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Abstract

Automatic instance generation aims to automate planning
problem creation, reducing reliance on hand-crafted gen-
erators. In this work we first evaluate NeSIG paired with
CPDDL’s ASNets and find that policies trained solely on Ne-
SIG instances overfit - achieving high accuracy in-distribution
but struggling on external benchmarks. To address this, we
introduce two policy-aware difficulty metrics, Optimality Gap
and Multi-Policy Consensus, which replace NeSIG’s original
planner-centric metric. By incorporating these metrics into
a feedback loop between policy learning and instance gener-
ation, the modified NeSIG produces harder problems that
expose policy weaknesses. Although initial experiments on
the Miconic domain yielded limited improvements on exter-
nal tests (likely due to computational constraints) trained
policies showed greater robustness on increasingly challeng-
ing in-distribution sets. Our contributions include quantifying
NeSIG’s limitations and proposing a closed-loop, difficulty-
guided framework to generate more informative training
problems, laying the groundwork for enhanced policy gener-
alization.

1 Introduction

Planning is a core area in machine intelligence, typically explored
through relatively simple domains that can generalize to real-
world applications. The problem instances in these domains serve
as foundational ”puzzles” for developing and evaluating planner
models and algorithms. A robust collection of such instances is
therefore very useful, as it does not only serve as a measure of the
performance of certain solvers, but in many cases it is used as the
training set of a machine learning model.

While many hand-crafted instances exist, improving these
datasets requires significant manual effort. This makes automatic
instance generation an increasingly important area of research.
Earlier methods often involved randomly picking an initial state,
then reaching the goal state through a random walk [3]. Some
approaches combined this random walk with some semantic rules
that ensured consistency [1]. These methods did make automatic
generation easier; however, their randomness did not provide any
control over the difficulty and diversity of the instances. In the
approach of Marom & Rosman et al. (2020) [8] the instances
are generated by applying backward search from a pre-defined
goal condition. In this approach, the authors were able to control
the difficulty of the generated problems by applying a heuristic
for it in their search, but this method was limited to domains
that have a structure with a single fixed goal. Using Machine
Learning for instance generation had not been widely used method

until the introduction of NeSIG [10], which marked a significant
advancement in the field. NeSIG leverages Neural Logic Machines
(NLMs) [2] that are neural networks designed for reasoning about
logical inferences, making them well suited for tasks that involve
relational structures, such as planning tasks. NeSIG utilizes NLMs,
a solver to give feedback about the difficulty of the instances.

While the creators of NeSIG claim that their model is capable of
creating diverse and difficult problems, there is a lack of research
on the usefulness of NeSIG-generated problem instances, when it
comes to training. Our motivation was to train a planner using
NeSIG-generated problems, and through its evaluation find the
weaknesses of the training set. With this information, it becomes
possible to create an additional feedback loop in the NeSIG training
process, that can further improve the diversity of its generated
instances.

2 Background

2.1 PDDL

A PDDL (Planning Domain Definition Language) [6] problem
consists of a planning domain description and the description of
the specific instance. The domain describes the types of objects
and predicates we can expect, and the actions we can use to
achieve our goal. Each action has preconditions that must be true
for the action to be applicable and effects which will be true after
the action is executed. The instance specifies a set of objects, an
initial state, and a goal condition that has to be reached. The
solution of a planning problem is a sequence of actions that we
can execute from the initial state, to reach a state where the goal
condition is true.
For example, the Miconic domain models an elevator system:

predicates describe relationships such as (at ?p - passenger

?f - floor) or (lift at ?f - floor), and actions include
(up ?f1 - floor ?f2 - floor) (moving the elevator up from
?f1 to ?f2), or (board ?p - passenger ?f - floor) (board-
ing passenger ?p at floor ?f), each with preconditions and effects.
A Miconic instance then names specific floors and passengers, sets
an initial configuration (elevator location and passenger locations),
and defines a goal (e.g., each passenger delivered to a target
floor).

2.2 NeSIG

For automated planning problem generation, we employ the Neuro-
Symbolic Instance Generator (NeSIG) [10], a domain-independent
framework that produces valid, diverse, and challenging problems.
Unlike traditional, hand-crafted generators, NeSIG requires only
a PDDL domain description, a set of user-defined consistency
constraints, and a few generation parameters (e.g., maximum
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problem size, number of problems to generate, etc.).

2.2.1 Generation process

NeSIG operates in two sequential phases, each governed by a
learned policy. A Neural Logic Machine (NLM) policy starts from
an empty or user-specified state and incrementally adds ground
atoms. At each step, NeSIG enforces consistency constraints (e.g.,
an object cannot occupy two locations simultaneously) to ensure
a valid initial state.

A second NLM policy applies domain actions to the generated
initial state, exploring the reachable state space. From the final
reachable state, a subset of atoms is selected to form the goal
condition, ensuring solvability by design.

2.2.2 Instance evaluation

NeSIG evaluates instances based on three qualities:

• Validity
A generated problem is valid if it is consistent and solvable.
Consistency means that the initial state respects all domain
constraints. These constraints are not described in the PDDL
problem definition, but they are derived from common sense
(such as an object cannot be at two places at once, or
a logistics problem has to include at least one truck) and
have to be formally specified before generating the instances.
Solvability means that there is a solution for the problem. By
design, NeSIG guarantees the validity of the problem.

• Diversity
Diversity measures how different are the generated problems
from each other. NeSIG measures diversity by mapping each
problem to a feature vector of summary statistics (such as the
number of objects and predicates of each type) and calculating
the average and standard deviation of these vectors.

• Difficulty
Difficulty refers to how hard a problem is to solve for a planner,
measured by the number of nodes expanded by the planner.
In NeSIG the planner used is Fast-Downward.

According to Núñez-Molina et al. (2023) [10] NeSIG is the leading
framework for automated, adaptable problem generation in plan-
ning because it works across any domain, ensures each generated
problem is valid, and focuses on creating problems that are both
diverse and challenging.

2.3 Action Schema Networks

Action Schema Network (ASNet) is a neural network architecture
introduced by Toyer et al. (2017) [13] specifically designed to learn
generalized policies for both probabilistic and classical planning
problems. ASNets show strong generalization capabilities across
problem instances. This is achieved by mimicking symbolic reason-
ing for the PDDL domain it is training for, sharing weights based
on action schemas and predicates, and enabling instance-invariant
policies through its architecture.
ASNets are structured by alternating action layers and propo-

sition layers. Action modules represent grounded actions, while
proposition modules represent the grounded predicates. The con-
nection between these modules, create a structure that reflects
the domain’s causal relationships. ASNets share weights among
all modules using the same predicate symbol, helping to gener-
alize independently from problem size. To further enhance the
network’s invariance to problem sizes, max-pooling is also applied

over the inputs. To avoid vanishing gradients, skip connections
are used, passing information through alternating layers more
effectively. This helps in stabilizing the training; as in planning
domains, effects often cascade, but this method can propagate
these dependencies between modules well.
Each module gets a feature vector built from domain-level

information. For action modules, this means an evaluation of
whether the action is applicable for the current state and how
often this action was selected in the past. In case of proposition
modules, it is checked whether the predicate is currently true,
whether it is part of the goal, and whether it appears in LM-
cut landmarks. This usage of feature vectors allows ASNets to
combine symbolic and learned features, so they are not learning
from scratch, but are guided by symbolic planning heuristics,
learning through mimicking symbolic reasoning.
These features of ASNets allow them to yield general policies

even from small training sets if the training instances are diverse
enough. However, ASNet performance may degrade if training
instances lack critical schema combinations or object interactions.
Therefore, ASNets serve as an appropriate learner for evaluating
whether the instances generated by Nesig are diverse enough to
allow general training of a policy.

2.4 CPDDL

CPDDL is a policy learning framework developed by Daniel Fǐser
[4]. It is not a learning algorithm by itself; however, it provides
a framework that parses PDDL definitions, grounds domains,
and converts problems into graph representations. These graph
representations serve as the input of the neural architecture used by
CPDDL, which is Action Schema Networks. Using the generalized
learning capabilities of ASNets, CPDDL facilitates both policy
training and evaluation.
Within our research, CPDDL functions as the evaluative com-

ponent of the feedback loop integrated with NeSIG. Specifically,
we use it assessing the diversity and training utility of generated
instances by training policies and evaluating their performance
on both NeSIG-generated datasets and external benchmark prob-
lems.

3 Problem Definition

To train a policy for an arbitrary planning domain, it is necessary
to generate representative problem instances on which the policy
can learn. Current instance-generation techniques fall into two
broad categories:

1. Hand-crafted, domain-specific generators
Researchers traditionally write ad-hoc, domain specific in-
stance generators for each domain. Whenever a new domain
is needed, or a domain is modified, its generator must be
manually revised or rewritten, which is an error-prone, time-
consuming process.

2. Domain independent instance generators
Methods such as NeSIG eliminate the need for manual domain
specific generators. Given a domain definition and a set of
user-defined constraints it can already generate instances for
that domain, thus significantly cutting back on the time and
effort required to accommodate new or evolving domains.

While NeSIG represents a significant step toward domain-
independent automatic instance generation, its efficiency as a
training resource for learning generalized policies remains untested.
In particular, it is unknown whether NeSIG-generated instances:
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• Cover the full spectrum of possible instances needed to avoid
blind spots in learners,

• Have sufficient diversity to promote generalization rather than
overfitting.

In our paper we therefore have two primary objectives:

1. Instance-Generation Quality Assessment
We will evaluate how well NeSIG, operating only on PDDL do-
main descriptions and user-specified constraints, can produce
training sets that enable a learner (e.g., CPDDL) to gener-
alize beyond the generated distribution. Performance will
be measured both in-distribution (on other NeSIG instances)
and out-of-distribution (e.g., standard PDDL-generators in-
stances).

2. Enhancing the Instance Generator
We aim to introduce modifications to NeSIG’s generation
process to produce instances that are optimally suited for
policy learning. The goal is to generate a domain independent
framework that generates problem instances and trains a
problem-solving policy based on only a problem definition
and a set of user-defined constraints

4 Methods

4.1 Iterative instance generation

While prior work established NeSIG’s ability to generate problems
exceeding ad-hoc generators in difficulty [10], its efficiency for
training planning policies remains unverified. Therefore, we started
out by assessing how can learners use NeSIG generated instances in
their training, and how they perform on external test sets. Our eval-
uation specifically addresses whether NeSIG-generated instances
enable robust policy learning and generalization to externally-
created problems.
In order to eliminate the blind spots of policies trained on

NeSIG-generated problems, we integrate CPDDL into NeSIG’s
generation loop and bias problem synthesis toward instances on
which the current policy performs poorly. Precisely, our procedure
alternates between (i) policy improvement via CPDDL and (ii)
hardness-guided instance generation via NeSIG. Over successive
iterations, the training set becomes enriched with progressively
more challenging examples, yielding policies of increasing robust-
ness. At each iteration CPDDL is trained on instances it previously
failed to solve, forcing it to learn ways to resolve those weaknesses.

Algorithm 1 Iterative Instance Generation with CPDDL and
NeSIG

1: Generate initial problem set p1 using NeSIG with default
settings

2: for each iteration do
3: Policy training: Train a policy on p1 using CPDDL
4: Integrate policy: Update NeSIG’s reward function to

use the policy and a difficulty metric
5: New instance generation: Generate problem set p2

using NeSIG with the updated reward
6: Dataset augmentation: Merge p1 and p2 to update

the training set
7: end for

4.2 Difficulty metrics

In order to guide NeSIG towards generating instances that target
the weaknesses of our policy, we define a quantitative difficulty

metric to maximize, and replace NeSIG’s original metric which
was based on the number of nodes expanded by Fast-Downward.
Our difficulty metric should assign higher scores to problems that
are harder for the current policy to solve, thus encouraging NeSIG
to target the policy’s blind spots.

Throughout our experiments we implemented and evaluated two
such metrics: Optimality Gap, and Multi-Policy Consensus. Both
are designed to reflect how difficult an instance is for our policy,
but they differ in how this is measured. Optimality Gap compares
the policy’s plan length against the plan length of Fast-Downward,
while Multi-Policy Consensus aggregates results accross several
saved policies to obtain a more general difficulty metric that
reflects difficulty across multiple CPDDL-trained policies instead
of a single one.

These metrics are used in the reward function of NeSIG, replac-
ing the original difficulty function, while the components related
to diversity and validity remain unchanged.

4.2.1 Optimality Gap

D =


M, if CPDDL fails

ϵ, if lFD ≥ lCPDDL

lCPDDL + ϵ

lFD + ϵ
· 100, if lFD < lCPDDL and CPDDL succeeds

Figure 1: Optimality gap difficulty metric

Where:

• D is the value of the difficulty

• M is a large constant representing a reward case

• ϵ is a small constant to avoid logarithm calculation and
division with zero

• lCPDDL is the plan length produced by CPDDL

• lFD is the plan length produced by Fast Downward

The Optimality Gap difficulty metric (see Figure 2) is based
on the idea of measuring the difficulty of the NeSIG generated
instances by comparing the solution of a CPDDL policy with the
solution of Fast-Downward on the specific problem. The difficulty
metric is constructed in a way that distinguishes between three
different cases. The most desired case, is when NeSIG generates a
problem that the CPDDL policy cannot solve. In this case we assign
a constant value C, that is a large number, in our experiments
500, which would realistically would never occur by simply solving
a problem suboptimally compared to Fast-Downward. The second
case is the least desired, when CPDDL does better, or equally as
good as Fast-Downward - in this case the policy already performs
well, so there is nothing to further learn from these instances. In
this case a very low value is assigned, which is the constant epsilon
value, that we use to avoid calculation with zeros. Finally in case
CPDDL can solve the problem, but provides a longer plan than
Fast-Downward, we still assign a smaller value, since even though
CPDDL can solve the instance, there is still room for improvement.
In this case we calculate the ratio of the length of the two plans,
multiplied by 100, expressing the policy’s solution length as a
percentage of the optimal plan length. In this calculation, we also
add epsilon to the plan lengths to avoid division by zero.
The biggest weakness of this difficulty metric was, that for

NeSIG it takes multiple steps to get from empty instances, to
non-trivial ones, and with this function there is no reward to be
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NeSIG trained Pddl-generators trained

NeSIG test set PDDL-Generators test set NeSIG test set PDDL-Generators test set

Blocksworld 100% 73% 100% 100%

Miconic 99% 13% 80% 13%

Visitall 99% 78% - -

Table 1: Average percentage of successfully solved test problems over the last 10 training epochs for each CPDDL model

gained by making the problem non-empty, but still trivial. In
case of the old difficulty metric even for trivial instances, the
reward would be higher for instances where there are some atoms,
compared to completely empty instances. First we tried modifying
the difficulty metric to separate the trivial problems and apply the
old difficulty metric, to help the model getting to the generation
of more complex problems. However, the separation of different
difficulty calculations became misleading, as they were applied
simultaneously. We therefore decided to proceed with pretraining
the model using the old difficulty metric, for both of our rewards
functions.
Originally instead of a constant reward for CPDDL failure, we

used a dynamic reward based on the Fast-Downward plan length.
However, when we started to rely on a pre-trained model, the
length of the problems became less relevant when CPDDL already
cannot solve them. Actually quite the opposite, the problems
with smaller size that CPDDL policies cannot solve are the most
valuable ones. Therefore, inspired during the monitoring of the
multi-policy model, we decided to apply a constant high difficulty
value in this case as well. Similarly with the majority of problems,
where CPDDL performs good, the pre-training made it possible to
set a hard threshold on every problem that is not hard for CPDDL,
and assign a constant low difficulty value for them.

4.2.2 Multi-policy consensus

D =
n∑

i=1

{
li + ϵ, if CPDDLi succeeds

M + ϵ, if CPDDLi fails

Figure 2: Multi-policy consensus difficulty metric

Where:

• D is the value of the difficulty

• li is the plan length generated by the policy i

• M is a large constant representing the rewards for failure

• ϵ is a small constant to avoid logarithm calculation with zero

• CPDDLi refers to the i-th policy

• n is the total number of policies

The Multi-policy difficulty metric (see Figure 3) relies solely on
the solving capabilities of CPDDL policies. We start by picking
a set of NeSIG trained CPDDL policies, from later parts of the
training, when the performance has became stable. We choose
the policies from across separate parts of the training, not only
the very end, and we are trying to choose the highest performing
policies. In our experiments we implemented this difficulty measure
using i=5 policies.
For each generated problem, the CPDDL evaluation is called,

using each policy. If a policy is able to solve the problem, the
length of its plan is added to the difficulty. This way we propagate
longer plans, even if CPDDL is able to solve them. In case a policy
fails to solve a problem, a static difficulty score is added to the

accumulated score. The addition of a negligible epsilon value also
happens here, to avoid later calculations with zero.

Similarly to the Optimality Gap metric, here we also encountered
issue that the training could not progress from generating trivial
zero state instances so we also pre-trained the model as we did
in the case of Optimality Gap. We observed that 50 steps of
pre-training was enough to train the model to the level when it
can generate complex problems. Then we started applying the
multi-policy metric, which allowed the model to specialize for
problems that are difficult for the CPDDL policies.

5 Experiments

5.1 Training CPDDL on NeSIG instances

5.1.1 Experimental setup

The first experiments we carried out were focused on examining
how do NeSIG generated instances help a learner generalize, so
it can also solve problems generated by different methods. We
looked at three domains: Blocksworld, Miconic and Visitall. For
all domains we trained CPDDL policies on NeSIG training set as
well as on a PDDL-generators training set. Then all the policies
were tested on both NeSIG and PDDL-generators test set. In case
of Visitall, we were not able to obtain a usable large external test
set, therefore we could not present results on how they perform
as a training set. For the evaluation of the NeSIG trained Visitall
model we used a set of unique problems from IPC Benchmark
sets.

We assess the training utility of NeSIG-generated instances in
two steps. First, problem instances are generated using NeSIG
under controlled conditions: All experiments run for 24 hours on
uniform hardware (1 GPU, 8 CPUs) with a fixed random seed (42)
for reproducibility. Every 100 training steps, a set of 500 instances
is saved, with the final set retained for analysis. Key parameters
(max-init-actions and max-goal-actions) are calibrated to match
IPC benchmark distributions.

Following instance generation, datasets were partitioned using
an 80-20 training-test split via a bash script with randomized
seeding. To mitigate selection bias, multiple training sets were
created by varying split seeds across experiments.

We then trained policies using CPDDL’s Action Schema Net-
works (ASNets) implementation (see section 2.4) under default
configurations. Model snapshots were saved at each epoch during
training on NeSIG-generated instances.

To evaluate the policies we used two test sets. One was the
NeSIG-generated test set from the 80-20 split. The other one
was a set of external ad-hoc generated problems, to test whether
the training was enough to generalize over test sets generated
by different methods. To test the policies, CPDDLs evaluation
function was used, which logs the success rates for each policy.

In Table 1 you can see the average performance of the last 10
policies. The numbers indicate the percentage of problems that
the policies were able to solve.
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Figure 3: Policy performance over training epochs trained on NeSIG problem set for three domains

5.1.2 Results

The first thing that becomes clear from the results is that all
the policies trained on NeSIG training set are performing almost
perfectly on NeSIG test sets, solving almost 100% of the test
problems already after a few epochs of training. Training on PDDL-
generators instances does not result in such good performance
during testing on instances generated by its own method.

However, when it comes to testing the NeSIG policies on PDDL-
generators test set, the performance greatly drops. This gap in the
performance is illustrated well on Figure 3. This suggests that the
instances generated by NeSIG result in overfitting in the policies,
and do not enable the solver to generalize over unseen problems
that are generated by different methods. In certain cases, such
as on the Miconic domain, the performance is significantly worse,
the policy solving only roughly 13 percent of the test problems.

Another interesting result of the experiments was how the PDDL-
generators trained policies performed when seeing NeSIG problems.
While they performed similarly badly on the PDDL-generators test
set, the NeSIG test set seemed to be a lot easier to solve for the
policies, solving around 80% of the test instances for Miconic, and
reaching even 100% for Blocksworld. This raises some questions
regarding the claim in the NeSIG research paper, about the higher
difficulty of problems NeSIG can achieve compared to PDDL-
generators. It seems like while NeSIG optimizes its instances’
difficulty on Fast-Downward’s expanded nodes for each plan, the
generated problems are not that difficult to solve for a learner like
CPDDL-ASNets, trained on simple PDDL-generators problems.
Based on the results of these experiments we can conclude, that
NeSIG’s instance generation method has room for improvement,
when it comes to the usefulness of generated instances for training
a solver. The diversity of the generated instances can be optimized
more, so the trained policy avoids overfitting, and the generated
problems cover more edge cases that the solver can learn.

5.2 Testing NeSIG instances after feedback

5.2.1 Experimental setup

To measure whether the modified NeSIG difficulty metric improved
the quality of problems generated for training, the similar exper-
iments were carried out on the newly trained CPDDL policies
as for the original NeSIG trained models. Using the modified
difficulty metrics described in the Methods section, we trained
new NeSIG generation models to extend the original train and test
sets. Then we measured the performance of the different NeSIG
trained models on these problems sets. With the newly trained
NeSIG models we saved 500 instances each, applied the 80-20
split on them and extended the original problem sets respectively.
This resulted in the extended problem sets being half old instances
and half new instances.

To see whether the performance of the trained solver improved
using the new training data, we evaluated the newly trained
models on the extended NeSIG generated test set, as well as the
external test sets used before. In Table 2 you can see the average
performance of the last 10 training epochs of the CPDDL policies.
Similarly to the previous experiments, the numbers indicate the
percentage of problems that the policy was able to solve. Due
to limited time and resources, we can only present results on the
Miconic domain.

5.2.2 Results

First of all, we tested how is the performance of the original
NeSIG trained CPDDL model on this extended test set, and the
performance of the model degraded, as before it was able to solve
all problems that came from NeSIG. This is not suprising, as the
modified version of NeSIG was designed to create problems that
this specific model cannot solve. Already during the monitoring
of the NeSIG training we could observe that the Optimality Gap
difficulty metric resulted in more unsolvable problems, meaning
that some of the newly added problems in case of the Multi Policy
reward are still regular problems for the CPDDL model. Despite
this, we believe that longer training for the NeSIG generator with
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Original NeSIG test set NeSIG extended test set PDDL-generators test set

Original NeSIG training
99% 92% (multi) 13%

54% (opt)

Multi Policy Consensus training 100% 98% (multi) 15%

Optimality Gap training 100% 78% (opt) 12%

Table 2: Performance of CPDDL policies after one iteration on the Miconic domain

the Multi Policy function would have eventually yielded similarly
good results as the Optimality Gap.

As it can be seen on the results, there was no significant increase
in performance of the policies on the external test sets. In case
of the Multi Policy based reward, there is a slight increase, this
might be related to the fact that this training set was containing
less very hard problems, which prevented the model from getting
stuck too much with hard problems.

Finally, while the original NeSIG trained policies achieve almost
perfect scores on their own NeSIG test sets in our first experi-
ments, both the Multi Policy and the Optimality Gap models are
performing worse on the test set of their own generators’. Despite
this, they both perform perfectly on the original simple NeSIG
test sets, and outperform the original NeSIG model when it comes
to these broader and harder updated test sets. On Figure 4 this
improvement in problem solving capability can be seen, on the
respective datasets of each modified difficulty metric. Overall this
still shows some improvement in the capabilities of these models
compared to the original, confirming that with this way of instance
generation the NeSIG instance sets can be improved.

Figure 4: Performance of the policies trained on the original
and extended NeSIG problem sets - The extended models were
tested on their own test sets respectively

6 Related works

Beyond our approach, there are different takes on improving
policies, that utilize the information about the weaknesses of a
generated training set, and improve the instance generator model.
In most cases, this feedback to the generator model is done
manually by humans by identifying blind spots of the system.
However, more efficient methods have emerged in the past years
that can offer automatization, or shed light on issues in the policies
that humans could not identify. These solutions are relevant to
our work both as motivation to create a similar system, but they
can also be good inspiration for future work.

6.1 Curriculum learning

Curriculum learning by Narvekar et al. (2020) [9] is a method
where the training data fed into the learner progressively gets
harder, aligned with the capabilities of the model. This ensures
that the model we are training keeps seeing problems that are
hard to solve, but it is trying to keep the problems within the
capabilities of the model in a controlled fashion. Having such a
well adjusted training set can help keeping the training stable and
it can prevent overfitting by constantly increasing difficulty outside
of the learners current comfort zone.

There are three main topics within curriculum learning that
Narvekar mentions. The first and least researched is the instance
generation, more precisely the control over the difficulty, diversity
and solvability of generated problems. This is the most relevant
for our research, as Nesig could potentially be used in a curriculum
learning setup, and this method could also be beneficial in the
implementation of an automated feedback loop between Nesig
and the learner it is generating problems for, similarly to a GAN
architecture. There are other related studies that have more focus
on the generation of problems, Justesen et al. (2018) [7] explores
procedural level generation, applying a feedback loop that allows
a dynamic difficulty control based on the agent’s performance.
Florensa et al. (2017) [5] uses reverse curriculum generation,
increasing the difficulty by setting the initial state further and
further away from the goal step by step.

The other two main topics within curriculum learning are se-
quencing and knowledge transfer. Sequencing ensures that the
problems are sorted by difficulty in a way that it results in the
best training. Knowledge transfer is the problem of how learning
from one task can help solving another. While these aspects could
potentially be interesting to investigate when building such an
automated system, they are less relevant for our work.

6.2 Policy debugging

Policy debugging is a systematic evaluation of learned policies, to
identify blind spots and gaps in the capabilities of the policy, that
lead to poor performance. Steinmet et. al (2022) [11] investigates
this approach on action-policy testing, where the test states for
the policy are generated through fuzzing search, then the bugs are
confirmed through oracles. A bug in this context means a state
where the the current policy performs suboptimally, either not
finding the cheapest plan (quantitative bug) or not finding the
goal while possible (qualitative bug). The generation of test cases
to reveal the bugs is done by fuzzing, performing random walks
from states that are included in the original plan of the solver.
This walk can be biased towards low-quality policy decisions or
unusual states, testing the performance of the policy starting from
states it would not reach by itself.

Once the set of test states are created, oracles are used to check
whether the state is a bug and reveal a weakness in the policy.
There are several types of oracles, optimized for different kind of
bugs, depending on what is the optimal plan we are aiming for.
They can optimize for the lowest cost plan, look ahead to see
whether better outcomes are reachable, or just simply considering
not reaching the goal a bug. If the oracle determines that the
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policy performs suboptimally, that reveals a weakness in the policy,
and this information can be utilized for the further training of the
policy, or at the creation of training sets for the training of a new
policy.

This is where the method of policy debugging becomes relevant
for our work with NeSIG, as this approach could potentially be
used for revealing the blind spots of policies trained on NeSIG
generated instances. This information can be valuable in making
NeSIG better at generating instances that are useful for training.

6.3 Autoscale

Autoscale [12] is an automated framework for generating bench-
mark sets in classical planning. Given a planning domain and
its instance generator, Autoscale selects sequences of parameter
configurations to produce instances with smoothly scaled difficulty,
ensuring the resulting benchmark covers easy, medium, and hard
problems while minimizing bias toward specific planners. Unlike
NeSIG - which generates individual instances - Autoscale focuses
on curating sets of instances that collectively enable robust planner
evaluation.
This approach complements our work with NeSIG and CPDDL.
While our current iterative loop generates instances targeting pol-
icy weaknesses, Autoscale could also be a good fit at generating
instances covering a full difficulty spectrum to ensure policies gen-
eralize broadly. Future work could integrate NeSIG as Autoscale’s
instance generator, using CPDDL-trained policies as planners.
Such integration could further mitigate overfitting and improve
generalization in policy learning.

7 Discussion

7.1 Discussion

The results indicate that integrating CPDDL feedback into NeSIG’s
instance-generation loop effectively produces training sets rich in
problems exposing CPDDL’s weaknesses. While the original NeSIG
generator created instances that CPDDL solved easily, the modified
approach shifted focus to instances where CPDDL either fails or
returns suboptimal plans. The training sets generated by our
method contained a higher concentration of difficult instances,
demonstrating that we successfully crafted a “better” training set
tailored to CPDDL’s blind spots.

However, when evaluating the resulting CPDDL policies on the
external test set, performance did not consistently surpass the
baseline. One contributing factor may be that CPDDL training
was halted before full convergence due to limited computational
resources. Therefore, it is possible that given additional time or
hardware, the model could have learned a better policy from the
instances we generated. This is especially true for the Multi-Policy
based training, where the final set did not contain as many hard
instances as the Optimality Gap training set did. This however
might also result in more optimal training, as we did not investigate
the ideal concentration of hard instances in a training set.

Each of the difficulty metric had distinct benefits: pretraining on
Fast-Downward expansions accelerated the generation of nontrivial
instances, multi-policy consensus highlighted shared failures across
CPDDL policies, while not being affected by optimality, and the
optimality gap also emphasized instances on which the policy
creates a suboptimal plan, however neither metric alone guaranteed
broad improvements.
Despite the test results do not indicate significant increase in

performance on external test set, the increase in difficulty and
diversity among the generated instances is clear. The problem
solving capabilities of the new generation of CPDDL policies

increased compared to the original, and this could possibly further
increase with several iterations. This, however, would also require
surpassing certain limits of the learning capabilities of CPDDL, by
increased computational resources or using different parameters.
We came to this conclusion after examining the training logs of
CPDDL, as it showed the learning difficulties of the model over
the harder training set.

7.2 Future work

A natural next step is to validate the framework across additional
domains (such as Logistics or Satellite) to determine whether simi-
lar patterns emerge. New domains with more complex interactions
might also reveal types of blind spots not captured by our current
metrics, motivating enhanced difficulty functions.

It is also essential to assess whether CPDDL itself is a limiting
factor. Repeating the iterative instance-generation process with
alternative learners would clarify whether the lack of performance
gain stem from the data or is it is a limitation of CPDDL.

Another promising direction is a two-stage training process
combining multi-policy consensus and optimality gap. Starting
with multi-policy consensus could help in training a policy that
solves nearly every instance (though not optimally). Afterwards
switching to optimality gap would encourage the generation of
problems that push the policy toward optimal plans. Exploring
different approaches for these transitions could reveal how to
balance discovering new edge cases with refining solution quality.

Finally, in our method we kept NeSIG’s diversity reward un-
touched, but we might also have some opportunities for improve-
ments by revisiting how the diversity reward gets calculated. By
guiding NeSIG to generate a wide range of instances in addition
to solver-hard instances, we could reduce overfitting while still
addressing CPDDL’s specific weaknesses.

In summary, although our method clearly produces more infor-
mative training sets by targeting CPDDL’s weak spots, converting
those sets into consistently stronger policies may require addressing
both computational constraints and learner bottlenecks, exploring
new domains, and refining difficulty metrics.

8 Conclusion

This work has investigated the efficiency of automatic, domain-
independent instance generation for training generalized planning
policies, focusing on the Neuro-Symbolic Instance Generator (Ne-
SIG) and its interaction with CPDDL’s Action Schema Networks
(ASNets). Our first set of experiments demonstrated that, al-
though NeSIG-generated problems are valid, diverse, and chal-
lenging when evaluated against Fast-Downward, they have limiti-
ations when used as a training set for CPDDL policies, yielding
near-perfect performance on in-distribution instances but poor
generalization to externally generated benchmarks. By analyzing
this shortcoming, we identified that NeSIG’s original difficulty
metric (based solely on Fast-Downward’s node expansions) does
not mean instances will also be difficult for learning algorithms,
and make a good training set.

To address this limitation, we introduced two alternative diffi-
culty metrics - Optimality Gap and Multi-Policy Consensus - that
explicitly target instances where existing CPDDL policies either
fail or produce suboptimal plans. Integrating these metrics into
NeSIG’s reward function resulted in progressively richer training
sets containing instances that are harder for CPDDL to solve. As
a consequence, the modified generator produced problem distribu-
tions that challenged CPDDL, and found it’s weak points more
effectively. Although our evaluation on the Miconic domain did not
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show a significant improvement on external test sets after a single
feedback iteration - likely constrained by computational resources
or by CPDDL’s ability to generalize well for a domain - it did reveal
that the policies trained on difficulty-guided NeSIG data exhibit
higher robustness on more challenging in-distribution sets. This
suggests that continued iterations of the feedback loop, coupled
with longer training schedules or alternative policy learners, could
yield policies with superior generalization properties.
Overall this work has two main contributions. First, we have

provided a quantitative assessment of NeSIG’s baseline utility for
policy learning, identifying clear gaps between planner-specific
difficulty and learner-specific generalization. Second, we have
demonstrated that augmenting NeSIG’s reward structure with
learner-specific difficulty metrics can steer instance generation
toward problems that more directly address a policy’s weaknesses.
While further work is necessary to confirm these findings across
additional domains and with different learners, our results suggest
that using a feedback loop with better difficulty metrics can be
a useful way to generate better training sets that help planning
policies improve in more meaningful and general ways.
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