
Among us
- Detecting spoofed audio samples in a multi-party conversation -

Project Report

Vigneshwar Anandhamurugan

Aalborg University
Cyber Security

Cyber Security
Aalborg University

http://www.aau.dk

Title:
Among us - Detecting spoofed audio sam-
ples in a multi-party conversation

Theme:
Scientific Theme

Project Period:
Fall Semester 2025

Project Group:
1017

Participant(s):
Vigneshwar Anandhamurugan

Supervisor(s):
Ashutosh Dhar Dwivedi
Hannes Künstner

Page Numbers: 42

Date of Completion:
June 3, 2025

Abstract:

As voice technologies become more preva-
lent, it becomes vital to improve spoofing
detection algorithms especially when mul-
tiple speakers are involved. This thesis
presents a novel pipeline combining speech
separation with spoof detection to address
the challenge of identifying spoofed audio
samples in overlapped speech. The system
uses a SOTA spoof detection model which
achieves an EER of 2% on ASVspoof 2019
dataset. However, the EER drops to 24%
when tested on a custom- generated mixed
audio dataset, as a result of modifications
of the audio artifacts by the speech separa-
tion process. The system when trained on
the custom dataset saw an increase in EER
to 22% highlighting the importance of do-
main adaptation for spoof detection in com-
plex acoustic environments and provides a
foundation for future research in real-world
scenarios.

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement with

the author.

http://www.aau.dk

Contents

1 Introduction 1
1.1 Problem Statement . 2

2 Background 3
2.1 Methods of generation of spoofed audio . 3

2.1.1 Replay Attacks . 3
2.1.2 Speech Synthesis . 3
2.1.3 Adversarial Attacks . 4

2.2 Evaluation metrics . 5
2.3 Audio Spoof Detection . 6

2.3.1 Raw Audio Input . 6
2.3.2 Feature Extractor . 6
2.3.3 Classifier . 7
2.3.4 Prediction . 8

2.4 Speech Separation . 8
2.5 Transfer Learning . 10

3 Related Works 12

4 Methodology 14
4.1 Custom Dataset Creation . 14
4.2 Evaluation of SOTA spoof detection model on ASVspoof 2019 16
4.3 Evaluation of SOTA spoof detection model on the custom dataset 18
4.4 Training of the Pipeline . 20
4.5 Evaluation of the Final Trained Pipeline . 24
4.6 Ethical Considerations . 26

5 Results 27
5.1 Testing SOTA on the original dataset . 27
5.2 Evaluation of Pre-trained Pipeline . 28
5.3 Train pipeline . 30
5.4 Trained pipeline . 31

ii

Contents iii

6 Discussion 34
6.1 Evaluation of SOTA spoof detection model on ASVspoof 2019 vs Custom

dataset . 34
6.2 Evaluation of Pre-trained vs Trained pipeline 35
6.3 Limitations . 36
6.4 Future Works . 37

6.4.1 Fine-tuning the Speech Separation model 37
6.4.2 Increase in speakers and Integration of Speaker diarization 37
6.4.3 Dataset Generation . 38
6.4.4 Latency of the pipeline . 38

7 Conclusion 39

Bibliography 40

A Appendix a

Preface

Aalborg University, 2025

Vigneshwar Anandhamurugan
vanand23@student.aau.dk

iv

Abbreviations

A list of the abbreviations used in this report, sorted in alphabetical order:

Abbreviation Definition
AI Artificial Intelligence

AUC Area Under the Curve
AUROC Area Under the Receiver Operating Characteristic curve

BB Bonafide-Bonafide
CNN Convolutional Neural Network

CQCC Constant Q Cepstral Coefficients
CPU Central Processing Unit
CSV Comma-Separated Values

CUDA Compute Unified Device Architecture
DNN Deep Neural Network
EER Equal Error Rate
FBI Federal Bureau of Investigation

GAN Generative Adversarial Network
GDPR General Data Protection Regulation
GPU Graphics Processing Unit
kHz Kilohertz

LCNN Light Convolutional Neural Network
LR Learning Rate

MFCC Mel Frequency Cepstral Coefficients
ML Machine Learning

RNN Recurrent Neural Network
SB Spoof-Bonfide

SOTA State Of The Art
SS Spoof-Spoof

STFT Short-Time Fourier Transform
US United States

VSDC Voice Spoofing Detection Corpus (audio dataset)
ZCR Zero-Crossing Rate

v

Chapter 1

Introduction

Audio Deepfakes are AI generated or edited/synthesized to create fake audio that seems
real [1]. They often use sophisticated machine learning algorithms such as deep neural net-
works (DNNs), generative adversarial networks (GANs), convolutional neural networks
(CNNs), and recurrent neural networks (RNNs)[2]. Despite the different architectures of
these machine learning algorithms, they primarily process audio clips to discern unique
patterns in a person’s voice such as vocabulary, accent, and speech patterns, which are
then used to create audio clips that resemble the original voice note.

Audio deepfakes have become a growing concern with the recent boom in AI and AI
associated deepfake generating techniques. In the United States, FBI has issued warnings
about threat actors using sophisticated AI techniques to mimic the voices of senior US
officials. These scammers use artificially crafted voice notes to deceive individuals, into
providing personally identifiable information, credentials, and/or access to personal ac-
counts. The impersonations appear highly realistic, making it difficult to discern the fraud
[3]. On the other hand, an Argentinian woman was deceived by scammers impersonating
George Clooney. The victim was convinced that she was in contact with the "real" actor
for over six weeks, eventually transferred approximately £10,000 to the fraudsters. [4].

Despite promising strides in the development of techniques that identify spoofed audio
samples, most of the work in this realm has been conducted with static audio clips. Such
datasets are compromised of audio clips that last anywhere between 2-10 seconds, with
little or no attention given to variations in acoustic background and recording conditions.
Furthermore, these clips usually belong to a single person. [5] tests the reproducibility of
such models in a real-time scenario, such as a Teams group call, and reported that these
models failed to accurately classify intermittently induced spoofed audio streams. This
report addresses the issue by identifying the possible cause of this drop in performance
and proposes possible solutions to address this research gap. This report is organized in
the following manner: Background, Related work, Methodology, Results, Discussion and

1

1.1. Problem Statement 2

Conclusion.

1.1 Problem Statement

With the increasing sophistication of deepfake audio generation, detecting spoofed speech
has become a critical challenge, particularly in multiparty conversations where multiple
speakers interact dynamically. While research in the domain of audio spoof detection is
primarily based on efficiently identifying individual audio clips as spoofed or not, this
project will delve into scenarios where multiple speakers are involved. This system pri-
marily aims to deal with observations reported by [5], that traditional audio spoof detec-
tion algorithms struggle to accurately predict audio streams, as spoofed or bonafide, in a
multi-party environment. The system tries to determine the reason behind the drop in per-
formance of spoof detection algorithms and possible solutions and/or strategies to help
improve the detection accuracy. The proposed system will analyze multiparty conversa-
tions to identify if manipulated speech forms are present in a conversation, contributing
to advances in the domain of audio deepfake detection.

Chapter 2

Background

This section explains the different basic concepts associated, based on which this system
is built, and concepts that align closely with the system.

2.1 Methods of generation of spoofed audio

Spoofed audio refers to any kind of manipulated or fabricated speech designed to deceive
a target victim or an automated system. Machine Learning algorithms could also be used
to generate spoofed audio clips.

2.1.1 Replay Attacks

Replay attacks involve recording a person’s voice, which is later used to impersonate the
said person to deceive the target victim. Detection of these systems prove quite difficult
as these audio clips do not undergo synthesis or modification, and thereby the underly-
ing characteristics of the audio clips are maintained. Autonomous audio spoof detection
systems rely on these modified characteristics to differentiate spoofed audio samples from
bonafide samples. These characteristics will be discussed in later sections.

Replay attacks are of two different types: single hop and multi hop attacks. The single
hop replay attack uses a direct playback of a recorded audio clip while a multi-hop replays
audio through multiple devices. The characteristics of the audio clip degrade over several
hops and, therefore, become more difficult to detect. ASVspoof 2019[6] compromises of
single-hop audio clips and VSDC[7] proposes multi-hop replay attacks.

2.1.2 Speech Synthesis

Speech thesis technique generates artificial speech from text inputs, with the goal of pro-
ducing realistic sounding audio that mimics a target speaker’s voice. Generating speech

3

2.1. Methods of generation of spoofed audio 4

from text is referred to as Text-to-speech synthesis while modifying the voice’s character-
istics to resemble an attacker is called voice conversion. To accurately replicate the target
speaker, the underlying text-to-speech ML model has to be trained on the person’s speech
samples to capture vocal nuances. This enables the ML model to accurately adjust the
pitch, tone, speaking rate, and accent of the synthesized audio clip.

This technique often uses models such as Tacotron, which uses a Griffin-Lim algorithm
over an RNN to generate raw waveforms, and a Multi-SpectroGAN that uses a conditional
discriminator to eliminate reconstruction loss between ground truth and the generated
mel-spectogram [8]. Audio clips that have undergone similar syntheses form part of the [6]
data set. Most spoof detection algorithms work on similar datasets to hone their prediction
capabilities, to better ascertain a given input audio as either spoof or bonafide.

Figure 2.1: Common Spoofing Techniques [9]

2.1.3 Adversarial Attacks

To carry out such attacks, attackers introduce subtle changes to an audio waveform that
are imperceptible to deceive human listeners. These modifications can significantly alter
the output of deep learning detection models [10]. Attackers could have varying levels
of knowledge about the underlying spoof detection model. If the attack has complete
knowledge of the underlying ML algorithm, then the attack is termed a white-box attack.
If the attacker has little knowledge, then it is a gray-box attack, while if the attacker has
zero knowledge, then the attack is called a black-box attack [11].

2.2. Evaluation metrics 5

Figure 2.2: Adversarial Attack [11]

Apart from differentiating adversarial attacks on the basis of the knowledge gathered
about the underlying ML algorithm, they could also be classified in terms of techniques
used:

• Signal Processing: Attackers could manipulate the different characteristics of an au-
dio waveform such as the frequency spectrum or the phase of the audio signal. Time
stretching and resampling can also be used to carry out this attack.

• Generative Adversarial Networks (GAN) attacks: in this attack, an audio genera-
tor uses a discriminator to align the spoofed sample more in line with the genuine
sample [11]

2.2 Evaluation metrics

Evaluation metrics are standardized ways to assess how well an audio spoof detection al-
gorithm performs. They help assess the reliability and accuracy of the system in question.

Equal Error Rate (EER) is the most commonly used evaluation metric in the domain of
audio spoof detection. It represents a threshold where the value of the false rejection rate
and the value of false acceptance rate coincide. In this context, the false acceptance rate
represents the possibility of a spoof audio clip being classified as genuine. On the other
hand, false rejection rate is the possibility that a genuine audio clip is falsely classified as
spoofed. Spoof detection algorithms with a low EER perform better than their counter-
parts with a higher EER.

Accuracy signifies the percentage of audio samples correctly classified as being spoofed
or genuine. Although accuracy is a common indicator of an ML algorithms’ predictions, in
the realm of audio spoof detection, EER tends to be a little more important than accuracy.
This is the result of the datasets, used in the training of these algorithms, being heavily

2.3. Audio Spoof Detection 6

unbalanced.

F1-score also has a role to play in an audio spoof detection algorithms’ performance
evaluation. It is the harmonic mean of precision and recall and is useful when dealing with
datasets that are inherently biased, as it considers both the value of the false acceptance
rate as well as the value of the false rejection rate. The difference between F1-score and
EER is that the former has a fixed threshold, i.e. clear positive/negative labels assigned
to predictions, whereas the latter deals with a variable threshold and is therefore better
suited to deal with audio spoof detection.

Other commonly used evaluation metrics are precision and recall. Precision refers
to how often the model’s predictions of spoofed audio clips are actually spoofed. On
the other hand, recall refers to how often actual spoofed clips are correctly classified as
spoofed by audio spoof detection algorithms.

2.3 Audio Spoof Detection

As discussed above, Audio Spoof Detection is the process of classifying any given audio
clip as spoofed or bonafide based on the features extracted from the said audio clip. In
general, an audio spoof detection pipeline has four components, namely the Raw Audio
Input, a Feature Extractor, A Classifier, and the prediction.

2.3.1 Raw Audio Input

The pipeline starts with a raw audio input, which can either be authentic or spoofed
using techniques like text-to-speech, voice conversion or adversarial deepfake techniques
as discussed previously. This input could either be in the form of a waveform or a digital
audio file with extensions ’.flac’.

2.3.2 Feature Extractor

Raw audio is fed into a feature extractor, where it is transformed into a meaningful rep-
resentation that ML algorithms could utilize. These meaningful representations could be
in the form of hand-crafted features or learned features. The former are designed by
professionals based on established principles in audio signal processing and are usually
based on properties such as frequency and/or energy. The latter is automatically learned
by deep learning models, such as CNNs and Transformers, directly from the raw audio
input. These models tend to be self-supervised. Some common hand-crafted features
include:

1. Mel-Frequency Cepstral Coefficients (MFCC) - these help capture short-term fre-
quency and timbral characteristics of speech, which can highlight the differences

2.3. Audio Spoof Detection 7

between spoofed and genuine audio samples [12].

2. Constant Q Cepstral Coefficients (CQCC) - these provide a time-frequency break-
down with pitch based spacing, making them useful in differentiating subtle cues
that might reveal a spoofed artifact [12]

3. Spectrograms - Visual representations of the frequency spectrum over time, often
used as visual input to CNNs to detect patterns or anomalies [12]

2.3.3 Classifier

These features that have been extracted above are then passed to a classifier which at-
tempts to learn subtle differences between bonafide and spoofed audio samples. CNNs,
ResNet, and Transformers are some of the most popular classifier architectures..

Convolutional Neural Networks (CNNs) are deep learning models that are designed
to automatically learn spatial patterns in data. Although they were originally developed
for image processing, they are well suited for audio tasks as well. These systems use con-
volutional filters that slide over the input such as a spectrogram, with each filter learning
to detect specific patterns in the audio frequency-time space. While early layers capture
simple patterns, deeper layers learn more complex structures making these systems robust
to small variations and effective in extracting meaningful features from audio data [13].

Residual Network (ResNet) is a deep CNN architecture introduced by Microsoft that
uses ’skip connections’ to help train very deep networks. These connections allow the
network to pass information across layers without modifications efficiently dealing with
vanishing gradient problem. They have better feature extraction compared to CNNs, as
they have higher depth. They also have better accuracy compared to standard CNNs [14].

Transformers are deep learning models originally designed for sequence data, but are
now commonly used in audio tasks. They use a mechanism called self-attention to under-
stand how different parts of the input relate to each other, no matter how far apart they
are in the sequence. Unlike CNNs, transformers use layers of attention to evaluate the
importance of each segment, making them effective at long-range patterns and contextual
information in audio.

2.4. Speech Separation 8

Figure 2.3: Spoof Detection Pipeline [15]

2.3.4 Prediction

The classifier finally outputs a prediction i.e. if the raw audio input is either spoofed or
genuine. Typically, audio spoof detection is a binary classification problem. but could also
provide confidence scores associated with the prediction or segment-level decisions for an
in-depth analysis. This report presents audio spoof detection as a multi-class problem and
will be explained in detail in the later sections.

2.4 Speech Separation

Speech separation is the process of isolating individual speakers’ voices from a single au-
dio recording where multiple people are talking at the same time. This is often called the
’cocktail party problem’. The system receives a mixed audio signal containing overlapping
voices from two or more speakers. The system processes the input and aims to reconstruct
the original speech signals for each individual speaker, producing separate audio channels
for each.

Similar to Spoof Detection, the raw input undergoes pre-processing, where it is con-
verted into a suitable representation. Most often, raw input is converted into waveforms
or spectrograms. The former is a one-dimensional signal that shows how the air pressure
changes over time i.e. how loud the sound is at each moment. It is a plot between the
amplitude and time. The latter is a visual representation, as discussed above. The input
is processed using the Short-Time Fourier Transform(STFT). The raw input is sliced into
segments and each of these segments is subjected to STFT. It is a plot between time and
frequency [16].

2.4. Speech Separation 9

Figure 2.4: Spoof Detection Pipeline [16]

After the preprocessing is complete, the transformed input is fed into a feature ex-
tractor. In the case of transformed input being a spectrogram, the model learns to pick
up patterns in time-frequency segments, which often carry speaker-speaker artifacts. In
the case of transformed input being a waveform, the feature extractor works in a similar
fashion by breaking down the waveform into a set of blocks.

Once the features are extracted, the deep learning models try to figure out which parts

2.5. Transfer Learning 10

of the transformed input belong to which speaker. Some techniques used include

• Mask Estimation - the model learns to create a ’mask’ for each speaker. These masks
indicate which segments of the input belong to which speaker. Applying these masks
to the mixed audio allows the system to isolate individual speakers[17].

• Deep Clustering - the model projects time-frequency bins into an embedding space.
In this space, bins that belong to the same speaker are grouped together. A clus-
tering algorithm, then assigns each group to a specific speaker, thereby effectively
differentiating the individual voices[18].

• Encoder-Separator-Decoder Architecture - these models employ an encoder which
converts the raw waveform into a set of learnable segments. The separator mod-
ule assigns speaker-specific weights to these components, after which the decoder
reconstructs the waveform. This approach is commonly used in models such as
Conv-TasNet, where a feature extractor step is unnecessary, as the encoder acts as a
substitute within the larger separation architecture[18].

Unlike spoof detection models, speech separation models have a post-processing step.
In this step, the separated features or masked signals are converted back into clean audio
waveforms for each speaker. In the case of the use of spectrograms, the inverse STFT
function is used over the segments to reconstruct the audio signal. On the other hand, for
time-domain methods, the decoder reconstructs the waveform directly from the separated
segments[18].

2.5 Transfer Learning

Transfer learning, a machine learning technique in which a model, initially trained to deal
with a source task, is leveraged to deal with a target task. Traditionally, machine learning
algorithms are built for each specific application, which would ideally have large amounts
of associated data. They would also require substantial computational resources to deal
with the size of the dataset. When a situation arises where an ML model has to be trained
for a target task but lacks sufficient data or computational resources, Transfer Learning
proves useful. A general Transfer Learning pipeline includes 3 steps:

1. Pre-training - In this step, a model is trained on a large, either a general purpose or
a task-specific dataset. The model learns patterns and other parameters that could
be used to solve a generic task[16].

2. Knowledge Transfer - The learned parameters i.e. the weights, from the pre-trained
models are transferred to a new model designed for the target task[16].

3. Adaptation - The transferred model is either used as a feature extractor or fine-
tuned using a smaller, task-specific dataset. While the former involves using learned

2.5. Transfer Learning 11

Figure 2.5: Transfer Learning Usage[16]

representations as input for a new classifier or regressor, the latter allows some or all
of the model’s parameters to be fine-tuned to better fit the task at hand[16].

Transfer learning proves useful in scenarios where the availability of labeled data for
a target task is limited. This is because this technique makes use of existing knowledge
to reduce the time taken in training the model for the target task, and reduce the use
of computational resources. This technique has resulted in increased accuracy and gen-
eralization[19] especially in computer vision, natural language processing, and medical
imaging.

However, the effectiveness of this technique depends on the similarity between the
original and target tasks. If the domains are too disjoint, the transferred knowledge may
not be effective and can even reduce the performance of these models, commonly known
as negative transfer[20]. Despite these challenges, transfer learning remains a useful tool
for building useful ML pipelines with limited data resources.

Chapter 3

Related Works

This section compromises some of the most closely related scholarly articles and their find-
ings have been summarized.

In one study [5], Arjun Pankajaskhan built a software tool designed to identify deep-
fake audio during live conversations across different communication platforms. Their
approach tested ResNet and LCNN models on the ASVspoof 2019 dataset. Although the
models performed well in static or pre-recorded environments, the tool struggled when
dealing with the unpredictability of live, real-time calls like those on Microsoft Teams. In
addition, they had voluntarily circumvented the ’cocktail party problem’ by allotting time
frames for each individual speaker in the call. The research highlights the gap between
the performance of these models in static environments and in real-time dynamic environ-
ments.

Gustav A.P. Bonvang’s work[16], focused on applying transfer learning with ResNet50
to detect audio deepfakes in real-world conditions. The model was trained on Mel spec-
trograms, derived from the In-The-Wild dataset. His results showed impressive gains,
achieving almost 97% accuracy and 95% f1 score, outperforming non-transfer baselines
by 22% accuracy and 44% f1 score respectively. The study illustrates how transfer learn-
ing can cut down training costs and data needs while maintaining strong detection results.

Govind Mittal et al.[21], developed an AI-powered verification system named PITCH,
which uses a set of 20 audio-based challenges designed to test speaker authenticity. These
include changes in tonal shifts, complexity of spoken phrases, and other variations. The
system was tested on a massive dataset of deepfake audio and achieved an AUROC of
89% with machine-only detection, while human evaluators scored 72%. Combining hu-
man intuition with machine pre=screening increased the overall accuracy to 85%. The
results support the idea that the combination of machine analysis with human judgment
can strengthen voice authentication systems in practical scenarios.

12

13

A separate study [22], demonstrated how detectors can be manipulated using adversar-
ial examples generated by GANs. These attacks were able to reduce the detection accuracy
in both the digital and physical domains. The findings raise concerns about model vulner-
ability and call for strategies like adversarial training and input preprocessing(transformed
representations are less sensitive to subtle, malicious changes) to defend against increas-
ingly sophisticated spoofing methods.

He and Whitehill proposed a thorough survey of recent progress in end-to-end models
for multi-speaker automatic speech recognition using single channel (monaural) audio[18].
The survey categorizes models into single-input-single-output and single-input-multiple-
output paradigms, examining design trade-offs and recent architectural improvements.
While the former deals better with an unknown number of speakers, it requires advanced
decoding for complex overlaps, the latter requires fixed number of speakers, and they
tend to work better under controlled settings. The study also emphasizes the differences
between real-world datasets, such as LibriCSS, and simulated datasets, such as LibriMix.
The former has better ecological validity but is more difficult to annotate accurately, while
the latter enables better large-scale systematic experimentation but does not capture real-
world scenarios accurately. The study highlights key challenges in this domain, such
as overlapping speech, limited annotated data, and the difficulty of attributing words to
individual speakers without special cues.

Chapter 4

Methodology

This Section provides a detailed explanation on how the system was formulated and
adapted to the domain of identifying spoofed audio samples in a multi-party conversation.

4.1 Custom Dataset Creation

This project aims to develop a pipeline that is capable of identifying spoofed audio sources,
in a multi-party environment which is often referred to as a cocktail party problem. As
discussed in Section 2, the cocktail party problem refers to the challenge of distinguish-
ing and focusing on individual audio sources, potentially spoofed in this context, where
multiple speakers are present simultaneously. The primary challenge is the absence of
relevant data. While existing resources such as the ASVspoof 2019 dataset consist of a mix
of bonafide and spoofed audio samples, they are primarily designed for single-speaker
verification tasks. They do not host audio samples from real or simulated multi-party
conversations, where overlapping speech and/or interference is present. To address this
limitation, this project proposes the creation of a novel dataset in an attempt to replicate
the audio characteristics of a multi-party environment. This custom generated dataset in-
cludes mixtures of bonafide samples, spoofed samples, and an overlap of bonafide and
spoofed audio samples.

To create a dataset of overlapping audio samples with desired characteristics for this
project, a custom novel mixing process was implemented to generate 30,000 unique mixed
files. The ASVspoof 2019 dataset was parsed, and the spoofed and bonafide audio samples
were segregated into two arrays. The process of mixing begins by randomly selecting files
which are then subsequently passed to the ’overlap_audio’ function. To make the selec-
tion truly random, the cryptographically secure Python’s ’secrets’ module was used. This
ensures the dataset isn’t biased and is also resistant to patterns that might otherwise skew
the learning efficiency.

14

4.1. Custom Dataset Creation 15

The ’overlap_audio’ function takes two input audio files- each labeled as either spoof
or bonafide and generates a single output audio file. The overlapping technique induces
realistic variations that could ideally be expected to take place in the presence of multiple
speakers. The goal is to create a training dataset that better reflects the complexity of real-
world multi-party conversational scenarios. The function performs the following steps:

1. During the pre-processing step, the audio files are loaded using the librosa package
from python, preserving its original sampling rate. While loading, the audio clips
are subjected to a check to ensure that the audio files use the same sampling rate, as
mismatched rates can lead to distortion or misalignment during mixing.

2. A random delay is introduced to mimic the natural variability of the speaker’s tim-
ings in audio calls. Here, one of the audio signals is randomly delayed by up to one
second. This is done by padding the chosen audio with silence, introducing a forced
delay.

3. Audio samples are then subject to length trimming, where the audio signals are
trimmed to the same duration, to avoid mismatches when they are added together.
The length of the shortened audio sample is chosen as the length of the resultant
mixed audio sample.

4. Following this a gain adjustment is carried out where, each audio sample is scaled
by a random factor between 0.7 and 1.3 to emulate variations in loudness between
speakers. This difference in loudness could be the result of a difference in qual-
ity of microphone used, distance from their respective microphones, and the vocal
intensity of the speakers.

5. The two audio samples are then mixed to produce a transformed waveform. This
signal is also normalized to prevent clipping thereby maintaining consistent output
levels.

6. Finally the output is labeled. A function creates a label for each resultant audio
waveform. If the input audio samples are both bonafide, the output audio waveform
is given a ’BB’ label. Similarly, if both the audio samples are spoofed, the resultant
audio waveform is given the ’SS’ label. If a mixture of two is present, the output
audio waveform is given a ’SB’ label regardless of how the audios are mixed.

7. The resultant mixed audio is saved locally in the flac format, similar to the ASVspoof
2019 dataset, with a filename that includes the filenames of the individual audio
samples.

The function outputs a mixed audio sample, along with metadata such as the filenames
of the individual audio clips, their individual true labels, and the label of the combined
audio waveform. This information is logged into a dictionary which is then used to create
a single metadata file hosting all the information about all the audio samples generated.

4.2. Evaluation of SOTA spoof detection model on ASVspoof 2019 16

4.2 Evaluation of SOTA spoof detection model on ASVspoof 2019

Before constructing a pipeline and running inference on our custom dataset, the state-of-
the-art spoof detection model is tested on the original dataset. This is done to facilitate
comparison between the results of this model on the individual audio samples and the
audio samples that are a result of the speech separation process.

To perform spoof detection, we use a pre-trained WAVLM-based sequence classification
model, fine-tuned on the ASVspoof 2019 dataset. The model, ’abhishtagatya/wavlm-base-
960h-asv19-deepfake,’ is loaded from the Hugging Face repository from the Hugging Face
Transformers framework. The following components have been loaded:

• AutoConfig -this component loads the correct configuration class for a given pre-
trained model. It contains information such as the number of transformer layers
present, number of attention heads present, type and size of the convolutional feature
encoder used, number of output classes, pooling method for aggregating sequence
outputs, and dropout rates.

• Wav2Vec2FeatureExtractor - this component is used to convert raw audio waveforms
into input features.

• WavLMForSequenceClassification - the component is the classification model itself.
This component predicts whether the input audio sample is bonafide or if it has been
spoofed.

1 config = AutoConfig.from_pretrained("abhishtagatya/wavlm -base -960h-asv19 -
deepfake")

2 feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("abhishtagatya/
wavlm -base -960h-asv19 -deepfake")

3 spoof_model = WavLMForSequenceClassification.from_pretrained("abhishtagatya/
wavlm -base -960h-asv19 -deepfake", config=config).to(device)

Listing 4.1: Loading the spoof detection model

A metadata file pertaining to the evaluation dataset of the ASVspoof 2019 dataset is
parsed. For each audio file name that is parsed, an audio path, for the audio associated
audio file, is constructed by appending ’.flac’ to the file name. This path is subsequently
fed to the predict spoof function, which utilizes the in-built load_audio function to load
the audio sample. The loaded raw waveform is passed to a SepFormer model, which
separates the waveform into a two dimensional tensor which is split and stored into two
individual arrays. Each of these arrays is passed to the ’Wav2vec2FeatureExtractor’ essen-
tially converting the audio signal into a transformed input which the model can process.
The ’return_tensors="pt"’ attribute is used to ensure that the output is a PyTorch tensor,
while the ’Padding=True’ attribute is used to handle variable length of the inputs by zero
padding them. Finally, the ’torch.no_grad()’ function is utilized to disable the gradient

4.2. Evaluation of SOTA spoof detection model on ASVspoof 2019 17

tracking, ultimately leading to an increase in the efficiency of the inference process.

1 # Part 2: Read Metadata from a .txt file
2

3 def load_metadata(metadata_file):
4 metadata = []
5 count = 0
6 metadata_count = {}
7 with open(metadata_file , "r") as f:
8 for line in f:
9 count += 1

10 parts = line.strip().split(’ ’)
11 filename , _, _, _, _, label = parts
12 metadata.append ((filename , label))
13 if label not in metadata_count:
14 metadata_count[label] = 1
15 else:
16 metadata_count[label] += 1
17

18 print(count , metadata_count)
19 return metadata
20

21 metadata = load_metadata(metadata_file)
22 print(metadata [:5]) # Display first 5 entries

Listing 4.2: Loading of custom metadata file

1 def predict_spoof(audio_path):
2 audio = load_audio(audio_path)
3 inputs = feature_extractor(audio , sampling_rate =16000 , return_tensors="pt

", padding=True)
4 with torch.no_grad ():
5 logits = spoof_model (** inputs.to(spoof_model.device)).logits
6 probs = torch.softmax(logits , dim=-1).cpu().numpy ()[0]
7 predicted_label = "spoof" if probs [1] > probs [0] else "bonafide"
8 return predicted_label , probs

Listing 4.3: Prediction function for spoof detection model

The model outputs raw logits for each class, which are subsequently converted into prob-
abilities using the softmax function. Finally, the final labels are assigned based on which
class has the higher probability. If the probabilities are equal, then the audio sample is
classified as bonafide. Finally, the performance metrics accuracy, AUC score and EER of
the inference is calculated for comparison purposes.

4.3. Evaluation of SOTA spoof detection model on the custom dataset 18

4.3 Evaluation of SOTA spoof detection model on the custom
dataset

Following the construction of the overlapped audio samples, simulating the cocktail party
problem, a testing pipeline is designed, combining a speech separation model and a spoof
detection model to evaluate the feasibility of identifying spoofed audio sources in complex
audio environments.

The system initally checks for GPU availability using Pytorch and assigns the compu-
tation to a CUDA-enabled GPU, for faster inference and better scalability when processing
large batches of audio.

1 device = torch.device("cuda" if torch.cuda.is_available () else "cpu")

Listing 4.4: Choosing CUDA-enabled GPU

To perform spoof detection, ’abhishtagatya/wavlm-base-960h-asv19-deepfake,’ is loaded
from the Hugging Face repository from the Hugging Face Transformers framework. The
model has been loaded similar to the previous step. To handle overlapping speech, a state-
of-the-art Speech separation model called the Sepformer has been incorporated from the
Speech brain toolkit. This model is pre-trained on the WSJ0-2Mix dataset and has proven
to provide high quality separation.

1 from speechbrain.pretrained import SepformerSeparation
2 model1 = SepformerSeparation.from_hparams("speechbrain/sepformer -wsj02mix")

Listing 4.5: Loading Speech Separation Model

The pipeline execution starts with the loading of the metadata files created in associ-
ation with the mixed audio clips generation. The execution of the pipeline starts with a
function iterating over the entire metadata file. The metadata file contains the mixed audio
files’ names and their associated true labels. The loop is set to 10,000 iterations as a result
of a lack of memory and computational resources.

Each mixed audio sample is then passed through the previously loaded sepformer
model which separates the mixtures into two speaker channels. The output is a tensor
containing 2 clean speech waveforms. These waveforms are subsequently moved to the
CPU, where they are individually resampled from 8Khz to 16Khz as the spoof detection
model expects a audio sample at 16Khz. Each resampled audio waveform is then fed to
a ’predict spoof’ function, similar to the function described above, which outputs a label
prediction i.e. spoof or bonafide and a probability score for each class. The individual
predicted labels are converted into a string to resemble the true labels of the mixed au-
dio clips. In other words, the output of the individual audio waveforms is combined to
replicate the ’SS’, ’BB’, and ’SB’ labels.

4.3. Evaluation of SOTA spoof detection model on the custom dataset 19

Figure 4.1: Architecture of the developed System

4.4. Training of the Pipeline 20

Since the order of the speakers in separation is not guaranteed, the pipeline introduces
a permutation-invariant comparison step:

• it calculates the total prediction error using both the original and flipped order of
speaker scores

• the permutataion with the lower error is chosen for the evaluation. This ensures a
fair assessment regardless of which speaker was assigned to which output channel
by the SepFormer.

This was performed to compare the predictions of the individual waveforms with
their true values and not just the predictions of the combined audio sample. For effi-
cient memory management and prevention of GPU overflow, temporary tensors and the
CUDA memory cache are periodically deleted. At the end of the pipeline, the perfor-
mance characteristics of the classification of mixed audio samples are calculated as well
as the performance characteristics of spoof detection of individual audio waveforms post-
speech separation. These evaluation metrics are calculated using the accuracy_score, pre-
cision_score, recall_score, and f1_score from the ’sklearn.metrics’ package. The simplified
architecture of the system developed has been illustrated in Figure 4.1.

4.4 Training of the Pipeline

In this section, the process of training the pipeline constructed in the previous section is
discussed in detail. In the dataset creation section, it has been mentioned that only the
evaluation dataset of the ASVspoof 2019 was used to create a custom evaluation dataset.
For the purpose of training the pipeline, a custom development dataset and a custom
training dataset were created from Development dataset and Training dataset from the
ASVspoof 2019 dataset respectively. 30,000 mixed audio samples were created as part of
the custom training dataset while 20,000 mixed audio samples were created as part of the
custom training dataset. While the custom development training data was used as part of
the validation part of an epoch, the custom training data was used to initially fine-tune the
spoof detection model.

Following the dataset creation, the state-of-the-art spoof detection model and an equally
competent speech separation model are used, similar to the process used in the above sec-
tion. To mimic the training of the original spoof detection model, training parameters are
used to train the spoof detection model as part of the pipeline. Here, the speech sepa-
ration model has been frozen and only the spoof detection model has been targeted for
fine-tuning, hence the use of the spoof model’s learning parameters. The speech separa-
tion model has been frozen in order to facilitate the training of the spoof detection model
when the other factors of the system are kept constant. This is to ensure that, the training
solely focuses on adapting the spoof detection model to the characteristics of the mixed

4.4. Training of the Pipeline 21

dataset, preventing potential degradation of separation quality.

The AdamW optimizer, a variant of Adam that decouples weight decay from the gra-
dient update has been used as it has consistently shown to improve the generalization
capabilities of transformer-based models. The learning rate, Batch size and gradient ac-
cumulation are used in line with the training parameters of the original spoof detection
model[23]. The parameters used are

• The learning rate is set to 1e-6 to prevent catastrophic forgetting and ensure gradual
adaptation during fine-tuning.

• Batch size is set 1 due to memory constraints from large model size and input length

• Gradient accumulation is set to 2 so that gradients are accumulated over 2 steps
before performing an optimizer step, to effectively simulate a larger batch size and
stable updates

• Learning rate Scheduler is set to linear, therefore the learning rate will decrease
linearly with increase in epoch number.

An epoch starts with the custom training data shuffled and sliced. Due to restrictions
in computational availabilities, only 50% of the training data is used i.e. 15,000 custom
training data is being used. The random seed of 42 is chosen for reproducibility reasons.
The metadata is shuffled using this randomness, to prevent the loop from training on the
same portion of the dataset, thereby eliminating redundant training. This increases the
generalization capabilities of the pipeline.

1 random.seed (42)
2 random.shuffle(metadata_train)
3 metadata_train_subset = metadata_train [:15000]

Listing 4.6: Shuffling metadata array

When an audio sample passes through a sepformer, it undergoes separation and a
resultant output with two isolated speakers is produced. The output is separated into
two individual variables with each undergoing a squeeze function to ensure that the di-
mensions of the tensor and the input requirements of the spoof detection function match.
Similar to the above section, the input waveform undergoes resampling and is converted
into input features using the pre-trained Wav2vec2 feature extractor. The transformed in-
put is fed to the spoof detection model with the true label (obtained from the metadata
file) and the output loss is computed. Gradients are accumulated over multiple steps to
simulate a large batch size, after which the following processes are carried out:

1. clipping of gradients to avoid exploding gradients.

4.4. Training of the Pipeline 22

2. modification of model weights by the optimizer

3. change in learning rate scheduler

4. resetting of gradients for the next batch

To prevent the system hosted on Google Colab from crashing, intermediate variables
are deleted after the processing of each individual audio clip and CUDA memory is ex-
plicitly cleared every 100 files.

After each epoch, the model is evaluated on a held-out development set to measure the
model’s generalization capability during training. Due to restrictions in the availability of
computational resources, a fixed-size subset of 10,000 audio samples is selected after the
custom development metadata array is shuffled. This is to ensure an unbiased evaluation.
Each audio file name in the metadata file is joined with an appropriate path that fetches
the mixed audio sample from the custom development dataset. This audio sample is
then fed into a SepFormer model which subsequently outputs two individual audio wave-
forms. Since the order of separated speakers is not guaranteed, all possible speaker-label
alignments are evaluated. The permutation with lesser loss value is chosen as the final pre-
diction. This ensures that label assignments aren’t carried out random and/or mistakenly
flipped. After determining the optimal permutation, the spoof detection model predicts
labels for both audio samples, which are then compared to their true values. Classification
losses are accumulated to compute the average loss per prediction.

Due to time constraints on how long a colab program could be run, the optimized
parameters of the pipeline are saved, so they could be utilized in subsequent epochs. The
code below is used to save the trained parameters. To enable fetching of the spoof model
and feature_extractor components for training, the spoof model and feature_extractor com-
ponents are saved. In addition, the current states of the optimizer and learning rate sched-
ulers are saved to enable continuity in the training regime.

1 from transformers import AutoConfig
2

3 save_path = "/content/drive/My Drive/My notes - cyber/Semester 4/
finetuned_spoof_model6"

4

5 # Save model , feature extractor , and config
6 spoof_model.save_pretrained(save_path)
7 feature_extractor.save_pretrained(save_path)
8 spoof_model.config.save_pretrained(save_path)
9

10

11 # Save optimizer and scheduler
12 torch.save(optimizer.state_dict (), os.path.join(save_path , "optimizer.pt"))

4.4. Training of the Pipeline 23

13 torch.save(lr_scheduler.state_dict (), os.path.join(save_path , "scheduler.pt")
)

14

15 print(f"Model , feature extractor , and config saved to {save_path}")

Listing 4.7: Saving learned parameters

Finally, to make the performance metrics of the epoch available, they are summed to-
gether as part of the metrics_history array and are then subsequently saved. This enables
us to visualize the training metrics of the pipeline over several epochs.

1 metrics_history = {
2 "epoch": [],
3 "train_loss": [],
4 "val_loss": [],
5 "val_accuracy": []
6 # Add more if needed
7 }
8 metrics_history["epoch"]. append(epoch + 1)
9 metrics_history["train_loss"]. append(total_loss)

10 metrics_history["val_loss"]. append(val_loss)
11 metrics_history["val_accuracy"]. append(val_acc)
12 import os
13 import pandas as pd
14

15 metrics_file = "/content/drive/My Drive/My notes - cyber/Semester 4/
training_metrics.csv"

16

17 # Check if file exists and load old metrics
18 if os.path.exists(metrics_file):
19 existing_df = pd.read_csv(metrics_file)
20 combined_df = pd.concat ([existing_df , pd.DataFrame(metrics_history)],

ignore_index=True)
21 else:
22 combined_df = pd.DataFrame(metrics_history)
23

24 # Save the updated file
25 combined_df.to_csv(metrics_file , index=False)

Listing 4.8: Saving performance metrics

For subsequent epochs, majority of the execution remains the same except for the load-
ing of the spoof detection model and its parameters. Unlike the first epoch, where the
model and its parameters are fetched from Hugging Face, the rest of the epochs utilize
the parameters saved during the previous epochs. The parameters are loaded using the
following code:

1 # Load optimizer and scheduler
2 optimizer.load_state_dict(torch.load(os.path.join(saved_model_path , "

optimizer.pt")))

4.5. Evaluation of the Final Trained Pipeline 24

3 lr_scheduler.load_state_dict(torch.load(os.path.join(saved_model_path , "
scheduler.pt")))

4

5 learning_rate = 3e-4
6 batch_size = 1
7 num_epochs = 4
8 gradient_accumulation_steps = 2

Listing 4.9: Loading saved paramters from previous epochs

The learning rate was increased in the final epoch alone, to speed up the learning pro-
cess. This was a result of the lack of resources to carry out more epochs. Similar to the
parameters, the model in itself was loaded from a locally saved instance.

1 # Check if CUDA is available for using GPU
2 device = torch.device("cuda" if torch.cuda.is_available () else "cpu")
3 print(f"Using device: {device}")
4

5 from speechbrain.pretrained import SepformerSeparation
6 model1 = SepformerSeparation.from_hparams(
7 "speechbrain/sepformer -wsj02mix"
8)
9 saved_model_path = "/content/drive/My Drive/My notes - cyber/Semester 4/

finetuned_spoof_model5"
10

11 config = AutoConfig.from_pretrained(saved_model_path)
12 feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(saved_model_path

)
13 spoof_model = WavLMForSequenceClassification.from_pretrained(saved_model_path

, config=config).to(device)
14 spoof_model.train ()
15

16 spoof_model = spoof_model.to(device)

Listing 4.10: Loading saved model

4.5 Evaluation of the Final Trained Pipeline

Once training of the pipeline is complete, the trained pipeline is evaluated against the
custom evaluation dataset. This is performed to calculate performance characteristics be-
tween the trained and pre-trained pipeline. To ensure an unbiased comparison, the same
custom dataset has been used in both inference processes.

Although most of the pipeline characteristics were similar, the trained pipeline has
small changes to how the models were loaded. While the speech separation model was
loaded exactly the same way, it had been loaded during the inference of the pretrained

4.5. Evaluation of the Final Trained Pipeline 25

pipeline, the loading of the spoof detection model differed. Instead of the spoof detec-
tion model being loaded directly from Hugging face, the newly fine-tuned spoof detection
model stored in the Google Drive was put to use. The code used to load this custom fine-
tuned model is presented below:

1 # Check if CUDA is available for using GPU
2 device = torch.device("cuda" if torch.cuda.is_available () else "cpu")
3 print(f"Using device: {device}")
4

5 saved_model_path = "/content/drive/My Drive/My notes - cyber/Semester 4/
finetuned_spoof_model6"

6

7 config = AutoConfig.from_pretrained(saved_model_path)
8 feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(saved_model_path

)
9 spoof_model = WavLMForSequenceClassification.from_pretrained(saved_model_path

, config=config).to(device)
10 spoof_model.eval()
11

12 spoof_model = spoof_model.to(device)

Listing 4.11: Loading final trained model

Similar to the pre-trained pipeline’s execution, the system checks for the availability of
a GPU. If a CUDA enabled GPU exists, all of the heavy computation is assigned to this
device. The rest of the pipeline follows the traditional practice of loading the associated
metadata file and iterating through it. Each file name encountered is appended to a local
path to generate the associated local path of the mixed audio sample.

1 audio_path = os.path.join(audio_folder , filename)

Listing 4.12: Generating path for mixed audio files

This path is then used to fetch the mixed audio sample, which is fed to the SepFormer,
effectively resulting in a two-dimensional tensor. Each tensor is unsqueezed, to resemble
the input requirements of the spoof detection model, which transforms the same into pro-
cessable units. These processable units are used by the spoof detection model to provide
predictions of the individual audio sample. The predictions in the form of raw output
logits are converted into human-readable probabilities, which are used to determine the
predicted labels of the individual as well as the mixed audio sample. These labels are
used to calculate the performance characteristics, as mentioned in the above subsection,
for comparison purposes.

4.6. Ethical Considerations 26

4.6 Ethical Considerations

Despite the role this spoof detection pipeline plays in multiparty spoofed scenarios, devel-
oping and testing such a pipeline also gives room for certain ethical issues that have to be
addressed.

It is a prerequisite that the speech data, even if publicly available, must be governed by
stringent privacy standards. This is to ensure that the unauthorized use of voice record-
ings, even in a synthetic or an anonymized form is reduced. This prevents possible in-
fringement of privacy rights. All data sets used in this project originate from thoroughly
vetted sources, who have also provided consent for use in research environments. This
research does not collect any kind of personally identifiable information.

Automated systems have the tendency of inheriting biases from the data, they have
been trained on. In the case of spoof detection models, the system could learn biases from
the dataset, such as familiarity with certain accents, languages or speaker demographics.
This could result in catastrophic outcomes with the system misclassifying certain groups
more often. While this work, does not explicitly deal with these biases, maximum effort
has been undertaken to create an even and unbiased custom dataset from the original
ASVspoof 2019 dataset to avoid this misclassification problem.

As synthetic and deepfake speech technologies evolve, the boundaries between legiti-
mate and malicious use blur. While building systems for the purpose of spoof detection
isn’t ethically wrong, the irresponsible deployment of them is. Often times, adversaries
learn from existing spoof detection mechanisms, to further improve the spoofing tech-
niques. To prevent such a scenario from occurring, the built pipeline has not been shared
irresponsibly.

As a cyber security researcher, it is of utmost importance that the research is con-
ducted ethically and it does not further endanger the existing digital space. The actions,
mentioned above, were undertaken consciously to create a safer research environment and
to ensure that the research does not, in any way, impede GDPR regulations or unwritten
ethical rules.

Chapter 5

Results

The results obtained from the experiments in section chapter 4 is discussed in detail in this
section.

5.1 Testing SOTA on the original dataset

Prior to the implementation of the spoof detection algorithm, the state-of-the-art spoof
detection model was tested on the original ASVspoof 2019 for the sake of comparison
between the model’s performance across this dataset and the custom-generated evaluation
dataset. The model had an impeccable accuracy at 0.9831, a precision of 0.9829, a recall
of 0.9983, and an f1-score of 0.9905. The high accuracy indicates that the model correctly
classified almost 99% of the data, showing a strong performance. The precision means
that when the model predicts a sample as spoofed, then the sample actually belongs to
the spoofed class. Higher recall means that the model minimizes false negatives. The
confusion matrix of the spoof detection algorithm is visualized below:

Figure 5.1: Confusion matrix of SOTA spoof detection model on ASVspoof 2019

The model has an EER of 0.0157 which is exceptionally good. The EER represents

27

5.2. Evaluation of Pre-trained Pipeline 28

the equilibrium point between the acceptance of false positives and false negatives. This
low eer indicates that the model achieves a very low balance error between misclassifying
spoofed audio samples as genuine or genuine samples as spoofed. This EER confirms the
model’s reliable performance in spoof detection.

5.2 Evaluation of Pre-trained Pipeline

To assess the performance of the pre-trained pipeline that incorporates the state-of-the-
art spoof detection and speech separation models, we evaluated it on a custom-generated
evaluation dataset. As discussed in Section chapter 4, this custom dataset compromises
of overlapping speeches from, either two spoofed audio sources, two bonafide sources or
a mix of one spoofed and one bonafide source. These overlapped audio samples were
appropriately named ’SS,”SB,’ and ’BB.’ The classification system attempted to label each
input mixed into one of these classes.

Class Precision Recall F1-score Support
SS 0.35 0.99 0.52 2535
SB 0.50 0.19 0.27 4979
BB 0.93 0.35 0.50 2486

Table 5.1: Classification metrics of the pre-trained pipeline

A class-wise analysis has been included below

• SS (spoof-spoof) - This class has a precision of only 0.35, thereby indicating that of
all the samples predicted as SS, only 35% of them actually had SS as a true label.
A recall of 0.99 suggests that nearly all audio samples of the SS class were correctly
identified, hence the model is highly inclusive. This recall could be misleading as
many of those predictions could be false positives. The f1 score suggests that while
SS detection is inclusive, its precision is lacking.

• SB (spoof-bonafide) - This class has a precision of 0.50, so half of the samples pre-
dicted as SB were correct. The model has a recall of just 0.19, i.e. only 19% of the
actual audio samples belonging to the SB class were correctly identified, indicating a
major under-recognition of this class, i.e the model is selective. Finally its f1 score of
0.27 signifies difficulty in handling heterogenous cases.

• BB (bonafide-bonafide) - This class has a higher precision, compared to the other
classes, at 0.93. This signifies that the model performs exceptional in avoiding false
positives. But the model suffers with a 0.35 recall, which means that it misses most
of the actual BB samples.

Looking at the bigger picture, the model has an overall accuracy of 42.98%. A random
prediction for a model with 3 output classes is at 33.3%, so for the 10,000 samples, this

5.2. Evaluation of Pre-trained Pipeline 29

model performs just better than a model that randomly predicts. The overall weighted
precision, weighted recall, and weighted F1-score of the model is a mere 0.59, 0.51 and
0.43 respectively. These values take into account the support variable, which indicates the
number of instances for each class. The lower weighted f1 score suggests that the high
misclassification of the more prevalent SB class significantly drags down the average.

To provide further insight, a confusion matrix was designed based on the classifica-
tion performance across the three mixed-label categories. The confusion matrix further
strengthens the inference that the model has a higher tendency to classify audio as SS.
They also underscore the necessity of fine-tuning the model on the specific structure of the
custom dataset.

Figure 5.2: Confusion matrix of pre-trained pipeline - multiclassification task

Apart from evaluating the model on the mixed label classification task, we assessed its
performance on the individual audio streams as well. This evaluation reflects the models
binary classification capabilities as the resultant audio stream could either be classified as
spoofed or bonafide only. The model had an accuracy of 67.92%, a precision of 61.06%, a
recall of 99.04%, and an f1 score of 75.62%. The high recall means that the model correctly
identified nearly all spoofed audio samples, demonstrating extreme sensitivity towards
cues associated with spoofed speeches. The precision is noticeably lower, indicating that
a significant number of bonafide audio samples were misclassified as spoof. The f1 score
balances the trade-off between the above two metrics, indicating that the model performs
decently on the binary classification task. The Equal Error rate of the system was poor
23.90% at a threshold of 0.9999 suggesting that the model is heavily skewed toward avoid-
ing spoof acceptance. Ideally, systems deployed for spoof detection have an EER of less
than 10%. Therefore, this system is not suitable for deployment yet and requires further
fine tuning.

5.3. Train pipeline 30

Figure 5.3: Confusion of Pretained pipeline - binary classification

The model seems to correctly predict spoofed audio samples at the expense of misclas-
sifying legitimate audio samples as spoof. Although most models in the high-stake audio
verification follow a conservative approach similar to this pipeline, the pipeline still seems
to massively under-perform. The discrepancy in performance metrics between multi-class,
and binary class classification indicates that while the spoof detection model performs av-
erage, an error is post-separation label assignment.

5.3 Train pipeline

In an attempt to increase the efficiency and the capability of the pipeline, the pipeline was
trained on the custom generated mixed train and mixed development data. As discussed
in Section chapter 4, the speech separation was frozen and only the parameters associ-
ated with the spoof detection model were fine tuned. For a total of 6 epochs, the models
were trained over 15,000 mixed audio samples. The model was then evaluated over 10,000
mixed audio samples from the custom-generated development dataset.

The average training loss has evidently been decreasing across the epochs, indicating
that the model has inferred patterns and is effectively learning and converging. The val-
idation loss improved quickly during the first two epochs and plateaued after epoch the
third epoch. This suggests that the model has learned generalizable patterns early on.
In an attempt to push the model towards betterment, the learning rate was modified for
the last epoch from 1e-6 to 3e-4. The validation loss increased infinitesimally but so did
the validation accuracy. This analysis supports that the spoof detection model trained on
separated audio streams was able to learn meaningful patterns that ultimately helped the

5.4. Trained pipeline 31

Epoch Cumulative Train Loss Average Train Loss Validation loss Validation accuracy
1 7731.96 0.5155 0.4292 0.8028
2 5657.80 0.3772 0.4028 0.8195
3 5120.00 0.3413 0.3836 0.8280
4 4750.49 0.3167 0.3826 0.8292
5 4626.12 0.3084 0.3826 0.8292
6 4915.02 0.3277 0.3831 0.8300

Table 5.2: Training metrics of the pipeline

Figure 5.4: Training loss vs validation loss

model generalize better on the validation data.

5.4 Trained pipeline

Following the horrendous results of the pre-trained pipeline, the spoof detection pipeline
was trained. To be more precise, the spoof detection model was fine tuned while the
speech separation model was frozen. This trained pipeline was subsequently evaluated
on the custom dataset compromising of 10,000 mixed audio samples. The evaluation was
performed similar to the how the pre-trained pipeline was evaluated.

Class wise analysis says that:

• SS (spoof-spoof) - the recall of the trained pipeline dropped from 99% to a mere 45%
while the precision and f1 have increased slightly with the metrics being 55% and
49% respectively. This drop in recall suggests that the model is not skewed towards

5.4. Trained pipeline 32

Class Precision Recall F1-score Support
SS 0.55 0.45 0.49 2535
SB 0.63 0.38 0.47 4979
BB 0.47 0.93 0.62 2486

Table 5.3: Classification Report of Trained pipeline

flagging everything as spoofed and a balance in predictions across classes have been
attained.

• SB (spoof-bonafide) - The model attained an improvement in precision. The precision
rose from 50% to 63% between pre-trained and trained pipelines. The recall also
seems have to risen from 19% to 38%. The model’s f1-score has also risen from 27%
to a 47% indicating the model’s fine tuning has proven useful. The model has learned
better at predicting the instances from the SB class, which is more representative of
the real-world cocktail party scenarios.

• BB (bonafide-bonafide) - The model had an increase across the recall and f1-score
characteristics with the recall increasing from 35% to an impeccable 93% while the
f1-score increasing from 50% to 62%. The fine-tuning of the model has improved
it’s ability to better recognize audio samples belonging to the BB class, and has also
learned to avoid false positives on the spoof samples.

To provide further insights, a confusion matrix was formulated for the trained pipeline,
similar to the pre-trained pipeline. The confusion matrix reasserts the previous inferences
showing that the model shows a strong ability to correctly identify bonafide samples and
that the SS class’ precision and recall also seem to have improved.

Figure 5.5: Confusion matrix of trained pipeline - multiclassification

5.4. Trained pipeline 33

Apart from evaluating the model’s performance on the mixed label classification task,
the model’s performance on individual audio streams retrieved after speech separation
was also assessed. This analysis provides a clearer view of the underlying binary clas-
sification task in a different setting. The model had an accuracy of 74.41%, precision of
84.72%, recall of 59.87% and an F1-score of 70.16%. The model’s high precision indicates
that the model rarely raises a false alarm i.e. bonafide speech is likely to be misclassified
as spoofed speech. The recall value has dropped miles in comparison to the pre-trained,
indicating that the model’s ability to identify all spoofed samples as spoof has reduced.
An EER of 21.98% indicates that the model seems to have marginally better performance
compared to the pre-trained pipeline. It indicates that at a threshold of 0.1935, the model
misclassifies a spoofed sample as bonafide or vice versa, 21.98% of the time. The extremely
low decision threshold implies that the model classifies inputs as spoof only if it is highly
confident.

Figure 5.6: Confusion matrix of trained pipeline - binary classification

The discrepancy in performance metrics between multi class and binary class clas-
sification indicates that while the spoof detection model performs average, an error is
post-separation label assignment is present.

Chapter 6

Discussion

This section discusses the impact of the research, the limitations faced during the study
and the possible future works that can be done to capitalize on the results produced in
this study.

6.1 Evaluation of SOTA spoof detection model on ASVspoof 2019
vs Custom dataset

In this study, it can be observed that the spoof’s detection model’s performance under-
went a noticeable drop when transitioning from evaluating individual audio samples to
mixed samples. When tested individually on the ASVspoof 2019 dataset, the model had
an impeccable performance with an accuracy of 98% and an EER of 1.15%. These results
clearly indicate the the model is only suited for clean, controlled and well-structured spoof
detection tasks where the samples do not have any kind of interference from other speak-
ers and acoustic condition. In comparison the spoof detection model had an accuracy of
42.98% over mixed audio samples and an accuracy of 67.92% on individual audio streams
that were a result of mixed audio stream undergoing speech separation. In addition, the
spoof detection model had an EER of 23.9%. These results signify that the model under-
went a clear degradation in performance and the associated decision boundary sharpness
compared to its counterpart. This degradation dropped further when the predictions were
mixed to form the final mixed label prediction where the accuracy of the model dropped
to a stooping 42.98%.

Most of these performance drops could be attributed to the speech separation process.
When an audio sample undergoes speech separation, the temporal-spectral features of the
audio sample are modified. The Zero-Crossing Rate(ZCR), which measures how often a
signal crosses zero amplitude, is altered. Voiced speech tend to have a low ZCR, while Un-
voiced Speech have high ZCR[24]. When an audio sample undergoes speech separation,

34

6.2. Evaluation of Pre-trained vs Trained pipeline 35

high ZCR regions are suppressed, which causes erasure of unvoiced spoofing artifacts.
Certain spoof detection algorithms use Average ZCR as a cue for detecting spoofed audio
samples[25]. So this erasure of key spoofing artifacts could have been the reason for the
drop in performance of the spoof detection problem. In addition, it has been found that
most queues for spoof detection lie in the range of 0 and 4kHz in normal voiced speech
and in the range of 4-8khz in quiet parts or unvoiced sounds[26]. [27] quotes that their
proposed speech separation method retains dominant peaks but the modulation effects in
the frequency range of 50-200Hz are excluded which leads to a residual ’buzz’ artifact.
Since spoof detection also depends on these artifacts, the removal of the same affects its
prediction abilities. Apart from these interferences, the audio sample also undergoes a
resampling process as the audio sample that is output from the SepFormer is of a different
sampling rate and therefore cannot be fed into the spoof detection model. This resampling
process could have introduced artifacts that ultimately hinder the spoof detection model’s
capabilities.

As the ASVspoof 2019 dataset is designed specifically with spoofed samples containing
spoofing artifacts that are a result of known spoofing techniques, a model trained on this
dataset struggles to generalize on a mixed dataset with overlapped speech samples because
of the elimination or inclusion of spoofing artifacts caused either by the mixing of speech
samples and/or separation of mixed audio samples. The difference in results between the
labeling of the overall mixed audio sample and the labeling of individual audio streams
post-separation is a result of one of the speech samples being identified incorrectly, out of
the two audio clips produced by the SepFormer. This inherently lowers the accuracy of
the final pipeline.

6.2 Evaluation of Pre-trained vs Trained pipeline

To enhance the performance characteristics of the pre-trained model, the pipeline was fine-
tuned to the custom-generated mixed dataset. The trained pipeline did witness an increase
in performance as compared to its counterpart. This signifies that the training did help
the model learn measurable and meaningful representations that ultimately boosted the
pipeline’s performance. While the overall gains appear moderate, they highlight impor-
tant aspects of domain adaptation and robustness of speech-based ML systems.

While the f1 score for the SS class slightly declined for the trained pipeline in compari-
son to the pretrained pipeline, the f1 scores associated with the SB and BB class showed an
improvement. The SB class showed the largest increase, indicating that the model learned
key artifacts that help deal with inter-class variations introduced by the overlap algorithm.
The binary classification also showed an improvement with the accuracy increasing by al-
most 7% in comparison to the pre-trained pipeline. There was an increase in precision but
a decrease in recall, which ultimately led to a reduced EER.

6.3. Limitations 36

This increase in performance could be attributed to the consistency of spoofing artifacts
introduced in the speech separation process. As the speech separation model, SepFormer,
was frozen, the separation artifacts introduced across the dataset would be consistent. The
pipeline was able to grasp on to these consistent artifacts as noise in the classification task.
These artifacts are considered noise, as they are predictable and are present across all the
audio samples regardless of their true labels being spoof or bonafide. The possibility that
the spoof model also adapted to the suppressed low-frequency artifacts is possible. The
trained model could also recalibrate its ability to detect noise residuals that are a common
modification to audio samples introduced by the speech separation process.

The reduction in EER by 2%, an increase in the binary classification’s accuracy by
7% and an increase in multi classification’s accuracy by 11% shows promising potential
towards the development of a better system, which is better equipped in handling the
cocktail party problem with spoofed audio samples.

6.3 Limitations

In the process of conducting this research, the system faced certain logistical and technical
limitations. The primary challenge being the lack of time in furthering the research. Train-
ing over 15,000 data items and the model’s validation over 10,000 data items over 6 epochs
consumed 1̃00 hours. Besides the running time of the pipeline, analysis of the artifacts
induced by speech separation that affect spoof detection is also heavily time consuming.
Although the research indicates that these artifacts induce a noticeable performance reduc-
tion of the integrated spoof detection model, due to a lack of time, the research couldn’t
delve into which of these artifacts play a bigger role in performance reduction and by how
much. Despite the use of A100 GPUs, an extremely powerful hardware, the training of the
model took over 100 hours. In addition to these, inference on the evaluation dataset was
also time consuming.

Due to hardware limitations and processing constraints, the batch size was reduced
to just 1 which increases the risk of overfitting and may lead to poor generalization to
unseen data. In addition, despite the generation of 30,000 training data and 20,000 vali-
dation data, only 15,000 training data and 10,000 validation were used during the training
process. While 30,000 in itself isn’t enough for the training process, further slicing of
the dataset hindered the training process. Furthermore, the custom dataset generation
was conducted solely based on the LA subset of the ASVspoof 2019 dataset. This could
result in the pipeline overfitting to a specific type of spoofing attack, thus reducing it’s
generalization to other spoofing attacks. Due to hardware limitations, training of the en-
tire pipeline was not conducted. In this research, the speech separation pipeline had to
be frozen to save compute resources. While necessary, this technique has restricted the

6.4. Future Works 37

end-to-end learning of the pipeline where the separation model could have worked hand-
in-hand with the spoof detection model to improve the overall performance of the pipeline.

Another challenge faced by the pipeline is the adaptation of EER over a multi classifi-
cation task. In the domain of spoof detection, EER plays a vital role in the evaluating the
performance of the system. While most systems use EER over a binary classification task,
this research attempted at adapting the EER over a multi classification task and failed. Al-
though EER was still used in the system to evaluate its performance, EER was calculated
based on the model’s ability to ascertain a label to the audio samples that were derived
from the speech separation task and not on the multi classification task of predicting if the
audio sample belonged to the ’SS,”SB,’ and ’BB.’

6.4 Future Works

This research while demonstrating the promise and limitation of the current setup, in an
overlapped speech scenario, it also opens up opportunities for advancements in the fine-
tuning of the system as well as certain other explorable avenues.

6.4.1 Fine-tuning the Speech Separation model

As discussed in the the previous section, the research presents with an opportunity to hone
the speech separation model, in addition to the spoof detection model. In this research, the
speech separation system was frozen to reduce complexity of the implemented system, re-
quirement of computational resources and to isolate the fine-tuning of the spoof detection
model. However, future studies could investigate end-to-end learning, where both mod-
ules are trained together simultaneously. This may allow the separation model to become
spoof-aware, learning to retain discriminative artifacts necessary for spoof detection.

6.4.2 Increase in speakers and Integration of Speaker diarization

The current pipeline assumes only two speakers with binary spoof labels to be present
in the custom generated dataset. Future work could be done on increasing the number
of speakers involved in the cocktail party problem and investigating how an increase in
speaker audio samples could affect the system’s prediction capabilities. The system also
works only on identifying the number of spoofed samples i.e. one or two spoofed sam-
ples. Future work could integrate a speech diarization model that would help the system
attribute the labels to its specific speakers, which could prove useful in security contexts.

6.4. Future Works 38

6.4.3 Dataset Generation

The system to its best capability avoided including inherent bias during dataset gener-
ation. Although cryptographic randomness was introduced to alleviate inclinations of
dataset towards a specific class, the final dataset generated was not explored for the ex-
istence of possible prejudices. A promising direction is to investigate a better technology
or process with recent and more diverse spoofing methods, including real-time recordings
and AI-generated deepfakes to test the robustness of the system in more adversarial con-
ditions. The custom generated mixed audio samples also lacks replication of real-world
acoustic variations. Real-world variations such as reverberation, environmental noise, in-
consistencies with the microphone in use or adversarial attacks could provide additional
insights that the system could adapt to, making it relevant to the requirements of the de-
ployable system.

6.4.4 Latency of the pipeline

The goal of the project was limited to just exploring the relevance of state-of-the-art spoof
detection algorithms, in a overlapped audio conversation scenario which are representative
of group calls in platforms such as Teams and Discord, and podcasts that could be subject
to spoofing attacks. The system does not delve into increasing the efficiency of the training
and inference processes. The system clearly required excessive time periods during the
training and inference process, which makes it not so suitable for real-time spoof detection
deployments. Future work could explore methods and techniques that help optimize the
inference algorithm and provide low-latency models that are better suited for real-world
situations.

Chapter 7

Conclusion

This chapter summarizes the experiments carried out in this research, the scope of the
research, and the results produced by the research.

The research began with the goal of analyzing the performance of spoof detection
model, which was trained on the simple ASVspoof 2019 dataset with individual audio
samples, across a custom generated dataset which was more representative of a cocktail
party problem with spoofed audio samples. The spoof detection model was initially tested
on the ASVspoof 2019 dataset. The model performed exceptionally well with an accuracy
of 98% and an EER of 1.15%. The model was later integrated into a pipeline with a speech
separation model, SepFormer, which helped split the mixed audio samples. The resultant
audio clips were tested for the spoofing artifacts by the spoof detection model. The un-
trained pipeline had an accuracy of 43% and an EER of 23%. In an attempt, the pipeline
was fine-tuned on the custom generated dataset, with the speech separation model kept
frozen. The fine-tuned pipeline was evaluated on the custom-generated evaluation dataset
and the model returned an accuracy of 53%.

The research clearly indicates a drop in the spoof detection model’s performance as a
result of the introduction and erasure of key artifacts by the speech separation model. The
report also suggests that further work could be done to identify which of these artifacts
play a more important role in the performance of the pipeline. The report also emphasizes
the need for additional time and hardware resources for furthering the research in this
domain. The report also necessitates the need for a speech diarization model that could
attribute which of the speakers in the conversation are spoofed.

The report concludes that, although spoof detection models with excellent prediction
capabilities exist, these models struggle in a scenario that includes multiple speakers. This
task requires the need for a domain-specific pipeline, such as the one implemented in the
scenario, to deal better with the cocktail party problem with possible spoofed speakers.

39

Bibliography

[1] Zahra Khanjani, Gabrielle Watson, and Vandana P. Janeja. “Audio deepfakes: A sur-
vey”. In: Frontiers in Big Data Volume 5 - 2022 (2023). issn: 2624-909X. doi: 10 .
3389/fdata.2022.1001063. url: https://www.frontiersin.org/journals/big-
data/articles/10.3389/fdata.2022.1001063.

[2] Mehmet Karakose et al. “A New Approach for Deepfake Detection with the Choquet
Fuzzy Integral”. eng. In: Applied sciences 14.16 (2024), pp. 7216–. issn: 2076-3417.

[3] April Rubin. Scams use AI to mimic senior officials’ voices, FBI warms. https://www.
axios.com/2025/05/15/artificial-intelligence-voice-scams-government-
officials?utm_source=chatgpt.com. 2025.

[4] Times of India. Scammers use AI George Clooney to steal over Rs. 11 lakhs from Face-
book user. https : / / timesofindia . indiatimes . com / technology / artificial -
intelligence/scammers-use-ai-george-clooney-to-steal-over-rs-11-lakhs-
from- facebook- user/articleshow/121171381.cms?utm_source=chatgpt.com.
2025.

[5] Jonat John Mathew et al. “Towards the Development of a Real-Time Deepfake Audio
Detection System in Communication Platforms”. eng. In: (2024).

[6] Xin Wang et al. “ASVspoof 2019: A large-scale public database of synthesized, con-
verted and replayed speech”. eng. In: Computer speech language 64 (2020), pp. 101114–.
issn: 0885-2308.

[7] “Voice spoofing detection corpus for single and multi-order audio replays”. eng. In:
Computer speech language 65 (2021), pp. 101132–. issn: 0885-2308.

[8] Rishabh Ranjan, Mayank Vatsa, and Richa Singh. “Uncovering the Deceptions: An
Analysis on Audio Spoofing Detection and Future Prospects”. eng. In: (2023).

[9] Bowen Zhang et al. “Audio Deepfake Detection: What Has Been Achieved and What
Lies Ahead”. eng. In: Sensors (Basel, Switzerland) 25.7 (2025), pp. 1989–. issn: 1424-
8220.

[10] Piotr Kawa, Marcin Plata, and Piotr Syga. “Defense Against Adversarial Attacks on
Audio DeepFake Detection”. eng. In: (2022).

40

https://doi.org/10.3389/fdata.2022.1001063
https://doi.org/10.3389/fdata.2022.1001063
https://www.frontiersin.org/journals/big-data/articles/10.3389/fdata.2022.1001063
https://www.frontiersin.org/journals/big-data/articles/10.3389/fdata.2022.1001063
https://www.axios.com/2025/05/15/artificial-intelligence-voice-scams-government-officials?utm_source=chatgpt.com
https://www.axios.com/2025/05/15/artificial-intelligence-voice-scams-government-officials?utm_source=chatgpt.com
https://www.axios.com/2025/05/15/artificial-intelligence-voice-scams-government-officials?utm_source=chatgpt.com
https://timesofindia.indiatimes.com/technology/artificial-intelligence/scammers-use-ai-george-clooney-to-steal-over-rs-11-lakhs-from-facebook-user/articleshow/121171381.cms?utm_source=chatgpt.com
https://timesofindia.indiatimes.com/technology/artificial-intelligence/scammers-use-ai-george-clooney-to-steal-over-rs-11-lakhs-from-facebook-user/articleshow/121171381.cms?utm_source=chatgpt.com
https://timesofindia.indiatimes.com/technology/artificial-intelligence/scammers-use-ai-george-clooney-to-steal-over-rs-11-lakhs-from-facebook-user/articleshow/121171381.cms?utm_source=chatgpt.com

Bibliography 41

[11] Muhammad Umar Farooq et al. “Transferable Adversarial Attacks on Audio Deep-
fake Detection”. eng. In: (2025).

[12] Taiba Majid Wani et al. “Detecting Audio Deepfakes: Integrating CNN and BiLSTM
with Multi-Feature Concatenation”. eng. In: Proceedings of the 2024 ACM Workshop on
Information Hiding and Multimedia Security. New York, NY, USA: ACM, 2024, pp. 271–
276. isbn: 9798400706370.

[13] Shuhui Qu et al. “Understanding Audio Pattern Using Convolutional Neural Net-
work From Raw Waveforms”. eng. In: (2016).

[14] Noussaiba Djeffal et al. “Transfer Learning-Based Deep Residual Learning for Speech
Recognition in Clean and Noisy Environments”. eng. In: (2025).

[15] Jiangyan Yi et al. “Audio Deepfake Detection: A Survey”. eng. In: (2023).

[16] Gustav Arnt Palmelund Bonvang. Listening Beyond Words: Transfer Learning for Audio
Deepfake Detection. eng. 2023.

[17] Peter Ochieng. “Speech Separation Based on Pre-trained Model and Deep Modu-
larization”. In: ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). 2025, pp. 1–5. doi: 10.1109/ICASSP49660.2025.
10888747.

[18] Xinlu He and Jacob Whitehill. Survey of End-to-End Multi-Speaker Automatic Speech
Recognition for Monaural Audio. 2025. arXiv: 2505.10975 [cs.CL]. url: https://
arxiv.org/abs/2505.10975.

[19] Javier Canales Luna. What is Transfer Learning in AI? An Introductory Guide with Ex-
amples. https://www.datacamp.com/blog/what-is-transfer-learning-in-ai-an-
introductory-guide. 2024.

[20] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. “A survey of transfer learn-
ing”. In: Journal of Big data 3 (2016), pp. 1–40.

[21] Govind Mittal et al. “PITCH: AI-assisted Tagging of Deepfake Audio Calls using
Challenge-Response”. eng. In: (2024).

[22] Mouna Rabhi, Spiridon Bakiras, and Roberto Di Pietro. “Audio-deepfake detection:
Adversarial attacks and countermeasures”. eng. In: Expert systems with applications
250 (2024), pp. 123941–. issn: 0957-4174.

[23] abhishtagatya. abhishtagatya/wavlm-base-960h-asv19-deepfake. https://huggingface.
co/abhishtagatya/wavlm-base-960h-asv19-deepfake/blob/main/README.md?
code=true. 2024.

[24] Rafizah Mohd Hanifa et al. “Voiced and unvoiced separation in malay speech using
zero crossing rate and energy”. eng. In: Indonesian Journal of Electrical Engineering and
Computer Science 16.2 (2019), pp. 775–. issn: 2502-4752.

https://doi.org/10.1109/ICASSP49660.2025.10888747
https://doi.org/10.1109/ICASSP49660.2025.10888747
https://arxiv.org/abs/2505.10975
https://arxiv.org/abs/2505.10975
https://arxiv.org/abs/2505.10975
https://www.datacamp.com/blog/what-is-transfer-learning-in-ai-an-introductory-guide
https://www.datacamp.com/blog/what-is-transfer-learning-in-ai-an-introductory-guide
https://huggingface.co/abhishtagatya/wavlm-base-960h-asv19-deepfake/blob/main/README.md?code=true
https://huggingface.co/abhishtagatya/wavlm-base-960h-asv19-deepfake/blob/main/README.md?code=true
https://huggingface.co/abhishtagatya/wavlm-base-960h-asv19-deepfake/blob/main/README.md?code=true

Bibliography 42

[25] Jinyu Zhan et al. “Detecting Spoofed Speeches via Segment-Based Word CQCC and
Average ZCR for Embedded Systems”. In: IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems 41.11 (2022), pp. 3862–3873. doi: 10.1109/TCAD.
2022.3197531.

[26] Menglu Li, Yasaman Ahmadiadli, and Xiao-Ping Zhang. “Audio Anti-Spoofing De-
tection: A Survey”. eng. In: (2024).

[27] Pejman Mowlaee, Mads Græsbøll Christensen, and Søren Holdt Jensen. Sinusoidal
masks for single channel speech separation. eng. 2010.

https://doi.org/10.1109/TCAD.2022.3197531
https://doi.org/10.1109/TCAD.2022.3197531

Appendix A

Appendix

1 # -*- coding: utf -8 -*-
2 """ Overlap generation.ipynb
3

4 Automatically generated by Colab.
5

6 Original file is located at
7 https :// colab.research.google.com/drive /1 jOeyaZrMK0UAE2LkPO -fL9haJb05cTgQ
8 """
9

10 from google.colab import drive
11 import os
12 import librosa
13 import numpy as np
14 import soundfile as sf
15 import secrets # Cryptographic randomness
16 import random # General randomness
17 import torchaudio
18 import torchaudio.transforms as T
19

20 drive.mount(’/content/drive’)
21

22 # Step 2: Define dataset paths
23 base_path = "/content/drive/My Drive/My notes - cyber/Semester 4"
24 metadata_path = os.path.join(base_path , "ASVspoof2019_LA_cm_protocols")
25 output_path = os.path.join(base_path , "overlapped_audio_2")
26 metadata_output_path = os.path.join(base_path , "overlapped_audio_metadata_2.

txt")
27

28 # Ensure output directory exists
29 os.makedirs(output_path , exist_ok=True)
30

31 # Step 3: Read metadata to classify audio files
32 spoof_files = []
33 bonafide_files = []

a

b

34 file_status = {} # Dictionary to store file name -> bonafide/spoof
35

36 # Read the metadata file
37 metadata_file = os.path.join(metadata_path , "ASVspoof2019.LA.cm.eval.trl.txt"

)
38

39 with open(f"{metadata_file}", "r") as f:
40 for line in f:
41 parts = line.strip().split()
42 if len(parts) < 5:
43 continue # Skip malformed lines
44 _, filename , _, _, label = parts # Extract relevant columns
45 file_path = os.path.join(base_path , "ASVspoof2019_LA_eval/flac",

filename+’.flac’) # Adjust path
46 if os.path.exists(file_path): # Ensure file exists before adding
47 if label == "bonafide":
48 bonafide_files.append(file_path)
49 else:
50 spoof_files.append(file_path)
51

52

53 print(f"Loaded {len(bonafide_files)} bonafide and {len(spoof_files)} spoof
files.")

54

55 import torch
56

57 # Step 4: Function to create a realistic overlap and log metadata
58 def overlap_audio(file1 , file2 , label1 , label2 , output_dir):
59 audio1 , sr1 = librosa.load(file1 , sr=None)
60 audio2 , sr2 = librosa.load(file2 , sr=None)
61

62 if sr1 != sr2:
63 raise ValueError("Sampling rates do not match!")
64

65 # Generate a random time offset (up to 1 second)
66 max_delay = int(sr1 * np.random.uniform(0, 1)) # Up to 1 second shift
67 if secrets.randbelow (2) == 0: # Randomly decide who starts first
68 audio1 = np.pad(audio1 , (max_delay , 0)) # Delay first audio
69 else:
70 audio2 = np.pad(audio2 , (max_delay , 0)) # Delay second audio
71

72 # Match length of both signals (cut longer one)
73 min_len = min(len(audio1), len(audio2))
74 audio1 = audio1 [: min_len]
75 audio2 = audio2 [: min_len]
76

77 # Apply random gain variation (loudness change)
78 gain1 = np.random.uniform (0.7, 1.3) # Random loudness for audio1
79 gain2 = np.random.uniform (0.7, 1.3) # Random loudness for audio2
80 audio1 *= gain1
81 audio2 *= gain2

c

82

83 # # Apply reverberation (simulates room acoustics)
84 # reverb = T.Reverberate ()
85 # audio1 = reverb(torch.tensor(audio1).unsqueeze (0)).squeeze (0).numpy ()
86 # audio2 = reverb(torch.tensor(audio2).unsqueeze (0)).squeeze (0).numpy ()
87

88 # Mix both audio signals
89 mixed_audio = audio1 + audio2
90

91 # Normalize to prevent clipping
92 mixed_audio = mixed_audio / np.max(np.abs(mixed_audio))
93

94 # Define mixed audio status
95 if label1 == "spoof" and label2 == "spoof":
96 mixed_label = "SS" # Spoof -Spoof
97 elif label1 == "bonafide" and label2 == "bonafide":
98 mixed_label = "BB" # Bonafide -Bonafide
99 else:

100 mixed_label = "SB" # Spoof -Bonafide
101

102 # Save the mixed audio file
103 new_filename = f"{os.path.basename(file1).split(’.’)[0]}_{os.path.

basename(file2).split(’.’)[0]}. flac"
104 output_filepath = os.path.join(output_dir , new_filename)
105 sf.write(output_filepath , mixed_audio , sr1)
106

107 return new_filename , file1 , label1 , file2 , label2 , mixed_label
108

109 # Step 5: Use cryptographic randomness to create 25,000 mixed audio files and
log metadata

110 mix_log = []
111 num_pairs = 30000 # Target number of mixed audio files
112

113 for i in range(num_pairs):
114 if i % 5000==0:
115 print(i)
116 # Cryptographic randomness for true unpredictability
117 if secrets.randbelow (2) == 0: # 50% chance of spoof -bonafide mix
118 file1 = secrets.choice(spoof_files)
119 file2 = secrets.choice(bonafide_files)
120 label1 = "spoof"
121 label2 = "bonafide"
122 else:
123 # Randomly choose bonafide -bonafide or spoof -spoof
124 if secrets.randbelow (2) == 0 and len(bonafide_files) > 1:
125 file1 , file2 = random.sample(bonafide_files , 2)
126 label1 = label2 = "bonafide"
127 else:
128 file1 , file2 = random.sample(spoof_files , 2)
129 label1 = label2 = "spoof"
130

d

131 # Overlap the chosen files
132 mixed_file , file1_name , label1 , file2_name , label2 , mixed_label =

overlap_audio(file1 , file2 , label1 , label2 , output_path)
133 mix_log.append(f"{mixed_file} {os.path.basename(file1_name)} {label1} {os

.path.basename(file2_name)} {label2} {mixed_label}")
134

135

136 # Step 6: Save the metadata for the new dataset
137 with open(metadata_output_path , "w") as f:
138 for entry in mix_log:
139 f.write(entry + "\n")
140

141 print(f" Successfully created {len(mix_log)} mixed audio files!")
142 print(f" Metadata saved at: {metadata_output_path}")
143

144 counter = {}
145 for line in mix_log:
146 parts = line.strip().split(’ ’)
147 if parts[-1] not in counter:
148 counter[parts [-1]]=0
149 counter[parts [-1]]+=1
150

151 print(counter)

Listing A.1: Complete code for Overlap Generation

1 # -*- coding: utf -8 -*-
2 """ Pretrained sota spoof.ipynb
3

4 Automatically generated by Colab.
5

6 Original file is located at
7 https :// colab.research.google.com/drive /1 wtqimvr7pbYLldir1ucYycy6MR5 -3iDH
8 """
9

10 !pip install torch torchaudio transformers scikit -learn soundfile asteroid
11

12 # Part 2: Load pretrained models and dependencies
13 import torch
14 from asteroid.models import ConvTasNet
15 from transformers import AutoProcessor , AutoModelForPreTraining ,

AutoModelForAudioClassification , AutoConfig
16 from transformers import Wav2Vec2Processor , Wav2Vec2ForSequenceClassification

, Wav2Vec2FeatureExtractor , WavLMForSequenceClassification
17 import soundfile as sf
18 import os
19 import torchaudio
20 import torch.nn as nn
21 import torch.nn.functional as F
22 import matplotlib.pyplot as plt
23 from sklearn.metrics import roc_curve , auc

e

24 import numpy as np
25 from collections import Counter
26

27 import torchaudio.transforms as T
28

29 # Part 1: Mount Google Drive
30 from google.colab import drive
31 drive.mount(’/content/drive’, force_remount=True)
32

33 # Set paths for the audio and metadata directories
34 audio_folder = "/content/drive/My Drive/My notes - cyber/Semester 4/

ASVspoof2019_LA_eval/flac"
35 metadata_file = "/content/drive/My Drive/My notes - cyber/Semester 4/

ASVspoof2019_LA_cm_protocols/ASVspoof2019.LA.cm.eval.trl.txt"
36

37 # Check if CUDA is available for using GPU
38 device = torch.device("cuda" if torch.cuda.is_available () else "cpu")
39 print(f"Using device: {device}")
40

41 # Load the pretrained separation model (ConvTasNet)
42 sepformer = ConvTasNet.from_pretrained(’mpariente/ConvTasNet_WHAM!_sepclean ’)
43 sepformer = sepformer.to(device)
44

45 # config = AutoConfig.from_pretrained (" abhishtagatya/wavlm -base -960h-itw -
deepfake ")

46 # feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained (" abhishtagatya
/wavlm -base -960h-itw -deepfake ")

47 # spoof_model = WavLMForSequenceClassification.from_pretrained (" abhishtagatya
/wavlm -base -960h-itw -deepfake", config=config).to(device)

48

49

50 config = AutoConfig.from_pretrained("abhishtagatya/wavlm -base -960h-asv19 -
deepfake")

51 feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("abhishtagatya/
wavlm -base -960h-asv19 -deepfake")

52 spoof_model = WavLMForSequenceClassification.from_pretrained("abhishtagatya/
wavlm -base -960h-asv19 -deepfake", config=config).to(device)

53

54

55 spoof_model = spoof_model.to(device)
56

57 from asteroid.models import BaseModel
58

59 model = BaseModel.from_pretrained("JorisCos/ConvTasNet_Libri2Mix_sepnoisy_16k
")

60 model = model.to(device)
61

62 !pip install speechbrain
63

64 from speechbrain.inference.separation import SepformerSeparation as separator
65

f

66 model1 = separator.from_hparams(source="speechbrain/sepformer -wsj02mix",
savedir=’pretrained_models/sepformer -wsj02mix ’,run_opts ={"device": "cuda"
})

67 model1 = model1.to(device)
68

69 import pandas as pd
70

71 # Load file , specify only needed columns
72 df = pd.read_csv(metadata_file , header=None , delim_whitespace=True , usecols

=[1, 4], names=["file", "label"])
73

74 # Map labels to numeric (spoof = 1, bonafide = 0)
75 label_map = {"spoof": 1, "bonafide": 0}
76 df["label"] = df["label"].map(label_map)
77

78 df.shape
79

80 def load_audio(audio_path):
81 waveform , sample_rate = torchaudio.load(audio_path)
82 if sample_rate != 16000:
83 waveform = torchaudio.transforms.Resample(sample_rate , 16000)(

waveform)
84 return waveform.squeeze ().numpy()
85

86 def predict_spoof(audio_path):
87 audio = load_audio(audio_path)
88 inputs = feature_extractor(audio , sampling_rate =16000 , return_tensors="pt

", padding=True)
89 with torch.no_grad ():
90 logits = spoof_model (** inputs.to(spoof_model.device)).logits
91 probs = torch.softmax(logits , dim=-1).cpu().numpy ()[0]
92 predicted_label = "spoof" if probs [1] > probs [0] else "bonafide"
93 return predicted_label , probs
94

95 from tqdm import tqdm
96 from sklearn.metrics import accuracy_score , confusion_matrix , roc_auc_score
97

98 y_true = []
99 y_pred = []

100 y_score = []
101 count = 0
102

103 for _, row in tqdm(df.iterrows (), total=len(df)):
104 count += 1
105 if count > 30000:
106 break
107

108

109 audio_path = os.path.join(audio_folder , row["file"])
110 audio_path = audio_path + ’.flac’
111

g

112 if not os.path.exists(audio_path):
113 print(f"Missing: {audio_path}")
114 continue
115

116 pred , score = predict_spoof(audio_path)
117

118 y_true.append(row["label"])
119 y_pred.append(pred)
120 y_score.append(score)
121

122 print(y_true)
123 print(y_pred)
124 print(y_score)
125

126 # === Step 6: Evaluate ===
127

128 y_true_label = ["spoof" if label == 1 else 0 for label in y_true]
129 cm = confusion_matrix(y_true_label , y_pred)
130

131

132 acc = accuracy_score(y_true_label , y_pred)
133

134 y_score_modified = [score [1] for score in y_score]
135 roc = roc_auc_score(y_true , y_score_modified)
136

137 print(f"\nAccuracy: {acc:.4f}")
138 print("Confusion Matrix :\n", cm)
139 print(f"ROC AUC Score: {roc :.4f}")
140

141 from sklearn.metrics import roc_curve
142 import numpy as np
143

144 fpr , tpr , thresholds = roc_curve(y_true , y_score_modified , pos_label =1)
145

146 # Find the point where FPR 1 - TPR
147 eer = fpr[np.nanargmin(np.absolute ((1 - tpr) - fpr))]
148

149 print(f"Equal Error Rate (EER): {eer:.4f}")

Listing A.2: Complete code for Testing SOTA spoof detection model

1 # -*- coding: utf -8 -*-
2 """ pretrained pipeline.ipynb
3

4 Automatically generated by Colab.
5

6 Original file is located at
7 https :// colab.research.google.com/drive /1 HveSqt1YMWgGNFNq05qH9QpwqR8YXB9w
8 """
9

10 !pip install torch torchaudio transformers scikit -learn soundfile asteroid

h

11

12 !pip install speechbrain
13

14 # Part 2: Load pretrained models and dependencies
15 import torch
16 from asteroid.models import ConvTasNet
17 from transformers import AutoProcessor , AutoModelForPreTraining ,

AutoModelForAudioClassification , AutoConfig
18 from transformers import Wav2Vec2Processor , Wav2Vec2ForSequenceClassification

, Wav2Vec2FeatureExtractor , WavLMForSequenceClassification
19 import soundfile as sf
20 import os
21 import torchaudio
22 import torch.nn as nn
23 import torch.nn.functional as F
24 import matplotlib.pyplot as plt
25 from sklearn.metrics import roc_curve , auc
26 import numpy as np
27 from collections import Counter
28 import torchaudio.transforms as T
29

30 # Part 1: Mount Google Drive
31 from google.colab import drive
32 drive.mount(’/content/drive’, force_remount=True)
33

34 # Set paths for the audio and metadata directories
35 audio_folder = "/content/drive/My Drive/My notes - cyber/Semester 4/

overlapped_audio_2/"
36 metadata_file = "/content/drive/My Drive/My notes - cyber/Semester 4/

overlapped_audio_metadata_2.txt"
37

38 # Check if CUDA is available for using GPU
39 device = torch.device("cuda" if torch.cuda.is_available () else "cpu")
40 print(f"Using device: {device}")
41

42 # Load the pretrained separation model (ConvTasNet)
43 sepformer = ConvTasNet.from_pretrained(’mpariente/ConvTasNet_WHAM!_sepclean ’)
44 sepformer = sepformer.to(device)
45

46 config = AutoConfig.from_pretrained("abhishtagatya/wavlm -base -960h-asv19 -
deepfake")

47 feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("abhishtagatya/
wavlm -base -960h-asv19 -deepfake")

48 spoof_model = WavLMForSequenceClassification.from_pretrained("abhishtagatya/
wavlm -base -960h-asv19 -deepfake", config=config).to(device)

49

50

51 spoof_model = spoof_model.to(device)
52

53 # # Check if CUDA is available for using GPU
54 # device = torch.device ("cuda" if torch.cuda.is_available () else "cpu")

i

55 # print(f"Using device: {device }")
56

57 # saved_model_path = "/ content/drive/My Drive/My notes - cyber/Semester 4/
finetuned_spoof_model6"

58

59 # config = AutoConfig.from_pretrained(saved_model_path)
60 # feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(

saved_model_path)
61 # spoof_model = WavLMForSequenceClassification.from_pretrained(

saved_model_path , config=config).to(device)
62 # spoof_model.eval()
63

64 # spoof_model = spoof_model.to(device)
65

66 from speechbrain.pretrained import SepformerSeparation
67 model1 = SepformerSeparation.from_hparams(
68 "speechbrain/sepformer -wsj02mix"
69)
70

71 # Part 2: Read Metadata from a .txt file
72

73 def load_metadata(metadata_file):
74 metadata = []
75 count = 0
76 metadata_count = {}
77 with open(metadata_file , "r") as f:
78 for line in f:
79 count += 1
80 parts = line.strip().split(’ ’)
81 filename , _, _, _, _, label = parts
82 metadata.append ((filename , label))
83 if label not in metadata_count:
84 metadata_count[label] = 1
85 else:
86 metadata_count[label] += 1
87

88 print(count , metadata_count)
89 return metadata
90

91 # Example usage: Load metadata
92 metadata = load_metadata(metadata_file)
93 print(metadata [:5]) # Display first 5 entries
94

95 # Part 3: Function to load audio
96 def load_audio(audio_path):
97 """
98 Function to load audio using torchaudio.
99 Converts audio to a waveform tensor.

100 """
101 waveform , sample_rate = torchaudio.load(audio_path , normalize=True)
102 return waveform

j

103

104 # Part 5: Function to predict spoof or bonafide using Wav2Vec2
105

106 def predict_spoof(audio):
107 inputs = feature_extractor(audio , sampling_rate =16000 , return_tensors="pt

", padding=True)
108 # if audio.ndimension () == 1:
109 # # If it’s 1D, add an extra dimension to make it 2D (e.g., batch

dimension)
110 # audio = audio.unsqueeze (0)
111 # if audio.size (1) < 100:
112 # audio = F.pad(audio , (0, 100 - audio.size (1)))
113 # with torch.no_grad ():
114 # logits = spoof_model (** inputs.to(spoof_model.device)).logits
115

116 # print(f"Waveform size: {audio.size()}")
117

118 # probs = torch.softmax(logits , dim=-1).cpu().numpy ()[0]
119 # predicted_label = "spoof" if probs [1] > probs [0] else "bonafide"
120 # return predicted_label , probs
121

122 inputs = feature_extractor(audio , sampling_rate =16000 , return_tensors="pt
", padding=True)

123 with torch.no_grad ():
124 logits = spoof_model (** inputs.to(spoof_model.device)).logits
125 probs = torch.softmax(logits , dim=-1).cpu().numpy ()[0]
126 predicted_label = "spoof" if probs [1] > probs [0] else "bonafide"
127 return predicted_label , probs
128

129 from scipy.io.wavfile import write
130

131

132 output_dir = ’/content/drive/My Drive/My notes - cyber/Semester 4/
Separated_overlapped_audio_1 ’

133

134 # Create directory if it doesn’t exist
135 os.makedirs(output_dir , exist_ok=True)
136

137 # Part 8: Loop Through Audio Files and Perform Inference
138 def run_pipeline_for_all_files(audio_folder , metadata):
139 """
140 Loop through all audio files , separate the speakers , and perform spoof

detection.
141 """
142 predictions = []
143 y_true = []
144 y_pred = []
145 y_score = []
146 all_true = []
147 all_pred = []
148 all_score = []

k

149 count = 0
150 for filename , true_label in metadata:
151 audio_path = os.path.join(audio_folder , filename) # Path to the

audio file
152

153 # Step 1: Load the audio
154 try:
155 waveform = load_audio(audio_path)
156 except Exception as e:
157 print(f"Error loading {filename }: {e}")
158 continue # Skip this file if there’s an issue
159

160 count += 1
161 if count > 10000:
162 break
163

164 # Step 2: Separate speakers
165

166 speaker_waveform = model1.separate_file(audio_path)
167

168 speaker1 = speaker_waveform [:, :, 0]. squeeze (0).detach ().cpu()
169 speaker2 = speaker_waveform [:, :, 1]. squeeze (0).detach ().cpu()
170

171

172 # # Save directly from tensor (expected shape: [channels , time])
173 # output1_path = os.path.join(output_dir , "output" + str(count + 1)

+". wav")
174 # output2_path = os.path.join(output_dir , "output" + str(count + 2)

+". wav")
175 # torchaudio.save(output1_path , speaker1 , 8000)
176 # torchaudio.save(output2_path , speaker2 , 8000)
177 # count += 2
178

179

180 # Step 3: Predict spoof/bona fide for each speaker
181

182 resample = torchaudio.transforms.Resample(orig_freq =8000, new_freq
=16000)

183 speaker1_resampled = resample(speaker1)
184 speaker2_resampled = resample(speaker2)
185

186 label1 , prob1 = predict_spoof(speaker1_resampled)
187 label2 , prob2 = predict_spoof(speaker2_resampled)
188

189 # Combine the normalized scores by averaging
190 combined_score = (prob1 + prob2) / 2
191

192 # Step 4: Format prediction (e.g., "sb" or "bb")
193 if label1 == "spoof" and label2 == "bonafide":
194 prediction = "SB"
195 elif label2 == "spoof" and label1 == "bonafide":

l

196 prediction = "SB"
197 elif label1 == "bonafide" and label2 == "bonafide":
198 prediction = "BB"
199 else:
200 prediction = "SS"
201

202 temp1 , temp2 = true_label [0], true_label [1]
203 if temp1 == "S":
204 individual_true_value1 = 1
205 else:
206 individual_true_value1 = 0
207 if temp2 == "S":
208 individual_true_value2 = 1
209 else:
210 individual_true_value2 = 0
211

212 binary_labels = [individual_true_value1 , individual_true_value2]
213

214 pred_scores = [prob1 [1], prob2 [1]]
215

216 temp_all_pred = [label1 , label2]
217

218

219 # Permutation 1: scores as-is
220 error1 = np.sum(np.abs(np.array(pred_scores) - np.array(binary_labels

)))
221

222 # Permutation 2: flipped scores
223 flipped_scores = pred_scores [::-1]
224 error2 = np.sum(np.abs(np.array(flipped_scores) - np.array(

binary_labels)))
225

226 if error1 <= error2:
227 all_true.extend(binary_labels)
228 all_score.extend(pred_scores)
229 all_pred.extend(temp_all_pred)
230 else:
231 all_true.extend(binary_labels)
232 all_score.extend(flipped_scores)
233 all_pred.extend(temp_all_pred [:: -1])
234

235 y_true.append(true_label)
236 y_pred.append(prediction)
237 y_score.append(combined_score)
238

239 # print(y_true , y_pred , y_score , all_true , all_score , prob1 , prob2)
240

241 # Delete tensors to free memory
242 del waveform , speaker1 , speaker2 , speaker_waveform
243

244 # Empty CUDA cache periodically

m

245 if count % 100 == 0: # Adjust frequency as needed
246 torch.cuda.empty_cache ()
247

248

249 return y_true , y_pred , y_score , all_true , all_score , all_pred
250

251 def calculate_eer(y_true , y_pred , y_score , all_true , all_score):
252 """
253 Calculate the Equal Error Rate (EER) from the predictions.
254 """
255 # Separate the combined scores and true labels
256 combined_scores = np.array(y_score)
257 true_labels = np.array(y_true)
258

259 # Convert true labels to binary (spoof = 1, bonafide = 0)
260 # y_true_binary = np.array ([0 if label == "ss" else 1 if label == "sb"

else 2 for label in true_labels])
261

262 y_true_binary = np.array ([0 if label == "ss" else 1 for label in
true_labels])

263

264 # # Calculate ROC curve and EER
265 # fpr , tpr , thresholds = roc_curve(y_true_binary , combined_scores)
266

267 # # FRR = 1 - TPR
268 # frr = 1 - tpr
269

270 # # Find EER (Equal Error Rate), where FAR equals FRR
271 # eer_index = np.argmin(np.abs(fpr - frr))
272 # eer_threshold = thresholds[eer_index]
273 # eer = fpr[eer_index] # EER is where FAR equals FRR
274

275 fpr , tpr , thresholds = roc_curve(all_true , all_score , pos_label =1)
276 fnr = 1 - tpr
277 eer_index = np.nanargmin(np.abs(fnr - fpr))
278 eer = (fpr[eer_index] + fnr[eer_index]) / 2
279 threshold = thresholds[eer_index]
280 return eer , threshold
281

282 # Plot FAR and FRR
283 plt.plot(fpr , label=’FAR’)
284 plt.plot(frr , label=’FRR’)
285 plt.axvline(x=eer_index , linestyle=’--’, color=’r’, label=f’EER at

threshold {eer_threshold :.2f}’)
286 plt.legend ()
287 plt.xlabel(’Threshold ’)
288 plt.ylabel(’Rate’)
289 plt.title(’FAR and FRR’)
290 plt.show()
291

292 # Print EER

n

293 print(f"EER: {eer:.4f} at threshold {eer_threshold :.2f}")
294

295 return eer
296

297 from sklearn.metrics import classification_report , accuracy_score
298 import pandas as pd
299

300 def evaluate_multiclass_metrics(y_true , y_pred , y_score):
301

302 report_dict = classification_report(y_true , y_pred , target_names =["SS", "
SB", "BB"], labels =["SS", "SB", "BB"], output_dict=True)

303

304 print(" Classification Report:")
305 print(report_dict)
306

307 acc = accuracy_score(y_true , y_pred)
308 print(f" Accuracy: {acc * 100:.2f}%")
309

310

311 report_df = pd.DataFrame(report_dict).transpose ()
312

313 # Save to CSV
314 report_df.to_csv("/content/drive/My Drive/My notes - cyber/Semester 4/

classification_report_pretrained.csv")
315

316

317 return acc
318

319 # Part 10: Run the Full Pipeline
320

321 # Load metadata
322 metadata = load_metadata(metadata_file)
323

324 # Run the pipeline for all files in the audio folder
325 y_true1 , y_pred1 , y_score1 , all_true , all_score , all_pred =

run_pipeline_for_all_files(audio_folder , metadata)
326 y_score1_modified = [score [0] for score in y_score1]
327

328 # Calculate EER
329 # eer = calculate_eer(y_true1 , y_pred1 , y_score1_modified , all_true ,

all_score)
330 # print(f"Equal Error Rate (EER): {eer * 100:.2f}%")
331

332 accuracy = evaluate_multiclass_metrics(y_true1 , y_pred1 , y_score1_modified)
333

334 acc1 = accuracy_score(y_true1 , y_pred1)
335 print(f"Accuracy: {acc1 * 100:.2f}%")
336

337 eer , threshold = calculate_eer(y_true1 , y_pred1 , y_score1_modified , all_true ,
all_score)

338 print(f"Equal Error Rate (EER): {eer * 100:.2f}%")

o

339 print(f"Threshold at EER: {threshold :.6f}")
340

341 from sklearn.metrics import accuracy_score , precision_score , recall_score ,
f1_score

342

343 binary_all_pred = [1 if label ==’spoof’ else 0 for label in all_pred]
344

345 # # Calculate metrics
346 # all_pred = []
347 # for score in all_score:
348 # if score > 0.5:
349 # all_pred.append (1)
350 # else:
351 # all_pred.append (0)
352

353 accuracy_all = accuracy_score(all_true , binary_all_pred)
354 precision_all = precision_score(all_true , binary_all_pred)
355 recall_all = recall_score(all_true , binary_all_pred)
356 f1_all = f1_score(all_true , binary_all_pred)
357

358 # Display results
359 print(f"Accuracy: {accuracy_all :.2f}")
360 print(f"Precision: {precision_all :.2f}")
361 print(f"Recall: {recall_all :.2f}")
362 print(f"F1 Score: {f1_all :.2f}")
363

364 # Assuming labels = [’ss’, ’sb’, ’bb ’]
365 y_true_combined_binary = []
366 for label in y_true1:
367 if label in [’ss’, ’sb’]:
368 y_true_combined_binary.append (1) # spoof
369 else:
370 y_true_combined_binary.append (0) # bonafide
371

372 # from sklearn.metrics import roc_curve
373 # from scipy.optimize import brentq
374 # from scipy.interpolate import interp1d
375

376 # # Compute ROC
377 # print(y_true_combined_binary [0], y_score1_modified [0])
378 # fpr , tpr , thresholds = roc_curve(y_true_combined_binary , y_score1_modified)
379 # fnr = 1 - tpr
380 # print(np.unique(fpr), np.unique(tpr))
381 # # Interpolate and find EER
382 # eer_index_combined = np.nanargmin(np.absolute(fnr - fpr))
383 # eer_combined = (fpr[eer_index_combined] + fnr[eer_index_combined]) / 2
384

385 # print(f"EER: {eer_combined :.4f}")
386

387 metrics_history = {
388 "name" : ’’,

p

389 "eer": [],
390 "threshold" :[],
391 "total_acc": [],
392 "individual_acc": [],
393 "precision": [],
394 "recall": [],
395 "f1_score": []
396 # Add more if needed
397 }
398 metrics_history["name"] = ’Pre -Trained Metrics ’
399 metrics_history["eer"]. append(eer)
400 metrics_history["threshold"]. append(threshold)
401 metrics_history["total_acc"]. append(acc1) # Replace with actual value from ‘

evaluate_on_dev ‘
402 metrics_history["individual_acc"]. append(accuracy_all)
403 metrics_history["precision"]. append(precision_all)
404 metrics_history["recall"]. append(recall_all)
405 metrics_history["f1_score"]. append(f1_all)
406

407 # Replace with actual value
408

409 import os
410 import pandas as pd
411

412 metrics_file = "/content/drive/My Drive/My notes - cyber/Semester 4/
pipeline_metrics.csv"

413

414 # Check if file exists and load old metrics
415 if os.path.exists(metrics_file):
416 existing_df = pd.read_csv(metrics_file)
417 combined_df = pd.concat ([existing_df , pd.DataFrame(metrics_history)],

ignore_index=True)
418 else:
419 combined_df = pd.DataFrame(metrics_history)
420

421 # Save the updated file
422 combined_df.to_csv(metrics_file , index=False)

Listing A.3: Complete code for Testing pre-trained Pipeline and Trained Pipeline

1 # -*- coding: utf -8 -*-
2 """ Train pipeline.ipynb
3

4 Automatically generated by Colab.
5

6 Original file is located at
7 https :// colab.research.google.com/drive /1 kCq_6_QEprfoFkK0yyM -t3lyycD6DzFg
8 """
9

10 !pip install torch torchaudio transformers scikit -learn soundfile asteroid
speechbrain

q

11

12 # Part 2: Load pretrained models and dependencies
13 import torch
14 from asteroid.models import ConvTasNet
15 from transformers import AutoProcessor , AutoModelForPreTraining ,

AutoModelForAudioClassification , AutoConfig
16 from transformers import Wav2Vec2Processor , Wav2Vec2ForSequenceClassification

, Wav2Vec2FeatureExtractor , WavLMForSequenceClassification
17 import soundfile as sf
18 import os
19 import torchaudio
20 import torch.nn as nn
21 import torch.nn.functional as F
22 import matplotlib.pyplot as plt
23 from sklearn.metrics import roc_curve , auc
24 import numpy as np
25 from collections import Counter
26 import torchaudio.transforms as T
27 from torch.nn.utils import clip_grad_norm_
28

29 # Part 1: Mount Google Drive
30 from google.colab import drive
31 drive.mount(’/content/drive’, force_remount=True)
32

33 # Set paths for the audio and metadata directories
34 audio_folder = "/content/drive/My Drive/My notes - cyber/Semester 4/

overlapped_audio_2/"
35 metadata_file = "/content/drive/My Drive/My notes - cyber/Semester 4/

overlapped_audio_metadata_2.txt"
36 audio_folder_train = "/content/drive/My Drive/My notes - cyber/Semester 4/

overlapped_audio_train/"
37 audio_folder_dev = "/content/drive/My Drive/My notes - cyber/Semester 4/

overlapped_audio_dev/"
38 metadata_file_train = "/content/drive/My Drive/My notes - cyber/Semester 4/

overlapped_audio_metadata_train.txt"
39 metadata_file_dev = "/content/drive/My Drive/My notes - cyber/Semester 4/

overlapped_audio_metadata_dev.txt"
40

41 import random
42 from torch.optim import AdamW
43 from transformers import get_scheduler
44

45

46 # Set random seed for reproducibility
47 def set_seed(seed =42):
48 random.seed(seed)
49 np.random.seed(seed)
50 torch.manual_seed(seed)
51 torch.cuda.manual_seed_all(seed)
52

53 set_seed (42)

r

54

55 # # Check if CUDA is available for using GPU
56 # device = torch.device ("cuda" if torch.cuda.is_available () else "cpu")
57 # print(f"Using device: {device }")
58

59 # from speechbrain.pretrained import SepformerSeparation
60 # model1 = SepformerSeparation.from_hparams(
61 # "speechbrain/sepformer -wsj02mix"
62 #)
63

64 # config = AutoConfig.from_pretrained (" abhishtagatya/wavlm -base -960h-asv19 -
deepfake ")

65 # feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained (" abhishtagatya
/wavlm -base -960h-asv19 -deepfake ")

66 # spoof_model = WavLMForSequenceClassification.from_pretrained (" abhishtagatya
/wavlm -base -960h-asv19 -deepfake", config=config).to(device)

67 # spoof_model.train()
68

69 # spoof_model = spoof_model.to(device)
70

71 # Check if CUDA is available for using GPU
72 device = torch.device("cuda" if torch.cuda.is_available () else "cpu")
73 print(f"Using device: {device}")
74

75 from speechbrain.pretrained import SepformerSeparation
76 model1 = SepformerSeparation.from_hparams(
77 "speechbrain/sepformer -wsj02mix"
78)
79 saved_model_path = "/content/drive/My Drive/My notes - cyber/Semester 4/

finetuned_spoof_model5"
80

81 config = AutoConfig.from_pretrained(saved_model_path)
82 feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(saved_model_path

)
83 spoof_model = WavLMForSequenceClassification.from_pretrained(saved_model_path

, config=config).to(device)
84 spoof_model.train ()
85

86 spoof_model = spoof_model.to(device)
87

88 # Part 2: Read Metadata from a .txt file
89

90 def load_metadata(metadata_file):
91 metadata = []
92 count = 0
93 metadata_count = {}
94 with open(metadata_file , "r") as f:
95 for line in f:
96 count += 1
97 parts = line.strip().split(’ ’)
98 filename , _, _, _, _, label = parts

s

99 metadata.append ((filename , label))
100 if label not in metadata_count:
101 metadata_count[label] = 1
102 else:
103 metadata_count[label] += 1
104

105 print(count , metadata_count)
106 return metadata
107

108 # Example usage: Load metadata
109 metadata = load_metadata(metadata_file)
110 metadata_dev = load_metadata(metadata_file_dev)
111 metadata_train = load_metadata(metadata_file_train)
112 print(metadata [:5]) # Display first 5 entries
113 print(metadata_dev [:5])
114 print(metadata_train [:5])
115

116 # Part 3: Function to load audio
117 def load_audio(audio_path):
118 """
119 Function to load audio using torchaudio.
120 Converts audio to a waveform tensor.
121 """
122 waveform , sample_rate = torchaudio.load(audio_path , normalize=True)
123 return waveform
124

125 # Part 5: Function to predict spoof or bonafide using Wav2Vec2
126

127 def predict_spoof(audio):
128 inputs = feature_extractor(audio , sampling_rate =16000 , return_tensors="pt

", padding=True)
129 with torch.no_grad ():
130 logits = spoof_model (** inputs.to(spoof_model.device)).logits
131 probs = torch.softmax(logits , dim=-1).cpu().numpy ()[0]
132 predicted_label = "spoof" if probs [1] > probs [0] else "bonafide"
133 return predicted_label , probs
134

135 # Optimizer and scheduler
136 learning_rate = 1e-6
137 optimizer = AdamW(spoof_model.parameters (), lr=learning_rate)
138 batch_size = 1
139 num_epochs = 4
140 gradient_accumulation_steps = 2
141

142 # Count training steps
143 total_training_steps = (len(metadata_train) // gradient_accumulation_steps) *

num_epochs
144 lr_scheduler = get_scheduler(
145 "linear",
146 optimizer=optimizer ,
147 num_warmup_steps =0,

t

148 num_training_steps=total_training_steps ,
149)
150

151 # Load optimizer and scheduler
152 optimizer.load_state_dict(torch.load(os.path.join(saved_model_path , "

optimizer.pt")))
153 lr_scheduler.load_state_dict(torch.load(os.path.join(saved_model_path , "

scheduler.pt")))
154

155 learning_rate = 3e-4
156 batch_size = 1
157 num_epochs = 4
158 gradient_accumulation_steps = 2
159

160 # Evaluate on dev set
161 def evaluate_on_dev(dev_metadata , dev_audio_folder):
162 spoof_model.eval()
163 total_loss = 0
164 correct = 0
165 total = 0
166 count1 = 0
167 random.shuffle(dev_metadata)
168 dev_metadata_subset = dev_metadata [:100]
169 with torch.no_grad ():
170 for filename , label in tqdm(dev_metadata_subset , desc="Evaluating"):
171 audio_path = os.path.join(dev_audio_folder , filename)
172

173 label_map = {’s’: 1, ’b’: 0}
174 labels_pair = [label_map[label [0]. lower ()], label_map[label [1].

lower()]]
175

176 try:
177 waveform = load_audio(audio_path)
178 separated = model1.separate_file(audio_path) # Assuming

model1 is defined
179 s1 = separated[:, :, 0]. squeeze (0).cpu()
180 s2 = separated[:, :, 1]. squeeze (0).cpu()
181 except Exception as e:
182 print(f"Skipping {filename} due to error: {e}")
183 continue
184

185 best_loss = float(’inf’)
186 best_perm = None
187

188 for perm in [(s1 , s2, labels_pair), (s2, s1, labels_pair [:: -1])]:
189 loss_total = 0
190 predictions = []
191 for i, spk in enumerate(perm [:2]):
192 inputs = feature_extractor(spk , sampling_rate =16000 ,

return_tensors="pt", padding=True)
193 inputs = {k: v.to(spoof_model.device) for k, v in inputs.

u

items()}
194 labels_tensor = torch.tensor ([perm [2][i]]).to(spoof_model.

device)
195 outputs = spoof_model (**inputs , labels=labels_tensor)
196 loss_total += outputs.loss.item()
197 if loss_total < best_loss:
198 best_loss = loss_total
199 best_perm = perm
200

201 for i, spk in enumerate(best_perm [:2]):
202 inputs = feature_extractor(spk , sampling_rate =16000 ,

return_tensors="pt", padding=True)
203 inputs = {k: v.to(spoof_model.device) for k, v in inputs.items

()}
204 labels_tensor = torch.tensor ([best_perm [2][i]]).to(spoof_model.

device)
205 outputs = spoof_model (**inputs , labels=labels_tensor)
206 logits = outputs.logits
207 preds = torch.argmax(logits , dim=-1)
208 correct += (preds == labels_tensor).sum().item()
209 total += 1
210 total_loss += outputs.loss.item()
211

212 # for i, spk in enumerate ([s1, s2]):
213 # true_label = 1 if label[i].lower () == "s" else 0
214 # inputs = feature_extractor(spk , sampling_rate =16000 ,

return_tensors ="pt", padding=True)
215 # inputs = {k: v.to(spoof_model.device) for k, v in inputs.

items()}
216 # labels = torch.tensor ([true_label]).to(spoof_model.device)
217

218 # outputs = spoof_model (**inputs , labels=labels)
219 # loss = outputs.loss
220 # logits = outputs.logits
221 # preds = torch.argmax(logits , dim=-1)
222 # correct += (preds == labels).sum().item()
223 # total += 1
224 # total_loss += loss.item()
225

226 accuracy = correct / total if total > 0 else 0
227 avg_loss = total_loss / total if total > 0 else 0
228 print(f"\n[DEV] Loss: {avg_loss :.4f} | Accuracy: {accuracy * 100:.2f}%\n"

)
229 spoof_model.train () # set back to training mode
230 return avg_loss , accuracy
231

232 # Training loop
233 from tqdm import tqdm
234 global_step = 0
235

236

v

237 for epoch in range(num_epochs):
238 epoch_loss = 0.0
239 print(f"\nEpoch {epoch + 1}/{ num_epochs}")
240 total_loss = 0.0
241 count = 0
242 random.seed (42) # For reproducibility
243 random.shuffle(metadata_train)
244 spoof_model.train ()
245 metadata_train_subset = metadata_train [:150]
246 step = 0
247 for idx , (filename , label) in tqdm(enumerate(metadata_train_subset), desc

="Training", total=len(metadata_train_subset)):
248

249 audio_path = os.path.join(audio_folder_train , filename)
250

251 label_map = {’s’: 1, ’b’: 0}
252 labels = [label_map[label [0]. lower()], label_map[label [1]. lower ()]]
253

254 try:
255 # Load and separate audio
256 mixed = load_audio(audio_path)
257 separated = model1.separate_file(audio_path) # Assuming model1

is defined
258 s1 = separated[:, :, 0]. squeeze (0).cpu()
259 s2 = separated[:, :, 1]. squeeze (0).cpu()
260 except Exception as e:
261 print(f"Skipping {filename} due to error: {e}")
262 continue
263

264 permutations = [(s1, s2, labels),(s2, s1, labels [:: -1])]
265 best_loss = float(’inf’)
266 best_perm = None
267

268 for perm_s1 , perm_s2 , perm_labels in permutations:
269 loss_total = 0
270 for i, spk in enumerate ([perm_s1 , perm_s2]):
271 inputs = feature_extractor(spk , sampling_rate =16000 ,

return_tensors="pt", padding=True)
272 inputs = {k: v.to(spoof_model.device) for k, v in inputs.items

()}
273 labels_tensor = torch.tensor ([perm_labels[i]]).to(spoof_model.

device)
274 outputs = spoof_model (**inputs , labels=labels_tensor)
275 loss_total += outputs.loss.item()
276

277 if loss_total < best_loss:
278 best_loss = loss_total
279 best_perm = (perm_s1 , perm_s2 , perm_labels)
280

281 for i, spk in enumerate(best_perm [:2]):
282 inputs = feature_extractor(spk , sampling_rate =16000 , return_tensors

w

="pt", padding=True)
283 inputs = {k: v.to(spoof_model.device) for k, v in inputs.items()}
284 labels_tensor = torch.tensor ([best_perm [2][i]]).to(spoof_model.

device)
285 outputs = spoof_model (**inputs , labels=labels_tensor)
286 loss = outputs.loss / gradient_accumulation_steps
287 loss.backward ()
288 total_loss += loss.item()
289 epoch_loss += loss.item()
290

291

292 # for i, spk in enumerate ([s1, s2]):
293 # # Determine true label (0 = bonafide , 1 = spoof)
294 # true_label = 1 if label[i].lower () == "s" else 0
295 # inputs = feature_extractor(spk , sampling_rate =16000 ,

return_tensors ="pt", padding=True)
296 # inputs = {k: v.to(spoof_model.device) for k, v in inputs.items

()}
297 # labels = torch.tensor ([true_label]).to(spoof_model.device)
298

299 # # Forward pass
300 # outputs = spoof_model (**inputs , labels=labels)
301 # loss = outputs.loss / gradient_accumulation_steps
302 # loss.backward ()
303 # total_loss += loss.item()
304 # epoch_loss += loss.item()
305

306 if (idx * 2 + i + 1) % gradient_accumulation_steps == 0:
307

308 # In training loop , after loss.backward ()
309 clip_grad_norm_(spoof_model.parameters (), max_norm =1.0)
310 optimizer.step()
311 lr_scheduler.step()
312 optimizer.zero_grad ()
313 global_step += 1
314

315

316 # Free memory for the processed clip
317 del s1, s2, labels
318 del inputs , outputs
319

320 if (idx + 1) % 100 == 0:
321 print(f"Processed {idx + 1} files. Avg loss: {total_loss / (idx +

1):.4f}")
322 torch.cuda.empty_cache ()
323

324 print(f"Epoch {epoch +1} finished. Total loss: {total_loss :.4f}")
325

326 # Evaluate on dev set
327 val_loss , val_acc = evaluate_on_dev(metadata_dev , audio_folder_dev)
328 break

x

329

330 from transformers import AutoConfig
331

332 save_path = "/content/drive/My Drive/My notes - cyber/Semester 4/
finetuned_spoof_model6"

333

334 # Save model , feature extractor , and config
335 spoof_model.save_pretrained(save_path)
336 feature_extractor.save_pretrained(save_path)
337 spoof_model.config.save_pretrained(save_path)
338

339

340 # Save optimizer and scheduler
341 torch.save(optimizer.state_dict (), os.path.join(save_path , "optimizer.pt"))
342 torch.save(lr_scheduler.state_dict (), os.path.join(save_path , "scheduler.pt")

)
343

344 print(f"Model , feature extractor , and config saved to {save_path}")
345

346 metrics_history = {
347 "epoch": [],
348 "train_loss": [],
349 "val_loss": [],
350 "val_accuracy": []
351 }
352 metrics_history["epoch"]. append(epoch + 1)
353 metrics_history["train_loss"]. append(total_loss)
354 metrics_history["val_loss"]. append(val_loss)
355 metrics_history["val_accuracy"]. append(val_acc)
356

357 import os
358 import pandas as pd
359

360 metrics_file = "/content/drive/My Drive/My notes - cyber/Semester 4/
training_metrics.csv"

361

362 # Check if file exists and load old metrics
363 if os.path.exists(metrics_file):
364 existing_df = pd.read_csv(metrics_file)
365 combined_df = pd.concat ([existing_df , pd.DataFrame(metrics_history)],

ignore_index=True)
366 else:
367 combined_df = pd.DataFrame(metrics_history)
368

369 # Save the updated file
370 combined_df.to_csv(metrics_file , index=False)

Listing A.4: Complete Code for training the Pipeline

1 # -*- coding: utf -8 -*-
2 """ confusion matrix.ipynb

y

3

4 Automatically generated by Colab.
5

6 Original file is located at
7 https :// colab.research.google.com/drive /10 g90ZBfFwJTyffs9hkEzhlK4dg9Tl9GT
8 """
9

10 import matplotlib.pyplot as plt
11 import seaborn as sns
12 import numpy as np
13 from sklearn.metrics import confusion_matrix
14

15 # Class labels
16 labels = [’SS’, ’SB’, ’BB’]
17 y_true = [’SS’] * 2535 + [’SB’] * 4979 + [’BB’] * 2486
18

19 # Simulating predictions based on recall distribution (approximate)
20 y_pred = (
21 [’SS’] * int (0.9889 * 2535) + [’SB’] * int (0.1869 * 4979) + [’BB’] * int

(0.3459 * 2486) +
22 [’SB’] * (2535 - int (0.9889 * 2535)) + # SS misclassified as SB
23 [’SS’] * (4979 - int (0.1869 * 4979)) + # SB misclassified as SS
24 [’SS’] * (2486 - int (0.3459 * 2486)) # BB misclassified as SS
25)
26

27 # Generate confusion matrix
28 cm = confusion_matrix(y_true , y_pred , labels=labels)
29

30 # Plot confusion matrix
31 plt.figure(figsize =(8, 6))
32 sns.heatmap(cm, annot=True , fmt=’d’, cmap=’Blues ’, xticklabels=labels ,

yticklabels=labels)
33 plt.xlabel(’Predicted Label ’)
34 plt.ylabel(’True Label’)
35 plt.title(’Confusion Matrix for Pre -trained Pipeline ’)
36 plt.tight_layout ()
37 plt.show()
38

39 # Re -import necessary libraries after code execution environment reset
40 import numpy as np
41 import matplotlib.pyplot as plt
42 from sklearn.metrics import roc_curve , auc , confusion_matrix ,

ConfusionMatrixDisplay
43

44 # Simulated data based on description
45 # Ground truth labels (0 = bonafide , 1 = spoof)
46 y_true_individual = np.random.choice ([0, 1], size =10000 , p=[0.5 , 0.5])
47

48 # Simulated predicted probabilities for the positive class (spoof)
49 # Assume high recall , moderate precision
50 y_scores_individual = y_true_individual * np.random.uniform (0.5, 1.0, size

z

=10000) + \
51 (1 - y_true_individual) * np.random.uniform (0.0, 0.7,

size =10000)
52

53 # Predicted labels based on a threshold of 0.5
54 y_pred_individual = (y_scores_individual > 0.5).astype(int)
55

56 # ROC Curve
57 fpr , tpr , thresholds = roc_curve(y_true_individual , y_scores_individual)
58 roc_auc = auc(fpr , tpr)
59

60 # Confusion Matrix
61 cm = confusion_matrix(y_true_individual , y_pred_individual)
62 disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels =["Bonafide"

, "Spoof"])
63

64 # Plotting
65 # fig , ax = plt.subplots(1, 2, figsize =(14, 6))
66

67 # # ROC curve
68 # ax[0]. plot(fpr , tpr , color=’blue ’, lw=2, label=f’ROC curve (AUC = {roc_auc

:.2f}) ’)
69 # ax[0]. plot([0, 1], [0, 1], color=’grey ’, lw=1, linestyle=’--’)
70 # ax[0]. set_xlim ([0.0 , 1.0])
71 # ax[0]. set_ylim ([0.0 , 1.05])
72 # ax[0]. set_xlabel(’False Positive Rate ’)
73 # ax[0]. set_ylabel(’True Positive Rate ’)
74 # ax[0]. set_title(’ROC Curve - Individual Audio Classification ’)
75 # ax[0]. legend(loc=" lower right ")
76

77 # Confusion matrix
78 disp.plot(cmap=plt.cm.Blues)
79

80 plt.tight_layout ()
81 plt.show()
82

83 import matplotlib.pyplot as plt
84 import seaborn as sns
85 import numpy as np
86 from sklearn.metrics import confusion_matrix
87

88 # Class labels
89 labels = [’SS’, ’SB’, ’BB’]
90 y_true = [’SS’] * 2535 + [’SB’] * 4979 + [’BB’] * 2486
91

92 # Simulating predictions based on recall distribution (approximate)
93 y_pred = (
94 [’SS’] * int (0.4469 * 2535) + [’SB’] * int (0.3801 * 4979) + [’BB’] * int

(0.9296 * 2486) +
95 [’SB’] * (2535 - int (0.4469 * 2535)) + # SS misclassified as SB
96 [’SS’] * (4979 - int (0.3801 * 4979)) + # SB misclassified as SS

97 [’SS’] * (2486 - int (0.9296 * 2486)) # BB misclassified as SS
98)
99

100 # Generate confusion matrix
101 cm = confusion_matrix(y_true , y_pred , labels=labels)
102

103 # Plot confusion matrix
104 plt.figure(figsize =(8, 6))
105 sns.heatmap(cm, annot=True , fmt=’d’, cmap=’Blues ’, xticklabels=labels ,

yticklabels=labels)
106 plt.xlabel(’Predicted Label ’)
107 plt.ylabel(’True Label’)
108 plt.title(’Confusion Matrix for Pre -trained Pipeline ’)
109 plt.tight_layout ()
110 plt.show()
111

112 import numpy as np
113 import seaborn as sns
114 import matplotlib.pyplot as plt
115 from sklearn.metrics import confusion_matrix
116

117 # Simulated predictions and true labels for binary classification
118 # Assuming "1" = spoof , "0" = bonafide
119 # Using the derived metrics: Accuracy = 0.7441 , Precision = 0.8472 , Recall =

0.5987
120 # Let’s create a synthetic example with 1000 samples for visualization
121

122 # Estimate positives and negatives
123 n_samples = 1000
124 recall = 0.5987
125 precision = 0.8472
126 true_positives = int(recall * 500) # assuming 500 actual spoofs
127 false_negatives = 500 - true_positives
128 false_positives = int((true_positives / precision) - true_positives)
129 true_negatives = 500 - false_positives
130

131 # Construct labels
132 y_true = [1] * true_positives + [1] * false_negatives + [0] * false_positives

+ [0] * true_negatives
133 y_pred = [1] * true_positives + [0] * false_negatives + [1] * false_positives

+ [0] * true_negatives
134

135 # Create confusion matrix
136 cm = confusion_matrix(y_true , y_pred)
137 labels = [’Bonafide (0)’, ’Spoof (1)’]
138

139 # Plot confusion matrix
140 plt.figure(figsize =(6, 5))
141 sns.heatmap(cm, annot=True , fmt=’d’, cmap=’Blues ’, xticklabels=labels ,

yticklabels=labels)
142 plt.xlabel("Predicted Label")

143 plt.ylabel("True Label")
144 plt.title("Confusion Matrix: Binary Classification on Separated Audio")
145 plt.tight_layout ()
146 plt.show()
147

148 cm
149

150 import matplotlib.pyplot as plt
151

152 # Epoch data
153 epochs = [1, 2, 3, 4, 5, 6]
154 train_loss_cumulative = [
155 7731.957299 ,
156 5657.795003 ,
157 5119.997936 ,
158 4750.488601 ,
159 4626.121368 ,
160 4915.015645
161]
162 val_loss = [
163 0.4292 ,
164 0.4027894042 ,
165 0.3836123315 ,
166 0.3826045701 ,
167 0.3826045701 ,
168 0.3830747771
169]
170 val_accuracy = [
171 0.8028 ,
172 0.81945 ,
173 0.82795 ,
174 0.8292 ,
175 0.8292 ,
176 0.83
177]
178

179 # Average training loss
180 data_items = 15000
181 train_loss_avg = [loss / data_items for loss in train_loss_cumulative]
182

183 # Plotting
184 plt.figure(figsize =(10, 6))
185 plt.plot(epochs , train_loss_avg , label=’Average Training Loss’, marker=’o’)
186 plt.plot(epochs , val_loss , label=’Validation Loss’, marker=’s’)
187 plt.xlabel(’Epoch’)
188 plt.ylabel(’Loss’)
189 plt.title(’Epoch vs Loss (Training & Validation)’)
190 plt.legend ()
191 plt.grid(True)
192 plt.tight_layout ()
193 plt.show()

194

195 from numpy import array , float32
196 # y_pred =loaded from the testing code
197 # y_true =loaded from the testing code
198 # y_score= loaded from the testing code
199

200 from sklearn.metrics import accuracy_score , precision_score , recall_score ,
f1_score , roc_curve , confusion_matrix

201

202

203 y_true_numeric = [1 if label == ’spoof ’ else 0 for label in y_true]
204

205 # Step 2: Extract predicted probabilities for positive class ("spoof")
206 # y_score is list of arrays: [prob_class_0 , prob_class_1]
207 y_score_positive = [prob [1] for prob in y_score]
208

209 # Step 3: Calculate metrics
210 accuracy = accuracy_score(y_true_numeric , y_pred)
211 precision = precision_score(y_true_numeric , y_pred)
212 recall = recall_score(y_true_numeric , y_pred)
213 f1 = f1_score(y_true_numeric , y_pred)
214 cm = confusion_matrix(y_true_numeric , y_pred)
215

216 fpr , tpr , thresholds = roc_curve(y_true_numeric , y_score_positive)
217

218 # Step 4: Print results
219 print("Accuracy:", accuracy)
220 print("Precision:", precision)
221 print("Recall:", recall)
222 print("F1 Score:", f1)
223 print("Confusion Matrix :\n", cm)
224 print("ROC Curve data:")
225

226 import matplotlib.pyplot as plt
227 import seaborn as sns
228 import numpy as np
229

230 # Confusion matrix values
231 cm = np.array ([[3071 , 461],
232 [45, 26423]])
233

234 # Labels for the confusion matrix
235 labels = [’Genuine ’, ’Spoof’]
236 plt.figure(figsize =(6,5))
237 sns.heatmap(cm, annot=True , fmt=’d’, cmap=’Blues ’, xticklabels=labels ,

yticklabels=labels)
238

239 plt.xlabel(’Predicted Label ’)
240 plt.ylabel(’True Label’)
241 plt.title(’Confusion Matrix for Spoof Detection Model’)

242 plt.show()

Listing A.5: Complete Code for Calculating Confusion matrix for pre-trained pipeline

	Front page
	English title page
	Contents
	1 Introduction
	1.1 Problem Statement

	2 Background
	2.1 Methods of generation of spoofed audio
	2.1.1 Replay Attacks
	2.1.2 Speech Synthesis
	2.1.3 Adversarial Attacks

	2.2 Evaluation metrics
	2.3 Audio Spoof Detection
	2.3.1 Raw Audio Input
	2.3.2 Feature Extractor
	2.3.3 Classifier
	2.3.4 Prediction

	2.4 Speech Separation
	2.5 Transfer Learning

	3 Related Works
	4 Methodology
	4.1 Custom Dataset Creation
	4.2 Evaluation of SOTA spoof detection model on ASVspoof 2019
	4.3 Evaluation of SOTA spoof detection model on the custom dataset
	4.4 Training of the Pipeline
	4.5 Evaluation of the Final Trained Pipeline
	4.6 Ethical Considerations

	5 Results
	5.1 Testing SOTA on the original dataset
	5.2 Evaluation of Pre-trained Pipeline
	5.3 Train pipeline
	5.4 Trained pipeline

	6 Discussion
	6.1 Evaluation of SOTA spoof detection model on ASVspoof 2019 vs Custom dataset
	6.2 Evaluation of Pre-trained vs Trained pipeline
	6.3 Limitations
	6.4 Future Works
	6.4.1 Fine-tuning the Speech Separation model
	6.4.2 Increase in speakers and Integration of Speaker diarization
	6.4.3 Dataset Generation
	6.4.4 Latency of the pipeline

	7 Conclusion
	Bibliography
	A Appendix

