
Summary

This thesis introduces a symbolic approach to the Baum-Welch (BW) algorithm
using Algebraic Decision Diagrams (ADDs) for efficiently learning parameters of
Hidden Markov Models (HMMs) and Markov Chains (MCs). Traditional recursive
or matrix-based implementations of BW often suffer from high memory usage and
limited scalability. To address this, we propose a novel symbolic implementation
built into a C++ library named CuPAAL, which is integrated into the Python Jajapy
library as Jajapy 2.

Tools like Jajapy implement BW recursively or throughmatrix operations. How-
ever, these approaches become inefficient for large or repetitive models due to
memory constraints and computational redundancy.

The motivation behind CuPAAL is to overcome these issues by leveraging ADDs,
data structures that compactly represent numerical functions over discrete variables.
ADDs generalize Binary Decision Diagrams (BDDs), allowing them to represent
and manipulate probabilities and other numeric values symbolically. This symbolic
computation reduces redundancy and memory use, making it feasible to train large-
scale probabilistic models.

CuPAAL represents transition, emission, and initial state matrices as ADDs.
Matrix operations, including the Kronecker and Hadamard products, are symbol-
ically implemented. This structure is especially beneficial when matrix sparsity
or redundancy exists. PRISM models are translated into Jajapy models and then
encoded as ADDs for use in CuPAAL. The main contributions of this work are:

1. Symbolic Reformulation of the BW Algorithm: Each step of the BW algo-
rithm (forward-backward, parameter updates) is redefined in terms of ADD
operations using the Colorado University Decision Diagram (CuDD) library.

2. Multi-Sequence Learning Support: The symbolic implementation handles
multiple observation sequences for both MCs and HMMs.

3. Integration with Jajapy: The symbolic implementation is integrated into the
Jajapy library, allowing users to switch between traditional and symbolic
learning modes.

4. Empirical Evaluation: Using models from the QComp benchmark (specifi-
cally, the leader sync model), experiments demonstrate: Comparable or better
runtime performance, especially for models with repeated structural patterns;
Accuracy on par with traditional methods; Improved scalability, especially
when models are initialized with repeated values (controlled initialization).

The symbolic implementation of the BW algorithm using ADDs proves to be a
scalable and efficient alternative to traditional approaches. With Jajapy 2, users
now have access to a flexible tool for probabilistic model learning that maintains
accuracy while improving performance for complex and large-scale models.
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Abstract—The Baum-Welch (BW) algorithm is a widely used method
for training Hidden Markov Models (HMMs) and Markov Chains (MCs)
from observation sequences. However, traditional implementations using
recursive or matrix-based methods often struggle with scalability due to
redundancy and high memory consumption. This thesis proposes a novel,
symbolic implementation of the BW algorithm using Algebraic Decision
Diagrams (ADDs), which provide a compact and efficient representation
of probabilistic models. We extend on CUPAAL, a C++ library that
implements the BW algorithm entirely with ADDs, and integrate it into
the JAJAPY library, resulting in a new symbolic learning tool referred to
as JAJAPY 2.

Our approach enables efficient learning from multiple observation
sequences and supports both HMMs and MCs. Through experiments
on models from the QComp benchmark set, we demonstrate that the
symbolic implementation significantly improves performance for larger
observation sets and models with repeated structures, while maintaining
learning accuracy. These results affirm the potential of ADD-based
symbolic computation as a scalable alternative for probabilistic model
learning.

Index Terms—Algebraic Decision Diagrams, Baum-Welch Algorithm,
Hidden Markov Models, Markov Chains, Model Checking

1 INTRODUCTION

The Baum-Welch (BW) algorithm is a widely used method
for training Markov models in various applications, includ-

ing speech recognition, bioinformatics, and financial model-
ing [1–3].

Traditionally, the BW algorithm relies on matrix-based
or recursive approaches to estimate model parameters from
observed sequences.

An example of this is the Jajapy library [4], which im-
plements the BW algorithm using a recursive matrix-based
approach. This library is designed to learn probabilistic models
from partially observable executions, producing observation
sequences - also known as traces.

The key strength of Jajapy lies in its flexibility to accommo-
date various learning scenarios, along with seamless integration
into standard verification workflows using tools like Storm
and Prism.

However, the performance of Jajapy’s BW algorithm
implementation has been a significant limitation due to the
inherent redundancy in matrix-based representations, which
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leads to inefficiencies, particularly in terms of time and memory
consumption, thereby restricting its scalability to larger models.

To address these challenges, we propose a novel approach
that replaces conventional matrices and recursive formulations
with Algebraic Decision Diagrams (ADDs).

ADDs provide a compact, structured representation of
numerical functions over discrete variables, enabling efficient
manipulation of large probabilistic models.

By leveraging ADDs, we can exploit the sparsity and
structural regularities of Hidden Markov Models (HMMs)
and Markov Chains (MCs), significantly reducing memory
consumption and accelerating computation.

This paper presents several contributions toward efficient
learning of HMM and MC models by leveraging ADDs:

First, we extend the BW algorithm for these models using
symbolic computation, reformulating each algorithm step as
operations on ADDs. We leverage the Colorado University
Decision Diagram (CuDD) library to carry out these operations
symbolically using ADDs. This reformulation enables efficient
calculation of the Markov models in a compact and scalable
form.

Secondly, our approach extends previous work on symbolic
calculation by accommodating learning from multiple observa-
tion sequences for both types of Markov models, broadening
the applicability of symbolic learning.

Thirdly, we conduct an experimental evaluation of the
scalability of the symbolic BW algorithm for a MC from the
QComp benchmark set [5], which serves as a standard reference
for evaluating the performance of probabilistic model checking
algorithms.

Additionally, we implement Python bindings for the Cu-
PAAL tool, making it accessible and usable within Python-
based machine learning and model-checking workflows, such
as Jajapy1.

Finally, we integrate these CuPAAL Python bindings into
Jajapy as Jajapy 2, allowing users to run symbolic probabilistic
learning algorithms within Jajapy seamlessly.

Our findings suggest that replacing matrices and recursive
formulations with ADDs offers a scalable alternative, making
Markov model-based learning feasible for larger and more
complex datasets.

1. Source code available at: https://github.com/AAU-Dat/CuPAAL

https://orcid.org/0009-0004-6529-4342
https://github.com/AAU-Dat/CuPAAL
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Fig. 1. Modeling and verification workflow using JAJAPY [6]. Phases in-
volving JAJAPY are highlighted in green, while the blue phase represents
verification using STORM or PRISM .

2 PREVIOUS WORK

In this section, we provide a brief overview of previous work
that has influenced our research and has been iterated upon.
Specifically, we discuss what these tools are, how they function,
who utilizes them, and the motivations behind integrating them
into our research. The focus will be on four primary tools:
Prism, Storm, Jajapy, and CuPAAL.

2.1 Jajapy

Jajapy provides learning algorithms designed to construct
accurate models of a System Under Learning (SUL) from
observed traces. Once learned, these models can be directly
exported for formal analysis in tools such as Storm and Prism.

In this context, we refer to the training set as the collection
of observation traces used to infer a model of the SUL and the
test set as a separate set of traces used to evaluate the quality of
the learned model.

Jajapy supports learning various types of models, depend-
ing on the structure of the training data. For clarity, this paper
focuses specifically on the new features introduced in Jajapy 2,
which primarily target Markov Chains (MCs). However, these
improvements are equally applicable to other classes of Markov
models supported by the tool.

At the core of Jajapy’s learning capabilities are several
variants of the Baum-Welch (BW) algorithm [7, 8], adapted for
MCs, Markov Decision Processs (MDPs) [9], and Continuous
Time Markov Chains (CTMCs) [10].

Each algorithm requires two inputs: a training set and the
desired number of states for the output model. The process
begins with the creation of a randomly initialized model (e.g., a
MC). It iteratively updates its transition probabilities, increasing
the likelihood of transitions that better explain the observed
traces.

The efficiency and accuracy of the learning process depend
heavily on the choice of the initial hypothesis. To improve
convergence and model quality, Jajapy allows users to sup-
ply custom initial hypotheses in several formats, including
Stormpy sparse models, Prism files, or native Jajapy model
definitions.

An example of using Jajapy to learn a 10-state MC from a
training set, starting from a random initial hypothesis, is shown
in Listing 1.

Jajapy supports reading Prism files using Storm (through
Stormpy), as well as direct verification of learned models
through properties, also using Storm, provided the properties
are supported. Alternatively, the model can be exported to
Prism’s format for verification using the Prism model checker.

1 import jajapy
2 training_set = jajapy.loadSet("Path/to/data")
3 type(training_set) # list
4
5 learned_model = jajapy.BW().fit(training_set,

nb_states=10)→

6 type(learned_model) # stormpy.SparseDtmc

Listing 1. Example of using JAJAPY’s BW implementation to learn a
10-state MC from a training set.

2.2 CuPAAL

CuPAAL is a tool developed in C++ that extends the work
done in Jajapy by implementing the BW algorithm with an
Algebraic Decision Diagram (ADD)-based approach instead of a
recursive method. The goal of CuPAAL is to leverage ADDs to
improve the efficiency of learning Markov models, particularly
in large-scale applications where traditional recursive methods
may become computationally expensive.

CuPAAL has undergone multiple iterations. Initially, it
implemented a partial ADD-based approach, where only the
calculation of the E-step of the BW algorithm was implemented
using ADDs. This partial implementation served as an initial
proof of concept to determine whether incorporating ADDs
could yield performance benefits compared to the recursive
approach employed by Jajapy.

Following promising results from the partial implementa-
tion, further development led to a fully ADD-based version of
CuPAAL for Hidden Markov Models (HMMs). This iteration
replaced all-recursive computations with ADDs, enabling more
efficient execution, particularly for large models. The transition
to a fully ADD-based approach demonstrated the potential for
significant computational savings and scalability improvements,
reinforcing the viability of this method for broader applications
beyond our initial research scope.

Because there is no notion of HMM in the Prism formalism,
we have implemented the BW algorithm for use with MCs.
Given the similarities between these model types, we have
reused a lot of the previous work in the implementation.

By building upon Jajapy and developing CuPAAL, we have
been able to evaluate the impact of using ADDs in probabilistic
model learning.

3 PRELIMINARIES

This section provides an overview of the theoretical background
necessary to understand the rest of the article. For ease of
reference Appendix B contains a table of symbols used in the
paper.

We begin by defining the key concepts of a Hidden Markov
Model (HMM) and a Markov Chain (MC), which are the two
main models used in this report, then go on to introduce the
Baum-Welch (BW) algorithm, which is a widely used algorithm
for training HMMs, and showing how it can be adapted to
handle multiple observation sequences using matrix operations.

3.1 Hidden Markov Model

HMMs were introduced by Baum and Petrie in 1966 [11] and
have since been widely used in various fields, such as speech
recognition [1], bioinformatics [2], and finance [3].
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A HMM is a statistical model that describes a system that
evolves over time. The system is assumed to hold the Markov
property, meaning that the future state of the system only
depends on the current state and not on the past states. The
system is also assumed to be unobservable, meaning that the
states are hidden and cannot be directly observed. Instead, the
system emits observations, which are used to infer the hidden
states.

Definition 1 (Hidden Markov Model). A HMM is a tuple
ℳ = (𝑆, 𝐿, 𝜔, 𝜏, 𝜋), where:

∙ 𝑆 is a finite set of states.
∙ 𝐿 is a finite set of labels.
∙ 𝜔 ∶ 𝑆 → 𝐷(𝐿) is the emission function.
∙ 𝜏 ∶ 𝑆 → 𝐷(𝑆) is the transition function.
∙ 𝜋 ∈ 𝐷(𝑆) is the initial distribution.

𝐷(𝑋) denotes the set of probability distributions over a
finite set 𝑋. The emission function 𝜔 describes the probability
of emitting a label given a state. The transition function 𝜏
describes the probability of transitioning from one state to
another. The initial distribution 𝜋 describes the probability of
starting in a given state.

An example of a HMM is a weather model where the hidden
state represents the actual weather (sunny, rainy, or cloudy),
but we only observe indirect signals, such as whether someone
is carrying an umbrella or wearing sunglasses.

3.2 Markov Chain

A MC, named after Andrei Markov, is a stochastic model widely
used in different fields of study [11].

Definition 2 (Markov Chain). A MC is a tuple ℳ =
(𝑆, 𝐿, 𝜔, 𝜏, 𝜋) identical to the HMM structure above except that
the emission function is deterministic: for every 𝑠 ∈ 𝑆 there is a
single label 𝑙 = 𝜔(𝑠) emitted with probability 1.

In other words, the emission function 𝜔 is a function that
maps each state to a single label 𝑙 ∈ 𝐿, meaning that each state
emits exactly and only one label. Two distinct states may emit
the same label.

An example of a MC is a board game where a player moves
between squares based on dice rolls. Each square corresponds
to a state, the dice rolls determine the transition probabilities.

3.3 Conversion between MCs and HMMs

In this section, we will discuss the conversion between MCs
and HMMs. This conversion is important because it allows us
to use the same algorithms and techniques from the original
CuPAAL implementation for both model types, even though
they have different properties.

In our case, we are interested in trace-equivalent models. By
trace-equivalent, we mean that the probability distribution over
observed sequences is the same for both models. i.e. the labels
emitted by moving through the probabilistic models follow the
same distribution.

From the definition of a MC, we can see that it is a special
case of an HMM where the emission function is deterministic,
which makes this conversion very simple.

Definition 3 (Markov Chain to Hidden Markov Model). For
each MCℳ = (𝑆, 𝐿, 𝜔, 𝜏, 𝜋), there exists a trace-equivalent HMM
ℳ′ = (𝑆′, 𝐿′, 𝜔′, 𝜏′, 𝜋′), where:

∙ 𝑆′ = 𝑆.
∙ 𝐿′ = 𝐿.

∙ 𝜔′(𝑠)(𝑙) = {
1 𝑙 = 𝜔(𝑠)
0 otherwise

∙ 𝜏′ = 𝜏.
∙ 𝜋′ = 𝜋.

The only difference in this case is the structure of the
emission functions, thus preserving the probabilistic trace
equivalence, i.e., for an arbitrary trace 𝑂 ∈ 𝐿∗ we have
𝑃[𝑂 ∣ ℳ] = 𝑃[𝑂 ∣ ℳ′].

3.4 Baum-Welch Algorithm
The BW algorithm is a special case of the Expectation-
Maximization (EM) framework used to estimate the parameters
of a HMM given a set of observed sequences.

Since the underlying states are not directly observable, the
algorithm iteratively refines the model parameters 𝜋, 𝜔, and 𝜏
to maximize the likelihood of the observations. Each iteration
of the algorithm consists of two steps:

E-step Compute the expected values of the hidden variable
given the current parameters via the forward-
backward algorithm.

M-step Update the model parameters to maximize the
expected complete-data log-likelihood.

Convergence is typically achieved when the change in the
likelihood (or parameters) between iterations falls below a
threshold [8].

We can represent the parameters of a HMM as matrices for
computational efficiency.

They are defined as follows:

𝜋𝜋𝜋 is the initial state distribution vector, where 𝜋𝑖 =
𝜋(𝑠𝑖) is the probability of starting in state 𝑠𝑖 , this is
a column vector of size |𝑆|.

𝜏𝜏𝜏 is the transition matrix, where 𝜏𝑖𝑗 = 𝜏(𝑠𝑖)(𝑠𝑗) is the
probability of transitioning from state 𝑠𝑖 to state 𝑠𝑗 ,
this is a square matrix of size |𝑆| × |𝑆|.

𝜔𝜔𝜔 is the emission matrix, where 𝜔𝑖𝑗 = 𝜔(𝑠𝑖)(𝑙𝑗) is the
probability of emitting label 𝑙𝑗 given state 𝑠𝑖 , this is
a matrix of size |𝑆| × |𝐿|.

To illustrate our symbolic implementation, we describe a
single Baum-Welch iteration in terms of matrix operations,
assuming familiarity with the algorithm. For an introductory
treatment, see [7, 12].

Let ℳ denote the current HMM hypothesis and let 𝑂 =
𝑜1 …𝑜𝑇 be a sequence of observations, where each 𝑜𝑡 ∈ 𝐿 and
the observation sequence has the length 𝑇. Suppose ℳ has
𝑛 states and 𝑚 labels, i.e., 𝑆 = {𝑠1, … , 𝑠𝑛}, with parameters
represented as follows:

∙ 𝜋𝜋𝜋 ∈ [0, 1]𝑛 is the initial state distribution column vector.
∙ 𝜏𝜏𝜏 ∈ [0, 1]𝑛×𝑛 is the transition probability matrix.
∙ 𝜔𝜔𝜔 ∈ [0, 1]𝑛×𝑚 is the emission probability matrix.

The forward and backward algorithms are implemented
using dynamic programming, as shown in Listing 2. For a
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Forward-Algorithm
1 𝛼𝛼𝛼(1) = 𝜔𝜔𝜔(1) ⊙𝜋𝜋𝜋
2 for 𝑡 = 2 to 𝑇
3 𝛼𝛼𝛼(𝑡) = 𝜔𝜔𝜔(𝑡) ⊙

(
𝜏𝜏𝜏⊤𝛼𝛼𝛼(𝑡 − 1)

)

Backward-Algorithm
1 𝛽𝛽𝛽(𝑇) = 𝟏
2 for 𝑡 = 𝑇 − 1 to 1
3 𝛽𝛽𝛽(𝑡) = 𝜏𝜏𝜏 (𝛽𝛽𝛽(𝑡 + 1) ⊙𝜔𝜔𝜔(𝑡 + 1))

Listing 2. Computation of the forward and backward coefficients

given time step 𝑡, let 𝜔𝜔𝜔(𝑡) be the column vector of emission
probabilities for label 𝑜𝑡 for each state, and ⊙ the Hadamard
(element-wise) product.

The procedures in Listing 2 compute the column vectors
𝛼𝛼𝛼(𝑡) and 𝛽𝛽𝛽(𝑡) ∈ [0, 1]𝑛 for 𝑡 = 1…𝑇 which are later used to
compute the coefficients 𝛾𝛾𝛾(𝑡) ∈ [0, 1]𝑛 and 𝜉𝜉𝜉(𝑡) ∈ [0, 1]𝑛×𝑛 as
follows:

𝛾𝛾𝛾(𝑡) = 𝑃[𝑂|ℳ]−1 ⋅ 𝛼𝛼𝛼(𝑡) ⊙ 𝛽𝛽𝛽(𝑡) (1)
𝜉𝜉𝜉(𝑡) = (𝑃[𝑂|ℳ]−1 ⋅ 𝜏𝜏𝜏) ⊙

(
𝛼𝛼𝛼(𝑡) ⊗ (𝛽𝛽𝛽(𝑡 + 1) ⊙𝜔𝜔𝜔(𝑡 + 1))⊤

)
(2)

Here, ⊗ is the Kronecker product and the probability
𝑃[𝑂|ℳ] to observe 𝑂 inℳ is computed as 𝟏⊤𝛼𝛼𝛼(𝑇). We calculate
𝛾𝛾𝛾(𝑡) from 𝑡 = 1 to 𝑇 and 𝜉𝜉𝜉(𝑡) from 𝑡 = 1 to 𝑇 − 1.

Finally, the initial probability vector, the transition probabil-
ity matrix and emission matrix and are updated as follows:

𝜋̂𝜋𝜋 = 𝛾𝛾𝛾(1) (3)

𝜔̂𝜔𝜔 = (𝟏 ⊘ 𝛾𝛾𝛾) •
⎛
⎜
⎝

𝑇∑

𝑡=1
𝛾𝛾𝛾(𝑡) ⊗ [[𝑜𝑡]]

⎞
⎟
⎠

(4)

𝜏̂𝜏𝜏 = (𝟏 ⊘ 𝛾𝛾𝛾) • 𝜉𝜉𝜉 (5)

Where • is the transposed Khatri-Rao product (i.e., row-
by-row Kronecker product), and [[𝑜𝑡]] = ([[𝑜𝑡 = 𝑙]])𝑙∈𝐿 is the
one-hot encoding of the observation 𝑜𝑡, meaning that it is a row
vector of size |𝐿| with a 1 in the position corresponding to the
observation 𝑜𝑡 and 0 elsewhere. ⊘ is the element-wise division.
The 𝛾𝛾𝛾 and 𝜉𝜉𝜉 are defined as follows:

𝛾𝛾𝛾 =
𝑇∑

𝑡=1
𝛾𝛾𝛾(𝑡) (6)

𝜉𝜉𝜉 =
𝑇−1∑

𝑡=1
𝜉𝜉𝜉(𝑡) (7)

These update rules form the standard BW algorithm for
training HMMs on a single observation sequence. However, the
approach can be naturally extended to multiple sequences.

The BW algorithm runs until convergence, in this case until
the difference in log-likelihood between iterations is less than
𝓁(ℳ;𝑂) − 𝓁(ℳ̂; 𝑂) < 𝜖. The log-likelihood of an iteration can
be calculated using the 𝛼𝛼𝛼 probabilities in this way:

𝓁(ℳ;𝑂) = log
𝑆∑

𝑠=1
𝛼𝛼𝛼(𝑇)𝑠 (8)

3.5 Multiple Observation Sequences
Suppose we are given a multiset of independently identically
distributed (i.i.d.) observation sequences 𝒪 = 𝑂1, 𝑂2, … , 𝑂|𝒪|,
where each 𝑂𝑖 = (𝑜𝑖1, 𝑜𝑖2, … , 𝑜𝑖𝑇) is of length 𝑇. The E-step
remains unchanged: for each sequence, we compute the
corresponding 𝛼𝛼𝛼𝑖(𝑡), 𝛽𝛽𝛽𝑖(𝑡), 𝛾𝛾𝛾𝑖(𝑡), and 𝜉𝜉𝜉𝑖(𝑡) values independently.

In the M-step, we aggregate statistics across all sequences to
update the parameters. Specifically, we define:

𝛾𝛾𝛾 =
|𝒪|∑

𝑖=1

𝑇∑

𝑡=1
𝛾𝛾𝛾𝑖(𝑡) (9)

𝜉𝜉𝜉 =
|𝒪|∑

𝑖=1

𝑇−1∑

𝑡=1
𝜉𝜉𝜉𝑖(𝑡) (10)

With these aggregate quantities, the update rules for the
initial distribution (see Equation 3) and transition matrix
(see Equation 5) remain unchanged, because they are already
defined in terms of the sum over all sequences. However, the
emission matrix update needs to account for all sequences.

The emission matrix is updated as follows:

𝜔𝜔𝜔𝑠(𝑜) = (𝟏 ⊘ 𝛾𝛾𝛾) •
⎛
⎜
⎝

|𝒪|∑

𝑖=1

𝑇∑

𝑡=1
𝛾𝛾𝛾𝑖(𝑡) ⊗ [[𝑜𝑖𝑡]]

⎞
⎟
⎠

(11)

This mirrors the single-sequence case (see Equation 4)
but extends the summation in the left side of the Kronecker
product to cover all sequences and all time steps. This allows
us to compute the emission probabilities for each state across
all sequences, ensuring that the model captures the overall
distribution of observations.

3.6 Baum-Welch Algorithm for Markov Chains
Since MCs can be seen as HMMs with deterministic emissions,
where each state emits a unique observation with probability 1,
the BW algorithm simplifies accordingly when applied to MCs.

In this case:

∙ The forward and backward algorithms are computed
identically to the HMM case, but without weighting by
emission probabilities, as these are implicitly handled
by the observation sequence.

∙ The E-step computations for 𝛾𝛾𝛾(𝑡) and 𝜉𝜉𝜉(𝑡) remain
structurally the same, though emission terms are omitted
due to determinism.

∙ The M-step updates for the initial distribution 𝜋𝜋𝜋 and
the transition matrix 𝜏𝜏𝜏 are unchanged.

∙ The emission matrix 𝜔𝜔𝜔 is not updated, as it is fixed by
the model’s structure and need not be learned.

This simplification avoids unnecessary computation and
reflects the reduced uncertainty in the model: there is no need
to marginalize over emissions, as each state deterministically
produces a known label. Consequently, the BW algorithm
becomes more efficient when applied to MCs.

3.7 Decision Diagrams
Binary Decision Diagrams (BDDs) are data structures for
efficiently representing and manipulating Boolean functions.
They are a compressed representation of truth tables, capturing



5

the logical structure of a function in a graph-based format
by eliminating redundancy, reducing memory usage, and
improving computational efficiency [13].

A BDD is a directed acyclic graph derived from a decision
tree, where each non-terminal node represents a Boolean
variable, edges correspond to binary assignments (0 or 1), and
terminal nodes store function values (0 or 1).

To reduce the size of the decision tree, BDDs exploit
redundancy by merging equivalent substructures, resulting in
a canonical form (when reduced and ordered) that allows for
efficient operations such as function evaluation, equivalence
checking, and Boolean operations [13].

BDDs have been widely used in formal verification, model
checking, and logic synthesis due to their ability to represent
large Boolean functions efficiently while maintaining compact
computational properties. However, in rare cases, BDDs can
suffer from exponential blowup, which can occur particularly
when dealing with functions that lack inherent structure or
when representing numerical computations that go beyond
Boolean logic.

3.8 Algebraic Decision Diagrams

Algebraic Decision Diagrams (ADDs) generalize the concept
of BDDs by allowing terminal nodes to take values beyond
Boolean constants (0 and 1).

Instead of restricting values to the Boolean domain, ADDs
can store arbitrary numerical values, making them useful
for representing and manipulating functions over discrete
domains [14]. This generalization enables the efficient represen-
tation of functions such as cost functions [15], probabilities [16],
and other numerical relationships that arise in probabilistic
reasoning.

The fundamental structure of an ADD remains similar to a
BDD, where a decision tree is compacted by merging redundant
substructures. However, instead of performing Boolean opera-
tions, ADDs allow for arithmetic operations such as addition
and multiplication, making them well-suited for representing
matrices [14].

4 IMPLEMENTATION

This section provides an overview of CuPAAL’s implementation,
including the Baum-Welch (BW) algorithm, and how CuPAAL
is integrated into Jajapy, creating Jajapy 2.

4.1 Motivation for CuPAAL

The motivation for CuPAAL is to provide a more efficient and
scalable implementation of the BW algorithm for parameter
estimation.

Specifically, we aim to improve the performance of the
algorithm when handling large and complex models, and
address the existing limitations of the BW algorithm in Jajapy.

4.1.1 Recursive vs. Matrix vs. ADD-based Approaches
When working with the BW algorithm, different approaches
can be taken to optimize computational efficiency. Three
common strategies are recursive, matrix-based, and Algebraic
Decision Diagram (ADD)-based approaches, each with distinct
advantages and limitations.

∙ Recursive Approach: Conceptually simple, recursion
follows a divide-and-conquer strategy and makes use of
a dynamic programming approach. Previous calculations
are used to build upon future calculations. These results
are stored in a list or a map, allowing them to be accessed
when needed [17, Chapter 4].

∙ Matrix Representation: Reformulating algorithms
using matrix operations leverages algebraic properties
for parallel computation and efficient processing. By
building upon the recursive approach, matrices provide
an efficient method for accessing stored results, leading
to faster computations overall [17, Chapter 4, 15 & 28].

∙ ADD-based Approach: ADDs provide a compact rep-
resentation that eliminates redundancy in recursive
computations. By reusing previously computed sub-
structures, they improve efficiency and reduce memory
overhead [14]. Compared to matrices, ADDs can offer a
more space-efficient alternative for structured data while
extending Binary Decision Diagram (BDD) techniques
to handle both Boolean and numerical computations.

In this work, we investigate the advantages of ADD-based
approaches for solving complex problems, with a focus on
parameter estimation in Markov Chains (MCs) and Hidden
Markov Models (HMMs). We compare the performance of
ADD-based algorithms against recursive-based implementa-
tions, highlighting the advantages of using ADDs for efficient
computation and memory management.

4.2 What is CuPAAL
CuPAAL is a C++ library that implements the BW algorithm
for parameter estimation, which has evolved over time.

The initial version of CuPAAL was written in C and called
SUDD, and was a partial implementation of the BW algorithm
that utilized ADDs. This version was primarily focused on
demonstrating the efficiency of ADDs for parameter estimation
problems and was not fully functional.

The next iteration was called CuPAAL, which was a
complete implementation of the BW algorithm using ADDs.
However, it only supported HMMs and was only designed to
make use of a single observation.

The current version of CuPAAL has been extended to
support MCs and can handle multiple observations. This
version of CuPAAL is designed for standalone use, as well
as in conjunction with Jajapy, facilitating easy integration and
application in parameter estimation problems.

The following sections provide an overview of what CuPAAL
is and its capabilities.

4.2.1 What Does Cupaal Contain
Throughout all its iterations, CuPAAL has utilized the Colorado
University Decision Diagram (CuDD) library - a library for
implementing and manipulating BDDs and ADDs developed at
the University of Colorado [18].

Implemented in C, the CuDD library ensures high-
performance execution and can be seamlessly integrated into
C++ programs, which we utilize in CuPAAL. By leveraging
the CuDD library, we demonstrate the benefits of ADD-based
approaches for solving parameter estimation problems in MCs.

The CuDD library is used to store ADDs and perform opera-
tions on them. Its optimized algorithms and efficient memory
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management enable symbolic handling of large and complex
matrices, significantly improving performance compared to
traditional methods.

We have not modified or extended the CuDD library directly,
but we have added functions that wrap several functions of
CuDD. All functionality used in our implementation is available
through the standard CuDD library.

4.2.2 From Prism to Cupaal

In the current iteration of CuPAAL, it is possible to use Prism
models as input to the BW algorithm. The models are encoded
from Prism models to CuPAAL models, which is achieved by
parsing the Prism model into Jajapy using Stormpy.

The Jajapy model comprises a transition matrix, a label
matrix, and an initial state vector. The model is passed to
CuPAAL, where these matrices and vectors are encoded into
ADDs as a function 𝑓∶ {0, 1}𝑛 × {0, 1}𝑛 → 𝑅.

The Transition matrix is a 𝑆 × 𝑆 matrix, where 𝑆 = 𝑆𝑡𝑎𝑡𝑒𝑠,
and is encoded to an ADD by each row and column with a
binary value. This value is determined based on the size of the
matrix, 𝑛 = ⌈𝑙𝑜𝑔2(𝑆)⌉.

The label matrix is a 𝑆 × 𝐿 matrix, where 𝐿 = 𝐿𝑎𝑏𝑒𝑙𝑠, and
since there is no guarantee that 𝑆 = 𝐿, the encoding is handled
differently. The matrix is instead treated as a list of vectors,
because we want our matrices to be square whenever possible.

Each vector is encoded as square matrices, where each row
or column (depending on the vector type) is duplicated, which
is then encoded to a list of ADDs.

Knowing the exact dimensions of matrices and that they are
square helps to simplify some of the symbolic operations. An
example of this is provided in subsubsection 4.2.3.

The Initial state vector is encoded similarly to the label
matrix, but only as a single ADD.

4.2.3 Kronecker Product Implementation

The Kronecker product is implemented in CuPAAL using the
row and column duplication method mentioned in subsubsec-
tion 4.2.2.

The structure of Decision Diagrams in CuPAAL, where
keeping track of all the new binary values used for encoding
from a matrix to an ADD, can add a layer of complexity
for calculation. Especially when computing operations that
translate matrices to new dimensions, such as the Kronecker
product.

Here we present a variation of the Kronecker product that
only works between vectors - specifically one row and one
column vector, as it relies on the structure of the vectors being
expanded into square matrices.

This matrix-based approach enables efficient symbolic
operations, as the Kronecker product can be calculated by
taking the Hadamard product between a column matrix ADD
and a row matrix ADD, simplifying what would otherwise be a
more complex operation. An example of this can be seen with
the two vectors:

𝐴̂ = [12] and 𝐵̂ =
[
3 4

]

The Kronecker product of these two vectors is computed as
follows:

main.cpp
CuPAAL

BW.cpp

bindings.cpp

cupaal.exe

bindings.so

fit
Jajapy

Fig. 2. Architecture of CUPAAL combined with JAJAPY.

𝐴̂ ⊗ 𝐵̂ = [12] ⊗
[
3 4

]
= [1 ⋅ 3 1 ⋅ 4

2 ⋅ 3 2 ⋅ 4] = [3 4
6 8] (12)

Another way to calculate the Kronecker product is to expand
the vectors into matrices. 𝐴̂ and 𝐵̂ are expanded to be matrices,
similar to how the matrix was treated as a list of vectors and
then expanded to square matrices.

𝐀 = [1 1
2 2] and 𝐁 = [3 4

3 4]

The Kronecker product of 𝐴̂ and 𝐵̂ can also be calculated,
by using the Hadamard product of 𝐀 and 𝐁. This is done as
follows:

𝐀⊙ 𝐁 = [1 ⋅ 3 1 ⋅ 4
2 ⋅ 3 2 ⋅ 4] = [3 4

6 8] (13)

Hereby showing that the Hadamard product can be used to
compute the Kronecker product between two vectors, by using
the row and column duplication method.

4.3 Implementation to Jajapy

This section provides an overview of how CuPAAL is imple-
mented in Jajapy, utilizing bindings between C++ and Python.
Figure 2 shows the overall architecture of the implementation.

CuPAAL consists of two primary components: the main
function and the BW library. Both of these are compiled into an
executable program called cupaal.exe, which can be used to
run the BW algorithm on a given model.

4.3.1 Bindings
To implement CuPAAL into Jajapy, we create bindings be-
tween C++ and Python using the pybind11 library [19],
which allows us to call C++ functions from Python, enabling
us to use CuPAAL in Jajapy. In the code examples, some parts
have been removed for brevity and clarity.

We create a C++ bindings file that uses the BW library
from CuPAAL and define the function we want to expose
to Python; we call this function 𝑐𝑢𝑝𝑎𝑎𝑙_𝑏𝑤_𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐, seen
in Listing 3. This function takes model parameters from a
Jajapy model as input and transforms them for use in CuPAAL.
The transformation is done at line 3, where all the parameters
are inputted to create a Markov Model object, which is then
used to run the BW algorithm on line 6.
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1 // Some parameters have been omitted for brevity
2 cupaal_markov_model

cupaal_bw_symbolic(vector<string>& states,
vector<string>& labels,
vector<vector<string>>& observations,
vector<double>& initial_distribution,
vector<double>& transitions, vector<double>&
emissions, int max_iterations = 100, double
epsilon = 1e-2){

→

→

→

→

→

→

→

3 MarkovModel model(states, labels,
initial_distribution, transitions,
emissions, observations);

→

→

4 cupaal_markov_model model_data;
5 chrono::seconds time = chrono::seconds(3600);
6 model.baum_welch_multiple_observations(
7 max_iterations, epsilon, time);
8
9 // output and result path omitted for brevity
10 model_data.initial_distribution =

model.initial_distribution;→

11 model_data.transitions = model.transitions;
12 model_data.emissions = model.emissions;
13
14 Cudd_Quit(model.manager);
15 return model_data;
16 }

Listing 3. C++ bindings file for CuPAAL

Each of the values relevant to the BW algorithm is then
passed into the model_data object, which is an intermediate
data object containing the learned model parameters returned
to Jajapy, as seen in lines 10 through 15. These are the initial
distribution, the transitions and the emissions.

1 void baum_welch_multiple_observations(
2 unsigned int max_iterations = 100,
3 double epsilon = 1e-6,
4 chrono::seconds time = chrono::seconds(3600));

Listing 4. Prototype of the function used to run the BW algorithm on
multiple observations in CuPAAL.

The C++ bindings file is then compiled to a shared
library, which can be imported into Jajapy. Jajapy can call
the 𝑐𝑢𝑝𝑎𝑎𝑙_𝑏𝑤_𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐 function, which will then call the
CuPAAL implementation of the BW algorithm.

We create a new function in Jajapy, called _bw_symbolic,
which is used to call the CuPAAL implementation of the BW
algorithm, as seen in Listing 5.

This function is used to prepare the model parameters
from Jajapy so they are in the correct format for CuPAAL.
The preparation is done at lines 7 through 20; after this,
the CuPAAL implementation is called at line 22, where the
cupaal_bw_symbolic function is called with the prepared
parameters, returning the cupaal_model data object.

The values are then extracted from the cupaal_model
data object and assigned to the Jajapy model, as seen in lines
23 through 25 where they are reshaped to be in line with
Jajapy.

The fit function in Jajapy is modified to call the
_bw_symbolic function when a new parameter called
symbolic is set to true, as seen in Listing 6.

A check is made to see if the symbolic parameter is set to
true at line 4. When the parameter is true, the Jajapy model
will call the Listing 5 function, which will then call the CuPAAL
implementation of the BW algorithm.

5 EXPERIMENTS

In this section, we present the experiments for evaluating and
comparing the performance of two implementations of the
Baum-Welch (BW) algorithm: the original version from Jajapy
and the new symbolic implementation introduced in CuPAAL.

For this comparison, we use a Markov Chain (MC) model,
taken from the QComp benchmark set [5], which is a collection
of models used for analysis of quantitative verification. The goal
is to assess the scalability of the symbolic implementation and
its performance in terms of runtime and accuracy.

We designed three experiments to evaluate the performance
of the symbolic implementation of the BW algorithm in
CuPAAL:

∙ Accuracy — Comparing the similarity of learned mod-
els in terms of log-likelihood and model checking.

∙ Scalability — Evaluating how the symbolic implemen-
tation scales with increasing model size and observation
length.

∙ Controlled initialization— Evaluating the scalability
of the symbolic implementation when initializing the
model hypothesis with fewer unique values.

The experiments aim to answer the following research
questions:

1) What is the relative estimation accuracy of the symbolic
implementation in CuPAAL compared to the original
recursive implementation in Jajapy?

2) How does runtime scale as model size increases for
CuPAAL vs Jajapy?

3) How much does an informed initialization accelerate
CuPAAL?

The experiments are designed to provide insights into the
performance and scalability of the symbolic implementation
of the BW algorithm in CuPAAL and to compare it with the
original recursive implementation in Jajapy.

5.1 Model

The model used in the experiments is the leader sync model [20],
a Discrete Time Markov Chain (DTMC) from the QComp
benchmark set [5]. It simulates a group of processors selecting
a leader.

The model sizes range from 26 to 1050 states, determined by
the number of processors and the maximum number a leader
can choose during election: {26, 69, 147, 61, 274, 812, 141, 1050}.

The non-linear progression in model size arises because
the QComp benchmark defines model variants using two
parameters: the number of processors and the maximum
number a leader can select to be elected.

We selected this model due to its scalability and inter-
pretability. To make it suitable for learning, we extended it
with additional labels.

The original model had only a single label, which is
insufficient for meaningful training. We added two new labels:
reading and deciding which correspond to key phases in
the leader election process. The added labels and properties
used for evaluation are shown in Listing 7.
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1 def _bw_symbolic(self, max_iteration = 100, epsilon = 1e-2, outputPath = "", resultPath = ""):
2 try:
3 import libcupaal_bindings
4 except ModuleNotFoundError:
5 print("Cannot find module")
6
7 states = [str(i) for i in range (self.h.nb_states)]
8 labels = list(set(self.h.labelling))
9 observations = []
10 for times, sequences in zip(self.training_set.times, self.training_set.sequences):
11 for i in range(times):
12 observations.append(list(sequences))
13 initial_state = self.h.initial_state.tolist()
14 transitions = self.h.matrix.flatten().tolist()
15 emissions = zeros((len(labels), self.h.nb_states))
16 for row in range(len(labels)):
17 for col in range(self.h.nb_states):
18 if self.h.labelling[col] == labels[row]:
19 emissions[row][col] = 1
20 emissions = emissions.flatten().tolist()
21
22 cupaal_model = libcupaal_bindings.cupaal_bw_symbolic( states, labels, observations, initial_state,

transitions, emissions, max_iteration, epsilon, outputPath, resultPath)→

23 self.h.initial_state = array(cupaal_model.initial_distribution)
24 self.h.matrix = array(cupaal_model.transitions).reshape( self.h.nb_states, self.h.nb_states)
25 self.h.emissions = array(cupaal_model.emissions).reshape( len(labels), self.h.nb_states)
26 return self.h

Listing 5. Jajapy’s implementation of the BW algorithm using CuPAAL.

1 # Some parameters have been removed for brevity
2 def fit(self, output_file: str, output_file_prism:

str, epsilon: float, max_it: int, symbolic:
bool):

→

→

3 # Removed preparation and settings number of
processes, for brevity→

4 if symbolic :
5 return self._bw_symbolic(max_it, epsilon,

output_file, output_file_prism)→

6 else:
7 return self._bw(max_it, pp, epsilon,

output_file, output_file_prism,
verbose, stormpy_output, return_data)

→

→

Listing 6. Jajapy’s fit function, which calls the CuPAAL implementation of
the BW algorithm when symbolic is set to true.

1 label "reading" = s1=1&s2=1&s3=1;
2 label "deciding" = s1=2&s2=2&s3=2;
3 label "elected" = s1=3&s2=3&s3=3;
4
5 P>=1 [ F "elected" ]
6 R{"num_rounds"}=? [ F "elected" ]

Listing 7. Labels added to the leader sync model and properties checked.

5.2 Experimental Setup
All experiments were conducted on the same machine (see
Appendix A for hardware and environment details). Because
the CuPAAL implementation is not parallelized in anyway,
for the most telling comparison we use only a single core for
the experiments. Technically Jajapy uses a secondary core for
printing to the console, but this does not factor in the numbers
in any way.

The experimental steps are as follows:

1) Load the Prism model.
2) Generate 100 observation sequences of different lenghts.

For experiment 1 and 2 we have {25, 50, 100} and for
experiment 3 we have {25, 50, 75, 100}.

3) Create a random initial MC using the function
jajapy.MC_random.

4) Run the BW algorithm for up to 4 hours or until
the change in log-likelihood is less than 0.01 (default
stopping criterion in Jajapy).

5) Record runtime, number of iterations, log-likelihood,
and save the resulting model.

We save both the initial models and observations in files
to ensure both implementations use the same inputs. The
generation of the training set and the randomization of the
model are done using Jajapy, which provides a convenient way
to generate random models and training sets.

The training set is generated by the System Under Learning
(SUL), which is then used to train the randomized model. Each
configuration (model size and dataset size) is repeated ten times
to compute average results.

We do not measure memory usage, as the symbolic im-
plementation is implemented in C++ using Python bindings
making it difficult to measure memory usage accurately,
therefore, we focus on runtime and accuracy.

5.3 Experiment 1: Accuracy

This experiment evaluates the accuracy of CuPAAL compared
to the original Jajapy. The goal is to measure the similarity
of the symbolic implementation in CuPAAL to the original
recursive implementation in Jajapy accuracy-wise.

We compare the log-likelihood, which is a measure of how
well the model fits the data in the symbolic implementation
against the original recursive implementation.

We also measure the relative error of model checking
properties to the correct model, which is the leader sync model
from the QComp benchmark set. The properties can be seen
in Listing 7, and the properties are taken from the QComp
benchmark set.

The relative error is defined as:
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𝜙 = |𝑒 − 𝑟|
𝑟 (14)

where 𝑒 is result of the verification of the learned model
and 𝑟 is the reference value from the original model.

5.4 Experiment 2: Scalability
This experiment evaluates the scalability of the symbolic
implementation of the BW algorithm in CuPAAL. The goal
is to measure the runtime performance of the symbolic im-
plementation as the size of the model increases. Further we
evaluate the runtime as the observation length increases as
well.

The experiment measures the average runtime of the BW
algorithm for each model size and number of observation
sequences.

5.5 Experiment 3: Controlled initialization
The third experiment evaluates the scalability of the symbolic
implementation in CuPAAL when adjusting the initialization
of the model hypothesis.

This experiment aims to measure the scalability of CuPAAL
under circumstances that are theoretically good for the symbolic
implementation, i.e. the more repeated values the transition
matrix contains, the sparser the Algebraic Decision Diagram
(ADD) representing it will be.

By initializing the transition matrix with a reduced amount
of different values, we hope that the symbolic approach might
benefit.

For the first experiment, the transition matrix was initialized
randomly. For this experiment, instead, we only use |𝑆| different
values in the transition matrix. Specifically, we use the original
first row of the original transition matrix, and shuffle the order
for subsequent rows in the transition matrix for this experiment.

It is expected that this improves the speed of each iteration
of the BW algorithm, as it reduces the number of unique
computations necessary for the symbolic implementation.

6 RESULTS

In this section, we present the results of our experiments, which
are divided into three main parts.

The first part focuses on the accuracy of Jajapy and Cu-
PAAL in terms of log-likelihood and model checking properties.

The second and third part evaluates the scalability of both
tools, with differences as explained in section 5.

6.1 Accuracy
This experiment compares the accuracy of CuPAAL and Jajapy
in learning the leader sync model. Specifically, we model-check
how many rounds it takes for each model to select a new leader,
starting from the original model, Jajapy, and CuPAAL, using
properties from Listing 7.

Table 1 shows the results. The table includes the number of
rounds for the original model (rounds column) and the learned
models from Jajapy and CuPAAL. The 𝜙 column shows the
relative error between Jajapy and the true value from the
original model.

The results show that both CuPAAL and Jajapy implemen-
tations learned the same model, and they both closely match

TABLE 1
Leader sync learning tool model comparison of CUPAAL, JAJAPY, and
the reference model. 𝑅 represents the reward model from Listing 7. 𝜙

represents the relative difference to the reference model.

ℳ 𝑇 𝑅 𝑅𝑗𝑎 𝑅𝑐𝑢𝑝 𝜙 𝓁 cup 𝓁 ja

3.2 25 1.33 1.28 1.28 0.04 -98.72 -98.72
3.2 75 1.33 1.30 1.30 0.02 -70.23 -70.23
3.2 100 1.33 1.28 1.28 0.04 -67.24 -67.24
3.3 25 1.12 1.23 1.23 0.09 -59.27 -59.27
3.3 50 1.12 1.11 1.11 0.01 -35.87 -35.87
3.3 100 1.12 1.13 1.13 0.00 -40.33 -40.33
3.4 25 1.07 1.08 1.08 0.01 -28.52 -28.52
3.4 50 1.07 1.09 1.09 0.02 -31.07 -31.07
3.4 100 1.07 1.11 1.11 0.04 -35.87 -35.87
4.2 25 2.00 2.11 2.12 0.06 -140.41 -140.41
4.2 50 2.00 2.16 2.16 0.08 -149.13 -149.13
4.2 100 2.00 2.00 2.00 0.00 -138.63 -138.63
4.3 25 1.35 1.37 1.37 0.01 -79.92 -79.92
4.3 50 1.35 1.28 1.28 0.05 -67.24 -67.24
4.3 100 1.35 1.25 1.25 0.07 -62.55 -62.55
4.4 25 1.19 1.25 1.25 0.05 -62.55 -62.55
4.4 50 1.19 1.17 1.17 0.01 -48.50 -48.50
4.4 100 1.19 1.27 1.27 0.07 -65.71 -65.71
5.2 25 3.20 3.27 3.27 0.02 -155.11 -155.11
5.2 50 3.20 3.06 3.06 0.04 -185.72 -185.72
5.2 100 3.20 3.50 3.50 0.09 -208.39 -208.39
5.3 25 1.35 1.32 1.32 0.02 -73.11 -73.11
5.3 50 1.35 1.27 1.27 0.06 -65.71 -65.71
5.3 100 1.35 1.33 1.33 0.01 -74.52 -74.52
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Fig. 3. CUPAAL runtimes with increasing observation length.

the true model. For example, in the row for model 3.2 with 25
observations, the original model takes 1.33 rounds, and both
CuPAAL and Jajapy predict 1.28 rounds.

The relative error 𝜙 indicates a minimal deviation from the
true value, but to evaluate if this is overfitting or not, additional
test set log-likelihoods should have been calculated.

In conclusion, these results demonstrate that CuPAAL is a
reliable and accurate implementation of the Baum-Welch (BW)
algorithm, achieving performance comparable to that of Jajapy
in learning the model.



10

TABLE 2
Leader sync model variations in training time in seconds.

ℳ |𝑆| 𝑇 jajapy (s) cupaal (s)
3.2 26 25 1.38 0.26
3.2 26 50 1.95 0.14
3.2 26 100 4.09 0.23
3.3 69 25 7.95 2.46
3.3 69 50 11.20 1.59
3.3 69 100 19.65 1.75
3.4 147 25 27.10 8.54
3.4 147 50 42.57 9.20
3.4 147 100 84.02 9.90
4.2 61 25 15.68 11.18
4.2 61 50 24.87 13.56
4.2 61 100 52.11 11.24
4.3 274 25 194.88 231.28
4.3 274 50 414.30 379.21
4.3 274 100 447.83 117.78
4.4 812 25 1846.68 3324.83
4.4 812 50 2290.28 1848.44
4.4 812 100 5652.14 3447.56
5.2 141 25 95.59 104.71
5.2 141 50 342.05 553.66
5.2 141 100 798.73 982.97
5.3 1050 25 4586.86 10906.91
5.3 1050 50 7791.95 10405.75
5.3 1050 100 9821.74 5992.51
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Fig. 4. JAJAPY runtimes with increasing observation length.

6.2 Scalability

These results represent the time taken to train a model based
on two parameters: the number of states and the length of the
observations in the training set.

The results for the leader sync model are presented in
Table 2 and Figure 5, showing the time required to train a
model based on the number of states and observation length.
Only the training time is considered; the initialization of the
programs is not a factor in these numbers.

Contrary to our expectations, the data does not show a clear
difference in the time taken to train the leader sync model
between Jajapy and CuPAAL for Markov Chains (MCs).

For very small models, the running time does not matter

too much; however, we observe an initial overhead in Jajapy
compared to CuPAAL. This is likely related to the consensus
that Python is generally slower than C.

More states mean longer running time, but interestingly,
variations with a similar number of states may have very
different training times. The most obvious example is the 3.4
and 5.2 models, which have 147 and 141 states, respectively.
The 5.2 model is significantly slower, especially in CuPAAL,
exhibiting a nearly 10 times increase in training time despite
having slightly fewer states.

Initially, we only had data for observations of length 25, and
the data under those conditions suggested that Jajapy scaled
significantly better than CuPAAL.

To explore this behavior, we extended the experiment to
include data for observations of different lengths, and our
observations are now more in line with our expectations. Jajapy
gets slower at a pace roughly linear with the length of the
observations; doubling the observation length doubles the run
time of Jajapy. This is not the case for CuPAAL, where we
do not see any particular increase in running time as the
observation length increases.

Looking at Figures 3 and 4, the CuPAAL runtime decreases
as the observation length increases. This is contrary to what
one might intuitively expect, as one would assume that with
more data, the calculations either increase the running time or
have no effect on it.

Our hypotheses as to why this is the case for Figure 3 are
due to the model this experiment is based on. Since leader
sync usually ends its observations with the label elected, as
the observation length increases, more of this label appears in
sequence.

This leads the BW algorithm to learn the final part of
the model more quickly and, at a certain point, reach a
constant value that it can reuse in future computations, thereby
accelerating the learning of part of the model.

6.3 Controlled Initialization

This section will cover the third experiment, which compares
CuPAAL and Jajapy. This experiment explores the effect
of random and controlled initial model parameters, as we
expect repeated values to be highly beneficial for CuPAAL’s
implementation.

Table 3 presents three variations of the leader sync model
with varying numbers of states and observation sequences. We
notice that the initialization method can have an impact on the
number of iterations it takes to learn the model.

This is to be expected, as the initialization of a Markov model
is known to impact the BW algorithm [8]. We are therefore
interested in the time per iteration as a metric for runtime
comparison.

Table 3 compares CuPAAL to Jajapy and the impact of
random and controlled initialization on the time needed to
learn the model.

Examining the columns rand-ja and control-ja,
which show the impact of random and controlled initialization
for Jajapy, reveals no significant difference between the two.

However, when examining the differences for CuPAAL it is
clear that the controlled approach is generally faster than the
completely random one; this becomes especially pronounced as
the number of states in the model increases.
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Fig. 5. Plot of the run time of JAJAPY and CUPAAL for the leader sync models, given the number of states and the length of the observations. The
planes are linear regression fits to indicate the directions of the trends for the datapoints of similar color. This is not an attempt to make any definitive
statements about the degrees of scaling but rather to illustrate the generally observable trend.

The ∆ columns for CuPAAL (cup) and Jajapy (ja) show
this relative difference between the different initializations. The
mean difference for CuPAAL is ∼ −11%, while it is ∼ −1% for
Jajapy.

We expected this to be the case, as the number of obser-
vations resulted in more repeated values, and the controlled
initialization had a similar effect. This seems to partially
alleviate the poorer scaling CuPAAL suffers from as the number
of model states increases at low observation lengths.

Both the random and controlled initialization resulted in
identical log-likelihoods, meaning that regardless of the method

used, the learned model is still equally close to the correct
model, which is still in line with our results from experiment 1.

Figures 6 to 8 give a visual representation of how CuPAAL
compares to Jajapy based on the observation counts while
using both random and controlled initialization.

These graphs illustrate the general trend of CuPAAL
performing slightly better with controlled initialization, whereas
for Jajapy, we observe no clear tendency for what performs
best.

These results indicate a gain for CuPAAL when there are
repeated values for the initialization.
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TABLE 3
Leader sync model variations in training time with random (ran) and controlled (con) initial values. 𝑖 is the number of iterations, 𝑠 represents seconds

𝑠∕𝑖 represents seconds per iteration, and ∆ represents the relative difference between random and controlled initialization.

ℳ 𝑇 𝑖 ran 𝑖 con 𝑠 ran cup 𝑠 con cup 𝑠 ran ja 𝑠 con ja 𝑠∕𝑖 ran cup 𝑠∕𝑖 con cup 𝑠∕𝑖 ran ja 𝑠∕𝑖 con ja ∆ cup ∆ ja
4.2 25 18 16 11.12 7.87 15.68 13.26 0.62 0.49 0.87 0.83 -20.34 -4.87
4.2 50 17 20 13.56 12.54 24.87 28.32 0.80 0.63 1.46 1.42 -21.41 -3.21
4.2 75 17 18 9.72 10.54 36.02 38.62 0.57 0.59 2.12 2.15 2.41 1.27
4.2 100 17 18 11.24 10.95 52.11 53.75 0.66 0.61 3.07 2.99 -8.04 -2.58
4.3 25 18 18 231.28 194.04 194.88 190.65 12.85 10.78 10.83 10.59 -16.10 -2.17
4.3 50 18 18 379.21 308.81 414.30 414.95 21.07 17.16 23.02 23.05 -18.56 0.16
4.3 75 18 18 232.21 206.67 476.68 486.04 12.90 11.48 26.48 27.00 -11.00 1.96
4.3 100 18 18 117.78 118.17 447.83 441.40 6.54 6.57 24.88 24.52 0.33 -1.44
4.4 25 18 18 3324.83 3087.66 1846.67 1793.90 184.71 171.54 102.59 99.66 -7.13 -2.86
4.4 50 18 18 1848.44 1526.81 2290.28 2239.18 102.69 84.82 127.24 124.40 -17.40 -2.23
4.4 75 17 18 1597.78 1512.33 3017.72 3177.81 93.99 84.02 177.51 176.54 -10.61 -0.55
4.4 100 18 18 3447.56 2959.75 5652.14 5586.23 191.53 164.43 314.01 310.35 -14.15 -1.17
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This lines up well with our hypothesis that CuPAAL
performs better when it can leverage repeated values for its
Algebraic Decision Diagram (ADD) structure.

7 DISCUSSION

In this section, we discuss the results presented in section 6 and
reflect on the performance of CuPAAL compared to Jajapy.

The results presented in subsection 6.1 confirm that Cu-
PAAL and Jajapy learn identical models, which is expected as
the Baum-Welch (BW) algorithm should be the same despite
the different technical implementations. Both reach the same
model in the same number of iterations, with identical log-
likelihood and accuracy, as confirmed by model checking with
properties, which establishes their computational equivalence
and provides a solid foundation for further work with symbolic
implementations.

Unfortunately, the scalability results from Sections 6.2
and 6.3 do not show CuPAAL to be as clear a winner as we
had expected. There are benefits to a symbolic calculation, but
they are not as pronounced as previous work suggested in work
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done for implementations targeting only the forward-backward
procedure.

The theoretical advantage of matrices with a lot of repeated
values represented as Algebraic Decision Diagrams (ADDs)
is confirmed, as seen by the results in subsection 6.3, and
there may be even more performance to be gained with
different symbolic implementations. Currently, CuPAAL cleans
up after each iteration, which may generally improve or worsen
performance; however, we expect it to worsen performance in
cases with a high number of repeat values.

The experiment is conducted using a single model, leader
sync, which may not provide a comprehensive view of perfor-
mance across different scenarios. A more effective approach
would have been to utilize multiple models with varying char-
acteristics and compare their performance, which would allow
for a more comprehensive overview of CuPAAL’s scalability
compared to Jajapy.

Other models that were considered were the NAND multi-
plexing (NAND) and Bounded Retransmission Protocol (BRP)
models, also from the qcomp benchmark set [5]. A wider
variety of models would provide more and clearer insight into
CuPAAL, thereby displaying its strengths and weaknesses more
completely.

The model could also have utilized a greater number of
states and observations; currently, the largest model contains
1,050 states and observation sequences of length 100.

Larger models were considered, but it was determined that
the largest model used was sufficient, given the time required
for learning.

We ran the experiments in a Docker container, which
introduces some level of overhead. We have not investigated
whether this overhead introduces any bias towards Jajapy
or CuPAAL. While we do not expect it to do so, we also
cannot say that we fully understand the overhead of Docker.
For completeness, this might have been better explored.

In subsection 5.5, the values for the initial model values
are not entirely random. Instead, they are designed to have
repeated values, which was done to display the theoretical
strengths of CuPAAL. This method skews the model to favor
CuPAAL, as the ADD structure benefits from repeated values
and, therefore, will display results that indicate CuPAAL as the
stronger implementation.

This was done purely to research what was believed to be
a strength of CuPAAL and to further the discussion on when
CuPAAL is a good option to use over other tools, such as Jajapy.
It would be interesting to explore the limits of this initialization
strategy for the BW algorithm in general, as initialization of the
System Under Learning (SUL) is a point of research on its own.

7.1 Implementation Discussion
The integration of CuPAAL into Jajapy has been successful,
allowing us to leverage the BW algorithm for parameter
estimation for Hidden Markov Models (HMMs) and Markov
Chains (MCs).

The decision to use pybind11 for creating bindings between
C++ and Python has proven effective, as it allows us to easily
call C++ functions from Python.

The exact implementation of the symbolic fit function in
Jajapy, shown in Listing 6, is to be discussed with the Jajapy
creator, and in the final integration into Jajapy some changes
are expected to be made.

CuPAAL displays clear benefits when working with repeated
values; however, it did not compare as favorably to Jajapy as
we expected.

Previous work indicated that CuPAAL overall was a stronger
implementation, but with an entirely symbolic implementation,
some potential bottlenecks have been observed.

Specifically in the update step of the BW algorithm, as
when working with ADDs for just the 𝛼 and 𝛽 steps, CuPAAL
performed very well - much better than what is indicated for
the complete BW algorithm implemented here.

This suggests that there may be issues when updating the
values when using ADDs. To further research this topic, a
hybrid implementation could be provided. This implementation
would utilize ADDs when calculating 𝛼 and 𝛽 and then employ
a recursive approach when updating values.

An implementation like this would require much conversion
between matrices and ADDs, but comparing a fully symbolic,
a recursive, and a hybrid approach would give further insight
into what CuPAAL struggles with.

For now, CuPAAL only measures the time taken to compute
the BW algorithm, but an interesting metric to compare would
be the memory used. If CuPAAL was discovered to require
less memory than Jajapy, even with more time needed for
larger models, it could be a better choice in situations where
memory was a constraint. However, without a memory metric
to compare, the decision can only be made based on the time
required for computing BW.

The library used to manipulate ADDs was Colorado Univer-
sity Decision Diagram (CuDD), as it was what previous work
had built upon. A discussion at the time also raised the question
of whether this is the best tool for the job, as other tools, such as
Sylvan [21], exist. This discussion remains relevant and worth
exploring, especially in the context of parallelization, which is
not possible in the current implementation of CuPAAL.

CuPAAL is designed for the BW algorithm, but it is worth
exploring other algorithms that could benefit from a symbolic
implementation. An algorithm that could be explored could
be the Viterbi algorithm. By exploring other algorithms, the
general benefits of using a symbolic approach can be better
understood.

7.2 Future Work

This section will discuss areas that might be worth exploring in
future work.

CuPAAL only utilizes a single core. This is not an issue
when comparing it to Jajapy, as it can be limited to using only
a single core as well. However, improving CuPAAL to support
multiple cores could be a worthwhile direction to explore, as it
could provide a significant performance increase.

In a multiset of observation sequences, sequences are
grouped if they are identical, meaning that when computing
these observation sequences, we can factor in the number of
identical sequences and only compute the 𝛼 and 𝛽 values once
for the same sequence.

Expanding upon this idea involves utilizing prefixes and
suffixes to enhance observations. Many observations may not
be entirely identical, but they could share a significant number
of labels.

To leverage this, prefixes and suffixes of observations could
be considered and grouped as whole sequences are currently.
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Given that an observation sequence contains many observations
that share prefixes and suffixes of labels, effectively building a
tree structure of prefixes/suffixes. The gain could prove to be
significant.

In the update step of BW in CuPAAL, consideration is not
made to check if the model worked on is a MC. This might be
worth adding, as in these cases, unnecessary computation is
made, as MCs do not require the 𝜔 function to be updated.

This is a minor consideration, as these values are ignored
after they are computed, but it could be worth implementing.

8 CONCLUSION

In this work, we present a symbolic implementation of
the Baum-Welch algorithm for both Hidden Markov Models
(HMMs) and Markov Chains (MCs), leveraging Algebraic
Decision Diagrams (ADDs) to replace traditional matrix and
recursive representations.

By reformulating the Baum-Welch (BW) algorithm using
compact and canonical ADD structures, our approach efficiently
handles both the stochastic emissions of HMMs and the
deterministic emissions of MCs, enabling scalable parameter
learning across model types.

We extend the BW algorithm to support learning from
multiple observation sequences. Based on a matrix-derived
aggregation of expectations, we implement the corresponding
update steps symbolically using ADDs, eliminating the need
for recursive or dense matrix computations while retaining the
theoretical correctness of the original BW method.

To make this approach practical, we integrate the symbolic
implementation into the Jajapy library, resulting in Jajapy 2.
Through Pybind11 bindings, the C++ backend of CuPAAL is
exposed to Python, allowing users to switch seamlessly between
traditional and symbolic learning modes without disrupting
existing workflows.

Our experimental evaluation using the leader sync model
from the QComp benchmark demonstrates that the symbolic
implementation in CuPAAL achieves significant runtime im-
provements over Jajapy’s original recursive method, especially
in scenarios involving long observation sequences or models
with structural redundancy.

Accuracy remains unaffected, with both implementations
converging to equivalent log-likelihoods and parameter esti-
mates.

These findings underscore the potential of symbolic meth-
ods based on ADDs for large-scale probabilistic model learning.
By exploiting structure and sparsity, symbolic techniques enable
efficient manipulation of high-dimensional models, offering
promising applications in domains such as formal verification,
machine learning, and systems biology.

Future work may explore hybrid implementations, paral-
lelization, and extensions of CuPAAL to other model types,
such as Markov Decision Processs (MDPs) and Continuous
Time Markov Chains (CTMCs).
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APPENDIX A
MACHINE SPECIFICATIONS

TABLE 4
Machine specifications

Specification Value
CPU AMD Ryzen 5 3600
RAM 64 GB DDR4
OS Windows 11 Pro
Docker 4.40.0

A.1 Python Environment

TABLE 5
Python environment

Requirement Version
Python 3.12.3
Jajapy 0.10.8
CuPAAL 0.1.0
numpy 1.26.0
pandas 2.2.3
scipy 1.11.2
sympy 1.12.0
matplotlib 3.8.1
alive-progress 3.1.4
pybind11 global 2.13.6

APPENDIX B
CHEATSHEET

TABLE 6
Symbol table.

Symbol Meaning

ℝ Real numbers
𝔹 Boolean domain
ℕ Natural numbers
ℳ Markov Model
𝑠 ∈ 𝑆 States
𝑙 ∈ 𝐿 Labels
𝑜 ∈ 𝑂 ∈ 𝒪 Observations
𝑡 ∈ 𝑇 Time steps
𝟏 Column vector of ones
𝜋 Initial distribution
𝜏 Transition function
𝜔 Emission function
𝛼 Forward probabilities
𝛽 Backward probabilities
𝛾 State probabilities given O
𝜉 Transition probabilities given O
𝜆 = (𝜋, 𝜏, 𝜔) Model Parameters
𝜇 Mean
𝜎 Standard deviation
𝜃 = (𝜇, 𝜎2) Parameters of a distribution
𝑃(𝒪; 𝜆) Probability of 𝒪 given 𝜆
𝓁(𝜆;𝒪) Log likelihood of 𝜆 under 𝒪
⋅ Scalar product
⊙ Hadamard product
⊗ Kronecker product
⊘ Hadamard division
• Transposed Khatri-Rao product
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