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Abstract

This thesis explores how to build observable and reliable Al systems for legal text
analysis using Large Language Models (LLMs). Focusing on EU legislative documents
from MultiEURLEX, a baseline LLM system, a Retrieval-Augmented Generation (RAG)
pipeline, and an agentic multi-step variant are developed and compared. The systems
are evaluated using a curated gold-standard dataset, quantitative metrics (F1, precision,
recall), and qualitative assessments (LLM-as-a-Judge). Tools like Langfuse, LiteLLM
provide full observability, tracing, metric logging across local free open-source, open-
weights and cloud based proprietary LLM configurations. Key findings reveal direct
LLM access outperforms RAG variants due to low retrieval recall, highlighting retrieval
is current bottleneck in specific domain RAG application. The work skills and compe-
tences demonstrate a full-stack MLOps deployment on AAU’s uCloud HPC GPU plat-
form and highlights importance of traceability, and human centered evaluation in trust-
worthy AI. This thesis and related research contribute both a methodological blueprint
and critical insights for operationalizing GenAl in high stakes domains.

Keywords: Legal Tech, EU Legislation, Large Language Models (LLMs), Retrieval-
Augmented Generation (RAG), LLMOps, Observability, Open-weights models, Local
LLM, Cloud LLMs, LLM Evaluation, Al Judge, LLM, Generative AI, MLOps, Soft-
ware Engineering, HCI, Cloud Compuuting, Al Engineering, Full Stack Development,
DevOps, DevSecFinPlatOps, Software Development.
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Introduction

1 Introduction

European Union (EU) legal documentation is complex, this is a challenge for legal pro-
fessionals and others alike. Tasks such as clause extraction, semantic understanding,
compliance checking, and summarizing obligations need attention to detail. The ad-
vent of Deep Learning’s generative Artificial Intelligence (AI), Large Language Models
(LLMs), promises "transformative" increased efficiency and accuracy (Zhao et al. 2023).
Yet, effective application of these models in high stakes legal domain calls for robust
methodologies.

Transformer LLMs promise vast capabilities in Natural Language Processing (NLP).
Their application to legal texts, come with challenges as with navigating legal jargon,
mitigating "hallucinations", ensuring factual accuracy, managing multilingual contexts
is hard (Guha et al. 2023; Hong et al. 2024). This work confronts "When LLMs Lie"
problem. The unreliability of LLMs by investigating observable system for clause type
identification in EU legislation.

To enhance LLM performance, ground their responses in factual data, Retrieval-
Augmented Generation (RAG) architectures are used (Lewis et al. 2020). This research
emphasizes LLMOps (Large Language Model Operations) principles, specifically ob-
servability, to evaluate application’s system behavior, identify performance bottlenecks,
and guide iterative software development. Practical deployment considerations motivate
a comparative analysis of "GPU-poor" environments on locally sourced, smaller LLMs
as Gemma-3 (Kamath et al. 2025)) versus "GPU-rich" environments on large, propri-
etary hyperscalers, someone else’s computer of "cloud". This thesis focuses on English
language EU legislation to establish a foundational methodology, acknowledging the
broader context of Al sustainability and need for efficient practices.

1.1 Problem Statement

The problem addressed is the design, implementation, and evaluation of an observable
RAG system for clause type identification within English language EU legislative doc-
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uments. The research explores the unreliability of LLMs by use of RAG for grounding
and LLMOps by integration of observability framework via Langfuse and model abstrac-
tions with LiteLLM. Comparative analysis is conducted with a system using local, small
scale consumer based LLMs against large scale, cloud based LLMs, with evaluation by
AT judge methodology (Zheng et al. 2023; Shankar et al. 2024).

1.2 Research Questions
Primary question I seek to answer is the following:
Main RQ : How can observable RAG system, integrating local and cloud based

LLMs, be effectively designed, evaluated, and iteratively improved for clause type iden-
tification in EU legislative documents?

To address further, following sub questions are investigated:

e SRQI1: How can RAG pipeline be applied to EU legislative texts for clause type
identification?

o SRQ2: How do local LLMs (e.g., Gemma 3) compare to proprietary LLMs (e.g.,
GPT-4.x, Claude 3.x) in terms of accuracy and qualitative assessment by an LLM-
as-a-Judge for clause type identification within observable RAG system?

1.3 Contribution and Scope

The primary contribution is experimental framework, development and quantitative
evaluation of novel observable multi step LLM application for EU legal domain.

e The work experiments integrate Langfuse for observability, tracing of LLM ap-
plication interactions and LiteLLM for abstracting, swapping with various LLM
providers, including local ones.

e comparative performance analysis of local small LLMs against large propitiatory
LLMs within RAG and agentic refinement stages.

e Insights into RAG pipeline bottlenecks, particularly low retrieval recall, in the
context of EU legal texts.

e Application and discussion of the LLM-as-a-judge paradigm for specialized legal
task evaluation.

This research focuses on English language EU legislative documents from the Mul-
tiEURLEX dataset (Chalkidis et al. 2021).



Literature Review

Chapter provides review of literature essential for contextualizing research on observ-
able application for Retrieval-Augmented Generation (RAG) for clause type classifica-
tion in EU legislative texts. I cover LLMs, RAG, LLM evaluation methodologies, and
role of LLMOps and observability.

2 Large Language Models and Their Challenges

The fields of Deep Learning and Human-Computer Interaction (HCI), Artificial In-
telligence (AI) advanced with Transformer architecture (Vaswani et al. 2017). These
models show capabilities in predicting, generating text, which lead to adoption across
use cases (Zhao et al. 2023). Yet, the models come with limitations. Experts use il-
lustrative terms to describe their behavior, such as "Stochastic parrots” (Bender et al.
2021), "Chickenized reverse centaurs", "Sycophant machines". The terms highlight LLMs
ability reproduce patterns without factuality, corectness. These pose risks, especially
in high stakes domain such as law (Guha et al. 2023), where accuracy, reliability are
paramount. Trending is also increasingly capable smaller, open-weights models (e.g.,
Gemma 3 (Kamath et al. 2025)), which offer alternatives to large proprietary models
regarding accessibility and resource requirements (Huyen 2025).

3 Evaluating LLM Application Systems Beyond Stan-
dard Metrics

Evaluating LLM answers for specialized or generative tasks, is hard (Huyen 2025).
Traditional NLP, ML metrics may be insufficient. For RAG systems, frameworks like
RAGAS and DeepEval offer specialized metrics, but their direct application can be ex-
tensive (Reddy and contributors 2023; D. Contributors 2024). The "AI Judge" approach,
using one LLM to evaluate anothers answer (Zheng et al. 2023), offers scalability for
qualitative assessment but has its own limitations, including potential judge bias and
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the challenge of validating the judge itself (Shankar et al. 2024; Panickssery et al. 2024).

3.1 Retrieval Augmented Generation (RAG) for Enhanced LLM
Performance

While LLMs possess knowledge learned during pre-training, they often produce factu-
ally incorrect or outdated information - hallucinations, and they can be very persuasive
(Hong et al. 2024; Bender et al. 2021). Also they struggle with tasks requiring ac-
cess to specific, private, or very recent data. Retrieval Augmented Generation (RAG)
promises to mitigate these limitations by grounding LLM responses in externally re-
trieved knowledge, typically sourced with semantic search over vector embeddings (Han
et al. 2023; Kukreja et al. 2023) stored in Vector databases like ChromaDB (Chroma
Contributors 2025). While RAG enhances reliability, its effectiveness lies on quality of
retrieval and generation components, evaluating failures in RAG pipelines remains a
challenge. Recent work explored RAG for commercial enterprise contract clause com-
parison (Narendra et al. 2024), highlighting RAG benefits in legal tech domain.

3.2 LLMOps Observability for Reliable AI Systems

Operationalization of LLMs in production (LLMOps) requires robust engineering prac-
tises. Central to this is observability, the ability to monitor, trace, log, debug software
applications (Charity Majors et al. 2022). Tools like Langfuse provide detailed tracing
of LLM interactions, inputs, outputs, costs, latencies, prompt managment, enabling
developers to evaluate issues, understand system behavior, and improve reliability (L.
Contributors 2025). This is crucial for building dependable systems, especially when
dealing with the inherent unpredictability of LLMs. The user query event metric can
be observed, traced through the system, when something goes wrong, teams can ideally
know what and where went wrong at exact step of the system (Huyen 2025). This
diagnostic ability is important to move beyond "vibe based" evaluation towards more
rigorous, data driven software engineering approach to AI Engineering.

TrustWorthy, Responsible AI has principles as transparency, accountability, hu-
man oversight, specifically with regulatory framework as EU Al Act (Commission 2021).
It categorizes Al systems by risk,imposes requirements related to data governance, trans-
parency for users. While observability focuses on system behavior and performance for
developers, it is foundational step towards Explainable AT (XAI). Understanding how
system arrived at an output, even if it is through tracing intermediate steps in RAG
pipeline, contributes to demystifying the black box. The ability to trace data prove-
nance in RAG (knowing which retrieved chunks influenced the output) is a basic form
of explainability. Documented are also misbehaviors of LLMs, such as generating harm-
ful content when attacked with "jail-breaking" techniques (Inie et al. 2025). Ensuring
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AT applications meet ethical, legal standards is intrinsically linked to ability to build,
monitor and understand these complex systems.
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Methodology

Overview The methodology employed for developing, evaluating the clause extraction
systems. It outlines data preparation, architectures of the baseline, RAG, and agentic
systems, MLOps tooling for observability, and evaluation metrics used. Components
are integrated under a unified observability framework

5 Data Foundation MultiEURIlex Gold Standard Cre-
ation

MultiEURIlex (Chalkidis et al. 2021) was chosen for structured EU legislative content.

5.1 Core MLOps LLM infrastructure

LiteLLM Proxy for Unified Model Access proxy provided standardized interface
to all LLMs used in research. This included local Gemma-3 series models served on Ol-
lama, external API based models such as OpenAl’'s GPT series and Anthropic’s Claude
series. This abstraction layer simplified experimentation and model swapping.

Langfuse for Observability and Evaluation Management was central LLMOps
platform, enabling

o Comprehensive Tracing - detailed, nested traces of all LLM calls (capturing in-
puts, outputs, model parameters, latency, token counts, and costs) were auto-
matically logged via LiteLLM callbacks and direct Langfuse SDK wrappers (e.g.,
langfuse.openai). Multi step RAG and agentic pipelines were traced using the
@observe decorator

o Dataset Management: English gold standard (eu-clauses-gold-en-v1) was managed
as Langfuse Dataset, allowed systematic linking of evaluation runs to specific data
items
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o Metrics & Score Logging: Quantitative metrics (F1, P, R, Retrieval Recall) and
qualitative LLM-as-a-Judge scores were programmatically logged to corresponding
traces for comparative analysis within the Langfuse UI and via local summary files

5.2 Baseline: Direct LLM Invocation

Direct API call of Claude 3.5 Sonnet model via LiteLLM to extract clauses directly
from the full document text. LLM was prompted to extract all instances of five target
clause types in a single pass, outputting a JSON list. This system served as benchmark
for RAG and agentic approaches.

5.3 Poc 2 Annotation Process

« Initial "silver" annotations were generated for 100 documents using Claude 3.5 via
LiteLLM.

 Additional targeted run of 100 documents identified underrepresented clauses (Def-
initions, Penalties).

e final manually curated "gold" set of 27 documents was prepared, verifying clause
accuracy and boundaries, yielding distributions:

— Entry into force & Application: 26 instances
— Obligations: 15

Subject matter & Scope: 15
Definitions: 12

Penalties: 3

5.4 Poc 2 Retrieval-Augmented Generation (RAG) Pipeline
Implemented RAG pipeline stages:

1. Chunking: LangChain RecursiveCharacterTextSplitter (1000 char chunks, 150
overlap)

2. Embedding: OpenAl text-embedding-3-small
3. Vector Store: ChromaDB for embedding storage and retrieval

4. Retrieval: Top-K semantic similarity retrieval (K=3, K=5 experiments), using
generic query
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5. Reader LLMs: GPT-4.1, GPT-4.1-mini, local Gemma-3 4B QAT, Claude 3.5/3.7
all via LiteLLM. The reader was prompted to extract target clauses from the re-
trieved context

6. Output Validation - LLM JSON output validated against predefined schema

5.5 PoC 3 Two Step Agentic System
Agentic system designed used LangGraph, consists of:

¢ RAG Node: Performs initial clause extraction via RAG pipeline, with config-
urable reader LLMs (e.g., local Gemma-3, GPT-4.1-mini).

e Critique Node: Refines outputs through a critique model (Gemma-3 or Claude
3.7).

o The agents execution flow (RAG -> Critique -> END) was traced using Langfuse.

5.6 Evaluation Metrics

e Type F1, Precision, Recall: Primary quantitative metric was Set-based Type
F1, along with Precision and Recall - Measures how well the system identified
correct categories of clauses present, ignoring counts or textual accuracy.

¢ Retrieval Recall: Evaluated retrievers effectiveness by matching retrieved chunks
with gold clause snippets.

e« LLM-as-a-Judge Score: Qualitative scores from LLM evaluating semantic ac-
curacy, relevance.
Ai judge was provided with original document snippet, system’s predicted clauses,
with gold standard clauses. It was prompted to provide an llm__judge_ overall _quality_score
(0.0-1.0) and a textual llm_ judge rationale based on coverage, precision, and ac-
curacy of predictions.

¢ Operational Metrics: Latency and token costs recorded via Langfuse.

5.7 Experimental Execution Environments

Ollama local setup ran on GPU: RTX 4060 Ti 16 GB VRAM, CPU: Ryzen 5 2600,
WSL2 on Windows with Docker Desktop for Langfuse and LiteLLM.
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AAU uCloud exploration of local model serving in HPC environment, experiments
conducted in AAU uCloud ’Coder’ application on a ucl-al0 GPU node. In Coder,
Ollama was used to serve Gemma-3 models (4B and briefly 27B), and LiteLLM proxy
instance helped access to this local Ollama server and external APIs. Langfuse Cloud
was used for tracing these uCloud runs. The setup aimed to demonstrate feasibility of
integrating local model inference on uCloud into the MLOps workflow.

6 Implementation Details

6.1 System Architecture

6.2 Core Tech Libraries

LLMs Used Gemma3-4B QAT, GPT-4.1-mini, Claude 3.5/3.7 Sonnet, text-embedding-
3-small (Kamath et al. 2025).

e Development Environment was developed in Python 3.11.
e Key Libraries

— Langfuse SDK: For all tracing, dataset management, and scoring.

— LiteLLM: As the central proxy for all LLM API calls (local Ollama, OpenAl,
Anthropic).

— LangChain (langchain_text_ splitters, langchain_openai): Utilized for doc-
ument chunking and interfacing with embedding models via LiteLLM.

— ChromaDB: For local vector storage and retrieval.
— LangGraph: For orchestrating the two step agentic system.
— datasets Hugging Face For loading MultiEURIlex.

jsonschema For validating LLM JSON outputs.

Pandas: For local analysis of evaluation summaries.

6.3 Proof of Concept Progression

o PoC 1 (Foundational Setup): Focused on establishing the local development
environment, integrating LiteLLLM and Langfuse for basic tracing with a simple
"Article ID" extraction task using Gemma-3 via Ollama. MLflow was used for
initial high level parameter logging in this phase.

o PoC 2 (RAG Development & Evaluation): Involved silver/gold annotation
generation (using Claude 3.5), development of the RAG pipeline (poc2_rag_pipeline.py),



6. Implementation Details 11

and systematic evaluation against the gold set using poc2_baseline_eval.py and
poc2_run_evaluation.py, with metrics calculated by poc2_eval/poc2_metrics.py
and LLM judging by poc2_11m_judge.py.

o PoC 3 (Agentic System & uCloud Exploration): Implemented a two step
RAG+Critique agent (poc3_agentic_extractor.py) , evaluated its final outputs
using poc3_run_agent_eval.py. Conceptual exploration, limited testing of local
model serving (Gemma-3 via Ollama) were conducted within the AAU uCloud
Coder environment, with traces sent to hosted Langfuse Cloud.
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Results Findings

7 Results

7.1 Poc 1 Article ID extraction local ollama Gemma3

PoC Established prerequisites for POC 2 evaluations by successfully gluing, testing
integration of the LiteLLM proxy for accessing various language models, setting up
Langfuse for comprehensive tracing of LLM calls and pipeline steps. This ensured
that the more complex RAG pipeline and LLM evaluation components in POC2 could
connect to necessary services and their operations would be monitored, observed and
logged. The number of articles extracted varied per run, upon review, all were correct.

7.2 PoC 2 RAG Evaluation Results

Proof of Concept 2 objective was to develop, evaluate a Retrieval-Augmented
Generation (RAG) pipeline for clause type identification within English EU legislative
documents from MultiEurlex (Chalkidis et al. 2021). T compared RAG implementation
against baseline of directly invoking LLM and assesed performance on different RAG
configurations, various RAG LLM readers, both local and LLM API based. Retrieval
parameter adjusted was top-K number of retrieved chunks. Evaluation used by my-
self selected 27 "gold" annotations from initial 100 "silver" annotations of clause types
annotated by Claude 3.5 sonnet. The custom metrics are set-based Type F1, Preci-
sion, Recall, Retrieval Recall, tracked and managed using Langfuse LLM observability

Table 1: Performance Comparison of Models

Model F1 Prec. Recall Retr. Success
Baseline (Claude) 0.893 0.895 0.895 N/A 25/27
RAG (GPT-4.1) 0.698 0.641 0.830 0.173 27/27

RAG (GPT-4.1-mini) 0.686 0.654 0.750 0.093 27/27

13
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platform locally set up.

Table 2: Complete RAG System Performance Analysis

System AF1 APrecision ARecall ARetrieval Recall
Baseline (No RAG)

Claude 3.5 (Direct) 0.893 0.895 0.895 -
RAG Systems

GPT-4.1 (K=3) 0.698 0.641 0.830 0.173
GPT-4.1-mini (K=3) 0.686 0.654 0.750 0.093
GPT-4.1-mini (K=5) 0.686 0.654 0.750 0.136
Gemma-3 (K=3) 0.735 0.611 0.963 0.093
Gemma-3 (K=5) 0.614 0.519 0.787 0.136
Claude 3.7 (K=3) 0.686 0.654 0.750 0.093
Claude 3.7 (K=5) 0.686 0.654 0.750 0.136

Embedding: text-embedding-3-small. Success rate: 27/27 for all systems. Best RAG F1: Gemma-3
(K=3).

Table 3: Key Performance Insights by Approach

Approach Best F1 Key Finding

Baseline (No RAG) 0.893 Direct LLM outperforms all RAG
RAG (Best) 0.735 Gemma-3 (K=3) leads RAG systems
Retrieval Impact 0.093-0.173 Low retrieval recall limits performance

LLM-as-Judge Evaluation Qualitative assessment using Claude 3.5 as judge showed
patterns:

o GPT-4.1-mini (K=5): Judge score 0.269 (F1: 0.686) - outputs often irrelevant
despite correct format

o Gemma-3 (K=5): Judge score 0.556 (F1: 0.614) - better semantic understand-
ing of legal context
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Table 4: Performance Summary: Quantitative vs Qualitative Assessment

System Type Best F1 Best Config Judge Score Assessment
Baseline 0.893 Claude 3.5 Direct N/A Gold standard
RAG-only 0.735 Gemma-3 (K=3) N/A Best quantitative
RAG-judged 0.686 GPT-4.1-mini (K=5) 0.269 Format over content
RAG-judged 0.614 Gemma-3 (K=5) 0.556 Better semantics

Comparison shows judge scores don’t always align with F1 performance, suggesting complementary

evaluation approaches needed.
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7.3 PoC 3 Agentic RAG Results

The two-step agent RAG node Critique node. Specify models used for each component
in the tested configurations.

Table 5: Agent System Performance with LLM-as-Judge Evaluation

Agent Configuration F1 Prec Rec Judge Score
Gemma3 RAG + Gemmad3 Critique 0.430 0.509 0.432 0.683
Gemma3 RAG + Claude 3.7 Critique 0.164 0.138 0.216 0.376

GPT-4.1-mini RAG + Claude 3.7 Critique 0.247 0.264 0.253 0.347
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8 Discussion

8.1 Recapitulation of Key Findings Analysis

Experimental evaluation revealed The direct to LLM baseline system Claude 3.5
outperformed all implemented RAG and agentic configurations in identifying clause
types. Baseline had an average Type Set F1 of 0.893, Precision of 0.895, and Recall of
0.895 across 27 gold documents.

Of all RAG configurations, retrieval recall is consistently low (max around 0.173).
This means 80-90% of the time, the chunks containing the gold clauses are not being
retrieved. No RAG reader LLM overcame this issue, indicating retrieval is the bottle-
neck. Qualitative assessment via LLM-as-a-Judge underscored challenges, frequently
revealing content inaccuracies in RAG and agent outputs despite potentially moderate
F1 scores.garb

Retrieval Bottleneck Failures The prompt query for RAG reader model "Extract
legal clauses such as ..." might been too broad and missed specific keywords. Length to
actual text of desired clauses, especially for rarer types like "Penalties" or "Definitions"
for this domain without better query formulation or re-ranking. Embedding model
limitations, text-embedding-3-small is generally good, the nuances and terminology of
EU legal text might not be captured for effective similarity search. The implemented
chunking strategy used Langchain’s RecursiveCharacterTextSplitter 1000 char chunk
size over 150 char overlap perhaps split awkwardly, making them harder to retrieve or
less relevant individual chunks.

Reader Model Differences Among RAG readers, Gemma-3 4B K=3 surprisingly
outperformed the API models (GPT-4.1-mini K=3, Claude 3.5 K=3) in F1 despite sim-
ilar (low) retrieval recall. Increasing Top K Chunks from 3 to 5 improved retrieval recall
slightly but did not consistently improve (sometimes worsened) the final F1, suggesting
reader models struggled with increased noisy retrieved context.

17



18 Discussion

8.2 Ewvaluating POC 3 Agentic RAG + Critique Results

This agentic approach did not improve performance over the best RAG only config-
urations and remained significantly below the baseline. Agent A (Gemma3 RAG +
Gemma3 Critique) against Agent B (Gemma3 RAG + Claude Critique), a supposedly
better critique model Claude lead to worse F1, indicates, that Gemma3 RAGs output
interpretation of "good" is wrong upon review in Sessions Trace. This is supported by
an API based RAG reader, GPT-4.1-mini followed by Claude critique (Agent C), the
agent’s F1 (0.247) remained low.

Langfuse traces of agent executions with Langgraph visualized the two step process.
Analysis of the critique text and final clauses showed the critique rational such as, the
output of previous step was wrong.

Overall on agent effectiveness, the agents still underperforms baseline direct call.
Likely because foundational RAG step was weak, garbage in, garbage out.

Insights with LLM-as-a-Judge Al judge highlighted inside Langfuse trace, the
contents inaccuracies in RAG outputs. For example, for document 32012D0637, the
judge noted: ""The machine’s predicted clauses are largely irrelevant... clauses are from
a completely different fishing regulation..."

8.3 LLMOps Observability: Aid to Systematic Investigation

The adoption of MLOps principles, tooling was central here. Langfuse was instru-
mental for tracking all experiments. It enabled systematic evaluation (Baseline, RAG
variations, Agent runs) with varying parameters and configurations. Managing the gold
standard dataset, I linked evaluation runs under sessions, traces, userID to it. It helped
logging diverse custom metrics (quantitative F1, P, R, Retrieval Recall, LLM Judge
scores, native operational metrics like latency/cost from traces). The platform’s abil-
ity to visualize execution flows, like the LangGraph agent trace, helped me understand
internal states and outputs of each component, LLM call. This detailed observability
was key to debugging issues, finding critical retrieval bottleneck in RAG systems. The
use of LiteLLM provided a unified interface for accessing various local (Ollama served
Gemma3) and API based (OpenAl, Anthropic) models, simplifying process of swap-
ping components for comparative experiments. The practice of saving local JSONL
summaries of evaluation results complemented Langfuse, enabled flexible data analysis.

8.4 Difliculties Limitations

Difficulties POC 2 Annotation From the main 100 silver set annotation run I
initially lacked 2 Clause types, specifically Definitions and Penalties. These had to be
found by keywords in the validation split data set and another run of 100 document
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annotation was made for candidates for Definitions and Penalties clause types, which is
where 12 Definitions, 3 Penalties clause types were found.

Limitations With N=27, small size per condition is a limitation. The primary quanti-
tative metric, Type Set F1, assesses the presence of clause types rather than the textual
accuracy or semantic completeness of the extracted clause content. While complemented
by LLM-as-a-Judge, more granular text-based metrics (e.g., ROUGE, BERTScore, or
span-F1) would provide further insights in future work.

While the system was designed with multilingual evaluation in mind (e.g. using multi-
lingual embedding models conceptually), extensive multilingual evaluation was beyond
the scope of PoC, as I encountered parsing error with German annotation splits.

Due to the exploratory nature and limited size of the evaluation set per condition, formal
statistical significance tests were not performed. Comparisons are based on observed
mean differences.

HPC GPU AAU uCloud vLLM / Ollama

To explore feasibility and operational aspects of utilizing local LLMs within an HPC
environment, components of the agentic system were executed on Aalborg University’s
AAU/K8s uCloud infrastructure. The hosting environment chosen was the "Coder" in-
teractive application available on uCloud, launched on a ucl-al0 GPU node. This pro-
vided a persistent VS Code server environment with terminal access, ability to mount
project files from Ceph storage (/work). Dependencies were managed using uv within
a Python 3.11 virtual environment.

The gemmad-4b-it-qat model and experiments with bigger gemmad3:27b-it-qat was served
using vLLM and mainly Ollama, installed and ran directly within the Coder job’s en-
vironment. Ollama listened on localhost:11434 (internal to the Coder job), making
the Gemma3d model accessible to other processes within the same job. This approach
mirrored the local development setup.

Observability with Langfuse Cloud Given unavailabile Docker in the HPC Coder
app flavor, direct self-hosting of the full Langfuse stack via Docker Compose inside the
Coder job was not pursued for this PoC. The setup captured traces to Langfuse Cloud
hosted environment, while evaluating the system, I encountred parsing errors in the
traces. Further investigations. This MLOps approach on uCloud, while simplified for
this PoC, lays groundwork for more advanced HPC GPU deployments serving models
using optimized engines like vLLM.

User Interview

Brief Interview was conducted with the collaboration company’s founder. at the end
of PoC experiments, I asked if the clause type or EU legislation RAG system would be
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relevant. I was confirmed there is potential, but further iteration on more product of
user centered use case would be needed.

9 Conclusion

This work went on developing, evaluating LLM systems for EU legislative documents,
emphasizing an LLMOps approach centered on observability. The investigation com-
pared a direct LLM baseline, various RAG pipeline configurations, and a two step agen-
tic (RAG + Critique) system, utilizing both local and API inferred based LLMs. The
experimental results consistently demonstrated that, for the specific task of identifying
the presence of predefined clause types within the 27-document English gold standard,
a powerful baseline LLM (Claude 3.5 Sonnet) with access to the full document context
(F1 0.893) outperformed all RAG and agentic configurations. The primary limiting
factor for all RAG-based approaches was identified as a retrieval bottleneck, with re-
trieval recall scores consistently below 18%. This inability to surface relevant context
to the reader LLM rendered even advanced reader models, later agentic critique steps
ineffective in matching baseline performance. While local Gemma 3 model showed com-
petitive F1 scores as a RAG reader in certain low context scenarios (K=3, F1 0.735),
this did not generalize with increased context. The LLM-as-a-Judge component proved
valuable, offering qualitative insights that often highlighted content inaccuracies and
irrelevance in RAG - agent outputs, which were not fully captured by the set-based
F1 metric. Ultimately, this work shows that while RAG and agentic architectures hold
promise for enhancing LLM applications in domain as law, their success is dependent
on performance of each component, particularly information retrieval and the person in
front of monitor. The LLMops framework, centered around observability and systematic
evaluation, was instrumental in finding traces of RAG inefficiencies and understanding
the shades of performance in different LLM configurations. The findings show that sim-
ply adding more LLM steps or more powerful models downstream may not yield desired
improvements and implementing RAG is not straightforward for the first time.

10 Future work

Findings open ways for future research, development aimed at creating more robust and
reliable LLM systems:

Enhance RAG Retrieval Performance Future work should explore query formu-
lation techniques variables, top K, prompt engineering techniques manage evaluation
query text. Different baseline model than annotation model, there is LLM self prefer-
ence (Shankar et al. 2024). Research can evaluate more retrieval strategies (e.g., Par-
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entDocumentRetriever, re-ranking algorithms, hybrid search combining semantic and
keyword approaches), Optimize chunking strategies for legal document structures.

Robust Multilingual Evaluation and adaptation of pipeline for more languages.

Optimized Local Model Serving on HPC, Private Cloud can systematically
deploy, benchmark larger local models e.g., Gemma 12B/27B or other open-weight
models using optimized serving frameworks like vLLM. Integrate these and compare
performance against local Ollama setups, API models.

User Feedback Loop Human in the loop systems : Further research can con-
ceptualize legal professionals use of the system with interactive Ul, provide feedback on
extractions and help the actual user, potentially fine tuning models with popular LoRa
technique.

Scalable deployment can explore CI/CD pipeline for model agent updates. For
production grad eoperationalization deployment can go for hyperscale cloud platforms
using Infrastructure as Code (Terraform/ OpenTofu), Langfuse provides such templates.
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1.1 POC2 Annotation System Details
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Fig. A.1: Poc2 Annotation - Sessions Traces, Total Costs, Token Usage

2 Baseline Evaluation Results
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Fig. A.2: POC2 Annotation System User Prompts - Langfuse trace showing the interaction flow
between user inputs and the annotation system
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Fig. A.3: POC2 Annotation Observation Output - System response generation and clause type pre-
dictions
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Fig. A.5: POC2 Dataset Baseline Evaluation Scores - First run performance metrics across different
clause types
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Fig. A.8: POC2 Baseline Evaluation Dataset Items - Individual document processing results and
performance breakdown
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3 RAG Pipeline Evaluation

4 System Architecture Diagrams

4.1 Code Snippets and Configuration

4.2 RAG Pipeline Execution
# poc2_rag_pipeline.py

@observe ()
def run_rag_clause_extraction(
document_text: str,
document_id: str,
language: str = "en",
session_id: Optional[str] = None,
user_id: Optional[str] = None,
reader_model_alias_param: Optional[str] = None,
litellm_proxy_url_param: Optional[str] = None,
embedding _model_alias_param: Optional[str] = None,
) -> Dict[str, Any]:
# Determine actual models and proxy to use, prioritizing passed parameters
)
rag_trace_id = langfuse_context.get_current_trace_id()
langfuse_context.update_current_trace(
name=f"RAG_ClauseExtrc_Pipe-{current_reader_model}",
metadata={
"document_id": document_id,
"language": language,
"reader_model": current_reader_model,
"embedding_model": current_embedding model,
"litellm_proxy_url": current_proxy_url,
"chunk size": CHUNK_SIZE,
"chunk_overlap": CHUNK_OVERLAP,
"top_k_retrieval": TOP_K_RETRIEVAL,
},
session_id=session_id,
user_id=user_id,

# 1. Chunking
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chunks = _rag_perform_chunking/(
document_text=document_text,
document_id=document_id,
session_id=session_id,
user_id=user_id,

return {
"predicted_annotations": [],
"rag_trace_id": rag_trace_id,
"retrieved_chunk_texts": [],
"error": error_message_for_output,
}
) # 2. Embedding Chunks
chunk_embeddings = _rag_perform_embedding(
chunks=chunks,
document_id=document_id,
embedding_model_alias_param=current_embedding_model,
session_id=session_id,
user_id=user_id,
)
return {
"predicted_annotations": [],
"rag_trace_id": rag_trace_id,
"retrieved_chunk_texts": chunks,
"error": error_message_for_output,

3

# 3. Vector Store (Load/Index) - Simple in-memory for this example
collection = get_rag_collection(RAG_COLLECTION_NAME)
chunk_ids = [f"{document_id}_chunk_{i}" for i in range(len(chunks))]
if chunk_ids:

collection.add(embeddings=chunk_embeddings,

documents=chunks, ids=chunk_ids)
else:

logger.warning(f"No chunks to add to vector

store for document {document_id}.")

# 4. Retrieval

retrieved_docs_texts = []

query_text = f"Extract legal clauses such as {’, °’
.join(CLAUSE_TYPES)} from a European Union regulation document."
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try:
query_embedding = get_embeddings(
[query_text], model_alias=current_embedding_model
) [0]
except Exception as e:
logger.error(f"Failed to embed query for {document_id}: {e}",
exc_info=True)
langfuse_context.update_current_trace(
output={
"status": "Query embedding failed",
"error": error_message_for_output,

return {
"predicted_annotations": [],
"rag_trace_id": rag_trace_id,
"retrieved_chunk_texts": [],
"error": error_message_for_output,

# Final update to the main trace output
langfuse_context.update_current_trace(
output={
"final_predicted_annotations_count": len(predicted_annotations),
"final_retrieved_chunks_count": len(retrieved_docs_texts),

}
)
return {
"predicted_annotations": predicted_annotations,
"rag_trace_id": rag_trace_id,
"retrieved_chunk_texts": retrieved_docs_texts,
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5

Evaluation Metrics Calculation

# poc2_metrics.py

# 1
def

. set-Based Type-level - Exact Match on Clause Type P/R/F1

calculate_set_based_type_metrics(
predicted_clauses: Sequence[Dict[str, Anyl],
gold_clauses: Sequence[Dict[str, Any]]

) —> Dict[str, float]:

def

# f1

# 2

Calculates Precision, Recall, F1 based on the SETS of unique clause types.

Ignores counts of each type, only cares about presence/absence of the type.
nun

predicted_types_set: Set[str] = {
clause["clause_type"] for clause in predicted_clauses if
"clause_type" in clause
}
gold_types_set: Set[str] = {
clause["clause_type"] for clause in gold_clauses if
"clause_type" in clause
¥
tp = float(len(predicted_types_set.intersection(gold_types_set)))
fp = float(len(predicted_types_set.difference(gold_types_set)))
fn = float(len(gold_types_set.difference(predicted_types_set)))
precision = _safe_div(tp, tp + fp)
recall = _safe_div(tp, tp + fn)
f1 = _fi(precision, recall)
return {
"type_set_precision": precision,
"type_set_recall": recall,
"type_set_f1": f1,
"type_set_tp": tp, # Count of matching types
"type_set_fp": fp, # Count of predicted types not in gold
"type_set_fn": fn, # Count of gold types not predicted

}

# core helpers

_f1(p: float, r: float) -> float:

return 2 * p *x r / (p + r) if (p + r) > 0 else 0.0
= (

* (precision * recall) / (precision + recall)

# if (precision + recall) > 0O
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# else 0.0

def _safe_div(num: int, denom: int) -> float: # allow float for generality
return num / denom if denom > 0 else 0.0
# precision = tp / (tp + fp) if (tp + fp) > 0 else 0.0
# recall = tp / (tp + fn) if (tp + fn) > 0 else 0.0

6 LLM-as-a-Judge Evaluation

# poc2_llm_judge.py

# --- Judge Prompts (Simplified System Prompt) ---
JUDGE_SYSTEM_PROMPT = """You are an expert legal evaluator.
Your task is to assess the overall quality of machine-extracted
legal clauses compared to a gold standard, considering

the original document context.

You will be given:

1. A snippet of the original document text.

2. A JSON list of ’predicted_clauses’ extracted by a machine.

3. A JSON list of ’gold_standard_clauses’ (correct extractions).

Instructions:
1. Compare the ’predicted_clauses’ against the
’gold_standard_clauses’ and the ’original_document_snippet’.
2. Consider:
- Coverage: Did the machine find most of the important
clauses from the gold standard?
- Precision: Did the machine avoid extracting irrelevant or
badly formed clauses?
- Accuracy: For clauses that seem to match, is the ’clause_type’
correct and is the ’clause_text’ accurate and complete?
3. Based on your holistic assessment, provide an ’overall_quality_score’
as a single float between 0.0 (very poor, many errors, missed key items)
and 1.0 (excellent, accurately captures all gold items with no significant errors).
4. Provide a brief ’rationale’ (1-3 sentences) explaining your
score, highlighting the most significant strengths or weaknesses.

Output your evaluation as a single,

valid JSON object with the following exact keys:
- "11m_judge_overall_quality_score": float

- "1lm_judge_rationale": string"""
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JUDGE_USER_PROMPT_TEMPLATE = """Document ID: {document_id}

Original Document Snippet:

{original_document_snippet}

Predicted Clauses (Machine Extracted):

{predicted_clauses_json}

Gold Standard Clauses (Correct):

{gold_standard_clauses_json}

Based on your evaluation,
provide your assessment as a single JSON object
with ’11m_judge_overall_quality_score’ and ’1llm_judge_rationale’ keys:"""

6.1 Extended Evaluation Metrics
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