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Abstract

This thesis explores aspects of operator theory relevant to quantum mechanics. We
primarily focus on three different subjects: Self-adjoint unbounded operators, pseudo-
differential calculus, and simple quantum systems of particles in Euclidean space.

First we present some of the theory of self-adjoint unbounded operator covering
basic definitions, variational operators, and spectral theory. While introducing the basic
definitions we prove standard results such as criteria for self-adjointness and the Kato-
Rellich Theorem. For variational operators we also include Friedrich’s Extension. As for
spectral theory we prove the spectral theorem for bounded and unbounded self-adjoint
operators, Stone’s Formula, and Helffer-Sjöstrand Formula.

Secondly we study tempered distributions and pseudo-differential operators. The
Schwartz space and space of tempered distributions are introduced, and results such
as reflexivity of the spaces, Schwartz Kernel Theorem, and the Structure Theorem
are proven. Afterwards we deal with quite general quantization schemes for pseudo-
differential operators, mostly working with Hörmander classes of smooth symbols with
decay controlled by a tempered weight. For these we establish a Calderón-Vaillancourt
Theorem, a Moyal product, and for certain quantizations a Beal’s Commutator Crite-
rion. To prove all these results we make use of modulated tight Gabor frame, and we
characterize the different spaces by their coordinates or matrices in this frame.

Lastly we analyze some one particle systems directly and a many-body particle sys-
tem in the Hartree-Fock approximation, both under the influence of a regular mag-
netic field. As a start we omit the magnetic field and give classical results on the free
Schrödinger operator and harmonic oscillator. Then we give elementary results on free
magnetic Schrödinger operators and find the Landau spectrum. Afterwards we turn
our attention toward the Hartree-Fock approximation of a many-body particle system
under the influence of a constant magnetic field. Essentially the many-body particle sys-
tem is approximated by a single particle Schrödinger operator with an added potential
representing the particle cloud. This potential satisfies a fix-point equation, which we
solve.
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1

Introduction

In the pursuit of understanding the universe, quantum mechanics was developed to
explain how the smallest of things the universe have to offer behave. These, such as
photons and electrons, were proven to exhibit both particle-like and wavelike behavior
through experiments. Having a hard time explaining how e.g. light comes in quanta,
but behaves like a wave in an ensemble, lead to this strange and stochastic theory of
quantum mechanics.

Quantum mechanics supposes that we work with a Hilbert space as our phase space
and associate observables of our quantum system with self-adjoint operators on the
Hilbert space. The state of our quantum system is then described by a non-negative,
self-adjoint trace class operator with trace one, whom together with the spectral decom-
position of an observable gives a probability distribution for what the "realized" value
of that observable is. One quite important observable is the energy of the system and
the associated operator is called the Schrödinger operator, sometimes the Hamiltonian.
The Schrödinger operator governs the time evolution of the quantum system through
the Schrödinger equation, which expresses how the state develops in time. See [2, 15,
28] for historical notes or discussion of the "axioms" of quantum mechanics, specifically
[15, Chapter 1, 3, and 19] and [28, Chapter 2 and 5].

Dealing with all of the above rigorously in a mathematical sense necessitates the
development of new mathematical tools, especially developing the theory of operators
to encompass those relevant to quantum mechanics. This is the main interest of this
project and we aim to elucidate theory both abstract and concrete, general and specific.

For a start, much of the theory of operators, and even more so unbounded operator,
has been created with applications to quantum systems in mind. As seen in e.g. [14,
22, 23], this theory is far from trivial, although well developed at this point. We will
in Chapter 2 take a very general approach to the notion of operator and give a short
account of self-adjointness and spectral theory for operators on Hilbert spaces. This
covers basic material beyond the case of bounded operators with only a few perhaps
non-standard topics such as the Helffer-Sjöstrand formula, taken from [10, 16, 28].

Continuing, the question of which operators are associated with which observable
begs for an answer. The more intuitive classical mechanics, where one works with sys-
tems as deterministic and observables as functions of states giving a specific value, one
often has an easier time finding the function associated with a certain observable, see
[15, Chapter 2 and 3]. The energy function, henceforth Hamiltonian, is one example.
Trying to translate classical mechanics to its quantum counterpart leads to quantiza-
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Chapter 1. Introduction

tion procedures and in cases classes of pseudo-differential operators, see [15, Chapter
13]. Thus this is the subject of Chapter 3, where we present some technical tools in
terms of spaces and transformations which enables us to quantize classical observables
through general schemes. The approach taken is mainly from the articles [8, 9], where
the usefulness of modified Gabor frames to pseudo-differential operators is shown.

Lastly, we would be negligent if we do not delve into some specifics, and so in
Chapter 4 several Schrödinger operators for simple quantum systems are studied in
detail. A large part is spent on making sure that what should be the Schrödinger op-
erators actually exists in an appropriate sense, i.e. as self-adjoint operators. In some
instances we also compute the spectrum of the Schrödinger operator, which is relevant
when considering the time evolution of the quantum system. We focus on a range of
techniques in large part based off [7, 28]. It should be noted that Schrödinger operators
are not always amenable to an analysis, and approximations have to take place. Many-
body systems can give raise to such situations and the last topic of Chapter 4 concerns
the Hartree-Fock approximation, particularly recovering an approximative Schrödinger
operator. This last problem is due to H. Cornean and the proofs are constructed in
collaboration, yet to be published.

1.1 Notation and Conventions

Before moving on we introduce some notation and conventions used throughout. While
some are common, others are certainly not. Some of the notation clashes, so we count
on the viewer to look at the context in which it is used.

We let N denote the natural numbers, N0 the natural numbers plus zero, Z the
integers, R the real numbers, and C the complex numbers. The absolute value of a
complex number is denoted | · | and the Euclidean norm in Cd, d ∈ N, by ∥ · ∥. The
associated metric is denoted as d, not to be confused with the dimension. On Cd we also
define the Japanese bracket ⟨·⟩ := (1 + ∥ · ∥2)

1
2 and remind the reader of the following

generalization of Peetre’s inequality:

⟨x⟩−p⟨y⟩p ≤ 2
|p|
2 ⟨x − y⟩|p|

for x, y ∈ Cd and p ∈ R. At times a C ∈ R will denote a positive constant with possible
subscripts showing its dependencies. We also let ej denote the jth canonical basis vector
in Cd, d ≥ j.

The graph of a function f is denoted by Γ( f ), the domain by D( f ), and the range
R( f ). An indicator function on some subset Ω is denoted by 1Ω and the identity function
by idΩ. The subscripts are omitted when the context allows it. We also allow the notation
f (·) for a function to avoid the cumbersome notation of always having dummy variables.

Given a metric space Ω, we denote the ball at x ∈ Ω with radius r > 0 by Br(x; Ω).
For vector spaces V we denote a translation by ϕ ∈ V as τϕ := V ∋ ψ 7→ ψ − ϕ and

use the same notation for its pullback, i.e. τ∗
ϕ = τϕ. Norms or semi-norms are denoted

as ∥ · ∥V with possibility of added subscripts, and for inner products we use ⟨·, ·⟩V . Inner
products, and in general sesquilinear forms, are taken antilinear in the first entry and
linear in the second. For tensor products we use ⊗.

Lebesgue spaces over Rd, d ∈ N, are denoted as Lp(Rd) with p ∈ [1, ∞]. Spaces
of continuous and continuous differential functions are denoted as Cn(Rd) with n ∈
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N ∪ {∞}, and if these are required to be bounded, then we use BCn(Rd). If we take
the subspace of functions with compact support, then a c is added as a subscript. All
these spaces are equipped with their canonical topology, making them Hilbert, Banach,
or Fréchet spaces.

For a linear integral operator T, we denote its, or a, kernel by KT. We work with

F : L1(Rd) ∋ f 7→
(

Rd ∋ ξ 7→ 1

(2π)
d
2

∫
Rd

e−iξ·x f (x)dx

)

as the definition of the Fourier transform on L1(Rd). The symbol F will in general
denote the Fourier transform in any of its forms.

We make use of multi-index notation: For a multi-index α ∈ Nd
0, d ∈ N, we have

an absolute value |α| := ∑d
j=1 αj, the monomial xα := ∏d

j=1 x
αj
j for x ∈ Cd, and the

differential operator ∂α := ∏d
j=1

∂
αj

∂xj
on suitably defined objects.

3





2

Unbounded Operators, Self-adjointness, and
Spectral Theory

In general we mathematicians are quite fond of being precise, but somehow the natural
world has not caught up to that fact yet. It seems that one always needs more complex
and abstract theory to model different aspects of physics, and quantum mechanics is no
exception: We need to have a good grasp on Hilbert spaces and the general notion of an
operator on these spaces. This motivates the study of unbounded operators, which will
be our goal this chapter.

Our presentation of the subject is based on many well-known sources. Most defini-
tions and common theorems stem from [14, 23, 24, 25, 31], especially the first two sec-
tions, which focuses respectively on the general notion of an operator between topolog-
ical vector spaces and the adjoints for operators between Hilbert spaces. The following
section on variational operators is inspired by [14, 22] and delves into the relation be-
tween operators and sesquilinear forms. In the last section we present some elementary
spectral theory and most importantly the spectral theorems for self-adjoint operators.
Much of the spectral theory is stitched together from material in [5, 23, 24, 27] while the
Stone’s formula is taken form [16, 28] and the Helffer-Sjöstrand formula from [10, 16]. A
lot of attention in the second section and onwards is given to exploring self-adjointness,
whereas we neglect to study objects such as normal operators.

Note when referring to a vector space we always mean a complex vector space. We
also mostly consider Banach and Hilbert spaces in this section though some definitions
are stated more generally.

2.1 Unbounded Operators

Let us start with some definitions.

Definition 2.1.1. (Unbounded Operators) A linear map T from a subspace of a topolog-
ical vector space V1 into another topological vector space V2 is called an operator on V1

into V2, and the space of such objects denoted by L(V1, V2). Also L(V1) := L(V1, V1).
If T ∈ L(V1, V2) is not bounded, then T is called unbounded. The subspace of

L(V1, V2) consisting of bounded operators defined on the entirety of V1 will be denoted
by B(V1, V2) and the bounded dual by V ′

1 = B(V1, C). Spaces of bounded operators are
equipped with the strong topology.
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Chapter 2. Unbounded Operators, Self-adjointness, and Spectral Theory

We make two notes after this first definition. First of all, for the spaces we consider,
boundedness of an operator is equivalent to continuity, see [21, Theorem 4.12] for a gen-
eral statement of this fact. Secondly, whenever we define operators on topological vector
spaces one often defines the domain before the operator, leading to some notational sins.

Definition 2.1.2. (Operations on Operators) Let T1, T2 ∈ L(V1, V2) and T3 ∈ L(V2, V3) be
operators and a ∈ C a scalar.

We define sum of T1, T2 on D(T1)∩ D(T2) by (T1 + T2)ϕ = T1ϕ+ T2ϕ for ϕ ∈ D(T1)∩
D(T2). We define the scalar product of a and T1 on D(T1) by (aT1)ϕ = aT1ϕ for ϕ ∈
D(T1). Lastly, we define the composition of T1, T3 on

D(T3T1) = {ϕ ∈ D(T1)|T1ϕ ∈ D(T3)}

by (T3T1)ϕ = T3T1ϕ for ϕ ∈ D(T3T1).

Another important operation on operators invariating some space is the commutator
bracket, defined by

[T1, T2] = T1T2 − T2T1

for T1, T2 ∈ L(V).

Definition 2.1.3. (Densely Defined) An operator T ∈ L(V1, V2) is called densely defined
if its domain D(T) is dense in V1.

The operators of interest are mostly densely defined.

Definition 2.1.4. (Extension) For two operators T1, T2 ∈ L(V1, V2), T2 is called an exten-
sion of T1 if D(T1) ⊆ D(T2) and T2|D(T1) = T1, and we write T1 ⊆ T2.

Definition 2.1.5. (Closed, Closable) An operator T ∈ L(V1, V2) is called closed if its
graph Γ(T) is closed in the product topology.

If an operator T has a closed extension, then it is called closable. Its smallest closed
extension, as measured in the sense of extensions, is then called T’s closure and denoted
T.

Note if T is a closable operator, then simply Γ(T) =
⋂

T⊆T̃,T̃ is closed Γ(T̃).
A equivalent definition of closedness when dealing with Fréchet spaces is the fol-

lowing: For every sequence (ϕn)n∈N in D(T) where (ϕn)n∈N is convergent in V1 and
(Tϕn)n∈N is convergent in V2, then limn→∞ ϕn ∈ D(T) and T limn→∞ ϕn = limn→∞ Tϕn.
Moreover, if we are dealing with Banach spaces, then D(T) is the completion of D(T) in
the graph norm:

∥ · ∥D(T) : D(T) ∈ ϕ 7→ ∥ϕ∥V1 + ∥Tϕ∥V2

2.2 Adjoints

The next step is to define a conjugation for operators between Hilbert spaces.

Definition 2.2.1. (Adjoint Operator) For an densely defined operator T ∈ L(H1, H2)

between Hilbert spaces we define the adjoint operator as follows: On the set

D(T∗) = {ϕ ∈ H2|∃ψ ∈ H1 : ⟨ϕ, T(·)⟩H2 |D(T) = ⟨ψ, ·⟩H1 |D(T)}

define T∗ϕ ∈ H1 for ϕ ∈ D(T∗) by the unique vector such that

⟨ϕ, T(·)⟩H2 |D(T) = ⟨T∗ϕ, ·⟩H1 |D(T).
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The uniqueness of the vector T∗ϕ comes from the density of D(T) in H1 and Riesz’
representation. We also note the simple identity ker(T∗) = R(T)⊥ since for ϕ ∈ R(T)⊥

we have ⟨ϕ, T(·)⟩H2 |D(T) ≡ 0.

Lemma 2.2.2. The adjoint of any densely defined operator is closed.

Proof. Let T ∈ L(H1, H2) be densely defined. Suppose (ϕn)n∈N is a sequence in D(T∗)

such that (ϕn)n∈N converges in H2 and (T∗ϕn)n∈N converges in H1. Then for any ψ ∈
D(T)

⟨ϕn, Tψ⟩H2 = ⟨T∗ϕn, ψ⟩H1 ,

and passing to the limit

⟨ lim
n→∞

ϕn, Tψ⟩H2 = ⟨ lim
n→∞

T∗ϕn, ψ⟩H1 .

By definition limn→∞ ϕn ∈ D(T∗) and T∗ limn→∞ ϕn = limn→∞ T∗ϕn. ■

Proposition 2.2.3. An densely defined operator T ∈ L(H1, H2) between Hilbert spaces is clos-
able if and only if T∗ is densely defined. In the positive case T∗

= T∗ and T = T∗∗ hold.

Proof. If T∗ is densely defined, then T∗∗ exists and it is a closed extension of T, hence T
is closable.

Let us prove the converse. Suppose T is closable. Define the unitary operator
U : H1 × H2 ∋ (ϕ, ψ) 7→ (−ψ, ϕ). From the identity defining the adjoint we see that
for ϕ ∈ D(T) and ψ ∈ D(T∗)

0 = ⟨T∗ψ, ϕ⟩H1 − ⟨ψ, Tϕ⟩H2 = ⟨U∗(ψ, T∗ψ), (ϕ, Tϕ)⟩H1×H2 .

Thus Γ(T)⊥ = U∗Γ(T∗), so Γ(T) = (U∗Γ(T∗))⊥ = U∗Γ(T∗)⊥. Now assume that T∗

is not densely defined and find ϕ ∈ D(T∗)⊥ \ {0}. Then (ϕ, 0) ∈ Γ(T∗)⊥ = UΓ(T)
implying 0 = T0 = ϕ, a contradiction. Hence T∗ must be densely defined.

Lastly, we prove the two identities. From the above we get UΓ(T∗∗) = Γ(T∗)⊥ =

UΓ(T), showing that Γ(T∗∗) = Γ(T) and so T∗∗ = T. Then

T∗
= T∗∗∗ = (T∗)∗∗ = T∗ = T∗,

where we use that T∗ is closed. ■

Proposition 2.2.4. If an densely defined operator T ∈ L(H1, H2) between Hilbert spaces is
closed, injective, and has dense range, then T∗ and T−1 are both densely defined, closed, and
injective with dense range. Furthermore, (T∗)−1 = (T−1)∗ holds.

Proof. Clearly T−1 is densely defined, injective and has dense range. Also, if (ϕn)n∈N is
a sequence in D(T−1) where (ϕn)n∈N is convergent in H2 and (T−1ϕn)n∈N is convergent
in H1, then by T being closed, limn→∞ T−1ϕn ∈ D(T) and T limn→∞ T−1ϕn = limn→∞ ϕn,
showing that T−1 is closed.

From Lemma 2.2.2 and Proposition 2.2.3 we have that T∗ is densely defined and
closed. The dense range of T implies that T∗ is injective and using T∗∗ = T together
with T being injective gives that T∗ has dense range.

Let U be defined as in Proposition 2.2.3. Then

Γ((T−1)∗) = U∗Γ(T−1)⊥ = U∗(UΓ(−T))⊥ = Γ(−T)⊥ = U∗Γ(−T∗) = Γ((T∗)−1),

so (T∗)−1 = (T−1)∗. ■
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Chapter 2. Unbounded Operators, Self-adjointness, and Spectral Theory

2.2.1 Symmetric and Self-adjoint Operators

Of special interest are operators, which are partly or entirely equal to their adjoint.

Definition 2.2.5. (Symmetric) An densely defined operator T ∈ L(H) on a Hilbert space
is called symmetric if T ⊆ T∗.

For a symmetric operator T we define the lower bound of T by

m(T) = inf{⟨Tϕ, ϕ⟩H |ϕ ∈ D(T) ∩ ∂B1(0; H)}

and the upper bound by

M(T) = sup{⟨Tϕ, ϕ⟩H |ϕ ∈ D(T) ∩ ∂B1(0; H)}.

We call T lower bounded if m(T) > −∞ and analogously for upper bounded. If m(T) ≥
0 we call T non-negative, if m(T) > 0 we call T positive, and analogously for non-
positive and negative.

For two symmetric operators T1, T2 ∈ L(H) we write T1 ≤ T2 if D(T1) ⊆ D(T2) and
⟨T1ϕ, ϕ⟩H ≤ ⟨T2ϕ, ϕ⟩H for all ϕ ∈ D(T1).

Note that the above definition of bounds and comparison is well-defined, since
⟨Tϕ, ϕ⟩H ∈ R for all ϕ ∈ D(T) when T is symmetric. This fact gives the following
identity for T and z ∈ C:

∥(T − z)ϕ∥2
H = ∥(T − Re(z))ϕ∥2

H − i(Im(z)− Im(z))⟨ϕ, T − Re(z)ϕ⟩H + Im(z)2∥ϕ∥2
H

= ∥(T − Re(z))ϕ∥2
H + Im(z)2∥ϕ∥2

H
(2.2.1)

for all ϕ ∈ D(T).
From the definition we also see that symmetry of T implies that T∗∗ exists and so T

is closable.

Definition 2.2.6. (Self-adjoint) A densely defined operator T ∈ L(H) in a Hilbert space
is called self-adjoint if T = T∗.

A symmetric operator T ∈ L(H) is called essentially self-adjoint if T = T∗.

Self-adjointness implies T is already closed and symmetric, but the converse is false.
Let us give some equivalent statements.

Proposition 2.2.7. For a densely defined operator T ∈ L(H) the following is equivalent to T
being self-adjoint:

(i) T is closed, symmetric and ker(T∗ ± i) = {0}

(ii) T is symmetric and R(T ± i) = H

Proof. Suppose T is self-adjoint. Then closedness and symmetry follows as mentioned
above. Furthermore, if ker(T − a) ̸= {0} for some a ∈ C \ R, then there exist an eigen-
vector ϕ ∈ D(T) \ {0} for T and the eigenvalue a, so

a∥ϕ∥2
H = ⟨ϕ, Tϕ⟩H = ⟨Tϕ, ϕ⟩H = a∥ϕ∥2

H,

which is impossible. Hence ker(T − a) = {0} and this is especially true for a ∈ {±i}.
Thus the proof of self-adjointness implying (i) is done.
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Now suppose (i) holds. We prove that (ii) holds too by showing that R(T ± i) is
closed and dense in H. For definiteness we prove that R(T − i) is closed and dense,
where the same follows for R(T + i) by similar arguments. Let (ϕn)n∈N be a sequence
in H such that ((T − i)ϕn)n∈N converges towards ψ ∈ H. Them (2.2.1) implies

∥(T − i)ϕ∥2
H = ∥Tϕ∥2

H + ∥ϕ∥2
H

for all ϕ ∈ D(T), which shows that since ((T − i)ϕn)n∈N is a Cauchy sequence, then so
is (ϕn)n∈N. Hence (ϕn)n∈N has a limit ϕ in H. Now T is closed, hence

ψ = lim
n→∞

(T − i)ϕn = (T − i)ϕ ∈ R(T − i)

and R(T − i) is closed.
Assume then that R(T − i) is not dense. Then there exist ϕ ∈ R(T − i)⊥ \ {0}, which

means
0 = ⟨ϕ, (T − i)(·)⟩H |D(T) = ⟨0, ·⟩H |D(T).

Thus (T∗ + i)ϕ = (T − i)∗ϕ = 0 by definition of the adjoint, which is impossible by (i).
Hence R(T − i) is dense in H, and together with being closed we deduce R(T − i) = H.

Lastly we shall show that (ii) implies that T is self-adjoint by proving T∗ ⊆ T.
Suppose ϕ ∈ D(T∗). By R(T − i) = H there exists ψ ∈ D(T) such that (T − i)ψ =

(T∗ − i)ϕ, and then using symmetry of T we get (T∗ − i)(ψ − ϕ) = 0. But this implies
⟨ψ − ϕ, (T + i)(·)⟩H |D(T) = 0, which when added with R(T + i) = H implies ψ = ϕ.
Hence D(T∗) ⊆ D(T). This and T being symmetric shows T = T∗. ■

Similar conditions exists for essential self-adjointness.

Corollary 2.2.8. For a densely defined operator T ∈ L(H) the following is equivalent to T being
essentially self-adjoint:

(i) T is symmetric and ker(T∗ ± i) = {0}

(ii) T is symmetric and R(T ± i) are dense in H

Note that both results still hold if ±i is switched with a, a for a ∈ C \ R. We now
give an equivalent criteria for self-adjointness in case of positivity.

Proposition 2.2.9. A closed, positive operator T ∈ L(H) is self-adjoint if and only if ker(T∗) =

{0} or equivalently R(T) = H.

Proof. It is clear that ker(T∗) = {0} if T is self-adjoint since T is injective, so suppose
ker(T∗) = {0} and let us show that T is self-adjoint.

The first step is to show that R(T) is closed, which we do independent of the hy-
pothesis ker(T∗) = {0}. Since T is positive, we have for all ϕ ∈ D(T) that

m(T)∥ϕ∥2
H ≤ ⟨Tϕ, ϕ⟩H ≤ ∥Tϕ∥H∥ϕ∥H

implying
∥Tϕ∥H ≥ m(T)∥ϕ∥H.

Thus if (ψn)n∈N is a sequence in R(T) converging in H, then the sequence (ϕn)n∈N in
D(T) satisfying ψn = Tϕn for all n ∈ N is a Cauchy sequence, hence convergent in H.
By T being closed, this implies that

lim
n→∞

ψn = T lim
n→∞

ϕn ∈ R(T),

9
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and thus the range of T is closed.
Now the identity ker(T∗) = R(T)⊥ together with R(T) being closed implies ker(T∗)⊥

= R(T). Hence for T closed and positive, ker(T∗) = {0} is equivalent to R(T) = H.
Let us return to the goal of showing that T is self-adjoint. For ϕ ∈ D(T∗) there exists

ψ ∈ D(T) such that T∗ϕ = Tψ. Then

⟨ψ, T(·)⟩H |D(T) = ⟨Tψ, ·⟩H |D(T) = ⟨T∗ϕ, ·⟩H |D(T) = ⟨ϕ, T(·)⟩H |D(T)

and by R(T) = H we conclude ψ − ϕ ∈ H⊥ or equivalently ψ = ϕ. Hence T∗ ⊆ T and
so T is self-adjoint. ■

2.2.2 Relatively Bounded Perturbations

A common situation is having an operator with good qualities and then adding a per-
turbation. We will show an example of when self-adjointness is preserved.

Definition 2.2.10. (Relatively Bounded) For two densely defined operators T1, T2 ∈
L(H) in a Hilbert space if D(T1) ⊆ D(T2) and there exists a, b ≥ 0 such that

∥T2ϕ∥H ≤ a∥T1ϕ∥H + b∥ϕ∥H

holds for all ϕ ∈ D(T1), then T2 is called T1-bounded. If T2 is called T1-bounded, then
we call

a(T1, T2) = inf{a ≥ 0|∃b : ∥T2(·)∥H |D(T1) ≤ a∥T1(·)∥H |D(T1) + b∥ · ∥H |D(T1)}

the relative T1-bound of T2.

Note, when T1, T2 ∈ L(H) are densely defined and closable, if T2 is T1-bounded,
then T2 is T1-bounded.

Theorem 2.2.11. (Kato-Rellich Theorem) If T1, T2 ∈ L(H) with T1 self-adjoint and T2 symmet-
ric, then T2 being T1-bounded with a(T1, T2) < 1 implies that T1 + T2 is self-adjoint.

Additionally, if V ⊆ D(T1) is a vector space and T1|V is essentially self-adjoint, then T1|V +

T2 is essentially self-adjoint.

Proof. Let a, b ≥ 0 be constants satisfying the relative boundedness condition for T1 and
T2 with a < 1. Note T1 + T2 is densely defined and symmetric, thus by Proposition 2.2.7
we only need to prove that R(T1 + T2 ± ci) = H for some c > 0.

Fixing c > 0 for now, we see

∥(T1 − ic)ϕ∥2
H = ∥T1ϕ∥2

H + c2∥ϕ∥2
H

for all ϕ ∈ D(T1) using (2.2.1). Proposition 2.2.7 shows that (T1 − ic)−1 : H → D(T1)

exists and the above shows that ∥(T1 − ic)−1∥B(H) ≤ 1
c and ∥T1(T1 − ic)−1∥B(H) ≤ 1.

Using that T2 is T1-bounded, we get

∥T2(T1 − ic)−1ϕ∥H ≤ a∥T1(T1 − ic)−1ϕ∥H + b∥(T1 − ic)−1ϕ∥H ≤
(

a +
b
c

)
∥ϕ∥H

for all ϕ ∈ H, hence if c > b
1−a , then T2(T1 − ic)−1 has operator norm less than one.

This means that 1 + T2(T1 − ic)−1 is bijective with bounded inverse, seen through using
a Neumann series. But then since R(T1 − ic) = H we have

H = R((1 + T2(T1 − ic)−1)(T1 − ic)) = R(T1 + T2 − ic).

10
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Proving R(T1 + T2 + ic) = H for c > b
1−a follows along the same lines.

Considering the last part, we know that T1|V + T2 has a self-adjoint extension T1 + T2.
Since T2 is T1-bounded, the completion of Γ(T1|V + T2) and Γ(T1|V) leads to the same
domain for the closure, i.e. D(T1|V + T2) = D(T1|V) = D(T1), implying T1|V + T2 =

T1 + T2. ■

2.3 Variational Operators

Variational operators make up an important class of operators, and some of the opera-
tors we deal with will partly be of this class.

Definition 2.3.1. (Variational Operator) Let V be an inner product space and H a Hilbert
space such that V ↪→ H continuously, densely, and algebraically, and let s be a sesquilin-
ear form on V.

Associated with (V, s) we define the variational operator as follows: On the set

D(T) = {ϕ ∈ V|∃ψ ∈ H : s(ϕ, ·) = ⟨ψ, ·⟩H |V}

define Tϕ ∈ H for ϕ ∈ D(T) by the unique vector such that

s(ϕ, ·) = ⟨Tϕ, ·⟩H |V .

Remark! 2.3.2. Note the adjoint operator of some densely defined operator T ∈ L(H)

is a variational operator associated with (D(T), s), where

s : D(T)× D(T) ∋ (ϕ, ψ) 7→ ⟨ϕ, Tψ⟩H.

The Lax-Milgram Theorem is important when discussing variational operators. Es-
sentially, when s is bounded and elliptic, and V = H, then the variational operator is a
homeomorphism of H, see [14, Lemma 12.15].

Theorem 2.3.3. Let V, H be Hilbert spaces such that V ↪→ H continuously, densely, and
algebraically, let s be an elliptic and bounded sesquilinear form on V, and let T be the variational
operator associated with (V, s). Then T is closed, bijective onto H with bounded inverse, and
D(T) is dense in both V and H.

Furthermore, the variational operator associated with (V, s∗) is the adjoint of T.

Proof. The operator T being closed essentially follows from the boundedness of s, V ↪→
H continuously, and the arguments of Lemma 2.2.2.

Now on to bijectivity. Let T̃ ∈ B(V) be the homeomorphism of V associated with s
from the Lax-Milgram Theorem. Since V ↪→ H continuously, densely, and algebraically,
the injection ι : H∗ ↪→ V∗ exists, and it is also continuous and linear, with dense range.
Thus for each ϕ ∈ H we have

⟨ϕ, ·⟩H |V = ⟨ιϕ, ·⟩V = s(T̃−1ιϕ, ·),

and we conclude TT̃−1ιϕ = ϕ, so T is surjective onto H. Also for ϕ ∈ D(T) we have

s(ϕ, ·) = ⟨Tϕ, ·⟩H |V = ⟨ιTϕ, ·⟩V = s(T̃−1ιTϕ, ·),

implying by ellipticity of s that ϕ = T̃−1ιTϕ. Hence T−1 = T̃−1ι, which is a bounded
map.

11
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We move on to proving the density of D(T) in H and V. Suppose D(T) is not dense
in H or equivalently that there exists ϕ ∈ H \ {0} orthogonal to D(T) in H. Then for
every ψ ∈ D(T)

0 = ⟨ϕ, ψ⟩H = ⟨TT−1ϕ, ψ⟩H = s(T−1ϕ, ψ).

Choosing ψ = T−1ϕ we get by ellipticity of s that ϕ = TT−1ϕ = T0 = 0, a contradiction.
Next assume that there exists ϕ ∈ V \ {0} orthogonal to D(T) in V. Then for every

ψ ∈ D(T)

0 = ⟨ψ, ϕ⟩V = ⟨T̃ψ, (T̃∗)−1ϕ⟩V = s(ψ, (T̃∗)−1ϕ) = ⟨Tψ, (T̃∗)−1ϕ⟩H,

and since R(T) = H, then ϕ = T̃∗(T̃∗)−1ϕ = 0, a contradiction.
Last statement to prove is that T∗ is the variational operator associated with (V, s∗),

which we denote by S. Suppose ϕ ∈ D(S). Then for all ψ ∈ D(T) we have

⟨Sϕ, ψ⟩H = s∗(ϕ, ψ) = s(ψ, ϕ) = ⟨Tψ, ϕ⟩H = ⟨ϕ, Tψ⟩H.

This implies that ϕ ∈ D(T∗) and T∗ϕ = Sϕ. Thus T∗ is an extension of S.
Now suppose ϕ ∈ D(T∗). Then the same calculation as before shows

⟨T∗ϕ, ψ⟩H = s∗(ϕ, ψ),

hence ϕ ∈ D(S) and Sϕ = T∗ϕ. They are extensions of each other hence equal. ■

Corollary 2.3.4. Under the hypothesis of Theorem 2.3.3 except replacing ellipticity of s with
∥ · ∥H-coercivity, then T is closed, D(T) is dense in both V and H, and the variational operator
associated with (V, s∗) is the adjoint of T.

Proof. The ∥ · ∥H-coercivity of s implies that there exists a, b > 0 such that

Re s(ϕ, ϕ) + a∥ϕ∥H ≥ b∥ϕ∥V ,

which means that s̃ := s + a⟨·, ·⟩H is elliptic and (V, s̃) satisfies the hypothesis in Theo-
rem 2.3.3. Thus the variational operator T̃ for (V, s̃) is closed with domain dense in V
and H. Since D(T̃) = D(T) and T = T̃ − a, we see that T is likewise closed with domain
dense in V and H.

The same procedure with the same constants works for s∗ and from Theorem 2.3.3 we
get that T∗ = (T̃ − a)∗ = T̃∗ − a is the variational operator associated with (V, s∗). ■

Corollary 2.3.5. Under the hypothesis of Corollary 2.3.4, if s is Hermitian, then T is self-adjoint.

Proof. The additional assumption that s = s∗ implies T = T∗ since T and its adjoint T∗

are both the variational operator associated with (V, s). ■

2.3.1 Friedrich’s Extension

Friedrich’s extension is a means of extending a symmetric operator which is lower or
upper bounded.

Theorem 2.3.6. (Friedrich’s Extension) Every symmetric and lower bounded operator defined
on a Hilbert space has a self-adjoint extension satisfying the same lower bound. An analogous
statement holds for upper bounded operators.

12
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Proof. We reduce the theorem to the case of positive operators: If T is upper bounded,
then we consider the operator −T − m(−T) + 1, and if T is lower bounded, we consider
the operator T − m(T) + 1.

So let T ∈ L(H) be a positive operator. Define the sesquilinear form

s : D(T)× D(T) ∋ (ϕ, ψ) 7→ ⟨Tϕ, ψ⟩H + ⟨ϕ, ψ⟩H.

This is an inner product on D(T), inducing the graph norm of T, and we denote the
completion of D(T) in s by V and the extension of s to V by s again. When D(T) is
equipped with s, then D(T) ↪→ H continuously, so it extends to a bounded linear map
ι : V → H. If this map is injective, then V ↪→ H continuously, densely, and algebraically.
Suppose it is not, i.e. there exists ϕ ∈ V \ {0} for which ιϕ = 0. We then have a sequence
(ϕn)n∈N in D(T) such that ϕn

n→∞→ ϕ in V and ϕn
n→∞→ 0 in H. Then

s(ψ, ϕ) = lim
n→∞

s(ψ, ϕn) = lim
n→∞

⟨Tψ, ϕn⟩H + ⟨ψ, ϕn⟩H = 0

for all ψ ∈ D(T). Since D(T) is dense in V, this implies ϕ = 0, a contradiction. Thus ι is
injective and we can identify V with a subspace of H.

By Corollary 2.3.5, the variational operator T̃ associated with (V, s − ⟨·, ·⟩H) is self-
adjoint. It also satisfies

⟨T̃ϕ, ϕ⟩H = s(ϕ, ϕ)− ⟨ϕ, ϕ⟩H ≥ m(T)∥ϕ∥2
H

for all ϕ ∈ D(T̃), so it is positive with lower bound at least m(T). The fact that T ⊆ T̃
also holds leaves us to conclude m(T̃) = m(T). ■

Friedrich’s extension leads to a simple sufficient condition for essential self-adjointness,
building upon Proposition 2.2.9.

Corollary 2.3.7. A positive operator T ∈ L(H) is essentially self-adjoint if and only if ker(T∗) =

{0}.

Proof. By Friedrich’s Extension 2.3.6, T is necessarily positive. Since T∗
= T∗ the rest of

the corollary follows from Proposition 2.2.9. ■

2.4 Spectral Theory

Here we focus on the ever so interesting and useful concepts such as spectrum, resolvent,
and functional calculus.

Definition 2.4.1. (Resolvent Set, Spectrum) For an operator T ∈ L(V) we call

ρ(T) = {z ∈ C| ker(T − z) = {0}, R(T − z) = V}

the resolvent set of T and the complement σ(T) = C \ ρ(T) the spectrum of T. The set
of eigenvalues we call the point spectrum of T and denote by σp(T).

In addition, we call
ρ(T) ∋ z 7→ (T − z)−1 ∈ L(V)

the resolvent of T.

13
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The resolvent might not seem like much at first glance, but it has nice properties.
E.g. For a closed operator T ∈ L(V) and z ∈ ρ(T), the operator (T − z)−1 is defined
on entirety of V and has a closed graph. Thus if V is a Fréchet space, then by the
Closed Graph Theorem (T − z)−1 ∈ B(V). To find out more, we have to utilize complex
analysis.

Theorem 2.4.2. When T ∈ L(B), B a Banach space, is closed and densely defined, then ρ(T) is
open and the resolvent is a B(B)-valued holomorphic function.

Proof. Let w ∈ ρ(T) be given. Then for every z ∈ B∥(T−w)−1∥B(B)
(w; C), the power series

Sz =
∞

∑
n=0

(z − w)n(T − w)−n−1

converges absolutely, hence Sz ∈ B(B). For such a z we want to confirm that Sz is an
inverse to T − z. By a short computation

Sz(T − z) =
∞

∑
n=0

(z − w)n(T − w)−n−1(T − w + w − z)

=
∞

∑
n=0

(z − w)n(T − w)−nidD(T) −
∞

∑
n=0

(z − w)n+1(T − w)−n−1idD(T)

= idD(T)

and similarly, since R(Sz) ⊆ D(T),

(T − z)Sz = (T − w + w − z)
∞

∑
n=0

(z − w)n(T − w)−n−1

=
∞

∑
n=0

(z − w)n(T − w)−n −
∞

∑
n=0

(z − w)n+1(T − w)−n−1

= id.

This shows both ker(T − z) = {0} and R(T − z) = B, so z ∈ ρ(T) and we conclude
that ρ(T) is open. Also (T − z)−1 = Sz for z ∈ B∥(T−w)−1∥B(B)

(w; C), thus the resolvent is
locally expandable into a power series. ■

Theorem 2.4.3. For T ∈ B(B), B a Banach space, then σ(T) is non-empty and contained in
B∥T∥B(B)

(0; C). Moreover,

sup
λ∈σ(T)

|λ| = lim
n→∞

∥Tn∥
1
n
B(B).

Proof. Suppose z /∈ B∥T∥B(B)
(0; C). Then writing T − z = z(z−1T − id) and expanding

z−1T − id in a Neumann series, we see that z ∈ ρ(T).
If σ(T) = ∅, then the resolvent of T is an entire function by Theorem 2.4.2. From

the first paragraph one also gets (T − z)−1 = z−1(z−1T − id)−1 for z ∈ C \ {0}, whence

∥(T − z)−1∥B(B)
|z|→∞→ 0. Thus Liouville’s Theorem tells us that the resolvent of T is

constant, which together with the limit tells us that the resolvent is zero everywhere, an
impossibility. In conclusion σ(T) ̸= ∅.
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For the limit result we get a bit creative. Defining S : {0} ∪ {z−1|z ∈ ρ(T) \ {0}} →
B(B) by S(0) = 0 and otherwise S(z) = (T − z−1)−1 we get a holomorphic function. In
fact for z ∈ B∥T∥B(B)

(0; C):

S(z) = −z
∞

∑
n=0

(zT)n

The inverse of the radius of convergence for this power series is both lim supn→∞ ∥Tn∥
1
n
B(B)

and infz∈D(S)c |z| = supλ∈σ(T) |λ|, so

sup
λ∈σ(T)

|λ| = lim sup
n→∞

∥Tn∥
1
n
B(B).

Now, z ∈ σ(T) implies zn ∈ σ(Tn) and by that has been proven we must have

|z|n ≤ ∥Tn∥B(B). Hence |z| ≤ lim infn→∞ ∥Tn∥
1
n
B(B), so taking the supremum one gets:

sup
z∈σ(T)

|z| ≤ lim inf
n→∞

∥Tn∥
1
n
B(B),

giving us the desired conclusion. ■

The following identities are called the resolvent identities. The one stated in the
lemma is called the second, while the one after is called the first.

Lemma 2.4.4. If T1, T2 ∈ L(V) have the same domain and z ∈ ρ(T1) ∩ ρ(T2), then

(T1 − z)−1 − (T2 − z)−1 = (T1 − z)−1(T2 − T1)(T2 − z)−1.

Proof. Since D(T1) = D(T2) it holds that

T1 − z = T2 − z − (T2 − T1),

so
idD(T1) = (T1 − z)−1(T2 − z − (T2 − T1))

and

(T2 − z)−1 = (T1 − z)−1(id − (T2 − T1)(T2 − z)−1)

= (T1 − z)−1 − (T1 − z)−1(T2 − T1)(T2 − z)−1. ■

The difficulty of the proof lies in checking the domains of different compositions and
additions of the operators in the above calculation commute in the sense of distributive
laws. Here it was enough that the operators in question had equal domain.

For T ∈ L(V) and z, w ∈ ρ(T) the first resolvent identity follows from the first by
choosing T1 := T and T2 := T + z − w resulting in

(T − z)−1 − (T − w)−1 = (T − z)−1(z − w)(T − w)−1.

Remark! 2.4.5. Note that for a self-adjoint operator T on a Hilbert space H, C \ R ⊆
ρ(T). Also in the case of a self-adjoint operator T we have for z ∈ C \ R that

∥(T − z)ϕ∥2
H = ∥(T − Re(z))ϕ∥2

H + Im(z)2∥ϕ∥2
H

for all ϕ ∈ D(T), as noted before in (2.2.1), so

∥(T − z)−1∥B(H) ≤ | Im(z)|−1.

A sharper estimate is presented later in Corollary 2.4.24.
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2.4.1 Resolution of the Identity

The spectral theorems covered in this report will be in the form of a resolution of the
identity, and we will therefore introduce them here.

Definition 2.4.6. (Resolution of the Identity) A family of orthogonal projections (Eλ)λ∈R

on a Hilbert space H is called a resolution of the identity if it is non-decreasing, strongly
right-continuous,

Eλ
λ→−∞→ 0

and
Eλ

λ→∞→ id

both being strong limits.
We say that a resolution of the identity (Eλ)λ∈R is bounded if there exists µ, ν ∈ R

such that Eµ = 0 and Eν = id.

For a resolution of the identity (Eλ)λ∈R and a measurable function f : R → C, we
want to ascribe an operator to the symbol

∫
R

f (λ)dEλ, meant as the limit of Stieltjes-type
sums in concept.

Let us first consider f equal to a simple function of the type ∑N
n=0 cn1(an,bn], where

the intervals are disjoint. Then for each ϕ ∈ H it would be natural to define

∫
R

f (λ)dEλϕ :=
N

∑
n=0

cn(Ebn − Ean)ϕ

and then it would follow that∥∥∥∥∫
R

f (λ)dEλϕ

∥∥∥∥2

H
=

N

∑
n=0

cncn⟨(Ebn − Ean)ϕ, (Ebn − Ean)ϕ⟩H =
∫

R
| f (λ)|2d∥Eλϕ∥2

H, (2.4.1)

where the integral is taken in the Stieltjes-Lebesgue sense with Stieltjes-Lebesgue mea-
sure induced by the non-decreasing, right-continuous function R ∋ λ 7→ ∥Eλϕ∥2

H.
Now functions of the above type are dense in L2(R, d∥E·ϕ∥2

H) for every ϕ ∈ H. So
if f ∈ L2(R, d∥E·ϕ∥2

H) for some ϕ ∈ H, then
∫

R
f (λ)dEλϕ could be defined as the limit

limn→∞
∫

R
fn(λ)dEλϕ in H, where ( fn)n∈N is an arbitrary sequence of simple functions

of the above type converging towards f in L2(R, d∥E·ϕ∥2
H). This limit is exists and is

independent of choice of sequence by (2.4.1).
Henceforth we denote by BM(R) the complex-valued Borel measurable functions

and S(R) the simple functions on left-open, right-closed intervals.

Definition 2.4.7. For a resolution of the identity (Eλ)λ∈R and f ∈ BM(R) we define the
set

D
(∫

R
f (λ)dEλ

)
=

{
ϕ ∈ H|

∫
R
| f (λ)|2d∥Eλϕ∥2

H

}
and on it the operator

∫
R

f (λ)dEλ by the following procedure: For each ϕ ∈ D
(∫

R
f (λ)dEλ

)
find any arbitrary sequence ( fn)n∈N in S(R) converging toward f in L2(R, d∥E·ϕ∥2

H) and
then define ∫

R
f (λ)dEλϕ = lim

n→∞

∫
R

fn(λ)dEλϕ

with convergence in H-norm.
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Remark! 2.4.8. From our definition of integration w.r.t. (Eλ)λ∈R it follows that the
extremities of (2.4.1) holds for all f ∈ BM(R) and ϕ ∈ D

(∫
R

f (λ)dEλ

)
.

It is now on us to prove that this definition gives reasonable results: Firstly, for every

µ ∈ R we have by dominated convergence that 1(λ,µ]
λ→−∞→ 1(−∞,µ] in L2(R, d∥E·ϕ∥2

H),
ϕ ∈ H. Thus ∫

R
1(−∞,µ](λ)dEλϕ = lim

λ→−∞
(Eµ − Eλ)ϕ = Eµϕ,

where Eλ
λ→−∞→ 0 strongly by definition. Furthermore, again by dominated convergence

1(−λ,λ]
λ→∞→ 1R in L2(R, d∥E·ϕ∥2

H) for each ϕ ∈ H, showing that∫
R

1R(λ)dEλϕ = lim
λ→−∞

(Eλ − E−λ)ϕ = ϕ,

using again Eλ
λ→−∞→ 0 and also Eλ

λ→∞→ id strongly.
Now onto a more general result.

Proposition 2.4.9. Let (Eλ)λ∈R be a resolution of the identity. For every f ∈ BM(R) the
operator

∫
R

f (λ)dEλ is densely defined and closed. Moreover, for f , g ∈ BM(R) and a ∈
C \ {0}

(i)
(∫

R
f (λ)dEλ

)∗
=
∫

R
f (λ)dEλ

(ii) a
∫

R
f (λ)dEλ =

∫
R

a f (λ)dEλ

(iii)
∫

R
f (λ)dEλ +

∫
R

g(λ)dEλ ⊆
∫

R
( f + g)(λ)dEλ

(iv)
∫

R
f (λ)dEλ

∫
R

g(λ)dEλ ⊆
∫

R
( f g)(λ)dEλ

Proof. The space S(R) is mapped into the space of projections and the algebraic proper-
ties listed above holds for f , g ∈ S(R), which one checks by straightforward calculation.

Next step is looking at f , g ∈ L∞(R). Then quite clearly∫
R
| f (λ)|2d∥Eλϕ∥2

H ≤ ∥ f ∥2
L∞(R)∥ϕ∥2

H < ∞

for all ϕ ∈ H, which shows that
∫

R
f (λ)dEλ is everywhere defined and together with

(2.4.1) that
∫

R
f (λ)dEλ is bounded with bound less than or equal to ∥ f ∥L∞(R). Similarly

for g. The rest of the properties are checked by choosing an approximating sequence
from S(R) at every point.

Let ϕ, ψ ∈ H be given and let ( fn)n∈N and (gn)n∈N be a sequence in S(R) converging
to respectively f and g in L2(R, d∥E·ϕ∥2

H) ∩ L2(R, d∥E·ψ∥2
H). Then (a fn + gn)n∈N is in

S(R) and converges to a f + g in L2(R, d∥E·ϕ∥2
H)∩ L2(R, d∥E·ψ∥2

H), and linearity follows∫
R
(a f + g)(λ)dEλϕ = lim

n→∞

∫
R
(a fn + gn)(λ)dEλϕ

= a lim
n→∞

∫
R

fn(λ)dEλϕ + lim
n→∞

∫
R

gn(λ)dEλϕ

= a
∫

R
f (λ)dEλϕ +

∫
R

g(λ)dEλϕ.
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For adjoints we again compute〈∫
R

f (λ)dEλϕ, ψ

〉
H
= lim

n→∞

〈∫
R

fn(λ)dEλϕ, ψ

〉
H
= lim

n→∞

〈
ϕ,
∫

R
fn(λ)dEλψ

〉
H

=

〈
ϕ,
∫

R
f (λ)dEλψ

〉
H

,

and from this we get a proof of multiplicativity on L∞(R):〈∫
R

f (λ)dEλ

∫
R

g(λ)dEλϕ, ψ

〉
H
=

〈∫
R

g(λ)dEλϕ,
∫

R
f (λ)dEλψ

〉
H

= lim
n→∞

〈∫
R

gn(λ)dEλϕ,
∫

R
fn(λ)dEλψ

〉
H

= lim
n→∞

〈∫
R
( fngn)(λ)dEλϕ, ψ

〉
H

=

〈∫
R
( f g)(λ)dEλϕ, ψ

〉
H

.

Fix f ∈ BM(R). Consider Pn :=
∫

R
1| f |−1([n−1,n))(λ)dEλ for some n ∈ N. Clearly

1| f |−1([n−1,n)) ∈ L∞(R) and by the above properties Pn is an orthogonal projection. Sup-
pose ϕ ∈ R(Pn). Then

∥ϕ∥2
H = ∥Pnϕ∥2

H =
∫
| f |−1([n−1,n))

d∥Eλϕ∥2
H,

which implies that f ∈ L∞(R, d∥Eλϕ∥2
H) with norm less than or equal to n. Thus ϕ ∈

D
(∫

R
f (λ)dEλ

)
. Since n was chosen arbitrarily,

∫
R

f (λ)dEλ is defined on each of the
space R(Pn), n ∈ N. Actually

∫
R

f (λ)dEλ invariates each of these spaces and it is
bounded with bound less than or equal to n. Let ϕ ∈ R(Pn), n ∈ N, and choose a
sequence ( fm)m∈N in S(R) converging to f in L2(R, d∥E·ϕ∥2

H). Then

Pn

∫
R

f (λ)dEλϕ = Pn lim
m→∞

∫
R

fm(λ)dEλϕ = lim
m→∞

Pn

∫
R

fm(λ)dEλϕ

= lim
m→∞

∫
R

fm(λ)dEλPnϕ =
∫

R
f (λ)dEλϕ.

The bound on
∫

R
f (λ)dEλ|R(Pn) follows from f ∈ L∞(R, d∥E·ϕ∥2

H), ϕ ∈ R(Pn), with norm
less than or equal to n as deduced earlier. These orthogonal projection (Pn)n∈N are pair-
wise orthogonal by our functional calculus on L∞(R), and by dominated convergence∥∥∥∥∫

R
1| f |−1([0,n))(λ)dEλϕ − ϕ

∥∥∥∥2

H
=
∫
| f |−1([n,∞))

d∥Eλϕ∥2
H

n→∞→ 0

for every ϕ ∈ H, and this has the implication that

∞

∑
n=1

Pn =
∞

∑
n=1

∫
R

1| f |−1([n−1,n))(λ)dEλ = id

with strong convergence. Combining these results we are able to show that D
(∫

R
f (λ)dEλ

)
is dense in H: For ϕ ∈ H, ϕ = ∑∞

n=1 Pnϕ in norm and each finite truncation of the sum
is in D

(∫
R

f (λ)dEλ

)
.

18
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To prove that
∫

R
f (λ)dEλ is closed, let (ϕn)n∈N be a sequence in H with limit ϕ and

such that (
∫

R
f (λ)dEλϕn)n∈N has limit ψ. Then

Pmψ = lim
n→∞

Pm

∫
R

f (λ)dEλϕn = lim
n→∞

∫
R

f (λ)dEλPmϕn =
∫

R
f (λ)dEλPmϕ

and monotone convergence of measures gives∫
R
| f (λ)|2d∥Eλϕ∥2

H =
∞

∑
m=1

∫
R
| f (λ)|2d∥EλPmϕ∥2

H =
∞

∑
m=1

∥∥∥∥∫
R

f (λ)dEλPmϕ

∥∥∥∥2

H

=
∞

∑
m=1

∥Pmψ∥2
H = ∥ψ∥2

H < ∞.

Thus ϕ ∈ D
(∫

R
f (λ)dEλ

)
. Furthermore,∫

R
f (λ)dEλϕ =

∞

∑
m=1

Pm

∫
R

f (λ)dEλϕ =
∞

∑
m=1

∫
R

f (λ)dEλPmϕ =
∞

∑
m=1

Pmψ = ψ.

Hence
∫

R
f (λ)dEλ is closed.

The algebraic properties now follow for BM(R) functions as they did for L∞(R)

functions, except we only get
∫

R
f (λ)dEλ ⊆

(∫
R

f (λ)dEλ

)∗. Again fix f ∈ BM(R) and

define the projections (Pn)n∈N as above. Suppose ϕ ∈ D
((∫

R
f (λ)dEλ

)∗). Then〈
ψ, Pn

(∫
R

f (λ)dEλ

)∗
ϕ

〉
H
=

〈∫
R

f (λ)dEλψ, Pnϕ

〉
H
=

〈
ψ,
∫

R
f (λ)dEλPnϕ

〉
H

for all ψ ∈ R(Pn). Thus Pn
(∫

R
f (λ)dEλ

)∗
ϕ =

∫
R

f (λ)dEλPnϕ. Now reusing arguments
from the last paragraph let us conclude that:∫

R
f (λ)dEλ ⊆

(∫
R

f (λ)dEλ

)∗
■

In the above proof we showed that for f ∈ L∞(R) we had
∫

R
f (λ)dEλ ∈ B(H) with

norm less than or equal to ∥ f ∥L∞(R). This is not necessarily the maximal set of functions
mapped into bounded operators by our integral, we will instead need to analyse func-
tions essentially bounded w.r.t. (Eλ)λ∈R, meaning functions in

⋂
ϕ∈H L∞(R, d∥E·ϕ∥2

H)

with norms uniformly bounded. Here the idea is that if Ω ⊆ R is a Borel measurable
set and

∫
R

1Ω(λ)dEλ = 0, then it implies that Ω is a null set for each of the measures
d∥E·ϕ∥2

H.

Definition 2.4.10. For a resolution of the identity (Eλ)λ∈R and we call a Borel measurable
set Ω ⊆ R a (Eλ)λ∈R-null set if ∫

R
1Ω(λ)dEλ = 0.

We say Θ ⊆ R (Eλ)λ∈R-almost everywhere if R \ Θ is a subset of a (Eλ)λ∈R-null set.
A function f ∈ BM(R) is called essentially bounded w.r.t. (Eλ)λ∈R if

inf
{

a ∈ [0, ∞)|| f |−1((a, ∞)) is a (Eλ)λ∈R-null set
}
< ∞.

The space of functions essentially bounded w.r.t. (Eλ)λ∈R will be denoted by L∞(R, E)
and for f ∈ L∞(R, E) the above infimum is denoted by ∥ f ∥L∞(R,E).
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Note L∞(R) ↪→ L∞(R, E) continuously.

Lemma 2.4.11. For a resolution of the identity (Eλ)λ∈R we have f ∈ L∞(R, E) if and only if
f ∈ ⋂ϕ∈H L∞(R, d∥E·ϕ∥2

H) and

sup{∥ f ∥L∞(R,d∥E·ϕ∥2
H)
|ϕ ∈ H} < ∞.

In the positive case, ∥ f ∥L∞(R,E) equals the above supremum.

Proof. If
∫

R
1| f |−1((a,∞))(λ)dEλ = 0 holds for some f ∈ BM(R) and a ∈ [0, ∞), then it

implies that | f |−1((a, ∞)) is a null set for each of the measures d∥E·ϕ∥2
H and hence

sup{∥ f ∥L∞(R,d∥E·ϕ∥2
H)
|ϕ ∈ H} ≤ a.

This shows that f ∈ L∞(R, E) implies f ∈ ⋂ϕ∈H L∞(R, d∥E·ϕ∥2
H) and

sup{∥ f ∥L∞(R,d∥E·ϕ∥2
H)
|ϕ ∈ H} ≤ ∥ f ∥L∞(R,E).

Conversely, if f ∈ ⋂ϕ∈H L∞(R, d∥E·ϕ∥2
H) and

a := sup{∥ f ∥L∞(R,d∥E·ϕ∥2
H)
|ϕ ∈ H} < ∞,

then necessarily ∫
R

1| f |−1((a,∞))(λ)dEλ = 0

by (2.4.1).
We know sup{∥ f ∥L∞(R,d∥E·ϕ∥2

H)
|ϕ ∈ H} ≤ ∥ f ∥L∞(R,E) for every f ∈ L∞(R, E), so

assume the inequality is strict for some f . Then there would exists an a ∈ [0, ∞) strictly
between sup{∥ f ∥L∞(R,d∥E·ϕ∥2

H)
|ϕ ∈ H} and ∥ f ∥L∞(R,E) such that | f |−1((a, ∞)) is a null set

for each of the measures d∥E·ϕ∥2
H. Hence by (2.4.1) we must have∫
R

1| f |−1((a,∞))(λ)dEλ = 0,

a contradiction. ■

Proposition 2.4.12. For a resolution of the identity (Eλ)λ∈R the space L∞(R, E) is a C*-algebra
when L∞(R, E) is equipped with pointwise multiplication and conjugation, and the map

L∞(R, E) ∋ f 7→
∫

R
f (λ)dEλ

has image in B(H) and is a continuous *-algebra-homomorphism into B(H). Furthermore,∥∥∥∥∫
R

f (λ)dEλ

∥∥∥∥
B(H)

= ∥ f ∥L∞(R,E).

Proof. First we remark that the fact that L∞(R, E) is a C*-algebra follows directly from
Lemma 2.4.11. By our definition of L∞(R, E) and (2.4.1), for f ∈ L∞(R, E) we necessarily
have ∫

R
| f (λ)|2d∥Eλϕ∥2

H ≤ ∥ f ∥2
L∞(R,E)∥ϕ∥2

H,

which first implies D
(∫

R
f (λ)dEλ

)
= H and secondly that

∫
R

f (λ)dEλ ∈ B(H) with
norm less than or equal to ∥ f ∥L∞(R,E). Thirdly, we now also have that the map in
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question is continuous. Note this mimics the calculation for L∞(R) functions in the
proof of Proposition 2.4.9.

Now the algebraic properties of the map in the proposition simply follows from
Proposition 2.4.9 and the fact we only deal with bounded operators. The last identity
holds since ∫

R
dEλ = id

and both 1R and id have norm 1 in the respective spaces. ■

We also have a version of dominated convergence:

Lemma 2.4.13. Let (Eλ)λ∈R be a resolution of the identity. Suppose ( fn)n∈N is a sequence
in L∞(R, E) converging pointwise to f ∈ L∞(R, E) (Eλ)λ∈R-almost everywhere and being
uniformly bounded w.r.t. (Eλ)λ∈R. Then

∫
R

fn(λ)dEλ
n→∞→

∫
R

f (λ)dEλ strongly.

Proof. For each ϕ ∈ H we simply have that ( fn)n∈N converges to f in L2(R, d∥E·ϕ∥2
H) by

dominated convergence, hence∫
R

fn(λ)dEλϕ
n→∞→

∫
R

f (λ)dEλϕ

in norm by (2.4.1). ■

Remark! 2.4.14. We have given a strong pointwise definition of integral w.r.t. a resolu-
tion of the identity. There also exists a weak variational approach, one we state in this
remark.

Fix a resolution of the identity (Eλ)λ∈R. By first verifying the following for functions
in S(R) and then by approximation extending it to BM(R) we get〈∫

R
f (λ)dEλϕ, ψ

〉
H
=
∫

R
f (λ)d⟨Eλϕ, ψ⟩H (2.4.2)

for f ∈ BM(R) and ϕ, ψ ∈ D
(∫

R
f (λ)dEλ

)
. The right-hand side of (2.4.2) is well-defined

in that R ∋ λ 7→ ⟨Eλϕ, ψ⟩H is of bounded variation, as seen through the polarization
identity. Moreover, it defines a sesquilinear form s on V := D

(∫
R

f (λ)dEλ

)
. The op-

erator
∫

R
f (λ)dEλ is now easily seen to be the variational operator associated with the

space (V, s) by the identity (2.4.2).

2.4.2 Spectral Theorem for Bounded Self-adjoint Operators

It is time to prove the first spectral theorem, here for bounded self-adjoint operators.
First, we define the usual continuous functional calculus.

Theorem 2.4.15. (Continuous Functional Calculus) Let T ∈ B(H) be self-adjoint. There exists
a unique continuous C*-algebra-homomorphism T : C(σ(T)) → B(H) such that T 1 = id and
T idσ(T) = T. In addition ∥T ∥B(C(σ(T)),B(H)) = 1 and if f ∈ C(σ(T)) is non-negative, then
T f is non-negative.

Proof. Let P(R) denote the set of complex-valued polynomials on R and consider the
canonical *-algebra-homomorphism P(R) ∋ p 7→ p(T). This is the unique *-algebra-
homomorphism on P(R) into B(H) satisfying T 1 = id and T idσ(T) = T. Fix some p ∈
P(R). We will prove p(σ(T)) = σ(p(T)), and then secondly ∥p(T)∥B(H) = supλ∈σ(T) |p(λ)|.
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Let µ ∈ σ(T). Then p(λ)− p(µ) = (λ− µ)q(λ) for all λ ∈ R for some q ∈ P(R), thus
p(T)− p(µ) = (T − µ)q(T). Since T − µ has no inverse we conclude p(µ) ∈ σ(p(T))
and p(σ(T)) ⊆ σ(p(T)). Conversely, if µ ∈ σ(p(T)), then factoring p − µ into linear
factors we get p(T)− µ = a ∏

deg(p)
j=1 (T − µj) with a ̸= 0 and µi ∈ C for j = 1, . . . , deg(p).

If all of the factors T − µj are invertible, then p(T)− µ would be too, a contradiction.
Thus µj ∈ σ(T) for some j, meaning µ = p(µj) ∈ σ(p(T)), so p(σ(T)) = σ(p(T)). Now

∥p(T)∥2
B(H) = ∥p∗(T)p(T)∥B(H) = ∥(pp)(T)∥B(H).

Using that (pp)(T) is self-adjoint we know that ∥(pp)(T)2∥B(H) = ∥(pp)(T)∥2
B(H), whence

Theorem 2.4.3 leads us to

∥p(T)∥2
B(H) = sup

λ∈(pp)(σ(T))
|λ| = sup

λ∈σ(T)
|p(λ)|2.

Let us move on to the C*-algebra C(σ(T)). P(R) is dense in C(σ(T)), so the canonical
*-algebra-homomorphism P(R) ∋ p 7→ p(T) has a unique extension to a bounded
operator T : C(σ(T)) → B(H), also satisfying T 1 = id and T idσ(T) = T. Furthermore,

∥T f ∥B(H) = ∥ f ∥C(σ(T))

for all f ∈ C(σ(T)). Lastly, if f ∈ C(σ(T)) is non-negative, then T f = (T
√

f )2 is
non-negative. ■

We usually use the notation f (T) = T f for f ∈ C(σ(T)).

Corollary 2.4.16. Let T ∈ B(H) be self-adjoint. If ( fn)n∈N is a bounded sequence in C(σ(T))
converging pointwise to f ∈ C(σ(T)), then fn(T)

n→∞→ f (T) strongly.

Proof. Fix ϕ ∈ H. The map C(σ(T)) ∋ g 7→ ⟨g(T)ϕ, ϕ⟩H is a positive linear functional, so
from the Riesz–Markov–Kakutani Representation Theorem there exists a positive mea-
sure m such that

⟨g(T)ϕ, ϕ⟩H =
∫

σ(T)
gdm.

Hence

∥ fn(T)ϕ − f (T)ϕ∥2
H = ⟨| fn − f |2(T)ϕ, ϕ⟩H =

∫
σ(T)

| fn − f |2dm.

By dominated convergence we get
∫

σ(T) | fn − f |2dm n→∞→ 0, hence fn(T)ϕ
n→∞→ f (T)ϕ in

norm. ■

We are just about ready to construct a resolution of the identity, we will only be
needing one more lemma.

Lemma 2.4.17. Every bounded monotonic sequence of bounded self-adjoint operators has a limit
in norm.

Proof. Let (Tn)n∈N be a bounded monotonic sequence of bounded self-adjoint operators
on H. If (Tn)n∈N is non-increasing, then we consider (−Tn)n∈N instead, and further-
more if T1 is not non-negative, then we consider (Tn − m(T1))n∈N. Thus we reduce
the statement to that of a bounded non-decreasing sequence of bounded, non-negative
self-adjoint operators.
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Fix ϕ ∈ H. Now for m, n ∈ N, n < m, we have Tm − Tn ≥ 0 and hence

∥Tmϕ − Tnϕ∥2
H = ⟨(Tm − Tn)ϕ, (Tm − Tn)ϕ⟩H

≤ ⟨(Tm − Tn)ϕ, ϕ⟩H⟨(Tm − Tn)
2ϕ, (Tm − Tn)ϕ⟩H

≤ (⟨Tmϕ, ϕ⟩H − ⟨Tnϕ, ϕ⟩H)∥Tm − Tn∥3
B(H)∥ϕ∥2

H.

Here we used that H × H ∋ (ϕ, ψ) 7→ (Tϕ, ψ) is a semi-inner product whenever T is
everywhere defined and non-negative, and so the Cauchy-Schwartz inequality holds.
By hypothesis (⟨Tnϕ, ϕ⟩H)n∈N is a bounded non-decreasing sequence in R, hence it has
a limit. Since also (Tn)n∈N is bounded, then the above inequalities implies that (Tnϕ)n∈N

is a Cauchy sequence in H. Thus (Tn)n∈N has a strong limit and it is bounded, which
together implies that that (Tn)n∈N has a limit in norm. ■

Theorem 2.4.18. (Spectral Theorem for Bounded Self-adjoint Operators) For every bounded self-
adjoint operator T there exists a unique resolution of the identity (Eλ)λ∈R, which is bounded,
such that

T =
∫

R
λdEλ.

We call (Eλ)λ∈R the spectral resolution of T.

Proof. Let some µ ∈ R be given. Find a sequence ( fn)n∈N of real-valued functions in
BC(R) that decrease pointwise to 1(−∞,µ] on σ(T). Then fn(T) is defined for every
n ∈ N by the Continuous Functional Calculus 2.4.15 and ( fn(T))n∈N is a bounded
monotonic sequence of bounded self-adjoint operators. Thus ( fn(T))n∈N has a limit
in norm from Lemma 2.4.17 and we define the limit as Eµ. If (gn)n∈N is some other
sequence of real-valued functions in BC(R) that decrease pointwise to 1(−∞,µ] on on
σ(T), then (gn − fn)n∈N goes to zero pointwise on σ(T) and are bounded. Hence by
Corollary 2.4.16

lim
n→∞

gn(T) = lim
n→∞

fn(T) = Eµ.

Thus Eµ is independent of approximating sequence. Since ( f 2
n)n∈N satisfies this criteria,

we must have E2
µ = Eµ, hence Eµ is an orthogonal projection.

Thus we have created a family of orthogonal projections (Eλ)λ∈R. Let us show that
it is a resolution of the identity.

To show that it is non-decreasing, let ( fn)n∈N, (gn)n∈N be sequence in BC(R) as
above for µ, ν ∈ R respectively, where µ < ν. Then ( fngn)n∈N decreasing pointwise to
1(−∞,µ] on σ(T), so

Eµ = lim
n→∞

fn(T)gn(T) = EνEµ = EµEν.

By this we can conclude Eµ ≤ Eν.
Next we prove continuity from the right. Let µ ∈ R and construct a sequence of

real-valued functions ( fn)n∈N from BC(R) such that fn ≥ 1(−∞,µ+ 1
n ]

on σ(T) for all
n ∈ N and ( fn)n∈N decrease pointwise to 1(−∞,µ] on σ(T). Then fn(T) ≥ Eµ+ 1

n
and

limn→∞ fn(T) = Eµ, hence Eλ
λ→µ+

→ Eµ by monotonicity.
To prove the limits at −∞ and ∞ it will be sufficient to prove boundedness: If

µ < inf σ(T), then (0)n∈N decrease pointwise to 1(−∞,µ] on σ(T), hence Eµ = 0. Similarly,
if µ > sup σ(T), then (1)n∈N decrease pointwise to 1(−∞,µ] on σ(T), hence Eµ = id.
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So we have proven that (Eλ)λ∈R is a resolution of the identity. Left is only to prove
the main identity T =

∫
R

λdEλ. For µ, ν ∈ R, µ < ν, let ( fn)n∈N, (gn)n∈N be sequence
in BC(R) as above for µ, ν respectively such that fn ≤ gn and gn ≡ 1 on (−∞, µ] for all
n ∈ N. Using these sequences we get

µ(Eν − Eµ) = lim
n→∞

µ(gn(T)− fn(T)) ≤ lim
n→∞

T(gn(T)− fn(T)) = T(Eν − Eµ)

by µ(gn − fn) ≤ idσ(T)(gn − fn) on σ(T) for all n ∈ N leading to µ(gn(T)− fn(T)) ≤
T(gn(T)− fn(T)), and the norm convergence of the sequences ( fn(T))n∈N, (gn(T))n∈N.
Similarly T(Eν − Eµ) ≤ ν(Eν − Eµ). From this we see that for every finite, increasing
sequence (µj)

N
j=0, N ∈ N, in R that

N

∑
j=1

µj−1(Eµj − Eµj−1) ≤
N

∑
j=1

T(Eµj − Eµj−1) = T ≤
N

∑
j=1

µj(Eµj − Eµj−1).

We can now choose partitions such that the left and right side converge strongly to∫
R

λdEλ by Lemma 2.4.13. But then T =
∫

R
λdEλ must hold as desired.

Suppose (Ẽλ)λ∈R is another resolution of the identity such that T =
∫

R
λdẼλ. Then∫

R
p(λ)dEλ = p(T) =

∫
R

p(λ)dẼλ

for every p ∈ P(R). If (Ẽλ)λ∈R is unbounded, then we may find ϕ ∈ H and a sequence of
polynomials (pn)n∈N, which is bounded in L2(R, d∥E·ϕ∥2

H), but ∥pn∥L2(R,d∥Ẽ·ϕ∥2
H)

n→∞→ ∞.
This contradicts the fact that ∥pn∥L2(R,d∥E·ϕ∥2

H)
= ∥pn∥L2(R,d∥Ẽ·ϕ∥2

H)
for all n ∈ N, thus

(Ẽλ)λ∈R must be a bounded resolution of the identity.
Since (Eλ)λ∈R and (Ẽλ)λ∈R are bounded, every 1(−∞,µ], µ ∈ R, is the pointwise limit

of a sequence of polynomials (pn)n∈N (Eλ)λ∈R- and (Ẽλ)λ∈R-almost everywhere, with
(pn)n∈N bounded in L∞(R, E)∩ L∞(R, Ẽ). Applying Lemma 2.4.13, we get Eµ = Ẽµ. ■

It should not be hard to deduce from the above proof that f ∈ BM(R) is in f ∈
L∞(R, E) as long as f is essentially bounded on σ(T). Hence C(σ(T)) ↪→ L∞(R, E)
when extending functions C(σ(T)) to the entire real line in a continuous, but otherwise
arbitrary manner. Now the uniqueness in the Continuous Functional Calculus 2.4.15
shows that

T f =
∫

R
f̃ (λ)dEλ,

where f̃ is a continuous extension of f .
For this reason we will also denote the operator

∫
R

f (λ)dEλ by f (T) for each f ∈
BM(R).

2.4.3 Spectral Theorem for Self-adjoint Operators

Moving on, we go now to the unbounded case and prove the spectral theorem for
general self-adjoint operators. But to prove this version, we will need to reduce our
problem to the bounded case, which the two following lemmas ensure is possible.

Lemma 2.4.19. Let (Pn)n∈N be a sequence of orthogonal projections on H such that PnPm = 0
for all n, m ∈ N and

∞

∑
n=1

Pn = id,
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and suppose (Tn)n∈N is a sequence of operators such that Tn ∈ B(R(Pn)) and Tn is self-adjoint.
Then there exists a unique self-adjoint T ∈ L(H) such that TPn = TnPn for all n ∈ N. In fact,

D(T) =

{
ϕ ∈ H|

∞

∑
n=1

∥TnPnϕ∥2
H < ∞

}
and for ϕ ∈ D(T)

Tϕ =
∞

∑
n=1

TnPnϕ.

Remark! 2.4.20. This lemma and its proof should remind the reader about some of the
reasoning in the proof of Proposition 2.4.9. With some adjustments, the above lemma
also provides a definition of

∫
R

f (λ)dEλ for general f ∈ BM(R).

Proof. The set D(T) as defined in the lemma is dense in H since for every ϕ ∈ H we
have ϕ = ∑∞

n=1 Pnϕ in norm and ∑N
n=1 Pnϕ ∈ D(T) for each N ∈ N. Additionally

the sum defining T is well-defined on D(T): Actually for any ϕ ∈ H, the condition
∑∞

n=1 ∥TnPnϕ∥2
H < ∞ is equivalent with ∑∞

n=1 TnPnϕ converging since the sum has or-
thogonal elements. This follows from:∥∥∥∥∥ M

∑
n=N

TnPnϕ

∥∥∥∥∥
2

H

=
M

∑
n=N

⟨TnPnϕ, TnPnϕ⟩H =
M

∑
n=N

∥TnPnϕ∥2
H,

where N, M ∈ N.
The identity TPn = TnPn for n ∈ N follows from R(Pn) ⊆ D(T) and

TPnϕ =
∞

∑
m=1

TmPmPnϕ = TnPnϕ,

which holds for all ϕ ∈ H. This leads to a proof of T being symmetric, since for
ϕ, ψ ∈ D(T) one then has

⟨Tϕ, ψ⟩H =
∞

∑
n=1

⟨TPnϕ, Pnψ⟩H =
∞

∑
n=1

⟨TnPnϕ, Pnψ⟩H =
∞

∑
n=1

⟨Pnϕ, TnPnψ⟩H = ⟨ϕ, Tψ⟩H.

So to prove that T is self-adjoint we only have to show T∗ ⊆ T. Suppose ϕ ∈ D(T∗).
Then

⟨ψ, PnT∗ϕ⟩H = ⟨TPnψ, ϕ⟩H = ⟨Tnψ, Pnϕ⟩H = ⟨ψ, TnPnϕ⟩H

holds for all ψ ∈ R(Pn) and n ∈ N, hence PnT∗ϕ = TnPnϕ, so
∞

∑
n=1

∥TnPnϕ∥2
H =

∞

∑
n=1

∥PnT∗ϕ∥2
H = ∥T∗ϕ∥2

H < ∞.

Thus T∗ ⊆ T as desired.
Assume then that T̃ is a self-adjoint operator on H such that T̃Pn = TnPn for all

n ∈ N. Then we have ∑N
n=1 TnPnϕ = T̃ ∑N

n=1 Pnϕ for any ϕ ∈ H and N ∈ N. Since T̃
must be closed, one has that if ∑∞

n=1 TnPnϕ converges for some ϕ ∈ H, then it follows
that

T̃ϕ =
∞

∑
n=1

TnPnϕ = Tϕ.

Hence T ⊆ T̃, and because T is self-adjoint it cannot have any strict self-adjoint exten-
sions, so we conclude T = T̃. ■
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Lemma 2.4.21. For a densely defined closed operator T ∈ L(H) in a Hilbert space, the operators
(1 + T∗T)−1 and T(1 + T∗T)−1 are members of B(H) both with norm less than or equal to 1.
Furthermore, (1 + T∗T)−1 is non-negative and self-adjoint.

Proof. Let U be defined as in the proof of Proposition 2.2.3 so that H2 = Γ(T)⊕U∗Γ(T∗)

and Γ(T) ⊥ U∗(Γ(T∗)). Thus for each ϕ ∈ H, (ϕ, 0) has a unique decomposition into the
sum of a element of Γ(T) and U∗Γ(T∗), i.e. there exists unique ψ ∈ D(T), ω ∈ D(T∗)

such that
ϕ = ψ + T∗ω

and
0 = Tψ − ω.

Let S1, S2 ∈ L(H) be the everywhere defined operators such that ϕ = S1ϕ + T∗S2ϕ and
0 = TS1ϕ − S2ϕ. Then S2 = TS1 and id = S1 + T∗TS1 = (1 + T∗T)S1. The operator
1 + T∗T is positive, hence injective and it has an inverse on R(1 + T∗T), which must
equal H by id = (1 + T∗T)S1. Hence S1 = (1 + T∗T)−1.

The boundedness of S1, S2 follows from the definition in that

∥ϕ∥2
H = ∥(ϕ, 0)∥2

H2 = ∥(S1ϕ, TS1ϕ)∥2
H2 + ∥(T∗S2ϕ,−S2ϕ)∥2

H2

= ∥S1ϕ∥2
H + ∥TS1ϕ∥2

H + ∥T∗S2ϕ∥2
H + ∥S2ϕ∥2

H

for all ϕ ∈ H. For the non-negativity and self-adjointness of S1 let ϕ, ψ ∈ H be given.
Then firstly

⟨S1ϕ, ψ⟩H = ⟨S1ϕ, (1 + T∗T)S1ψ⟩H = ⟨S1ϕ, S1ψ⟩H + ⟨TS1ϕ, TS1ψ⟩H

by which we conclude that if ϕ = ψ, then ⟨S1ϕ, ϕ⟩H ≥ 0. Continuing the above calcula-
tion we get

⟨S1ϕ, ψ⟩H = ⟨S1ϕ, S1ψ⟩H + ⟨TS1ϕ, TS1ψ⟩H

= ⟨S1ϕ, S1ψ⟩H + ⟨T∗TS1ϕ, S1ψ⟩H = ⟨ϕ, S1ψ⟩H,

showing that S1 is self-adjoint. ■

Theorem 2.4.22. (Spectral Theorem for Self-adjoint Operators) For every self-adjoint operator
T there exists a unique resolution of the identity (Eλ)λ∈R such that

T =
∫

R
λdEλ.

As in the bounded case, (Eλ)λ∈R will be called the spectral resolution of T.

Proof. The operator S1 = (1+ T2)−1 is by Lemma 2.4.21 a bounded self-adjoint operator,
hence by the Spectral Theorem for Bounded Self-adjoint Operators 2.4.18 there exists a
bounded resolution of the identity (Fλ)λ∈R such that

S1 =
∫

R
λdFλ.

Since 0 ≤ m(S1) and M(S1) ≤ 1, then σ(S1) ⊆ [0, 1]. Thus if we define the sequence
(Pn)n∈N of orthogonal projections by Pn = F1

n
− F 1

n+1
= 1( 1

n+1 , 1
n ]
(S1) for each n ∈ N, then

∑∞
n=1 Pn = id and

PnPm = (1( 1
n+1 , 1

n ]
1( 1

m+1 , 1
m ])(S1) = 0
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for all n, m ∈ N, n ̸= m.
We want to use Lemma 2.4.19 on T and (Pn)n∈N, thus it is essential that T invariates

R(Pn) and T|R(Pn) ∈ B(R(Pn)) for each n ∈ N. We have

S1T = S1T(1 + T2)S1 = S1(1 + T2)TS1 ⊆ TS1,

and then letting S2 := TS1 leads to

S1S2 = S1TS1 ⊆ TS1S1 = S2S1.

Both S1 and S2 are bounded from Lemma 2.4.21, so S1S2 = S2S1. Since S2 and S1

commute, then as a consequence S2 must also commute with all functions of S1. For
each n ∈ N define fn : R ∋ λ 7→ 1

λ 1( 1
n+1 , 1

n ]
, so that fn(S1)S1 = Pn. Then

TPn = TS1 fn(S1) = S2 fn(S1)

and
PnT = fn(S1)S1T ⊆ fn(S1)TS1 = fn(S1)S2

hence PnT ⊆ TPn for all n ∈ N. So T invariates R(Pn) and TPn ∈ B(H), implying also
that T|R(Pn) ∈ B(R(Pn)).

To each of the bounded self-adjoint operators T|R(Pn) we have a bounded resolution
of the identity (En,λ)λ∈R by Theorem 2.4.18. From Lemma 2.4.19 we have for each λ ∈ R

a unique self-adjoint operator Eλ such that EλPn = En,λPn for all n ∈ N. Since for ϕ ∈ H
we have

∞

∑
n=1

∥En,λPnϕ∥2
H ≤

∞

∑
n=1

∥Pnϕ∥2
H = ∥ϕ∥2

H,

so D(Eλ) = H. Moreover, it should be clear that E2
λ = Eλ using the pairwise orthogo-

nality of (Pn)n∈N. We conclude that Eλ is an orthogonal projection. Next step is proving
that (Eλ)λ∈R is a resolution of the identity.

For µ, ν ∈ R with µ < ν we have

EµEνϕ =
∞

∑
n=1

En,µPn

∞

∑
m=1

Em,νPmϕ =
∞

∑
n=1

En,µEn,νPnϕ =
∞

∑
n=1

En,µPnϕ = Eµϕ

for all ϕ ∈ H which implies EµEν = Eµ, and by a similar calculation one shows EνEµ =

Eµ. Hence (Eλ)λ∈R is increasing. The properties of right-continuity and limits at −∞

and ∞ follow from dominated convergence: Let us prove that Eλ
λ→∞→ id strongly. For

ϕ ∈ H we compute

∥(id − Eλ)ϕ∥2
H =

∞

∑
n=1

∥(idR(Pn) − En,λ)Pnϕ∥2
H

Because (En,λ)λ∈R is a bounded resolution of the identity we have limλ→∞ ∥idR(Pn) −
En,λ∥B(R(Pn)) = 0 for all n ∈ N. Also

∞

∑
n=1

∥(idR(Pn) − En,λ)Pnϕ∥2
H ≤

∞

∑
n=1

4∥Pnϕ∥2
H = 4∥ϕ∥2

H,
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hence we may use dominated convergence to conclude that

lim
λ→∞

∥(id − Eλ)ϕ∥2
H =

∞

∑
n=1

lim
λ→∞

∥(idR(Pn) − En,λ)Pnϕ∥2
H = 0.

So (Eλ)λ∈R is a resolution of the identity, and we are only missing the identity

T =
∫

R
λdEλ.

For any ϕ ∈ H the following holds by monotone convergence of measures

∞

∑
n=1

∥∥∥∥∫
R

λdEn,λPnϕ

∥∥∥∥2

H
=

∞

∑
n=1

∫
R

λ2d∥En,λPnϕ∥2
H =

∫
R

λ2d∥Eλϕ∥2
H.

Thus D(T) = D
(∫

R
λdEλ

)
. Next, by the pointwise definition of

∫
R

λdEλ we see that∫
R

λdEλPn =
∫

R
λdEn,λPn = TPn,

by which we conclude T =
∫

R
λdEλ using Lemma 2.4.19.

For uniqueness, assume (Ẽλ)λ∈R is another resolution of the identity such that
T =

∫
R

λdẼλ. Then each Ẽλ commutes with T and hence commutes with S1. More
significantly each Ẽλ must commute with Pn for each n ∈ N since Pn is the strong limit
of polynomials in S1. Then for each n ∈ N, (Eλ|R(Pn))λ∈R = (En,λ)λ∈R and (Ẽλ|R(Pn))λ∈R

are both spectral resolutions for T|R(Pn). But T|R(Pn) has a unique spectral resolution
by the Spectral Theorem for Bounded Self-adjoint Operators 2.4.18. With the help of
Lemma 2.4.19 we conclude that (Eλ)λ∈R and (Ẽλ)λ∈R must be equal. ■

Like with the bounded version, for any function f ∈ BM(R) we let f (T) denote∫
R

f (λ)dEλ.
Combining Proposition 2.4.9 and Theorem 2.4.22 we see that there is a one-to-one

correspondence between resolution of the identity and self-adjoint operators. Further-
more, bounded resolutions of the identity correspond to bounded self-adjoint operators.

2.4.4 Stone’s Formula

As was teased after the bounded version of the spectral theorem, the spectral resolution
is "supported" on the spectrum of the associated operator. We look into this connection
in this subsection.

Proposition 2.4.23. Let T ∈ L(H) be self-adjoint. Then:

(i) ρ(T) = {λ ∈ R|∃ε > 0 : 1(λ−ε,λ+ε)(T) = 0}

(ii) σ(T) = {λ ∈ R|∀ε > 0 : 1(λ−ε,λ+ε)(T) ̸= 0}

(iii) σp(T) = {λ ∈ R|1{λ}(T) ̸= 0}

Proof. Let (Eλ)λ∈R be the spectral resolution of T.
If 1(µ−ε,µ+ε)(T) = 0 for some µ ∈ R and ε > 0, then the function f : R ∋ λ 7→

1(µ−ε,µ+ε)c(λ)(λ − µ)−1 is in L∞(R, E). It follows that T f (T) = id and f (T)T = idD(T)
by the calculus of Proposition 2.4.9, whence µ ∈ ρ(T).
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Conversely, suppose for some µ ∈ R, 1(µ−ε,µ+ε)(T) ̸= 0 for all ε > 0. Then for each
n ∈ N we may find ϕn ∈ R(1(µ−n−1,µ+n−1)(T)) ∩ ∂B1(0; H) and consequently we have a
sequence in ∂B1(0; H) for which

∥(T − µ)ϕn∥2
H =

∫ µ+n−1

µ−n−1
|λ − µ|2d∥Eλϕn∥2

H ≤ n−2 n→∞→ 0.

So µ ∈ σ(T).
This finishes (i) and (ii). For (iii), assume first that ϕ ∈ R(1{µ}(T)) \ {0}. Then

(T − µ)ϕ =
∫
{µ}

(λ − µ)dEλϕ = 0,

implying that µ ∈ σp(T).
Next, say µ ∈ σp(T) and ϕ ∈ H \ {0} is a corresponding eigenvector. Define fε : R ∋

λ 7→ 1(µ−ε,µ+ε)c(λ)(λ − µ)−1 for each ε > 0. Then

1(µ−ε,µ+ε)c(T)ϕ = fε(T)(T − µ)ϕ = 0,

and so ϕ = 1(µ−ε,µ+ε)(T)ϕ
ε→0→ 1{µ}(T)ϕ, as desired. ■

This gives us a sharper estimate for the norm of the resolvent:

Corollary 2.4.24. Let T ∈ L(H) be self-adjoint. Then for each z ∈ ρ(T) we have

∥(T − z)−1∥B(H) =
1

d(z, σ(T))
.

Proof. From everything we gathered up till this point we get

∥(T − z)−1∥B(H) = sup
λ∈σ(T)

|λ − z|−1. ■

Lastly, we present Stone’s formula showing that the spectral resolution can be recov-
ered from the resolvent.

Theorem 2.4.25. (Stone’s Formula) For every self-adjoint operator T and λ1, λ2 ∈ R it holds
that

1
2πi

∫ λ2

λ1

(
(T − λ − iε)−1 − (T − λ + iε)−1

)
dλ

ε→0→ 1
2

(
1[λ1,λ2](T) + 1(λ1,λ2)(T)

)
strongly.

Proof. Fix ϕ ∈ H. Given ε > 0, the Bochner integral
∫ λ2

λ1

(
(T − λ − iε)−1 − (T − λ + iε)−1) dλ

is well-defined and using the variational approach in Remark 2.4.14 we get:

1
2πi

∫ λ2

λ1

(
(T − λ − iε)−1 − (T − λ + iε)−1

)
dλϕ

=
∫

R

1
2πi

∫ λ2

λ1

(
(µ − λ − iε)−1 − (µ − λ + iε)−1

)
dλdEµϕ

Since
1

2πi

∫ λ2

λ1

(
(µ − λ − iε)−1 − (µ − λ + iε)−1

)
dλ =

1
π

∫ λ2

λ1

ε

(µ − λ)2 + ε2 dλ

ε→0→ 1
2

(
1[λ1,λ2](µ) + 1(λ1,λ2)(µ)

)
for every µ ∈ R and the functions involved are dominated by 1, the theorem follows
from Lemma 2.4.13. ■
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2.4.5 Helffer-Sjöstrand Formula

The Helffer-Sjöstrand formula relates the operator f (T) of certain well-behaved func-
tions f to a complex Cauchy-type integral of the resolvent for T, generalization a for-
mula for functions. It is entirely possible to work out a functional calculus for these
functions without using the results of the prior subsections as done in [10]. We concen-
trate our effort on proving the formula for Schwartz functions.

We shall introduce the Schwartz space of functions more fully in the next chapter,
but currently a definition will be sufficient. The Schwartz space on R is:

S (R) := { f ∈ C∞(R)| sup
R

⟨·⟩m|∂n f | < ∞, ∀m, n ∈ N0}

Fix f ∈ S (R) and construct χ ∈ C∞
c (R) such that 1[−1,1] ≤ χ ≤ 1[−2,2]. Then for any

N ∈ N we define

f̃N : C ∋ z = x + iy 7→ χ

(
y
⟨x⟩

) N

∑
n=0

in

n!
∂n f (x)yn.

No matter the chosen N we call f̃N an almost analytic extension of f .

Lemma 2.4.26. Let f ∈ S (R) and N ∈ N. The almost analytic extension f̃N satisfies:

(i) f̃N |R = f |R

(ii) | f̃N(z)| ≤ Cm⟨z⟩−m for all m ≥ 0

(iii) |∂z f̃N(z)| ≤ Cl,m| Im(z)|l⟨z⟩−m for all l ∈ {0, 1, . . . , N} and m ≥ 0.

Here we note for the uninitiated that ∂z =
1
2 (∂x + i∂y).

Proof. (i) is immediate. Pick m ≥ 0 in (ii). Using the cutoff function χ we get the
estimates

|y|χ
(

y
⟨x⟩

)
≤ 2⟨x⟩χ

(
y
⟨x⟩

)
≤

√
8(1 + |x|)χ

(
y
⟨x⟩

)
and

⟨z⟩χ
(

y
⟨x⟩

)
≤
√

1 + (|x|+ |y|)2χ

(
y
⟨x⟩

)
≤
√

1 + (
√

8 + (1 +
√

8)|x|)2χ

(
y
⟨x⟩

)
≤
√

17 + 2(1 +
√

8)2|x|2χ

(
y
⟨x⟩

)
≤ max{

√
17,

√
2(1 +

√
8)}⟨x⟩χ

(
y
⟨x⟩

)
for all z ∈ C. This especially shows that

⟨x⟩−1χ

(
y
⟨x⟩

)
≤ C⟨z⟩−1χ

(
y
⟨x⟩

)
≤ C⟨z⟩−1.

Thus

| f̃N(z)| ≤ χ

(
y
⟨x⟩

) N

∑
n=0

1
n!
|∂n f (x)||y|n ≤ χ

(
y
⟨x⟩

) N

∑
n=0

Cm,n

n!
⟨x⟩−n−m⟨x⟩n ≤ Cm⟨z⟩−m,

where m ≥ 0 is arbitrary.

30



Mikkel Hviid Thorn

Next pick l ∈ {0, 1, . . . , N} and m ≥ 0. First we see that

2∂z f̃N(z) = χ

(
y
⟨x⟩

) N

∑
n=0

in

n!
∂n+1 f (x)yn − yx

⟨x⟩3 ∂χ

(
y
⟨x⟩

) N

∑
n=0

in

n!
∂n f (x)yn

=− χ

(
y
⟨x⟩

) N

∑
n=1

in−1

(n − 1)!
∂n f (x)yn−1 +

i
⟨x⟩∂χ

(
y
⟨x⟩

) N

∑
n=0

in

n!
∂n f (x)yn

= χ

(
y
⟨x⟩

)
iN

N!
∂N+1 f (x)yN +

(
yx
⟨x⟩3 − i

⟨x⟩

)
∂χ

(
y
⟨x⟩

) N

∑
n=0

in

n!
∂n f (x)yn.

Dealing with one term at the time we get

χ

(
y
⟨x⟩

)
|∂N+1 f (x)yN | ≤ Cl,mχ

(
y
⟨x⟩

)
|y|l⟨x⟩−m ≤ Cl,m|y|l⟨z⟩−m,

and with the extra estimates

⟨x⟩∂χ

(
y
⟨x⟩

)
≤ |y|∂χ

(
y
⟨x⟩

)
≤ 2⟨x⟩∂χ

(
y
⟨x⟩

)
,

we also get∣∣∣∣∣
(

yx
⟨x⟩3 − i

⟨x⟩

)
∂χ

(
y
⟨x⟩

) N

∑
n=0

in

n!
∂n f (x)yn

∣∣∣∣∣ ≤ Cl,m

∣∣∣∣∂χ

(
y
⟨x⟩

)∣∣∣∣ N

∑
n=0

⟨x⟩−m+l−m|y|n

≤ Cl,m|y|l⟨x⟩−m.

Thus we are done. ■

It will not matter which N we choose in the following, or indeed which C1(C) ex-
tension of f we choose, as long as we have the properties (ii) and (iii). Actually weaker
conditions will work, see [16, Theorem 1.17].

Theorem 2.4.27. (Helffer-Sjöstrand Formula) Let T ∈ L(H) be self-adjoint and f ∈ S (R).
Then

f (T) = − 1
π

∫
C

∂z f̃N(z)(T − z)−1dxdy

for any N ∈ N with convergence of the integral in B(H)-norm.

Proof. By Lemma 2.4.26 and ∥(T − z)−1∥B(H) ≤ | Im(z)|−1 for z ∈ C \ R we see that

∥∂z f̃N(z)(T − z)−1∥B(H) ≤ C⟨z⟩−3.

This decay at infinity together with the continuity and boundedness of C \ R ∈ z →
∂z f̃N(z)(T − z)−1 gives us uniform continuity and also importantly:

sup
C\R

∥∥∥∂z f̃N(z)(T − z)−1

======− ∑
w∈[−n,n]2∩n−1(2−1+i2−1+Z2)

∂z f̃N(w)(T − w)−11w+[−(2n)−1,(2n)−1]2(z)
∥∥∥
B(H)

n→∞→ 0
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This implies that the Bochner integral in the theorem exists and defined by∫
C

∂z f̃N(z)(T − z)−1dxdy = lim
n→∞

1
n2 ∑

w∈[−n,n]2∩n−1(2−1+i2−1+Z2)

∂z f̃N(w)(T − w)−1

Let now (Eλ)λ∈R be the spectral resolution of T. Then by ρ(T) being open, R ∋
λ 7→ (λ − z)−1 is in L∞(R, E) for each z ∈ ρ(T), and one can check that (T − z)−1 =∫

R
(λ − z)−1dEλ. Furthermore, the following identity holds:

f (w) = f̃N(w) = − 1
π

∫
C

∂z f̃N(z)(z − w)−1dxdy

for all w ∈ R. Hence, using the variational form of (T − z)−1, see Remark 2.4.14, we get
for ϕ, ψ ∈ D( f (T)) that

⟨ f (T)ϕ, ψ⟩H =
∫

R
f (λ)d⟨Eλϕ, ψ⟩H = − 1

π

∫
R

∫
C

∂z f̃N(z)(z − λ)−1dxdyd⟨Eλϕ, ψ⟩H

= − 1
π

∫
C

∂z f̃N(z)
∫

R
(z − λ)−1d⟨Eλϕ, ψ⟩Hdxdy

= − 1
π

∫
C

∂z f̃N(z)⟨(T − z)−1ϕ, ψ⟩Hdxdy.

We needed to use Fubini’s Theorem, but∫
C
|∂z f̃N(z)(z − λ)−1|dxdy < ∞

and the measure d⟨E·ϕ, ψ⟩H has finite total variation, so that is no problem. Using the
norm convergence of the integral we see

⟨ f (T)ϕ, ψ⟩H = − 1
π

∫
C

∂z f̃N(z)⟨(T − z)−1ϕ, ψ⟩Hdxdy

= − 1
π

〈∫
C

∂z f̃N(z)(T − z)−1dxdyϕ, ψ

〉
H

for all ϕ, ψ ∈ D( f (T)), giving the desired result. ■
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3

Tempered Distributions and Pseudo-differential
Calculus

The ordinary or classical calculus has long been replaced by its weak or distributional
counterpart, giving more structure to differentiation and new tools. We will also have
need of this apparatus, so in this chapter we introduce tempered distributions and cal-
culus on them as well as a pseudo-differential calculus dealing with quantization of
classical Hamiltonians.

To start with we introduce a phase-modified tight Gabor frame, a generalization of
the magnetic tight Gabor frame from [8, 9]. Basic results from frame theory will be
used, see [4]. Next is our presentation of Schwartz space and tempered distribution,
largely inspired by the various sources [1, 12, 13, 14, 21, 29, 30, 31, 32], but some original
proofs are provided. Lastly, we explore a quite general definition of pseudo-differential
operators and deduce a calculus for these operators. The main results follow [8, 9, 30],
while [20, 26, 33] has been used for background material.

The setting is Euclidean space and we fix dimensions d, d1, d2 ∈ N throughout the
chapter.

3.1 A Modulated Tight Gabor Frame

We will work out most of the theory in this chapter using a modified tight Gabor frame,
i.e. a modification of the standard combination of a quadratic partition of unity and
Fourier series. Thus in this short section we make a proper introduction of this tool.

Definition 3.1.1. (Phase Function) A continuous, uni-modular function ϑ : Rd × Rd →
∂B1(0; C) will be called a phase function.

Note by uni-modular we mean that |ϑ| ≡ 1.
Let ϑ be a phase function. Construct u ∈ C∞

c (R) satisfying supp(u) ⊆ (−1, 1) and
∑α∈Z(ταu)2 ≡ 1. Let Eα′ : R ∋ x 7→ eiα′x for α′ ∈ Z. Then the elements of our modulated
tight Gabor frame are:

Gα̃,ϑ := ϑ(·, α)⊗d
j=1 (2π)−

1
2 ταj(uEα′j

),

where α̃ = (α, α′) ∈ Zd × Zd = Z2d.
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Lemma 3.1.2. The family (Gα̃,ϑ)α̃∈Z2d constitutes a Parseval frame in L2(Rd). Importantly:

ϕ = ∑
α̃∈Z2d

⟨Gα̃,ϑ, ϕ⟩L2(Rd)Gα̃,ϑ

for all ϕ ∈ L2(Rd) with unconditional convergence in L2(Rd)-norm.

Remark! 3.1.3. In this context, unconditional convergence means that the convergence
is not conditional upon the way one takes the limit in the index of the sum.

Proof. For ϕ, ψ ∈ L2(R2) we have by dominated convergence:

⟨ϕ, ψ⟩L2(Rd) = ∑
α∈Zd

⟨ϑ(·, α)(⊗d
j=1ταj u)ϕ, ϑ(·, α)(⊗d

j=1ταj u)ψ⟩L2(α+(−π,π)d)

The space L2(α + (−π, π)d) has as an orthonormal basis (⊗d
j=1(2π)−

1
2 ταj(Eα′j

))α′∈Zd ,
whence

⟨ϕ, ψ⟩L2(Rd) = ∑
α∈Zd

∑
α′∈Zd

⟨ϕ,Gα̃,ϑ⟩L2(α+(−π,π)d)⟨Gα̃,ϑ, ψ⟩L2(α+(−π,π)d)

= ∑
α∈Zd

∑
α′∈Zd

⟨ϕ,Gα̃,ϑ⟩L2(Rd)⟨Gα̃,ϑ, ψ⟩L2(Rd).
(3.1.1)

This implies that
∥ϕ∥2

L2(Rd) = ∑
α∈Zd

∑
α′∈Zd

|⟨Gα̃,ϑ, ϕ⟩L2(Rd)|2, (3.1.2)

hence (Gα̃,ϑ)α̃∈Z2d is a Parseval frame.
Now according to [4, Corollary 5.1.7], the convergence statement follows from (Gα̃,ϑ)α̃∈Z2d

being a Parseval frame. However, we will give a simple direct proof of this fact using
a technique from [9]. Fix ϕ ∈ L2(Rd) and enumerate Z2d arbitrarily to get a sequence
(α̃n)n∈N. Then for N, M ∈ N with N ≤ M∥∥∥∥∥ N

∑
n=1

⟨Gα̃n,ϑ, ϕ⟩L2(Rd)Gα̃n,ϑ −
M

∑
n=1

⟨Gα̃n,ϑ, ϕ⟩L2(Rd)Gα̃n,ϑ

∥∥∥∥∥
L2(Rd)

= sup
ψ∈∂B1(0;L2(Rd))

∣∣∣∣∣
〈

ψ,
M

∑
n=N+1

⟨Gα̃n,ϑ, ϕ⟩L2(Rd)Gα̃n,ϑ

〉
L2(Rd)

∣∣∣∣∣
≤ sup

ψ∈∂B1(0;L2(Rd))

M

∑
n=N+1

|⟨Gα̃n,ϑ, ϕ⟩L2(Rd)⟨ψ,Gα̃n,ϑ⟩L2(Rd)|

≤
M

∑
n=N+1

|⟨Gα̃n,ϑ, ϕ⟩L2(Rd)|2,

where we used the Cauchy-Schwartz inequality, (3.1.2), and ∥ψ∥L2(Rd) = 1. When
N, M → ∞ the above goes to zero by (3.1.2), whence (∑N

n=1⟨Gα̃n,ϑ, ϕ⟩L2(Rd)Gα̃n,ϑ)N∈N

is a Cauchy sequence. The limit must then be ϕ by (3.1.1), and so the lemma has been
proven. ■

In each of the preceding sections we require extra conditions on the phase function,
which are stated when needed.
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3.2 Schwartz Space and Tempered Distributions

The spaces of Schwartz functions and tempered distributions are hugely important
spaces by the fact that they together extend in what ways we are able to use deriva-
tives and the Fourier transform. The apparently crucial conditions are faster decay than
any polynomial and polynomial growth, conditions implied by classical results on the
Fourier transform on L1(Rd).

We make a note that every polynomial p in Rd has growth controlled by some ⟨·⟩n,
n ∈ N, i.e. supRd |p|⟨·⟩−n < ∞ and vice-versa in that ⟨·⟩n ≤ ⟨·⟩2n, where ⟨·⟩2n is a
polynomial. Here ⟨·⟩ denotes the Japanese bracket, see Section 1.1.

Definition 3.2.1. (Schwartz Space) The space of Schwartz functions S (Rd) consists of
smooth functions ϕ ∈ C∞(Rd) such that for each n ∈ N0 and γ ∈ Nd

0:

sup
Rd

⟨·⟩n|∂γϕ| < ∞

We equip S (Rd) with the topology induced by the semi-norms ∥ · ∥S (Rd),n,m, n, m ∈
N0, defined by

∥ϕ∥S (Rd),n,m = ∑
γ∈Nd

0
|γ|≤m

sup
Rd

⟨·⟩n|∂γϕ|

for all ϕ ∈ S (Rd).

One often calls the decay property of Schwartz functions for rapid decay.

Proposition 3.2.2. S (Rd) is a Fréchet space with the Heine-Borel property.

Proof. The semi-norm ∥ · ∥S (Rd),0,0 is just the L∞(Rd)-norm restricted to S (Rd), so the
family of semi-norms on S (Rd) is separating. The topology is also metrizable by an
invariant metric since it is induced by countably many semi-norms. Thus we have only
to prove that S (Rd) is complete and the Heine-Borel property.

Suppose (ϕn)n∈N is a Cauchy sequence in S (Rd). Then the sequence and the se-
quence of all derivatives converge uniformly to some functions in BC(Rd) by BC(Rd)

being a Banach space in the norm ∥ · ∥BC(Rd). Hence (ϕn)n∈N converges uniformly to
some smooth function ϕ ∈ BC∞(Rd). Next for m ∈ N0, r > 0, and γ ∈ Nd

0 we have

sup
Br(0;Rd)

⟨·⟩m|∂γϕ| ≤ sup
Rd

⟨·⟩m|∂γϕn|+ sup
Br(0;Rd)

⟨·⟩m|∂γ(ϕ − ϕn)|

≤ sup
j∈N

sup
Rd

⟨·⟩m|∂γϕj|+ ⟨r⟩m sup
Br(0;Rd)

|∂γ(ϕ − ϕn)|
n→∞→ sup

j∈N

sup
Rd

⟨·⟩m|∂γϕj|.

Taking r → ∞ we see that ϕ ∈ S (Rd). Moreover, for m, j ∈ N0

∥ϕ − ϕn∥S (Rd),m,j ≤ ∑
γ∈Nd

0
|γ|≤j

sup
Br(0;Rd)

⟨·⟩m|∂γ(ϕ − ϕn)|+ sup
Rd\Br(0;Rd)

⟨·⟩m|∂γ(ϕ − ϕn)|

≤ ∑
γ∈Nd

0
|γ|≤j

⟨r⟩m sup
Br(0;Rd)

|∂γ(ϕ − ϕn)|+
2
⟨r⟩ sup

k∈N

sup
Rd\Br(0;Rd)

⟨·⟩m+1|∂γϕk|

n→∞→ 2
⟨r⟩ sup

k∈N

sup
Rd

⟨·⟩m+1|∂γϕk|,
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where r > 0 is arbitrary. Taking r → ∞ again, we see that (ϕn)n∈N converge to ϕ in
S (Rd).

Since S (Rd) is metrizable, the Heine-Borel property follows from showing that ev-
ery bounded sequence has a convergent subsequence. But this follows from a standard
diagonalization argument, the Arzelà–Ascoli Theorem, and the reasoning above. ■

In the following we shall make use of the spaces ⟨·⟩nLp(Rd), n ∈ N0, p ∈ [1, ∞],
meaning the space of elements of Lp(Rd) multiplied by ⟨·⟩n pointwise. These spaces are
Banach spaces when equipped with the norms

∥ · ∥⟨·⟩n Lp(Rd) : ⟨·⟩nLp(Rd) ∋ ϕ 7→ ∥⟨·⟩−nϕ∥Lp(Rd),

respectively. We use a similar notation in case of the space BCm(Rd), m ∈ N0.

Proposition 3.2.3. S (Rd) is continuously injected into the spaces ⟨·⟩nLp(Rd), n ∈ N0, p ∈
[1, ∞], and ⟨·⟩nBCm(Rd), n ∈ N0, m ∈ N0.

Proof. It will be enough to pick n = 0 since Lp(Rd) ↪→ ⟨·⟩nLp(Rd) and BCm(Rd) ↪→
⟨·⟩nBCm(Rd).

For any p ∈ [1, ∞) and ϕ ∈ S (Rd) we have

∫
Rd

|ϕ|p ≤
∫

Rd
⟨·⟩−d−1⟨·⟩p(d+1)|ϕ|p ≤

(
sup
Rd

⟨·⟩d+1|ϕ|
)p ∫

Rd
⟨·⟩−d−1,

which clearly shows that ϕ ∈ Lp(Rd) and S (Rd) ↪→ Lp(Rd). It is even easier to
see S (Rd) ↪→ BCm(Rd) since the norm on BCm(Rd) corresponds to the semi-norm
∥ϕ∥S (Rd),0,m for ϕ ∈ S (Rd), and this argument also works for L∞(Rd), so we are
done. ■

As a last basic result in developing the Schwartz space, we define several continuous
operations.

Definition 3.2.4. (Slowly Increasing Functions) The space Om(Rd) consists of smooth
functions ϕ ∈ C∞(Rd) such that for each γ ∈ Nd

0 there exists nγ ∈ N0 for which

sup
Rd

⟨·⟩−nγ |∂γϕ| < ∞.

Proposition 3.2.5. The following are bounded operators on S (Rd):

(i) ∂γ, γ ∈ Nd
0.

(ii) F and F−1.

(iii) Pointwise multiplication by a fixed ϕ ∈ Om(Rd).

(iv) Convolution with a fixed ψ ∈ S (Rd).

(v) Affine change of coordinates.
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Proof. (i) and (iii) are trivial by definitions. Also, (v) becomes obvious by Peetre’s in-
equality.

Since S (Rd) ↪→ L1(Rd), then both the Fourier transform and its inverse are well-
defined on S (Rd). Classical results shows that rapid decay of ω ∈ L1(Rd) implies
Fω ∈ BC∞(Rd) and smoothness of ω implies rapid decay of Fω. We may use these
results to conclude that F and F−1 invariates S (Rd). Furthermore,

∥Fω∥S (Rd),n,m ≤ Cn,m sup
Rd

⟨·⟩m|(1 − ∆)nω|

for all ω ∈ S (Rd) and n, m ∈ N0, by which continuity follows.
Let us now consider the convolution in (iv). Fix ω ∈ S (Rd). The rapid decay shows

that ψ ∗ ω ∈ C∞(Rd) with the known identities

∂γ(ψ ∗ ω) = ∂γψ ∗ ω = ψ ∗ ∂γω

holding for all γ ∈ Nd
0. Furthermore, for any such γ ∈ Nd

0 and a n ∈ N0 we have

⟨·⟩n|∂γ(ψ ∗ ω)|(·) ≤ Cn,γ∥⟨·⟩nψ∥L1(Rd) sup
Rd

⟨·⟩n|∂γω|

using Peetre’s inequality. By this inequality we claim ψ ∗ ω ∈ S (Rd) and continuity of
convolution with a fixed element. ■

As bonus information, the inversion formula implies that F is an isomorphism of
S (Rd). Moreover, the proof of continuity for convolution actually shows that it is a
bounded bilinear map S (Rd)×S (Rd) → S (Rd).

We now have a rather nice space S (Rd). Using variational principles we want to
extend these pleasant properties to its dual S ′(Rd).

Definition 3.2.6. (Tempered Distribution) The elements of the dual S ′(Rd) are called
tempered distributions and S ′(Rd) is called the space of tempered distributions.

Remark! 3.2.7. It is uncommon to use function notation for tempered distributions.
Instead, one makes use of the duality bracket:

⟨·, ·⟩S ′(Rd),S (Rd) : S ′(Rd)×S (Rd) ∋ (ϕ, ψ) 7→ ϕ(ψ)

Remark! 3.2.8. Recall that we in Definition 2.1.1 equipped bounded duals with the
strong topology. Explicitly, the strong topology on S ′(Rd) is induced by the semi-
norms

∥ · ∥S ′(Rd),Ω : S ′(Rd) ∋ ϕ 7→ sup
Ω

|ϕ|,

where Ω ⊆ S (Rd) varies over bounded sets of Schwartz functions.

There will be given three results for tempered distribution before moving on to
coordinate representations of Schwartz functions and tempered distribution. Thereafter
we shall give more information on S ′(Rd).

The first is an instance of a broader proposition: The dual of a Fréchet space is
complete.

Proposition 3.2.9. S ′(Rd) is complete.
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Proof. Suppose (ϕj)j∈I is a Cauchy net in S ′(Rd). Then (⟨ϕj, ψ⟩S ′(Rd),S (Rd))j∈I is a
Cauchy net in C, hence convergent. Thus we can define a linear functional ϕ on S (Rd)

by pointwise limit of (ϕj)j∈I .
Suppose now that Ω ⊆ S (Rd) is a bounded subset and let ε > 0 be given. Then

there exists J ∈ I such that

sup
ψ∈Ω

|⟨ϕj − ϕk, ψ⟩S ′(Rd),S (Rd)| ≤ ε

for all j, k ≥ J. Thus for ψ ∈ Ω, taking the limit in k we get

|⟨ϕj − ϕ, ψ⟩S ′(Rd),S (Rd)| ≤ ε

for all j ≥ J. Now, this implies

sup
ψ∈Ω

|⟨ϕ, ψ⟩S ′(Rd),S (Rd)| ≤ sup
ψ∈Ω

|⟨ϕ − ϕJ , ψ⟩S ′(Rd),S (Rd)|+ sup
ψ∈Ω

|⟨ϕJ , ψ⟩S ′(Rd),S (Rd)| < ∞,

so ϕ is bounded, hence ϕ ∈ S ′(Rd). Furthermore, we get

∥ϕj − ϕ∥S ′(Rd),Ω ≤ ε

for j ≥ J showing convergence of (ϕj)j∈I to ϕ in S ′(Rd). ■

Next we show a form for converse of Proposition 3.2.3.

Proposition 3.2.10. Let B be one of the Banach spaces ⟨·⟩nLp(Rd), n ∈ N0, p ∈ [1, ∞], or
⟨·⟩nBCm(Rd), n ∈ N0, m ∈ N0. Then the map sending ϕ ∈ B into the integral with density ϕ,
i.e.

S (Rd) ∋ ψ 7→
∫

Rd
ψϕ,

defines a continuously injected of B into the space S ′(Rd).

Note this implies that S (Rd) ↪→ S ′(Rd).

Proof. Let us first consider B = ⟨·⟩nLp(Rd). By Hölder’s inequality∫
Rd

|ψϕ| =
∫

Rd
⟨·⟩n|ψ|⟨·⟩−n|ϕ| ≤ ∥⟨·⟩nψ∥Lq(Rd)∥ϕ∥⟨·⟩n Lp(Rd)

for all ψ ∈ S (Rd) and ϕ ∈ B with q = (1 − p−1)−1 if p > 1 and otherwise q = ∞. So
not only is the map S (Rd) ∋ ψ 7→

∫
Rd ψϕ a well-defined linear functional, but since

multiplication by ⟨·⟩n is continuous on S (Rd) and S (Rd) ↪→ Lq(Rd) continuously,
∥⟨·⟩nψ∥Lq(Rd) is bounded by a constant times a semi-norm of S (Rd). This firstly gives
that S (Rd) ∋ ψ 7→

∫
Rd ψϕ is continuous for each ϕ ∈ B, and secondly that the so

defined injection B ↪→ S ′(Rd) is continuous.
For the spaces ⟨·⟩nBCm(Rd) the proposition follows from ⟨·⟩nBCm(Rd) ↪→ ⟨·⟩nL∞(Rd)

continuously. ■

Thus we have a wealth of "normal" functions in S ′(Rd). The strength of these
injections is that the operations in Proposition 3.2.5 can be defined for all these func-
tions and in general on tempered distributions through duality. We have here need of
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the transpose identity for these operations: For a map T : S (Rd) → S (Rd) we call
S : S (Rd) → S (Rd) the formal transpose of T if∫

Rd
(Tϕ)ψ =

∫
Rd

ϕ(Sψ)

for all ϕ, ψ ∈ S (Rd). If S is continuous and linear, then we have a real transpose of S
defined as St : S ′(Rd) ∋ ϕ 7→ ϕ ◦ S, which would be weak*-continuous. But then if both
T and S are continuous and linear, we would have

⟨Stϕ, ψ⟩S ′(Rd),S (Rd) = ⟨ϕ, Sψ⟩S ′(Rd),S (Rd) = ⟨Tϕ, ψ⟩S ′(Rd),S (Rd)

for all ϕ, ψ ∈ S (Rd). Identifying now St with T on S ′(Rd) we get an extension of T to
S ′(Rd).

Using this methodology on the operations in Proposition 3.2.5, whom all have formal
transpose operators, gives:

Definition 3.2.11. We define the following operators on S ′(Rd):

(i) ∂γ := ((−1)|γ|∂γ|S (Rd))
t, γ ∈ Nd

0.

(ii) F := F|t
S (Rd)

and F−1 := F−1|t
S (Rd)

.

(iii) Pointwise multiplication by a fixed ϕ ∈ Om(Rd) as the transpose of pointwise
multiplication by ϕ on S (Rd).

(iv) Convolution with a fixed ψ ∈ S (Rd) as the transpose of convolution by (−id)∗ψ

on S (Rd).

(v) Affine change of coordinates by the transpose of the inverse affine change of coor-
dinates multiplied by the determinant of the inverse.

Remark! 3.2.12. With regards to convolution we know ϕ ∗ψ = ψ ∗ϕ when both elements
are Schwartz functions, which implies that extending left or right convolution to S ′(Rd)

gives the same operator and we shall write ϕ ∗ ψ = ψ ∗ ϕ even if one element is a
tempered distribution.

Remark! 3.2.13. By definition relations like τyFϕ = F (⊗d
j=1Eyj ϕ) for ϕ ∈ S (Rd) extend

to tempered distributions.

Sometimes we will add "distributional" before the operations in Definition 3.2.11 to
differentiate them from classical operations, e.g. distributional derivatives.

Proposition 3.2.14. All the operators in Definition 3.2.11 are continuous on S ′(Rd).

Proof. Note standard results gives that the operators are linear and weak*-continuous,
but since they all are transpose operators of bounded operators, then they are also
continuous on the strong topology on S ′(Rd). ■

We end this introduction by noting that S ′(Rd) contains many "abnormal" objects.
One example is the Dirac delta distribution δ defined by

⟨δ, ϕ⟩S ′(Rd),S (Rd) = ϕ(0).
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No tempered distribution arising from a representation like the one in Proposition 3.2.10
is equal to δ. Even though the Dirac delta δ can be seen as a representation of the point
measure at 0 in S (Rd), the derivative ∂γδ, γ ∈ Nd

0 \ {0}, has no representation as an
integral.

The Dirac delta δ is often single out as an extremely useful tempered distribution.
One example is through the concept of a fundamental solution. Consider a linear partial
differential operator T := ∑γ∈Nd

0
|γ|≤N

ϕγ∂γ with N ∈ N0 and ϕγ ∈ Om(Rd) for γ ∈ Nd
0, |γ| ≤

N. Looking at this operator distributionally, we may ask ourselves the question of
the existence of some ψ ∈ S ′(Rd) such that Tψ = δ. Such a distribution is called a
fundamental solution of the operator. This is especially useful if all the coefficients are
constants, since then for every ω ∈ S (Rd) we would have:

T(ω ∗ ψ) = ω ∗ Tψ = ω ∗ δ = ω.

3.2.1 Coordinate Representation of Schwartz Functions and Tempered Dis-
tributions

For the advanced results on the Schwartz space and space of tempered distributions we
need a coordinate representation of both in our modulated tight Gabor frame.

Lemma 3.2.15. Let ϑ ∈ Om(R2d) be a phase function.
If (aα̃)α̃∈Z2d ∈ CZ2d

satisfies

sup
α̃∈Z2d

⟨α⟩k⟨α′⟩l |aα̃| < ∞

for all k, l ∈ N0, then ∑α̃∈Z2d aα̃Gα̃,ϑ converges absolutely in S (Rd).
Additionally, for ϕ ∈ S (Rd) we have

sup
α̃∈Z2d

⟨α⟩k⟨α′⟩l |⟨ϕ,Gα̃,ϑ⟩S ′(Rd),S (Rd)| ≤ Cϑ,k,l∥ϕ∥S (Rd),k̃k,ϑ ,2l

for all k, l ∈ N0 and some k̃k,ϑ ∈ N0, and ϕ = ∑α̃∈Z2d⟨ϕ,Gα̃,ϑ⟩S ′(Rd),S (Rd)Gα̃,ϑ.

Remark! 3.2.16. By absolute convergence we mean that for any of the semi-norms
∥ · ∥S (Rd),n,m on S (Rd) one gets:

∑
α̃∈Z2d

|aα̃|∥Gα̃,ϑ∥S (Rd),n,m < ∞

Since S (Rd) is complete, this implies that the sum converges to some element of S (Rd)

no matter the truncations.

Proof. For n ∈ N and γ ∈ Nd we have by Leibniz’s rule and Peetre’s inequality:

sup
Rd

⟨·⟩n|∂γGα̃,ϑ| ≤ Cn,|γ|⟨α⟩n sup
Rd

⟨τα(·)⟩n ∑
δ∈Nd

δ≤γ

|∂δ(ϑ(·, α)τα(⊗du))|⟨α′⟩|γ−δ|

≤ Cn,|γ|⟨α⟩ñn,ϑ⟨α′⟩|γ|
(3.2.1)

with ñn,ϑ ∈ N0 possibly larger than n. Taking into account the criteria on the coefficients
stated in the lemma, we see that the sum ∑α̃∈Z2d aα̃Gα̃,ϑ must converge absolutely in
S (Rd).
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As for the second half of the lemma, we already know that

ϕ = ∑
α̃∈Z2d

⟨ϕ,Gα̃,ϑ⟩S ′(Rd),S (Rd)Gα̃,ϑ

holds in L2(Rd) by Lemma 3.1.2, so if we can prove a uniform estimate on

⟨α⟩k⟨α′⟩l |⟨ϕ,Gα̃,ϑ⟩S ′(Rd),S (Rd)|

for arbitrary k, l ∈ N, then we are done by the first part of the lemma. Luckily, such an
estimate follows from integration by parts, properties of the exponential function, and
Peetre’s inequality:

⟨α⟩k⟨α′⟩l |⟨ϕ,Gα̃,ϑ⟩S ′(Rd),S (Rd)| = (2π)−
d
2 ⟨α⟩k

∣∣∣∣∫
Rd

ϕϑ(·, α)τα

(
⊗du(1 − ∆)l(⊗d

j=1E−α′j
)
)∣∣∣∣

≤ (2π)−
d
2 ⟨α⟩k

∫
Rd

∣∣∣(1 − ∆)l
(

ϕϑ(·, α)τα(⊗du)
)∣∣∣

≤ Cϑ,k,l∥ϕ∥S (Rd),k̃k,ϑ ,2l
(3.2.2)

■

Lemma 3.2.17. Let ϑ ∈ Om(R2d) be a phase function.
If (aα̃)α̃∈Z2d ∈ CZ2d

satisfies

sup
α̃∈Z2d

⟨α⟩−k⟨α′⟩−l |aα̃| < ∞

for some k, l ∈ N0, then ∑α̃∈Z2d aα̃Gα̃,ϑ converges absolutely in S ′(Rd).
Moreover, for ϕ ∈ S ′(Rd) there exists k, l ∈ N0 such that

sup
α̃∈Z2d

⟨α⟩−k⟨α′⟩−l |⟨ϕ,Gα̃,ϑ⟩S ′(Rd),S (Rd)| < ∞

and ϕ = ∑α̃∈Z2d⟨ϕ,Gα̃,ϑ⟩S ′(Rd),S (Rd)Gα̃,ϑ.

Proof. Suppose (aα̃)α̃∈Z2d ∈ CZ2d
satisfies the criteria in the lemma. Then by Lemma

3.2.15, for every ψ ∈ S (Rd) we have

∑
α̃∈Z2d

|aα̃⟨Gα̃,ϑ, ψ⟩S ′(Rd),S (Rd)| ≤ C∥ψ∥S (Rd),k̃k,ϑ ,2l

for some k, l ∈ N0 not dependent on ψ. This shows that

S (Rd) ∋ ψ 7→ ∑
α̃∈Z2d

aα̃⟨Gα̃,ϑ, ψ⟩S ′(Rd),S (Rd)

defines a continuous linear functional on S (Rd). Furthermore, for a bounded set Ω ⊂
S (Rd), the estimates used above ensures that

∑
α̃∈Z2d

sup
ψ∈Ω

|aα̃⟨Gα̃,ϑ, ψ⟩S ′(Rd),S (Rd)| < ∞,

whence the sum ∑α̃∈Z2d aα̃Gα̃,ϑ converges absolutely in S ′(Rd).
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Given ϕ ∈ S ′(Rd) and using the estimate (3.2.1) we get

|⟨ϕ,Gα̃,ϑ⟩S ′(Rd),S (Rd)| ≤ Cϕ∥Gα̃,ϑ∥S(Rd),k,l ≤ Cϕ⟨α⟩k̃k,ϑ⟨α′⟩l

for some k, l ∈ N. Hence ∑α̃∈Z2d⟨ϕ,Gα̃,ϑ⟩S ′(Rd),S (Rd)Gα̃,ϑ exists as a tempered distribu-
tion. Lemma 3.2.15 and duality now shows that〈

∑
α̃∈Z2d

⟨ϕ,Gα̃,ϑ⟩S ′(Rd),S (Rd)Gα̃,ϑ, ψ

〉
S ′(Rd),S (Rd)

=

〈
ϕ, ∑

α̃∈Z2d

⟨ψ,Gα̃,ϑ⟩S ′(Rd),S (Rd)Gα̃,ϑ

〉
S ′(Rd),S (Rd)

= ⟨ϕ, ψ⟩S ′(Rd),S (Rd)

for every ψ ∈ S (Rd), finishing the proof. ■

These results also gives us a frame version of Poissons summation formula for
Schwartz functions. For any ϕ ∈ S (Rd) and α ∈ Zd, then either by using Lemma
3.2.17 and ταδ, or Lemma 3.2.15, the easier choice, we get

ϕ(α) = ∑
α′∈Zd

⟨ϕ,Gα̃,ϑ⟩S ′(Rd),S (Rd)(2π)−
d
2 ϑ(α, α).

Thus
∑

α∈Zd

(2π)
d
2 ϑ(α, α)ϕ(α) = ∑

α̃∈Z2d

⟨ϕ,Gα̃,ϑ⟩S ′(Rd),S (Rd)

with both sums absolutely convergent by the rapid decay of the elements. Of course ϑ

is a phase function in Om(R2d).

3.2.2 Fundamental Theorems for Schwartz Functions and Tempered Distri-
butions

With the basics of S (Rd) and S ′(Rd) understood and having the important tool of our
frame, it has become time to prove some advanced results.

Corollary 3.2.18. ⊗dS (Rd) is dense in S (Rd) and S ′(Rd).

Proof. Choosing ϑ ≡ 1, the corollary follows from Lemma 3.2.15 and Lemma 3.2.17. ■

Theorem 3.2.19. S (Rd) and S ′(Rd) are reflexive.

Proof. Clearly S (Rd) ↪→ (S ′(Rd))′ continuously by the map

S (Rd) ∋ ϕ 7→ ⟨·, ϕ⟩S ′(Rd),S (Rd),

i.e. the evaluation maps.
Suppose ϕ is a continuous linear functional on S ′(Rd) and let ϑ ∈ Om(R2d) be a

phase function. Then

ϕ(ψ) = ∑
α̃∈Z2d

ϕ(Gα̃,ϑ)⟨ψ,Gα̃,ϑ⟩S ′(Rd),S (Rd)
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for any ψ ∈ S ′(Rd) by Lemma 3.2.17, so ϕ = ∑α̃∈Z2d ϕ(Gα̃,ϑ)Gα̃,ϑ with weak*-convergence
in (S ′(Rd))′. But using Lemma 3.2.15

|ϕ(Gα̃,ϑ)| ≤ Cϕ∥Gα̃,ϑ∥S ′(Rd),Ω = Cϕ sup
ψ∈Ω

|⟨Gα̃,ϑ, ψ⟩|S ′(Rd),S (Rd)

≤ Cϕ,Ω,k,l⟨α⟩−k⟨α′⟩−l ,

where Ω is some bounded subset of S (Rd) dependent on ϕ and k, l ∈ N0 are arbitrary.
So ∑α̃∈Z2d ϕ(Gα̃,ϑ)Gα̃,ϑ converges absolutely in S (Rd) and by continuity of S (Rd) ↪→
(S ′(Rd))′ we must have ϕ ∈ S (Rd), finishing the proof. ■

Now comes a big one: The Schwartz Kernel Theorem. Before we prove it, we need
to define the notion of a Schwartz kernel.

Definition 3.2.20. (Schwartz Kernel) Fix a map T : S (Rd1) → S ′(Rd2). We call KT ∈
S ′(Rd1+d2) a Schwartz kernel of T if

⟨Tϕ, ψ⟩S ′(Rd2 ),S (Rd2 ) = ⟨KT, ψ ⊗ ϕ⟩S ′(Rd1+d2 ),S (Rd1+d2 )

for all ϕ ∈ S (Rd1), ψ ∈ S (Rd2).

Theorem 3.2.21. (The Schwartz Kernel Theorem) For each T ∈ B(S (Rd1), S ′(Rd2)) there
exists a unique Schwartz kernel KT ∈ S ′(Rd1+d2), and the map

B(S (Rd1), S ′(Rd2)) ∋ T 7→ KT

defines a topological vector space isomorphism of B(S (Rd1), S ′(Rd2)) and S ′(Rd1+d2).

Proof. Uniqueness of Schwartz kernels is trivial by Corollary 3.2.18. Let us show exis-
tence. Fix two phase functions ϑ1 ∈ Om(R2d1), ϑ2 ∈ Om(R2d2). Applying Lemma 3.2.15
twice, we get the following identity

⟨Tϕ, ψ⟩S ′(Rd2 ),S (Rd2 )

= ∑
α̃∈Z2d2 ,β̃∈Z2d1

⟨TGβ̃,ϑ1
,Gα̃,ϑ2⟩S ′(Rd2 ),S (Rd2 )⟨Gα̃,ϑ2 ⊗ Gβ̃,ϑ1

, ψ ⊗ ϕ⟩S ′(Rd1+d2 ),S (Rd1+d2 ),

(3.2.3)
which holds for all ϕ ∈ S (Rd1), ψ ∈ S (Rd2). This leads us to make the ansatz that KT

should be defined by the expansion:

∑
α̃∈Z2d2 ,β̃∈Z2d1

⟨TGβ̃,ϑ1
,Gα̃,ϑ2⟩S ′(Rd2 ),S (Rd2 )Gα̃,ϑ2 ⊗ Gβ̃,ϑ1

.

Indeed, the coefficients satisfy

|⟨TGβ̃,ϑ1
,Gα̃,ϑ2⟩S ′(Rd2 ),S (Rd2 )|

≤ CT∥Gβ̃,ϑ1
∥S (Rd1 ),n,m∥Gα̃,ϑ2∥S (Rd2 ),n,m ≤ CT(⟨β⟩⟨β′⟩⟨α⟩⟨α′⟩)l

using the Banach-Steinhaus Theorem and (3.2.1) with n, m ∈ N0 determined by T and
l ∈ N0 determined by both T and ϑ1, ϑ2. Thus Lemma 3.2.17 tells us that

KT := ∑
α̃∈Z2d2 ,β̃∈Z2d1

⟨TGβ̃,ϑ1
,Gα̃,ϑ2⟩S ′(Rd2 ),S (Rd2 )Gα̃,ϑ2 ⊗ Gβ̃,ϑ1
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is a well-defined tempered distribution. From (3.2.3) and the absolute convergence of
the involved sums, we conclude that T has Schwartz kernel KT. The mapping of T into
KT is clearly linear by the explicit formula for KT.

Second step is to show that the map B(S (Rd1), S ′(Rd2)) ∋ T 7→ KT is surjective.
Let K ∈ S ′(Rd1+d2). Then the map TK : S (Rd1) → S ′(Rd2) defined by

TKϕ = ⟨K, (·)⊗ ϕ⟩S ′(Rd1+d2 ),S (Rd1+d2 )

for ϕ ∈ S (Rd1) is a continuous operator with Schwartz kernel K if the tensor product
⊗ : S (Rd2)×S (Rd1) → S (Rd1+d2) is continuous. But this follows from the elementary
estimate

∥ψ ⊗ ϕ∥S (Rd1+d2 ),n,m ≤ Cn∥ψ∥S (Rd2 ),n,m∥ϕ∥S (Rd1 ),n,m

for all ϕ ∈ S (Rd1), ψ ∈ S (Rd2) and n, m ∈ N0. Whence we get surjectivity.
In the third and final step we show continuity. Here we note that the strong topology

on B(S (Rd1), S ′(Rd2)) is induced by the semi-norms

∥ · ∥B(S (Rd1 ),S ′(Rd2 )),Ω,Θ : B(S (Rd1), S ′(Rd2)) ∋ T 7→ sup
ϕ∈Ω,ψ∈Θ

|⟨Tϕ, ψ⟩S ′(Rd2 ),S (Rd2 )|,

where Ω ranges over bounded subsets of S (Rd1) and Θ over bounded subsets of
S (Rd2).

Assume (Kj)j∈I is a convergent net of Schwartz kernels in S ′(Rd1+d2) with limit K,
and let (TKj)j∈I , TK be the corresponding operators. Then for bounded sets Ω ⊆ S (Rd1)

and Θ ⊆ S (Rd2), the set

Υ := {ϕ ⊗ ψ|ϕ ∈ S (Rd1), ψ ∈ S (Rd2)}

is bounded in S (Rd1+d2), implying by hypothesis that:

∥TK − TKj∥B(S (Rd1 ),S ′(Rd2 )),Ω,Θ = ∥K − Kj∥S ′(Rd1+d2 ),Υ
j→ 0

Now assume that (T)j∈I is a net in B(S (Rd1), S ′(Rd2)) converging to T, and let
(KTj)j∈I , KT be the corresponding Schwartz kernels. Then for Φ ∈ S (Rd1+d2) we have

⟨KT − KTj , Φ⟩S ′(Rd1+d2 ),S (Rd1+d2 )

= ∑
α̃∈Z2d2 ,β̃∈Z2d1

⟨(T − Tj)Gβ̃,ϑ1
,Gα̃,ϑ2⟩S ′(Rd2 ),S (Rd2 )⟨Gα̃,ϑ2 ⊗ Gβ̃,ϑ1

, Φ⟩S ′(Rd1+d2 ),S (Rd1+d2 ),

for every j ∈ I. We will then use dominated convergence to take the limit in j under the
sum. The sets

Ω := {|⟨Gα̃,ϑ2 ⊗ Gβ̃,ϑ1
, Φ⟩S ′(Rd1+d2 ),S (Rd1+d2 )|

1
3 Gβ̃,ϑ1

|α̃ ∈ Z2d2 , β̃ ∈ Z2d1}

and
Θ := {|⟨Gα̃,ϑ2 ⊗ Gβ̃,ϑ1

, Φ⟩S ′(Rd1+d2 ),S (Rd1+d2 )|
1
3 Gα̃,ϑ2 |α̃ ∈ Z2d2 , β̃ ∈ Z2d1}

are bounded sets in S (Rd1) and S (Rd2) respectively by the rapid decay of the coeffi-
cients ⟨Gα̃,ϑ2 ⊗ Gβ̃,ϑ1

, Φ⟩S ′(Rd1+d2 ),S (Rd1+d2 ). Hence

sup
α̃∈Z2d2 ,β̃∈Z2d1

|⟨Gα̃,ϑ2 ⊗ Gβ̃,ϑ1
, Φ⟩S ′(Rd1+d2 ),S (Rd1+d2 )|

2
3 |⟨(T − Tj)Gβ̃,ϑ1

,Gα̃,ϑ2⟩S ′(Rd2 ),S (Rd2 )|
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j→ 0.

Furthermore,

∑
α̃∈Z2d2 ,β̃∈Z2d1

|⟨Gα̃,ϑ2 ⊗ Gβ̃,ϑ1
, Φ⟩S ′(Rd1+d2 ),S (Rd1+d2 )|

1
3 < ∞.

Thus using dominated convergence we see that

|⟨KT − KTj , Φ⟩S ′(Rd1+d2 ),S (Rd1+d2 )|

≤ ∑
α̃∈Z2d2 ,β̃∈Z2d1

|⟨(T − Tj)Gβ̃,ϑ1
,Gα̃,ϑ2⟩S ′(Rd2 ),S (Rd2 )||⟨Gα̃,ϑ2 ⊗ Gβ̃,ϑ1

, Φ⟩S ′(Rd1+d2 ),S (Rd1+d2 )|

j→ 0.

Lemma 3.2.15 shows that the necessary estimates can be made uniformly for Φ in a

bounded set, so by the above we conclude that Kj
j→ K in S ′(Rd1+d2). ■

As a corollary of the above we get that the tensor product of tempered distributions
has an extension as a tempered distribution on a larger Schwartz space. But more
than that, we get a distributional Fubini’s Theorem. Note we make use of some formal
variables in order to state the theorem.

Theorem 3.2.22. (Fubini’s Theorem) Fix any two distributions ϕ ∈ S ′(Rd1), ψ ∈ S ′(Rd2).
Then ϕ ⊗ ψ has a unique extension in S ′(Rd1+d2).

Moreover, for every Φ ∈ S (Rd1+d2) both

Rd1 ∋ y 7→ ⟨ψ, Φ(·, y)⟩S ′(Rd2 ),S (Rd2 )

and
Rd2 ∋ x 7→ ⟨ϕ, Φ(x, ·)⟩S ′(Rd1 ),S (Rd1 )

defines Schwartz functions, and

⟨ϕ ⊗ ψ, Φ⟩S ′(Rd1+d2 ),S (Rd1+d2 ) = ⟨ϕy, ⟨ψ, Φ(·, y)⟩S ′(Rd2 ),S (Rd2 )⟩S ′(Rd1 ),S (Rd1 )

= ⟨ψx, ⟨ϕ, Φ(x, ·)⟩S ′(Rd1 ),S (Rd1 )⟩S ′(Rd2 ),S (Rd2 ).

Proof. The tensor product ϕ⊗ψ defines a separately continuous bilinear form on S (Rd1)×
S (Rd2), which then can be subjected to a use of the Schartz Kernel Theorem 3.2.21,
showing the existence of a unique K ∈ S ′(Rd1+d2) such that

⟨ϕ, ω1⟩S ′(Rd1 ),S (Rd1 )⟨ψ, ω2⟩S ′(Rd2 ),S (Rd2 ) = ⟨K, ω1 ⊗ ω2⟩S ′(Rd1+d2 ),S (Rd1+d2 )

for all ω1 ∈ S (Rd1), ω2 ∈ S (Rd2). We identify K with ϕ ⊗ ψ, as already done in the
theorem.

As for the second statement, fix some phase functions ϑ1 ∈ Om(R2d1), ϑ2 ∈ Om(R2d2).
By Lemma 3.2.15 we have

⟨ψ, Φ(·, y)⟩S ′(Rd2 ),S (Rd2 )

= ∑
β̃∈Z2d1

(
∑

α̃∈Z2d2

⟨Φ,Gα̃,ϑ2 ⊗ Gβ̃,ϑ1
⟩S ′(Rd1+d2 ),S (Rd1+d2 )⟨ψ,Gα̃,ϑ2⟩S ′(Rd2 ),S (Rd2 )

)
Gβ̃,ϑ1

(y)
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for all y ∈ Rd1 . Combining Lemma 3.2.15 and Lemma 3.2.17, we see that the above
coefficients satisfy the sufficient criteria in Lemma 3.2.15 for the above sum to converge
to a Schwartz function. It is now trivial by the expansions to show that

⟨ϕ ⊗ ψ, Φ⟩S ′(Rd1+d2 ),S (Rd1+d2 ) = ⟨ϕy, ⟨ψ, Φ(·, y)⟩S ′(Rd2 ),S (Rd2 )⟩S ′(Rd1 ),S (Rd1 ).

The statements with ϕ and ψ interchanged follows by similar arguments. ■

Our last theorem gives a sort of minimality of the extension of calculus to tempered
distributions.

Theorem 3.2.23. (Structure Theorem) Each ϕ ∈ S ′(Rd) is the distributional derivative of
a continuous function with polynomial growth, i.e. there exists an n ∈ N0, γ ∈ Nd

0 and
ψ ∈ ⟨·⟩nBC(Rd) such that ∂γψ = ϕ in terms of distributions.

Proof. Our strategy is to take the convolution of our frame elements with a suitably
rotated fundamental solution and use the expansion in Lemma 3.2.17. Fix some phase
function ϑ ∈ Om(R2d).

Define

HN : R ∋ x 7→ xN−1

(N − 1)!
1R≥0(x)

for N ∈ N \ {0}. Then ∂N HN = δ with δ being the Dirac-delta distribution, i.e. HN is a
fundamental solution for the differential operator ∂N .

Now we make the ansatz that for N ∈ N large enough, the following will be the
continuous function we are looking for:

ψ := ∑
α̃∈Z2d

⟨ϕ,Gα̃,ϑ⟩S ′(Rd),S (Rd)Gα̃,ϑ ∗ (⊗d
j=1 sign(αj)

N(sign(αj)id)∗HN) (3.2.4)

Here we let sign(0) = 1. The steps to be taken are now that the sum converges to a
continuous function with polynomial growth, that the distributional derivative can be
taken under the sum, and finally use that

∂(N,...,N)Gα̃,ϑ ∗ (⊗d
j=1 sign(αj)

N(sign(αj)id)∗HN) = Gα̃,ϑ (3.2.5)

and Lemma 3.2.17.
For the convergence part, we want the sum (3.2.4) to converge absolutely in ⟨·⟩MBC(Rd)

for some M ∈ N. From Lemma 3.2.17 we know for some k, l ∈ N that

|⟨ϕ,Gα̃,ϑ⟩S ′(Rd),S (Rd)| ≤ Cϕ⟨α⟩k⟨α′⟩l .

Furthermore, for x ∈ Rd and if N is large enough we have

⟨α⟩k+d+1⟨α′⟩l+d+1|Gα̃,ϑ ∗ (⊗d
j=1 sign(αj)

N(sign(αj)id)∗HN)(x)|

= ⟨α⟩k+d+1

∣∣∣∣∣
∫

Rd
τx−α(−id)∗(⊗d

j=1 sign(αj)
N(sign(αj)id)∗HN)

==========(ϑ(·+ α, α)⊗d u)(1 − ∆)l+d+1(⊗d
j=1Eα′j

)

∣∣∣∣∣
≤ ⟨α⟩k+d+1

∫
Rd

∣∣∣(1 − ∆)l+d+1(τx−α(−id)∗(⊗d
j=1 sign(αj)

N(sign(αj)id)∗HN)

46



Mikkel Hviid Thorn

==========(ϑ(·+ α, α)⊗d u)
)∣∣∣

≤ Cl⟨α⟩k+d+1 ∑
δ∈Nd

|δ|≤2l

∑
σ∈Nd

|σ|≤2l+2d+2

∫
Rd

∣∣∣τx−α(−id)∗(∂δ(⊗d
j=1(sign(αj)id)∗HN))

∣∣∣
==========

∣∣∣∂σ(ϑ(·+ α, α)⊗d u)
∣∣∣.

Now supp(⊗du) ⊂ (−1, 1)d and supp(⊗d
j=1(sign(αj)id)∗HN) = ∏d

j=1 sign(αj)R≥0, so
the above is only non-zero when 1 + sign(αj)xj ≥ |αj| for all j = 1, . . . , d. This implies
that

⟨α⟩ ≤ C⟨x⟩

on the support of the α̃-term, hence

⟨α⟩k+d+1⟨α′⟩l+d+1|Gα̃ ∗ (⊗d
j=1 sign(αj)

N(sign(αj)id)∗HN)(x)| ≤ Cl,k,N⟨x⟩M

for M large enough. Thus each term in the sum (3.2.4) is contained in ⟨·⟩MBC(Rd) and
the sum converges absolutely in this space.

Since ⟨·⟩MBC(Rd) ↪→ S ′(Rd) continuously, see Proposition 3.2.10, the sum con-
verges in S ′(Rd), so we may take the distributional derivative term by term. Factoring
in (3.2.5) we are done. ■

3.3 Pseudo-differential Calculus

Pseudo-differential operators generalize a large class of operators including some mul-
tiplication operators and linear partial differential operators. Simply put we "sandwich"
a function between its Fourier transform and its inverse, translating something that is
easy to interpret into a perhaps obscure operator. The function may be a classical observ-
able, which we quantize into a pseudo-differential operator, so it becomes a quantum
observable.

We start by defining the Weyl transform:

Definition 3.3.1. (Weyl Transform) For t ∈ R and a phase function ϑ ∈ Om(R2d) we
define the (t, ϑ)-Weyl transform of Φ ∈ S (R2d) by

T t,ϑ
WeylΦ(x, y) = (2π)−d

∫
Rd

eiξ·(x−y)ϑ(x, y)Φ(tx + (1 − t)y, ξ)dξ

for x, y ∈ Rd.

The Weyl transform is a continuous linear operator on S (R2d): It is the composition
of a partial Fourier transform, a linear change of coordinates, and a multiplication by
a Om(R2d)-function. It also has an inverse, the (t, ϑ)-Wigner transform, which for Φ ∈
S (R2d) is given by

T t,ϑ
WignerΦ(x, ξ) =

∫
Rd

eiy·ξϑ(x − (1 − t)y, x + ty)Φ(x − (1 − t)y, x + ty)dy

for all x, ξ ∈ Rd.
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Similarly to other operators on Schwartz space, we can extend the Weyl transform to
tempered distributions using the transpose identity. Here the formal transpose of T t,ϑ

Weyl
is given by

(2π)−d(idS (Rd) ⊗ (−idRd)∗)T t,ϑ
WignerΦ(x, ξ)

= (2π)−d
∫

Rd
e−iy·ξϑ(x − (1 − t)y, x + ty)Φ(x − (1 − t)y, x + ty)dy

for Φ ∈ S (R2d) and x, ξ ∈ Rd. Thus it follows that a suitable definition of the (t, ϑ)-Weyl
transform on S ′(R2d) is the real transpose of (2π)−d(idS (Rd) ⊗ (−idRd)∗)T t,ϑ

Wigner. This
results in the Weyl transform being a linear homeomorphism of S ′(R2d). Furthermore,
the Wigner transform can be extended in the same manner and becomes the inverse of
the Weyl transform on S ′(R2d).

Definition 3.3.2. (Pseudo-differential Operator) Fix t ∈ R and a phase function ϑ ∈
Om(R2d). Then we define the (t, ϑ)-quantization

Opt,ϑ : S ′(R2d) → B(S (Rd), S ′(Rd))

in the following manner: For Φ ∈ S ′(R2d), Opt,ϑ(Φ) : S (Rd) → S ′(Rd) is the unique
continuous linear operator with Schwartz kernel T t,ϑ

WeylΦ.
The operator Opt,ϑ(Φ) is called a pseudo-differential operator and we call Φ the

symbol of Opt,ϑ(Φ).

Remark! 3.3.3. The choices t = 1 or t = 1
2 are the most popular.

The case t = 1 is interesting since the symbol only impacts the outer position vari-
able, making it easier to deal with multiplication operators. When t = 1 we call Op1,ϑ
the ϑ-standard quantization.

For t = 1
2 our interest comes from symmetry reasons, which we will elaborate on

shortly. We shall also mostly be interested in this case, and we omit t in the notation
and call Opϑ the ϑ-Weyl-quantization.

The space of tempered distributions S ′(R2d) is vast and we only study the quantiza-
tion of some. Two particularly interesting and simple sets of operators are the position
and momentum operators. These will have a role to play beyond this chapter.

Fix j ∈ {1, . . . , d}. The jth position operator Xϑ,j is defined as the (t, ϑ)-quantization
of the symbol R2d ∋ (x, ξ) 7→ xj, while the jth momentum operator Πϑ,j is defined by
the symbol R2d ∋ (x, ξ) 7→ ξ j. Thus they both depend on the phase function chosen for
the quantization. A short calculation gives

Xϑ,jϕ(x) = ϑ(x, x)xjϕ(x)

and
Πϑ,jϕ(x) = −i (ϑ(x, x)∂ej + ∂ed+j ϑ(x, x)) ϕ(x)

for ϕ ∈ S (Rd) and x ∈ Rd. Both have trivial continuous extensions to S ′(Rd).

3.3.1 Hörmander Symbols

The symbols for which we develop a pseudo-differential calculus are called Hörmander
symbols, which are smooth functions of tempered growth.
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Definition 3.3.4. (Tempered Weight) A tempered weight is a positive continuous func-
tion M : R2d → (0, ∞) such that there exists sM, CM > 0 for which

M(x + y, ξ + ζ) ≤ CM M(x, ξ)⟨(y, ζ)⟩sM

holds for all x, y, ξ, ζ ∈ Rd. We define the standard tempered weight by M0 : R2d ∋
(x, ξ) 7→ ⟨ξ⟩.

The space of tempered weights is denoted by M(R2d), and on M(R2d) we define the
relation ≤M(R2d) by M1 ≤M(R2d) M2 if and only if M1 ≤ CM2 pointwise for M1, M2 ∈
M(R2d)

For a tempered weight M ∈ M(R2d) we have a generalized Peetre’s inequality:

M(x, ξ)p M(y, ζ)−p ≤ C|p|
M ⟨(x − y, ξ − ζ)⟩sM |p| (3.3.1)

for p ∈ R, x, y, ξ, ζ ∈ Rd. Furthermore

C−1
M M(0, 0)⟨(x, ξ)⟩−sM ≤ M(x, ξ) ≤ CM M(0, 0)⟨(x, ξ)⟩sM

for x, ξ ∈ Rd. Also M(R2d) is closed under multiplication and taking real powers, and
these operations act as expected w.r.t. the order ≤M(R2d).

Definition 3.3.5. (Hörmander Class) The Hörmander class with tempered weight M ∈
M(R2d) is defined as

SM(R2d) :=

{
Φ ∈ C∞(R2d)| sup

x,ξ∈Rd
M(x, ξ)−1|∂γΦ(x, ξ)| < ∞, ∀γ ∈ N2d

0

}
.

On SM(R2d) we define the semi-norms:

∥ · ∥SM(R2d),n : SM(R2d) ∋ Φ 7→ ∑
γ∈Nd

0
|γ|≤n

sup
x,ξ∈Rd

M(x, ξ)−1|∂γΦ(x, ξ)|

for all n ∈ N0.
Moreover, we define S∞(R2d) :=

⋃
M∈M(R2d) SM(R2d).

Proposition 3.3.6. SM(R2d) is a Fréchet space with the Heine-Borel property.

Proof. We skip many of the details since these mirror Proposition 3.2.2. See also [30,
Proposition 3.1.6.].

The family of semi-norms we defined on SM(R2d) are clearly separating and there
is countably many of them, hence the induced topology is metrizable. If we consider
some Cauchy sequence in SM(R2d), then the sequence and the sequences of derivatives
converge uniformly on compact sets to some smooth function and its derivatives respec-
tively. Then by the arguments in the proof of Proposition 3.2.2 we find that the limit is
in SM(R2d) and so is the convergence. The Heine-Borel property is then a consequence
of Arzelá-Ascoli Theorem and a diagonalization argument. ■

Proposition 3.3.7. S (R2d) ↪→ SM1(R
2d) ↪→ SM2(R

2d) ↪→ S ′(R2d) continuously for any
M1, M2 ∈ M(R2d) with M1 ≤M(R2d) M2.

Proof. The continuous injections S (R2d) ↪→ SM1(R
2d) and SM2(R

2d) ↪→ S ′(R2d) are
simple extensions of the proofs of Proposition 3.2.3 and Proposition 3.2.10, and SM1(R

2d)

↪→ SM2(R
2d) is trivial. ■

Later on in Lemma 3.3.8 we essentially prove that S (R2d) is dense in SM(R2d).

49



Chapter 3. Tempered Distributions and Pseudo-differential Calculus

3.3.2 Coordinate Representation of Pseudo-differential Operators

When dealing with Schwartz functions and tempered distributions we had a lot of suc-
cess applying coordinate representations. One such application is the expansion

Tϕ = ∑
α̃,β̃∈Z2d

⟨TGβ̃,ϑ,Gα̃,ϑ⟩S ′(Rd),S (Rd)⟨ϕ,Gβ̃,ϑ⟩S ′(Rd),S (Rd)Gα̃,ϑ

for any T ∈ B(S (Rd), S ′(Rd)), ϕ ∈ S (Rd), and phase function ϑ ∈ Om(R2d), with the
sum converging absolutely in S ′(Rd). Then a reasonable hypothesis is that if the matrix
elements ⟨TGβ̃,ϑ,Gα̃,ϑ⟩S ′(Rd),S (Rd) have some nice properties then so must the map T and
conversely. Note that these matrix elements are really the coordinates of the Schwartz
kernel of T.

Specifically, we consider the Hörmander symbols. In order to exploit the tempered
weights governing the Hörmander classes and make sharp estimate on the matrix ele-
ments, we need to make some assumptions on the phase function ϑ ∈ Om(R2d).

The first assumption is that ϑ is Hermitian, meaning that ϑ(x, y) = ϑ(y, x) for all
x, y ∈ Rd. The second is that ϑ has the following triangle property: The function

η : R3d ∋ (x, y, z) 7→ ϑ(x, y)ϑ(y, z)ϑ(z, x)

satisfies that for every γ ∈ N3d
0 there exists some nγ ∈ N0 such that

sup
x,y,z∈Rd

(⟨x − y⟩⟨y − z⟩)−nγ |∂γη(x, y, z)| < ∞.

Note η is cyclic:
η(x, y, z) = η(z, x, y) = η(y, z, x)

for all x, y, z ∈ Rd.

Lemma 3.3.8. Let ϑ ∈ Om(R2d) be a Hermitian phase function satisfying the triangle property
and fix t ∈ R, M ∈ M(R2d).

If (Aα̃,β̃)α̃,β̃∈Z2d satisfies

sup
α̃,β̃∈Z2d

⟨α − β⟩k⟨α′ − β′⟩l M(tα + (1 − t)β, (1 − t)α′ + tβ′)−1|Aα̃,β̃| < ∞

for arbitrary k, l ∈ N0, then ∑α̃,β̃∈Z2d Aα̃,β̃T
t,ϑ

Wigner(Gα̃,ϑ ⊗ Gβ̃,ϑ) converges unconditionally in
SM(R2d).

Conversely, for Φ ∈ SM(R2d) we have

sup
α̃,β̃∈Z2d

⟨α − β⟩k⟨α′ − β′⟩l M(tα + (1 − t)β, (1 − t)α′ + tβ′)−1

|⟨T t,ϑ
WeylΦ,Gα̃,ϑ ⊗ Gβ̃,ϑ⟩S ′(R2d),S (R2d)|

≤ CM,t,ϑ,k,l∥Φ∥SM(R2d),n

for arbitrary k, l ∈ N0 and some n ∈ N0 determined by k, l, and

Φ = ∑
α̃,β̃∈Z2d

⟨T t,ϑ
WeylΦ,Gα̃,ϑ ⊗ Gβ̃,ϑ⟩S ′(R2d),S (R2d)T

t,ϑ
Wigner(Gα̃,ϑ ⊗ Gβ̃,ϑ).
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Remark! 3.3.9. The interpretation of the lemma is that the operators in Opt,ϑ(SM(R2d))

are exactly the operators having matrix elements satisfying the stated decay conditions:
The Schwartz kernel of Opt,ϑ(Φ) is T t,ϑ

WeylΦ and

⟨Opt,ϑ(Φ)Gβ̃,ϑ,Gα̃,ϑ⟩S ′(Rd),S (Rd) = ⟨T t,ϑ
WeylΦ,Gα̃,ϑ ⊗ Gβ̃,ϑ⟩S ′(R2d),S (R2d).

Proof. Define η as above.
Let us begin by studying the Schwartz functions T t,ϑ

Wigner(Gα̃,ϑ ⊗ Gβ̃,ϑ). For x, ξ ∈ Rd

we have

T t,ϑ
Wigner(Gα̃,ϑ ⊗ Gβ̃,ϑ)(x, ξ)

=
∫

Rd
eiy·ξϑ(x − (1 − t)y, x + ty)Gα̃,ϑ ⊗ Gβ̃,ϑ(x − (1 − t)y, x + ty)dy

=
ϑ(β, α)ei(β′·β−α′·α)

(2π)d

∫
(−2,2)d

ei(z+β−α)·(ξ−(1−t)α′−tβ′)ei(α′−β′)·x

===η(α, x + t(z + β − α), x − (1 − t)(z + β − α))η(α, β, x + t(z + β − α))

===⊗d u(x − (1 − t)z − tα − (1 − t)β)⊗d u(x + tz − tα − (1 − t)β)dz,
(3.3.2)

where we used the translation z := y − β + α, the Hermitian property of the phase
function, and the fact that supp(⊗du) ⊆ (−1, 1) implies that the above integrand has
support in (−2, 2)d by

z = (x + tz − tα − (1 − t)β)− (x − (1 − t)z − tα − (1 − t)β).

Moreover, the support of the u’s tells us that (3.3.2) is zero when x /∈ tα + (1 − t)β +

(−1, 1)d.
If we take the γ-derivative, γ ∈ N2d

0 , of T t,ϑ
Wigner(Gα̃,ϑ ⊗ Gβ̃,ϑ), then by (3.3.2) we get

polynomials in z + β − α and α′ − β′, and derivatives of η and u. Furthermore, using
integration by parts we can get arbitrary high powers of ⟨ξ − (1 − t)α′ + tβ′⟩−1 at the
cost of additional derivatives of η and u by using the exponential factor eiz·(ξ−(1−t)α′−tβ′).
We do this to get a factor of at least ⟨ξ − (1 − t)α′ + tβ′⟩−d−1−sM .

The polynomials in z and derivatives of u pose no problem since the integrand has
bounded support in z and u is a C∞

c (R)-function. Recalling the triangle property of ϑ

and Peetre’s inequality we may bound the derivatives of the η’s uniformly by

CM,t,ϑ,γ⟨z⟩n1⟨α − β⟩n2⟨x + tz − tα − (1 − t)β⟩n3⟨x − (1 − t)z − tα − (1 − t)β⟩n4

for some n1, n2, n3, n4 ∈ N0 dependent on ϑ, M, γ. Note again the factor of ⟨z⟩n1 gives no
issues and the factor ⟨x + tz − tα − (1− t)β⟩n3⟨x − (1− t)z − tα − (1− t)β⟩n4 is bounded
by the support of the derivatives of the u’s.

Keeping tabs, we conclude that

|∂γT t,ϑ
Wigner(Gα̃,ϑ ⊗ Gβ̃,ϑ)(x, ξ)|

≤ CM,t,ϑ,γ⟨α − β⟩m1⟨α′ − β′⟩m2⟨ξ − (1 − t)α′ + tβ′⟩−d−1−sM 1tα+(1−t)β+(−1,1)d(x)

for all x, ξ ∈ Rd and some m1, m2 ∈ N0 dependent on ϑ, M, γ. Thus together with the
hypothesis on the coefficients (Aα̃,β̃)α̃,β̃∈Z2d and Peetre’s inequality (3.3.1) we get

sup
x,ξ∈Rd

∑
α̃,β̃∈Z2d

M(x, ξ)−1|Aα̃,β̃||∂
γT t,ϑ

Wigner(Gα̃,ϑ ⊗ Gβ̃,ϑ)(x, ξ)| ≤ CM,t,ϑ,γ,A,
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whence the sum ∑α̃,β̃∈Z2d Aα̃,β̃∂γT t,ϑ
Wigner(Gα̃,ϑ ⊗ Gβ̃,ϑ) converges unconditionally and uni-

formly on R2d when multiplied with a factor of M−1. Consequently, one can interchange
the sum and derivative, and so it is clear now that ∑α̃,β̃∈Z2d Aα̃,β̃T

t,ϑ
Wigner(Gα̃,ϑ ⊗ Gβ̃,ϑ) con-

verges unconditionally in SM(R2d).
For the last part of the lemma we recall from Lemma 3.2.17 that

T t,ϑ
WeylΦ = ∑

α̃,β̃∈Z2d

⟨T t,ϑ
WeylΦ,Gα̃,ϑ ⊗ Gβ̃,ϑ⟩S ′(R2d),S (R2d)Gα̃,ϑ ⊗ Gβ̃,ϑ

holds in S ′(R2d), and using T t,ϑ
Wigner on both sides we get

Φ = ∑
α̃,β̃∈Z2d

⟨T t,ϑ
WeylΦ,Gα̃,ϑ ⊗ Gβ̃,ϑ⟩S ′(R2d),S (R2d)T

t,ϑ
Wigner(Gα̃,ϑ ⊗ Gβ̃,ϑ).

Hence if we can prove the stated estimate on the coefficients, then the convergence of
the last sum also holds unconditionally in SM(R2d) by the first part.

The coefficients are more explicitly given by

⟨T t,ϑ
WeylΦ,Gα̃,ϑ ⊗ Gβ̃,ϑ⟩S ′(R2d),S (R2d)

=
1

(2π)d

∫
Rd

∫
Rd

∫
Rd

Φ(x, ξ)e−iy·ξϑ(x − (1 − t)y, x + ty)

===Gα̃,ϑ(x − (1 − t)y)Gβ̃,ϑ(x + ty)dydxdξ

=
ϑ(β, α)ei(α−β)·((1−t)α′+tβ′)

(2π)2d

∫
Rd

∫
Rd

∫
Rd

eiz·(β′−α′)e−iw·ζeiζ·(α−β)

===Φ(z + tα + (1 − t)β, ζ + (1 − t)α′ + tβ′)

===η(α, z − (1 − t)w + α, z + tw + β)η(α, β, z + tw + β)

===⊗d u(z − (1 − t)w)⊗d u(z + tw)dwdzdζ
(3.3.3)

where we used the translation

(z, w, ζ) := (x − tα − (1 − t)β, y + α − β, ξ − (1 − t)α′ − tβ′)

and that the phase function is Hermitian. We also note that the integrand has support
in (−1, 1)d for the z variable and support in (−2, 2)d for the w variable.

Let k, l ∈ N0 be given. Being mindful of the order in which we integrate, we may
use integration by parts in (3.3.3), first in w, then z and lastly ζ to introduce arbitrary
powers of ⟨ζ⟩−1, ⟨α′ − β′⟩−1, and ⟨α − β⟩−1, respectively, using the exponential factors
to do so. For the integration by parts in w we need at least a factor of ⟨ζ⟩−d−1−sM ,
which introduces derivatives of η and u. The second integration by parts, which is in
z, we make a factor of ⟨α′ − β′⟩−l appear, and again we get derivatives of η, u, Φ. The
last integration by parts, in ζ this time, we do not know yet to which power we want
⟨α − β⟩−1, but we remark that the only problematic side-effect is the introduction of
additional derivatives of Φ.

We end up with a sum of functions in the integrand. The derivatives of u are not
problematic, and the derivatives of the η’s, since there are finitely many, can be uni-
formly bounded by

CM,t,ϑ,l,t⟨α − β⟩n1⟨z⟩n2⟨w⟩n3
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for some n1, n2, n3 ∈ N0 dependent on ϑ, M, l. Thus we want to create a factor of
⟨α − β⟩−n1−k with the last integration by parts. As for the derivatives of Φ, we note that
if γ ∈ N2d

0 , then

sup
z,ζ∈Rd

⟨z⟩−sM⟨ζ⟩−sM |∂γΦ(z + tα + (1 − t)β, ζ + (1 − t)α′ + tβ′)|

≤ CM sup
z,ζ∈Rd

M(tα + (1 − t)β, (1 − t)α′ + tβ′)M(z + tα + (1 − t)β, ζ + (1 − t)α′ + tβ′)−1

|∂γΦ(z + tα + (1 − t)β, ζ + (1 − t)α′ + tβ′)|
≤ CΦ,M M(tα + (1 − t)β, (1 − t)α′ + tβ′)

by use of Peetre’s inequality.
Thus all in all we estimate (3.3.3) by:

⟨T t,ϑ
WeylΦ,Gα̃,ϑ ⊗ Gβ̃,ϑ⟩S ′(R2d),S (R2d)

= CM,t,ϑ,k,l⟨α − β⟩−k⟨α′ − β′⟩−l M(tα + (1 − t)β, (1 − t)α′ + tβ′)∥Φ∥SM(R2d),n

with k, l ∈ N0 arbitrary and n ∈ N0 dependent on k, l, ϑ, M. ■

On a technical note we remark that t is of no importance. By the required ar-
bitrary decay in the differences α − β and α′ − β′ and Peetre’s inequality, coefficients
(Aα̃,β̃)α̃,β̃∈Z2d satisfying the condition in the lemma for one t ∈ R will satisfy it for all.

From this fact we deduce that the operator space Opt,ϑ(SM(R2d)) is independent of
t. Furthermore, the change of SM(R2d)-symbol is a homeomorphism of SM(R2d).

Corollary 3.3.10. Let ϑ ∈ Om(R2d) be Hermitian phase function satisfying the triangle prop-
erty and fix t1, t2 ∈ R.

The change of symbol map

Op−1
t2,ϑ ◦Opt1,ϑ = T t2,ϑ

Wigner ◦ T
t1,ϑ

Weyl

restricts to a homeomorphism of SM(R2d) for every M ∈ M(R2d).

Proof. Since the inverse of Op−1
t2,ϑ ◦Opt1,ϑ is Op−1

t1,ϑ ◦Opt2,ϑ we only need to prove that
Op−1

t2,ϑ ◦ Opt1,ϑ|SM(R2d) has range in SM(R2d) and is continuous as a map SM(R2d) →
SM(R2d), where the rest follows by symmetry.

Lemma 3.3.8 tells us that

T t2,ϑ
WignerT

t1,ϑ
WeylΦ = ∑

α̃,β̃∈Z2d

⟨T t1,ϑ
WeylΦ,Gα̃,ϑ ⊗ Gβ̃,ϑ⟩S ′(R2d),S (R2d)T

t2,ϑ
WignerT

t1,ϑ
WeylT

t1,ϑ
Wigner(Gα̃,ϑ ⊗ Gβ̃,ϑ)

= ∑
α̃,β̃∈Z2d

⟨T t1,ϑ
WeylΦ,Gα̃,ϑ ⊗ Gβ̃,ϑ⟩S ′(R2d),S (R2d)T

t2,ϑ
Wigner(Gα̃,ϑ ⊗ Gβ̃,ϑ)

converges to some function in SM(R2d) for every Φ ∈ SM(R2d). Moreover, using this
expansion and the proof of Lemma 3.3.8 we get that

∥T t2,ϑ
WignerT

t1,ϑ
WeylΦ∥SM(R2d),n ≤ CM,t1,t2,ϑ,n∥Φ∥SM(R2d),mn

for all n ∈ N0 and some mn ∈ N0, showing continuity. ■
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3.3.3 Boundedness Properties of Pseudo-differential Operators

We will immediately put this coordinate characterization to good use:

Proposition 3.3.11. Let ϑ ∈ Om(R2d) be a Hermitian phase function satisfying the triangle
property and fix t ∈ R, M ∈ M(R2d).

For Φ ∈ SM(R2d) we have Opt,ϑ(Φ) ∈ B(S (Rd)) and the map

Opt,ϑ|SM(R2d) : SM(R2d) → B(S (Rd))

is continuous.

Proof. Our goal is to use Lemma 3.2.15 on the expansion

Opt,ϑ(Φ)ϕ = ∑
α̃,β̃∈Z2d

⟨Opt,ϑ(Φ)Gβ̃,ϑ,Gα̃,ϑ⟩S ′(Rd),S (Rd)⟨ϕ,Gβ̃,ϑ⟩S ′(Rd),S (Rd)Gα̃,ϑ (3.3.4)

holding in S ′(Rd) for ϕ ∈ S (Rd). Firstly, note that

⟨Opt,ϑ(Φ)Gβ̃,ϑ,Gα̃,ϑ⟩S ′(Rd),S (Rd) = ⟨T t,ϑ
WeylΦ,Gα̃,ϑ ⊗ Gβ̃,ϑ⟩S ′(R2d),S (R2d).

The estimate in Lemma 3.3.8 can, with the use of Peetre’s inequality, be reformulated
into saying

sup
α̃,β̃∈Z2d

⟨α⟩k⟨α′⟩l⟨β⟩−m⟨β′⟩−m|⟨Opt,ϑ(Φ)Gβ̃,ϑ,Gα̃,ϑ⟩S ′(Rd),S (Rd)|

≤ CM,t,ϑ,k,l∥Φ∥SM(R2d),n

for arbitrary k, l ∈ N0 and some n, m ∈ N0 determined by k, l. Thus this estimate used
in conjunction with Lemma 3.2.15 tells us that the sum in (3.3.4) defines a Schwartz
function, hence R(Opt,ϑ(Φ)) ⊆ S (Rd).

Tracing the necessary estimates and using the absolute convergence of the sum in
(3.3.4) we get the bound

∥Opt,ϑ(Φ)ϕ∥S (Rd),n,m ≤ CM,t,ϑ,n,m∥Φ∥SM(R2d),k∥ϕ∥S (Rd),ñ,m̃

for arbitrary n, m ∈ N0 and k, ñ, m̃ ∈ N0 dependent on n, m. This shows that Opt,ϑ(Φ) ∈
B(S (Rd)) and that the (t, ϑ)-quantization is continuous from SM(R2d) into B(S (Rd)).

■

This proposition itself has consequences. For one, by evaluating Opt,ϑ(Φ)ϕ varia-
tionally one gets the identity:

Opt,ϑ(Φ)ϕ(x) =
1

(2π)d

∫
Rd

∫
Rd

eξ·(x−y)ϑ(x, y)Φ(tx + (1 − t)y, ξ)ϕ(y)dydξ

for all x ∈ Rd, ϕ ∈ S (Rd), Φ ∈ S∞(Rd) and t, ϑ satisfying the assumption in Proposition
3.3.11. We observe that the order of integration is non-trivial and cannot be interchanged
without further assumptions.

A second consequence is that we obtain a transpose identity for the pseudo-differential
operators

⟨Opt,ϑ(Φ)ϕ, ψ⟩S ′(Rd),S (Rd) = ⟨ϕ, Sψ⟩S ′(Rd),S (Rd)
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for all ϕ, ψ ∈ S (Rd) with S : S (Rd) ∋ ψ 7→ Op1−t,ϑ(Φ)ψ. This allows us to extend
Opt,ϑ(Φ) to a continuous linear operator on S ′(Rd).

The third consequence, and last for now, is that Opt,ϑ(Φ) is a densely defined oper-
ator on L2(Rd) and using the expression found above we see that

⟨ϕ,Opt,ϑ(Φ)ψ⟩L2(Rd) = ⟨Op1−t,ϑ(Φ)ϕ, ψ⟩L2(Rd)

holds for all ϕ, ψ ∈ S (Rd). Hence S (Rd) ⊆ D(Opt,ϑ(Φ)∗) and Opt,ϑ(Φ)∗|S (Rd) =

Op1−t,ϑ(Φ). Now invoking Proposition 2.2.3 we reach the result:

Corollary 3.3.12. Under the assumptions of Proposition 3.3.11 the operator Opt,ϑ(Φ) is closable
and its L2(Rd)-adjoint is given by Op1−t,ϑ(Φ) on S (Rd).

Remark! 3.3.13. Importantly, since L2(Rd) ↪→ S ′(Rd) continuously and S (Rd) is dense
in both spaces, the L2(Rd)-closure of Opt,ϑ(Φ) correspond to the value of the S ′(Rd)-
extension of Opt,ϑ(Φ) on their common domain.

Recalling Remark 3.3.3, we are now able to argue for the importance of the Weyl-
quantization, i.e. t = 1

2 . It is exactly in this case that the condition Φ = Φ is equivalent
with the statement that Opt,ϑ(Φ) is symmetric.

Being closable is nice, but it would be even better to have bounded operators. This
happens for certain Hörmander symbols as the next theorem states:

Theorem 3.3.14. (Calderón-Vaillancourt Theorem) Let ϑ ∈ Om(R2d) be a Hermitian phase
function satisfying the triangle property and fix t ∈ R.

For Φ ∈ S1(R
2d) the operator Opt,ϑ(Φ) is extendable to a bounded operator on L2(Rd) and

the map
Opt,ϑ|S1(R2d) : S1(R

2d) → B(L2(Rd))

is continuous.

Note we use the tempered weight M ≡ 1.

Proof. Fix ϕ ∈ S (R2). Using the expansion (3.3.4) twice we get

∥Opt,ϑ(Φ)ϕ∥2
L2(R2) = ∑

α̃,β̃,γ̃∈Z2d

⟨ϕ,Gα̃,ϑ⟩S ′(Rd),S (Rd)⟨Opt,ϑ(Φ)Gα̃,ϑ,Gβ̃,ϑ⟩S ′(Rd),S (Rd)

===⟨Opt,ϑ(Φ)Gγ̃,ϑ,Gβ̃,ϑ⟩S ′(Rd),S (Rd)⟨ϕ,Gγ̃,ϑ⟩S ′(Rd),S (Rd)

(3.3.5)
with absolute convergence of the sum. Lemma 3.3.8 implies that

sup
α̃∈Z2d

∑
β̃,γ̃∈Z2d

|⟨Opt,ϑ(Φ)Gα̃,ϑ,Gβ̃,ϑ⟩S ′(Rd),S (Rd)⟨Opt,ϑ(Φ)Gγ̃,ϑ,Gβ̃,ϑ⟩S ′(Rd),S (Rd)|

≤ Ct,ϑ∥Φ∥2
S1(Rd),nd

and similarly result is obtained by switching the roles of α̃ and β̃:

sup
β̃∈Z2d

∑
α̃,γ̃∈Z2d

|⟨Opt,ϑ(Φ)Gα̃,ϑ,Gβ̃,ϑ⟩S ′(Rd),S (Rd)⟨Opt,ϑ(Φ)Gγ̃,ϑ,Gβ̃,ϑ⟩S ′(Rd),S (Rd)|

≤ C̃t,ϑ∥Φ∥2
S1(Rd),nd
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Here nd ∈ N0 depends solely on the dimension d. Thus we can invoke Schur’s test in
l2(Z2d) on the expression (3.3.5) and conclude that

∥Opt,ϑ(Φ)ϕ∥2
L2(R2) ≤ Ct,ϑ∥Φ∥2

S1(Rd),nd ∑
α̃∈Z2d

|⟨Gα̃,ϑ, ϕ⟩L2(Rd)|2 = Cd,t,ϑ∥Φ∥2
S1(Rd),nd

∥ϕ∥2
L2(Rd).

The obtained estimate implies that Opt,ϑ(Φ) ∈ B(L2(Rd)) and

∥Opt,ϑ(Φ)∥B(L2(Rd)) ≤ Ct,ϑ∥Φ∥S1(Rd),nd
,

so the (t, ϑ)-quantization is continuous from S1(R
2d) into B(L2(Rd)). ■

3.3.4 Algebra of Pseudo-differential Operators

We saw in Proposition 3.3.11 that Opt,ϑ(S∞(R2d)) is a subset of the algebra B(S (Rd)),
so it makes sense to question whether or not Opt,ϑ(S∞(R2d)) is itself an algebra with the
operator product. The answer is in the affirmative.

Theorem 3.3.15. Let ϑ ∈ Om(R2d) be a Hermitian phase function satisfying the triangle prop-
erty and fix t ∈ R.

The product

#t,ϑ : S∞(R
2d)× S∞(R

2d) ∋ (Φ, Ψ) 7→ Op−1
t,ϑ (Opt,ϑ(Φ)Opt,ϑ(Ψ))

has image in S∞(R2d) and S∞(R2d) becomes a filtered algebra when endowed with #t,ϑ: For
M1, M2 ∈ M(R2d) and Φ ∈ SM1(R

2d) and Ψ ∈ SM2(R
2d) we have Φ #t,ϑ Ψ ∈ SM1 M2(R

2d)

and
#t,ϑ|SM1 (R

2d)×SM2 (R
2d) : SM1(R

2d)× SM2(R
2d) → SM1 M2(R

2d)

is a continuous map.

Remark! 3.3.16. An alternative filtered product on S∞(R2d) is given by pointwise mul-
tiplication which is proven by a straightforward calculation. Although we will not have
need of it, often one finds, such as in the case of semiclassical analysis, situations where
the difference Φ #t,ϑ Ψ − ΦΨ is "small".

The product is called the (t, ϑ)-Moyal product. Note
⋂

M∈M(R2d) SM(R2d) = S (R2d)

becomes a two-sided ideal in this product.

Proof. Note #t,ϑ is well-defined by Proposition 3.3.11. Fix Φ ∈ SM1(R
2d) and Ψ ∈

SM2(R
2d) with M1, M2 ∈ M(R2d). First, an expansion á la (3.3.4), but for the prod-

uct Opt,ϑ(Φ)Opt,ϑ(Ψ), is

Opt,ϑ(Φ #t,ϑ Ψ)ϕ = Opt,ϑ(Φ)Opt,ϑ(Ψ)ϕ

= ∑
α̃,β̃,γ̃∈Z2d

⟨Opt,ϑ(Ψ)Gβ̃,ϑ,Gγ̃,ϑ⟩S ′(Rd),S (Rd)⟨Opt,ϑ(Φ)Gγ̃,ϑ,Gα̃,ϑ⟩S ′(Rd),S (Rd)

==⟨ϕ,Gβ̃,ϑ⟩S ′(Rd),S (Rd)Gα̃,ϑ

holding in S (Rd) for ϕ ∈ S (Rd), where we used

⟨Opt,ϑ(Φ)Opt,ϑ(Ψ)Gβ̃,ϑ,Gα̃,ϑ⟩S ′(Rd),S (Rd)

= ∑
γ̃∈Z2d

⟨Opt,ϑ(Ψ)Gβ̃,ϑ,Gγ̃,ϑ⟩S ′(Rd),S (Rd)⟨Opt,ϑ(Φ)Gγ̃,ϑ,Gα̃,ϑ⟩S ′(Rd),S (Rd).
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Secondly, by Lemma 3.3.8 we get

sup
α̃,β̃∈Z2d

⟨α − β⟩k⟨α′ − β′⟩l(M1M2)(tα + (1 − t)β, (1 − t)α′ + tβ′)−1

∣∣∣⟨Opt,ϑ(Φ)Opt,ϑ(Ψ)Gβ̃,ϑ,Gα̃,ϑ⟩S ′(Rd),S (Rd)

∣∣∣
≤ sup

α̃,β̃∈Z2d

CM1,M2,t ∑
γ̃∈Z2d

⟨α − γ⟩k⟨α′ − β′⟩l(M1M2)(tα + (1 − t)β, (1 − t)α′ + tβ′)−1

==
⟨α − γ⟩k+d+1⟨α′ − γ′⟩l+d+1M1(tα + (1 − t)γ, (1 − t)α′ + tγ′)−1

⟨α − γ⟩d+1⟨α′ − γ′⟩d+1

============⟨Opt,ϑ(Φ)Gγ̃,ϑ,Gα̃,ϑ⟩S ′(Rd),S (Rd)

==
⟨γ − β⟩k+d+1⟨γ′ − β′⟩l+d+1M2(tγ + (1 − t)β, (1 − t)γ′ + tβ′)−1

⟨γ − β⟩d+1⟨γ′ − β′⟩d+1

============⟨Opt,ϑ(Ψ)Gβ̃,ϑ,Gγ̃,ϑ⟩S ′(Rd),S (Rd)

≤ CM1,M2,t,ϑ,k,l∥Φ∥SM1 (R
2d),n∥Ψ∥SM2 (R

2d),n

for arbitrary k, l ∈ N0 and some n ∈ N0 determined by k, l. Thus the matrix elements
for the product Opt,ϑ(Φ)Opt,ϑ(Ψ) satisfies the hypothesis of Lemma 3.3.8. So thirdly,
one can conclude that the symbol in the (t, ϑ)-quantization of Opt,ϑ(Φ)Opt,ϑ(Ψ) is in
SM1 M2(R

2d), and by the proof of Lemma 3.3.8 we get an estimate of the kind:

∥Φ #t,ϑ Ψ∥SM1 M2 (R
2d),n ≤ CM1,M2,t,ϑ,k,l∥Φ∥SM1 (R

2d),mn
∥Ψ∥SM2 (R

2d),mn

for every n ∈ N0 with mn ∈ N0. This last estimate also proves the continuity claim, so
we are done. ■

If we fix a tempered weight M, then we may create the one-parameter group of
tempered weights (Mp)p∈R. For the associated Hörmander classes (SMp(R2d))p∈R and
the Moyal product we get

SMp(R2d) #t,ϑ SMq(R2d) ⊆ SMp+q(R2d)

for p, q ∈ R, and so the Moyal product makes
⋃

p∈R SMp(R2d) into a filtered algebra in
the parameter p.

3.3.5 Phase Functions Induced by Antisymmetric Forms and Beal’s

We now restrict the phase functions we consider even further.

Lemma 3.3.17. Let A ∈ Rd×d be antisymmetric and define

ϑ : R2d ∋ (x, y) 7→ eix·Ay.

Then ϑ is a Hermitian phase function in Om(R2d) satisfying the triangle inequality.

Proof. The only non-trivial part is the triangle inequality. If we differentiate

η : R3d ∋ (x, y, z) 7→ ϑ(x, y)ϑ(y, z)ϑ(z, x)
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in the first d variables, then it equals η multiplied by a polynomial in A(y − z). If we
differentiate in the next d variables we gain a polynomial in A(z − x) and if differenti-
ation is done in the last d variables we gain a polynomial in A(x − y). Thus for every
γ ∈ N3d

0 there exists nγ ∈ N0 such that

sup
x,y,z∈Rd

(⟨y − z⟩⟨z − x⟩⟨x − y⟩)−nγ |∂γη(x, y, z)| < ∞.

Now one use of Peetre’s inequality finishes the proof. ■

A phase function such as the one in Lemma 3.3.17 is said to be induced by the
antisymmetric matrix A.

For any phase function ϑ ∈ Om(R2d) we may create the phase translations

τϑ,y = ϑ(·, y)τy

for y ∈ Rd as continuous linear maps on S ′(Rd), which restrict to continuous maps
on S (Rd) and L2(Rd). The intuition is that, if a pseudo-differential operator in the
(t, ϑ)-quantization acts homogeneously throughout space, then it will commute with all
phase translations. We see that this property has an appealing characterization for the
phase functions induced by an antisymmetric matrix:

Lemma 3.3.18. Let A ∈ Rd×d be antisymmetric and define

ϑ : R2d ∋ (x, y) 7→ eix·Ay.

Also fix t ∈ R.
For Φ ∈ S ′(R2d) and z ∈ Rd we have

τϑ,zOpt,ϑ(Φ)τϑ,−z = Opt,ϑ(τ(z,0)Φ).

Thus [Opt,ϑ(Φ), τϑ,z] = 0 if and only if τ(z,0)Φ = Φ.

Similarly to the above, one could consider invariance under other families of opera-
tors such as multiplication by a phase factor.

Proof. We will prove the equivalent statement:

τϑ,zOpt,ϑ(τ(−z,0)Φ)τϑ,−z = Opt,ϑ(Φ).

The identity τϑ,zOpt,ϑ(τ(−z,0)Φ)τϑ,−z = Opt,ϑ(Φ) is equivalent with

T t,ϑ
WeylΦ = T t,ϑ

Weylτ(−z,0)Φ ◦ (τϑ,−z ⊗ τϑ,−z)

= (2π)−dΦ ◦ τ(z,0) ◦ (idS (Rd) ⊗ (−idRd)∗)T t,ϑ
Wigner ◦ (τϑ,−z ⊗ τϑ,−z),

which in turn is equivalent with

(idS (Rd) ⊗ (−idRd)∗)T t,ϑ
Wigner = τ(z,0) ◦ (idS (Rd) ⊗ (−idRd)∗)T t,ϑ

Wigner ◦ (τϑ,−z ⊗ τϑ,−z)

holding on S (R2d). This finishes the abstract nonsense and gives us the condition we
will prove.
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For every Ψ ∈ S (R2d) we have

τ(z,0) ◦ (idS (Rd) ⊗ (−idRd)∗)T t,ϑ
Wigner ◦ (τϑ,−z ⊗ τϑ,−z)Ψ(x, ξ)

=
∫

Rd
e−iy·ξei(x−z)·Ayei(x−(1−t)y)·Aze−i(x+ty)·AzΨ(x − (1 − t)y, x + ty)dy

=
∫

R2
e−iξ·yeix·AyΨ(x − (1 − t)y, x + ty)dy

= (idS (Rd) ⊗ (−idRd)∗)T t,ϑ
WignerΨ(x, ξ),

for all x, ξ ∈ Rd, and we are done. ■

There is one last big and helpful result we need, Beal’s Commutator Criterion, which
holds for certain phase functions. We prove it for phase functions induced by an an-
tisymmetric matrix, but note that it is a subcase of the Beal’s Commutator Criterion
proven in [9, Theorem 3.8].

Theorem 3.3.19. (Beal’s Commutator Criterion) Let A ∈ Rd×d be antisymmetric and define

ϑ : R2d ∋ (x, y) 7→ eix·Ay.

Also fix t ∈ R.
If Φ ∈ S1(R

2d), then all commutators of the form

[T1[T2, . . . [Tn,Opt,ϑ(Φ)] . . . ]] : , (3.3.6)

where Tj ∈ {Xϑ,1, . . . , Xϑ,d, Πϑ,1, . . . , Πϑ,d} for j = 1, . . . , n, n ∈ N0, are extendable to opera-
tors in B(L2(Rd)).

Conversely, suppose that T : S (Rd) → S ′(Rd) is linear and extends to a bounded oper-
ator in L2(Rd), and all the commutators of the form (3.3.6) are also extendable to operators in
B(L2(Rd)). Then T is continuous and Op−1

t,ϑ (T) ∈ S1(R
2d).

Proof. For the first part, we will show that [T,Opt,ϑ(Φ)] ∈ Opt,ϑ(S1(R
2d)) for all T ∈

{Xϑ,1, . . . , Xϑ,d, Πϑ,1, . . . , Πϑ,d}, whence the rest then follows by the Calderón-Vaillancourt
Theorem 3.3.14 and applying induction. We first note that the definition of ϑ implies
that it equals one on the diagonal, i.e. ϑ(x, x) = 1 for all x ∈ Rd.

Fix j ∈ {1, . . . , d}, ϕ ∈ S (Rd), and x ∈ Rd. Then, using dominated convergence for
limits and integration by parts in ξ,

[Xϑ,j,Opt,ϑ(Φ)]ϕ(x)

= (2π)−d lim
ε→0

∫
Rd

e−ε∥ξ∥2
∫

Rd
(xj − yj)eiξ·(x−y)ϑ(x, y)Φ(tx + (1 − t)y, ξ)ϕ(y)dydξ

= (2π)−d lim
ε→0

( ∫
Rd

e−ε∥ξ∥2
∫

Rd
eiξ·(x−y)ϑ(x, y)i∂ed+j Φ(tx + (1 − t)y, ξ)ϕ(y)dydξ

=− 2ε
∫

R2
ξ je−ε∥ξ∥2

∫
Rd

eiξ·(x−y)ϑ(x, y)Φ(tx + (1 − t)y, ξ)ϕ(y)dydξ

)
= Opt,ϑ(i∂

ed+j Φ)ϕ(x).

For Πϑ,j, we use again dominated convergence, integration by parts in both y and ξ, and
also differentiation under the integral in x,

[Πϑ,j,Opt,ϑ(Φ)]ϕ(x)

59



Chapter 3. Tempered Distributions and Pseudo-differential Calculus

= (2π)−d lim
ε→0

( ∫
Rd

e−ε∥ξ∥2
∫

Rd
eiξ·(x−y)ϑ(x, y)

========
(
ξ j + (A(y − x))j − it∂ej

)
Φ(tx + (1 − t)y, ξ)ϕ(y)dydξ

=−
∫

Rd
e−ε∥ξ∥2

∫
Rd

eiξ·(x−y)ϑ(x, y)Φ(tx + (1 − t)y, ξ)Πϑ,jϕ(y)dydξ

)

= (2π)−d lim
ε→0

( ∫
Rd

e−ε∥ξ∥2
∫

Rd
eiξ·(x−y)ϑ(x, y)

========
(
2(A(y − x))j − i∂ej

)
Φ(tx + (1 − t)y, ξ)ϕ(y)dydξ

)

= (2π)−d lim
ε→0

( ∫
Rd

e−ε∥ξ∥2
∫

Rd
eiξ·(x−y)ϑ(x, y)

========

(
−i∂ej − 2i

d

∑
k=1

Ajk∂ek

)
Φ(tx + (1 − t)y, ξ)ϕ(y)dydξ

=+ 4iε
d

∑
k=1

Ajk

∫
Rd

ξke−ε∥ξ∥2
∫

Rd
eiξ·(x−y)ϑ(x, y)Φ(tx + (1 − t)y, ξ)ϕ(y)dydξ

)

= Op

(
−i

(
∂ej + 2

d

∑
k=1

Ajk

)
Φ

)
ϕ(x).

The derivatives of Φ are clearly in S1(R
2d), so we are done with the first statement.

For the second part of the theorem we also use an iterative argument. Two things
have to be shown: T is continuous S (Rd) → S ′(Rd) and its matrix elements satisfies
Lemma 3.3.8.

Continuity as a map S (Rd) → S ′(Rd) is rather simple: T bounded in L2(Rd) and
S (Rd) ↪→ L2(Rd) ↪→ S ′(Rd) with both injections continuous.

As for the condition on T’s matrix elements, we aim to show the equivalent condition
that for any γ ∈ N2d

0

sup
α̃,β̃∈Z2d

|(α̃ − β̃)γ⟨Opt,ϑ(Φ)Gβ̃,ϑ,Gα̃,ϑ⟩S ′(Rd),S (Rd)| < ∞. (3.3.7)

The above is essentially making sure that multiplying ⟨Opt,ϑ(Φ)Gβ̃,ϑ,Gα̃,ϑ⟩S ′(Rd),S (Rd) re-
peatedly by a factor αj − β j or α′

j − β′
j for j = 1, . . . , d gives bounded terms in (α̃, β̃). Our

goal is to deduce some general identities and estimates, which, when applied iteratively,
shows (3.3.7).

Fix j ∈ {1, . . . , d}. For ϕ ∈ S (Rd) define

Sα̃ϕ : Rd ∋ x 7→ (2π)−
d
2 ϑ(x, α)ϕ(x − α)eiα′·(x−α).

This definition is such that Sα̃ ⊗d u = Gα̃,ϑ and we have the important commutators
[Sα̃, Xϑ,j] = −αjSα̃ and [Sα̃, Πϑ,j] = −α′

jSα̃. Now for every choice of T̃ ∈ B(L2(Rd)) and
ϕ, ψ ∈ S (Rd), we have

(αj − β j)⟨T̃Sβ̃ϕ, Sα̃ψ⟩S ′(Rd),S (Rd)
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= −⟨T̃Sβ̃ϕ, Sα̃Xϑ,jψ⟩S ′(Rd),S (Rd) + ⟨[Xϑ,j, T̃]Sβ̃ϕ, Sα̃ψ⟩S ′(Rd),S (Rd)

=+ ⟨T̃Sβ̃Xϑ,jϕ, Sα̃ψ⟩S ′(Rd),S (Rd),

and

(α′
j − β′

j)⟨T̃Sβ̃ϕ, Sα̃ψ⟩S ′(Rd),S (Rd)

= −⟨T̃Sβ̃ϕ, Sα̃Πϑ,jψ⟩S ′(Rd),S (Rd) + ⟨[Πϑ,j, T̃]Sβ̃ϕ, Sα̃ψ⟩S ′(Rd),S (Rd)

=+ ⟨T̃Sβ̃Πϑ,jϕ, Sα̃ψ⟩S ′(Rd),S (Rd),

and finally∣∣∣⟨T̃Sβ̃ϕ, Sα̃ψ⟩S ′(Rd),S (Rd)

∣∣∣ ≤ (2π)−d∥T̃∥B(L2(Rd))∥ϕ∥L2(Rd)∥ψ∥L2(Rd).

Now, T,⊗du satisfies the assumptions on T̃, ϕ, ψ and furthermore, T satisfies the com-
mutator criterion in the theorem by hypothesis. Thus we can make repeated use of the
above facts to obtain (3.3.7). ■

Remark! 3.3.20. Let us note what was important in the above proof. The first part
dependent upon differentiation of the phase, where every time we differentiated the
phase function we got a polynomial in x, y. If the phase function only produces a
polynomial in x, y plus a BC∞(R2d) function, then the proof will go through with no
problem.

In the second part we look towards the commutators [Sα̃, Xϑ,j] = −αjSα̃ and [Sα̃, Πϑ,j]

= −α′
jSα̃. More general phase functions might perturb these commutators slightly, but

for a reasonable perturbation the proof still holds.

The proof of Beal’s Commutator Criterion 3.3.19 gives us a ways of giving bounds
on the matrix elements as in Lemma 3.3.8 without working with the symbol directly.
This will become a strong tool in the next chapter.

61





4

Schrödinger Operators for Particles in Euclidean
Space

We will finally be analyzing some quantum systems varying from simple to com-
plex. All these systems are of particles in Euclidean space, meaning we focus on the
Schrödinger operator of particles roaming around in some Euclidean space, affected by
its surroundings.

In the beginning we deal with realizations of differential operators, which are im-
portant for modeling kinetic energy. This is largerly inspired by [14], but also [22, 23].
Afterwards, we study the free Schrödinger operator and harmonic oscillator in larger
details, based on [16, 22] and [15, 22, 23, 28] respectively. Next we complicate matters
an introduce a magnetic field, but with a focus on constant magnetic fields and the Lan-
dau operator. For this matter we use the materials [8, 9, 19, 22] and additionally [6, 7,
17] for the Landau operator. As a finale, we consider the Hartree-Fock approximation
of the Schrödinger operator in a magnetic many-body system. The potential from the
cumulative effect of the many particles is given by a formal self-consistent equation,
which is then formalized and solved. The interpretation of the physics leading to the
self-consistent equation has been done by H. Cornean with inspiration from [3, Chapter
8] and it has also been solved in collaboration with H. Cornean.

We ignore most parameters and constants stemming from the physics of the models,
since our motivation is the study of the mathematics underlying the models. W.r.t the
underlying space we fix a dimension d ∈ N for the chapter.

4.1 Schrödinger Operator of a Particle with Outer Potential

Say we deal with the quantum system of one particle, which perhaps is under the influ-
ence of some outer potential, e.g. an electron being attracted by a proton, but otherwise
roaming space as it pleases (while obeying the laws of physics). This we model by using
the Hilbert space L2(Rd) with d representing the number of parameters for our particle
such as physical coordinates. For its Schrödinger operator H we have to consider the
kinetic energy of the particle and the potential energy stemming other sources, so H is
effectively the sum of two operators.

In classical mechanics such a system would have Hamiltonian H : R2d ∋ (x, ξ) 7→
∥ξ∥2 + V(x) with the first term being the kinetic energy and the second the potential
energy. For regular enough V and using the standard quantization procedure from the
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previous chapter, we get the Schrödinger operator as

H = Op1,1(H) = Op1,1

(
R2d ∋ (x, ξ) 7→ ∥ξ∥2 + V(x)

)
= −∆ + V

with the operator V being pointwise multiplication with V. Again, if V is regular
enough, then H is a closable operator, see Corollary 3.3.12. But this is not quite enough,
we need H to be a self-adjoint operator. Thus it is up to us to show that operators of
the above type can be interpreted as observables, i.e. are self-adjoint. We first look at
multiplication operators as V and secondly differential operators as −∆, then at two
specific cases of Schrödinger operators.

Lemma 4.1.1. Let V : Rd → R be measurable. Then the operator V ∈ L(L2(Rd)) defined by
V : ϕ 7→ Vϕ on

D(V) = {ϕ ∈ L2(Rd)|Vϕ ∈ L2(Rd)}

is self-adjoint.

Proof. As defined, V is clearly symmetric. It is also densely defined since for any ϕ ∈
L2(Rd) we have 1V−1([−n,n])ϕ

n→∞→ ϕ in L2(Rd) with the (1V−1([−n,n])ϕ)n∈N residing in
D(V). Thus by Proposition 2.2.7 (ii) it is enough to show that R(T ± i) = L2(Rd).
But ψ = (V ± i)−1ϕ ∈ D(V) for every ϕ ∈ L2(Rd) and (V ± i)ψ = ϕ, implying that
R(T ± i) = L2(Rd), so V is self-adjoint. ■

Definition 4.1.2. (Realizations of Differential Operators) Let T := ∑γ∈Nd
0 ,|γ|≤N ϕγ∂γ be a

linear partial differential operator with Om(Rd)-coefficients defined on S ′(Rd).
The minimal realization of T on L2(Rd) is defined as

Tmin := T|S (Rd),

and the maximal realization as

Tmax := T|{ϕ∈L2(Rd)|Tϕ∈L2(Rd)}.

Every operator T̃ ∈ L(L2(Rd)) which satisfies Tmin ⊆ T̃ ⊆ Tmax is called a realization of
T.

Lemma 4.1.3. Let T be a partial differential operator with constant coefficients defined on
S ′(Rd) such that T = F−1 pF , where p is a polynomial on Rd with real-valued coefficients. If
Tmin is symmetric, then it is essentially self-adjoint and

Tmin = Tmax.

Proof. We prove the lemma in two steps: First we show that Tmax is self-adjoint, and
then that Tmax = T∗

min.
Since S (Rd) ⊆ D(Tmax), Tmax is densely defined. It is also symmetric:

⟨Tmaxϕ, ψ⟩L2(Rd) = ⟨pFϕ,Fψ⟩L2(Rd) = ⟨Fϕ, pFψ⟩L2(Rd) = ⟨ϕ, Tmaxψ⟩L2(Rd)

for all ϕ, ψ ∈ D(Tmax). Now, like Lemma 4.1.1, we use Proposition 2.2.7 (ii). For ϕ ∈
L2(Rd) we have ψ = F−1(p ± i)−1Fϕ ∈ D(Tmax) and (T ± i)ψ = ϕ, hence we conclude
that Tmax is self-adjoint.
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As for the second step, if ϕ ∈ D(T∗
min), then

⟨T∗
minϕ, ψ⟩S ′(Rd),S (Rd) = ⟨ψ, T∗

minϕ⟩L2(Rd) = ⟨Tminψ, ϕ⟩L2(Rd) = ⟨Tϕ, ψ⟩S ′(Rd),S (Rd)

for all ψ ∈ S (Rd), so Tϕ = T∗
minϕ ∈ L2(Rd) meaning ϕ ∈ D(Tmax) and T∗

min ⊆ Tmax.
Oppositely, if ϕ ∈ D(Tmax), then

⟨Tminψ, ϕ⟩L2(Rd) = ⟨Tϕ, ψ⟩S ′(Rd),S (Rd) = ⟨ψ, Tmaxϕ⟩L2(Rd)

for all ψ ∈ S (Rd), so ϕ ∈ D(T∗
min) and Tmax ⊆ T∗

min. Thus Tmax = T∗
min.

Thus T∗
min is densely defined and by Proposition 2.2.3 Tmin = T∗

max = Tmax, which
implies that Tmin is self-adjoint. ■

Note that the first lemma includes the position operators X1,j, j ∈ {1, . . . , d}, and sec-
ond lemma includes both the Laplacian ∆ and momentum operators Π1,j, j ∈ {1, . . . , d}.

For the interested reader, general criteria for the sum −∆ + V to be self-adjoint are
presented in [22, Theorem X.16, Theorem X.20, Theorem X.28, and Theorem X.29]. We
note that trivially, or using the Kato-Rellich Theorem 2.2.11, when V ∈ L∞(Rd), then
−∆ + V is essentially self-adjoint on S (Rd).

4.1.1 The Free Schrödinger Operator

The Schrödinger operator with pure kinetic energy −∆max models a particle free of
outside forces and is therefore called the free Schrödinger operator. For this quantum
system one might expect the possible energies to be every non-negative number, corre-
sponding to the kinetic energy of the particle. This is indeed correct.

Theorem 4.1.4. The operator H = −∆max ∈ L(L2(Rd)) has no eigenvalues and its spectrum
is

σ(H) = [0, ∞).

Proof. Let us deal with the statement about eigenvalues first. Suppose λ is an eigenvalue
of H. Then there exists ϕ ∈ D(H) \ {0} such that

0 = (H− λ)ϕ = F−1(∥ · ∥2 − λ)Fϕ,

so (∥ · ∥2 − λ)Fϕ = 0 leading to ϕ = 0, a contradiction. Thus H must have no eigenval-
ues.

Now for the spectrum. If z ∈ C \ [0, ∞), then Tz := F−1(∥ · ∥2 − z)−1F is an operator
in B(L2(Rd)), and R(Tz) ⊆ D(H) since

F−1∥ · ∥2FTzϕ = F−1 ∥ · ∥2

∥ · ∥2 − z
Fϕ ∈ L2(Rd)

for all ϕ ∈ L2(Rd). Moreover, Tz(H− z)ϕ = ϕ for ϕ ∈ D(H) and (H− z)Tzϕ = ϕ for
ϕ ∈ L2(Rd), whence Tz = (H− z)−1 and z ∈ ρ(H).

This gives σ(H) ⊆ [0, ∞). To prove that we have an equality, we use Stone’s Formula
2.4.25 and Proposition 2.4.23. Let λ1, λ2 ∈ R be given and note that the absence of
eigenvalues means that 1[λ1,λ2](H) = 1(λ1,λ2)(H), whence

1(λ1,λ2)(H)ϕ = F−1 lim
ε→0

1
2πi

∫ λ2

λ1

(
(∥ · ∥2 − λ − iε)−1 − (∥ · ∥2 − λ + iε)−1

)
dλFϕ

= F−11(λ1,λ2)(∥ · ∥
2)Fϕ

65



Chapter 4. Schrödinger Operators for Particles in Euclidean Space

for all ϕ ∈ L2(Rd). If z ∈ [0, ∞) and ε > 0, then 1(z−ε,z+ε)(∥ · ∥2) ̸= 0 as a multiplication
operator. By Proposition 2.4.23 we conclude that σ(H) = [0, ∞). ■

4.1.2 The Harmonic Oscillator

A favorite example of introductory classical physics and ordinary differential equations
is that of the harmonic oscillator. Is quantum counterpart is formally given by the sum of
the momentum and position squared, i.e. −∆ + X2 = Op1,1

(
R2d ∋ (x, ξ) 7→ ∥(x, ξ)∥2),

and similarly to the classical harmonic oscillator, the quantum harmonic oscillator has
a nice solution in terms of spectrum. It is also a teaser for the next section, where we
work with magnetic Schrödinger operators whom share some likeness with the quan-
tum harmonic oscillator.

Theorem 4.1.5. The operator (−∆ + X2)min ∈ L(L2(Rd)) is essentially self-adjoint and H =

(−∆ + X2)min has spectrum:

σ(H) = σp(H) = {d + 2n|n ∈ N0}

Proof. For this spectrum we use algebraic methods. The steps are to find the eigenfunc-
tions of (−∆ + X2)min, show that they constitute an orthogonal basis in L2(Rd), and
this will lead to the desired conclusion. We also reduce the statement to the case of the
Harmonic oscillator on L2(R) since if this operator has an orthogonal basis of eigenfunc-
tions with a certain behavior, then taking the tensor product of this basis with itself, we
get an orthogonal basis of eigenfunctions for the Harmonic oscillator in any dimension.

Consider T = (−∆ + X2)min ∈ L(L2(R)). Note T is symmetric and non-negative.
On S (R) we decompose T as follows

T = A† A + 1,

where A† = −∂ + X and A = ∂ + X satisfies Amin ⊆ (A†
min)

∗ and conversely. The
strength of this decomposition is that we can work with the first order differential oper-
ators A, A† instead of the second order differential operator of T.

First of all, the equation Aϕ = 0 has the non-zero solution ϕ0 : R ∋ x 7→ e−
x2
2 ,

getting us our first eigenfunction of T with eigenvalue 1. In opposition, A†ϕ = 0 has no
non-zero solution in S (R).

Second of all, to obtain more eigenfunctions, we note that [T, A†] = 2A†, so if Tϕ =

zϕ for z ∈ C, ϕ ∈ S (R) \ {0}, then

TA†ϕ = A†Tϕ + [T, A†]ϕ = (z + 2)A†ϕ,

i.e. A†ϕ is a new eigenfunction with a different eigenvalue. Importantly A†ϕ ̸= 0 if
ϕ ̸= 0.

Essentially, this means that ψn := (A†)nϕ0
∥(A†)nϕ0∥L2(Rd)

for n ∈ N0 make up a sequence of

normalized eigenfunctions of T. The sequence (ψn)n∈N0 is also orthogonal since each
element corresponds to a different eigenvalue, that is

2(n − m)⟨ψn, ψm⟩L2(R) = ⟨Tψn, ψm⟩L2(R) − ⟨ψn, Tψm⟩L2(R) = 0

for n, m ∈ N0, hence if n ̸= m, then ⟨ψn, ψm⟩L2(R) = 0.
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The last step of our analysis is then a study of the span of (ψn)n∈N0 . A short inves-
tigation shows that each ψn is the product of ϕ0 and a polynomial of degree n. Hence
every product of ϕ0 with a polynomial on R is in span((ψn)n∈N0). Taking this one step
further, this implies that ωξ : R ∋ x 7→ eiξxϕ0(x) is in span((ψn)n∈N0) for all ξ ∈ R. Thus
if ϕ ∈ L2(R) is orthogonal to all ψn, n ∈ N0, then

F (ϕϕ0)(ξ) =
1√
2π

⟨ωξ , ϕ⟩L2(R) = 0

for all ξ ∈ R, meaning ϕϕ0 ≡ 0. Since ϕ0 is zero nowhere, ϕ = 0. We conclude that
span((ψn)n∈N0) = L2(R), and (ψn)n∈N0 is an orthogonal basis for L2(R).

Finishing the proof is now a walk in the park. The operator T is non-negative and has
dense range, so by Corollary 2.3.7, it is essentially self-adjoint. The closure H = T has
(ψn)n∈N0 as an orthogonal basis of eigenvectors, and for every z /∈ σp(H) = {1 + 2n|n ∈
N0}:

(H− z)−1 = ∑
n∈N0

1
1 + 2n − z

⟨ψn, ·⟩L2(R)ψn,

meaning σ(H) = σp(H). ■

The reader may have recognized the eigenfunctions in the above as the Hermite
functions. See [11, Section 6.4] for a study of these in detail.

Also, the self-adjoint extension of (−∆ + X2)min is not necessarily (−∆ + X2)max,
but maybe a smaller realization. This will also be the case for magnetic Schrödinger
operators.

4.2 Schrödinger Operator of a Particle in a Magnetic Field

To complicate matters we now deal with a magnetic field in our quantum system. The
magnetic fields and potentials will be quite regular, but more general situations can be
considered, see [22, Theorem X.22 and Theorem X.34].

A d-dimensional regular magnetic field B, henceforth just called a magnetic field, is
a closed 2-form which can be represented by BC∞(Rd) coefficients, that is the magnetic
field itself can be thought of as a map B ∈ BC∞(Rd; Rd×d) such that Bjk = −Bkj and
∂ej Bkl + ∂ek Bl j + ∂el Bjk ≡ 0.

Associated with any magnetic field we have a magnetic potential, which is a 1-form
A with smooth coefficients such that dA = B, where dA is the exterior derivative of A.
Like the magnetic field, we may think of A as an element of C∞(Rd, Rd). As a canonical
choice of magnetic potential we take

AB : Rd ∋ x 7→
(

d

∑
k=1

∫ 1

0
sxkBkj(sx)ds

)d

j=1

.

This is the magnetic potential in the transversal gauge. Note AB has components in
Om(Rd).

We will now construct a magnetic phase, and from this we shall derive the magnetic
Schrödinger operator.
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Lemma 4.2.1. Given a magnetic field B, the map

ϑB : Rd × Rd ∋ (x, y) 7→ e−i
∫
[x,y] AB

is a Hermitian phase function in Om(R2d) obeying the triangle property.

Proof. It is clearly a Hermitian phase function. The other properties of ϑB will follow
from analyzing the integral

∫
[x,y] AB. For x, y ∈ Rd, we see

∫
[x,y]

AB =
∫ 1

0
(y − x) · AB(x + t(y − x))dt =

∫ 1

0

∫ 1

0
sx · B(sty + s(1 − t)x)ydsdt

using that we can impose antisymmetry on the coefficients of B. Since we can choose
coefficients in BC∞(Rd), the above expression is in Om(R2d) when considering (x, y) as
variables, which implies ϑB ∈ Om(R2d).

As for the triangle property, a quick use of Stokes Theorem lets us conclude that∫
[x,y]

AB +
∫
[y,z]

AB +
∫
[z,x]

AB =
∫
<x,y,z>

B

=
∫ 1

0

∫ 1

0
t(y − x) · B(stz + t(1 − s)y + (1 − t)x)(z − y)dsdt

=−
∫ 1

0

∫ 1

0
t(z − y) · B(stz + t(1 − s)y + (1 − t)x)(y − x)dsdt

for any x, y, z ∈ Rd. Noting that the coefficients of B can be chosen in BC∞(Rd) we get
the triangle property. ■

Now we may use the ϑB-quantization from Section 3.3 to get the magnetic posi-
tion and momentum operators. The position operator does not change from the non-
magnetic case to the magnetic case, but the momentum operator ends up becoming
ΠB,j = −i∂ej − (AB)j and hence the kinetic energy in the presence of a magnetic field
should formally be

(−i∇− AB)
2 =

d

∑
j=1

Π2
B,j = OpB(R

2d ∋ (x, ξ) 7→ ∥ξ∥2)

This also corresponds to the effect of a magnetic field in classical physics. Note we
replaced the phase used in the notation of Section 3.3 with the magnetic field B. This
will be a convention from here on out, and we will also use the prefix magnetic instead
of phase.

Again, it is up to us to make sense of these operators as self-adjoint operators on
L2(Rd):

Proposition 4.2.2. For any magnetic field B, (−i∇− AB)
2
min ∈ L(L2(Rd)) is a non-negative,

essentially self-adjoint operator. Moreover, for every j ∈ {1, . . . , d}, ΠB,j|S (Rd) is essentially
self-adjoint and (−i∇− AB)

2
min-bounded.

Proof. It is routine to check that the operators in question are symmetric using integra-
tion by parts. Using this once for (−i∇− AB)

2
min we get:

⟨(−i∇− AB)
2
minϕ, ϕ⟩L2(Rd) =

d

∑
j=1

∥ΠB,jϕ∥2
L2(Rd) ≥ 0

68



Mikkel Hviid Thorn

for all ϕ ∈ S (Rd), hence we conclude that (−i∇− AB)
2
min is non-negative. Furthermore,

by the Cauchy-Schwartz inequality:
d

∑
j=1

∥ΠB,jϕ∥2
L2(Rd) ≤ ∥(−i∇− AB)

2
minϕ∥L2(Rd)∥ϕ∥L2(Rd)

≤ 2−1∥(−i∇− AB)
2
minϕ∥2

L2(Rd) + 2−1∥ϕ∥2
L2(Rd),

so

∥ΠB,jϕ∥L2(Rd) ≤ 2−
1
2 ∥(−i∇− AB)

2
minϕ∥L2(Rd) + 2−

1
2 ∥ϕ∥L2(Rd)

for every j ∈ {1, . . . , d}, which shows that the magnetic momentum operators are
(−i∇− AB)

2
min-bounded.

All that is left are the statements about essential self-adjointness. We use a similar
technique on all the operators, and so only do the proof of Tmin := (−i∇ − AB)

2
min

being essentially self-adjoint. By Corollary 2.2.8 (i) and the associated comments, if Tmin

is not essentially self-adjoint, then for every c ∈ R \ {0}, either ker(T∗
min + ci) ̸= {0}

or ker(T∗
min − ci) ̸= {0}. We shall prove that this is impossible for |c| large enough,

implying that Tmin must then be essentially self-adjoint.
First we note that if u ∈ C∞

c (Rd) satisfies supp(u) ⊆ (−1, 1)d and ∑α∈Zd(ταu)2 ≡
1, then (τB,αu)α∈Zd constitutes a Parseval frame in L2(Rd). This follows from using
dominated convergence:

∥ϕ∥2
L2(Rd) = ∑

α∈Zd

∥τB,αuϕ∥2
L2(Rd),

which holds for ϕ ∈ L2(Rd). Note the similarities with Lemma 3.1.2. We will use this
Parseval frame to construct something close to the resolvent of Tmin.

Assume ϕc ∈ ∂B1(0; L2(Rd)) ∩ ker(T∗
min − ci) for c ∈ R \ {0}. Thus

⟨(Tmin + ci)ψ, ϕc⟩L2(Rd) = 0

for all ψ ∈ S (Rd). Fix ψ ∈ S (Rd) and N ∈ N for now. Then denote

ψN = ∑
α∈Zd

|α|≤N

τB,αu(−∆max + ci)−1(τB,αuψ) ∈ S (Rd)

and see

(Tmin + ci)ψN = ∑
α∈Zd

|α|≤N

(ταu)2ψ + ∑
α∈Zd

|α|≤N

(TminτB,αu)(−∆max + ci)−1(τB,αuψ)

=− 2i
d

∑
j=1

∑
α∈Zd

|α|≤N

(ΠB,jτB,αu)∂ej(−∆max + ci)−1(τB,αuψ).

The first sum on the right converges to ψ as N → ∞ in L2(Rd), which is nice, but we
still have to manage the remainder. We define the remainder as the map Sc,N : L2(Rd) →
L2(Rd), so

Sc,Nω = ∑
α∈Zd

|α|≤N

(TminτB,αu)(−∆max + ci)−1(τB,αuω)

=− 2i
d

∑
j=1

∑
α∈Zd

|α|≤N

(ΠB,jτB,αu)∂ej(−∆max + ci)−1(τB,αuω)
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for ω ∈ L2(Rd). It is a sum of sums, each with terms having a similar structure. We
shall study the components of these terms next.

Here
∥(−∆max + ci)−1∥B(L2(Rd)) ≤ |c|−1,

and ∂
ej
min is −∆min-bounded and

∥∂
ej
max(−∆max + ci)−1∥B(L2(Rd)) ≤ |c|− 1

2

√
|c|−1 + 1

since by the help of integration by parts

d

∑
j=1

∥∂
ej
max(−∆max + ci)−1ω∥2

L2(Rd)

= ⟨(−∆max + ci)−1ω, (idL2(Rd) − ic(−∆max + ci)−1)ω⟩L2(Rd) ≤ 2|c|−1∥ω∥2
L2(Rd)

for all ω ∈ L2(Rd). Furthermore, for j ∈ {1, . . . , d}, α ∈ Zd we have on S (Rd) the
identities

ΠB,jτB,α = −i∂ej ϑB(·, α)τα − iτB,α∂ej − (AB)jτB,α = CB,j,ατB,α − iτB,α∂ej

and
Π2

B,jτB,α = −i∂ej CB,j,ατB,α + C2
B,j,ατB,α − 2iCB,j,ατB,α∂ej − τB,α∂2ej ,

where

CB,j,α : Rd ∋ x 7→
d

∑
k=1

∫ 1

0
(1 − t)(αk − xk)Bkj((1 − t)x + tα)dt

is a Om(Rd)-function, and it has, along with all of its derivatives, growth controlled by
a power of ⟨· − α⟩. This implies that

{TminτB,αu|α ∈ Zd}
⋃
{ΠB,jτB,αu|j ∈ {1, . . . , j}, α ∈ Zd}

is a bounded set in L∞(Rd).
Using this and the support of u, one gets:∥∥∥∥∥ ∑

α∈Zd

|α|≤N

(TminτB,αu)(−∆max + ci)−1(τB,αuω)

∥∥∥∥∥
2

L2(Rd)

= ∑
α∈Zd

|α|≤N

∑
β∈Zd

α−β∈[−1,1]d

∣∣∣∣〈(TminτB,αu)(−∆max + ci)−1(τB,αuω),

========(TminτB,βu)(−∆max + ci)−1(τB,βuω)

〉
L2(Rd)

∣∣∣∣
≤ ∑

α∈Zd

|α|≤N

3d

2
(3d − 1)∥(TminτB,αu)(−∆max + ci)−1(τB,αuω)∥2

L2(Rd)

≤ |c|−1 3d

2
(3d − 1) sup

β∈Zd
∥TminτB,βu∥2

L∞(Rd) ∑
α∈Zd

∥τB,αuω∥2
L2(Rd)

= |c|−2CB,u∥ω∥2
L2(Rd)

70



Mikkel Hviid Thorn

for ω ∈ L2(Rd). Similar treatment of the other d sums defining Sc,N shows that

sup
N∈N

∥Sc,N∥B(L2(Rd)) ≤ (|c|−1 + |c|− 1
2 )CB,u.

Moreover, (Sc,N)N∈N converges pointwise, thus using the Banach-Steinhaus Theorem
we conclude that (Sc,N)N∈N converges in B(L2(Rd)) to some Sc and

∥Sc∥B(L2(Rd)) ≤ (|c|−1 + |c|− 1
2 )CB,u.

Recall ϕc was assume to be in ∂B1(0; L2(Rd)) ∩ ker(T∗
min − ci). Find (ψn)n∈N in

S (Rd) such that ψn
n→∞→ ϕc in L2(Rd), see Lemma 3.1.2. Then

0 = ⟨(T∗
min + ci)(ψn)N , ϕc⟩L2(Rd)

N→∞→ ⟨ψn, ϕc⟩L2(Rd) + ⟨Scψn, ϕc⟩L2(Rd)

n→∞→ ⟨ϕc, ϕc⟩L2(Rd) + ⟨Scϕc, ϕc⟩L2(Rd) = 1 + ⟨Scϕc, ϕc⟩L2(Rd)

(4.2.1)

with the last term obeying the estimate:

|⟨Scϕc, ϕc⟩L2(Rd)| ≤ (|c|−1 + |c|− 1
2 )CB,u

If |c| is large enough, then |⟨Scϕc, ϕc⟩L2(Rd)| ≤ 2−1, which gives a contradiction with
(4.2.1). This implies that taking |c| large enough, the operators T∗

min ± ci have trivial
kernels, hence by Corollary 2.2.8, Tmin = (−i∇− AB)

2
min is essentially self-adjoint. ■

We will not study when one can add an outer potential V and still obtain a self-
adjoint operator, but remark that the trivial case V ∈ L∞(Rd) still holds.

In the following we shall only deal with the case of a constant magnetic field, i.e. it
can be represented by constant coefficients. For constant magnetic fields B, the magnetic
potential AB is just a linear map with an antisymmetric matrix, and every antisymmetric
matrix M defines a constant magnetic field, for which AB has matrix −2−1M. Further-
more, the associated magnetic phase ϑB is then induced by the matrix of AB:

−
∫
[x,y]

AB = x · ABy = −1
2

x · By

for all x, y ∈ Rd.
One significant fact for constant magnetic field is the following:

Lemma 4.2.3. For a constant magnetic field B, HB = (−i∇− AB)2
min commutes with all

magnetic translations.

Proof. That (−i∇− AB)
2
min commutes with τB,y for all y ∈ Rd follows from a direct calcu-

lation using classical calculus, or alternative note that (−i∇− AB)
2
min = ∑d

j=1 Π2
B,j|S (Rd)

and that the magnetic momenta commute with τB,y by Lemma 3.3.18.
Now for ϕ ∈ D(HB) we can find a sequence (ϕn)n∈N in S (Rd) such that ϕn

n→∞→ ϕ

in the D(HB)-norm, the graph norm of HB. But then (τB,yϕn)n∈N is Cauchy in the
D(HB)-norm, so

τB,yHBϕ = lim
n→∞

HBτB,yϕn = HB lim
n→∞

τB,yϕn = HBτB,yϕ. ■
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4.2.1 The Landau Operator

The free magnetic Schrödinger operator with constant magnetic field in two-dimensions
is special among magnetic Schrödinger operators, since in this case much more is known
about the operator. It is called the Landau operator and we shall find its spectrum, called
the Landau spectrum.

Theorem 4.2.4. For a constant magnetic field B = bdx1 ∧ dx2, b > 0, in R2, the operator
HB = (−i∇− AB)2

min has spectrum:

σ(HB) = σp(HB) = {b(1 + 2n)|n ∈ N0}

Proof. This time, we focus on solving differential equations in a distributional sense,
so given z ∈ C we want to find ϕ ∈ S ′(R2) such that

(
(−i∇− AB)

2 − z
)

ϕ = 0 and
ϕ ∈ D(HB) or

(
(−i∇− AB)

2 − z
)

ϕ = δ. Here the first corresponds to a point of the
point spectrum and the second to a point of the resolvent set.

Define CB : R2 ∋ x 7→ b
4∥x∥2. Due to the form of the differential operator, we make

the ansatz that
ϕ = e−CB(ψ ◦ CB)

for some function ψ. Applying the operator we get:(
(−i∇− AB)

2 − z
)

ϕ = e−CB(−bCB∂2ψ + b(2CB − 1)∂ψ + (b − z)ψ) ◦ CB

Setting this equal to zero and multiplying by − eCB
b , the above shows that ψ should satisfy

x∂2ψ(x) + (1 − 2x)∂ψ(x) +
( z

b
− 1
)

ψ(x) = 0

for all x ∈ R+. Scaling x 7→ 2x =: y, we get

y∂2ψ(y) + (1 − y)∂ψ(y) +
1
2

( z
b
− 1
)

ψ(y) = 0 (4.2.2)

for all y ∈ R+, which is the differential equation for confluent hypergeometric functions
with parameters 1 and 1

2

(
1 − z

b

)
.

According to [18, Chapter 13] on confluent hypergeometric functions, when 1
2

(
1 − z

b

)
∈

N0, or equivalently z ∈ b(1 + 2N0), we may find a polynomial ψ on R solving (4.2.2).
Thus

ϕ : R2 ∋ x 7→ e−
b
4 ∥x∥2

ψ

(
b
2
∥x∥2

)
should be an eigenfunction for HB. Indeed ϕ ∈ S (R2) ⊆ D(HB), and the above analysis
shows that (HB − z)ϕ = 0.

If z /∈ b(1+ 2N0), then we may find an analytic function ψ on R+ solving (4.2.2), see
again [18, Chapter 13]. This solution have just the right asymptotics such that

ϕ : R2 ∋ x 7→ e−
b
4 ∥x∥2

ψ

(
b
2
∥x∥2

)
1R2\{0}(x)

is a tempered distribution and
(
(−i∇− AB)

2 − z
)

ϕ = δ when ψ is scaled properly.
Additionally, ϕ has exponential decay when ∥x∥ → ∞.

Now to find an inverse to HB − z in this case, we take inspiration from the theory
of partial differential operators with constant coefficients, where convolution with a
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fundamental solution provides an inverse. Actually, in our situation we only have to
add the magnetic phase, i.e. we consider the integral operator T on L2(R2) with kernel

KT(x, y) = ϑB(x, y)ϕ(x − y)

for x, y ∈ R2. By properties of ϕ, T ∈ B(L2(R2)). If ω ∈ S (R2), then for x ∈ R2 and
using distribution theory we get

T(HB − z)ω(x) = ⟨ϑB(x, ·)ϕ(x − ·), (HB − z)ω⟩S ′(R2),S (R2)

= ⟨τxδ, ω⟩S ′(R2),S (R2) = ω(x).

Furthermore,
Tω(x) =

∫
R2

ϑB(x,−y)ϕ(y)ω(x − y)dy

can be differentiated under the integral, and so

(HB − z)Tω(x) = ⟨ϑB(x,−·)ϕ, (HB − z)ω(x − ·)⟩S ′(R2),S (R2)

= ⟨δ, ω(x − ·)⟩S ′(R2),S (R2) = ω(x).

Finally, the density of S (R2) in both D(HB) and L2(R2) lets us conclude that T =

(HB − z)−1, so z ∈ ρ(HB) if z /∈ b(1 + 2N0). ■

4.3 Hartree-Fock Approximation of the Schrödinger Operator of
a Particle in a Magnetic Many-body System

Up till this point we have worked with one particle quantum systems. If one theoreti-
cally wants to study many-body systems, then for N d-dimensional particles one would
work in a subspace of L2(RNd) and a collective Schrödinger operator for the system. We
instead take the approach of the Hartree-Fock approximation, so that when our quan-
tum system fulfills certain assumptions, each particles self-energy can be approximated
by a one-particle Schrödinger operator with added potential from the mean-field of the
particle cloud. This added potential has to satisfy a self-consistent equation, which we
translate into mathematics and solve rigorously. We remark that the particles considered
in this section are fermionic.

To set the stage, we fix a constant magnetic field B and a one-particle free magnetic
Schrödinger operator

HB = (−i∇− AB)2
min.

For particle-particle interactions we take a potential satisfying a symmetry condition
and a rapid decay condition:

Definition 4.3.1. The space of even, integrable functions with rapid decay L1
0,E(R

d, R)

consists of all real-valued integrable functions v ∈ L1(Rd, R) such that ⟨·⟩nv ∈ L1(Rd)

for all n ∈ N and v(·) = v(−·).

The rapid decay symbolizes that particles far away from each other have less impact
on one another, and on that note, a physically interesting v is often singular at zero.
The symmetry should be interpreted as the potential not caring about two particles
switching places.

Lastly, we need a quantum distribution function:
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Definition 4.3.2. The space of smooth functions on R with rapid decay towards +∞
consists of real-valued functions f ∈ C∞(R) satisfying

sup
[0,∞)

⟨·⟩n|∂j f | < ∞

for all n, j ∈ N0 and is denoted by S+(R, R).

The quantum distribution function f ∈ S+(R, R) will control the mean-field and the
rapid decay restriction is defined such that f can cope with particles of large positive
energies. Note HB is lower bounded. For a probabilistic interpretation, one should
additionally require limλ→−∞ f (λ) = 1.

Coming back to the mean-field potential, the self-consistent equation for the poten-
tial Wλ with coupling λ ≥ 0 is given by

KWλ
(x, y) = λδ(x− y)

∫
Rd

v(x− z)K f (HB+Wλ)(z, z)dz−λv(x− y)K f (HB+Wλ)(x, y) (4.3.1)

for x, y ∈ Rd, where δ is the Dirac delta distribution. We wish to define Wλ through a
rigorous version of (4.3.1) and add it to the one-particle Schrödinger operator HB. The
Equation (4.3.1) involves kernels and so before we work on it we prove a lemma on
integral operators:

Lemma 4.3.3. Given a constant magnetic field B, a densely defined integral operator T ∈
L(L2(Rd)) commutes with all magnetic translations if and only if

KT(x, y) = ϑB(x, y)KT(x − y, 0) (4.3.2)

for almost all x, y ∈ Rd.
Moreover, in the positive case KT is constant on the diagonal {(x, x)|x ∈ Rd} and T is then

symmetric if and only if KT(·, 0) = KT(−·, 0).

Of course these equalities have to be interpreted correctly. Also, the first part of the
lemma essentially follows from Lemma 3.3.18, but we provide another proof.

Proof. For ϕ ∈ D(T) and x, y ∈ Rd we have

τB,yTϕ(x) =
∫

Rd
ϑB(x, y)KT(x − y, z)ϕ(z)dz =

∫
Rd

ϑB(x, y)KT(x − y, z − y)ϕ(z − y)dz

and
TτB,yϕ(x) =

∫
Rd

KT(x, z)ϑB(z, y)ϕ(z − y)dz

for x, y ∈ Rd. Thus T commutes with all magnetic translations if and only if

ϑB(x, y)KT(x − y, z − y) = ϑB(z, y)KT(x, z) (4.3.3)

for x, y, z ∈ Rd. Setting z = y in (4.3.3) we get (4.3.2). Conversely, assuming (4.3.2) holds,
we get

ϑB(x, y)KT(x − y, z − y) = ϑB(x, y)ϑB(x − y, z − y)KT(x − z, 0)

and
ϑB(z, y)KT(x, z) = ϑB(z, y)ϑB(x, z)KT(x − z, 0)
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for x, y, z ∈ Rd. Since

x · ABy + (x − y) · AB(z − y) = x · ABz + z · ABy,

we conclude that (4.3.2) implies (4.3.3).
Setting y = x in (4.3.2) we get KT(0, 0) = KT(x, x), hence in the positive case, KT

would be constant on the diagonal. Next, an integral operator is symmetric if and only
if its kernel is Hermitian. Since ϑB is Hermitian, T is symmetric if and only if

KT(x − y, 0) = KT(y − x, 0)

for x, y ∈ Rd. This condition is equivalent with KT(·, 0) = KT(−·, 0), so we are done. ■

Since the mean-field potential Wλ is the same for all particles in the particle cloud, it
makes sense to impose the commutative property of Lemma 4.3.3 on Wλ. A reasonable
implication is that f (HB +Wλ) also possesses this commutative property, and so using
Lemma 4.3.3, the Equation (4.3.1) would be equivalent with

KWλ
(x − y, 0) = λK f (HB+Wλ)(0, 0)

∫
Rd

v − λv(x − y)K f (HB+Wλ)(x − y, 0)

for x, y ∈ Rd. Setting F := K f (HB+Wλ)(·, 0) we get

KWλ
(·, 0) = F(0)

∫
Rd

v − λv(·)F(·),

and so defining ZB,v,F as the integral operator commuting with all magnetic translations
with kernel KZB,v,F(·, 0) = λv(·)F(·) we conclude

Wλ = λF(0)
∫

Rd
v − λZB,v,F.

Plugging this expression for the mean-field potential Wλ into the definition of F gives a
self-consistent equation for F:

F = K f (HB+λF(0)
∫

Rd v−λZB,v,F)
(·, 0) (4.3.4)

This is the real fix point equation we will solve, and then recover Wλ as λWB,v,F =

λ(F(0)
∫

Rd v − ZB,v,F).
We have a lot of analysis to do. For a start we will look for a suitable definition

for and properties of the operator ZB,v,F, and next in line the operator WB,v,F. Then it
is time for the perturbed Schrödinger operator HB +Wλ and its quantum distribution
f (HB +Wλ). Lastly, we solve (4.3.4) in a certain sense using Banach’s Fix Point Theorem.

4.3.1 Integral Potential

Given a constant magnetic field B and v ∈ L1
0,E(R

d, R) we want a map F 7→ ZB,v,F with
good properties. Recall ZB,v,F was loosely defined as the integral operator commuting
with all magnetic translations and with kernel satisfying KZB,v,F(·, 0) = v(·)F(·), i.e.

KZB,v,F(x, y) = ϑB(x, y)v(x − y)F(x − y)

for x, y ∈ Rd.
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One requirement we impose is ZB,v,F ∈ B(L2(Rd)) for all F, and by Schur’s test a
sufficient criteria is vF ∈ L1(Rd) and it that case

∥ZB,v,F∥B(L2(Rd)) ≤
√

sup
x∈Rd

∫
Rd

|KZB,v,F(x, y)|dy sup
y∈Rd

∫
Rd

|KZB,v,F(x, y)|dx ≤ ∥vF∥L1(Rd).

A wide class of functions F satisfies vF ∈ L1(Rd), but a simple and direct criteria is to
take F ∈ L1(Rd)′ = L∞(Rd). For this choice we get:

Lemma 4.3.4. Given a constant magnetic field B and v ∈ L1
0,E(R

d, R), the map

ZB,v,(·) : L∞(Rd) ∋ F 7→ ZB,v,F

enjoys the following properties:

(i) ZB,v,(·) has image in B(L2(Rd)) and is bounded as an operator L∞(Rd) → B(L2(Rd))

with operator norm less than or equal to ∥v∥L1(Rd). The integral operator ZB,v,F commutes
with all magnetic translations, and it is self-adjoint if F(·) = F(−·).

(ii) ZB,v,(·) also has image in B(L2(Rd), L∞(Rd)) and is bounded as an operator L∞(Rd) →
B(L2(Rd), L∞(Rd)) with operator norm less than or equal to ∥v∥L2(Rd).

(iii) For any F ∈ L∞(Rd) and Tj ∈ {XB,1, . . . , XB,d, ΠB,1, . . . , ΠB,d}, j = 1, . . . , n, n ∈
N0, the repeated commutator [T1, [T2, . . . [Tn, ZB,v,F|S (Rd)] . . . ]] extends to an operator in
B(L2(Rd)) ∩ B(L2(Rd), L∞(Rd)). Consequently, ZB,v,F|S (Rd) ∈ B(S (Rd)).

Moreover, the linear maps

L∞(Rd) ∋ F 7→ ZB,v,F|S (Rd) ∈ B(S (Rd))

and
L∞(Rd) ∋ F 7→ Op−1

B (ZB,v,F|S (Rd)) ∈ S1(R
2d)

are continuous.

Proof. By Schur’s test

∥ZB,v,F∥B(L2(Rd)) ≤ ∥vF∥L1(Rd) ≤ ∥v∥L1(Rd)∥F∥L∞(Rd)

for all F ∈ L∞(Rd), which deals with most of (i). The latter statements about com-
mutating with all magnetic translations and the sufficient condition for self-adjointness
follows from the explicit kernel of ZB,v,F, Lemma 4.3.3, and the fact that v is real-valued.

(ii) is also not much of a problem to prove. For ϕ ∈ L2(Rd) and x ∈ Rd we have

|ZB,v,Fϕ(x)| ≤
∫

Rd
|(vF)(x − y)||ϕ(y)|dy ≤ ∥v∥L2(Rd)∥F∥L∞(Rd)∥ϕ∥L2(Rd),

whence
∥ZB,v,Fϕ∥L∞(Rd) ≤ ∥v∥L2(Rd)∥F∥L∞(Rd)∥ϕ∥L2(Rd).

The operator norm estimate follows easily.
The last point, (iii), of the lemma boils down to proving that the commutators are

integral operators with kernel of the same type as ZB,v,F and then prove that the maps
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in the latter half are continuous. Essentially, the particle-particle potential v has enough
decay so that we may neglect whatever unwanted factors are introduced.

Fix ϕ ∈ S (Rd) and j ∈ {1, . . . , d}. For x ∈ Rd we have

[XB,j, ZB,v,F]ϕ(x) =
∫

Rd
ϑB(x, y)(xj − yj)v(x − y)F(x − y)ϕ(y)dy,

where the kernel on the right hand side gives rise to a map in both B(L2(Rd)) and
B(L2(Rd), L∞(Rd)) by the decay of v and the reasoning in the proof of (i) and (ii), which
also gives the estimates

∥[XB,j, ZB,v,F]ϕ∥L2(Rd) ≤ ∥F∥L∞(Rd)∥XB,jv∥L1(Rd)∥ϕ∥L2(Rd)

and

∥[XB,j, ZB,v,F]ϕ∥L∞(Rd) ≤ ∥F∥L∞(Rd)∥XB,jv∥L2(Rd)∥ϕ∥L2(Rd).

Concerning the momentum operators we show that ZB,v,Fϕ is classically differen-
tiable. A translation under the integral gives

ZB,v,Fϕ(x) =
∫

Rd
ϑB(x,−y)v(y)F(y)ϕ(x − y)dy.

The integrand on the right hand side is differentiable in x and integrable in y uniformly
in x, hence ZB,v,Fϕ is differentiable by standard results of integration theory. Explicitly,

∂ej ZB,v,Fϕ(x) = −i
∫

Rd
(AB)j(x − y)ϑB(x, y)v(x − y)F(x − y)ϕ(y)dy

=+
∫

Rd
ϑB(x, y)v(x − y)F(x − y)∂ej ϕ(y)dy,

implying that

[ΠB,j, ZB,v,F]ϕ(x) = −2i
∫

Rd
(AB)j(x − y)ϑB(x, y)v(x − y)F(x − y)ϕ(y)dy,

and so the commutator [ΠB,j, ZB,v,F] also gives rise to a map in both B(L2(Rd)) and
B(L2(Rd), L∞(Rd)) with similar estimates on the norms.

Now it is trivially to show by a proper induction argument that repeated commu-
tators of the kind considered in (iii) have nice kernels and that they are extendable to
maps in B(L2(Rd)) ∩ B(L2(Rd), L∞(Rd)). Using Beal’s Commutator Criterion 3.3.19,
we conclude that ZB,v,F|S (Rd) ∈ OpB(S1(R

2d)) ⊆ B(S (Rd)). Furthermore, for all
n ∈ N0, γ ∈ Nd

0

sup
Rd

⟨·⟩n|∂γZB,v,Fϕ| ≤ CB ∑
δ∈Nd

0
δ≤γ

sup
x∈Rd

∫
Rd
⟨x − y⟩n|Xγ−δ

B,j v(x − y)F(x − y)|⟨y⟩n|∂δϕ(y)|dy

≤ CB∥F∥L∞(Rd)∥⟨·⟩n+|γ|v∥L1(Rd) ∑
δ∈Nd

0
δ≤γ

sup
Rd

⟨·⟩|γ||∂δϕ|,

and so by n, γ being arbitrary,

L∞(Rd) ∋ F 7→ ZB,v,F|S (Rd) ∈ B(S (Rd))
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is shown to be continuous.
For the map

L∞(Rd) ∋ F 7→ Op−1
B (ZB,v,F|S (Rd)) ∈ S1(R

2d)

we note that by Parseval’s identity one sees that Φv,F : R2d ∋ (x, ξ) 7→ F (vF)(ξ) is the
symbol of ZB,v,F, whence

sup
R2d

|∂γΦv,F| ≤ C∥F∥L∞(Rd)∥⟨·⟩|γ|v∥L1(Rd)

for all γ ∈ N2d
0 , showing continuity. ■

Lemma 4.3.4 vindicates our choice of L∞(Rd) as domain for ZB,v,(·). Note the signif-
icance of Lemma 4.3.4 (iii) lies in the fact that we are able to use the pseudo-differential
calculus of Section 3.3 in the following.

Many of the qualities of ZB,v,(·) should transfer to WB,v,(·). One problem with L∞(Rd)

as domain for WB,v,(·) is that WB,v,F is defined using the value F(0). A quick, and suffi-
cient, fix is to restrict the domain of WB,v,(·) to BC(Rd).

Corollary 4.3.5. Given a constant magnetic field B and v ∈ L1
0,E(R

d, R), the map

WB,v,(·) : BC(Rd) ∋ F 7→ WB,v,F

enjoys the following properties:

(i) WB,v,(·) has image in B(L2(Rd)) and is bounded as an operator BC(Rd) → B(L2(Rd))

with operator norm less than or equal to 2∥v∥L1(Rd). The operator WB,v,F commutes with
all magnetic translations, and it is self-adjoint if F(·) = F(−·).

(ii) For any F ∈ BC(Rd) and Tj ∈ {XB,1, . . . , XB,d, ΠB,1, . . . , ΠB,d}, j = 1, . . . , n, n ∈
N0, the repeated commutator [T1, [T2, . . . [Tn, WB,v,F|S (Rd)] . . . ]] extends to an operator
in B(L2(Rd)). Consequently, WB,v,F|S (Rd) ∈ B(S (Rd)).

Moreover, the linear maps

BC(Rd) ∋ F 7→ WB,v,F|S (Rd) ∈ B(S (Rd))

and
BC(Rd) ∋ F 7→ Op−1

B (WB,v,F|S (Rd)) ∈ S1(R
2d)

are continuous.

Proof. We utilize that WB,v,F is the sum of two operators in B(L2(Rd)), the constant
F(0)

∫
Rd v and ZB,v,F. Clearly F(0)

∫
Rd v commutes with all operators and F(·) = F(−·)

is sufficient for the operator F(0)
∫

Rd v to be self-adjoint since v is real-valued. It does
then not take much more effort to prove (ii) for F(0)

∫
Rd v in place of WB,v,F.

This means that we are essentially finished since ZB,v,F has the required properties by
Lemma 4.3.4 and the corollary is then quickly verified for the sum WB,v,F = F(0)

∫
Rd v −

ZB,v,F. ■
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4.3.2 Symbol of the Perturbed Magnetic Schrödinger Operator

Having a good deal of information on the operators WB,v,F, we turn to the study of the
operator HB,v,λ,F := HB + λWB,v,F. A sufficient condition for HB,v,λ,F to be self-adjoint
and essentially self-adjoint when restricted to S (Rd) is that F(·) = F(−·), see Corollary
4.3.5 (i). Thus we restrict ourselves to that case and define the space:

BCH(R
d) = {F ∈ BC(Rd)|F(·) = F(−·)}

As an example, BCH(R
d) contains all real-valued even functions. We endow BCH(R

d)

with the subspace topology of BC(Rd).
Now for each F ∈ BCH(R

d), we have HB,v,λ,F ∈ OpB(SM2
0
(R2d)), so one might sus-

pect from the pseudo-differential calculus that the resolvent of HB,v,λ,F takes values in
OpB(SM−2

0
(R2d)). This is indeed the case, which we will prove in two steps: First our

goal will be to use Beal’s Commutator Criterion 3.3.19 to show that the resolvent is
in OpB(S1(R

2d)), and then use the explicit form of HB and the definition of the Weyl
quantizations to show that it is really in OpB(SM−2

0
(R2d)).

Proposition 4.3.6. Given a constant magnetic field B, v ∈ L1
0,E(R

d, R), F ∈ BCH(R
d), and

λ ≥ 0, the resolvent of HB,v,λ,F takes values in OpB(S1(R
2d)).

Furthermore, for Tj ∈ {XB,1, . . . , XB,d, ΠB,1, . . . , ΠB,d}, j = 1, . . . , n, n ∈ N0, we have the
following estimate on the operator norm of the repeated commutator:

∥[T1, [T2, . . . [Tn, (HB,v,λ,F − z)−1|S (Rd)] . . . ]]∥B(L2(Rd))

≤ CBd(z, σ(HB,v,λ,F))
−1⟨d(z, σ(HB,v,λ,F)⟩−n⟨z⟩ n

2 ⟨λ∥⟨·⟩nv∥L1(Rd)∥F∥L∞(Rd)⟩n
(4.3.5)

for z ∈ ρ(HB,v,λ,F).

Proof. Fix z ∈ ρ(HB,v,λ,F) throughout. To use Beal’s Commutator Criterion 3.3.19 we
need to handle the repeated commutators advertised in the proposition. We will start
with computing the commutators of XB,j, ΠB,j, (−i∇− AB)

2, j ∈ {1, . . . , d}, on S ′(Rd).
These can then be shown to correspond with the commutators of XB,j, ΠB,j,HB on
L2(Rd) by use of duality. Then, using regularization and variational techniques, we
deal with commutators of XB,j, ΠB,j, (HB,v,λ,F − z)−1|S (Rd).

We have

[XB,j, XB,k] = [XB,j, ΠB,k] = 0,

[XB,j, ΠB,j] = −iXB,j∂
ej + i(1 + XB,j∂

ej) = i,

[ΠB,j, ΠB,k] = i[∂ej , (AB)k] + i[(AB)j,∂ek ] =
iBjk

2
[∂ej , XB,j] +

iBkj

2
[XB,k, ∂ek ] = Bjk,

(4.3.6)

for j, k ∈ {1, . . . , d}, j ̸= k, and recalling that (−i∇− AB)
2 = ∑d

j=1 Π2
B,j we get

[XB,j, (−i∇− AB)
2] = [XB,j, ΠB,j]ΠB,j + ΠB,j[XB,j, ΠB,j] = 2iΠB,j (4.3.7)

and

[ΠB,j, (−i∇− AB)
2] =

d

∑
k=1

[ΠB,j, ΠB,k]ΠB,k + ΠB,k[ΠB,j, ΠB,k] =
d

∑
k=1

2BjkΠB,k (4.3.8)

for j ∈ {1, . . . , d}.
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Moving on, we show that ΠB,j(HB,v,λ,F − z)−1 is a bounded operator. It is defined
on the entirety of L2(Rd) since ΠB,j|S (Rd) is HB-bounded, see Proposition 4.2.2. An
estimate of the bound is then, for ϕ ∈ L2(Rd), computed by

d

∑
k=1

∥ΠB,k(HB,v,λ,F − z)−1ϕ∥2
L2(Rd) = ⟨(HB,v,λ,F − z)−1ϕ,HB(HB,v,λ,F − z)−1ϕ⟩L2(Rd)

≤ ∥idL2(Rd) + (z − λWB,v,F)(HB,v,λ,F − z)−1∥B(L2(Rd))

======∥(HB,v,λ,F − z)−1∥B(L2(Rd))∥ϕ∥2
L2(Rd)

=

(
1 +

|z|+ 2λ∥v∥L1(Rd)∥F∥L∞(Rd)

d(z, σ(HB,v,λ,F))

)
1

d(z, σ(HB,v,λ,F))
∥ϕ∥2

L2(Rd)

where we used integration by parts and the norm estimates in Corollary 2.4.24 and
Corollary 4.3.5.

Finally, we study the commutators of XB,j, ΠB,j with (HB,v,λ,F − z)−1. For XB,j, we
shall first make use of the regularization XB,j,ε := XB,je−ε⟨·⟩ ∈ B(L2(Rd)), ε > 0. As
operators on Schwartz functions or tempered distributions

XB,j,ε
ε→0→ XB,j

and if ϕ ∈ L2(Rd) with XB,jϕ ∈ L2(Rd), then also

XB,j,εϕ
ε→0→ XB,jϕ

in L2(Rd)-norm. Furthermore, on D(HB) we have pointwise convergence

[XB,j,ε,HB]
ε→0→ 2iΠB,j

in L2(Rd)-norm. Using these convergence properties in unison we get

⟨[XB,j, (HB,v,λ,F − z)−1]ϕ, ψ⟩S ′(Rd),S (Rd) = lim
ε→0

⟨[XB,j,ε, (HB,v,λ,F − z)−1]ϕ, ψ⟩S ′(Rd),S (Rd)

= − lim
ε→0

⟨(HB,v,λ,F − z)−1[XB,j,ε,HB,v,λ,F](HB,v,λ,F − z)−1ϕ, ψ⟩S ′(Rd),S (Rd)

= −⟨(HB,v,λ,F − z)−1(2iΠB,j + λ[XB,j, WB,v,F])(HB,v,λ,F − z)−1ϕ, ψ⟩S ′(Rd),S (Rd)

for all ϕ, ψ ∈ S (Rd), and so [XB,j, (HB,v,λ,F − z)−1] equals, on S (Rd), a L2(Rd)-bounded
operator by ΠB,j(HB,v,λ,F − z)−1 ∈ B(L2(Rd)) and Corollary 4.3.5.

For ΠB,j we use the HB-boundedness again. Given ϕ, ψ ∈ S (Rd) we get

⟨[ΠB,j, (HB,v,λ,F − z)−1]ϕ, ψ⟩L2(Rd)

= ⟨ΠB,j(HB,v,λ,F − z)−1ϕ,HB,v,λ,F(HB,v,λ,F − z)−1ψ⟩L2(Rd)

=− ⟨HB,v,λ,F(HB,v,λ,F − z)−1ϕ, ΠB,j(HB,v,λ,F − z)−1ψ⟩L2(Rd)

= s((HB,v,λ,F − z)−1ϕ, (HB,v,λ,F − z)−1ψ) + s∗((HB,v,λ,F − z)−1ϕ, (HB,v,λ,F − z)−1ψ),

where s is the sesquilinear form:

s : D(HB)× D(HB) ∋ (ω1, ω2) 7→ ⟨ΠB,jω1,HB,v,λ,Fω2⟩L2(Rd),
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Both s and its adjoint are bounded in D(HB), and so we may find sequences (ϕn)n∈N

and (ψn)n∈N in S (Rd) converging to (HB,v,λ,F − z)−1ϕ, (HB,v,λ,F − z)−1ψ respectively in
D(HB), and compute:

⟨[ΠB,j, (HB,v,λ,F − z)−1]ϕ, ψ⟩L2(Rd) = lim
n→∞

s(ϕn, ψn) + s∗(ϕn, ψn)

= − lim
n→∞

⟨[ΠB,j,HB,v,λ,F]ϕn, ψn⟩L2(Rd)

= −⟨(HB,v,λ,F − z)−1[ΠB,j,HB,v,λ,F](HB,v,λ,F − z)−1ϕ, ψ⟩L2(Rd),

where the limit in the last equality stems from (4.3.8) and Corollary 4.3.5. This then
shows that [ΠB,j, (HB,v,λ,F − z)−1] equals a L2(Rd)-bounded operator on S (Rd).

Thus the commutators of XB,j, ΠB,j with (HB,v,λ,F − z)−1 extend to bounded opera-
tors on L2(Rd). These arguments can be extended by induction to prove that all the
repeated commutators considered in the proposition extend to operators in B(L2(Rd)),
and additionally, by our method of switching commutators in (HB,v,λ,F − z)−1 with ones
in HB,v,λ,F and Leibniz’s rule, one obtains the formula:

[T1, [T2, · · · [Tn, (HB,v,λ,F − z)−1] · · · ]]

= (−1)n ∑
p∈Sn

(HB,v,λ,F − z)−1
n

∏
l=1

(
[Tpl ,HB,v,λ,F](HB,v,λ,F − z)−1

)
=+ (−1)n−1 ∑

p∈Sn,p1<p2

(HB,v,λ,F − z)−1[Tp1 , [Tp2 ,HB,v,λ,F]](Hb − z)−1

========
n

∏
l=3

(
[Tpl ,HB,v,λ,F](HB,v,λ,F − z)−1

)
=+ (−1)n−1 ∑

p∈Sn,p2<p3

(HB,v,λ,F − z)−1[Tp1 ,HB,v,λ,F](HB,v,λ,F − z)−1

========[Tp2 , [Tp3 ,HB,v,λ,F]](HB,v,λ,F − z)−1
n

∏
l=4

(
[Tpl ,HB,v,λ,F](HB,v,λ,F − z)−1

)
=+ · · ·
=− (HB,v,λ,F − z)−1[T1, [T2, · · · [Tn,HB,v,λ,F] · · · ]](HB,v,λ,F − z)−1,

where Sn is the symmetric group of n-elements, or otherwise known as the set of all per-
mutations of n-elements. Note also, that by the commutators (4.3.6), (4.3.7), and (4.3.8),
the triple, or more, repeated commutator of operators in {XB,1, . . . , XB,d, ΠB,1, . . . , ΠB,d}
with (−i∇ − AB)

2 is zero, which affects the above formula. We use this expansion
of the repeated commutators to get the estimate of its operator norm, as stated in the
proposition. ■

Proposition 4.3.7. Given a constant magnetic field B, v ∈ L1
0,E(R

d, R), F ∈ BCH(R
d), and

λ ≥ 0, the resolvent of HB,v,λ,F takes values in OpB(SM−2
0
(R2d)).

Proof. A considerable amount of work went into showing that (HB,v,λ,F − z)−1|S (Rd) ∈
OpB(S1(R

2d)). Luckily this proof is simpler and somewhat direct. We prove that (HB −
i)−1|S (Rd) ∈ OpB(SM−2

0
(R2d)), whence the second resolvent identity and the Moyal

product, see Lemma 2.4.4 and Theorem 3.3.15, implies that (HB,v,λ,F − i)−1|S (Rd) ∈
OpB(SM−2

0
(R2d)) from which the statement follows from the first resolvent identity and

the Moyal product.
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Let
Φ := Op−1

B

(
(HB − i)−1|S (Rd)

)
.

For ϕ, ψ ∈ S (Rd), this means that

⟨ϕ, ψ⟩S ′(Rd),S (Rd) = ⟨(HB − i)OpB(Φ)ϕ, ψ⟩S ′(Rd),S (Rd)

=

〈
T

1
2 ,B

WeylΦ,
(
(i∇− AB)

2 − i
)

ψ ⊗ ϕ

〉
S ′(R2d),S (R2d)

= lim
ε→0

〈
T

1
2 ,B

WeylΦε,
(
(i∇− AB)

2 − i
)

ψ ⊗ ϕ

〉
S ′(R2d),S (R2d)

,

where Φε : R2d ∋ (x, ξ) 7→ e−ε⟨ξ⟩Φ(ξ) for ε > 0 and the last equality holds by dominated
convergence. For each ε > 0 we can, by using Fubini’s Theorem, integration by parts,
and the exponential factors, get〈

T
1
2 ,B

WeylΦε,
(
(i∇− AB)

2 − i
)

ψ ⊗ ϕ

〉
S ′(R2d),S (R2d)

=

〈
T

1
2 ,B

Weyl

(
(−iAB(∇ξ) + Ξ)2 − i

)
Φε, ψ ⊗ ϕ

〉
S ′(R2d),S (R2d)

=
〈
OpB

((
(−iAB(∇ξ) + Ξ)2 − i

)
Φε

)
ϕ, ψ

〉
S ′(Rd),S (Rd)

.

Here, when viewing Φε as a function of (x, ξ) ∈ R2d, we use Ξ : R2d ∋ (x, ξ) 7→ ξ and
∇ξ = (∂ed+j)d

j=1.
Since (

(−iAB(∇ξ) + Ξ)2 − i
)

Φε
ε→∞→

(
(−iAB(∇ξ) + Ξ)2 − i

)
Φ

holds in S ′(R2d) by continuity of the map (−iAB(∇ξ) + Ξ)2 − i, we get

⟨ϕ, ψ⟩S ′(Rd),S (Rd) =
〈
OpB

((
(−iAB(∇ξ) + Ξ)2 − i

)
Φ
)

ϕ, ψ
〉

S ′(Rd),S (Rd)
.

The identity function idS (Rd) has symbol 1 ∈ S1(R
2d), so we get by uniqueness of

symbols that
1 =

(
(−iAB(∇ξ) + Ξ)2 − i

)
Φ.

It follows that

Φ =
1

∥Ξ∥2 − i
(
1 − 2iΞ · AB(∇ξ)− AB(∇ξ) · AB(∇ξ)Φ

)
∈ SM−1

0
(R2d)

with the initially dominating term being 1
∥Ξ∥2−i Ξ · AB(∇ξ), and thus secondly it follows

still that Φ ∈ SM−2
0
(R2d) with the dominating term being 1

∥Ξ∥2−i ∈ SM−2
0
(R2d). ■

4.3.3 Quantum Distribution of the Perturbed Magnetic Schrödinger Opera-
tor

We have gathered most of results we need to prove that (4.3.4) has a fix point. Essential
in this task, and the last bit of preparation, is to examine the operator f (HB,v,λ,F).
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Theorem 4.3.8. Let B be a constant magnetic field, v ∈ L1
0,E(R

d, R), F ∈ BCH(R
d), f ∈

S+(R, R), and λ ≥ 0.
The operator f (HB,v,λ,F) is a self-adjoint, bounded operator that commutes with all magnetic

translations. It has a kernel for which K f (HB,v,λ,F)(·, 0) ∈ S (Rd).

Proof. The self-adjointness and boundedness follows from our spectral theory, see Propo-
sition 2.4.9 and Proposition 2.4.12. For the rest we will use the Helffer-Sjöstrand Formula
2.4.27.

We need a suitable almost analytic extension of f . Noting that HB,v,λ,F is lower
bounded, we can construct an increasing function g ∈ BC∞(R) such that g(x) = 1
for x ≥ m(HB,v,λ,F) − 1 and g(x) = 0 for x ≤ m(HB,v,λ,F) − 2. Then f (HB,v,λ,F) =

(g f )(HB,v,λ,F) and g f ∈ S (R). By the construction in Subsection 2.4.5 we have a family
of almost analytic extensions of (̃g f )N indexed by N ∈ N. Fix one for now.

Then by the Helffer-Sjöstrand Formula 2.4.27:

f (HB,v,λ,F) = − 1
π

∫
C

∂z (̃g f )N(z)(HB,v,λ,F − z)−1dxdy

Here we may then use the first resolvent identity and integration by parts any number
of times to get:

f (HB,v,λ,F) = − 1
π

n−1

∑
j=0

∫
C

∂z (̃g f )N(z)(z − i)jdxdy(HB,v,λ,F − i)−j−1

=− 1
π

∫
C

∂z (̃g f )N(z)(z − i)n(HB,v,λ,F − z)−1dxdy(HB,v,λ,F − i)−n

= − 1
π

∫
C

∂z (̃g f )N(z)(z − i)n(HB,v,λ,F − z)−1dxdy(HB,v,λ,F − i)−n

We take at least n > d
2 − 1. Applying this to a Schwartz function ϕ ∈ S (Rd) we compute

f (HB,v,λ,F)ϕ = − 1
π

∫
C

∂z (̃g f )N(z)(z − i)nOpB(Φz)ϕdxdy,

where we used simple results about the commutativity of bounded operators with
Bochner integrals to get ϕ inside the integral and

Φz := Op−1
B

(
(HB,v,λ,F − z)−1(HB,v,λ,F − i)−n|S (Rd)

)
∈ SM−2n−2

0
(R2d)

having Proposition 4.3.7 and Theorem 3.3.15 in mind.
It is now time to interchange the integral with the magnetic Weyl-quantization. Much

as in the proof of Theorem 2.4.27 we see that:

f (HB,v,λ,F)ϕ = − 1
π

lim
k→∞

1
k2 ∑

w∈[−k,k]2∩k−1(2−1+i2−1+Z2)

∂z (̃g f )N(w)(w − i)nOpB(Φz)ϕ

= − 1
π

lim
k→∞

OpB

 1
k2 ∑

w∈[−k,k]2∩k−1(2−1+i2−1+Z2)

∂z (̃g f )N(w)(w − i)nΦw

 ϕ

Hence if the sequence 1
k2 ∑

w∈[−k,k]2∩k−1(2−1+i2−1+Z2)

∂z (̃g f )N(w)(w − i)nΦw


k∈N
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converges in S ′(R2d), then we may do the wanted interchange by the Schwartz Kernel
Theorem 3.2.21. To show the convergence we look for estimates on ∥Φz∥S

M−2n−2
0

(R2d),0.

From the proof of Lemma 3.3.8 and Theorem 3.3.15, we see that it is enough to
have control of the matrix elements of (HB,v,λ,F − z)−1 in the magnetic Gabor frame
(Gα̃,B)α̃∈Z2d for z in a dense set. Beal’s Commutator Criterion 3.3.19 then provides
a way for us to do this by controlling the operator norms of repeated commutators
of {XB,1, . . . , XB,d, ΠB,1, . . . , ΠB,d} with the map (HB,v,λ,F − z)−1, and an estimation of
these operator norms was done in Proposition 4.3.6, see (4.3.5). We found that the
z-dependence of these acted like d(z, σ(HB,v,λ,F))

−1⟨d(z, σ(HB,v,λ,F))⟩−l⟨z⟩ l
2 , for some

l ∈ N, when z ∈ ρ(HB,v,λ,F). To deal with this behavior, we only have to chose N large
enough, see Lemma 2.4.26. Hence

sup
ξ∈Rd

|∂z (̃g f )N(z)(z − i)n⟨ξ⟩2n+2Φz(ξ)| ≤ cN,n,γ⟨z⟩−d−1

for all z ∈ ρ(HB,v,λ,F) if N is chosen appropriately large. This implies that uniformly in
ξ we have

lim
k→∞

1
k2 ∑

w∈[−k,k]2∩k−1(2−1+i2−1+Z2)

∂z (̃g f )N(w)(w − i)n⟨ξ⟩2n+2Φw(ξ)

=
∫

C
∂z (̃g f )N(z)(z − i)n⟨ξ⟩2n+2Φz(ξ)dxdy

with

sup
ξ∈Rd

∣∣∣∣∫
C

∂z (̃g f )N(z)(z − i)n⟨ξ⟩2n+2Φz(ξ)dxdy
∣∣∣∣ < ∞.

These results also hold if we consider ∂γΦz, γ ∈ Nd
0, in-place of Φz so long as N is

chosen larger.
This is a stronger result than just convergence in S ′(R2d), so we are indeed able to

conclude that

f (HB,v,λ,F)ϕ = OpB

(
− 1

π

∫
C

∂z (̃g f )N(z)(z − i)nΦzdxdy
)

ϕ.

Now the form of the symbol and decay in the variable ξ gives us

⟨ψ, f (HB,v,λ,F)ϕ⟩L2(Rd)

=

〈
OpB

(
− 1

π

∫
C

∂z (̃g f )N(z)(z − i)nΦz(ξ)dxdy
)

ϕ, ψ

〉
S ′(Rd),S (Rd)

=
∫

Rd
(2π)−d

∫
Rd

∫
Rd

eiξ·(u−ζ)ϑB(u, ζ)

(
− 1

π

∫
C

∂z (̃g f )N(z)(z − i)nΦz(ξ)dxdy
)

dξ

====ϕ(ζ)dζψ(u)du

for all ψ ∈ S (Rd), hence

f (HB,v,λ,F)ϕ(u)

= (2π)−d
∫

Rd

∫
Rd

eiξ·(u−ζ)ϑB(u, ζ)

(
− 1

π

∫
C

∂z (̃g f )N(z)(z − i)nΦz(ξ)dxdy
)

dξϕ(ζ)dζ
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for almost all u ∈ Rd. By our arguments up to this point,

Rd ∋ ξ 7→ −1
2πd

∫
C

∂z (̃g f )N(z)(z − i)nΦz(ξ)dxdy (4.3.9)

is a function with smoothness regulated by N and decay like ⟨ξ⟩−2n−2. For n large
enough, this means that its Fourier transform is well-defined, its in Cn+1(Rd), and has
decay of ⟨ξ⟩−k for k ∈ N0 under some threshold decided by N. Let h be the Fourier
transform, so

f (HB,v,λ,F)ϕ(u) =
∫

Rd
ϑB(u, ζ)h(ζ − u)ϕ(ζ)dζ (4.3.10)

for almost all u ∈ Rd. Note h is dependent on the N and n chosen, but we are able
to choose these arbitrarily large. Furthermore, (4.3.10) holds for all large enough N, n
and every ϕ ∈ S (Rd), whence we must conclude that h is smooth and has decay of
⟨ξ⟩−k for any k ≥ 0. Choosing appropriate N, n and analyzing the derivative of h, with
h as the Fourier transform of (4.3.9), we see that h ∈ S (Rd). Since S (Rd) is dense in
L2(Rd), (4.3.10) holds for all ϕ ∈ L2(Rd) and it follows that f (HB,v,λ,F) has a kernel with
the property K f (HB,v,λ,F)(·, 0) = h ∈ S (Rd).

All that is left is the commutativity with all magnetic translation. We can use Lemma
4.3.3 and (4.3.10), or more simply the Hellfer-Sjöstrand Formula 2.4.27 directly and the
fact that the resolvent of HB,v,λ,F commutes with all magnetic translations. ■

4.3.4 Existence of the Hartree-Fock Approximation of the Schrödinger Oper-
ator

At last, we prove the existence of solutions to (4.3.4) given λ small enough:

Theorem 4.3.9. Let B be a constant magnetic field, v ∈ L1
0,E(R

d, R), and f ∈ S+(R, R).
Define the map

Tλ : BCH(R
d) ∋ F 7→ K f (HB,v,λ,F)(·, 0) ∈ BCH(R

d) ∩S (Rd)

for every λ ≥ 0.
Then for every M > ∥T0(0)∥L∞(Rd) there exists λ0 > 0 such that Tλ has a unique fix point

in BM(0; BCH(Rd)) ∩S (Rd) for all λ ∈ [0, λ0].

Proof. As a start, note that Theorem 4.3.8 tells us that Tλ is a well-defined map with im-
age in S (Rd) ⊆ BC(Rd) for any λ ≥ 0. Furthermore, the theorem stated that f (HB,v,λ,F)

is self-adjoint, which implies by Lemma 4.3.3 that Tλ(F) has the required symmetry to
confirm R(Tλ) ⊆ BCH(R

d) ∩S (Rd).
Let M > ∥T0(0)∥L∞(Rd) be given. The plan is to make estimates on the difference

∥Tλ(F) − Tλ(G)∥L∞(Rd), F, G ∈ BM(0; BCH(Rd)), for λ ∈ [0, λ0] where λ0 is yet to be
determined. Then, as already alluded to earlier, we invoke Banach’s Fix Point Theorem
to get a fix point for Tλ. We will throughout the proof choose λ0 smaller when needed
and always think of λ as some number in [0, λ0].

To estimate the difference ∥Tλ(F)−Tλ(G)∥L∞(Rd), we apply the methodology used in
the proof of Theorem 4.3.8, i.e. the Helffer-Sjöstrand Formula 2.4.27, resolvent identities,
and Propositions 4.3.6 and 4.3.7, to find a good expression for the kernel of Tλ(F) −
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Tλ(G). In that proof we used a cutoff function, which we now choose uniform: For
every F ∈ BM(0; BCH(Rd)) we have

∥WB,v,F∥B(L2(Rd)) ≤ 2M∥v∥L1(Rd)

by Corollary 4.3.5, so for λ0 < (2M∥v∥L1(Rd))
−1, ∥λWB,v,F∥B(L2(Rd)) < 1 and

m(HB,v,λ,F) > −1.

Hence, if we construct g ∈ BC∞(R) such that g is increasing, g(x) = 1 for x > −1 and
g(x) = 0 for x < −2, then g f ∈ S (R) and

g f (HB,v,λ,F) = f (HB,v,λ,F)

for all F ∈ BM(0; BCH(Rd)).
Thus for such a g and using the Helffer-Sjöstrand Formula 2.4.27, resolvent identities,

and integration by parts, we get

f (HB,v,λ,F)− f (HB,v,λ,G)

=
λ

π

∫
C

∂z (̃g f )N(z)(HB,v,λ,G − z)−1WB,v,F−G(HB,v,λ,F − z)−1dxdy

=
λ

π

∫
C

∂z (̃g f )N(z)(z − i)n(HB,v,λ,G − z)−1(HB,v,λ,G − i)−nWB,v,F−G

===

(
n−1

∑
j=0

(z − i)j(HB,v,λ,F − i)−j−1

===

(
+ (z − i)n(HB,v,λ,F − z)−1(HB,v,λ,F − i)−n

)
dxdy

=+
λ

π

∫
C

∂z (̃g f )N(z)

(
n−1

∑
j=0

(z − i)j(HB,v,λ,G − i)−j−1

===

(
+ (z − i)n(HB,v,λ,G − z)−1(HB,v,λ,G − i)−n

)
===WB,v,F−G(z − i)n(HB,v,λ,F − z)−1(HB,v,λ,F − i)−ndxdy

for all F, G ∈ BM(0; BCH(Rd)), an n ∈ N, and a large enough N. We will need at least
n > d

2 − 2 in the following. Theorem 3.3.15, Proposition 4.3.7, and Corollary 4.3.5 shows
that each operator product in the above sum is a magnetic pseudo-differential operator
with symbol in SM−2n−4

0
(R2d). Gauging the z-dependence of these symbols using (4.3.5),

we see that for n, N large enough, the integral in C and the magnetic Weyl-quantization
can be interchanged, and we get

f (HB,v,λ,F)− f (HB,v,λ,G) = OpB(ΦF,G,z)

for some ΦF,G,z ∈ BC(R2d) with limited decay and smoothness. Note ΦF,G,z is only
dependent on the last d coordinates, see Lemma 3.3.18. If again n, N are chosen large
enough, then, as argued in the proof of Theorem 4.3.8, we obtain a function hF,G with
limited decay and smoothness such that

f (HB,v,λ,F)ϕ(u)− f (HB,v,λ,G)ϕ(u) =
∫

Rd
ϑB(u, ζ)hF,G(ζ − u)ϕ(ζ)dζ
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holds for all ϕ ∈ L2(Rd). This implies that

hF,G = Tλ(F)− Tλ(G),

so to get an estimate on the difference ∥Tλ(F)− Tλ(G)∥L∞(Rd) we can look at hF,G. The
advantage is that hF,G has norm controlled by, among other things, operator norms of
the repeated commutators in Corollary 4.3.5 (ii), which involves the factor ∥F − G∥L∞(Rd)

in our situation. Let us be more concrete:
To estimate the norm ∥hF,G∥L∞(Rd) we can use the proof of Beal’s Commutator Crite-

rion 3.3.19, Corollary 4.3.5, and Proposition 4.3.6. This gives an estimate of the type

∥hF−G∥L∞(Rd) ≤ λCB, f ,v,n,N∥F − G∥L∞(Rd)⟨λM⟩mn,N ,

where mn,N ∈ N. Fixing n, N large enough, we can choose λ0 small enough resulting in

∥Tλ(F)− Tλ(G)∥L∞(Rd) ≤
1
2
∥F − G∥L∞(Rd).

Moreover, choosing λ0 perhaps even smaller, we can conclude that

∥Tλ(F)∥L∞(Rd) ≤ ∥T0(0)∥L∞(Rd) + ∥Tλ(F)− T0(0)∥L∞(Rd) ≤ M.

Note T0(0) = Tλ(0). Summarizing, when λ0 is small enough, Tλ invariates and becomes
a contraction on BM(0; BCH(Rd)). This implies by Banach’s Fix Point Theorem that Tλ

indeed has a fix point, concluding the proof. ■

Remark! 4.3.10. Let us take some time to explain how the different objects affect our
bounds in the proof of Theorem 4.3.9. We concentrate on the magnetic field B, interac-
tion potential v, and quantum distribution function f .

The main contributions for the magnetic field is in the operator norms of the repeated
commutators in Corollary 4.3.5 (ii). Here the coefficients of B give polynomial growth
in the estimates. This is also the case for v, where factors of ∥⟨·⟩nv∥L1(Rd), n ∈ N0,
are introduced. Lastly, f contributes through the semi-norms sup[−1,∞)⟨·⟩n|∂j f | with
n, j ∈ N0.

All three affect the spectrum of HB,v,λ,F and hence the distances in Proposition 4.3.6.
These can however be ignored and instead one can only consider z ∈ C \ R throughout
and replace the distances with | Im(z)|.

Remark! 4.3.11. One might wonder if the results proven here hold for the magnetic
Schrödinger operator with added outer potential, i.e. considering HB + V for some
measurable function V : Rd → R instead of merely the free operator HB.

The problem occurs in the locality introduced: HB acts homogeneously throughout
space in the sense of Lemma 4.2.3, and for interesting V, this property is lost with
HB + V. The mean-field potential Wλ would also change, having to take into account
V.

It would be interesting to study the problem for rather regular V. Note, if V ∈
BC∞(Rd), then V ∈ OpB(S1(R

2d)), as an operator, and so HB + V ∈ OpB(SM2
0
(R2d))

with its resolvent in OpB(SM−2
0
(R2d)). But this will have to wait for another time.

Another extension is working with non-constant magnetic fields. Again some prob-
lems with commutating with magnetic translations occur, and so like with adding a
non-zero V, we would have to analyze Equation (4.3.1) in another way.
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Remark! 4.3.12. The concept of quantum distribution function as used in this text is
quite vague, but it is inspired by the Fermi-Dirac distribution:

fFD : R ∋ x 7→ (1 + eβ(x−µ))−1,

where β is the inverse temperature and µ is the chemical potential. This function appear
in quantum statistical mechanics and is the relevant "quantum distribution function" for
our problem in a physical sense.

Clearly fFD ∈ S+(R, R) for any choice of parameters. Note the parameters regulate
the behavior of fFD w.r.t. decay at +∞.
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