual
matches?

Nonetheless, it is clear that by implementing simple strategies, it is indeed pos-
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Figure 2.2: Long-shot strategy: The cumulative PnL (Profit & Loss) of two simple strategies;
always bet on a team with a winning odds of at least 12.00 and 9.50, respectively: The figures
illustrate the cumulative profits and losses (PnL) from the beginning of the 2016-17 season until the
end of the 2023-24 season by implementing two very simple and similar strategies, but with very
different results. On the left; in all possible matches, bet a unit stake on teams with winning odds of
at least 12.00, and on the right; in all possible matches, bet a unit stake on teams with winning odds
of at least 9.50. The figures are constructed based on all matches in the best League in England,
France, Spain, Germany and Italy from the 2017-18 season until the end of the 2023-24 season. The
odds are the BetFair bet exchange odds before the match starts

sible to generate profits on the betting market, i.e. the market is not perfectly
efficient. Biases and inefficiencies persist, and therefore, in theory, it is possible to
exploit such biases and inefficiencies and generate profit.

Based on the findings in figure 2.1 and 2.2, it is clear that different researchers find
different results in different time-periods, supporting both a favorite and a long-
shot strategy. To us, out of the above, the favorite strategy with 1.09 as benchmark
odds has provided the safest betting strategy for the present experiment. The
strategy shows a consistent and stable trend in cumulative PnL, but it is always
only a few lost bet away from being an aggregated loss. Additionally, in the figure,
it seems that the market has acted on this inefficiency as bets with odds 1.09 or less
have become significantly less frequent since Covid-19 in 2020. Refer to section 5.2
for a discussion thereof.

Ideally, we aim for a less restrictive strategy, allowing for more bets to be in-
cluded, which in turn would reduce the dependency and reliance on the outcomes
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of individual bets. In essence; the utopian objective is to base a strategy on con-
ditions that generates a cumulative PnL curve with a linear-like upward-sloping
trend and a high frequency of bets.

2.4.4 Cognitive Biases and Behavior

In addition to the long-shot bias presented by the Prospect Theory from Kahneman &
Tversky, various other irrational tendencies remain in the psychology of the human
species, ever since the hunter-gatherer community thousands of years ago. All
inconsistencies in objective rationality are interesting to the strategic bettor today.
Sports betting is not solely about statistical probabilities: far-reaching irrational
tendencies among bettors will create irrational betting patterns, which move the
market, and possible inefficient prices might be exploitable.

The sports betting market operates at the intersection of statistical probabilities,
regular financial market mechanisms and risk-management as well as irrational
human behavior.

Overconfidence bias

In Sapiens: A Brief History of Humankind, Harari (2011, ch. 4), the author explains the
human dependency on ancient myths and beliefs, making their perception of abil-
ity to hunt game or of the tribe to conquer new lands irrationally overestimated.
Millennia later, we find market participants overestimating their own ability to
predict the future of the markets and, perhaps in our case, the winning probabil-
ity of the local semi-professional football team in the derby against the full-time
professional team from the neighboring town. This psychological tendency among
humans is denoted overconfidence bias.

Some market participants find themselves overly well-equipped in beating the
market, which leads to excessive risk-taking: A Self-valuation bias that stems from
past successes or selective memory, putting too much emphasis on past wins rel-
ative to past losses. Rationally, actual probability of outcomes cannot justify such
confidence. (Wilkinson & Klaes, 2017, ch. 4)

The increased risk-taking in the context of betting might lead to increased bet-
ting volume, and the perception of a “safe bet” might not be based in reality.
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Loss Aversion

In addition to identifying the Long-shot bias, Prospect Theory by Kahneman &
Tversky also identified the loss aversion among humans. Humans tend to feel the
pain of loosing more than the joy of equivalent wins, i.e. the disutility of being the
loser in a given event exceeds the utility of being the winner in the same event.
(Wilkinson & Klaes, 2017, ch. 3)

However, Shang et al. (2021) found that the loss aversion is greater when the
market participant views the bet as an investment than as a recreational activity.

The heavy disutility of losing among humans, combined with the laissez-faire
state of mind for recreational bettors might lead market participants to inadver-
tently chase losses. Clearly, losses are best equalized by winning long-shots –
something that occurs rarely.

Gambler’s Fallacy & Hot-Hand Fallacy

As presented in (Wilkinson & Klaes, 2017, ch 4), the gambler’s fallacy is the ir-
rational belief that past events influence future outcomes. A popular example of
this is with roulette; if the ball has landed on red five times in a row, how can it
possibly land on red again? Equally, If a football team has lost five matches in a
row, are they not “due” for a win? These thoughts are based on a belief in the
existence of non-existing patterns.

Contrarily to the Gambler’s Fallacy is the Hot-Hand Fallacy. Bettors believe
that the winning streak of a team is more likely to continue than it is to end. If a
football team has won five matches in a row, how can they not win the next?

Both fallacies can lead to misinformed wagers, determined by passion and sub-
jective belief – rather than on probability. Bettors have a tendency to view the
above-mentioned football teams as “due for a win” and “unstoppable”. It would
be reasonable to test if there is profitability in constructing a strategy opposing
these fallacies. We test the Gambler’s Fallacy and the Hot-Hand Fallacy in section
2.4.5.

Emotional betting

Among recreational bettors, it follows naturally to conclude that personal prefer-
ence and emotions influence the betting behavior. E.g. such bettor might always
bet on their favorite team to win, or always bet on the rivals of their favorite team
to lose – even though statistical analyses suggest otherwise.
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Suppose this is a tendency among supporters of a big club with a large fanbase;
this tendency would lower the odds for the team to win, and therefore increase the
odds for the other team to win. Perhaps, the odds for a victory for monstrous clubs
such as Manchester United and Real Madrid are always slightly lower than they
should be according to the efficient market. Is it profitable to construct a betting
strategy based on betting against the biggest clubs? We test this in section 2.4.5

2.4.5 Exploiting Cognitive Biases and Behavior

In addition to investigating the possibilities of exploiting inefficiencies in the mar-
ket odds for favorite and long-shot strategies, which is a widely covered topic in
various literature, we attempt to exploit systematic inefficiencies based on cogni-
tive biases, emotions and match result momentum.

First, we investigate the possible inefficiencies that are systematic over time. In
2.4.3, we have already tested a possible systematic inefficiency by setting up a
threshold for both favorite strategies and long-shot strategies. The pure mathemat-
ical conclusion is that we indeed did generate profits with a benchmark of less than
or equal to 1.09 and greater than or equal to 12.00 in the English Premier League,
but we also discovered that result would be negative if increased and decreased to
the arbitrary number of 1.10 and 9.50, respectively.

Suppose we set up an equally simple threshold that allows for more observa-
tions (at least more than 48 observations in approx. 8 years, as the above-mentioned
favorite strategy had), and the strategy generates a somewhat steadily increasing
cumulative PnL curve. This would increasingly eliminate the risk of losing the
entire winnings due to a single lost bet, and statistically, the increased number of
observations would speak in favor of the actual legitimacy of the strategy in the
long term.

As mentioned in section 2.4.4, suppose that bets tend to be overpriced for either
home or away matches for specific teams. We find that by continuously betting
on Arsenal to win all home matches generates a profit of 16.28 by continuously
betting a stake of 1.

Historically, Arsenal is a great English club, but so is Liverpool and Manchester
City, and performing the same investigation for these clubs generate smaller profit
for the Liverpool-strategy of 4.18 and a loss for the Manchester City-strategy of
-2.99. The cumulative PnL of the three clubs are depicted in figure 2.3. All clubs
have not been relegated to the second-best division in England, and despite the re-

18



2.4. Efficiency in the Sports Betting Market

sults, both Liverpool and Manchester City have won more home matches between
the 2016-17 and 2023-24 seasons than Arsenal.13 Therefore, for the equation to
make sense, the provided odds must be lower for Liverpool and Manchester City:
The average odds for a home match victory for Arsenal is 1.95, 1.53 for Liverpool
and 1.31 for Manchester City in the same period. However, from this simple in-
vestigation, it seems that the implied probability for a home victory for Arsenal is
continuously underestimated.

Figure 2.3: Always bet on a victory for the home team for specific clubs: The figures illustrate the
cumulative profits and losses (PnL) from 2016 to 2024 for a simple strategy: Always bet on the
home team - the home team being Arsenal, Manchester City and Liverpool, respectively. The
figures are constructed based on all Premier League matches from the 2016-17 season until the end
of the 2023-24 season. The odds are the average supplied odds by the bet supplier before the match,
and each bet has a stake of 1.

Implementing this simple strategy on Liverpool indeed generates profits, but until
2020, the returns are negative as it skyrockets to a profit of almost 10 before plum-
meting back into the negative. Variance is high, and one could argue; if the data
started a year later, the results would be significantly better and if we made this
investigation in the end of 2020, the results would be even better. The variance is
smaller for the implementation of the strategy for Manchester City, and it seems
there is a clear and consistent trend.

For the implementation of the strategy for Arsenal, the trend is positive, and

13Between the 2016-17 season and the 2023-24 season, Arsenal have won 102 home matches, Liv-
erpool 110 matches and Manchester United 117 wins - out of a total of 152 home matches.
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it is clear that lost bets does not change the trend or result fundamentally, as we
see for the strategy for Liverpool. To some extent, the curve can be explained as a
positively-sloped linear curve with 152 observations, see figure 2.3.

Under the restrictions of logic and uncertainty about the future, the Arsenal
strategy is deemed preferred over the Liverpool and Manchester City strategy.

In section 2.4.4, the biases of Gambler’s Fallacy and Hot-Hand Fallacy were pre-
sented, arguing that, according to the bettors, the performance of a football team
is more dependent on the outcomes of past performances than they actually are.
However, to what extent does the market efficiently price the probabilities of out-
comes in such a situation? Does the bettors drive up the price of either outcome?
- Or does the market participants suffering from Gambler’s Fallacy and Hot-Hand
Fallacy just cancel each other out in the aggregate market?

We have investigated this by implementing a simple condition; we only con-
sider betting on matches where one of the participating teams have won the last
five matches in a row. 14 In these matches, two opposite strategies are constructed:
i.) bet on the team that have won their last five consecutive matches to continue
winning (Hot-Hand Fallacy) and ii.) bet on the team that have won their last five
consecutive matches to lose the match (Gambler’s Fallacy). The results from imple-
menting the two strategies across the five major leagues from the 2016-17 season
until the 2023-24 season is illustrated in figure 2.4.

The two strategies depicted in figure 2.4 are very different. By always betting on
a winning streak of five matches to continue, as a bettor suffering from Hot-Hand
Fallacy, it generates a steady low-variance negatively-sloped linear curve. Bettors
suffering from Hot-Hand Fallacy are seemingly highly exposed to betting on the
expected, meaning that they will be the victim of the innate 5% commission from
BetFair. Additionally, the odds will rarely be high in such instances. Out of 606
bets, only three of the won bets had odds above 4.00. 61.72% of the 606 bets were
won with average odds 1.53.

Contrary to the low-variance negatively-sloped linear curve for the Hot-Hand
Fallacy, the curve for the Gambler’s Fallacy is high-variance and not close to being
linear. 18.48% of odds were won with an average odds of 5.74. The Gambler’s
Fallacy is closely related to a long-shot strategy, which both are highly reliant on
individual wins on bets with high odds. As briefly discussed in section 2.4.3, the

14It occurs that both participating teams in a match have won their last five matches, meaning we
would be betting on both teams to win. As a consequence of this, such instances are removed from
the investigation.
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Figure 2.4: Hot-Hand Fallacy and Gambler’s Fallacy: The figures illustrate the cumulative profits
and losses (PnL) from the 2016-17 season to the 2023-24 season for two simple strategies: i.) bet a
unit stake on the team that have won their last five consecutive matches to continue winning
(Hot-Hand Fallacy) and ii.) bet a unit stake on the team that have won their last five consecutive
matches to lose the match (Gambler’s Fallacy). The figures are constructed based on all matches in
the English Premier League, the Spanish La Liga, the German Bundesliga 1, the Italian Serie A and
the French Ligue 1 from the 2016-17 season until the end of the 2023-24 season.

strategy is quite unpredictable (high-variance); while the strategy can only lose
the stake of 1 per match in this setting, a handful of consecutive wins can turn a
negative return into a significant positive return, however, what if these wins do
not occur in the high frequency it has done throughout the historical data? E.g. in
the 2022-23 season, out of 82 bets, only 15 bets were won, resulting in the returns
going from 44.81 to 15.68. Equally, in the first half of 2024, only one bet was won
out of 35 bets, resulting in the returns going from 38.45 to 9.82.

In section 2.4.4, a potential bias of emotional bettors were presented; the implied
probability of victories for clubs with the largest fanbases might be overvalued,
i.e. the odds are too low due to a irrationally high demand for such odds. We
investigate this by always betting on a loss for all matches for the English team
Manchester United and the Spanish teams Real Madrid and FC Barcelona, as they
are among the clubs with the utmost largest fanbases globally. See figure 2.5.

While the strategies in figure 2.5 of always betting against Real Madrid and
FC Barcelona generate positive returns most of the 8 year period, the variance
is high, and even the most creative soul would find it problematic to explain it
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Figure 2.5: Always bet on a loss for each team: The figures illustrate the cumulative profits and
losses (PnL) from 2016 to 2024 for a simple strategy: Always bet a unit stake on the team in
question to lose - the teams being Manchester United, Real Madrid and FC Barcelona. The figures
are constructed based on all matches in the English Premier League and the Spanish La Liga, which
Manchester United, and Real Madrid and FC Barcelona have participated in from the 2016-17
season until the end of the 2023-24 season. The odds are the average supplied odds by the bet
supplier before the match.

as a positively sloped linear curve. It is clear that the strategies concerning the
two Spanish clubs are highly dependent on individual won bets. In fact, the Real
Madrid strategy goes from a loss of -5.43 to a positive return of 57.88 in the span
of almost eight months, by winning only 12 bets out of 32 wagers - six of which
have odds above 5.00.

In this simple investigation, it seems that the betting market is somewhat effi-
cient as the assumed large amounts of bets on their favorite club does not move
the market prices to an extent that can be exploited.
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3 Data and empirical method

3.1 Data & Variables

In this project, all datasets span from the summer of 2016 until May 1st 2025, cov-
ering almost a decade of observations and approximately nine seasons of football
matches. The relevance and characteristics of all datasets, as well as the exercise of
combining the information from them, is presented in the below sections.

3.1.1 Bet Exchange Odds

The dataset of the bet exchange odds has come from Betfair by web-scraping odd-
sportal.1 The data is from the summer 2016 until May 2025 for the English Premier
League, the Spanish La Liga, the German Bundesliga 1, the Italian Serie A and the
French Ligue 1, and the data consists of a datapoint for each individual decimal
odds for all 1X2 outcomes of a match, hence, three rows per match. The odds
displayed in oddsportal are the ones available immediately before the beginning of
each match.

As Betfair has a 5% commission on profits from all won bets, we model the
raw decimal odds and only subtract the 5% from the profits when computing the
returns from a bet. Mathematically, the profits from a won bet are calculated based
on the following equation:

Net Positive Return = (oi − 1)× bi × 0.95

, where oi is the decimal odds and bi is the stake. For lost bets, the loss is simply
bi.

In addition to the odds, the dataset provides the names of the home and away
team, the timestamp for the match and the season, which allows us to combine
odds data with the match data explained below.

1https://www.oddsportal.com
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3.1.2 Match results

The data for match results have been scraped from FBRef. The data consists of a
timestamp for the match, the season, the names of the home and away team as
well as the number of goals that either team has scored in the match. We compute
the results straight-forward:

if HomeGoals > AwayGoals ⇒ Home team wins

if HomeGoals < AwayGoals ⇒ Away team wins

if HomeGoals = AwayGoals ⇒ Draw

In practice, the odds and match result data is then combined into one dataset by
grouping them by season and home and away team.

3.1.3 Predictive Features

In football, each match has a finite result and it is often said that a team is never
better than their last result. However, it might be slightly more arbitrary than that;
what if a team is fighting relegation - or if a team is fighting for the title? Contrarily,
what if a team mathematically already have won the league? What if the manager
is sacked if a match is lost? What if a team has a Champions League match in the
mid-week? Numerous factors come into play, and they change on a weekly basis.

Some factors are challenging to implement as features, while others are more
straight-forward. Below, we present the features that we have implemented (but
not necessarily used in the final model).

Expected Goals (xG)

The Expected Goals data has been retrieved from FBRef by using the {soccerdata}
library in Python.

Expected Goals (xG) is a statistical metric in football that quantify the expected
amount of goals a team should have scored according to the calculated probability
of a goal being scored in individual sequences. xG assigns a probability of each
shot being a goal based on numerous parameters; type of shot (direct attempt on
goal, header, volley, etc.), distance to goal, shot angle relative to the goal, presence
of defender, goalkeeper position, etc. All else equal, the probability of scoring
from the penalty spot is greater than from a shot on goal from 30 meters, hence the
generated xG is greater.
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The metric has become very valuable in football analyses, which provides rich
information and can serve as a proxy for the best performing team in each match.
If the actual number of goals for a team in a specific match exceed the expected
goals, it indicates that the team is performing very well in finishing - and vice
versa. Similarly, if a team had less actual goals relative to xG, it indicates ineffec-
tiveness in finishing - or kudos to the goalkeeper.

The metric contributes in the ability to evaluate past non-result-based performances.
Suppose a team has won their last several games. Are the victories deserved - or
was it all luck? Now, suppose that the team has had roughly the same actual
number of goals as xG, and the opposite team has had less than 1 xG in all those
games. The conclusion would then be that the team is performing well, both offen-
sively and defensively - the victories seem to be well deserved. The latter is useful
information when predicting the probability of the team to win the next match.
(Rathke, 2017)

In this project, xG is utilized in numerous ways: i.) difference in mean xGoals per
game of the two teams throughout the season and in the past five matches, and ii.)
mean difference between the actual goals and xGoals for each team throughout the
season and in the past five matches.

Elo-ratings

The Elo-ratings data has been retrieved from ClubElo by using the {soccerdata}
library in Python.

Elo-rating is a statistical ranking system that quantitatively classifies multiple en-
tities according to the abilities of each entity. The higher the Elo-rating, the better
the abilities. The Elo-rating then allows a ranking of n entities between 1 and n
according to the relative skill levels (the Elo-rating) - 1 being the team/player/etc.
with the weakest abilities and n being the strongest. Originally, the system was
developed by chess master Arpad Elo in the 1960’s as an alternative to the contem-
poraneous ranking system in chess, and the Elo-ranking system was implemented
in chess 1970. The system is based on a logistic probability function of either en-
tity winning the match, and after the given match, the Elo-rating is updated for
both entities based on the difference between the actual and expected outcome of
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a match. The updated Elo-rating is given by the following equation:

R∗
i = Ri + γ(Sij − b(Ri − Rj))

R∗
j = Rj + γ(−Sij − b(Rj − Ri))

(3.1)

, where b is an increasing function based on a constant scaling mechanism, mean-
ing that the higher the difference in Elo-ratings between entity i and j, respectively
Ri and Rj, the higher the change value. γ is the speed of adjustment, and Sij is
the result of the match; win, draw, loss, which takes the value Sij = 1, Sij = 0.50
and Sij = 0, respectively. Therefore, intuitively, the greater the difference in Elo-
ratings between the entities in a match (Ri − Rj), the less impact on the change in
Elo-rating from the result of the match. Contrarily, a match between two entities
of similar Elo-rating have great impact on the Elo-rating after the match. (Düring
et al., 2022)

The Elo-rating system is not new and has been subject to generalizations and im-
provements in research papers, including in (Düring et al., 2022) and Jabin et al.
(2015). However, the fundamentals of the Elo-rating metric still persist in chess
and is widely adapted in various other sports, including football.

One key advantage of the Elo-ratings is its simplicity and interpretability, and
the ratings can directly be translated into win probability. As mentioned above,
the ratings change continuously, taking form and momentum into consideration,
and is therefore an obvious feature to include in the model of this present project.

As features in the XGBoost model, the Elo-rating is included as i.) the raw Elo-
ranking for each team in each match, ii.) the difference between the Elo-rankings
of the two teams, and iii.) as the rolling slope of the change in Elo-rating for each
team.

Championship points

Based on the results of each match throughout the season, we assign a victory 3
points, a loss 0 points and a draw 1 point, i.e. we replicate the continuous stand-
ings in the league. The more points a team has, the better the team, and the better
the chance for the title, and oppositely, the less points a team has, the greater the
risk of relegation. It would be logical to believe that the team that need a victory
in a match the most is one of the teams with either the most or the least points.
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We have constructed numerous metrics based on championship points; i.) raw
points in the season for each team (standings in the league table), ii.) mean points
per match throughout the season and over the last five matches, and iii.) the points
gap to the team with the most and the least points in the league.

Goals scored

A clever man once said that in order to win, one must score more goals than the
opposition. Therefore, in addition to being utilized in combination with xG, we im-
plement the mean goal difference (goals scored minus goals conceded) throughout
the season and over the past five matches.

Odds

We have engineered features based on odds: The standard deviation of odds pro-
vided from all bookmaker platforms for both home team and away team victories,
and the difference between i.) the odds spread between the odds for a home team
and away team victory in bet exchanges and ii.) the odds spread between the mean
home and away team victory odds across all bookmaker platforms.

Days since last game

While we only bet on games in the 5 biggest leagues of European football, there are
also other tournaments taking place simultaneously, which can have an impact on
a team’s performance in the league. We can for example imagine a scenario, where
one team is playing in both the league, the international Champions League and
a domestic cup, while it’s opposition only has the league to focus on. This would
probably mean that the opposition has a higher-than-normal chance of winning,
as the players on the other team is more fatigued from playing the previous game
more recently and because they are more ’disinterested’ in the main league, as they
may deem a competition as the Champions League to be more important.

To try to capture these effects, we have included the number of days since the
last game in any competition for both teams in each game.

3.2 Risk management

Risk management is fundamental for market participants in any investment or
financial endeavor, and the sports betting market is no exception. However, un-
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like traditional financial markets, sports betting presents unique risks that require
specialized approaches to capital allocation and assessment.

In cases of bankruptcy, investors are at risk of losing the entire invested amount
when trading stocks, but it is a rarity. Contrarily, the bettor is at risk of losing the
whole stake of each investment (bet), so the bettor must ensure that they can afford
to lose the whole stake.

3.2.1 Kelly-Criterion

The Kelly-Criterion is a mathematical formula that quantifies the pre-defined opti-
mal stake for individual bets, based on the objective of maximizing growth in the
long run. Specifically, the deciding factor in regards to the size of the stake is a
balance between risk and profit – obviously aiming at maximizing growth while
minimizing the risk of ruin. The balancing of risk and profit is dependent on the
odds of outcomes of each match, and the estimated probability of the same out-
come. The Kelly Stake is calculated based on the general equation, in the context
of betting: (Buchdahl, 2003, ch. 7)

ki =
ei − 1
oi − 1

(3.2)

, where ki is the size of the Kelly Stake for the ith outcome, as a decimal proportion
of the current bankroll. ei is the decimal edge between the calculated probability of
winning the bet and the market implied probability. oi is the provided decimal
odds of the outcome. In Buchdahl (2003, ch. 3), the decimal edge is given by the
provided odds of the market divided by the bettor’s calculated odds:

ei =
oi
1
p̂i

, where p̂i is the bettor’s calculated probability. If the market odds are higher
(implied probability is lower) than the calculated odds by the bettor, i.e. ei > 1, the
bet has a positive expected value for the bettor and is theoretically profitable in the
long run – and therefore; all else equal, the greater the positive expected value for
the bettor, the greater the Kelly stake.

In equation 3.2, it is clear that the Kelly Stake increases as the market odds de-
crease. Even though a bettor might find substantial positive expected returns in a
bet when the odds are high, the probability of this happening is still low. However,
if the expected returns remain positive, while the provided odds are low, the prob-
ability of the outcome happening is high, which leads to a higher Kelly Stake. This
behavior of the Kelly Stake is based on the fundamental assumption that betting is
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a long-term activity - not a one-time occurrence.

As mentioned, the Kelly-Criterion quantifies the fraction of the total current bankroll
that optimize the trade-off between potential profits and risk, which can lead to
significant drawdowns. Suppose that the bettor sees a match with odds of a home
team victory of 2.00, equating to an implied probability of 0.50, while the bettor
finds the probability to be 0.80, equating to odds 1.25: Then ei =

2.00
1.25 = 1.60 and

ki =
1.60−1
2.00−1 = 0.60, indicating that the bettor should have a stake 60% the size of

her total current bankroll, according to the Kelly Stake. If that bet then loses, the
drawdowns are significant.

Therefore, the fractional Kelly-Criterion is constructed to constraint the Kelly
Stake from exceeding a pre-determined amount. The equation is given by:

k f
i = c × ei − 1

oi − 1
(3.3)

, where c is a fraction (0 < c < 1) to parameterize the tolerance between growth
and risk. If c = 0.50, it is simple; only 50% of the total capital is available to the
Kelly Stake, so the benefits of the principles of the Kelly-Criterion persists. (Buch-
dahl, 2003, ch. 7)

The practical limitations of the full and fractional Kelly-Criterion include the in-
trinsic assumption of validity of the bettor’s ability to model the probability. Errors
in estimating the probability of an outcome occurring can invalidate the decimal
edge, potentially leading to drawdowns or suboptimal bet sizing.

Additionally, the exercise of identifying decimal edges against the market can
be problematic, however, the identification is necessary for the Kelly Stake to be
estimated. If there is no decimal edge, then ei < 1 and ki < 0.

3.2.2 Modern Portfolio Theory

Modern Portfolio Theory (MPT) is basically a way to think about constructing a
portfolio of risky assets. The main idea behind MPT is that a rational investor
always wants the highest return at a given level of risk - this means that if the
investor were to accept more risk, she should also receive a higher return on the
portfolio. These optimal portfolios, which maximize return at a given risk level is
called the efficient frontier. (Hillier et al., 2012, p. 125)

Because the problem for the investor is as simple as it is, it is also possible to
write a relatively simple optimization problem to describe it:

max E[P]− γVar[P] (3.4)
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, where E[P] is the expected return of a portfolio, Var[P] is the variance, indicating
the level of risk for the portfolio, and γ is the risk-appetite of the investor.

It is normal to constrain the optimization problem in a few ways. If we denote
the portfolio weights assigned to each of the n risky asset as wi, two common
constraints are:

n

∑
i=1

wi = 1, (3.5)

wi ≥ 0 (3.6)

The portfolio we get from an optimization with the constraints in equation 3.5 is
called the fully invested, long only portfolio - this is the exact constraint we will
impose when running our portfolio optimization.

When working with MPT for equity markets, there are normally two approaches
of estimation - ex-post estimation and ex-ante estimation. With ex-post estimation,
the optimal portfolio for previous periods is used for the next period, while ex-ante
estimation relies on the estimations of returns and covariance matrices. This can
be a large task, when one is working with a lot of assets.

Utilizing MPT as a method for constructing a betting strategy is a little differ-
ent. As a rule of thumb, assets are continuous on the stock market, i.e. if you were
able to trade a stock in a previous period, you will be able to do it in the next pe-
riod as well. On betting markets, on the other hand, every ’asset’ (every outcome
of a match) perishes after the underlying match has been played. This rules out
ex-post portfolio optimization.

It can be argued, though, that ex-ante portfolio optimization is actually easier on
betting markets than on equity markets. As we will see shortly, the only estimation
we will have to make is the probability of each outcome of the match occurring. In
contrast, the size of the problem explodes when doing this task for normal equities,
as the number of assets increases, because the amount of moments between assets
to estimate grows exponentially. (Brandt et al., 2009)

If we take equation 3.4 as our starting point, we need an equation for the ex-
pected profit and variance of the portfolio we are building. Much of what we are
about to derive is heavily inspired by Hubáček et al. (2019), who use MPT to make
an optimal portfolio for a betting strategy in a two-outcome game. We extend this
to the three outcomes of a football game, and additionally, we differ slightly in our
implementation of portfolio variance and in how we implement the procedure in
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practice.

For the betting market, the expected profit is quite simple, as we already know the
payoff if we win or lose each bet. We just need to estimate the probability of the
outcome happening:

Pi =

{
oibi − bi w.p. p̂i

−bi w.p. 1 − p̂i

, which means that the expected profit is:

E[Pi] = p̂i(oibi − bi) + (1 − p̂i)− bi

= ( p̂ioi − 1)bi (3.7)

, where E[Pi] is the expected profit of a single outcome with probability estimate
p̂i , decimal odds from the betting exchange oi and the wagered amount bi.

The expected return for an entire portfolio with n games with 3 outcomes each
is then:

E[P] =
3n

∑
i=1

E[Pi] (3.8)

For the expected risk of the portfolio, a very common measure is the variance. As
we already have equation 3.7 for the expected value of a single outcome, it is quite
simple to calculate the variance, as:

Var[P] = E[P2]− E[P]2

In our case:

E[P2
i ] = p̂i [(oi − 1)bi]

2 + (1 − p̂i)(−bi)
2

= b2
i
[
p̂i(oi − 1)2 + (1 − p̂i)

]
and

E[Pi]
2 = [( p̂ioi − 1)bi]

2

and therefore, we can write:

Var[Pi] = b2
i
[
p̂i(oi − 1)2 + (1 − p̂i)

]
− [( p̂ioi − 1)bi]

2

= b2
i o2

i p̂i(1 − p̂i)

In order to calculate the variance for the entire portfolio, we can take two ap-
proaches. In Hubáček et al. (2019), they take the assumption that the bettor would
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never want to place a bet on more than one outcome in a single match. This would
mean that the covariances of outcomes would become 0.

There are a few problems with this assumption, though. First of all, it is not
clear how Hubáček et al. actually impose the assumption when optimizing their
portfolio. Specifically, it is unclear whether they ’pick a winner’ from each match,
and then only run their optimizations on these predetermined winners, whether
they run the optimization on all possible outcomes, and then pick the outcome for
each match with the highest weight, or whether they use a third method altogether.

Secondly, we do not want to restrict ourselves from betting on several outcomes
in each match. The reason they make this restriction in Hubáček et al. (2019) could
be that they are working with a 2-way market (each match only has 2 possible
outcomes), which makes it practically impossible to have positive expected values
on both outcomes in a match. In the 1X2-market that we are working with, it is
perfectly plausible that we predict a much lower probability for a home win than
the betting exchange, yielding a positive expected value on both draw and away
win.

For this reason, we extend the methodology of Hubáček et al. to also include
the covariances between outcomes for single matches.

The first thing to note, is that the covariance between to non-independent random
variables can be found as:

Cov(Pi, Pj) = E[PiPj]− E(Pi)E(Pj) (3.9)

In this case, Pi and Pj is the profit from betting on any two of the three outcomes
of a match. Therefore, the formula for E(Pi) and E(Pj) have already been derived
in equation 3.7.

Deriving E[PiPj] is a little more complex, but we end up with:

E[PiPj] = −bibj
[
p̂i(oi − 1) + p̂j(oj − 1)

]
+ pkbkbj

2 (3.10)

where k is the third outcome in a 1X2 bet, which means that:

Cov(Pi, Pj) = −bibj
[
p̂i(oi − 1) + p̂j(oj − 1)

]
+ p̂kbibj − [( p̂ioi − 1)bi]

[
( p̂joj − 1)bj

]
From here, we can then calculate the variance of the entire portfolio as:

Var[P] =
3n

∑
i=1

3n

∑
j=1

Cov[Pi, Pj] (3.11)

2Refer to section A.1 for the mathematical derivation of the probability of the product of two
non-independent discrete random variables.
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Implementing MPT for football betting

Actually implementing these ideas in practice is not exactly trivial. We input equa-
tion 3.8 and equation 3.11 into equation 3.4, set all bs to 1, as it is literally the size
of the bets we are looking to find3, and maximixe the value of equation 3.4 using
convex optimization with the {cvxpy} library in Python. The MPT optimization
equation is therefore:

max
3n

∑
i=1

E[Pi]− γ
3n

∑
i=1

3n

∑
j=1

Cov[Pi, Pj] (3.12)

Another important question is which matches should be included when optimizing
the betting portfolio. We can obviously not optimize a portfolio of all the possible
bets for a season, as that would introduce (a lot) of look-ahead bias, refer to section
4.3.1. Even optimizing a portfolio for a single matchday4 would probably introduce
look-ahead bias, as there is no guarantee that all data for the last match of the
matchday is available at the game time of the first game.

For this reason, our ’portfolios’ consist of all the matches played on the same
game date, as we are fairly certain that all the data needed to compute predictions
for the last match of a day is also available before the first match.

The problem with this procedure, is that there is not a fixed amount of matches on
each game date. This means that some Thursday may only have 1 match to spread
the bankroll over, while a standard Sunday may have 30+ games across the five
leagues. Obviously, it does not make sense for the best outcomes on the Thursday
to be given a much higher portfolio weight than an outcome on the Sunday with
equivalent risk/reward ratio.

To solve this problem, we implement a simple scaling method, where we scale
the capital available to each outcome with the number of games in that ’portfolio’.
Of course, this only works as long as we use a fractional approach similar to the
fractional Kelly-Criterion, when applying the portfolio weights to each outcome.
This means that the fraction of the bankroll applied to each bet in the portfolio will
be calculated as:

W f
i = WMPT

i × c × g

3Another way to look at this, is that we ’omit’ the bs, and then what we are actually doing is to
find the optimal size of the bs.

4In the following, we distinguish between a matchday and a game date. A matchday is the round
of a football league, where each matchday consists of 10 games (for a 20-team league) scattered over
several days. A game date on the other hand is simply a (calendar) date where 1 or more games are
taking place.
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, where W f is the fraction of the current bankroll wagered on each outcome in the
portfolio, WMPT is the assigned weights from the portfolio optimization for each
outcome, c (0 < c < 1) is the maximum fraction of our bankroll wagered on a
single outcome, and g is the number of games on that date. For each outcome, the
wagered amount will then be: bi = w f

i × Current Bankroll

3.3 Evaluation methods

When evaluating the betting strategy, the main objective for the strategy is to max-
imize the profits for the bettor. For this, Compound annual growth rate and Total
Returns are used. Alongside the absolute profits, Sharpe ratio, Max Drawdown and
Win/Loss ratio is employed as they account for the risk-adjusted returns, which
ensures that profits are assessed relative to the level of risk.

Additionally, we include Linearity and Win-percentage for further comparison of
models.

Compound Annual Growth Rate

We use Compound Annual Growth Rate (CAGR) as a measure of the returns ac-
crues per year. It is implemented as a function of the cumulative PnL in the fol-
lowing equation:

CAGR =

(
1 +

Cumulative PnLi

Initial bankroll

) 365
T

− 1 (3.13)

, where T the number of days the strategy has been generating results. The CAGR
shows the percentage profit or loss per year of the strategy being in action.

Max Drawdown

The max drawdown is an alternative measure of the risk of a trading strategy, as
it measures the largest drop between a peak and a trough. The larger the max
drawdown is, the more risk the strategy possess. The max drawdown can not
stand alone as a risk measure, though, as it does not measure how often a strategy
suffers drawdowns.

The drawdown at time t is:

Drawdownt =
maxt Cumulative PnLi − Cumulative PnLt

maxt Cumulative PnLt

, which means that the Max Drawdown is calculated as:
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Max Drawdown = max Drawdownt (3.14)

Sharpe ratio

The Sharpe ratio is a metric developed for investigating the risk-adjusted returns
as an evaluation method in the financial markets. Specifically, the metric compares
the excess returns to the risk-free rate with the volatility the investor faces by
achieving greater profit. In the present project, the Sharpe ratio will be applied to
assess the efficiency of a betting strategy, helping to distinguish the level of return
– relative to the risk the bettor faces. In financial markets, the risk-free rate is often
assumed to be various Treasury bonds, such as a 10-year Treasury bond.5 However,
the sports betting markets does not have an explicit non-zero risk-free rate, i.e. all
profits are in excess of the risk-free rate, and hence; in the context of sports betting,
the Sharpe ratio will simply be the profits relative to the risk:

Sharpe =
π

σ
(3.15)

, where π is the mean returns of all individual bets, and σ is the standard-deviation,
which is never negative. Therefore, if the Sharpe ratio is positive, the mean returns
are positive, i.e. the investigated strategy generates profit. Intuitively, the greater
the Sharpe ratio, the greater the profits relative to the risk. Consequently, maximiz-
ing the Sharpe ratio involves both maximizing the mean returns – and minimizing
the risk. (Mcmillan, 2018, ch. 3)

In order to make the Sharpe ratio more standardized, we annualize it by multi-
plying the simple per bet Sharpe ratio with the square root of the average number
of bets per year, denoted by ny. This means that the formula for the annualized
Sharpe ratio, which we will be using in the results section, is:

Sharpeann =
π

σ
×√

ny (3.16)

As the Sharpe ratio quantifies the earnings of the bettor’s strategy per unit of risk,
it is a useful benchmark for comparing betting strategies. In sports betting, the
risk of extensive drawdowns is innately significant, as the bettor losses the whole
stake when losing a bet, and, assuming the mean returns remain constant, a higher
Sharpe ratio indicates reduced exposure to such drawdowns. However, due to the
mentioned structure of sports betting, both the profits and especially losses from

5The general equation of the Sharpe ratio: Sharpe = π−r f
σ , where r f is the risk-free rate.
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individual bets are large. This will increase the standard-deviation, and it will not
differentiate whether the increased risk is due to a losing or winning streak. Fortu-
nately, this is the case for all strategies in sports betting, so comparability remains.

Suppose a bettor implements a favorite strategy (mentioned in section 2.4.3), where
the bettor only bets on teams with winning odds of less than, say, 1.10; One single
lost bet will increase the standard-deviation massively, and perhaps, the profit
might evaporate, as the bettor can only afford to lose one bet from ten won bets
with odds 1.10. In this scenario, the mean return will fall and standard deviation
will increase, lowering the Sharpe ratio substantially.

Though, in other strategies, individual losses and wins do not have these ex-
tensive consequences. However, for a bettor that bases their strategy on the Sharpe
ratio, the justification of a less conservative strategy (relative to the favorite strat-
egy), the increased risk must necessarily be followed by an increase in profits.

Linearity

Linearity is more of a home-brewed measure of a strategy’s performance. When
looking at a strategy, we want it to be as close to a linear line as possible, as this
would mean a strategy of steady return and low volatility.

To assess how closely a strategy’s bankroll evolves along a straight line, we
run a linear regression on the current bankroll with the number of days since the
strategy’s inception as the only predictor:

Bankrollt = α + β ti

, where Bankrollt is the bankroll at time t, α is the regression’s intercept, β is the
slope (increase in bankroll per day after the strategy’s inception), and t is the
number of days since the strategy’s inception.

The linearity is then measured as this regressions’ R2-value.

The closer this linearity measure is to 1, the better we deem the strategy to be. To-
gether with other measures of profit and volatility it contributes to give a thorough
view of a strategy’s performance.

Win/Loss ratio

The win/loss ratio is a metric that finds the relative difference between the daily
returns, i.e. the percentage increase/decrease in the bankroll on each game day, of
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bets that have been won and those that have been lost. Mathematically:

Win/Loss ratio =

∑Nw yi,w
Nw

∑Nl yj,l
Nl

=
µW

µL
(3.17)

, where yi,w is the returns on all won bets on game day i and yj,l is the returns on
all lost bets on game day j. Nw and Nl are the number of game days, where the
bettor have experienced won and lost bets, respectively. Obviously, the bettor will
prefer a higher Win/Loss ratio.

Win-percentage

Win-percentage (WinPct) is the percentage of all won bets out of the total number
of bets. Therefore:

WinPct =
Number of won bets

Total number of entered bets
(3.18)

Total Return

Total Return is a measure for the total percentage change in the bankroll from the
first day of betting until the last day of betting:

Total Return =
Final bankroll
Initial bankroll

− 1 (3.19)
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4 Modeling

4.1 XGBoost

The eXtreme Gradient Boosting (XGBoost) model was introduced by Chen & Guestrin
in 2016, and it is a scalable and efficient implementation of the gradient boosting
framework, which has achieved great traction and adaptation in machine learning
disciplines. Contrary to traditional econometric models, which prioritize statisti-
cal inference and interpretability, the XGBoost model focuses on the out-of-sample
prediction performance. As a consequence of this, XGBoost is often referred to as
"black box technology".1

At its core, the XGBoost is a combined model of numerous decision tree mod-
els that are weak in its predictive ability, hence its name: weak learners. Decision
trees are prone to overfit the training data, and the more noisy the data is, the
more overfit the decision trees are likely to be. Therefore, the decision trees in
the XGBoost framework are trained to explain the data as accurately as possible,
obviously, however; the decision trees are heavily penalized when nodes split in
order to prevent being overfit. In other words; each individual decision tree must
only split its branches an additional time, if the explanatory power increases sig-
nificantly from doing so. The combination of weak learners in order to generate
one with high predictive accuracy is known as Boosting. (Lopez de Prado, 2018, ch.
6)

A decision tree is a non-parametric model, that is constructed like a tree. It recur-
sively narrows the feature space into smaller spaces that increasingly becomes closer
to the prediction of the target variable. These recursive steps are called nodes; at
each node, where a branch becomes two, the algorithmic model selects the fea-
ture and threshold that best splits the data to minimize the pre-determined loss

1A device, model or system, that is said to be a black box, produces useful information as any
other model - but with little or no information about the internal workings.
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function. One can view this process as a series of if-then rules that together form a
tree-like structure, and where each leaf is a prediction of the target variable. (James
et al., 2023, ch. 8)

Suppose a decision tree: The first split of the tree is the if-then rule that best
partitions the dataset between low-and-high probability of winning. Suppose that
this rule is: victories in the previous five matches > 3; the teams with a lot of recent
wins are much more likely to win their next game than a team with fewer recent
wins. The dataset is now split into two parts, which the model will once again
try to split in a way where the difference between the two splits is maximized.
The more times we split the tree, the harder the thresholds for further splitting are
to fulfill, which means that at some point, it makes no statistical sense to continue
splitting the data. According to Lopez de Prado (2018, ch. 9), classification decision
trees usually split based on a classic log-loss function (also known as the cross-
entropy loss function)2:

L[Y, P] = − log[Prob[Y|P]] = −N−1
N−1

∑
n=0

K−1

∑
k=0

yn,k log[pn,k] (4.1)

, where Y is the binary indicator matrix of K true possible classes of the target
variable, and P is the probability distribution of all N predictions of the model.
Therefore, the individual prediction yn,k = 1 only when the nth datapoint truly
belongs to the kth class, regardless of the prediction. pnk is the probability of data-
point n being classified in the true class k, and consequently, the log-loss equation
only evaluates the probability corresponding to the true class prediction yn,k = 1
and the model’s probability thereof pnk. Equation 4.1 is a minimization problem,
and intuitively, the greater the probability p of predicting correctly, when the pre-
diction is correct, the smaller the punishment (hence the name log-loss). Note, the
log-loss is calculated based on the probability assigned to the true class, and there-
fore an incorrect prediction implies a low probability for the true class, leading to
a higher punishment. It is therefore important to mention that the objective is not
predict correctly, it is rather minimize the surprise of the true outcome.

In practice, when a decision tree is in action, it considers different features and
thresholds for each split. The tree considers dividing the data into at least two
groups and the split is evaluated based on the log-loss within each hypothetical
group. The split that leads to the greatest reduction in log-loss is then compared
to the log-loss of the parent node, i.e. does it even make sense to make the split?

2A frequent alternative to the implementation of the log-loss function is the Gini index
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The objective of each split is to create a child node that finds the true classes more
predictable.

This process is iterated until the log-loss is not reduced from splitting the data
once more. At this node, the data is split into regions where predictions are most
accurate, according to the designated objective function; the log-loss. (James et al.,
2023, ch. 8)

As briefly mentioned, decision trees are oftentimes overfit, i.e. decision trees tend
to explain the training data too well, and is therefore incapable of explaining new
information that is unsimilar to the training data. To combat overfitting, Boosting
is used, which is an ensemble technique that combine numerous weak leaners – or
shallow trees. The aggregation of weak learners forms a strong predictive model
which is capable of explaining the underlying tendencies in the data, rather than
the exact tendencies the training data shows.

The key idea is to sequentially fit new trees that correct the residuals of the
previous trees by fitting a decision tree as a function of the residuals – not the
outcome variable. Therefore, unlike bagging3, boosting is highly dependent on the
trees that have already been constructed. (James et al., 2023, ch. 8)

Simple boosting has three hyperparameters to tune: the number of trees B, the
learning rate λ and number of splits in each tree d. In boosting, if B is too large,
the aggregated prediction model tend to be overfit, but often, B is estimated us-
ing cross-validation. While the boosting framework learns slowly by construction,
relative to the ordinary decision tree, λ, which is always a positive number, can
be changed. Higher λ means that the model learns faster but faces greater risk
of overfitting. Contrarily, lower λ generates a slower and more cautious model,
which necessitates a large value of B. The number of splits in each tree d is often
equal to the number of explanatory variables, as d splits can involve no more than
d variables. (James et al., 2023, ch. 8)

Consider the equation:

f̂2(x) = f̂1(x) + λ f̂ b(x) (4.2)

, where f̂2(x) is the updated aggregated decision tree, based on the previous tree
f̂1(x) and the residual tree (new learner) λ f̂ b(x) and the learning rate λ ∈ [0, 1].

3Bagging builds multiple independent models, which are constructed based on bootstrapped sub-
sets of the data. The predictions of the models are then averaged, and the aggregated residual min-
imized. Therefore, while boosting works sequentially and weights its learning, bagging constructs
multiple models simultaneously. (James et al., 2023, ch. 8)
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4.1. XGBoost

Therefore, the "new" residuals are:

r2 = r1 − λ f̂ b(x) (4.3)

Each tree, or new learner, simply models the residuals of the past trees, and there-
fore the final boosted model is given by:

f̂ (x) =
B

∑
b=1

λ f̂ b(x) (4.4)

, where the boosted model is given by the sum of all B individual learners b, on
the basis of the optimal value of λ and the number of splits d.

In practice, the above-presented procedure of boosting reviews and empathizes
on improving samples of the training data, which is poorly explained, and there-
fore; has poor predicting ability. This is done through a sequential adjustments of
weights, increasing the influence of poor predictors.

The eXtreme Gradient Boosting (XGBoost) extends the technique of boosting, de-
noted Gradient Tree Boosting (GTB), hence its name. In contrast, GTB reframes the
process of boosting as an optimization problem. Models are still added sequen-
tially with the objective of minimizing the pre-determined loss function, however,
with the knowledge of the negative gradient taken into consideration. Each new
learner is fitted to the negative gradient of the loss function, i.e. with respect to
the slope of the loss function. Therefore, new learners are fitted more optimally
and in a more flexible manner, as the principles of gradient descent help guide the
learning process of new learners. (Lopez de Prado, 2018, ch. 22)

In addition to incorporating the classical GTB framework, XGBoost introduces sev-
eral algorithmic enhancements and systematic optimizations4, making it a widely
adopted real-world application when forecasting data-rich variables. These appli-
cations are all constructed on the foundation of the decision tree model, but it in-
troduces a regularized objective function and a second-order optimization scheme,
improving its predictive accuracy and generalization capability of complex infor-
mation. (Chen & Guestrin, 2016)

The first-mentioned regularized objective function is given by:

L(t) =
n

∑
i=1

l(yi, ŷ(t−1)
i + ft(xi)) + Ω( ft) (4.5)

4Regularized Learning Objectives, Shrinkage and Column Subsampling, sparsity-aware algo-
rithm. Block Structure for Parallel Learning, Cache-aware Access Patterns, Weighted Quantile Sketch,
etc. (Chen & Guestrin, 2016)
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4.1. XGBoost

, where l(yi, ŷ(t−1)
i + ft(xi)) is the differentiable convex loss function at the tth itera-

tion and the ith instance. Specifically, the first term measures the distance between
the prediction ŷi and the target yi, while the second term ft(xt) is the decision tree
that has removed (or partially removed) the errors at iteration t of the feature x.
Additionally, Ω( ft) is the regularization component, which penalizes the complexity
of the model in respect to another tree being introduced, represented by ft.

The regularization component is given by the regularization equation:

Ω( ft) = γT +
1
2

λ
T

∑
j=1

w2
j (4.6)

, where T is the number of leaves in the tree ft and wj is the weight of each leaf j in
the tree. Hence, γ and λ are regularization parameters, that penalize each additional
leaf and high weights on individual leafs, respectively. The objective is to minimize
the risk of overfitting.

By improving the learning process of new learners in an XGBoost model, i.e. to
efficiently minimize the objective function, equation 4.5, the second-order deriva-
tive thereof is employed. This second-order approximation is given by:

L(t) ≈
n

∑
i=1

[
l(yi, ŷ(t−1)) + gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ Ω( ft) (4.7)

, where gi = ∂ŷ(t−1) l(yi, ŷ(t−1)) and hi = ∂2
ŷ(t−1) l(yi, ŷ(t−1)) are the first and second-

order gradient statistics of the loss function, respectively. The gradient gi indicates
the direction of improvement in minimizing the error in prediction accuracy when
adding a new tree, while the Hessian hi explains the curvature of the loss function.
This allows the algorithm to adjust the direction and magnitude appropriately to
minimize the loss function. The result of this method is faster convergence to the
model with best specifications, than that of ordinary boosting, which reduces the
needed iterations to reach a satisfactory model. (Chen & Guestrin, 2016)

In addition to the above, XGBoost handles various other computationally intensive
and econometric exercises cleverly. For example, when data are missing, sparsity-
aware algorithms are implemented, which learn the optimal default direction for
missing data values. In cases of missing data, the node directs the prediction
in this default direction. Models such as XGBoost generally require substantial
amounts of computational power, and in order to minimize this, XGBoost stores
old learners efficiently in compressed column blocks, denoted a Column Block for
Parallel Learning. (Chen & Guestrin, 2016)
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4.2. Market decorrelation through custom loss function

Although the risk of constructing an overfit model is reduced significantly when
implementing the XGBoost, the risk is not eliminated. Refer to section 4.3.

4.2 Market decorrelation through custom loss function

It can be argued that it is naive and perhaps even cocky to believe that we can
systematically beat the betting market or a bookmaker by outputting a superior
prediction of the outcome of a match. As explored earlier, inefficiencies can occur
for different reasons, but still it makes sense to explore other options to beat the
market than simply by ’being better’.

In Hubáček et al. (2019) and Hubáček & Šír (2023) a quite powerful idea is pre-
sented; you do not need an especially good predictive model to beat the market,
your predictions just need to be suitably decorrelated with that of the market. In
this context, the betting markets are a natural case, as we always have access to the
market forecast; the odds on the betting exchange.

The hypothesis that an outcome prediction needs to be decorrelated with the mar-
ket forecast to make money is almost self-explanatory in the context of a betting
market. If we always make the exact same prediction as the market, we will in
the long run simply lose the 5% commission that the exchange takes on profits, as
explained in section 2.1.

Hubáček et al. explores several ways to decorrelate their outcome prediction with
that of the market, including adding sample weights to each prediction based on
the odds on that outcome.5 They also present a much more elegant method, which
is to add a penalization term to their model’s loss function, to penalize similarity
to the market forecast.

Even though their problem is a binary classification problem6, the starting point
for their loss function is the mean squared prediction errors (MSE), which is the
standard loss for a regression problem. In its standard form, it looks like:

1
N

N

∑
i=1

(ŷi − yi)
2 (4.8)

5The argument here is that the higher the odds, the more important the datapoint is, as that is
where the potential profits are the greatest.

6They want to predict whether a team wins or loses, so yi ∈ {0, 1}
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4.2. Market decorrelation through custom loss function

, where N is the number of predictions, ŷi is the prediction for the ith observation
and yi ∈ {0, 1} is the actual value for the ith observation.

If we want to decorrelate our forecast with the ’market forecast’, which in this
case is simply the decimal odds, we penalize predictions that are similar to that
of the implied probability of the betting exchange. We do this by adding an extra
term to the above loss function:

1
N

N

∑
i=1

(ŷi − yi)
2 − c · (ŷi − 1/oi)

2 (4.9)

, where c ∈ [0, 1] is a penalty parameter determining the relative weight of the
decorrelation term compared to the MSE term and oi is the market odds.

The objective of a machine learning algorithm is to minimize the loss function,
which in this project is the argument for subtracting the decorrelation term from
the original loss function. The more dissimilar our probability prediction ŷi and
the implied probability from the market odds 1

oi
are, the larger the decorrelation

term is, and the smaller the value of the loss function will be.

As mentioned, the MSE is usually used for regression problems, as it does not
provide any restrictions on the value of ŷi. This means that we can end up with
probability estimates exceeding 1 or under 0, which, of course, does not make
sense when working with a classification problem. (Wooldridge, 2012, p. 584).
This means that we would have to deal with the problem of how to map these
probabilities after the fact; should a probability of 1.25 simply be truncated to 1
or should all probabilities be normalized in order to preserve the magnitudes of
differences between the probabilities?

Additionally, it can be shown with a simple example that the MSE in equation
4.8 does not do us any favors when doing our optimization for a classification
problem, compared to the log-loss function, which we will explain shortly. If we
predict a probability of 0.01 of an outcome to have the label 1, but the actual label
of the outcome is 1, the losses would be:

MSE = (0.01 − 1)2 = 0.98

Log-Loss = (−)1 · log(0.01) = 4.81

The difference comes down to the fact that the log-loss penalizes large deviations
like this a lot more than the MSE, meaning that the MSE will have a harder (and
slower) time coming to a conclusion when trying to optimize the model, which in
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4.2. Market decorrelation through custom loss function

the end could give us an inferior model.

In order to avoid the problems that come with using a regression-based loss func-
tion for a classification problem, we have chosen to extend their application to the
classic log-loss (also known as logistic loss or cross-entropy loss), which, as men-
tioned in section 4.1, is the standard loss function for binary classification problems
in the XGBoost algorithm.

A more specific form of equation 4.1 is the log-loss for a classification problem
with two possible outcomes, which is defined as:

− 1
N

N

∑
i=1

[yi · log( p̂i) + (1 − yi) · log(1 − p̂i)] (4.10)

, where p̂i is the logistic transformation of the raw probability output, ŷ, for obser-
vation i:

p̂i =
1

1 + e−ŷi
(4.11)

In order to then decorrelate our forecast with the implied probability from the
market odds, we add the same penalty term as in equation 4.9:

− 1
N

N

∑
i=1

[
yi · log( p̂i) + (1 − yi) · log(1 − p̂i) + c · ( p̂i − 1/oi)

2] (4.12)

In contrast to equation 4.9, we add the decorrelation term to the original loss func-
tion. This is because the log-loss is already negated (with the − 1

N -term).

Therefore, in this model, we simultaneously reward the model for predicting cor-
rectly - but also for providing probabilities that deviate from the probabilities im-
plied by the odds. The rationale behind this approach is that simply attempting
to imitate the implied probabilities, or at least trying to mirror the probabilities
to a certain degree, would, over time, lead to a loss equivalent to the overround,
mentioned in section 2.1. By partially focusing on deviations from the market odds
rather than directly competing the ability of the market to calculate probabilities,
fundamentally, the model is attempting to find various possible patterns that the
market does not find.

4.2.1 Implementing the loss function in XGBoost

As already explained, the market decorrelated loss function in equation 4.12 only
works for a binary classification problem, i.e. Y ∈ {0, 1}. Football matches are
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unfortunately not quite that simple to bet on, as there are three possible outcomes;
home win, draw and away win. As mentioned, this is often called 1X2-betting, so
we can denote it Y ∈ {1, X, 2}.

The problem we face here is that a so-called multi-class classification loss func-
tion, i.e. a loss function for a classification problem where the true label can take
more than 2 values, is significantly more complex than ditto for a binary classifica-
tion problem. As explained in section 4.1, we have to obtain the gradient and the
hessian of the loss function for the XGBoost algorithm to work.

When calculating the gradient and hessian of a loss function for a binary clas-
sification problem, e.g., the loss in equation 4.12, we only have to calculate the
derivative and second derivative w.r.t. the prediction p̂i, which would be a vec-
tor in both cases. As can be seen in the example in xgboost developers (2022),
we need to calculate the partial derivative and second partial derivative w.r.t. to
all possible outcome classes in a multi-class classification problem. While this is
certainly possible to implement, it would require much more time and debugging.
Additionally, the implementation would be quite slow in a programming language
like Python, which we are using, as we would need nested for-loops to make the
computation, as can be seen in the example in xgboost developers (2022).

For this reason, we take a different approach, where we simply extend a binary
algorithm to a multiclass problem using the one-vs-rest method. This means that
we train 3 separate models to predict whether one class is true or not. Recall that
our possible outcomes are: Y ∈ {1, X, 2}, giving us three models.

f1(x) ≈ P
(
Y = 1),

fX(x) ≈ P
(
Y = X),

f2(x) ≈ P
(
Y = 2).

Although this gives a probability of each of the three outcomes happening, there
is no guarantee that the outcomes sum to 1. To alleviate this, we simply normalize
the probabilities to sum to 1, by dividing each individual probability with the sum
of the probabilities for all classes:

f̂c(x) =
fc(x)

∑ fc(x)
, c ∈ {1, X, 2}.
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4.3. Avoiding backtest overfitting

4.3 Avoiding backtest overfitting

Backtesting can be defined as a technique to assess how a trading strategy would
have performed, should it have been run over a past period of time. As with any
research in social sciences, backtesting does not serve as a typical ’experiment’ as
in physics: even in its most flawless form, a backtest does not prove anything in
itself. (Lopez de Prado, 2018, p. 151)

In spite of that, a backtest is the best tool at a quantitative researcher’s disposal
when assessing the quality of a trading strategy. After all, it would be foolish to
wager big money on a trading strategy which does not at least have a solid histor-
ical track-record. This fact makes it all the more important that we do not overfit
our backtest, which is defined as fitting the strategy to random historical fluctua-
tions, which will not reoccur in the future, resulting in poor performance on new,
unseen data. According to Lopez de Prado (2018), backtest overfitting could even
be considered scientific fraud, as it is argued that conducting an experiment over
and over on the same data, will eventually lead to a false discovery.

While backtest overfitting is arguably the greatest problem in all mathematical
finance, unfortunately, there is currently no definitive solution to overfitting. Es-
pecially for complicated machine learning models that are constructed to capture
complex patterns, backtest overfitting is a constant threat to out-of-sample predic-
tive ability. (Lopez de Prado, 2018)

Instead, researchers must employ other techniques such as cross-validation,
out-of-sample testing and necessarily critical interpretation of in-sample results to
guard against overfitting and ensure that a model’s predictive power extends be-
yond the data it was trained on.

In order to prevent this problem, and, in the eyes of Lopez de Prado, not commit
scientific fraud, we employ a few central techniques to avoid overfitting our back-
test. Additionally, we will in our results section comment on whether and to what
degree we may have overfitted our backtest. Refer to section 5.5

4.3.1 Look-Ahead Bias

Perhaps the most important bias to eliminate is the so-called look-ahead bias,
where future information is used to make a decision on a past datapoint.
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The first step to eliminate this problem is in the data engineering step, where we
have to make sure that all variables only use past information. While this per-
haps sounds very simple and obvious, it is a crucial step to always remind one-self
of. For example, when computing the average points in previous matches, it is
important not to include the current match. When training a model based on in-
formation that is not available at the time of forecasting, it is called leakage. As
a consequence of this, the model can potentially be evaluated under unrealistic
conditions, which can lead to inflated estimates of the model’s ability that does
not align with real-world prediction scenarios. After all, it is easier to predict the
outcome of a match, if one knows the change in league points for each team in
the match. Such leakages can occur with seemingly strict temporal separation, so,
according to Lopez de Prado (2018, ch. 12), a carefully implemented temporal con-
trol is necessary to obtain robust backtesting.

In Lopez de Prado (2018, ch. 7), the exclusion of datapoints with informational
overlap when splitting the data between training and testing data is proposed as
a solution to leakage, which we will implement in our model. A methodology
such as purging is especially necessary to implement when doing K-Fold Cross-
Validation (purged K-Fold CV), however, in the present project, we implement the
walk-forward method, ensuring a chronological order in the training and testing data:
The training data will always come before the testing data.

Walk-forward is a common choice for cross-validation in quantitative finance strat-
egy. The walk-forward method has a simple approach; the model is trained on past
data, and the model is tested on future data. This is done for a subset of the data,
and then the window is moved forwards (in the direction of time) and the process
is repeated (re-training). Clearly, the interpretation of conducting a walk-forward
backtest has a clear and chronological interpretation, however, the non-customized
walk-forward method is prone to overfit the training data, as there is a historical
path of testing, which can be repeated again and again, until some pattern is found.
The found pattern could potentially be based on tendencies that is not rooted in
the real world. (Lopez de Prado, 2018, ch. 11 & 12)

Purging is the introduction of a time period between the training period ends
and the testing period starts, i.e. we deliberately skip a pre-determined (short)
amount of data before we start our testing period, which acts as a buffer. By doing
this, we are extra careful to make sure there is no leakage of data in the near future.
(Lopez de Prado, 2018, ch. 7)
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Mathematically, suppose two concurrent datapoints Yi and Yj are in the training
data and the testing data, respectively. In the model, the probability computation
of outcome Yi is based on features ranging from time ti,0 to ti,1, and equally Yj =

[[tj,0, tj,1]]. Leakages occur if one of the below conditions are met: Lopez de Prado
(2018, ch. 7)

• tj,0 ≤ti,0 ≤tj,1 (Testing window starts within Training window)

• tj,0 ≤ti,1 ≤tj,1 (Training window starts within Testing window)

• ti,0 ≤tj,0 ≤tj,1 ≤ti,1 (Testing window ends within Training window)

The length of the purge period must be decided based on thorough consideration
in regards to the characteristics of the data at hand. In the present project, the
computed purge is one day, which means that we, for example, reoptimize the
model on April 1st based on data until and including March 31st and the testing
data starts April 2nd. This ensures that there is no leakage between the last day of
the training data and the first day of the testing data.

Apart from a purge period of 1 day, we are using a rolling walk-forward method,
where the training window is a minimum of half a year and then stays fixed at 1
year and a testing set size of a month. This means, that we train our model on the
games in the previous year after which we test the model on the games in the next
month. Then this month gets included in the training dataset, while the ’oldest’
month gets removed, to keep the training set fixed at 1 year. This procedure is
repeated iteratively until the entire dataset has been exhausted. This procedure is
visualized in figure 4.1 for the 2021-22 season and onward, to make it fit nicely on
the plot. As is clear from the plot, each training and test set does not necessarily
have the same size due to breaks in the football calendar.

4.3.2 Data-Snooping

Closely related to the above-mentioned Look-Ahead Bias, data-snooping occurs, in
our case, when datapoints are both used for constructing betting rules and testing
those betting rules, which violates the independence of samples. Specifically, when
the strategic bettor is constructing betting rules by identifying patterns, tendencies
and relationships in the historical data, denoted data-mining, data-snooping occurs
when historical data is used repeatedly and simultaneously to both identify and
test the validity of the identified patterns. The problems arise as the data-mining
process is repeated, and non-significant patterns are identified, i.e. spurious rela-
tionships. This can lead to the researcher concluding significant positive returns
that in reality are based on random chance.
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Figure 4.1: Our rolling, purged walk-forward procedure since the 2021-22 season. Because of breaks
in the football calendar year has several breaks, which is why each training and test set does not
necessarily have the same size each time.

In practice, after multiple iterations of in-sample tests of various betting rules,
the seemingly significant betting rules are carried forward into the subsequent
testing and forecasting phases, while betting rules that did not provide a posi-
tive return is discarded. In essence, in the long term, the researcher has a model
constructed on betting strategies that performed well in-sample, however, some of
which might be biased and insignificant and generated purely by chance, denoted
inter-generational data-snooping.

While the risk of concluding spurious relations are prominent when working
with poor amounts of data, it is important to note that the risk of identifying and
going forward with spurious relationships persists as the amounts of data increase.
In financial econometrics, where datasets oftentimes are very large and granular,
the use of data-mining and data-snooping are widespread. However, currently
there is no definitive solution for this, instead the researcher must find variables
based on financial and economic theory and implement a clear methodology for
i.) constructing betting strategies and the model and ii.) the validation thereof.
(Brooks, 2019, ch. 4)

First, all explanatory variables included in the model are selected on the basis of
theoretical justification as factors that is capable of painting the picture of a team
in terms of ability, form and reciprocal differences between the two teams in each
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match. This will reduce the risk of including variables that might or might not have
non-spurious explanatory power. Had we included weather or week-day of each
match, it is possible that certain teams have a relative advantage when matches are
played on Wednesdays in the rain, but it might just be a coincidence, i.e. a spurious
relationship between weather or week-day and winning probability.

Second, in order to combat the risk of introducing spurious relationships in the
forecast, we implement a validation step (a hold-out set of the data) before per-
forming the out-of-sample forecast. Therefore; the in-sample training data is used
exclusively for training and selecting betting strategies, the betting strategies are
then tested and validated in our validation step in the discrete time-period follow-
ing the training data, and if the validation step generates satisfactory results, the
out-of-sample forecast will be performed on the testing data, which we only look at
once.

The validation step serves as an out-of-sample barrier to evaluate the robustness
of the betting strategies found in the training data before the actual out-of-sample
forecast that generates the actual results. The objective of the additional layer is to
put attention to betting strategies that only perform well in-sample. We then adjust
the betting strategies and the model until we are satisfied with the validation before
finally forecasting and comparing to the testing data. (James et al., 2023, ch. 5)

We use the seasons from 2016-17 to 2022-2023 as the in-sample dataset, season
2023-2024 as our validation set and season 2024-2025 as the out-of-sample dataset.
Additionally, we exclude season 2020-2021 both when training and evaluating our
models and strategies, because the underlying statistical properties of that season
was so heavily influenced by the Covid-19 pandemic - we touch more upon this in
section 5.2.
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5 Results & Discussion

5.1 How well does the betting exchange predict match out-
comes?

The commission fee of 5% on profits, which Betfair charge on profits from a wager
in sports betting is considerably more than the transaction fees in e.g. stock trad-
ing. Developing a model capable of outperforming a simple buy-and-hold strategy
in the stock market presents a significant challenge - a challenge that attracted sub-
stantial attention from academics and researchers within financial econometrics.
Suppose the transaction costs in the stock market increase to the levels of the bet-
ting market; a very difficult task becomes even more difficult.

One can argue that the strategic bettor’s probability model must outperform the
concerned market to a higher degree, than a model in the realm of stock trading,
for example. In other words, the modeling-wise burden of proof for profitability in
order to enter a wager/trade is significantly heavier in the betting markets. While
both fields of price forecasting has its foundation in inefficiencies and forecasting
accuracy, the modeled probability threshold for sustainable profitability in sports
betting are higher than in traditional financial markets. Contrarily, it is reasonable
to conclude that the frequency of researchers attempting to exploit inefficiencies in
the financial markets are significantly higher than researchers attempting to exploit
inefficiencies in sports betting.

Throughout the entire dataset that has been processed in this project, the market
accuracy in the 1X2 market is 54.14%. Therefore, in more than half of all possible
matches, the favorite team to win, according to the market odds on Betfair, has won
the match. This high market prediction accuracy reflects the level of efficiency in
the aggregated market where public and perhaps private information is incorpo-
rated in the market mechanism of supply and demand. However, this also raises
the question of whether it is necessary to have proprietary information that the
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Table 5.1: Descriptive statistics comparing pre- and post-Covid subsets of the data - and the
entire dataset: The table illustrates the number of matches, the market prediction accuracy
(percentage of matches the outcome with lowest odds is the true outcome), the mean odds of the
true outcome, the 1st and 3rd quartile odds and the mean odds for the three possible outcomes;
home win, away win and draw. The calculations are based on all football matches in the English
Premier League, French Ligue 1, Spanish LaLiga, German Bundesliga 1 and Italian Serie A.

The complete dataset:
2017/18 - 2024/25

Pre-Covid: 2017/18
until year-end 2019

Covid: year-beginning 2020
until year-end 2021

Post-Covid: year-beginning
2022 until 2024/25

Number of matches 14,308 6,249 3,557 4,502
Market Prediction Accuracy 54.14% 54.54% 53.11% 54.40%
Mean true-outcome odds 2.97 2.96 3.00 2.94
1st quartile odds 2.36 2.36 2.36 2.34
3rd quartile odds 4.50 4.50 4.50 4.40
Mean home odds 3.02 3.03 3.13 2.91
Mean away odds 5.18 5.59 4.81 4.90
Mean draw odds 4.34 4.42 4.29 4.27

general public does not have. If such information would enable a strategic bettor
to generate long-term positive returns in the betting market, it is an indication of
the market not being of strong form efficiency, see section 2.4.1.

5.2 Covid-19: A change in regime

In many ways, the COVID-19 pandemic was not only a health crisis but also a pro-
found societal and economic turning point. The effects went far beyond hospitals
and lockdown policies, reshaping how humans go to work, spend time on leisure,
socialize and consume entertainment. Among these effects; a seemingly significant
shift in some main metrics in the betting markets.

In section 2.4.3, we explored the possibilities of constructing simple favorite and
long-shot betting strategies, and we saw that the frequency of very low odds (large
implied probabilities) was smaller in the post-Covid period, than in the pre-Covid
period. Specifically, before 2020, there were approx. 11.22 bets with odds less than
or equal to 1.09 per calendar-year, while on average there were 1.56 bets after year-
end 2021 and 1.50 during the Covid pandemic (year-beginning 2020 until year-end
2021). While we have not found significant and persistent change in the long-shot
strategy, we will investigate how the odds have changed throughout the period.

In table 5.1, main identification metrics of our dataset is illustrated based on four
different periods: i.) the complete dataset, ii.) the pre-Covid period, iii.) during
the Covid pandemic and iv.) the post-Covid period.

In Europe, football fans are passionate and will never shy away from yelling
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encouraging or, to put it lightly, discouraging things to the players on the field,
however; suddenly the Covid-19 pandemic hit Europe in early 2020, and tens of
thousands of loud spectators were substituted with quietness and perhaps the oc-
casional bird. In table 5.1, the change in mean odds for home victories are the most
noticeable. Mean odds for the home victories were significantly higher during the
pandemic than in the pre- and post-pandemic period. Additionally, in the post-
Covid period, the mean odds for a home victory have decreased 0.22 odds-points -
to a level 0.10 odds-points lower than before Covid. Assuming the betting market
is somewhat efficient, this indicates that the market have found an even stronger de-
pendency on which team is at home and the result of the match after the pandemic.

Logically, as odds for a specific outcome decreases (home victory), the odds for the
opposite outcome must increase (draw and away victory), however, this has not
been the case. It seems that the market found itself with, roughly, the same pre-
diction accuracy as before the pandemic, but with lower true-outcome odds and
with lower odds for all 1X2 outcomes of matches. In other words, the betting mar-
ket appears to have experienced inflation with odds on 1X2 outcomes decreasing
across the board. This implies higher implied probabilities and thus less favorable
pricing for back bettors. This is also prominent when investigating the 1st and 3rd

quartile odds.
Recall, a bet exchange is a platform that sole purpose is to facilitate peer-to-

peer betting, i.e. matching market participant that provide odds (lay) and market
participants that buy odds (back). In this project, we have taken on the role as back
bettors, while the change in market odds in table 5.1 indicate that it would have
been interesting to take on the role as lay bettors.

This structural change in the provided odds on bet exchanges can be interpreted
as a consequence of a fundamental shift in market sentiment, where odds have
changed due to a change in underlying beliefs about uncertainty and general mar-
ket confidence. After all, if no lay bettors provide bets, there is no bets to be
wagered, and evidently, back bettors are still willing to engage in bets, even with
lower odds.

For now, we assume we have some time before experiencing another global and
all-encompassing pandemic. Therefore, we treat the pandemic as a period of out-
liers, and we argue that it will affect the modeling negatively if we include it in the
training data. Therefore, we have excluded the 2020-21 season completely.
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Another explanation as to why the odds have generally become lower on the bet-
ting exchange is the size of the bid-ask spread. It is not improbable that more
and more people have started using the Betfair betting exchange in recent years,
which should narrow the bid-ask spread, as more people provide more liquidity.
This should not lead to lower odds in itself, unless there is a skewed orderbook,
where the backers are more aggressive than the layers. Once again, we see this as
a very probable possibility, as the backing orders are the equivalent to betting at
traditional bookmakers, which is what most bettors are used to. Without detailed
orderbook data from Betfair, this hypothesis is not possible to test, so for now it
stays a hypothesis.

As our strategy is a backing-only strategy, we will actually add to this ’problem’
of lower odds, because we will put additional pressure on the backing-side of the
orderbook. We do not take this potential slippage into account in our backtest, as
i.) we would not expect our market impact to be very high, and ii.) we would
need much more detailed and granular data to actually have a chance to model
our market impact.

5.3 Strategy results

Before going to the results from our machine learning based trading strategies, we
will first outline the most important aspects of the ML model we ended up going
with.

Obviously, we are using the XGBoost model, as this is the algorithm our home-
made loss function was written to work with. Speaking of the homemade loss
function, we choose a value of 1 for the hyperparameter c, which controls the
amount of relative focus on decorrelation to the market for the model - we will
talk more about c in section 5.4. We landed on this value, as we found it to consis-
tently provide the best risk-adjusted returns.

We will not focus on the other hyperparameters of our XGBoost model, but for
the interested reader, they are very briefly outlined in section A.2 of the appendix.

As for the features of the model, we have chosen the following seven features:
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Feature Description

Competition dummy Indicates the competition
Mean points per match

– This season Mean points per match throughout the season
– Last 5 matches Mean points per match in the last five matches

ELO rating
– Absolute Indicates momentary ability
– Rolling slope of the change Indicates result momentum in the previous month

Days since last game Indicates level of fatigue among players
Relegation distance Points above relegation

Logically, all the included features can be argued to be conceptually linked to the
outcome variable; and while the numeric performance is the most important thing,
it never hurts for the features to make sense intuitively.

In addition to the above features, we have gone back and forth on whether and
how to include the odds from the betting exchange. Hubáček et al. (2019) also
touch upon this dilemma, in that they find that including the odds improves the
model’s accuracy, while simultaneously increasing the correlation to the bookmak-
ers probability estimate. In the end, these contrasting effects gave an inconclusive
effect on profit generation. To test whether the betting exchange odds should be
included in our model, we look at the results from 3 similar models, only differing
in how we incorporate the odds from the betting exchange.

Before going through the results of the strategies, there are a few important
things to note. First of all, even though the plots in the following section say
’In-Sample’, none of the datapoints are really in-sample per-se. The results are
calculated based on the rolling walk-forward cross-validation, as presented in sec-
tion 4.3.1. By ’In-Sample’, in this context, we mean that we have this piece of
the dataset available for iterative testing, which means it could suffer from data-
snooping. Additionally, it is worth mentioning that the metrics at the top of the
figures are calculated based on all three periods.

The strategies presented in figure 5.1 all share the same basic features and hy-
perparameters presented above. Figure 5.1a does not incorporate any odds feature,
figure 5.1b incorporates the home, draw and away odds directly, while figure 5.1c
incorporates engineered odds features1. The strategies are made using the Frac-
tional Kelly-Criterion as presented in section 3.2.1 - the maximum fraction of the
current bankroll to bet is set to 1% on each outcome in order to decrease the strate-

1We have derived two features from the odds from the betting exchange and other bookmakers.
These are described in section 3.1.3
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Figure 5.1: Equity curves and strategy metrics for 3 betting strategies, utilizing odds features in
different ways. All 3 strategies uses the same underlying XGBoost-model, only differing in how
odds features are included. All 3 strategies bets according to the Kelly-Criterion, with a maximum
Kelly Stake of 1% of the current bankroll.

gies’ volatility and risk-of-ruin.

The first thing to notice for all three strategies in figure 5.1 is that the results are
not exactly looking good. All strategies have a win percentage below 50% and a
win/loss ratio below 1, which will always yield negative results.

While still generating highly negative returns, the two strategies which incor-
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porate information from the odds clearly outperform the strategy which does not.
Additionally, it would seem that the strategy in figure 5.1b which directly incor-
porates the odds from the betting exchange outperforms the strategy with the
engineered odds features in figure 5.1c. This means that we, contrary to Hubáček
et al., are able to conclude that including odds features in the model improves
profit generation. The most probable reason for this conclusion is that we do not
have as strong basic features as Hubáček et al. (2019), meaning that our accuracy
simply takes too much of a hit if we do not somehow incorporate the information
from the highly descriptive odds features.

Of course, we cannot be satisfied with the results in figure 5.1; losing 8% of the
bankroll every year is not exactly going to make anyone rich.

We do this by altering how we use the Fractional Kelly-Criterion slightly. The
reason to use the Kelly-Criterion to size our bets, is that it is mathematically proven
to maximize our long-term log of wealth. As mentioned in section 3.2.1, this does
come with a few assumptions, though, the most significant one being that we know
the true probability of an event occurring. This, of course, is not the case, which is
why we came up with the idea to have a ’statistical confidence buffer’. What we
mean by this, is that we do not immediately bet whenever our expected value is
above 0; we only bet whenever our predicted probability of an outcome occurring
is larger than ditto of the betting exchange plus some tuneable amount. Thus, the
fraction of our bankroll that we bet on each outcome becomes:

k f
i =

c × ei − 1
oi − 1

, if p̂ ≥ ∆ 1
oi

,

0, otherwise.

, where k f
i is the amount of the bankroll wagered on each outcome, c is the max-

imum Kelly Fraction, ei is the decimal edge between the calculated probability of
winning the bet and the market implied probability, oi is the provided decimal
odds of the outcome, p̂ is our probability estimate of an outcome occurring, oi is
the decimal odds from the betting exchange and ∆ is our ’statistical confidence
buffer’ (called the probability delta from here).

While this method is not grounded in a rigorous mathematical proof, it seemingly
gives much more stable strategies, giving much improved metrics, and even a solid,
positive annual growth rate, as can be seen in figure 5.2. For the strategies in figure
5.2 we found a probability delta of 25% to yield the best results. Apart from this
additional probability delta, nothing has changed from the strategies in figure 5.1,
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which means that we are still using a 1% Fractional Kelly-Criterion to create our
bets.

2018 2019 2020 2021 2022 2023 2024 2025

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

CAGR

TotalReturn

MaxDrawdown

Linearity

0.61%

5.16%

27.65%

0.314

Sharpe

WinPct

WinLossRatio

BetsPrGame

0.064

50.13%

1.024

0.182

In-Sample Validation Out-of-Sample

ML Betting Strategy - With Odds Features 
 1% Kelly Fraction, 25% Probability Delta 

B
an

kr
ol
l

(a)

2018 2019 2020 2021 2022 2023 2024 2025

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

CAGR

TotalReturn

MaxDrawdown

Linearity

2.95%

27.00%

20.16%

0.329

Sharpe

WinPct

WinLossRatio

BetsPrGame

0.288

53.18%

0.964

0.196

In-Sample Validation Out-of-Sample

ML Betting Strategy - Engineered Odds Features 
 1% Kelly Fraction, 25% Probability Delta 

B
an

kr
ol
l

(b)

Figure 5.2: Equity curves and strategy metrics two betting strategies - one using raw betting
exchange odds directly as features and one using engineered odds features. Both strategies uses the
same underlying XGBoost-model, only differing in how odds features are included. Both strategies
bets according to the Kelly-Criterion, with a maximum Kelly Stake of 1% of the current bankroll
and requires a minimum probability delta to that implied by the betting exchange of 25 percentage
points.

What is quite clear this time, is that the strategy with the engineered odds features
in figure 5.2b outperforms the strategy in figure 5.2a with raw odds features. Even
though the strategy with the raw odds features has a win/loss ratio above 1, the 3
percentage points higher win percentage of the strategy with the engineered odds
features gives a much higher overall annual growth rate of almost 3%. Apart from
earning much more money, all other metrics are also improved - they bet approxi-
mately just as often, but Sharpe ratio and max drawdown is much improved.

For this reason, we will only be including the strategy with the engineered odds
features for further analysis.

5.3.1 Statistical performance analysis

While especially the strategy in in figure 5.2b shows very promising signs, it makes
sense to do a few tests to check the significance of this strategy.
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In (Lopez de Prado, 2018, ch. 12) a lot of focus is put on the fact that the actual
historical sequence of observations is purely a single scenario of what could have
happened. An obvious test of whether our strategy is susceptible to a different
order of its trades, is by computing confidence intervals with bootstrapping.

We boostrap by collecting the returns on all dates where we have made a bet.
We then randomly sample from this pool of returns with replacement, until we
have as many trading days as in the original strategy. We then do this 10,000 times,
giving us a non-parametric distribution of our returns-series.

In figure 5.3, the bootstrapped strategy is displayed with a 90% confidence interval
as well as the minimum and maximum bankroll for each trading day.
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Figure 5.3: Equity curve of the same strategy as in figure 5.2b with boostrapped confidence
intervals. The boostrap is done my iteratively sampling a fraction of 100% from the original strategy
with replacement, 10,000 times. 90% confidence intervals are then computed as the 5th and 95th
quantile for each trading day. The minimum and maximum values for each trading day from the
boostrap is also plotted.
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From the figure, it is quite obvious that the upwards potential outweighs the down-
side risk significantly. The 95% upper bound ends at a bankroll of 1.96, while the
lower 5% bound ends in 0.81. Even though upwards potential dominates downside
risk, the lower confidence interval is still below 0. This means that we cannot reject
the null hypothesis that the strategy will end up losing money after 8 years (which
is our backtesting horizon here). Further analysis of the bootstrapped distribution
shows that the strategy is in negative territory after the 8 years in 20% of cases.

Heavy right tails

When looking at what kind of bets the strategy is the most dependent on winning,
we see two opposing trends. The first one is that the strategy is quite dependent
on winning quite few bets with quite large payoffs. A way to measure this, is by
removing the 1% of bets with the largest payoff from the strategy. Here, we would
like to see that the strategy is still profitable without these events, as these bets
are on outcomes with a very low probability of happening. This means that these
are the outcomes to which the underlying model - or we as strategy developers -
are most prone to overfitting: rare events with a low likelihood of recurring in the
future.

Figure 5.4 shows that removing the 1% biggest winners makes the strategy lose
money in the backtesting period.

The counter point to this is that the bets we remove in figure 5.4 has an average
odds of 1.83, which means that they are actually not very big outliers. Further
analysis shows that the initial strategy actually wins most of it’s money in a low
odds range below 2, which is visualized in figure 5.5a. The strategy improves quite
dramatically this way - mainly because the win/loss ratio stays mostly the same as
in figure 5.2, but the win percent shoots up by 5.5 percentage points to 63%2

These findings tie nicely to the theoretical proposition of a long-shot bias as pre-
sented in section 2.4.3, which would mean that the odds on big underdogs are
generally too low, compared to their actual probability of happening.

What makes this even more interesting is that the Betfair exchange seems to
be providing the lowest odds compared to other bookmakers in a low odds range
below 2, while it provides some of or even the highest odds in higher odds ranges,
as can be seen in figure 5.5b. In the eyes of the authors, this fact makes the per-

2Given the relatively poor performance in the Out-of-Sample period, it can be discussed whether
the strategy is overfit. We will tackle this problem in section 5.5
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Figure 5.4: Equity curve and strategy metrics for the same betting strategy as in figure 5.2b, but
with any returns bigger than or equal to the 99th quantile of returns removed.

formance of the strategy more plausible, as our strategy could have earned signifi-
cantly more money, if we based our profit on odds from different providers.

The one downside to the ’odds < 2’-strategy in figure 5.5a is that it does not
earn money in the out-of-sample period, which could be a worrying sign that we
have overfitted the model to the training data - we will return to this point in
section 5.5.

5.3.2 Modern Portfolio Theory for strategy construction

Although the strategy utilizing the Kelly-Criterion performs relatively well, below
we construct our portfolio of bets using the MPT procedure as outlined in section
3.2.2. The underlying ML-model used for constructing the probability predictions
for the strategy is the same as in figure 5.1c - the ML model with the engineered
odds features.

Additionally, we have chosen the γ risk-aversion hyperparameter from the MPT
maximization problem in equation 3.4 to be 1. We found this value to give a good
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(a) Equity curve and strategy metrics for the same
betting strategy as in figure 5.2b, but only including
wagers on outcomes with odds below 2.

(b) Heatmap of the difference from the average odds
across all providers for different odds providers in
different odds ranges. A positive number means, that
the average odds for that provider in that odds range
is higher than the average for all providers in the odds
range. The odds ranges are calculated based on the
odds from Betfair. The Betfair odds have been
multiplied by 0.95 to make them comparable to the
odds from the traditional bookmakers.

Figure 5.5

balance between risk and return in the backtest.
The sizes of the bets in the strategies presented in figure 5.6 have all been

rescaled ex-post in order for the average amount wagered to match their equivalent
strategy using the Kelly-Criterion. This is done so we can compare the two strate-
gies. While this introduces look-ahead bias, as we tweak the wagered amounts
’after’ the bet has happened, the upside of being able to easily compare strategies
across procedures easily outweighs the downside.

The reason why this introduces look-ahead bias is that we only calculate the
average size once, at the end of the backtest, and use this to scale the historical size
backwards. If we wanted to proceed without any look-ahead bias, we should have
calculated the historical average size before each bet, and then used that average to
scale the size of the future position. The problem with this implementation would
be that we would not be sure to have perfectly comparable results to the Kelly-
strategies, which is why we chose to go with the more simple implementation,
where we only scale the size of the positions once, at the end.
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The strategy in figure 5.6a is based on the strategy in figure 5.1c and thus it does not
have any additional filters after having constructed the positions with MPT. The
strategy in figure 5.6b is based on the strategy in figure 5.2b, which means that
the positions are constructed with MPT as before, but any bet where our proba-
bility estimate is not 25 percentage points higher than the implied probability of
the betting exchange is filtered away. Lastly, the strategy in figure 5.6c is based
on the strategy in figure 5.5a, which means that we impose an additional filter on
the MPT-positions; in addition to the 25% probability delta, we now only bet on
outcomes with odds < 2.

The strategy in figure 5.6a is the equivalent to the Kelly-based strategy in figure
5.1c, which means that it is the most basic strategy possible. What is the most
interesting about this strategy compared to the one in figure 5.1c is that this only
takes about half the amount of positions per game. Out of the box, the MPT
strategy seems to be much better at ’choosing’ the right outcomes to bet on, which
is also clear from the 54.6% win percent of the strategy - an improvement of 5.5
percentage points compared to its Kelly-equivalent.

Still, the strategy is obviously not positive, as we lose about 6% of the bankroll
every year. To rectify this, we move on to figure 5.6b - the Kelly-equivalent to this
strategy can be found in figure 5.2b. What we do here is to impose a probability
delta of 25% from the implied probability of the betting exchange before we are
willing to take the bet.

The improvement from the simple implementation of MPT in figure 5.6a to fig-
ure 5.6b may not seem drastic, as the win percent only increases by 0.2 percentage
points and the win/loss ratio improves by about 0.1. Still, as was the case for the
Kelly-based strategy this improvement is enough to change the sign of the total
return from negative to positive. If we compare to the equivalent Kelly-strategy in
figure 5.2b, we once again see that the MPT-strategy performs better on all metrics
apart from the win/loss ratio. It is especially impressive that the MPT-strategy
ends with a higher total return and simultaneously has a smaller max drawdown.

Moving on to figure 5.6c, which has its Kelly-equivalent in figure 5.5a. This strat-
egy is identical to the one in figure 5.6b, but this time we only allow the strategy
to bet on odds smaller than 2. Like we saw with its Kelly-equivalent, this strat-
egy shows by far the most promise, at least before the out-of-sample period where
we once again see a pretty significant drop-off in performance. Compared to the
Kelly-equivalent, this strategy has a much higher win percent of 58.24% compared
to the 55.52% of the Kelly-based strategy.
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Figure 5.6: Equity curves and strategy metrics for betting strategies based on the modern portfolio
theory procedure as presented in section 3.2.2. The three strategies in the figure is based on the
same procedures as the strategies in figure 5.1c, 5.2b and 5.5a, respectively.

All in all, it seems that the MPT-based strategy consistently achieves a higher win
percentage than the Kelly-based strategy, which similarly achieves a higer win/loss
ratio. The MPT strategies does seem to provide a higher return with a similar or
smaller max drawdown, which suggests that the risk-adjusted returns are superior
for these strategies.
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5.4 Does the decorrelation loss function actually work?

The trading strategies presented in this chapter revolves around a machine learning
model with the loss function presented in section 4.2.

To recap, we are using the below loss function to build our XGBoost model:

− 1
N

N

∑
i=1

[
yi · log( p̂i) + (1 − yi) · log(1 − p̂i) + c · ( p̂i − 1/oi)

2] (5.1)

, where the hyperparameter c is a penalty parameter, i.e. the value determining the
algorithm’s relative focus on decorrelation compared to minimizing the log-loss.

As presented previously, we ended up using a value of 1 for c, as that is what
we found to consistently provide the best balance between returns and risk, i.e. the
risk-adjusted return. As the above loss function is relatively central to the thesis,
we also want to provide a brief analysis of the effect of c.

Hubáček et al. (2019) use a Monte Carlo simulation to prove that a higher decor-
relation between a bettor’s probability estimates and the implied probability esti-
mates of the bet exchange yields a higher return. What they do not test, though,
is whether a higher c actually does give a higher decorrelation to the market in the
first place.

To test this, we set up a small experiment using real data instead of a simulation.
We use the exact same model as has been used the entire chapter, only changing
two things: The value of c and as we have done previously, which predictors we
use; no odds features, raw odds features or engineered odds features. To calculate
profit for the models, we use the procedure from figure 5.2b, where we have a
probability delta of 25% and a fractional Kelly-approach, wagering a maximum of
1% of the current bankroll on a single outcome.

The results in table 5.2 shows very interesting results, which both support and
contradict our initial hypothesis. The results presented in table 5.2 is computed for
the entire backtesting period, also including the validation and out-of-sample pe-
riods. If we look at the CAGR, it is once again obvious that the model needs some
kind of odds features to have positive returns. Additionally, we see that for the
model with the raw odds features and the engineered odds features, the returns
are increasing until c = 1. This is exactly as we would expect, as the effect from ad-
ditional decorrelation outweighs the loss from worse accuracy, until a certain point.
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Features c CAGR Accuracy Odds Corr. Odds Dist.

Without Odds

0.00 -0.017 0.505 0.812 0.111
0.50 -0.108 0.522 0.881 0.150
1.00 -0.129 0.523 0.879 0.153
1.50 -0.073 0.520 0.861 0.162
1.75 -0.221 0.501 0.697 0.297

With Odds

0.00 -0.019 0.519 0.875 0.095
0.50 0.012 0.534 0.935 0.140
1.00 0.006 0.533 0.935 0.141
1.50 -0.001 0.531 0.928 0.143
1.75 -0.148 0.521 0.805 0.260

Engineered Odds

0.00 -0.016 0.512 0.863 0.099
0.50 -0.040 0.530 0.926 0.142
1.00 0.029 0.531 0.924 0.143
1.50 -0.035 0.528 0.913 0.148
1.75 -0.125 0.515 0.788 0.267

Table 5.2: Table showing the effect of the decorrelation parameter c when paired with different sets
of features. The presented results is for the entire backtesting period, including the validation and
-out-of-sample periods.

This does not line up with the results for the accuracy and odds correlation of the
models - in these columns we see the exact opposite of what we would expect. As
c grows, accuracy increases, while odds correlation decreases - at least until c reaches
a value of 1.5, where we actually see the expected results.

Why do we see this? An explanation for the accuracy could simply be training
data overfitting. If the ML model is overfitting to the training data, it would make
sense that less focus on actually minimzing the log-loss term of the loss function
could end up giving a higher accuracy.

As for the increasing odds correlation as c increases, the explanation could be
even more simple. Even though Hubáček et al. (2019) (and we) call c the ’odds
correlation’ hyperparameter, it is actually not what we are working with. If we
look at the c term in equation 5.1, it is actually the squared difference between the
probability estimate of the model and the implied probability of the market, which
we are attempting to drive up by increasing c. For this reason, the ’Odds distance’
column has been added to table 5.2, which shows this measure - and here the re-
sults are more intuitive. We see that as c increases, the squared difference between
the model’s probability estimate and the implied probability increases, which is
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perfectly in line with what the loss function seeks to do.

Therefore, this exercise shows us two things. 1) An (additional) sign that we may
have overfitted our model to the training data, and 2) the c hyperparameter does
actually not decorrelate the probability estimate with the market probability. In-
stead it increases the squared difference between the two estimates, which in the
end gives the expected results; a higher c yields better results, until the penaliza-
tion of similarity influence the accuracy too much, and the profit starts to drop
off.

5.5 Did we overfit the strategies to the training data?

We have already mentioned a few times that there are a few signs that the betting
strategies have been overfit to the training data. Even though it may be unwise
to admit to overfitting, it is still a topic we feel is important to explore. As was
written in section 4.3, backtest overfitting can be considered scientific fraud, which
is why we feel it is our duty to investigate whether we have fallen into any traps.

The first thing that suggests overfitting was when working with the strategies in
figure 5.2b and figure 5.6c, where we only bet on an outcome if our probability
estimate is more than 25 percentage points larger than the implied probability of
the market and if the odds is below 2. While this makes sense intuitively (we only
bet when we disagree a lot with the market and we only bet on relative favorites
(section 2.4.3)), the strategies mimics an almost perfectly linear curve right until
the out-of-sample period - this is quite incriminating evidence.

There can be a few possible explanations. It could of course purely be bad luck,
and the strategy could bounce back in the future, but the much more plausible ex-
planation is overfitting. This does not necessarily mean that the entire underlying
strategy should go in the trash, though. A good check to make is whether a small
change in a trading- or hyperparameter would change the conclusions of the strat-
egy significantly.

In figure 5.7 we use the MPT strategy from figure 5.6c, but this time we only
want to bet when the odds are below 2.5 instead of 2.

The yearly growth rate changes quite significantly from more than 6% to just under
5%, but still the strategy seems to be quite solid - and now it even makes money in
the out-of-sample period. A (very fair) counter point here is of course that we are
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Figure 5.7: Equity curve and strategy metrics for the same strategy as in figure 5.6c, but this time
the odds can be up to 2.5 instead of 2, in order for us to make a bet.

now choosing the best trading parameters for the out-of-sample set ex-post, which
is ’not allowed’. Still, the strategy without this parameter altogether (the strategy
where the only restriction is the probability delta), yields positive results, which
could mean that the ’odds < 2’-rule could simply be a step too far, and a sign that
the less ideal, but perhaps more obtainable results of figure 5.6b is what is actually
realistic to achieve in real life.

The second case where we fear overfitting is when going through the c hyper-
parameter, where a larger c gave higher accuracy for the model, which does not
really make intuitive sense, unless the amount of information in the data is lack-
luster. While it might be the case that our ML algorithm is slightly overfitted, that
does not mean that a trading strategy based on its predictions necessarily is com-
pletely overfitted. We will argue that overfitting is a spectrum, and even though
the underlying ML model may be overfit to some degree, that does not mean that
it cannot produce signals which can be useful for a trading strategy to be built on
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top of it.

5.6 Football: a high-variance sport

The Danish philosopher Søren Kierkegaard (1813-1855) argued that passion is fun-
damental for a meaningful existence. Across the world, football embodies pas-
sion, history and community - an identity and feeling of belonging that mirrors
Kierkegaard’s on profound engagement in life. This passion resonates regardless
of skin color, social class or political beliefs, making it a widespread and influential
element of culture in modern Europe.

However, it would perhaps have been wiser to put passion and interest to the
side, and focused on another sport. Football is fundamentally a high-variance
sport; i.) goals are few, ii.) on-field punishments are detrimental for the course of
the match and iii.) the stakes are high in almost every match throughout the season.

i.) In the dataset of this project, on average 2.80 goals are scored per match.
Compared to various other ball-based sports3, the number of goals scored in a
match of football is much lower, i.e. it is arguable that each individual football
goal has more significance to the result of the match compared to other sports.

ii.) Without engaging with the regulatory framework of various sports, football
is unique as it is normal to have a player removed from the match if given a red card.
In this case of a red card, the team of the player that receives the red card has one
player less on the field in the rest of that match. In handball and ice-hockey, players
can be sent off and not be substituted by another player immediately. Specifically,
in handball, the suspension lasts 2 minutes and in ice-hockey the suspension lasts
either 2, 5 or 10 minutes - but in both sports, the penalized team will ultimately
regain full strength.

iii.) In most football leagues globally (the exceptions are the American, Can-
dian, Australian and Indian leagues), the worst ranked team(s) are relegated to a
lower-level division. As a consequence, the worst ranked teams have the utmost
motivation to avoid losing matches, and therefore, the vast majority of all matches
are of importance throughout the season.

In a match between the highest and lowest ranked team in the league, it can be as-
sumed that both sides are highly motivated to fight for the league title and survival,
respectively. While the favored team is assigned the highest implied probability of

3American Football, basketball, baseball, ice-hockey, handball, tennis, table tennis, volleyball,
cricket, etc.
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victory, a non-negligible chance of the underdog scoring one or even two goals
persists in all football matches. Suddenly, the likelihood of winning the match is
significantly reduced for the favored team. Additionally, suppose a player on the
favored team is shown a red card in the beginning of the match; the favored team
must then play the rest of the match with one less player on the field. This is also
likely to fundamentally change the dynamics of the match.

In essence; all football matches are subject to stochastic outcomes in each match
that can critically change the match and the implied probabilities of outcomes.
These are tendencies that are not experienced to the same degree in various other
sports. In other sports, a single goal will seldom significantly influence the im-
plied probabilities of outcomes and teams will only experience a different number
of players on the field momentarily. Perhaps the match might not even matter for
one of the teams as relegation does not exist and the title is mathematically out of
reach.

As implicitly mentioned throughout the project, the betting market is believed to
have all (or at least almost all) information implemented into the odds for football
matches, and therefore, the above-mentioned structural intricacies of football is
implemented into the odds. Events of very low odds are inherently rare in compet-
itive football matches, as uncertainty and potential stochastic events that change
the match dynamics remain more probable than in other sports, where the greater
amount of goals might make the result more likely to converge to the expected
outcome.

5.7 Subconclusion on results

In this chapter we have presented a lot of different strategies with mixed results
and analyzed and discussed their results. The final thing we want to discuss, is
which strategy we would like to pick, if we were to use it going forward.

As mentioned in section 5.3.2, we generally feel that the MPT strategies perform
better than their Kelly-based equivalents, so this method would be our starting
point. In addition, we feel the development potential for MPT is more vast than
for a Kelly-based strategy, which is more ’set in stone’. For MPT, we can tweak the
way we put together games to form a portfolio, how much weight we put on risk
vs. return and we can even begin playing with the maximization problem and it’s
constraints. We do not see the same potential for the Kelly-Criterion, which seems
much less flexible.
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In terms of the actual strategy we would choose in the future, the choice is
between the MPT strategy in figure 5.6b (probability delta of 25%) and the MPT
strategy in figure 5.6c (probability delta of 25% and only odds < 2). As mentioned
in section 5.5, the strategy in figure 5.6c perhaps took it a ’step too far’ in terms of
hard-coded trading signals, as the performance deteriorates in the out-of-sample
period. For this simple reason, we are most inclined to choose the more simple
strategy with only the probability delta filter in figure 5.6b, even though its overall
performance is not quite as good.

In the end, this begs the question - does it even make sense to run a strategy with
an annual growth rate of 3.71% per year? A yearly return of under 4% on the
stock markets would not exactly be deemed a world-class return, so why would it
make sense to put our hard-earned money toward this betting strategy, instead of
putting them in an index fund?

For us, there are two answers to the question. Firstly, covariance and diver-
sification; as a rule of thumb the covariance between the return on our betting
strategy and, for example, the return on the stock markets is zero. As presented
in the equations section 3.2.2, this low covariance will give a lower variance to an
overall portfolio of both stocks and the betting strategy.

Secondly, the betting strategy can be used as a tool to get out as much money
from so-called ’freebets’, which we mentioned very briefly in chapter 2. A freebet
is where a bookmaker will give you a free sum of money (to lure you onto their
platform) - in turn you will often have to bet on a minimum number of games
before being able to withdraw the money. Even if we deem the betting strategy
to have too weak results to bet with systematically, it would still be very useful to
maximize the payout from a freebet.
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6 Conclusion

This thesis set out to explore whether it is possible to construct a profitable betting
strategy on the Betfair betting exchange for the 5 biggest European football leagues
by leveraging advanced machine learning methods.

To do this, we extend on the methods from Hubáček et al. (2019), as we imple-
ment a XGBoost model with a classification-specific loss function aimed at decor-
relating our prediction with the market-prediction - the amount of decorrelation is
controlled by the hyperparameter c. We implement this loss function, as we would
simply lose the commission of the betting exchange, if our forecast is identical to
that of the market. We implement this model to predict the probability of each
outcome of each game occurring.

In order to construct betting strategies with these probability estimates, we use
the very classic (Fractional) Kelly-Criterion, which helps us find outcomes with
positive expected values based on our probability estimates and the market odds,
and size our bets based on these. Additionally, we once again expand on the
methods of Hubáček et al. (2019), as we propose an implementation of Modern
Portfolio Theory (MPT) for betting, where the covariance between the outcomes of
each game is incorporated.

Empirically, we find that the decorrelation-based machine learning technique works
well, even though it technically does not work quite as expected. We find that a
relatively large c of 1 works best, as it provides the highest returns. What we also
find, though, is that a higher c surprisingly did not lead to more decorrelation.
Rather, it lead to a higher squared difference between our prediction and the im-
plied market prediction - which is also exactly what the loss function is intended
to do. During this exercise we also conclude that it is beneficial to include the
odds from the market in some way, even though it made our model more corre-
lated with the market prediction. In the end, we found that features derived from
the raw odds features performed the best, as these strike a nice balance between
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high amounts of information, without increasing our correlation to the market too
much.

When translating the probability estimates into strategies, it was clear that both the
Kelly-Criterion and MPT strategies could not stand on their own, as a new naive
implementation of these strategies lose 6%-15% of the bankroll each year. For this
reason, we implement some simple rule-based filters to enhance performance.

The first rule that we implement is that our probability estimate must be 25%
higher than the implied probability of the market before placing a bet. While
this rule filters away most of the drawdowns and makes total return positive, we
cannot reject the null hypothesis that the strategy will yield negative result using
bootstrapped confidence intervals.

For this reason, we implement an additional rule based on our initial explo-
ration of the betting market and the human psychology behind it. Here we find
that bettors on average have a ’long-shot bias’, which means that they favor betting
on outcomes with a low probability and high payoff. This should in theory drive
down the odds on low-probability outcomes, which in turn should drive up the
odds on high-probability outcomes.

We sought to exploit this effect by limiting our strategy to only bet on outcomes
with odds < 2. Both in-sample and in our validation set, this strategy performs ex-
ceptionally well, but unfortunately the strategy loses a significant amount of money
in the out-of-sample period, giving us a worrying sign that the strategy might be
overfit to the training data.

In the end, we conclude that the MPT-based strategies are the most favorable, as
they provide a just as high return as the Kelly-based strategies, but with lower risk
and shallower drawdowns. Additionally, we conclude that the strategy with both
of our rule-based filters, which significantly underperformed in the out-of-sample
period, has too high a risk of being overfit. For this reason, we choose the MPT-
based strategy with a rule of only placing bets when our probability estimate is
more than 25% bigger than that of the market as our best strategy.

We argue that even though this strategy ’only’ has an annual growth rate 3.71%,
which is not exactly high compared to investing in stocks, it would still make sense
to wager money on it in real life. First of all, the strategy is in theory completely
decorrelated with the return on other assets, which would make it a way to diver-
sify a portfolio.

Additionally, the strategy can be used to maximize the payoff from the free-
bets often offered by bookmakers. This would make the strategy highly valuable,
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even if we were to decide that it is not robust enough for systematic, real-world
deployment.
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A Appendix

A.1 Derivation of the probability of the product of two non-
independent discrete random variables

The derivation of the probability of the product of two non-independent discrete
random variables Pi and Pj:

E[PiPj] = −bibj
[
p̂i(oi − 1) + p̂j(oj − 1)

]
+ p̂kbkbj (3.10)

, where P are the profits from betting on any two outcomes i and j of the three
outcomes in the 1X2 market of a match, o are the decimal odds, b are the wagered
amounts and p̂ are the estimated probabilities of the specific outcome happening.
k is the third outcome.

The derivation is based on Sun (2020, ch. 25), which utilizes 2D LOTUS (2-
dimensional Law of the Unconscious Statistician) for two discrete random vari-
ables. The derivation has its foundation in the function:

g(Pi, Pj) = Pi × Pj (A.1)

, which is the product of the profits/losses Pi and Pj, and the joint mass prob-
ability function f , which is the joint probability of the outcomes for Pi and Pj

occurring. A table gives the best intuitive understanding:

Pj\Pi bi ×−1 bi(oi − 1)
bj ×−1 p̂k p̂i

bj(oj − 1) p̂j 0

The table shows the probability of different payoffs for betting on either outcome j
or i.

To give an intuitive example, say that outcome i is betting on a home win and
outcome j is betting on an away win. The probability of losing both of these bets
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(payoff of bi ×−1, the entire stake times the wagered amount) is p̂k, the probability
of a draw. The probability of winning both bets (payoff of b(o − 1)) is 0, as both
the home team and away team cannot win at the same time. The probability of
winning one of the bets and losing the other is p̂i and p̂j, respectively.

Therefore, when combining the two functions, we get:

E[PiPj] = ∑
Pi

∑
Pj

g(Pi, Pj) f (Pi, Pj) = ∑
Pi

∑
Pj

PiPj f (Pi, Pj) (A.2)

, which is an aggregated combination of equation A.1 and the joint mass proba-
bility function f . The estimated probabilities and payoffs for betting on the 1X2
market in matrix A.1 can be computed based on equation A.2. Suppose we only
focus on one 1X2 bet:

E[PiPj] = (−bi ×−bj)× p̂k + ((bi(oi − 1))×−bj)× p̂i + (−bi × (bj(oj − 1)))× p̂j

= bibj p̂k + (−bibj(oi − 1)× p̂i) + (−bibj(oj − 1)× p̂j)

= bibj p̂k − bibj p̂i(oi − 1)− bibj(oj − 1)

= −bibj[ p̂i(oi − 1) + p̂j(oj − 1)] + p̂kbkbj (A.3)

A.2 Hyperparameters of the XGBoost model

Hyperparameter Value Role

c 1 Relative weight of decorrelation term
colsample_bytree 0.9 Fraction of features sampled for each new tree
gamma 0 Min. loss reduction required for a further split of a tree
learning_rate 0.1 Amount of shrinkage applied to each update
max_depth 3 Maximum depth of each tree
n_estimators 500 Number of trees
subsample 0.6 Random fraction of training set sampled for each boosting round

Table A.1: XGBoost hyperparameters, their values and a brief explanation of their role. For further
reading on the XGBoost hyperparameters, refer to Chen (2022)
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