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Summary

This study examined the effect of unit cell size on the thermal and hydraulic performance
of sheet-based Triply Periodic Minimal Surface (TPMS) structures, focusing on Gyroid
and Diamond geometries. A parametric computational analysis was performed in the
open source environment OpenFOAM, solving the incompressible Reynolds-Averaged
Navier-Stokes equations coupled with the energy equation. Turbulence was modeled us-
ing the k—w Shear Stress Transport model. The simulation approach was verified through
a grid independence study and validation against results from existing literature.

To ensure comparability, the porosity and structure length were kept constant across all
cases. Periodic boundary conditions were applied in the transverse direction, a constant
velocity and Temperature were imposed at the inlet, and the TPMS walls were kept at a
constant temperature.

The results showed that reducing the unit cell size leads to higher pressure drop and
increased volumetric heat transfer. Pressure losses increased by up to 73% in Diamond
structures and 66% in Gyroid structures when moving from the largest to the smallest
unit cell. Volumetric heat transfer improved by as much as 57%. Diamond structures per-
formed better in volumetric heat transfer at each cell size, with improvements between 11
and 17% compared to Gyroid. On the other hand, the investigated geometries reached
higher Nusselt numbers as the unit cell size increased, where the maximum observed in-
crease was 186% for Gyroid and 156% for Diamond. This was due to stronger convective
effects in bigger unit cells, resulting from more chaotic and turbulent flow behavior.

Performance and efficiency were assessed using the volumetric performance index effp
and the thermal hydraulic efficiency index 7. Smaller unit cells provided higher volu-
metric heat transfer but were less energy efficient. Larger unit cells reversed this trend,
offering improved efficiency but lower thermal performance. Across all sizes, Diamond
structures achieved up to 40 % higher effp while maintaining 7 values similar to those of
the Gyroid structures.

In conclusion, Diamond structures generally outperform Gyroid structures over a wide
range of unit cell sizes. Furthermore, smaller unit cells are more suitable for compact
systems requiring high heat transfer, whereas larger unit cells are more effective when
energy efficiency is the priority and space is not a major constraint.
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Nomenclature

Standard SI-Units will be used

H Symbol H Explanation H Unit H
A Area [m?]
a Unit cell size [mm]
c Level-set threshold for TPMS [-]
Dy, Hydraulic diameter [m]
e Margin of error [-]
ef fr Volumetric performance metric [-]
f Darcy friction factor [-]
g Gravitational acceleration [m/s?]
Gr Grashof number [-]
h Heat transfer coefficient W/ (mZK)]
k Turbulent kinetic energy [J/kg]
k Thermal conductivity [W/(m-K)]
L Structure length in flow direction [m]
L. Characteristic length [m]
n Number of samples [-]
Nu Nusselt number [-]
p Pressure [Pa]
Pr Prandtl number [-]
q" Surface heat flux [W/m?]
Re Reynolds number [-]
Ri Richardson number [-]
St Stokes number [-]
T Temperature K]
Tf Film temperature K]
Ts Surface temperature K]
U Velocity vector [m/s]
Ui Inlet velocity [m/s]
U- Friction velocity [m/s]
Vy Fluid volume [m3]
Ut Turbulent viscosity [m?2/s]
y* Dimensionless wall distance [-]
o Thermal diffusivity [m?/s]
B Volumetric expansion coefficient [1/K]
Ap Pressure drop [Pa]
AT Temperature difference K]
u Dynamic viscosity [Pa-s]
v Kinematic viscosity [m?/s]
n Thermal-hydraulic efficiency index || [-]
¢ Porosity [-]




Abbreviations

H Abbreviation H Explanation H
TPMS Triply Periodic Minimal Surface
CFD Computational Fluid Dynamics
RANS Reynolds-Averaged Navier—Stokes
SST Shear Stress Transport
GCI Grid Convergence Index
SIMPLE Semi-Implicit Method for Pressure-Linked Equations
PISO Pressure-Implicit with Splitting of Operators
LES Large Eddy Simulation
DNS Direct Numerical Simulation
CAD Computer-Aided Design
STL Stereolithography
TKE Turbulent Kinetic Energy
VOF Volume of Fluid
RES Resolution
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Chapter 1

Introduction

In the last decade, additive manufacturing (AM) and 3D printing technologies have rapidly
advanced, establishing themselves as versatile methods capable of fabricating highly com-
plex and customized geometries. A variety of technique, such as laser sintering, fused
deposition modeling, material jetting, stereolithography, and selective laser melting, en-
able the production of components from metals, polymers, and composite materials, with
minimal design constraints [69].

This extensive design and material flexibility allows manufacturing of complicated func-
tional models as novel solutions to common engineering problems, such as multifunc-
tional components tailored for specific performance demands, lightweight load-bearing
structures or high-surface-area components for increased heat transfer.

Most notably, cellular structures with ordered and periodic pore geometries have gained
significant attention, as they enable the tailoring of key design properties such as stiff-
ness, strength, permeability, thermal conductivity, and thermal diffusivity. This makes
them particularly suitable for heat transfer applications like heatsinks, where a combina-
tion of low thermal resistance, high permeability, large surface-area-to-volume ratio, and
enhanced convective heat transfer performance is highly desirable [12]. These regular, re-
peating cellular architectures are commonly referred to as lattices, in contrast to traditional
foams, which exhibit irregular and often random pore structures.

One prominent class of lattice structures receiving significant research attention are strut-
based lattices. These architectures consist of interconnected beams (struts) that form pe-
riodic, repeating unit cells, as illustrated in Figure Studies have shown that heat
exchangers and heat sinks designed with these strut-based lattices not only outperform

conventional stochastic foams but can also surpass the performance of traditional turbula-
tors, like fin-based designs[15, 21} 31} [73].

Figure 1.1: Different strut based lattices as shown in the review by Yeranee et al.

Another emerging class of lattice structures that has gained considerable attention in re-
cent years comprises three-dimensional shell-based architectures derived from Triply Peri-
odic Minimal Surfaces (TPMS), which provide distinct advantages over strut-based lattices.
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These architectures have been shown to possess superior fatigue resistance, improved vis-
coelastic performance, and enhanced structural stability compared to their strut-based
counterparts [22, 161} [62]. Furthermore, TPMS lattices exhibit greater permeability in the
direction of longitudinal fluid flow and higher effective thermal conductivity, making them
particularly interesting for thermal applications [35, [75].

1.1 Triply minimal surfaces

The aforementioned lattices are derived from minimal surfaces, which are geometric sur-
faces defined by zero mean curvature (H = 0) at every point. This condition implies that
the surface bends with equal magnitude but in opposite directions along its two princi-
pal curvature directions. The principal curvatures, denoted k; and k>, correspond to the
maximum and minimum normal curvatures at a given point and are formally defined as
the eigenvalues of the Weingarten map, a matrix that characterizes the local curvature of
a surface. Consequently, for a surface to qualify as minimal, the sum of the principal cur-
vatures must be zero at each point (H = %(kl + k2) = 0). Geometrically, this results in a
particular surface that can not be made smaller by local deformations [16]].

Triply periodic minimal surfaces (TPMS) are a subclass of minimal surfaces, that are in-
finitely repeating periodically in three independent spatial directions [75]. The first TPMS
to be discovered were the Diamond surface, described by Schwarz, and the Neovius sur-
face, introduced by Neovius in the 19th century [39, |60]. They went on to discover addi-
tional minimal surfaces, including the Primitive and Hexagonal types. Nearly a century
later, in the mid-20th century, Schoen introduced several new types of TPMS, with the
most notable being the Gyroid surface [59].

TPMS structures can be designed based on mathematical algorithms describing the mini-
mal surface. One of the most commonly used approaches is the level-set method, which
represents the surface through an equation derived from a Fourier series expansion [17].
The equation is composed of a combination of trigonometric functions that define an im-
plicit surface satisfying the condition ®(x,y,z) = c [75]. Some level-set equations for the
most common TPMS structures can be seen below.

Primitive: cos(2amx) + cos(2Bmty) + cos(2ymz) = ¢ (1.1)
Diamond: cos(2arx) cos(2B7ty) cos(2ymz) — sin(2artx) sin(2pmy) sin(2ymz) = ¢ (1.2)
Gyroid:  sin(2a7tx) cos(2B7ty) + sin(2pmy) cos(2ymz) 4 sin(2ymz) cos(2artx) = ¢ (1.3)

In this context, «, B, and 7 are scaling constants that define the dimensions of the unit cell,
which is defined as the smallest repeating volume that characterizes the periodic geometry
of the lattice. The parameter ¢ controls the isosurface offset level. When ¢ = 0, the surface
has zero thickness and divides the space symmetrically into two equal subdomains (see

Figure [1.2p).
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Primitive

Diamond

(b)
(c)
Figure 1.2: Different TPMS lattices as shown in the review by Yeranee et al. [75]

Two different approaches can be taken to generate TPMS lattices based on the level-set
equation. Solid-network structures are created by setting c to a positive value and solidi-
fying the enclosed volume (Figure [I.2b). Sheet-network structures are produced by solid-
ifying the volume enclosed between two minimal surfaces evaluated at & c (Figure [1.2%).
For both structures, the parameter c is directly related to the volume fraction (V), which
is defined as the ratio of the volume occupied by the lattice to the total volume. It also
serves as an indicator of porosity (¢), where ¢ =1 — Vy [2].

Sheet- and solid-network TPMS structures exhibit fundamentally different morphological
characteristics. In solid-based TPMS lattices, the void space typically forms a single, con-
tinuous, and interconnected domain. In contrast, sheet-based TPMS structures divide the
void space into two distinct, non-interconnected regions, resulting in fundamental differ-
ences in pore size, wall thickness, and surface area-to-volume ratio. As a result, TPMS
structures of the same type (e.g., Gyroid, Diamond...) and with identical porosity can
exhibit markedly different mechanical, mass transport, and heat transfer properties de-
pending on whether they are designed as solid or sheet networks.

The high versatility in tailoring design parameters such as TPMS type, network configura-
tion, porosity, and unit cell size has facilitated an increasing amount of research centering
around the implementation of TPMS structures across a wide range of heat transfer appli-
cations.

1.2 TPMS Literature

One of the earliest studies to explore the thermal properties of triply periodic minimal
surface (TPMS) structures was conducted by Abueidda et al. [1] in 2016. In this work, the
authors numerically investigated the effective thermal conductivities of cellular materials
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based on various sheet-network TPMS architectures. Their findings demonstrated that
TPMS-based foams exhibit significantly higher thermal conductivity compared to con-
ventional strut-based lattice structures at equivalent void fractions. Furthermore, it was
observed that the effective thermal conductivity increases approximately linearly with in-
creasing solid volume fraction.

Building on this work, Catchpole-Smith et al. [8] conducted an experimental investigation
of TPMS lattices fabricated using laser powder bed fusion. The study focused on three
specific TPMS geometries, namely Diamond, Gyroid, and Primitive, and aimed to exper-
imentally characterize their thermal conductivities. Consistent with the earlier numerical
findings, volume fraction was identified as the dominant factor influencing thermal per-
formance. Among the geometries tested, the Primitive lattice exhibited the highest thermal
conductivity, followed by the Diamond and Gyroid structures.

Other studies, including those by Mirabolghasemi et al.[34] and Qureshi et al.[53]] have fur-
ther demonstrated that TPMS geometries significantly enhance thermal conduction com-
pared to conventional foam and lattice structures, making them prime candidates for heat
transfer applications.

In recent years, research has expanded on this by placing greater effort into testing TPMS
structures as a mean to also increase convective heat transfer. This research can roughly be
divided into two main applications: heat sink applications and two-fluid heat exchangers
[75].

1.2.1 TPMS topologies in heat exchangers

As discussed in Section [1.1} sheet-network TPMS structures inherently partition space into
two continuous, interwoven domains. This characteristic makes them highly promising
for heat exchanger applications, where thermal energy must be transferred efficiently be-
tween separate fluid streams [75]].

Building on this concept, Iyer et al. [24] conducted a numerical study to evaluate the per-
formance of TPMS-based heat exchangers in laminar flow regimes. Their results showed
a substantial improvement in convective heat transfer compared to conventional tube-
based designs. For instance, at Reynolds numbers around 100, TPMS geometries achieved
Nusselt numbers 3-5 times higher, while at Re = 300, enhancements reached up to 14
times compared to tube-based heat exchangers. Among the structures tested, the Dia-
mond topology delivered the highest heat transfer performance, with a 14-fold increase in
the Nusselt number accompanied by a 9-fold rise in the friction factor. The Neovius struc-
ture exhibited similar thermal performance but suffered from significantly higher pressure
losses, with a friction factor nearly 20 times greater than that of a smooth tube. The Gyroid
structure, although slightly less effective in heat transfer, offered a more favorable pressure
drop of approximately half that of Neovius, positioning it as the second-best performer
overall in laminar flow conditions.

Similar observations were made by Cheng et al. [9], who investigated the influence of
morphology in TPMS structures on flow resistance, heat transfer performance, and me-
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chanical strength in laminar flow regime. Their study compared four TPMS variants, iWP,
Primitive, Diamond, and Gyroid, against a conventional simple cubic structure. Numeri-
cal simulations revealed that TPMS structures achieved up to 25 % higher volumetric heat
transfer coefficients and 20 % higher local (interstitial) heat transfer coefficients than the
cubic structure. A comparison of the TPMS structures showed that the Diamond, Gyroid,
and iWP configurations offer superior heat transfer performance, whereas the Primitive
structure results in the lowest pressure drop. Structurally, the Diamond and Gyroid lattices
exhibited greater mechanical strength compared to the iWP and Primitive configurations.

An inquiry with higher Reynolds numbers was performed by Jiaxuan Wang et al.[67],
who conducted a combined numerical and experimental investigation of a sheet network
TPMS heat exchanger manufactured using Selective Laser Melting. The study evaluated
performance over a Reynolds number range from 400 to 6000, focusing on flow resistance,
heat transfer characteristics, and overall efficiency. Among the investigated TPMS config-
urations, the Gyroid structure exhibited the lowest pressure drop, which was only 23 %
of that observed for the Primitive structure, the configuration with the highest flow resis-
tance. The Fischer-Koch S structure achieved the highest total heat transfer rate, although
this was accompanied by a significantly higher pressure drop. Both the Diamond and
Gyroid structures demonstrated the highest Nusselt numbers, reflecting strong convective
heat transfer performance. Furthermore, the Gyroid structure achieved the highest Perfor-
mance Evaluation Criterion (PEC) across the entire range of flow conditions, surpassing
the performance of a conventional plate heat exchanger by up to 54 %. However, at higher
flow rates, the Diamond structure exhibited the best overall thermal and hydraulic perfor-
mance among the TPMS configurations.

A similar observation was reported by Brambati et al.[7], who conducted a numerical in-
vestigation of convective heat transfer in Gyroid, Diamond, and Primitive TPMS-based
heat exchangers over a Reynolds number range of 5,000 to 50,000. Their study explored
the effect of porosity, testing values between 70 % and 90 %. In agreement with the
findings of Jiaxuan Wang et al., they observed that the Gyroid and Diamond structures
outperformed the Primitive geometry in terms of convective heat transfer. Furthermore,
the Gyroid structure demonstrated the best overall performance across all porosities, while
the Diamond configuration showed comparably high convective heat transfer performance
at lower porosity levels.

Further studies by Brambati et al. [7], Wang et al. [68], El Khadiri et al. [28], and others, all
showing the benefits of using of TPMS topologies as heat exchangers.

1.2.2 TPMS topologies in Heat sinks

The second main usage for TPMS-structure in thermal systems are heat sinks. In heat
sink applications, a cooling fluid at a controlled inlet temperature flows through channels
containing the TPMS structure before exiting at the outlet. Typically, two configurations
are employed: one in which the surrounding walls serve as the heat source, and another
where the TPMS structure itself acts as the heat-generating element [75]. Both sheet- and
solid-network structures have been investigated.
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Tang et al. [63], for example, employed both experimental and numerical approaches to
evaluate the performance of various sheet-based TPMS heat sink structures compared to
a traditional fin-based model, within the laminar flow regime (Re = 166-943) and a tem-
perature gradient of approximately 80 K. Their findings revealed that TPMS structures
exhibited up to a 207 % increase in convective heat transfer coefficient and up to a 196 %
increase in Nusselt number relative to the fin model. Among the TPMS designs, the Dia-
mond and Gyroid structures demonstrated significantly greater enhancements in Nusselt
number than the iWP structure. When accounting for pressure drop, the performance
evaluation coefficient (PEC) indicated PEC > 1 for Diamond and Gyroid, confirming supe-
rior overall performance over the fin-based model, while the iWP structure showed PEC <
1, suggesting inferior performance.

A comparison of both sheet- and solid-TPMS heat sinks was performed by Khalil et al. [29],
who compared Gyroid-Solid, Diamond-Solid, and Gyroid-Sheet structures across a broad
range of Reynolds numbers. Their study revealed that the Gyroid-Sheet topology outper-
formed both solid structures in terms of Nusselt number and areal heat transfer coefficient
for Re > 6800, owing to its significantly higher surface area density. However, this en-
hanced thermal performance came at the cost of a substantially higher pressure drop,
reaching up to 3.9 times that of the Gyroid-Solid, which had the lowest pressure drop
due to its larger pore size. Under conditions of fixed pumping power, the solid-network
structures, particularly the Diamond solid demonstrated superior thermal efficiency, with
the highest efficiency index among the three.

A few studies have also explored the feasibility of using TPMS heat sinks in free convec-
tion environments. One such investigation was conducted by Baobaid et al. [6], who
studied fluid flow and heat transfer characteristics of Gyroid-solid, Gyroid-sheet, and
Diamond-solid heat sinks as passive cooling solutions under natural convection. Their
findings showed that horizontally aligned heat sinks outperformed vertically oriented ones
by 7-11 %, due to more favorable airflow pathways. Among the geometries tested, the
Diamond and Gyroid-solid structures consistently exhibited the lowest surface tempera-
tures across most boundary conditions, identifying them as strong candidates for passive
cooling applications. In contrast, the Gyroid-sheet structure generally underperformed,
primarily due to its high flow resistance.

In addition to general performance studies, TPMS heat sinks have also been investigated
in the context of specific applications. One such application is electronics cooling, where
Ansari et al. [4] explored the use of gyroid TPMS heat sinks for managing the thermal
loads of high-performance microprocessors. These water-cooled designs were compared
to conventional pin-fin heat sinks under laminar flow conditions. The TPMS structure
demonstrated a 28 % reduction in thermal resistance, which corresponded to a 4.7 % de-
crease in maximum temperature. However, this thermal improvement came at the cost of
a significantly higher pressure drop, up to 559 %.

Another implementation was explored by Prussack et al. [52], who experimentally eval-
uated Gyroid and Diamond TPMS geometries as alternative heat transfer surfaces for
nuclear reactor cores. Their findings demonstrated that, across a Reynolds number range
of 500 to 7,000, both TPMS designs significantly outperformed a conventional rod bundle,
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achieving 8 to 10 times higher Nusselt numbers. This improvement in thermal perfor-
mance, however, was accompanied by a friction factor up to 90 times greater. Moreover,
the TPMS structures were capable of supporting up to 2.5x higher power densities than
the rod bundle.

The feasibility of TPMS structures in other energy applications, such as gas turbines, was
investigated by Yeranee et al. [76], who performed a topology optimization of a diamond
TPMS heat sink integrated into a serpentine cooling channel for gas turbines, aiming to
minimize pressure losses while maintaining high heat transfer performance. The opti-
mized design placed a diamond sheet network behind the first bend of the serpentine
channel. The study examined the effects of varying unit cell sizes, orientations rela-
tive to the flow direction, and constant versus variable wall thicknesses. Both numeri-
cal and experimental methods were employed across a Reynolds number range of 10,000
to 40,000. The results showed that for all configurations, the total Nusselt number in-
creased by 45-60 %, while pressure drop decreased by up to 30 % due to the mitigation
of Dean vortices in the serpentine channel. Among the investigated parameters, unit cell
size had the most significant impact on performance, whereas orientation played a com-
paratively minor role. Notably, smaller unit cell sizes yielded the highest heat transfer
enhancement—up to 70 % compared to a plain serpentine channel, but with a more mod-
est reduction in pressure drop.

The presented studies highlight the potential of TPMS structures for enhancing heat trans-
fer across a broad range of applications. However, for these structures to gain wider
adoption in industrial settings, a clear understanding of how design parameters influence
their thermal and hydraulic performance is essential. While some studies have explored
various parameters in the context of TPMS-based heat exchangers, only a limited number
have focused on these effects specifically for TPMS heat sinks [75].

One such study was conducted by Attarzadeh et al. [5], who examined the influence of
wall thickness on the thermal performance of TPMS heat sinks based on the Diamond
structure. Their findings demonstrated that increasing wall thickness (e.g., TPMS4), which
reduces porosity, leads to adverse flow characteristics such as backflow and higher flow
resistance. In contrast, thinner-walled designs (e.g., TPMS1) enabled smoother flow, re-
sulting in a 2.5x lower pressure drop and 2x higher permeability compared to TPMS4. In
addition, TPMS1 achieved a 2.5x higher heat transfer coefficient.

A more comprehensive study on how pore-scale geometric parameters of TPMS heat sinks
influence their convection heat transfer performance, to identify optimal trade-offs be-
tween heat dissipation and pressure drop, was performed by Anacreonte et al. [3]. They
carried out a multi-objective shape optimization of five TPMS topologies—Gyroid, Dia-
mond, iWP, Primitive and Neovius, by systematically varying porosity and stretch factor
in a laminar flow regime. Using a genetic algorithm coupled to CFD, they demonstrated
that, by tuning geometry parameters, the volumetric Nusselt number can be increased by
up to 245.6 % for a fixed wall-temperature case and 76.3 % for the fixed wall-heatflux
case, at the expense of friction factor penalties up to 21.7x and 12.0x, respectively. Fur-
thermore, they found that Diamond-type structures dominated the Pareto front under
constant-flux heating, while Primitive cells achieved the highest Nusselt numbers under
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constant-temperature heating.

The effect of compression was also investigated by Yan et al. [74], who computationally
and experimentally analyzed the effects of structural modifications involving compression
along different directions and varying degrees of compression for Diamond-solid TPMS
heat sinks. Therefore, four modified Diamond structures were designed, one compressed
along the flow direction and three compressed along the spanwise direction with varying
degrees. They found that the spanwise compression structures exhibited increased overall
heat transfer coefficients compared to the original Diamond-solid structure. This increase
was shown to be more pronounced for tighter compression. Similarly, the PEC, account-
ing for both heat transfer and pressure drop, was shown to be up to 34% higher for the
spanwise compressed lattices. The structure compressed along the flow direction showed
a significant increase in heat transfer (68.5%), but also exhibited a drastically increased
pressure drop (448.5%) compared to the original lattice.

A numerical investigation into the effect of porosity, cell size, and material choice on the
heat transfer and flow performance of Gyroid heat sinks was undertaken by Samson et
al. (2023) [57]. Their findings showed that reducing cell size notably increased surface
area, significantly enhancing heat transfer performance. Specifically, decreasing the cell
size from the largest to the smallest studied resulted in up to 200 % increase in heat trans-
fer coefficient. Porosity variation also had a substantial impact. Lowering porosity from
80 % to 60 % resulted in approximately a 70 % higher heat transfer coefficient but signif-
icantly increased pressure losses, up to 7x more than the higher porosity configurations
at the same Reynolds number. Material selection was also shown to markedly influence
thermal performance. Compared to aluminum, employing OFHC copper reduced thermal
resistance by approximately 12.1 %, while switching to 4340 steel increased thermal resis-
tance by over 102 %, due to steel’s lower thermal conductivity. Overall, Gyroid heat sinks
demonstrated superior thermal performance compared to traditional fin-based designs,
reducing thermal resistance by up to 53 %, increasing the Nusselt number by up to 300 %,
and enhancing overall performance efficiency by up to 42 % at certain Reynolds number
ranges.

The possibility of reducing the friction factor by employing functionally graded TPMS
heat sinks was investigated by Al-Ketan [2]. First, they compared a uniform Gyroid sheet
network, a Gyroid solid network, and a Diamond solid network heat sink. The Gyroid
sheet network delivered the highest overall convective heat transfer coefficient among the
three, but also experienced the largest pressure drop. Between the two solid networks,
the Diamond solid network achieved a heat transfer coefficient 32 % greater than that of
the Gyroid solid network, albeit with a 33 % higher pressure drop. When the Reynolds
number was varied at a fixed heat flux of 100 W, the Gyroid sheet network’s heat transfer
coefficient rose by about 60 % over the studied range, compared with increases of 48 %
for the Gyroid solid network and 45 % for the Diamond solid network. In every case the
pressure drop increased exponentially as the Reynolds number grew. They then applied
functional grading to the Diamond solid network by expanding the porosity from 10 % at
the inlet to 30 % at the outlet, which increased the pressure drop by 112 % and raised the
heat transfer coefficient by 14 %; reversing that gradient (30 % to 10 %) cut the pressure
drop by 4.5 % but also reduced the heat transfer coefficient by 12 %.



Chapter 1. Introduction

Building on that, Qureshi et al [53] investigated the effects of porosity and functional
grading on the heat transfer performance of architected lattices based on TPMS structures
embedded with phase change materials. They found that a porosity reduction from 90 %
to 60 % significantly reduced melting times by over 75 % and increased the heat trans-
fer coefficient by over 300 % under natural convection scenarios. Conversely, a negative
grading of porosity consistently degraded performance, increasing melting time by about
15-20 % and significantly reducing the heat transfer coefficient. The Primitive type per-
formed the best, as it benefits most from natural convection, showing the largest increase
in Heat transfer coefficient (over 20 %) when compared to pure conduction at 75 % poros-

ity.

This literature review gives an overview of past research conducted on TPMS structures
in heat transfer applications. More comprehensive and in-depth literature analysis were
conducted by Yeranee [75] and Dutkowski [14].

1.3 Aim of this study

As can bee seen, a lot of research has been conducted, demonstrating that TPMS structures
are well-suited for heat transfer applications. It has been shown that, due to their contin-
uous, interconnected domains and high surface area densities, these novel geometries can
significantly enhance thermal conduction and convection compared to conventional pin-
fin, lattice, and foam structures.

TPMS heat sinks, in particular, demonstrate significant potential across different appli-
cations, ranging from small-scale, such as electronics cooling, to large-scale like nuclear
reactor cores and gas turbine cooling. Numerous TPMS geometries have been investigated
across different flow regimes to identify optimal designs. In the laminar flow regime,
the Diamond and IWP topologies consistently exhibit the best heat transfer performance.
However, when considering a balance between thermal performance and pressure loss,
the Gyroid topology achieves a similar performance as the Diamond topology.

At higher Reynolds numbers, the Diamond topology continues to exhibit excellent heat
transfer performance, typically surpassed only by the Fischer-Koch geometry, which achieves
the highest convective heat transfer enhancement, though this comes with a significantly
higher pressure drop. Despite the Diamond structure’s thermal efficiency, it is often sur-
passed by the Gyroid topology in terms of overall performance under turbulent flow con-
ditions, owing to the Gyroid’s significantly lower pressure drop. Furthermore, compar-
isons between sheet- and solid-based TPMS structures reveal that while solid networks
typically deliver superior hydraulic performance, they also incur considerably lower heat
transfer compared to their sheet counterparts.

Hence, the sheet Gyroid and Diamond structures emerge as the most promising candidates
for high performing TPMS heat sinks. They consistently demonstrate high heat transfer
coefficients and favorable performance evaluation criteria, offering an effective combina-
tion of strong convective heat transfer and manageable pressure drops, particularly when
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compared to other TPMS configurations.

The performance of TPMS heat sinks is strongly influenced by key design parameters
such as porosity, wall thickness, compression orientation, and material selection. Studies
have shown a close relationship between porosity and wall thickness, with increased wall
thickness generally resulting in reduced porosity. This reduction enhances heat transfer
performance by increasing the effective thermal conductivity and available surface area, at
the expense of significantly higher pressure drops. Directional compression of the struc-
ture has been shown to significantly enhance convective heat transfer. However, when
compression is applied along the flow direction, it also leads to a substantial increase in
pressure losses. Also the material selection plays a critical role in the thermal performance
of TPMS heat sinks. High-conductivity materials, such as copper demonstrated to signifi-
cantly enhance heat dissipation, whereas low-conductivity materials, like certain steels or
Polymers, considerably reduce thermal efficiency.

Despite extensive research on TPMS-heat sinks, the effect of TPMS unit cell size on heat
sink performance remains comparatively underexplored, representing an important knowl-
edge gap that this study will try to close. The investigation will be conducted on Gyroid-
and Diamond-sheet structures, as they have been proven to be the most promising topolo-
gies. Therefore, the aim of this investigation can be stated as follows:

What is the effect of unit-cell size on the heat-transfer and flow characteristics in Gyroid and
Diamond sheet-network heat sinks?

To address this question, a parametric study is conducted using computational fluid
dynamics (CFD) simulations in the open-source software OpenFOAM.
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Case Setup

As previously mentioned, this study focuses on two TPMS topologies: the Gyroid and
Diamond sheet structures. For simplification and clarification, a new naming convention
is introduced. The term "G" refers to the Gyroid, while "D" denotes the Diamond struc-
ture. Since the investigation involves varying unit cell sizes, the naming scheme is further
extended to include the unit cell size if necessary. For example, a Gyroid structure with a
10 mm unit cell will be referred to as "10G", whereas a Diamond structure with a 5 mm
unit cell will be denoted as "5D".

The case study is conducted within a computational domain measuring 60 mm in length,
and is subdivided into three distinct regions: a 10 mm inflow section, a central region con-
taining the TPMS structure, and a 20 mm outflow section, to ensures that entrance and exit
effects are adequately captured, without interfering with the internal flow characteristics
of the TPMS region itself. The height and width are set to two times the unit cell size a.
The full geometrical setup can be seen in Figure

Figure 2.1: Geometrical Setup of the Domain and the TPMS-Structure (here: G-sheet) confined in it

In contrast to the height and width of the domain, the length of the TPMS structure in the
flow direction is kept constant for two main reasons. First, in confined flows, the pres-
sure drop is directly proportional to the length in the flow direction, i.e., AP o L [20].

11
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Varying the structure length would therefore complicate the comparison of hydraulic per-
formance across different unit cell sizes. Second, this approach reflects real-world design
constraints, where the allowable device length is typically dictated by packaging require-
ments or a maximum acceptable pressure-drop.

To further isolate the influence of varying unit cell size, the porosity ¢ is held constant at
80 % across all cases. Additionally, wall effects induced by confinement, which can signif-
icantly influence flow behavior and consequently thermal performance, are mitigated by
applying periodic boundaries in both the y and z directions. Those have the effect that
flow exiting one side of the domain reenters from the opposite side, effectively creating an
unbounded and repeating environment in those directions.

This approach is adopted because changing the unit cell size has a strong impact on the rel-
ative areas of the channel walls and the TPMS surfaces exposed to the fluid. For example,
within the same spatial domain, the 5G structure yields a wall-to-gyroid area ratio of 0.54,
while the finer 15G structure achieves a ratio of 0.36. Since skin friction and turbulence
generation are directly proportional to the contact area [58], channel-wall effects would
vary across cases, making it difficult to isolate the influence of the unit-cell size. Practi-
cally, this approach represents the center of a larger periodic cellular structure, where the
influence of external channel walls is negligible.

As a fluid, air is chosen in this study. Furthermore, the TPMS structures are set to have a
uniform temperature of 353 K (80°C), with an inflow fluid temperature of 298 K (25°C). At
the inlet, a Reynolds number (Re) of 5,000 is prescribed, which results in an inlet velocity
of 3.7 m/s. This inflow velocity, which is kept constant across the cases, is calculated based
on the 10G lattice, where the channel height is used as the characteristic length, and air
properties at 298 K and ambient pressure (see Appendix[A.T).

Because the inlet is driven with the same superficial velocity in every simulation and each
case is generated at an identical porosity, the average pore velocity in the lattice remains
unchanged from one geometry to the next, which can be seen in the continuity relation

1 1 inAi ;
(u) :—/ udv = — [ udy = tinfin__ Uin
pore Vf Vy PV Vy Adomain® ¢

which assumes the same value for all unit-cell sizes.

12
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2.1 TPMS Design

The design of the TPMS structures through this work is done on the basis of the zero-level
set of a suitably chosen implicit function, as described in section These trigonometric
expressions produce the characteristic triply-periodic Gyroid and Diamond surfaces. The
precise mathematical algorithms used to construct each TPMS in this study are listed
below:

Diamond:

®p = cos(2arrx) cos(2Bmy) cos(2ymz) — sin(2arx) sin(2pmy) sin(2ymz) = ¢ (2.1)
Gyroid:

®; = sin(2amx) cos(2B7my) + sin(2Bmy) cos(2ymz) + sin(2ymz) cos(amx) =c¢  (2.2)

To generate a sheet structure from these surface equations, the directing surface needs to
be thickened. Hereby, the constant ¢ serves as a threshold that partitions the domain into
solid and fluid regions. Formally, the solid domain is defined by solidifying the volume
enclosed by *c. By adjusting ¢ up or down, the entire surface shifts in or out, which uni-
formly adjusts the thickness of the wall and therefore changes the Volume-fraction (V).
Consequently, a correlation between ¢ and V can be found, which for the Gyroid-sheet and
the Diamond-sheet structures follows the linear relationships Vi = 0.65¢ and Vip =12,
respectively [2]. Since V is held constant at 20 % for all cases, c is set to 0.31 for the Gyroid
cases and 0.17 for the Diamond cases.

The adjustment of the TPMS unit-cell size is effectively done by varying the parameters «,
B, and v in the implicit level-set functions. These parameters determine the fundamental
spatial periodicity of each trigonometric term. For example, the factor

sin (271 a x) (2.3)
has period
1
Ax = " (2.4)

along the x-direction. Consequently, in a cubic domain of side length L, setting a = B =
v = N € N yields exactly N full unit cells in each coordinate direction. Each cell then has
side length

a =

L
N (2.5)

Hence, setting the side length a inherently changes « in the level-set equation. Since the

domain length is fixed in x-direction, a can take non-integer values (for instance N -+ %
or N + %), leading to the computational box containing N complete cells plus a fractional

13
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cell of one-half or one-third at the boundary [16]. The Matlab package TPMSDesigner,
developed by Jones et al. [26], automates this entire workflow and is used to generate the
TPMS geometries for the present study.

The selection of the range for the unit cell sizes is based on the reference cases 10D and
10G. The upper and lower bounds are chosen to be unit cell sizes of 15 mm and 5 mm,

respectively, as shown in Figure This setup tests a wide range of scenarios while
still maintaining a reasonable spread in cell size variation, which could be applicable in

industrial applications.
5G 10G 15G
>

5D 10D 15D

o

Figure 2.2: Different G and D- geometries for the cellsized 5, 10 and 15

T
k)

Unit Cellsize

s

2.2 Dimensionless and Performance Parameters

Various dimensionless parameters are employed throughout this study, as they provide
means to evaluate and compare the thermal performance of different topologies and unit
cell sizes.

One such parameter, commonly used to characterize convective heat transfer in fluid sys-
tems, is the Nusselt number (Nu). It quantifies the ratio of convective to conductive heat
transfer across a fluid—solid interface. In turbulent flows through TPMS geometries, the
average Nusselt number is typically on the order of 10> — 103, indicating that convective
heat transfer dominates and conduction within the fluid plays a minor role [75]. It is
defined as [23]]

(2.6)
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where / is the convective heat transfer coefficient [W/(m?K)], L is the characteristic length
[m], and k is the thermal conductivity of the fluid [W/(mK)].

In the context of numerical simulations, the convective heat transfer coefficient / is com-
monly evaluated using field-averaged quantities, particularly when a constant surface tem-
perature boundary condition is applied. It is defined as[66]

q//
h=———, 2.7
where ¢” is the surface heat flux, T; is the surface temperature, and Ty is the reference
fluid temperature. In this study, Ty is taken as the volume-averaged temperature of the
fluid domain.
Substituting this expression into the definition of the Nusselt number yields

qIILC

N = Ty

(2.8)
In simulations with an imposed temperature boundary condition, the surface heat flux 4"
can be estimated using Fourier’s law:

oT

"
= -k 2.9)
on wall

where ?TZ is the temperature gradient normal to the heated surface. This gradient is typ-
ically computed from the numerical solution at the fluid-solid interface using the central
differencing method [66]:

aT

on
where Tr is the fluid temperature at the first cell and Ax is the distance between the first
cell and the wall face.

_TIp—Tr
T Ax

(2.10)

wall

To assess and compare the hydraulic performance of the different TPMS- configurations,
the Darcy friction factor is employed. This dimensionless quantity characterizes the pres-
sure loss due to flow resistance relative to the fluid’s dynamic pressure[20]:
2Ap Dy

f= o L’ (2.11)
where Ap is the pressure drop across the structure, p is the fluid density, u;, is the average
inlet velocity, Dy, is the hydraulic diameter, and L is the streamwise length of the TPMS
structure.
The hydraulic diameter Dy, is introduced to generalize the analysis of non-circular or com-
plex internal geometries and is defined as [38]

_ 4Vhuid

Dy, ,
Awetted

2.12)

where Vq,iq denotes the volume occupied by the fluid phase and Ayetteq is the total
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solid—fluid interface area, i.e., the wetted surface. This formulation ensures applicabil-
ity across various structural morphologies, including open-cell TPMS geometries.
For porous media, this expression can be expanded using the Darcy-Forchheimer law [40]

Ap _ ¥ 2
. = Ku+pﬁu, (2.13)
to yield the following definition of the friction factor [40]:
2D? 1 puDy
~——
C, G

The C,/ Re term quantifies the viscous (Darcy) contribution, while C; represents the in-
ertial (form-drag) contribution that dominates as Re increases. This separation allows a
direct assessment of whether viscous or inertial effects control the hydraulic performance
of a given TPMS architecture [13].

In this investigation, the pressure drop Ap is obtained from surface-averaged pressure
values at designated planes right in front and behind the TPMS structure. The absolute
pressure gradient per unit length, Ap/L, is often used as a direct measure of hydraulic re-
sistance, whereas the Darcy friction factor provides a normalized, geometry-independent
measure of hydraulic performance.

The overall thermo-hydraulic performance of cellular structures is commonly evaluated
using the thermal efficiency index #. This dimensionless parameter, originally introduced
by Tian et al. [64], provides a quantitative measure of the trade-off between enhanced heat
transfer and the corresponding increase in pressure loss and is defined as [64]

g = (N”/NZOX (2.15)
(f/ fo)

where Nu and f are the Nusselt number and friction factor for the tested geometry, re-
spectively, and Nuy and fy correspond to the values for a reference or baseline configu-
ration. The exponent i reflects the assumed comparison basis. Three different scenarios
are differentiated: i = 1/3 corresponds to constant pumping power, i = 1/2 assumes
constant pressure drop, and i = 1 corresponds to constant flow rate. Most previous stud-
ies on TPMS-based heat exchangers adopt the constant pumping power assumption, i.e.,
i = 1/3. To facilitate comparison with existing literature, the same assumption is applied
in the present study. Hence, a higher value of 77 indicates a greater improvement in con-
vective heat transfer relative to the associated pressure loss.

The baseline configuration must remain consistent across all tested cases to enable a re-

liable comparison between different TPMS topologies. To maintain consistency with pre-
vious studies, both Nug and fj are set to unity, as is commonly done in the literature [3} 29]].
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Computational Procedure

The present case study is carried out using a numerical approach based on the finite
volume method. This method discretizes the computational domain into a finite number of
control volumes, over which the governing conservation equations are integrated. Fluxes
are evaluated at the surfaces of each control volume to ensure local and global conservation
of mass, momentum, and energy. The fluid flow and heat transfer phenomena investigated
in this work are governed by the Navier-Stokes equations, which describe the transport
of mass and momentum, and the energy equation, which accounts for thermal energy
transport. These governing equations are presented below [66]].

Continuity equation gzl =0, (3.1)
. ou; Juj  1adp 0 du;  ouj
Momentum equation 5 + u]a—xj i + a—x] {V(ax] + a—xlﬂ — S (3.2)
. oT or 9 oT Q
Energy equation 5 + uzB—Xi = o (oc a—x) + oc” (3.3)

Since the imposed inlet Reynolds number exceeds the widely accepted threshold for the
onset of turbulence in internal pipe flows (Re > 2300 [38, 166]) and the flow is further dis-
rupted by the intricate geometry of the TPMS structure, the flow within the domain is
assumed to be turbulent.

In turbulent flows, kinetic energy is introduced at large scales and then passed down to
progressively smaller scales in a process known as the energy cascade. This transfer of
energy between scales is primarily driven by the nonlinear advection term in the Navier-
Stokes equations, u j%, which describes how velocity fluctuations transport and distort the
flow, effectively causing the flow to advect itself [58]]. Within the so-called inertial range of
the cascade, viscous effects are minimal, meaning that energy is neither added nor dissi-

pated, but simply redistributed from larger to smaller flow structures [72].

As energy reaches the smallest turbulent structures, referred to as the Kolmogorov scale,
their local Reynolds number approaches unity. At this stage, viscous diffusion becomes
dominant and dissipates the remaining kinetic energy into heat. Due to the highly nonlin-

ear coupling introduced by the advection term uj%, which links all scales of motion, the
]

prediction of turbulent flows becomes extremely complex [58].

To still accurately account for the influence of turbulence on both fluid flow and heat
transfer, a suitable strategy must be adopted to account for the energy cascade within
the flowfield. In CFD, three primary approaches exist for simulating turbulent flows: Di-
rect Numerical Simulation (DNS), which resolves the full energy cascade over all turbulent
length scales by solving the full unsteady Navier-Stokes equations; Large Eddy Simulation
(LES), which captures the larger turbulent structures while modeling the smaller scales;
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and Reynolds-Averaged Navier-Stokes (RANS) models, which focus on time-averaged
flow behavior and use empirical models to represent turbulence effects [66].

DNS and LES require a high grid resolution, making them highly computationally expen-
sive and therefore not suited for an extensive parametric study. For this reason, the present
work employs the RANS approach, which provides a practical balance between predictive
capability and computational cost.

3.1 Reynolds average Navier Stokes turbulence modelling

The RANS approach is based on the concept of Reynolds decomposition, which separates
each instantaneous flow variable into a mean and a fluctuating component as seen below
[66]:

u; = (u;) +ul
p=(p)+r (3.4)
T=(T)+T

By substituting the Reynolds decomposition into the Navier-Stokes and energy equations
(Eq. and subsequently applying time-averaging, the RANS equations and the time-
averaged energy equation are derived as [72]:

o1i;

—1 =0,
axl-

i 0l p 1; | Of]
e = antanGe o))

= — —u'u’
v ax] + axi ulu]}, (35)

ot ]ax]-_ asz ax] j '

It should be noted, that the effect of buoyancy acts as a source term in the energy equation
and has no effect on the turbulence modelling. For a more compact representation, buoy-
ancy will be neglected in the bulk of this section and then reintroduced at the end.

In the equation above, the time-averaged quantities are denoted by the overbar. The de-
composition and subsequent time averaging introduces the terms Tu; and ﬁ, which
represent the specific Reynolds stress tensor and turbulent heat flux, respectively. Multi-
plication of the specific Reynolds stress with the density yields the Reynolds stress ten-
sor pfu} [72]. This tensor is symmetric and does not represent a true physical stress in
the classical sense, rather, it characterizes the mean momentum fluxes induced by turbu-

lent velocity fluctuations. The diagonal components u/u/ are referred to as the normal

Reynolds stresses, while the off-diagonal components ugu;- with i # j correspond to the
shear Reynolds stresses [66].

The Reynolds-Stress introduces six new unknowns into an otherwise fully defined system
of equations. This is known as the closure problem.
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To close the system, the Reynolds stress tensor must be modeled. The simplest turbulence
models used in the RANS framework employ the Boussinesq eddy viscosity approxima-
tion. This is often called a gradient-diffusion approach because turbulent transport of
a quantity is assumed to behave on average like molecular diffusion [71]. Hence, the
Reynolds stress tensor is modelled as the product of an eddy viscosity v, and the mean

strain rate tensor S;j, such that u ul = = 1Sij = V¢ g”‘, which resembles the form of Fick’s

]
law of diffusion. Usmg the trace of the Reynolds stress tensor, defined as the turbulent
kinetic energy k = julu/, the tensor can be decomposed into isotropic and anisotropic

components [72]:

u; ; 3k(51]—|—a” (3.6)

Assuming the anisotropic part a;; is directly proportional to the mean strain-rate tensor,
the Reynolds stress can be written as follows: [72]:

—— 2
u;u} = gkél] - 21/1-5,‘]' (37)
By substituting the molecular viscosity with an effective viscosity veg = v + vy, and
incorporating this into the RANS equations, the modified momentum equation can be
derived[72]:
Du; 10 (_ 2 0 ou; au]
- _-9 ok — 3.8
Dt 0 0x; (P-i— 3P ) + ox; [Veff <8 ox; (3:8)

This equation resembles the form of the laminar Navier-Stokes equations, with the mean
velocity u; and effective viscosity v replacing their instantaneous counterparts, and a
modified pressure 7 + 5pk. Together with the continuity equation, this forms a closed set
of equations that can be numerically solved.

However, the assumption that the Reynolds stress u u'. is linearly proportional to the mean
strain-rate S;; introduces symmetry constraints. Spec1f1cally, it predicts [72]:

2
= 3k (3.9)

This result of the eddy viscosity model contradicts DNS data, which shows that the stream-
wise normal stress u/u’ in a plane channel flow exhibits a maximum near the wall region
that is considerably higher than the peaks of the wall-normal stress v'v’ and the spanwise
normal stress w'w’ [72]. Another problem arising with this model is the determination
of vy, since it is not a fluid property, but depends on the turbulent velocity scale v; and
turbulent length scale I.

wu =o' =

To overcome the shortcomings of the linear eddy-viscosity hypothesis and the ad-hoc na-
ture of the turbulent viscosity 1, modern RANS closures generally uses non-linear eddy
viscosity models. The most common non linear models are two-equation models, which
use differential transport equations to estimate the turbulent scales [66]. They estimate
the turbulent velocity scale v, using the turbulent kinetic energy k, while the length scale
I+ is estimated through the dissipation rate € or the dissipation rate per unit of turbulent
kinetic energy w = €/ (kB*) [72]:
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ve kY2, L t—, I = \C/f (3.10)

3.1.1 The k — € and k — w model

The two most widely used two-equation RANS turbulence models are the k — € introduced
by Jones at al. [27] in 1972 and k — w model introduced by Willcox et al. [71] in 1988, each
of which solves two additional transport equations: one for the turbulent kinetic energy
k and one for the dissipation,e in the k — ¢ formulation or w in the k — w formulation.
These transport equations are derived from the instantaneous NS-equation and the RANS-
equations as seen in Appendix

ok ok 0 vy 9k
m*ufaxj—Pk‘“axj[(”n) ax]}
o€ o€ € e 9 vy O€
8t+ujajcj_clekpk_czek+ax]'[(v+‘7€)ax]']’
ow ow w « o O vy 0w
ﬁ'ﬁ‘u]aij—lepk—ﬁ w -‘rax].[(l/-FUw)ax]l.
where
P Vaui ou;
k= tax]‘ aX]

is the production of turbulent kinetic energy by mean-flow shear.
Here the symbols o, o¢, 0w, Cie, Coe, &, and p* denote empirical coefficients calibrated
against turbulent-flow experiments [72].

As shown, the principal distinction between the two models lies in their treatment of
the dissipation of turbulent kinetic energy, which results in two different expressions to
estimate the v; [72].

k? k

Vy = C]l ? ’ Vy = a (3.11)

Here, C,, is another dimensionless empirical constant, that is most commonly calibrated as
Cu = 0.09 [72].

In the k—e model the transport equation for € (see (3.1.1)) contains the production—dissipation

term

e2

_CZE?

which, as k — 0 near a no-slip wall, becomes numerically stiff and unbounded, which
would lead to a blowup of v; (see 3.1.4). To maintain stability one must either invoke
empirical wall-functions or introduce artifical damping of the e—equation. Both approaches
alter the true balance of turbulent kinetic energy and dissipation in the buffer and log
layers, typically leading to an overprediction of the eddy viscosity in those regions [72].

Far from solid boundaries, however, the k—e closure “self-corrects” any inlet-boundary
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mismatch in € through its linear production—dissipation balance

2

€ €

Cre g Pe — Coe -

and its relatively strong turbulent diffusion term o;[(v 4 v:/0¢) dje] with o ~ 1.3 [72].

These mechanisms act together to restore the equilibrium P, ~ € within a few boundary-

layer thicknesses, so that the algebraic ratio k?/e remains physically realistic in the free
stream.

By contrast, the k—w model more accurately predicts boundary-layer turbulence, because
its transport equation remains finite as k — 0 [72]. Further from the wall, how-
ever, the k — w model often underpredicts turbulent mixing because it is directly set by
the freestream boundary condition we. Since the w-equation features relatively
weak turbulent diffusion (0, &~ 0.5) and a quadratic sink —B* w?, any error in we persists
downstream [72]]. This directly translates to v; and thus often underestimates turbulent
dissipation and mixing in the outer region.

3.1.2 The Shear-Stress Transport kK — w model

A model that incorporates both the strength of k — w at the walls and the robustness of
k — € in free-stream, was introduced by Menter et al. [33] in 1994. This so-called Shear-
Stress Transport (SST) k — w model is a hybrid model, which blends the transport equations
for € and w together using the blending function F; [33]:

ow _Jdw  w 2 d Jdw Own 0k dw

In different CFD codes the blending function may vary slightly in its exact form, but it
is always constructed so that F; = 1 at the wall and F; = 0 in the freestream. The role
of F; is not only, to gate the cross-diffusion term “2 %g—g but also to interpolate each
turbulence-model coefficient ® € {«a, B, B*, 0%, 0w } between its near-wall value ®; and its

freestream value @, via the relation [72]]

S=Fd +(1-F)D, (3.13)

This blending of the wall-resolving accuracy of k — w with the free-stream robustness of
k — €, the SST k — w model delivers the fine near-wall resolution and stable outer-flow be-
havior required to predict the thermo-hydraulic performance of TPMS structures, where
tight curvature, repeated separation and reattachment, and localized heat-flux gradients
demand both precision and numerical reliability.

3.1.3 The Reynolds-averaged temperature equation

Similarly to the Reynolds stresses, a model equation for the turbulent heat flux u}T/ in
equation 3.1| can be formulated using the gradient-diffusion hypothesis where [72]:
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oT
I'T! ~ __
W~ — oy 7 (3.14)

where «a; is the turbulent thermal diffusivity. Inserting this into the turbulent energy
equation yields

of  of 9 T
] (3.15)

3F 15 = o L) 3

Using the assumption, that turbulent eddies transport heat and momentum by the same
physical mechanism the system can be closed by relating the turbulent thermal diffusivity
to the turbulent viscosity using the empirically found turbulent Prandtl number (Pr;),

Vr

Kt = Pir_r (3.16)

and thereby closing the aforementioned system of governing equations for turbulent flow
and heat transfer [72]].

3.1.4 Wall treatment

The described system accurately captures the flow behavior across most of the domain.
However, additional considerations are necessary near the walls to ensure physically ac-
curate results. A wall in turbulence modeling is generally defined as a non-permeable
surface, where the mean velocity goes down to zero (no-slip). This no-slip and non-
permeability condition impose very steep velocity gradients and hence very high shear
stresses right at the boundary, which any turbulence closure must either resolve or model.

The velocity profile adjacent to solid walls can be divided into three regions, the viscous
sublayer, buffer layer, and logarithmic (log) layer, each characterized by the balance of the
stress tensor [71]].

ou; —
Tj = o T puju (3.17)
ox; P
where ?% describes the viscous stresses and p u] u; the turbulent stresses. Close to the wall
]

T;; is called wall shear stress and generally denoted as 7,. To get a universal description
of the wall effects the diensionless wall coordinates y™ and u™

+ _ WY o0
yT o= , ut = —.
v Ur

(3.18)

where u; = \/7w/p [72]. Using the dimensionless distance y* the different boundary
regions can be quantified as follows

Viscous Sublayer (y© < 5) The viscous sublayer is defined as the region where the
viscous stress dominates over the turbulent stress, leading to the local Reynolds number
Rer = (ury/u) dropping below 5 [72]. Consequently the wall shear stress can be simplified
to
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Jii;

T = W (3.19)
g ox j
This can be rearranged and integrated to get
_ T
U= :y:u%z (3.20)

Using the definition for u* and y™ the velocity profile can be written in non-dimensional
as

ut =yt (3.21)

Hence, the velocity in the viscous sublayer depends linearly on the distance to the wall
[72].

Log-Layer (30 < y™ < 200) In contrast to the viscous sublayer, the log-layer is domi-
nated by inertial forces (Re; ~ 30 — 200), leading to the turbulent stress dominating over
the viscous stress [72]. Using the same method as for the viscous sublayer, and the gradient
diffusion hypothesis to estimate the Reynolds stresses (Wu; ~ v¢ 1/ dy), the dimensionless
velocity profile in the log-layer can be estimated to [72]:

In(y*) + B (3.22)

These two estimates for the unitless velocity profile close two the wall can be seen in
Figure [3.1] plotted against experimental data.

0 10 20 30 40 50 60 70 80
Yy’

Figure 3.1: Law of the Wall taken with consent from a lecture held by Sandro Manservisi on turbulence
modelling [65]

It can be seen, that the estimated velocity profiles follow the actual velocity profile very
closely in their designated regions. A high deviation however can be seen in the in-between
region, called the buffer-layer (5 < y™ > 30).
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This unpredictable nature of the velocity in the buffer-layer, makes it unsuited for the posi-
tion of the first grid point, since the velocity can neither be fully resolved (linear region) or
estimated (logarithmic region). Therefore, it is good practice in CFD simulations involv-
ing RANS-turbulence modelling to either set the first cell-center in the viscous-sublayer or
log-layer. The same applies for temperature profile, which for a constant Prantl Number
follows similar formulations as the velocity close to the wall- linear for y™ < 5 and loga-
rithmic for 30 < y* < 200 [72].

For this study, the accurate prediction of fluid property gradients at the wall is essential,
since two evaluation criteria, namely the pressure drop and the Nusselt number, depend
directly on the velocity gradient and the temperature gradient at the wall, respectively. To
fully resolve these gradients, the first grid point for all walls is set in the region of y* < 1,
which lies deep within the viscous sublayer.

3.2 Boundary treatment

To solve the system of governing equations, additional constraints must be imposed, with-
out which the Navier-Stokes equations (or any partial differential equation) would be
ill-posed and therefore unsolvable [66]. These constraints are provided by the problem’s
boundary and initial conditions. For a scalar field ¢ defined on a domain (), the boundary
conditions imposed on its boundary d() are generally classified into two main types[37]:

1. Dirichlet boundary condition, which prescribes the value of the field itself at the
boundary:

‘HaQ: bo-

Physically, this fixes the variable (e.g. temperature, velocity component) to a known
profile or constant. In OpenFOAM this is implemented via the fixedValue condition.

2. Neumann boundary condition, which prescribes the normal gradient (flux) of the

field at the boundary:

Il _

anlan” 10
where % = n -V denotes differentiation in the outward-pointing normal direc-
tion n. Setting qo = 0 corresponds to zero flux (insulating or outflow), imple-

mented in OpenFOAM as zeroGradient. Non-zero fixed fluxes can be imposed
via fixedGradient.

These formulations extend directly to vector fields, such as the velocity u, by enforcing the

Dirichlet or Neumann condition independently on each component of the vector [37].

On the sides of the domain, a periodic boundary condition is implemented, which does
not fall neatly into the Dirichlet or Neumann categories, but rather is a mix of both [47].
It imposes value continuity (Dirichlet-type), in that the field on one side of the interface is
set equal to the interpolated value on the opposing patch. In other words,

(PpatchA =1 [¢patch B] ’
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where 7 is the chosen AMI (Arbitrary Mesh Interface) interpolation operator [47].
However, the cyclic boundary condition also imposes flux consistency (Nuemann-type).
Here, the normal gradient (or flux) across the interface is evaluated consistently using the
same interpolation weights, so that no artificial jump appears in the diffusive (or convec-
tive) flux [47].

The initial conditions implemented, are mathematically not strictly necessary to solve a
steady state problem, since it is fully posed by just its boundary conditions. Numerically,
however, the iterative linear and non-linear solvers require a starting guess. Hence, the ini-
tial conditions in study should rather be seen as a first guess, from where the solver starts
marching towards a steady solution, than initial conditions in the conventional temporal
sense.

3.3 Simulation Setup

Previous sections went into detail on the techniques applied to solve the Navier Stokes
equations for turbulent flow in both the free stream and the near wall regions. This sec-
tion will summarize the applied methods and describe how they are implemented.

All computational work in this thesis is carried out using the open-source CFD toolbox
OpenFOAM [70].

Turbulence Model

The cases are simulated as steady state, which requires a RANS-turbulence model. The
k — w SST model is chosen because it combines the ability to accurately resolve the near-
wall boundary layer while still maintaining stability and accuracy in the outer flow region.
The standard model coefficients provided by OpenFOAM are chosen. These are shown in
Table

Table 3.1: SST k-w model coefficients

Coefficient Value

Qg1 0.85
[19%) 1

Kol 0.5
) 0.856
Y1 0.555556
Y2 0.44
B 0.075
B2 0.0828
B* 0.09
a 0.31
by 1

(o] 10
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Discretization Schemes

The governing equations (see Equation are discretized via the finite-volume method
using Gauss’s divergence theorem, and further individual discretization for the convec-
tive fluxes and diffusive fluxes. Wherever the mesh quality and flow gradients permit,
fully second-order methods are employed. However, in regions prone to instability or
oscillations, limited or bounded variants are substituted to preserve stability. A complete
overview of the employed discretization schemes is given in Table Furthermore a more
detailed description of the employed numerical methods is given in Appendix

Table 3.2: Summary of discretization schemes

Category Scheme Accuracy Boundedness
Gradient schemes cell-limited linear second-order accurate limited
Divergence schemes upwind first-order accurate bounded
limited linear first- to second-order accurate  regionally bounded
Laplacian scheme linear corrected second-order accurate non-orthogonality corrected
Interpolation scheme linear second-order accurate unbounded
Solver

In this simulation, the incompressible formulation for the Navier stokes equations and the
energy equations need to be solved for a steady state. For this, the SIMPLE solver is chosen,
which iteratively solves the non-definite linear system by splitting it into a predictor and
corrector loop. One big advantage of the SIMPLE solver is the ability to under-relax the
flow fields, and thereby smoothen out oscillations or instabilities, that could otherwise
diverge the simulation. The values for the relaxation factor are shown in Table A more
detailed of this solver can be found in Appensix

Table 3.3: Relaxation factors used in the SIMPLE solver.

Variable Relaxation Factor

p 0.20
u 0.50
T 0.40
k 0.30
w 0.30

The relaxation factors were set to rather conservative values, to get good convergence even
in complex turbulent flow fields such as the one induces by TPMS structures.

Boundary and Initial Conditions

The boundary conditions must reproduce the actual physics at each surface. Accordingly,
at the inlet a fixed velocity of 3.7 m/s and a fixed temperature of 298 K are prescribed,
while the pressure is left as zero-gradient so that it can adjust to the imposed flow. The
turbulent quantities are set using algebraic equations. The relation

k= % (ju| 1)2 (3.23)
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is used to estimate the turbulent kinetic energy at the inlet [19]. Here, u is the imposed inlet
velocity, and I ~ 0.16 Re 18 is the specific turbulent intensity. The specific dissipation rate
can be estimated using the local k and the turbulent mixing length [, ~ 0.07D), as follows:

vk
= —— with C, =0.09
1/4 p
G/t
In OpenFOAM, these relations can be implemented directly as the boundary conditions
"turbulentIntensityKineticEnergylnlet" for k and "turbulentMixingLengthFrequencylnlet"

for omega. The turbulent viscosity v; and turbulent thermal diffusivity a; can be calcu-
lated using k and w, as described in Section

At the outlet, standard outflow boundary conditions are imposed. The pressure is fixed at
a reference value of zero (arbitrary for incompressible flow), and all other flow and turbu-
lence variables are assigned zero-gradient conditions to allow their profiles to adjust freely.

The side faces are set to have a cyclic boundary condition, which leads to the previously
described periodic flow behaviour. The TPMS structure is treated as a wall. Hence, for
the velocity a no-slip condition (uy,; = 0) is imposed. The temperature is set to have a
fixed value of 353 K, and the pressure is set to zero gradient. A special treatment is imple-
mented for the turbulent properties k and w, due to some mesh refinement issues close to
the boundary, where some cells exceed y™ = 1 (see Chapter).

To still accurately capture near-wall turbulence, low-Reynolds-number wall functions are
implemented for the turbulent kinetic energy k and specific dissipation rate w. These wall
functions enforce the correct asymptotic behavior,

lim k=0, lim w = oo,

yT—=0 yt—0
while avoiding under- or over-prediction of turbulent quantities in the few cells for which
y T exceeds the nominal value of unity. The implemented k-Wallfunction is formulated as

~2400C
Vs T ng 7
Cy In(y™)

+ <yt
y < Yiam’
kbranch =

klog =

where y;;m defines the region of the viscous sublayer, where the flow is assumed to be
laminar, and in OpenFOAM is set to v~ 10 [45]. In this study, care is taken, to ensure
that even the large boundary layer cells, would not breach y* < 5, and therefore still lie in
the laminar region. For ky;s the skin-friction coefficient Cy is computed as a function of yt
(and the switch-over constant C = y;- =~ 10) by

1 2y* 1

Cr= + ,
f (y+ +C)2 3 2

so that Cy — 0 quadratically as y* — 0. Finally, the viscous-sublayer estimate of k uses
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the the second dissipation coefficient in the standard k—e model C¢,, which is typically set
to Cer =~ 1.92.

Similarly to to the k-Wallfunction, the w-Wallfunction is also divided based on the bound-
ary regions [46]:

6 vy
_ + o<yt
Wyis = W/ yT < Yiam’
Whpranch = k
Wioe = yt >yt
0og CV K y’ lam*

Here, also only the viscous formulation is relevant since no cell breaches the y* = 10
threshold. In this expression, v, denotes the kinematic viscosity evaluated at the wall
and B is the first dissipation-rate coefficient in the k—w model (typically B; ~ 0.075).
This formulation also enforces the near-wall asymptote w ~ 1/y?, which guarantees that
w — oo as the wall is approached. The turbulent viscosity v and thermal diffusivity a;
are calculated based on k and w as described in section

On the side walls, a cyclic arbitrary mesh interface (cyclicAMI) boundary condition is im-
plemented using a face area weight interpolation method [47]. For each face f4 on patch
A, this algorithm identifies all faces fg on patch B whose bounding boxes overlap. It then
computes the intersection polygon P4p between the two faces and measures its area A4p
[48].

The field value on face f4 of patch A is reconstructed by area-weighted interpolation from
the overlapping faces fp on patch B:

Auag

(P(fA) = A 4)(fB)’
A
fB N~
WAB
where
AB
wap = —— and wap = 1.
AB AL % AB

Here A,p is the intersection area between f4 and fg, and Ay, is the total area of face f4.
The interpolation weights w 4p therefore represent the fraction of face f4’s area contributed
by each overlapping face fz. All the implemented boundary conditions are summarized
in Table
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Table 3.4: Boundary conditions

Field inlet outlet TPMS side Faces
U fixedValue 3.7 m/s zeroGradient noSlip cyclicAMI
P zeroGradient fixedValue 0 zeroGradient cyclicAMI
T fixedValue 298 K zeroGradient fixedValue 353 K cyclicAMI
0t calculated zeroGradient calculated cyclicAMI
k turbulentIntensitylInlet zeroGradient kLowReWallFunction cyclicAMI
Vr calculated zeroGradient calculated cyclicAMI
w turbulentMixingLengthlnlet zeroGradient —omegaWallFunction cyclicAMI

Unlike in fully transient simulations, where initial internal conditions specify the field at
time zero, in steady state solvers they serve as a starting estimate of the final converged
solution. A poor guess can cause the simulation to diverge, so selecting reasonable initial
values for all variables is crucial, especially for the turbulence fields. In general the inlet
conditions for the internal domain were used as a first guess for most parameters, except
p, which was set to the reference pressure (0 in this case). Furthermore, the initial internal
tields for a; and vy, are calculated based on the field values of k and w (see Equations

and [3.3).

Performance evaluation

Performance is evaluated based on the friction factor, the pressure drop per unit length,
and the Nusselt number (see Section [2.2). The thermophysical properties of air are deter-
mined using a lookup table, based on the temperature of the first grid point. This is imple-
mented by extending the boyantBussenesqueSimpleFoam solver as shown in Appendix

The pressure drop per unit length is defined as the difference in total pressure infront
and behind the TPMS structure, where each total pressure is obtained by averaging across
the cross-sectional plane immediately upstream and downstream of the porous domain.
This averaging procedure normalizes differences in cross-sectional area, enabling direct
comparison of pressure drops and subsequently also the friction factor across all cases.
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Computational Mesh

In computational fluid dynamics, the mesh (or grid) is the spatial discretization of the
domain into a finite number of small, non-overlapping elements (cells or control volumes)
on which the governing equations are solved. Therefore, a good mesh is the backbone
of any CFD simulation. Mesh quality depends on several factors, including the shape
and size of individual cells, the conformity and connectivity between neighboring cells,
their alignment with key flow directions, and their overall compatibility with the chosen
numerical methods. To systematically quantify these aspects, several mesh-quality metrics
are used.

4.1 Mesh-Quality Metrics

Mesh quality can be classified according to the geometric integrity of individual cells, such
as skewness or aspect ratio, and the mesh’s ability to capture case-specific features, such as
boundary-layer refinement or gradient resolution. Cell geometry significantly influences
the accuracy and stability of the numerical schemes used to solve the governing equations.
Consequently, geometric metrics such as skewness, non-orthogonality, aspect ratio, and
growth ratio must be evaluated. Some of the most important metrics are summarized
below. It should be noted that this study employs a mostly hexahedral mesh, so the
following quality metrics are presented in that context. The same metrics, however, can
be adapted to triangular, quadrilateral, or other cell shapes by using the corresponding
geometric definitions.

Skewness

The skewness of a mesh element quantifies its deviation from an ideal shape. Generally,
skewness is measured by the displacement between the actual face centroid and the ideal
interpolation point: for a face shared by two cells, let f be the true face centroid and f’ the
point where the line connecting the cell centers c¢p and cy intersects the face plane [66].
The centroid-based skewness is then

Scent = ||f — ']
In OpenFOAM, this is normalized by cell center spacing, defining face skewness as [49]

6. If — £
skew ™ Tleny — cp|| + VSMALL’

where VSMALL is a small constant to avoid division by zero. However, due to the way
OpenFOAM computes both cell centers and face centroids, the ideal intersection point
f' does not coincide exactly with the face centroid f. In practice, this yields ||f — f'|| ~
llen — cpl|, so that even a perfect hexahedral mesh reports Sgew ~ 1.
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A high face skewness degrades interpolation accuracy by displacing the face centroid
from its ideal location, thereby introducing truncation errors proportional to the skew-
ness. It also misaligns the face-area vector Sy in Gauss’s theorem, necessitating larger
non-orthogonal correction terms that increase computational cost and can lead to instabil-
ity. Thus, in OpenFOAM, it is recommended to maintain internal face skewness below 4,
while allowing boundary face skewness up to 7 [11} 41].

Non-Orthogonality

A closely related metric is the non-orthogonality. In contrast to skewness, which mea-
sures the positional deviation of a face centroid from its ideal interpolation point, non-
orthogonality quantifies the angular deviation between the normal vector of a face and the
line that connects the centers of its adjacent cells, effectively measuring how far the mesh
departs from the perfect right angles [66].

In OpenFOAM, this is computed for each internal face by letting d = ¢y — ¢p denote the
vector between the two cell centers and Sy the face-area vector, then evaluating [49]

d-S
0, = cos ! f d .
s = cos <Hd|| usf||+VSMALL) (degrees)

A perfectly orthogonal mesh has 6 = 0°. As 6 increases, larger non-orthogonal correc-
tion terms are required in the discretization of diffusion and gradient operators, which
degrades formal accuracy, raises computational cost, and may impair solver convergence.
While angles up to 70° are deemed acceptable, it is best practice to maintain 7 < 65° for
reliable CFD results [11) 41].

Aspect Ratio

The aspect ratio of a cell describes the ratio between its longest and shortest characteristic
lengths. A low aspect ratio (close to unity) indicates a nearly isotropic cell, whereas a high
aspect ratio denotes a stretched or elongated element.

Numerically, very elongated cells cause the finite-volume discretisation to become highly
anisotropic. This leads to central-difference approximations of gradients along the long
dimension suffering large truncation errors, thereby smearing out features aligned with
the stretch and under-resolving gradients across it [11]. This imbalance can also produce
coefficient matrices with widely varying diagonal and off-diagonal entries. The resulting
ill-conditioning forces tighter under-relaxation or more inner-loop iterations and can cause
divergence in extreme cases [11].

As a general rule of thumb, cells in the bulk flow should maintain an aspect ratio below 10 :
1 to avoid numerical anisotropy and ill-conditioning of the linear system [37]. However,
boundary-layer cells may safely reach aspect ratios of 50 : 1 when their long axis is aligned
with the wall-normal direction, since this alignment preserves accuracy, while satisfying
the y* requirements [41]].

Growth Ratio
The growth ratio measures how rapidly cell sizes change from one layer to the next. It is
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most commonly defined on a face-by-face basis as

max (Vp, Vy)
Gy = — N
mm(Vp, VN)

where Vp and Vy are the volumes (or characteristic lengths) of the two cells sharing face f
[49]. High growth ratios amplify truncation errors by forcing interpolations and gradient
estimates across uneven cell sizes, which smears sharp features and can induce oscilla-
tions. They also worsen matrix conditioning, creating stiff linear systems in implicit or
steady solvers, which can slow down convergence or cause divergence [38]. Therefore,
growth ratios between adjacent cells should be kept below 2 [41]

The case specific quality features can be broken down into the choice of the cell type and
the specific boundary features that the grid must exhibit, to fulfill the requirements of the
chosen modelling approach.

Grids are generally classified as either structured, in which cells are arranged in a regular
Cartesian topology, or unstructured, in which cells connect in an arbitrary pattern using
elements such as triangles, tetrahedra, or other polyhedra [66]. Structured grids provide
high computational efficiency because the alignment of cell faces with the coordinate axes
eliminates the need for face-normal corrections, and they deliver excellent numerical ac-
curacy when those faces are aligned with the flow direction [66].

On the other hand, unstructured grids require explicit storage of cell-to-cell connectivity
in additional data tables, which increases both memory usage and computational cost [41].
However, their flexibility allows seamless adaptation to complex geometries, which is one
of the main disadvantages of structured grids.

Consequently, a hybrid meshing strategy was adopted, where the bulk flow region is dis-
cretized with a structured hexahedral grid, while tetrahedral cells are used close to the
TPMS structure to capture its complex geometry.

As described in Section the wall-resolved k—w SST model is used to simulate turbu-
lence effects in the flow. This model requires the first grid point to lie within the viscous
sublayer (y© < 5). Furthermore, to resolve the steep velocity and thermal gradients near
the wall, several finely spaced boundary-layer cells are employed, with the first cell satis-
fying y* < 1. Here, the general rule of thumb is to have 10 — 15 cells with growth ratios
below 1.3 within the boundary layer [41].

4,2 Mesh Generation

Four open source mesh generators were tested for this study: cfMesh, snappyHexMesh,
Gmsh and SALOME Meca. Gmsh and SALOME Meca were unable to import and heal the highly
detailed STL files needed to resolve the TPMS curvature and were therefore excluded.
Both cfMesh and snappyHexMesh successfully handled the geometry and generated prism
cells along the walls, but cfMesh could not maintain the required mesh quality while also
achieving the fine first layer thickness needed for y* < 1. Hence, snappyHexMesh [50] was
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chosen as the meshing tool for this thesis.

In this section, the meshing procedure will be demonstrated based on the base case 10G.
However, the same meshing strategy is also applied to all other cases. Therefore, every-
thing explained in this section accounts for all cases, except specifically stated otherwise.

SappyHexMesh generates the mesh in three sequential stages. During castellation, the back-
ground Cartesian grid is locally refined around the imported STL file by subdividing any
intersecting cells to the user-specified refinement level. In the snapping phase, the ver-
tices are projected onto the exact surface triangles, smoothing the staircase approximation
while preserving the cell connectivity created during castellation. Finally, boundary-layer
cells are formed by extruding prism layers normal to the wall according to the specified
layer count, [50]. These steps are controlled in the so-called sappyHexMeshDict, which de-
fines the parameters for each step. The dict file in this study is kept the same for all the
cases, and is included in Appendix[A.5] The mesh generated in sappyHexMesh for the 10G
structure is shown in Figure

Figure 4.1: Meshed computational domain shown as the Gyroid structure embedded in the rectangular mesh-
ing domain, a slice through the bulk mesh, and a detail of said slice

The figure shows the gyroid structure embedded in the rectangular meshing domain, a
slice through the bulk mesh, and a detail of said slice. The slice shows that different
refinement-zones are applied, with decreasing cell size towards the TPMS structure. Im-
mediately adjacent to the geometry, twelve prism layers are extruded with a growth ratio
of 1.1 and a positioning of the first layer, such that y™ < 1. The internal hexahedral cells
are aligned with the primary flow direction (x-direction), and near-wall cells conform pre-
cisely to the TPMS surface. Furthermore, the mesh is kept at high quality by enforcing the
constraints summarized in Table
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Table 4.1: Mesh quality settings for checkMesh

Setting Value
max Non-Orthorgonality 65
max Boundary Skewness 7
max Internal Skewness 4
max Concaveness 80
min Volume 1x10°13
min TetQuality 1x1071°
min Twist 0.02
min Determinant 0.001
min FaceWeight 0.05
min Volume-Ratio 0.01
max Aspect Ratio 50
max Growth Ratio 2

As outlined before, enforcing these mesh quality constraints is crucial for solver stability
and accurate results. However, this strict adherence occasionally prevents the extrusion of
the full set of boundary-layer cells in some regions, as the layer-generation algorithm can
not satisfy all quality thresholds while maintaining the specified layer thicknesses. One of
those regions where the boundary layer breaks down in shown in Figure .2}

Figure 4.2: Boundary layer breakdown in regions, where mesh quality and low cell size could not be combined

Although the location and extent of these regions vary slightly between cases, no less than
97 % of the boundary layer is fully extruded throughout the different setups. Further-
more, to still maintain accuracy in the breakdown regions, the first wall-adjacent cell in
these zones is refined to satisfy y™ < 5, thereby allowing to model these regions with the
low-Reynolds-number wall functions (see Section [3.3).

Special care is also taken to ensure that the meshes on corresponding AMI patches (left
+ right, top <+ bottom) are closely matched. Poor alignment can yield very small or
zero interpolation weights, which skew gradient calculations, underpredict fluxes, and
ultimately can lead to a violation of continuity across the interface.
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Verification and Validation

Using a simulative approach to investigate real-world phenomena provides a powerful,
cost-efficient, and flexible method to test novel engineering applications. However, to
ensure that the attained results are physically accurate, the assumptions and numerical
behaviour need to be verified, and the final simulation results must be validated against
experimental data. Numerically, different aspects need to be taken into account, such as
the convergence and grid independence of the simulation results. Once grid-independence
and convergence is proven, the assumptions of incompressibility assumption is verified,
before the final simulation results are validated against experimental data from literature.
Because the overall flow structure is very similar for all cases, verification and validation
are performed only for the 10G configuration. It is assumed that the results extend to the
other configurations as well.

It should be noted that the experimental study used for validation defines the hydraulic
diameter as the side length of the channel. To ensure consistency and avoid confusion
from switching between definitions, this convention is maintained throughout this chapter.
This choice does not affect the verification procedure, as it is applied exclusively to the 10G
structure, where any change in hydraulic diameter would merely result in a rescaling of
the Nusselt number and friction factor.

5.1 Convergence

The SIMPLE solver iteratively solves the incompressible Navier-Stokes equations toward a
steady-state solution. This solution is assumed to be converged when successive iterations
no longer produce meaningful changes between iteration steps. Gauging convergence is
essential because it confirms that the computed flow field satisfies the governing equations
to the desired precision, ensuring physical reliability of the results.

Therefore, convergence is assessed using three different metrics. First, the evolution of
pressure and velocity at three representative probe locations is kept track of and inspected
to confirm that these variables no longer change significantly between successive iter-
ations. Second, global thermophysical quantities, namely the Nusselt number and the
overall pressure drop, are tracked in the same manner and are considered converged once
their incremental variation falls below a predefined tolerance. The third metric consid-
ers the solver residuals, which quantify the remaining imbalance in the linear system. In
OpenFOAM, the residuals are calculated as [42]

r =

|-

i’ bl‘ - (AX)Z' }

where 7 is the total number of discretized equations (typically one per control volume),
b; is the right-hand-side contribution for equation i, A is the coefficient matrix assembled
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from the discretized governing equations, x is the current solution vector, and (Ax)z. is the
reconstructed left-hand side for equation i. The absolute difference | b; — (Ax); | therefore
measures the imbalance of each equation, and r represents the average of these imbalances
over the entire domain.

Two different residuals are monitored. The initial residual, which quantifies the imbalance
remaining from the previous solution before the new set of SIMPLE corrector iterations
starts, and the final residual, which indicates how effectively those iterations have reduced
that imbalance. This essentially keeps track of how well the overall simulation is converg-
ing (initial residual) and how well the SIMPLE solver converges within the current set of
corrector iterations for that same step (final residual).

In general, both of these should drop over the course of the simulation, since the solver
is getting closer to the steady state solution. In highly turbulent flows, however, this
decrease can level off and the residuals can stall, because the solver is forcing a steady-state
formulation onto a flow that is inherently unsteady [10]. This could be circumvented by
solving for the fully transient flow. However, since the unsteady flow features are not of
interest for this study, a case is deemed converged when the integral quantities of interest
have stabilized and the monitored field variables show only minor fluctuations, even if the
residuals have plateaued. Exemplary, the convergence of the 10G case is shown below:
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Figure 5.1: Exemplary convergence of the 10G case, including the initial and final residuals, the integrated
quantities, and probe values

It can be seen that both the Nusselt number, the pressure drop, and the probe values
level off toward constant values. In addition, the initial and final residuals decline as the
simulation proceeds, although they exhibit oscillations due to the flow’s unsteady nature.
Any simulation, that exhibits a similar behaviour, is assumed to be converged.
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5.2 Grid Independence

As mentioned previously, a CFD simulation is a numerical approach to approximate the
solution of the governing equations for a given flow problem. The accuracy of this ap-
proximation heavily depends on the discretization of the problem over the computational
Grid [56]. This discretization leads to numerical errors that occur from representing said
governing equations as an algebraic expression in a discrete spatial domain.

The discretization errors decrease asymptotically as the spacing between individual grid
points (Ax, Ay) decreases, and the total number of grid cells increases. As a result, the
simulation solution becomes progressively less sensitive to the grid spacing with mesh
refinement [55]. However, finer meshes lead to a significant increase in computational
cost. A rule of thumb is that the computational cost scales roughly linearly with the total
number of cells. For instance, doubling the resolution in both dimensions of a 2D grid
(Nx x Ny) results in a fourfold increase in the number of cells, thereby quadrupling the
computational cost. Hence, a balance between a low discretization error and a reasonable
computational cost needs to be achieved [56].

Since the discretization error reduces asymptotically with smaller grid spacing, a region of
grid independence can be defined. In this region, further mesh refinement does not lead
to a substantial reduction in discretization error, ensuring that the solution is effectively
independent of the grid resolution.

Various methods exist to quantify spatial and temporal convergence, as outlined by Roache
[55]. However, the most common approach to evaluate numerical uncertainty is a grid
convergence or grid refinement study. When combined with the Grid Convergence Index
(GCI), a standardized method proposed by Roache [54] for reporting grid convergence
studies, this approach provides an effective tool for assessing grid independence.

The GCI is based on Richardson extrapolation, a numerical technique used to estimate the
exact solution of discretized problems by utilizing numerical results obtained at different
levels of discretization [55].

5.2.1 Grid convergence study

In the grid convergence study, two or more discrete solutions of different grid spacings are
generated to calculate a Richardson error estimator E, which approximates the error of a
grid solution f to that of a coarser or finer grid. It can be differentiated between a fine-grid
estimator, where the error of a fine mesh solution, f,, is approximated, by comparing it
to a solution of a coarse grid fi. Or a coarse-grid estimator, where the error of the coarse
mesh solution is approximated by comparing it to the fine grid. The estimators are defined
as [55]:

fine _ € coarse __ rPe
B =y B=r (.1)
The estimators depend on the relative error between the solutions € = f;lfz, on the order

of convergence p, and on the refinement ratio r, which are defined as [55]:
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where h;; denotes the characteristic grid spacing on mesh i or j. For structured grids
the grid spacing is defined as h = Ax. For unstructured grids, it is usually defined as
h = (V)V3, using the cube root of the mean cell volume. The indices 1, 2, and 3 here
represent three different mesh refinements: coarse, medium, and fine. Using the estimators
and a safety factor of F; = 1.25, the GCI for the fine- and coarse-grid solutions are[55]

GCline = F[Ef™|  GCleoarse = Fs|E5™|

where the fine-grid GCI measures the discretisation error still present in the finest mesh,
while the coarse-grid GCI provides the corresponding error estimate for the next-coarser
mesh. These estimates can be seen as a measure of the percentage that the solution is away
from the asymptotic numerical value. Hence, it defines an error band that predicts how
much the solution would shift if the mesh were refined further [55]. A low GCI therefore,
signals that the simulation has already entered the asymptotic regime and additional re-
finement would produce minor changes.

The grid independence study is conducted for the 10G case using the Nusselt number and
pressure drop. Three different meshes with 1.13 million, 1.66 million, and 2.40 million cells
are created, resulting in a refinement ratio of r ~ 1.2 between the grids. Since the Nusselt
number heavily depends on the spacing of the first grid cell adjacent to the wall, the same
refinement factor is applied to the boundary cells. The results of the Grid refinement study
are shown below.
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Figure 5.2: Values of the Nusselt number and pressure drop for the coarse, medium and fine meshes, plotted
over the Gridsize

Figure |5.2| shows the results of the Nusselt Number and pressure drop for the three dif-
ferent grids. The error band describes the absolute uncertainty band around the exact
solution, calculated as Band = fexact = GClfy; - fexact, Which can be treated as a 95%-style
confidence interval for the discretization error [55]. Therefore, based on the observed
grid-convergence behaviour and the conservative safety factor, the true drag coefficient
is expected to fall somewhere between error-band if the mesh were refined towards the
continuum limit.
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It can be seen that, as the mesh is refined, both the Nusselt number and the pressure
drop converge towards the Richardson-extrapolated value. Furthermore, the values for the
medium and fine mesh lie inside the 95 % confidence interval for both integrated measures,

indicating that the medium mesh lies inside the asymptotic range of convergence. This

is supported by AR = ot 0.9984, which is very close to the ideal value of unity,

Cleoarse 1P
confirming that the solutions have reached the asymptotic regime according to the criterion
suggested by Roache et al. [55]. To fully gauge if the simulation is grid independent, the
GCI values, which for the coarse and the medium mesh are shown in Figure are also

taken into account.

Pressure Drop over Grid Size

Fine

170 F
o
<] 165
160
Coarse Medium
Grid Level
Grid Convergence Index (GCI)
15+
S0t
]
O 5t
0 . I
Coarse-Medium Medium-Fine
Grid Pair

Nusselt Number over Grid Size

121

120
=1
z

119

118 ‘
Coarse

Medium
Grid Level
Grid Convergence Index (GCI)

———————————

Fine

Coarse-Medium Medium-Fine

Grid Pair

Figure 5.3: Grid convergence indices based on the coarser mesh, for both the coarse and medium mesh

The calculated GCI values for the pressure drop and Nusselt number, based on the previ-
ously described coarse estimator, are 15.05 % and 3.01 % for the coarse mesh, and 2.92 %
and 0.211 % for the medium mesh, respectively. For the medium mesh, these values fall
comfortably below the 5% threshold suggested by Roache [55]. The low GCI values,
together with the demonstrated asymptotic behavior, indicate that the medium mesh is
sufficiently fine to accurately resolve the flow. It is therefore chosen over the fine mesh
due to its significantly lower computational cost while maintaining comparable accuracy.
Conversely, the coarse mesh is not selected, as it exhibits high discretization errors and
fails to provide sufficient accuracy.

It should be noted that some of the smaller unit-cell configurations require finer grid spac-
ing to fully resolve their detailed features. Nevertheless, the grid spacing used throughout
all investigated cases never exceeds that of the medium mesh established in the grid-
independence study.

5.3 Incompressibility Assumtion

The flow in this study is assumed to be incompressible, because inclusion of compressibil-
ity effects would significantly increase the computational cost. However, strictly speaking,
heated air cannot be treated as fully incompressible, since high temperature gradients and
elevated velocities can cause noticeable changes in density. Quantitatively, an increase in
temperature from 298 K (inlet) to 353 K (TPMS region) results in a density decrease of
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approximately 15% (from 1.18 kg/m® to 1.00kg/m?), potentially introducing inaccuracies
due to fluid compressibility effects. One such compressibility-driven effect is buoyancy,
which can be evaluated through the Richardson number (Ri). For this specific setup, the
Richardson number is calculated as Ri ~ 4 x 10~* < 1, indicating that buoyancy forces
are small compared to inertial forces and thus do not significantly influence the flow field.

The Mach number in this study remains well below the compressibility threshold of 0.3,
indicating, that velocity-induced compressibility is negligible.

Regarding the pressure drop, rearranging the friction factor equation (Eq. [2.11) yields:

L pU?
M= fpt

This demonstrates a direct dependence of the pressure drop on fluid density. Thus, a
density variation of up to 15 % could theoretically introduce a corresponding discrepancy
in the computed pressure drop. However, since the pressure drop is averaged across the
entire channel cross-section and not all fluid regions experience temperatures as high as
353 K, the actual error is anticipated to be substantially lower and within an acceptable
range.

To conclusively verify this an additional simulation employing the compressible solver
rhoSimpleFoam is conducted and compared directly to the incompressible results. These
results are shown below:
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Figure 5.4: Comparison of the Nusselt number and pressure drop for the incompressible and compressible
10G case

The Nusselt number and pressure drop for the incompressible and compressible cases are
120.9 and 116.5, and 158.4 Pa and 156.3 Pa, respectively. The compressible case exhibits
slightly lower values for both quantities. This behavior can be attributed to thermal ex-
pansion. The resulting decrease in density increases the kinematic viscosity, enhancing
momentum diffusion and leading to a flatter velocity profile. Consequently, the velocity
gradient at the wall decreases, reducing the wall shear stress T, and thereby the pressure
drop. Furthermore, thermal expansion increases the thermal boundary layer thickness,
which lowers the temperature gradient at the wall and results in a reduced Nusselt num-
ber.
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Figure also shows that the observed differences in Nusselt number and pressure drop
between the incompressible and compressible cases are relatively small. As shown in
Figure the relative error is 3.16 % for the Nusselt number and 1.26 % for the pressure
drop. These discrepancies are minor, and in the case of the pressure drop, the difference
is even smaller than the estimated discretization error (GClcoarse = 3.01 %). This suggests
that, under the given conditions, the effects of thermal and inertial compressibility are
limited, and the compressibility assumption can be used to obtain accurate results at a
lower computational cost.

5.4 Experimental Validation

To complete the verification and validation process and build confidence in the physical ac-
curacy of the simulation results, they are compared with experimental and computational
data from the literature. As discussed in Section only a few studies have experimen-
tally investigated heat transfer in TPMS structures. Moreover, most of these studies used
different setups and boundary conditions, making direct comparison with the present
work difficult. However, one study by Khalil et al. [29] experimentally investigated flow
through a Gyroid sheet structure with a porosity of 20 % and a unit cell size of 10 mm.
Based on this, the 10G case from the present study is selected for validation, using the
results from Khalil et al. [29] as a reference.

The study by Khalil et al. [29] was conducted over a broad range of Reynolds numbers,
including Re = 5000, although a key difference is that their experiment employed physical
walls as channel boundaries. In their work, the pressure drop was measured and used to
calculate the friction factor, which served as the basis for validating a CFD simulation. This
validated simulation was then used to investigate the heat transfer characteristics in more
detail. As a result, experimental validation in the present study can only be performed
using pressure drop and related flow parameters. To further increase confidence in the
physical accuracy of the simulation, the Nusselt number and heat transfer coefficient will
be compared against the computational results provided by Khalil et al. [29]

Pressure Drop and Friction Factor

In their study, Khalil et al. [29] calculated the friction factor based on the mean density and
mean velocity of the fluid within the TPMS structure. Additionally, they use the channel
height as the hydraulic diameter. To ensure a consistent and easier comparison, the friction
factor in this section is computed using the same approach. The values for the pressure
drop per unit length and the friction factor are shown in Figure
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Figure 5.5: Comparison of the simulated pressure drop per unit length and friction factor with the exper-
imental results reported by Khalil et al. [29]. The error bars indicate uncertainties due to the approximate
extraction of the values from the published data.

At Re = 5000, the study by Khalil et al. [29] does not report explicit numerical values for
the pressure drop and friction factor, but presents them graphically. As a result, the values
could only be approximated by extracting data from the plots, introducing some uncer-
tainty. To account for this, a reading uncertainty of 2 % is assumed. This is represented by
the error bars in Figure

The experimentally determined pressure drop, normalized by the length of the TPMS
structure, is slightly higher at AP/L = 5400 4= 100 Pa/m compared to the simulated value
of AP/L = 5280Pa/m. This discrepancy can be attributed to the absence of channel walls
in the present simulation, where periodic boundary conditions reduce wall-induced shear
stress, leading to a lower overall pressure drop. However, since the total pressure drop is
primarily governed by the interaction of the flow with the TPMS geometry, the deviation
remains small, within a range of 2.18 % to 2.26 %.

As the friction factor directly depends on the pressure drop per unit length (see Equa-
tion 2.11), a similar trend is observed here. The deviation in friction factor, however, is
slightly larger than that of the pressure drop per unit length, ranging from 4.02 % to 4.2 %.
This can again be attributed to the use of periodic boundary conditions, which do not have
lateral flow confinement and thereby result in a higher mean velocity magnitude through
the structure, which decreases the friction factor.

The inverse behaviour can be seen for the heat transfer coefficient and the Nusselt number,
which are shown in Figure
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Figure 5.6: Comparison of the simulated heat transfer coefficient and Nusselt number with the computational
results reported by Khalil et al. [29]. The error bars indicate uncertainties due to the approximate extraction
of the values from the published data.

The Nusselt number and heat transfer coefficient for the 10G case are Nu = 120 and
h = 150 W/m?K, respectively. These values are slightly higher than those reported by
Khalil et al. [29], who found Nu = 111 £2.2 and h = 136 £ 2.7 W/m?K. This difference
is expected, as the absence of confining lateral walls in the periodic simulation allows for
increased flow circulation, which enhances convective transport and thus improves heat
transfer performance. Nevertheless, similar to the pressure drop and friction factor, the
deviations in the Nusselt number and heat transfer coefficient remain relatively small, with
relative errors generally below 10 %.

This, together with the low relative errors observed in pressure drop and friction factor,
indicates that the simulation results closely align with experimental and computational
data from the literature, suggesting that the computational setup employed in this study
is physically sound and reliable.
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Results and Discussion

With the verification and validation providing a high level of confidence in the physical
accuracy of the modeling approach, the simulation study is conducted to investigate the
influence of unit cell size on the system’s thermal and hydraulic performance. This chap-
ter presents the results of that study, highlighting how changes in unit cell size affect key
thermal and hydraulic performance indicators of the system.

For integral parameters such as the Nusselt number and friction factor, this chapter adopts
the definition of hydraulic diameter introduced in Section as it is considered to be
more representative of the characteristic length of the individual TPMS structures than the
channel height employed in the previous chapter.

6.1 Geometry

Changing the unit—cell length while holding the porosity constant alters key geometric
parameters of the structures, such as the total interfacial area Atpms and the hydraulic
diameter Dj,. Because the domain volume increases, a direct comparison of the absolute
surface area would be misleading, since a larger unit cell size would appear to have a
higher surface area simply by occupying more space. A more rigorous descriptor is the
specific surface area, defined as the interfacial area normalized by the corresponding fluid
volume, i.e. the amount of solid-fluid interface available per unit volume of fluid:

2
A — ATpMS mmg ;g
s = )
Viuid mrn?lui d

This normalization removes the scaling effect and allows cases with differing volume to
be compared on an equivalent geometric basis. This specific area is shown in Figure

Specific Surface Area Hydraulic Diameter

Specific Surface Area [mm™1]
Hydraulic Diameter D, [mm]

5 6 7 8 9 10 1 12 13 14 15 5 6 7 8 9 10 1 12 13 14 15
Unit Cell Size, a [mm] Unit Cell Size, a [mm]

Figure 6.1: The left figure shows specific Area, which is calculated as the Area of the TPMS divided by the
Volume of the fluid, plotted over the unit cell size. The right finger presents the hydraulic diameter over unit
cell size

44



Chapter 6. Results and Discussion

As anticipated, the calculated specific surface area decreases non-linear as the unit cell
size is reduced, which aligns with the findings from Samson et al. [57]. Furthermore, a
systematic difference between the two topologies is also apparent, where for every cell size
examined, the diamond lattice exhibits a 15 % larger specific surface area than its Gyroid
counterpart.

Figure|6.1|also shows the hydraulic diameter, for all investigated unit cell sizes. In contrast
to the specific surface area, the hydraulic diameter increases linearly with increasing unit
cell size. For the Gyroid and Diamond topologies, this increase from the 5 mm unit cell to
the 15 mm unit cell, is 190 % and 196 %, respectively. A direct consequence of the higher
specific surface area of the Diamond topologies is their lower hydraulic diameter, which
for all unit cell sizes is about 19 % below that of the Gyroid structures.

6.2 Flow Path and Structure

To gain a deeper understanding of the mechanisms influencing thermal and hydraulic
performance, the general flow structures within the TPMS geometries are examined first.
Both the Gyroid and Diamond structures exhibit complex, three-dimensional flow patterns
across all investigated unit cell sizes. To highlight the characteristic flow behavior in the
two different TPMS topologies, the streamlines for the 15G, 15D, 10G, 10D, 5G, and 5D
configurations are shown in Figures 6.2

Figure 6.2: Streamlines through the Gyroid and Diamond Structure, which are colored using the turbulent
kinetic energy
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The streamlines in Figure are colored by the turbulent kinetic energy (k) and extend
from the inlet to the outlet of the domain. Since the simulation is conducted under steady-
state conditions, the streamlines represent the paths that fluid elements would follow in
this steady regime. It can be observed that, as the fluid penetrates the porous domains the
streamlines diverge in both topologies.

In the Gyroid lattices (Figure left column), fluid dispersion is more chaotic than in
the Diamond lattices, which leads to a steeper rise in turbulent kinetic energy k for the
Gyroid structures at equivalent unit cell sizes. Similar observations are described in previ-
ous studies by Yreanee et al. [75]. Furthermore, as the unit cell size increases, the Gyroid
flow becomes progressively more disordered, whereas the Diamond lattices exhibit only
a modest increase in flow dispersion with increasing unit cell size. In both topologies, k
decreases as the unit cell size is reduced, which is also consistent with previous findings
by Samson et al. [57].

This can mainly be attributed to the decrease in hydraulic diameter, which increases the
fraction of fluid subjected to near-wall effects and thereby increases the fraction of the vis-
cous sub-layer, in which the turbulent kinetic energy is suppressed. Because the volume-

averaged velocity is approximately constant across all cases (<u>pm = u;, /¢, see Section

, a smaller D, lowers the average local Reynolds number Re, = <u>VDh/ v, which re-
duces the production of turbulence and thereby leads to a lower turbulent kinetic energy.

Furthermore, for all cases the turbulent kinetic energy is found to increase as the flow
propagates further through the TPMS, with the exception being the 5D setup. Here, a
reduction in k in flow direction can be observed. This is shown in more detail in Figure
6.3, which presents samples of the turbulent kinetic energy throughout the 5G and 5G
structure.

09 - Turbulent Kinetic Energy in the 5G Case 09 Turbulent Kinetic Energy in the 5D Case

. . . . . , . . . . . ,
0 0.005 001 0.015 002 0.025 003 0 0.005 0.01 0.015 002 0.025 003
x [m] x[m]

Figure 6.3: Different samples in x-direction of the turbulent kinetic energy throughout the 5G (left) and 5D
(right) cases

After an initial increase in turbulent kinetic energy due to flow disruption, a downstream
decline in k is observed in the 5D lattice, indicating a progressive weakening of turbu-
lence along the flow path. This turbulence damping, which is only present for the 5G case,
arises from the small hydraulic diameter, which gives an average local Reynolds number of
Rep,5p = 564 and thereby suppresses turbulence production. In the 5G lattice, the average
local Reynolds number is only slightly higher, at Rej, 5c = 713. However, the combination
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of a higher Re;, and a more chaotic and convoluted flow path of the Gyroid geometry en-
hances turbulence generation and offsets the tendency toward turbulence damping. This
effect of turbulence damping in small channels is well documented in literature for micro
channels and converging nozzles [18) 36]

As described, Figure[6.2]highlights the more chaotic flow patterns within the Gyroid struc-
ture but also indicates that the geometric variations induce different internal fluid behavior.
This contrast in internal flow between the Diamond and Gyroid configurations is further
illustrated in Figure |6.4{and which presents velocity contours and vector fields on the
central x-z and y-z plane for the 15G, 15D, 10G, 10D, 5G, and 5D cases.

15G 15G

L~ Gi

Figure 6.4: Slices of the flow field through the lateral center plane of the 15G, 15D, 10G, 10D, 5G, and 5D
structures. These are colored using the velocity.
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Figure 6.5: Slices of the flow field through the horizontal center plane of the 15G, 15D, 10G, 10D, 5G, and 5D
structures. These are colored using the velocity. The arrows follow the velocity vectors

In Figure it can be observed that the sheet-like TPMS surfaces bisect the flow into
two distinct domains. In the Gyroid structures (Figure left), one domain develops a
clockwise helical motion while the other spins counter-clockwise, both swirling around the
through-holes, where speeds peak at about 14 m/s. Figure |6.5{shows, that these through-
holes are aligned with the flow direction and therefore allow for a high velocity region to
form with the Gyroid structures.

In contrast, the Diamond structures (Figure right) exhibit alternating clockwise and
counterclockwise vortices within each partitioned domain. While localized regions of ac-
celeration and recirculation are present, the overall flow is more uniform, with lower peak
velocities reaching up to 9.3 m/s. This behavior is further supported by the horizontal
slices shown in Figure which indicate slightly elevated velocities near the upper chan-
nel walls. This occurs because the diagonal arrangement of the Diamond geometry diverts
the flow at these surfaces, deflecting it from the primary flow direction, which leads to
local acceleration. However, this effect is less pronounced than in the Gyroid case, as the
Diamond topology lacks a single, continuous pathway aligned with the main flow direc-
tion. This difference in flow organization also contributes to the lower levels of turbulent
kinetic energy observed in the Diamond structures, since the more structured flow and
smoother velocity gradients reduce turbulence generation and promote a more stable and
uniform flow profile.

As the fluid passes through the TPMS structures, it interacts with the surfaces of the lattice,

generating shear stress along the walls. The resulting local wall shear stresses are shown
in Figure [6.6] for the 15G, 15D, 10G, 10D, 5G, and 5D cases.
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Figure 6.6: Distribution of the wall shear stress on the surface of the TPMS structures
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The wall shear stress is directly proportional to the velocity gradient normal to the sur-

face, as described by 7, = u (%) ‘Wau. This relationship explains the generally higher

wall shear stress observed in cases with smaller unit cell sizes. As these configurations
maintain a similar average pore velocity while confining the flow to narrower channels,
the resulting velocity gradients near the wall become steeper, thereby increasing the shear
stress. This trend has also been reported by Samson et al. [57] and Li et al. [30] for Gyroid
structures.

A comparison of the two topologies reveals that both the Gyroid and Diamond structures
exhibit localized regions of elevated wall shear stress. In the Gyroid structures, these
regions are found where the flow paths narrow and the high-velocity core passes close to
the structure surface, as shown in Figure This proximity increases the local velocity
gradient, which increases wall shear stress. For Gyroid topologies these regions were also
linked to flow recirculation by Samson et al. [57]. They further show that these wall shear
stress peaks are higher compared to the mean wall shear stress for bigger unit cell sizes,
indicating stronger recirculation. Recirculation regions are also observed in this study
behind most Gyroid topologies, as shown in Figure
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15G 10G 5G

Figure 6.7: Detail of regions behind the 15G, 10G and 5G structures, showing reciculation zones

It can be seen that recirculation zones form downstream of the trailing edges of the solid
struts. In the 15G case these zones are most pronounced. For the 10G case they remain
visible but are weaker, and in the 5G case, they are completely absent, indicating that, as
the size of the unit cell decreases, flow recirculation progressively weakens until it eventu-
ally vanishes.

This observation aligns with the earlier finding that, in the Gyroid topology, larger unit-cell
sizes promote increasingly chaotic flow, since enhanced flow separation and the resulting
recirculating wakes destabilize the shear layers, driving the transition to a more chaotic
and turbulent regime [58]].

In the Diamond topologies, no such recirculation regions behind the structures are present,
thereby allowing for the more stable flow pattern.

Further analysis of Figure shows, that for the Diamond topologies, regions of high
wall shear stress are less extreme than in the Gyroid cases, but more frequent and typi-
cally appear as two distinct zones on opposite sides of the internal surfaces. These occur
where the geometry forces the fluid to redirect around the central wall features, resulting
in elevated shear stress along both paths. This flow splitting plays a key role in generating
the counter-rotating vortices observed in Figure

These rotational motions, induced by both the Gyroid and Diamond topologies, give rise
to coherent vortex structures that extend downstream of the TPMS. Figure [6.8| visualizes
these vortices using the Q-criterion on slices taken 10 mm downstream of the cellular
structures.
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Figure 6.8: Slices of the flow field 10 mm behind the 15G, 15D, 10G, 10D, 5G, and 5D. These are colors by the
Q-criterion

These slices are colored using the Q-criterion and show the velocity vector-field in the
form of arrows. Generally, vorticity can be used to measure local fluid rotation. It alone,
however, does not reliably distinguish between pure shear and true vortical motion. To
address this, the Q-criterion is employed, to more accurately identify coherent vortex struc-
tures within the flow [25]. The Q-criterion is defined as Q = 1 (||Q||* — |S||?) , where Q
and S are the antisymmetric and symmetric parts of the velocity gradient tensor, repre-
senting rotation and strain, respectively. This criterion evaluates the local balance between
rotation and strain. Regions where Q > 0 indicate that rotation dominates over strain,
indicating the presence of vortex structures, with the vortex cores being in the regions of
the highest Q.

As shown in Figure the Gyroid structures (left) generally display a more irregu-
lar vortex distribution, whereas the vortices in the Diamond geometries (right) form a
checkerboard-like pattern. This contrast reflects the inherently more chaotic flow in the
Gyroid topology described above. Significant variations also emerge across unit cell sizes
within each topology. In the Gyroid structures, the 15G configuration exhibits lower peak
values of Q in its vortex cores and a more smeared Q-distribution than the 10G case, due

51



Chapter 6. Results and Discussion

to increased momentum mixing from its more disordered flow. The 5G model likewise
shows reduced maximum Q and increased dispersion. However, here the difference is
driven by the lower turbulent kinetic energy in the 5G case, which accelerates vortex decay.
Consequently, by 10 mm downstream of the TPMS, momentum diffusion has markedly
smoothed velocity gradients and weakened coherent vortex structures.

This trend is even more pronounced in the 5D case, which features the lowest turbulent
kinetic energy at the outlet of all samples. At higher unit cell sizes however, the increased
dispersion of Q seen in the 15G does not occur in the Diamond lattice, which exhibits
nearly identical structures between the 10D and 15D case. This is a result of the com-
paratively orderly nature of the flow through the Diamond lattices, even at high unit cell
sizes, which never transitions into the highly dispersed, chaotic regime observed in the
15G configuration.
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6.3 Thermal distrubtion

As the fluid progresses through the TPMS structure, it steadily warms along the flow
direction. This progressive heating is directly influenced by the pore geometry and the
resulting flow structure, which governs both the local temperature distribution and the
overall thermal performance of the TPMS structure. To illustrate this relationship, the
temperature distribution within the 15G, 15D, 10G, 10D, 5G, and 5D cases are presented

in Figure [6.9]
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Figure 6.9: Slices of the temperature field through the horizontal center plane of the 15G, 15D, 10G, 10D, 5G,
and 5D structures are shown, with color indicating local temperature. The graphs below plot the temperature
readings recorded by probes placed in each corresponding structure.

The slices shown in Figure[6.9 illustrate the temperature distribution within the central x-z
plane for the different TPMS structures. The accompanying plots show the temperature
profiles for the depicted Gyroid and Diamond structures, derived from samples taken at
multiple bulk-flow locations (away from the walls) along a straight line, which is posi-
tioned centrally within the flow domain.

It can be seen that the fluid temperature increases steadily as it passes through the struc-
tures. This temperature rise is more pronounced for smaller unit cell sizes, which have a
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higher specific surface area. As a result, these structures offer a greater solid-fluid inter-
face per volume of fluid, thereby enhancing heat transfer and accelerating the temperature
increase. For example, in the Gyroid structures, the 5G case reaches the outlet temperature
of the 10G structure (326 K) after just 0.009 m, corresponding to approximately 30 % of the
total length. The outlet temperature of the 15G structure (317 K) is reached even earlier, at
0.006 m (20 %).

A similar trend is observed in the Diamond structures, although the distances required for
the 5D case to reach equivalent 10D and 15D outlet temperatures are slightly longer. This
can be attributed to their generally higher specific surface area. In the 5D case, the outlet
temperature of the 15D structure (323 K) is reached after 0.008 m (27 %), and the outlet
temperature of the 10D structure (334 K) is attained after 0.012 m (40 %).

Comparing the two topologies reveals that, for identical unit cell sizes, the Diamond struc-
tures consistently exhibit higher temperatures throughout the domain. This can again be
linked to their higher specific surface area relative to the Gyroid topology, enabling more
efficient heat transfer through a larger interface.

Internally, the temperature distribution closely reflects the velocity fields shown in Fig-
ure ??. Regions of high velocity tend to exhibit lower temperatures, while regions with
slower flow display elevated temperatures due to longer residence time and increased heat
uptake. As a result, Diamond structures exhibit a more uniform temperature distribution,
consistent with their more homogeneous velocity field. In contrast, Gyroid structures de-
velop a high-velocity core along the flow direction, creating a colder region surrounded by
warmer fluid.

These low-temperature zones extend downstream of the Gyroid structures, resulting in a
less uniform temperature distribution in the wake. As the unit cell size decreases, this
inhomogeneity becomes less pronounced and nearly disappears in the 5G case, due to
a combination of a more orderly flow pattern and enhanced heat transfer per unit fluid
volume. In the Diamond structures, a small region of thermal inhomogeneity can also
be observed downstream. However, the overall temperature distribution remains signifi-
cantly more uniform than in the Gyroid structures. As with the Gyroid cases, this residual
inhomogeneity diminishes with decreasing unit cell size, leading to an increasingly uni-
form thermal field.

The different temperature distributions observed across the various cases have a direct
influence on the wall heat flux, which is governed by the temperature gradient normal to
the wall surface (see Section . In regions where the thermal boundary layer is relatively
thick and the fluid temperature near the wall is relatively high, the local temperature
gradient is reduced, leading to a lower local wall heat flux. This relationship is illustrated
in Figure which shows the wall heat flux distributions for the 5G, 5D, 10G, 10D, 15G,
and 15D cases.
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Figure 6.10: Distribution of the wall heat flux on the surface of the G, 5D, 10G, 10D, 15G, and 15D cases

It can be observed that the wall heat flux decreases along the flow direction, which can
be attributed to the reduction in the temperature gradient as the fluid progressively heats
up. This effect is more pronounced in structures with smaller unit cell sizes, where the
enhanced heat transfer per unit volume leads to a faster temperature rise in the fluid, thus
diminishing the wall-to-fluid temperature gradient more rapidly.

A comparison between the different topologies shows that both the Gyroid and Diamond
structures exhibit high wall heat flux values on the surfaces directly facing the incoming
flow. Beyond this entry region, however, the regions of elevated heat flux mimics the
regions of high local wall shear stress. Similar findings were also reported by Li et al. [30].
This is to be expected, as regions of high wall shear stress correspond, by definition, to
regions with a steep velocity gradient at the wall. This steep gradient leads to a breakdown
of the thermal boundary layer and the observed increased wall heat flux.

6.4 Parametric study Results

The analyses in the previous sections have demonstrated that both internal topology and
unit cell size play a critical role in shaping the flow behavior and thermal distribution
within TPMS structures. Distinct differences were observed between the Gyroid and Di-
amond configurations, as well as across the range of unit cell sizes. While these findings
offer valuable qualitative insight into the underlying mechanisms, they do not fully quan-
tify the impact of varying unit cell size on overall system performance. To address this,
a parametric study is carried out, focusing on key performance indicators. The results
of this study are presented in the following section and provide a more comprehensive
understanding of the design trade-offs associated with modifying unit cell size.
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6.4.1 hydraulic metrics

The overall performance of the individual depends on both the hydraulic and thermal
performance. For the hydraulic performance the pressure drop is the main influencing
factor, since it directly correlates to the amount of power needed (Wyump = AP1it/p) to
force the flow through the TPMS structure at the given flow conditions. In wall-bounded
flows such as those within TPMS structures, the pressure drop is governed by internal
pressure losses and viscous friction, which depends on the wall shear stress on the solid-
fluid interface. To illustrate the latter, Figure presents the average wall shear stress
and the corresponding pressure drop for all investigated cases.
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Figure 6.11: The left figure shows the average Wall shear stress magnitude for all cases. The right plot shows
the pressure drop per unit length over the TPMS structures.

Figure supports the observation made in Section |6.2| that wall shear stress decreases
exponentially with increasing unit cell size, due to the more gradual velocity profiles found
in larger unit cell configurations, which reduce the velocity gradient near the wall. For the
Diamond structures, the average wall shear stress decreases by approximately 40 %, from
1.81 Pa in the 5D case to 1.08 Pa in the 15D case. A similar trend is observed for the Gyroid
structures, where the wall shear stress drops by about 38 %, from 1.65 Pa to 1.02 Pa.

It can also be observed that the average wall shear stress across the TPMS structures is
higher for the Diamond topologies, despite the Gyroid structures exhibiting steeper lo-
cal velocity gradients. While the Gyroid geometry produces more extreme local peaks in
wall shear stress due to its complex flow paths, these high-shear regions are less frequent.
In contrast, the Diamond structures feature a greater number of moderate-to-high shear
zones, which results in a higher average wall shear stress for the Diamond configurations.

The pressure drop follows a similar behavior as the wall shear stress curve, where finer
unit cell configurations exhibit a higher pressure drop while larger cells exhibit a lower
one, because lower wall shear stress decreases the amount of pressure loss due to skin
friction. In the Diamond topology, increasing the cell size from 5D to 15D reduces the
pressure drop by approximately 73 %, from 12037 Pa/m to 3192 Pa/m. In the Gyroid
topology, the pressure drop decreases from 10809 Pa/m in the 5G case to 3570 Pa/m in
the 15G case, corresponding to a 66 % reduction. The slightly smaller percentage reduction
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observed for the Gyroid indicates that its pressure loss penalty is less sensitive to unit-cell
size than that of the Diamond structure.

A detailed comparison of the pressure-drop curves for the Gyroid and Diamond topolo-
gies reveals that at the smallest unit-cell size (5 mm), the Diamond lattice exhibits a pres-
sure drop approximately 10 % higher than that of the Gyroid. This value is close to the
8.5 % difference in their average wall-shear stresses, indicating that viscous friction at the
walls is the primary contributor to the observed pressure-drop disparity. However, as the
cell size increases, the pressure-drop curves for both geometries converge, overlapping
at a unit-cell size of 8 mm. Beyond this point, the Gyroid topology consistently exhibits
higher pressure drops for all larger unit-cell sizes. This behaviour is not reflected in the
wall-shear-stress curves, which do not intersect, thereby indicating that other mechanisms
influencing the pressure drop become more impactful as the unit cell size increases. Cheng
et al. described the contributors to the pressure drop in TPMS geometries to be viscous
friction, a continuous change in flow direction, and flow acceleration, deceleration, and
recirculation [9]].

As described in Section recirculation zones develop in the Gyroid structures but are
absent in the Diamond topologies. In the smaller unit-cell sizes, these zones are weak or
even nonexistent, leading to viscous forces dominating the pressure drop. As the cell size
increases, recirculation intensifies, and internal forces (inertial drag) contribute more to the
overall pressure drop. Consequently, although the Gyroid exhibits a lower pressure drop
at small cell sizes, its reduction in pressure drop with increasing cell size is less steep than
that of the Diamond geometries, leading to the eventual intersection at a cell size of 8 mm
and the higher pressure drop in the Gyroid structure beyond that point.

An important design parameter for porous structures that results directly from the pres-
sure drop is the permeability. For porous media the permeability can be calculated from
Darcy’s law by rearranging the relationship AP/L = u U /k, which gives k = y U L/AP, in
which AP/L is the pressure gradient along the flow direction, y is the dynamic viscosity of
the fluid, U is the superficial velocity (i.e., volumetric flow rate divided by cross-sectional
area), L is the length over which the pressure drop AP is measured, and k (with units of
m?) quantifies how easily fluid passes through the porous network. The resulting values
for k over the tested range of unit cell sizes are shown in Figure [6.12]
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Figure 6.12: Permeability calculated using Darcy’s law plotted over the unit cell sizes for both Diamond and
Gyroid topologies

It can be seen that the permeability exhibits a linear behaviour. When the unit cell size
is small the pores are narrow, which impedes the flow and keeps permeability low. As
the unit cell size increases, channels become wider and permeability rises. In the Di-
amond topology permeability increases from approximately 0.6 x 10-8m? at 5 mm to
about 2.2 x 10 m? at 15 mm representing an increase of about 267 %. In the Gyroid
topology permeability rises from around 0.56 x 10~8 m? at 5 mm to roughly 1.9 x 10~8 m?
at 15 mm corresponding to an increase of about 239 %. Furthermore, the Diamond and
Gyroid curves cross at 8 mm, which is the same point where their pressure drop curves
meet. This is to be expected, due to the inverse proportionality of the Permeability to the
pressure drop.

6.4.2 thermal metrics

Beyond hydraulic resistance, the thermal performance of a TPMS heat sink is equally
critical to its overall effectiveness. In particular, the device’s ability to raise the fluid tem-
perature as it traverses the porous network directly determines how much heat can be
extracted from the solid matrix. This temperature increase in shown in Figure for all
investigated cases, as the difference between the inlet temperature (298 K) and the outlet
temperature.
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Figure 6.13: The left figure shows the outlet temperature for each case, and the right figure shows the volu-
metric heat-transfer rate plotted against unit-cell size for both Gyroid and Diamond.

It can be seen that as the unit cell size decreases, the temperature difference becomes pro-
gressively larger. In the Diamond topology, the 5D case produces a 52 K temperature
increase, which is 52 % higher than the 15D case (25 K). A similar trend appears in the Gy-
roid structures, where the 5G case yields a 46.3 K rise throughout the structure, compared
to only 19.5 K for the 15G case, corresponding to a 57 % difference. This behaviour can be
attributed to the increased specific surface area of smaller unit cells, providing more heat
transfer area per unit volume.

Furthermore, the Diamond topology consistently yields a greater temperature increase
than the Gyroid topology. Across all unit-cell sizes, Diamond structures achieve a 6-9 K
temperature rise, 11-17 % higher than their Gyroid counterparts. This increase mirrors the
Diamond topology’s roughly 15 % larger specific surface area compared to the Gyroid,
indicating that the higher specific surface area is the main factor driving the observed dif-
ference in temperature rise between the topologies.

The increase in the fluid temperature through the TPMS strucures is directly related to the
heat transferred to the fluid Q by the relation Q = AT(riic,), where 71 is the mass flow
rate of the fluid, and c, is the fluid’s specific heat capacity. To account for variations in the
domain volume and enable a more accurate comparison, the volumetric heat-transfer rate
is employed instead of the total heat-transfer rate Q. It is defined as gyo; = Q/ Viiuia, Where
Viuig denotes the fluid volume within the TPMS domain. This volumetric heat-transfer
rate is also shown in Figure[6.13]

Because gy, scales directly with AT, it exhibits the same trends, where smaller unit-cell
sizes produce higher volumetric heat-transfer rates, and for any given size, the Diamond
topology outperforms the Gyroid in heat transport per unit volume. The reason the two
curves match so closely is that the only factor significantly changing with cell size is the
temperature rise, AT. In the chosen design, as the cells get larger, both the fluid vol-
ume and the flow area increase together, keeping the mass-flow to volume ratio, 71/ Viyiq,
nearly constant. Therefore, since the volumetric heat density is qyo1 = (11¢y AT)/Viyid,
any change in g,, comes nearly entirely from AT.
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This behavior is reflected in the percentage differences, where in the Diamond topology,
the 5D case reaches a volumetric heat-transfer density of 0.00943 W/ mm?3, about 52 %
higher than the 15D case at 0.00457 W/mm?>. In the Gyroid topologies, the 5G config-
uration delivers 0.00839 W /mm? compared to 0.00356 W/ mm? for the 15G case, a 58 %
improvement. Likewise, the difference between the Diamond and Gyroid topologies is
between 0.001 W/mm? and 0.0018 W/mm? or 10 %-19 %.

6.4.3 dimensionless Analysis

Up to now, the focus has been on the total metrics, such as the absolute pressure drop AP
and the total volumetric heat transfer rate g,, through each TPMS sample. While these
quantities are useful for gaging the energy needed and the amount of heat moved for each
specific case, they depend directly on the geometry, sample size, and flow conditions. To
allow for better comparison between other geometries and other flow conditions, dimen-
sionless performance metrics are employed that remove those scale effects. This section
specifically focuses on the Nusselt number, Nu, which characterizes the convective heat-
transfer strength relative to conduction, and the Darcy friction factor, f, which measures
hydraulic resistance independent of sample length or flow conditions. These dimension-
less measures are shown in Figure for all investigated cases.

10: Nusselt Number over Unit Cell Size 23. Friction Factor over Unit Cell Size

15 7 P - \\*-‘-"-‘U\
L7 Gyroid 16 Gyroid Sech -
- - - -Diamond - - - ‘Diamond T
5 6 7 8 9 10 1" 12 13 14 15 5 6 7 8 9 10 " 12 13 14 15
Unit Cell Size [mm] Unit Cell Size [mm]

Figure 6.14: The left figure shows the average Nusselt number for each case, and the right figure shows the
friction factor plotted over the unit cell size for both Gyroid and Diamond

The Nusselt number shown in the figure is obtained by first evaluating its local value on
every surface cell of the TPMS geometry, as explained in Section and then averaging
these values over the entire interface. It can be seen that for both Gyroid and Diamond
topologies, the surface-averaged Nusselt number rises close to linearly with the unit-cell
size. In the Diamond lattice, Nu increases from 12.4 for the 5D configuration to 35.4 for
15D, which corresponds to a 186 % gain. The Gyroid exhibits a similar trend, where Nu
grows from 11.5 at 5G to 39.4 at 15G, a rise of 156 %.

Unlike the volumetric heat-transfer 4,,;, which decreases as the unit-cell size increases, the
Nusselt number grows because it is proportional to the hydraulic diameter (Nu o dj).
As shown in Section enlarging the unit-cell edge from 5mm to 15 mm increases d;, by
about 190 % for the Gyroid lattice and 195 % for the Diamond lattice. This enlargement is
the main cause of the observed rise in Nu. Physically, the larger hydraulic diameter lets
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forced convection account for a greater share of the heat transfer relative to fluid conduc-
tion. However, simultaneously, the surface-area-to-volume ratio drops, leading to a lower
volumetric heat-transfer capacity of the entire structure, even though the local Nusselt
number is higher. The same phenomenon can also explain the higher Nusselt number in
the Gyroid cases over the Diamond topologies, as they possess higher hydraulic diameters
for the same unit cell size.

These observations are further supported by Figure which shows the heat transfer
coefficient over the whole TPMS structure for all investigated cases.

Heat-Transfer Coefficient over Unit Cell Size
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Figure 6.15: Average heat transfer coefficient plotted over the unit cell size, for both Gyroid and Diamond

Figure shows that the convective heat-transfer coefficient  changes by only about
20 % between its lowest and highest values for both topologies, confirming that the hy-
draulic diameter is the dominant factor governing the scaling of the Nusselt number.

It can also be observed that for both the Gyroid and Diamond topologies, increasing the
unit cell size from its minimum of 5 mm, leads to a rise in & up to a maximum, after
which the heat transfer coefficient decreases steadily. This trend results from two oppos-
ing effects. As the unit cell size, and therefore the hydraulic diameter, increases, the local
Reynolds number grows, which intensifies fluid mixing and thins the thermal boundary
layer, thereby enhancing heat transfer. At the same time the specific surface area falls,
reducing the heat-exchange area. Once this loss outweighs the Reynolds-number benefit,
the coefficient begins to drop steadily.

For the Gyroid structures, the maximum appears at a unit cell size of 6 mm, whereas
for the Diamond cases it shifts to 9 mm due to their generally lower hydraulic diameter.
Overall, the Diamond structures deliver higher heat-transfer coefficients than the Gyroids,
which is consistent with the previous observations of other thermal parameters. However,
at the smallest unit cell size of 5 mm the Diamond topology shows a lower heat transfer
coefficient than the Gyroid because, as demonstrated in Section it is the only configu-
ration in which turbulent kinetic energy declines along the flow path. The resulting weak
turbulence, caused by the very small hydraulic diameter, keeps the thermal boundary layer
stable and thus reduces the heat transfer coefficient.
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The second unitless quantity considered is the Darcy friction factor shown in Figure [6.14}
For porous media it can be written as f = C,/Re + C; where the first term represents
viscous resistance and the second term represents inertial or form drag as explained in

Section 2.2] [13].

The friction factor of the Gyroid topologies displays an almost constant behaviour through-
out the investigated range. The value falls slightly as the unit cell size increases to 12 mm
and then rises again. However, the overall variation remains within 7 %. The near constant
behaviour of the friction factor reveals an only small dependence on Re, indicating that
inertial drag governs the hydraulic resistance of the Gyroid topology. Similar observations
were made by Khalil et al. [29], who found that the friction factor in Gyroid sheet struc-
tures is nearly independent of Re for inlet Reynolds numbers over 4000. They further link
this observation to form drag dominating the pressure drop.

The Diamond topologies portray a different behaviour. Here, the friction factor falls more
steeply until a unit cell size of 9 mm, before subsequently leveling out. This initial re-
duction is driven by the rise in Reynolds number that accompanies the larger hydraulic
diameter which indicates that viscous drag is a significant contributor to the hydraulic
resistance in this range. Beyond 9D, the inertial term becomes the prevailing component,
and the friction factor approaches a constant value.

A comparison between the two topologies shows, that the friction factor of the Gyroid
structures is higher throughout all cases, due to their higher inertial pressure loss.

6.4.4 Efficiency Metrics

The thermal and hydraulic performance of the system can be evaluated using both perfor-
mance and efficiency metrics. A common approach to assess performance is to normalize
the volumetric heat transfer rate by the required pumping power. This provides a direct
measure of how effectively thermal energy is transferred to the fluid relative to the energy
input needed to overcome hydraulic resistance. These metrics are illustrated in Figure[6.16]
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Figure 6.16: Heat transfer rate normalized by the pumping power plotted over the unit cell size for Gyroid
and Diamond
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In the normalized volumetric heat transfer rate plot, a clear trend can be observed for

both topologies. As the unit cell size increases, the value of _Iwl_ decreases, indicating
pump

that larger unit cells require more pumping power to transfer the same amount of heat to

an equivalent volume of ﬂuid For the Gyroid topology, the volumetric performance de-
creases by 85 %, from 0.056 =5 to 0.008 —=_5 between 5G and 15G. Slmllarly, an 80 %

decrease is observed for the Dlamond structure, from 0.056
5D and 15D. This suggests that the benefit of reduced pressure drop, due to lower viscous
friction and wider flow pathways, is offset by the accompanying reduction in solid—fluid
interface area.

A comparison between the Gyroid and Diamond topologies shows that both exhibit sim-
ilar volumetric performance at a unit cell size of 5 mm. However, as the unit cell size
increases, their performance begins to diverge, with the Diamond topology maintaining
higher performance values, until, at larger unit cell sizes, the two trends appear to decrease
in parallel. The generally lower performance observed for the Gyroid at larger scales sug-
gests that the relatively higher surface area of the Diamond structure becomes increasingly
beneficial as scale increases. Additionally, the slightly steeper decline in the Gyroid curve
indicates that the impact of unit cell size on volumetric heat transfer performance is more
pronounced for the Gyroid topology.

Normalizing the volumetric heat transfer rate by the required pumping power is a com-
mon way to evaluate how effectively thermal energy is transferred relative to the energy
required to overcome flow resistance. However, since the volumetric flow rate and thus
the pumping power scale with the cross-sectional area of the domain, this normalization
does not account for the influence of domain size. Instead, it reinforces the effect, because
the volumetric flow rate, and thereby the pumping power, scale with the cross-sectional
area. To better compare the thermal-hydraulic performance independently of domain scal-
ing, the volumetric heat transfer rate is normalized by the pressure drop using the metric
effp = dyo1/ AP'/3. Here, the exponent 1/3 reflects the scaling relationship under constant
pumping power conditions, as discussed in Section Hence, this metric describes how
much volumetric heat transfer can be achieved per unit of hydraulic resistance, adjusted
to reflect an equal power input across different cases

Another dimensionless efficiency metric that aims to isolate the influence of fluid and ther-
mal transport behavior from geometric scaling effects is the thermo-hydraulic efficiency
index, #, which achieves this by relating the Nusselt number to the friction factor. Both
metrics are shown in Figure for all investigated cases.
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Figure 6.17: The left figure shows the volumetric heat transfer rate normalized by the pressure drop plotted
over the unit cell size, and the right figure shows the thermo-hydraulic efficiency index plotted over the unit
cell size.

A clear difference in the trends of heat transfer per hydraulic resistance can be observed
between the Diamond and Gyroid topologies. For the Gyroid structures, effp decreases ap-
proximately linearly with increasing unit cell size, indicating that larger unit cells require
more pumping power to transfer the same amount of heat per unit volume of fluid. In
contrast, the Diamond structures exhibit a different behavior, where effp remains relatively
constant up to a unit cell size of 9 mm, after which it begins to decline. This suggests that,
for Diamond structures up to 9D, increasing the unit cell size does not significantly impact
the pumping power required to maintain the same volumetric heat transfer, whereas after
this point, performance begins to drop.

Since it was previously shown that the volumetric heat transfer rate decreases almost
identically for both topologies, the differing trends in effp can primarily be attributed to
variations in pressure losses. A comparison with the friction factors reveals that the effp
curves resemble an inverted and rescaled version of the friction factor trends. The nearly
constant friction factor observed for the Gyroid structures, as well as for larger unit cells
in the Diamond topology, results in a continuous decline in volumetric heat transfer per
pressure input. Conversely, the steadily decreasing friction factor found in the Diamond
structures at smaller unit cell sizes leads to a relatively constant behavior in effp. This sug-
gests that the trends in volumetric thermal performance per pressure input are primarily
governed by the rate at which hydraulic resistance decreases. In topologies where the fric-
tion factor drops significantly with unit cell size, the resulting lower pressure losses help
maintain a higher effp despite decreasing heat transfer rates.

A more in-depth comparison of the topologies shows that the Diamond topology consis-
tently exhibits higher volumetric heat transfer performance per pressure input than the
Gyroid. While the advantage is moderate at small scales, around 8 %, it becomes signif-
icantly more pronounced at larger unit cell sizes, reaching nearly 40 %. This generally
highereffp observed for the Diamond structures is in agreement with their overall higher
volumetric heat transfer rates. In addition, the increasingly pronounced advantage at
larger unit cell sizes corresponds to the behavior of the pressure drop, where, although the
Diamond structures exhibit a higher pressure drop at small unit cell sizes, their hydraulic
resistance decreases more rapidly with increasing size and eventually becomes lower than
that of the Gyroid structures. This sharper reduction in pressure drop contributes to the
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improved effp of the Diamond topology at larger unit cell sizes.

The second efficiency metric shown in Figure is the thermo-hydraulic efficiency index,
1, which combines the dimensionless Nusselt number and the friction factor. At smaller
unit cell sizes, 7 is slightly higher for the Diamond structures, but both topologies con-
verge at a unit cell size of 9 mm and remain nearly identical beyond that point. In contrast
to the previously discussed metrics, the thermo-hydraulic efficiency index increases with
increasing unit cell size.

These contrasting behaviors highlight how different unit cell sizes are better suited for
different use cases. The low # and high effp observed at smaller unit cell sizes suggest that
these configurations can transfer more heat per unit volume at a given pumping power,
albeit at the cost of lower energy efficiency. This is primarily due to their higher specific
surface area, which enhances heat transfer but increases the pressure loss. In contrast,
larger unit cell sizes exhibit higher thermo-hydraulic efficiency, indicating more effective
energy usage due to their improved convective transport. However, they are less capable
of achieving the same volumetric heat transfer performance as smaller unit cells.
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Conclusion

In this study, the influence of unit cell size on both the thermal and hydraulic performance
of two types of Triply Periodic Minimal Surface (TPMS) sheet structures, namely Gyroid
and Diamond configurations, was investigated. A parametric study was conducted to
systematically evaluate the effects of varying unit cell sizes across both topologies. The
analysis was performed using Computational Fluid Dynamics (CFD) simulations under
the assumption of incompressible flow. As the the governing equations, the Reynolds-
Averaged Navier-Stokes (RANS) and energy equations were employed, with turbulence
modeled using the k—w Shear Stress Transport (SST) turbulence model, which is particu-
larly effective at capturing near-wall phenomena.

A constant inlet velocity of 3.7m/s was imposed for all cases. Air was selected as the
working fluid, entering the domain at a temperature of 298 K, while the TPMS walls were
maintained at a uniform temperature of 353 K. To isolate the influence of unit cell size, the
porosity was fixed at 80 % across all geometries, thereby maintaining a constant solid-to-
fluid volume ratio. Periodic boundary conditions were applied in the transverse directions
to eliminate channel wall effects, and the length of the TPMS region in the streamwise di-
rection was held constant in all cases to provide direct comparability of the pressure drop.

To ensure the reliability and accuracy of the simulation results, a grid independence study
was conducted using the Grid Convergence Index (GCI) method, which provided a quan-
titative estimate of the discretization error. This error was estimated to be below 5%,
indicating sufficient grid resolution for accurate results. Furthermore, verification of the
incompressibility assumption was performed by comparing the results of incompressible
and compressible CFD simulations. The maximum deviation observed between the two
approaches was less than 3 %, confirming that the incompressible formulation is appropri-
ate for the flow conditions considered in this study:.

Finally, the simulation framework was validated against both experimental and numerical
data from existing literature. The predicted Nusselt numbers differed by less than 10 %
from published numerical results, and the pressure drop showed a deviation of no more
than 5 % compared to experimental measurements. These small discrepancies give a high
level of confidence accuracy of the simulation results and demonstrate the reliability of the
computational approach.

Analysis of the flow structure showed that the Diamond geometry promoted smoother
and more uniform flow paths, while the Gyroid structure generated stronger velocity gra-
dients and localized recirculation zones, leading to increased turbulent kinetic energy.
Additionally, it was observed that decreasing the unit cell size resulted in more orderly
flow patterns due to their reduced hydraulic diameter, which dampens turbulence inten-
sity and stabilizes the flow field.
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A reduction in unit cell size consistently led to an increase in pressure drop for both
topologies. From the largest to the smallest unit cell, the pressure drop increased by
approximately 73 % for the Diamond structure and 66 % for the Gyroid structure. A com-
parison between the two revealed an intersection in their pressure drop trends. At unit cell
sizes below 9 mm, Diamond structures exhibited up to 10 % higher pressure losses than
Gyroid structures. However, beyond this point, the Gyroid configurations showed higher
pressure drops. This shift was linked to the development of strong recirculation zones in
the larger Gyroid cells, which were largely absent in the Diamond structures.

Friction factor analysis further supported these observations. For the Diamond topology,
the friction factor decreased steadily with increasing unit cell size up to 9 mm, after which
it stabilized. In contrast, the Gyroid structures maintained an almost constant friction
factor across all unit cell sizes, varying by less than 7 %. This behavior suggests that hy-
draulic resistance in the Gyroid topology is primarily governed by inertial effects, while in
the Diamond structures, viscous effects play a more significant role, which increase with
decreasing unit cell size.

Volumetric heat transfer rates were found to be significantly higher for smaller unit cell
sizes, primarily due to their increased specific surface area. Compared to the largest unit
cell size, the smallest unit cell achieved up to 57 % higher volumetric heat transfer. At the
same unit cell size, Diamond structures consistently outperformed Gyroid structures by
11 % to 17 %, reflecting their higher specific surface area.

In contrast, the Nusselt number increased with unit cell size for both geometries. From
the smallest to the largest unit cell, the Nusselt number rose by up to 186 % in the Di-
amond structures and 156 % in the Gyroid structures. Additionally, Gyroid structures
exhibited Nusselt numbers that were consistently higher than those of Diamond struc-
tures at corresponding unit cell sizes. This inverse behavior between the Nusselt number
and volumetric heat transfer is explained by the opposing influence of surface area and
hydraulic diameter. While smaller unit cells provide higher specific surface areas, result-
ing in greater overall heat transfer, larger unit cells offer increased hydraulic diameter and
promote more chaotic and turbulent flow, which enhances the convective contribution to
heat transfer and thus raises the Nusselt number.

Finally, performance and efficiency were evaluated using the volumetric performance in-
dex effp and the thermo-hydraulic efficiency index #. The results showed that effp de-
creased and 7 increased with growing unit cell size for both topologies, reflecting a trade-
off between volumetric heat transfer and energy efficiency. Overall, Diamond structures
exhibited up to 40 % higher effp while having virtually the same 7.

These results showed that Diamond topologies were generally more effective than Gyroid
structures across a broad range of unit cell sizes. Additionally, smaller unit cells con-
sistently outperformed larger ones in terms of overall volumetric heat transfer, making
them well-suited for applications where space is limited and high heat removal rates are
required. Conversely, larger unit cells demonstrated higher thermo-hydraulic efficiency,
which makes them more applicable for scenarios where spatial constraints are less critical
and energy-efficient heat transfer is prioritized.
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Chapter 8

Future work

This study investigated the performance of the Gyroid and Diamond type Triply Periodic
Minimal Surfaces, across a wide range of unit cell sizes, with the lattices being kept at a
constant wall temperature.

Future investigations could build on this study by exploring how variations in unit cell
size influence thermal and hydraulic performance under alternative boundary conditions.
This includes cases such as constant heat flux inputs or full conjugate heat transfer setups,
which would allow for a more comprehensive understanding of thermal behavior in real-
istic applications.

In addition, the study could be expanded to include other TPMS geometries beyond the
Gyroid and Diamond types. Investigating structures such as Primitive, Neovius, or I-WP
could reveal how different topological features interact with cell size and affect flow de-
velopment, pressure drop, and heat transfer.

The impact of manufacturing-related surface irregularities should also be considered. In
practice, surface roughness introduced by additive manufacturing techniques such as 3D
printing can significantly alter local flow characteristics. This effect is especially relevant
for small unit cell sizes, where even minor roughness can disrupt boundary layers and
increase pressure losses.

Finally, further work could evaluate how the choice of material influences performance
across different unit cell sizes. Since thermal conductivity and surface energy vary widely
between metals, polymers, and ceramics, material selection may play a crucial role in
determining the overall efficiency and suitability of TPMS heat sinks for specific applica-
tions.
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Appendix A

Appendix

A.1 Inflow conditions

Here the calculations of the inflow conditions are presented based on [72]

T =298K, T, =353K, D;=0.020m, Re=>5000

p=1184kg/m°, u=185x10" Pas

uo 185x107°

=t = =156x10"°m’
T 1.184 x 107 m’/s
D R
Re= dDn o Rev
v Dh

5000 x 1.56 x 1075

u 0.020

~3.7m/s

A.2 Derivation of the Trasport euations for k, € and w

A.2.1 Transport equation for the Reynolds stresses

To derive the transport equation for the Reynolds stresses we start from the RANS equation

and the instantaneous momentum equation for the velocity field u;.

Step 1: subtraction

Subtracting the RANS equation from the instantaneous equation (with Reynolds decom-

position u; = u; + u}, p = p + p’) gives

19<w+u§->__18<P+P’>+a[v(awwg)g(wu’-)

Dt o 0x; ox; ox; o0x;
Duwj _ _1dp 9 0w Ohj, 71 =
Dt~ pox | ox; [V(axj ax,) | —sipT,

which yields the fluctuation equation

ou; __ou, ,du; ,0u lop’ 0 ou, ouj ,
I pdad e RN ig T PYY s R | W — 0BT
ot T ox; T dx; ox; p 0x; + ox; {V(ij * sz-) * ulu]} g
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Indexing the fluctuation equation with i and j, multiplying one by u} and the other by u/,

summing and averaging, leads to

1 1
aulu]+ aulu]+ 7]_’_ /% iiu
ot Xy k 9xy ka k axk ik

ul
B _:)( ax] ]E)xl) ( u Y BXLg)
)-

—,B(g]uT/+g1u T

The pressure—strain term can be rewritten as

g e gE) = o (),

and the viscous term as

82 %
V( I 9x 2 ] ox?

azufu;- ) du! au}
>_1/< ax% B BTCkBTCI)

Collecting terms gives the Reynolds-stress transport equation in brief form,

Du;u}
i = D — &+ 1L+ Dij + Gij,
where
—_Ju; ou;
P = —ulu] bl 2
ij= ka j ka k
_5 au/ au
v axk axk
1 ou'’ ou’
II: = = (p —L r_J
i p<’9 ox; 7 )
p) au’u] , p'
D;; 8 ( o1, uu]uk—g(éklu + Oxju ))

Gij 5(g]ulT’+gZu T).

A.2.2 Transport equation for k and ¢

Taking one-half the trace of the Reynolds-stress equation yields the k-equation:

Dk —— U oul oul 9 ok 17 15
Bt = M an Vo any o (o 2k ) — B
or compactly
Dk
Dr =P-¢+D+G,
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with
—_om
P= i g (A.14)
B au ou! a5
£ Voax, an axk .
3, ok
= 5 (Vg — B~ S PH), (A16)
G=—pgiuT. (A.17)

The dissipation-rate equation

Now that we have the transport equation for the turbulent kinetic energy k, we can derive
the transport equation for the dissipation rate ¢, which appears in the k-transport equa-
tion. This is done by differentiating the fluctuating-velocity equation with respect to xy,
multiplying by 2v du}/dxy, and Reynolds-averaging. One obtains

Ds V(E)u’ au] auk auk>aul Ve ﬁaT’ 8u
Dt oxg dx;  0xj Ox;/ 0X; " oxy axk
ul ot oul 9w 0%u!
> ) U O i (A.18)
V(ax] oxx " Oxy Oxj Oxy v ox? )
A L auw_wuw}
ox; L 0x; axk oy, p ox

As before, we introduce the shorthand

% =P+ G, —¢.+ D,
with
Pe = —21/(3;1 g:k + ?ﬁﬁ’; ?;k) gz; (A.19)
Ge=-2vgi B3 54, (A.20)
e Zv(ﬂﬂLﬁ ai:g;k V%) (A.21)
= o [”aajj_vgﬁgzi—zf:/ 1. (A.22)

ax;

A.2.3 Transport equation for the specific dissipation w

The specific dissipation w is defined as
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where p* is a model constant. One obtains a transport equation for w by substituting
¢ = B* kw into the e-equation and then applying the product and chain rules.

Dw « « 2 0 ow
Dr kL TP T axj[(“+‘7w”) ax]}’ (A.23)
where o
u.
P = —M;u;caix;

is the production of turbulent kinetic energy, and «, *, 0, are model constants chosen to
recover the correct near-wall and free-stream behavior.

A.3 Numerical methods

The method used to solve the derived governing equations is the finite-volume method,
a numerical technique that discretizes the integral form of the conservation laws over
control volumes. It is the preferred method for CFD over other techniques such as finite-
element, because is ensures strict local conservation of mass, momentum and energy even
in complex flow patterns and unstructured meshes [38]].

For any conserved scalar quantity ¢, its transport over a control volume V bounded by 0V
can be written in integral form as

d

S [egav + § ppu-ds = § Tvguas 4+ [sav . A24

5 [ e e ) Ty ; (24
—

Transient changen Convective transport  Diffusive transport Volumetric source

By partitioning the domain into discrete control volumes of volume Vp, applying the di-
vergence (Gauss) theorem to turn surface integrals into sums over each cell’s faces, and
approximating the surface-fluxes, the transport equation (A.24) becomes [37], for each cell
P,

d(p¢)r
Vp——= + Y (p¢)f(u-S)y =) Tr(Ve)s-Sr+  VpSp (A.25)

Volumetric source

Transient change -
Convective transport Diffusive transport

To finalize the discretization, appropriate numerical schemes must be applied to the tem-
poral derivative, the advective face-flux, the gradient reconstruction and the diffusive face-
flux. These schemes can be classified by two key attributes: accuracy, which describes how
rapidly discretization errors decrease as spatial or temporal step sizes are reduced, and
stability, which determines whether numerical perturbations remain bounded or amplify
as the simulation proceeds [66].

In this study, transient flow structures are of lesser importance, as the performance of heat
sinks primarily depends on the mean flow behavior rather than fluctuations around the
mean. Therefore, the flow was solved as a steady-state problem by setting the time deriva-
tives to zero, as this approach accurately predicts the mean flow behavior while being
significantly less computationally expensive than fully transient methods.

The advection term is described by the divergence of the convective flux over the face f.
Many different methods have been developed to calculate this flux, but the most relevant
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ones for this study are based on the central differencing (linear) and the upwind schemes.
In the latter, information is carried along the flow direction, so the face flux is taken from
the upstream cell center[37]:

¢p, (u-S)f > 0,

(w-S)r s, ¢r=
PR o, (u-S); < 0.

Here P is the cell on the downstream side of face f, and N is the neighboring cell upstream
(from which the flow comes).

Due to its nature of taking the entire face value from the upstream cell center, this scheme
is highly diffusive, which leads to a smearing and subsequent underestimation of sharp
gradients. This and its first-order accuracy make it not suited for an accurate prediction of
turbulent flow, where sharp gradients occur [66]. However, this scheme is unconditionally
bounded and exceptionally stable, making it an ideal choice for the startup phase of the
simulation to dampen initial spikes, oscillations, and other numerical instabilities and
thereby ensuring a smooth transition to higher-order discretisations, namely the limited
linear and linear upwind schemes.

Both the linear upwind and limited linear schemes reconstruct the face value by a first-
order Taylor expansion about the upwind cell center U [66]

¢or = ¢u + Yu-[(Ve), - (Ax)]

where Ax is the distance between the upwind cell center and the face (Ax = x; — xy). The
linear upwind scheme simply takes the full extrapolation (i.e.yp, = 1), giving second-order
accuracy. The limited linear scheme introduces a limiter ¢, € [0,1] to increase stability
against oscillations near sharp gradients. When 1, = 1, the limited-linear scheme behaves
exactly like the linear-upwind scheme, while for ¢, = 0 it falls back on the first-order
upwind scheme, giving it 2nd order accuracy in smooth regions.

The linear-upwind scheme offers the greatest accuracy and is therefore preferred over the
limited linear scheme. However, under mesh limitations or very steep gradients, it can
introduce numerical instabilities that cause the simulation to diverge. In those cases, the
limiter is reduced until stability is restored.

In the linear upwind formulation, and also other parts of the system, such as the calcula-
tion of the viscous stress term or the diffusive source term, gradients need to be approxi-
mated numerically. The most widely used approach id the Gauss linear gradient scheme,
which uses the face values and the divergence theorem to compute the gradients similarly
to the central differencing scheme [37]

1

Since this scheme reconstructs the face values purely from a linear Taylor expansion of
neighboring cell centers, it is second-order accurate, and non-dissipative, but also un-
bounded [37]. Therefore, similar to the linear upwind scheme a limiter is applied in
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regions of sharp gradients and compromised mesh quality. For this study, the cell-limiter
is chosen, which uses the gradient computer by the Gauss linear scheme and extrapolation
via the Taylor expansion to the faces [43]

PP = ¢p + (V§), - (x7—xp) (A.27)

This extrapolated value ¢y is then compared to the extrema of the neighbour cell centers
(Pmin/max(Pp, dN)). If ¢y lies outside this range, the scheme scales the gradient back by a
scaling factor ¢cps, so that

¢ = ¢p + Yeml[(Ve), - (x5 —xp)] (A.28)

lies between the minimum and maximum values of the neighbouring cell centers [43]. The
cell-limiting is chosen, as it is a middle ground in being very computationally effective
while only reverting on to first-order accuracy when necessary.

Finally, the diffusive flux) ¢ I's (V¢)s- Sy needs to be discretized. The diffusivity I’y at
each cell face is evaluated using the second-order accurate central differencing (linear)
interpolation scheme, which is also used as the default scheme for most other interpolatoin

[66]:

RSN

I'ir=wlp+(1—w)T'y, w=
p=wlrt(1-w)ly Tep — ]

The gradient is computed as described before. However, before contracting it with the
face-area vector Sy, an non-orthogonality correction is applied [44]. The face vector is de-
composed into orthogonal and non-orthogonal components: the orthogonal part enters
the implicit matrix treatment, while the non-orthogonal remainder is added explicitly as a
source term [44]. This helps to conserve second-order accuracy even in highly skewed or
orthogonal mesh regions.

The numerical schemes outlined above discretize the governing equations and are selected
to deliver second-order accuracy wherever feasible, while ensuring stability and bounded-
ness in regions that demand it.

A.4 Solver

As described, this study uses the incompressible Navier-stokes equations to simulate the
flow field. In this formulation, the continuity equation does not contain the pressure
explicitly (see[3.T). This leads to a linear system in the form of

G966

where A is the discretized momentum operator, B the discrete divergence, BT the discrete
gradient,u the velocity vector, and p the pressure scalar.

Because there is no direct pressure coupling in the incompressible continuity equation,
the bottom right is set to zero, which makes the combined system indefinite (positive and
negative eigenvalues). This property makes this linear system particularly challenging to
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solve since many standard solvers fail on non-positive-definite systems.

To address this challenge, Patankar and Spalding [51] introduced the Semi-Implicit Method
for Pressure-Linked Equations (SIMPLE), which decouples the pressure and velocity fields
in incompressible flow by splitting the solution into a predictor and corrector loop.

The SIMPLE cycle starts by guessing a pressure, velocity and temperature field, before
solving the under-relaxed energy equation and assembling the momentum Matrix A,. It
then uses the current pressure p" to solve the discretized momentum equations and pre-
dict a provisional velocity u*. From the divergence of u*, the pressure correction equation
is formed and solved to yield p’, which is then used to update the pressure to p" 1. This
updated pressure is subsequently used to recompute the face fluxes and correct the ve-
locity (") to enforce continuity. Finally, the Residuals or step count are checked. If
the solution hasn’t converged, the corrected pressure and velocity become the new “old”
tields, and the loop repeats until the desired step count or tolerance is reached:

1. Initialization: prescribe initial fields po, u’ and TY; set iteration counter i = 0.

2. Energy solve: assemble and under-relax the discretized energy equation
V-(uT) = V- (aVT) =r = ArT" =1,

then solve for the provisional temperature T*.

3. Momentum matrix assembly: form and under-relax the coefficient matrix
A,u—-—b =0,

where b contains all explicit source and convection contributions.

4. Momentum predictor: solve
Ayju" — b = —Vp"
for the intermediate velocity u*.

5. Pressure-correction equation: assemble and solve
1 / _ *
V'(@W) =V u,
to obtain the pressure correction p’.

6. Pressure update:
n

+1 _ /
P =t ey
with &, the pressure relaxation factor.

7. Flux correction: recompute face fluxes

r = Sf'(%)f - (‘%ﬂ)fvnr’f/

then under-relax p as above.
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8. Momentum correction:

yielding the corrected velocity field.

9. Convergence check: if residuals of p, u or T remain above tolerance, set n<+n +1,
increment 7, and repeat from step 2; otherwise stop.

The SIMPLE algorithm is the most commonly used approach in CFD codes to obtain a
steady solution of the incompressible Navier-Stokes equations because it not only helps to
circumvent the saddle-point problem (indefinite matrix) but also offers the possibility of
internal non-orthorgonal corrector loops and under-relaxation.

Under-relaxation in the context of CFD, refers to scaling back each update of a field before
applying it. Mathematically, the strength of the under-relaxation is defined by a so-called
under-relaxation factor « € [0,1] and is computed as follows:

(Pnew — (POZd + “A(P (A.30)

By choosing & < 1, strong fluctuations and overshoots, that could destabilize the simu-
lation, can be damped, which helps to prevent initial blowups and to converge the sim-
ulation smoothly. This is especially useful for turbulent flows, which are prone to initial
instabilities.

A.5 SnappyHexMeshDict

J T H e Gt —F o e e e *\
| ========= |
I \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
[ \\ / 0 peration | Version: v2406
[ \\ / A nd | Website: www.openfoam.com
| \\/ M anipulation |
A\ m — m o *x/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object snappyHexMeshDict;
}

// Which of the steps to run
castellatedMesh true;

snap true;
addLayers true;
geometry

{
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Gyroid10.stl

{
type triSurfaceMesh;
name TPMS;

b

refinementBox

{
type box;
min (-17 -10 -10);
max ( 35 10 10);

}

// Settings for the castellatedMesh generation.
castellatedMeshControls
{
maxLocalCells 100000;
maxGlobalCells 1000000;
minRefinementCells 6;
maxLoadUnbalance 0.10;
nCellsBetweenlLevels 5;

features
(
{
file "Gyroid10.eMesh";
level 3;
+
)3
refinementSurfaces
{
TPMS
{
level (2 3);
patchInfo { type wall; %}
}
bottomWallFront
{
level (1 1);
patchInfo { type patch; inGroups (allWalls); }
+
}

resolveFeatureAngle 60;
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refinementRegions

{
TPMS { mode inside; levels ((1 3)); }
refinementBox { mode inside; levels ((1 2)); }

locationInMesh (0 -3 0);
allowFreeStandingZoneFaces true;

}

// Settings for the snapping.

snapControls

{
nSmoothPatch 4,
tolerance 2.0;
nSolvelter 40;
nRelaxIter 20;

nFeatureSnaplter 35;
implicitFeatureSnap false;
explicitFeatureSnap true;
multiRegionFeatureSnap false;

// Settings for the layer addition.

addLayersControls
{
relativeSizes true;
firstLayerThickness 0.035;
expansionRatio 1.11;
minThickness 0.0005;
meshShrinker displacementMotionSolver;
solver displacementLaplacian;

displacementLaplacianCoeffs

{
diffusivity inverseDistance 1(TPMS);
}
layers
{
TPMS { nSurfacelayers 12; }
+
nGrow 0;
featureAngle 120;
nLayerIter 100;
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slipFeatureAngle 180;
nRelaxIter 20;
nSmoothSurfaceNormals 5;
nSmoothNormals 30;
nSmoothThickness 30;
maxFaceThicknessRatio 1;
maxThicknessToMedialRatio 0.9;
minMedialAxisAngle 3;
nBufferCellsNoExtrude 0;

}

// Generic mesh quality settings.

meshQualityControls

{
#include "meshQualityDict"

}

writeFlags

(
scalarLevels
layerFields

);

// Merge tolerance.
mergeTolerance le-6;

A.6 Nusselt Number Calculation in Buoaynt Solver

Info << "Calculating Nusselt number on TPMS surface using midpoint bulk
<< "temperature and temperature-dependent k" << endl;

dimensionedScalar kappaBase ("kappa",
dimEnergy/(dimTime*dimLength*dimTemperature),
laminarTransport);

dimensionedScalar LRef("L_ref", dimLength, laminarTransport);

const volScalarField& T = mesh.lookupObject<volScalarField>("T");

label inletPatchIl = mesh.boundaryMesh().findPatchID("inlet");
label outletPatchI = mesh.boundaryMesh().findPatchID("outlet");
if (inletPatchI < O || outletPatchI < 0) {
FatalErrorInFunction
<< "Patch ’inlet’ or ’outlet’ not found." << nl
<< abort(FatalError);

// inlet bulk temperature

const fvPatchScalarField& T_inPatch = T.boundaryField () [inletPatchI];
scalarField arealIn = mag(mesh.Sf().boundaryField() [inletPatchI]);
scalar T_inlet = gSum(T_inPatch * arealn) / gSum(arealn);
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// outlet bulk temperature

const fvPatchScalarField& T_outPatch = T.boundaryField () [outletPatchI];
scalarField areaOut = mag(mesh.Sf().boundaryField () [outletPatchI]);
scalar T_outlet = gSum(T_outPatch * areaOut) / gSum(areaOut);

scalar T_bulk = 0.5%(T_inlet + T_outlet);
Info << " Midpoint bulk temperature : " << T_bulk << " K" << endl;

// temperaturedependent conductivity lookup

static const scalar TTable[5] = {273.0, 298.0, 373.0, 573.0, 873.0};

static const scalar kTable[5] = {0.02436, 0.02500, 0.03162, 0.04441,
0.06114};

auto lookupK = [&](scalar Tf) {
if (Tf <= TTable[0]) return kTable[0];
for (label i = 0; i < 4; ++i) {
if (Tf <= TTable[i+1]) {
scalar t0 = TTable[i], t1 TTable[i+1];
scalar kO = kTable[i], ki kTable[i+1];
return kO + (k1-k0)*(Tf - t0)/(tl - tO0);

}
return kTable [4];

};

volScalarField qWall(
I0object ("qWall", runTime.timeName (), mesh,
I0object::NO_READ, IOobject::AUTO_WRITE),
mesh,
dimensionedScalar ("zero", T.dimensions()/dimLength, 0.0)

)

volScalarField Nu(
IOobject ("NusseltNumber", runTime.timeName (), mesh,
IOobject::NO_READ, IOobject::AUTO_WRITE),
mesh,
dimensionedScalar ("zero", dimless, 0.0)

)

forAll (Nu.boundaryField (), patchI) {
if (mesh.boundary () [patchI].name() !'= "TPMS") continue;

const fvPatchScalarField& Tpatch = T.boundaryField () [patchI];
const scalarField& Twall = Tpatch;

tmp<scalarField> tGradT = Tpatch.snGrad();
const scalarField& gradT = tGradT();

const labellist& faceCells = mesh.boundary () [patchI].faceCells();
scalarField Tfluid(faceCells.size());
forAll (faceCells, i) {

Tfluid[i] = T.internalField () [faceCells[i]];

scalarField kLocal(faceCells.size());
forAll (kLocal, i) {
kLocal[i] = lookupK(Tfluid[il);
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qWall.boundaryFieldRef () [patchI] =
-kLocal * gradT;

Nu.boundaryFieldRef () [patchI] =
-LRef .value () *qWall.boundaryField () [patchI]
/ (kLocal*(Twall - T_bulk));

scalarField areaMag = mag(mesh.Sf().boundaryField () [patchIl]);
scalar avgNu = gSum(Nu.boundaryField () [patchI]*areaMag)
/ gSum(areaMag) ;

if (Pstream::master()) {
Info << "Time " << runTime.timeName ()
<< " Avg. Nusselt on TPMS: " << avgNu << endl;
OFstream avgFile(runTime.path()/ "averageNu.dat");
avgFile << runTime.timeName () << " " << avgNu << nl;

if (runTime.outputTime (D)) {
qWall.write () ;
Nu.write();

Listing A.1: Calculating Nusselt number on TPMS surface

A.7 Finite Volume Schemes Settings

/2 *- C++

B e TP *\
| ========= /

/
/N / F deld | OpenFOAM: The Open Source CFD Toolboz
/
[\ / 0 peration | Version: w2406
/
/ W/ 4 nd | Website: www.openfoam.com
/
/ \\/ ¥ anipulation |/
/

| ¥ o o o o o o o o o e e e e e oo
FoamFile
{

version 2.0;

format ascii;

class dictionary;

object fvSchemes;
}
J/ % % ¥ x ¥ ¥ ¥ ¥ ¥ & ¥ K X Kk ¥ K X X ¥ ¥ K X ¥ ¥ K X ¥ ¥ ¥ X X ¥ ¥ ¥ ¥ ¥ ¥

//
ddtSchemes

{
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default
}
gradSchemes
{
default
grad (U)
grad (T)
grad (p)
}
divSchemes
{
default
div (phi,U)
grad (U);
div (phi,T)
turbulence
div (phi, k)
div (phi, omega)
}
laplacianSchemes
{
default
}
interpolationSchemes
{
default
}
snGradSchemes
{
default
}
fluxRequired
{
default
p_rgh;
T;
k;
omega;
}
wallDist
{
method
}

steadyState;

Gauss linear;

celllLimited Gauss linear
celllLimited Gauss linear
celllLimited Gauss linear

none;
bounded Gauss
bounded Gauss
bounded Gauss

$turbulence;
$turbulence;

div (phi,epsilon) $turbulence;

div ((nuEff*dev2(T(grad(U)))))

©

= O O

limitedLinearV 0.5; //Gauss

limitedLinearV 0.5;

upwind;

Gauss linear;

Gauss linear limited 0.9;

linearUpwindV

laplacian(diffusivity,cellDisplacement) Gauss linear corrected;

linear;

corrected;

no;

meshWave;
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75 // IEEREEREEEREREREEREER R R R R EREE R R ERERER R R R R E R R R R R R R R R R R R E R ER R R R R R R ERE R ERES]

//

Listing A.2: Contents of fvSchemes for buoyant solver
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